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A B S T R A C T

This thesis presents the main results obtained during the author’s PhD
studies, devoted to numerical methods for investigating the behavior of dy-
namical systems generated by certain classes of delay equations, that is, func-
tional equations where the present value of a function, or that of its deriva-
tive, is defined in terms of its past values.

Such dynamical systems are infinite-dimensional, and that represents the
main reason why, when it comes to actually compute their solutions or other
relevant quantities, it is impossible to attain any results analytically, and thus
necessary to resort to some numerical tools.

More specifically, the equations of interest are the Delay Differential Equa-
tions (DDEs), the Renewal Equations (REs) and the coupled systems defined
by both DDEs and REs. These equations appear in a wide range of ap-
plications, from engineering to natural sciences, and coupled systems are
especially present in population dynamics models. This is what motivates
all the work done in order to produce this thesis.

The problems that have been tackled concern the computation of equilibria
and periodic solutions. The complexity of such problems lies in part in that
of the realistic models. Indeed, these models are often formulated through
complicated right-hand sides, as in the case of the consumer-resource model
for the Daphnia magna water flea feeding on algae [Diekmann, Gyllenberg,
Metz, Nakaoka and de Roos, J. Math. Biol. 61 (2010)]. Moreover, realis-
tic models depend on several (varying or uncertain) model parameters. In
fact, all the methods presented are intended to be used within a parameter
continuation framework.

It is fair to claim that collocation methods constitute the leitmotif of the
thesis. Indeed, they are the fundament of the standard approach used to
discretize the relevant dynamical systems into finite-dimensional ones - an
operation which is at the basis of the application of numerical methods.

The methods presented in this thesis show how collocation can also be
used to improve existing methods for the computation of equilibria - notably
badly-performing in many realistic cases -, as well as to compute periodic
solutions.

Concerning the latter, it is worth observing that the current literature on
REs is not yet as developed as the one on DDEs. In particular, the well-
known method presented in [Engelborghs, Luzyanina, in ’t Hout and

Roose, SIAM J. Comput. 22 (2001)] for computing periodic solutions of
DDEs was never extended to REs previously.

The main theoretical contribution of the thesis is the proof of the conver-
gence of (a variant of) the method for DDEs, which is highly based on the
abstract approach in [Maset, Numer. Math. 133 (2016)]. To the best of the
author’s knowledge, such a proof has never been obtained before, but for
some specific forms of DDEs.
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iv abstract

To sum up, the original contributions of this thesis concern the numerical
study of certain delay equations under various aspects. In particular, the de-
scription of the new method to compute (parameter-dependent) equilibria
is accompanied by some numerical test which show its outperformance of
existing methods. Similarly, the validation of the method to compute peri-
odic solutions of delay equations is also supported by some numerical tests
contained herein.



S O M M A R I O

Questa tesi raccoglie i risultati principali ottenuti dalla ricerca svolta du-
rante il percorso di dottorato dell’autrice, dedicata a metodi numerici per
lo studio del comportamento di sistemi dinamici generati da certe classi di
equazioni con ritardo, ovvero equazioni funzionali in cui il valore di una
funzione al tempo attuale, o quello della sua derivata, è definito tramite i
valori nel passato.

Tali sistemi dinamici sono infinito-dimensionali, il che rappresenta la ra-
gione principale per cui, quando si tratta di calcolare effettivamente le lo-
ro soluzioni o altre quantità correlate, non è possibile ottenere dei risultati
analicamente, e dunque necessario ricorrere a metodi numerici.

Nello specifico, le equazioni oggetto di questa tesi sono le equazioni dif-
ferenziali con ritardo (DDE), le equazioni di rinnovo (RE) e i sistemi definiti
da DDE ed RE accoppiate. Tali equazioni appaiono in un’ampia gamma di
applicazioni, dall’ingegneria alle scienze naturali, e i sistemi accoppiati sono
particolarmente presenti nei modelli di dinamica delle popolazioni. Questo
è ciò che motiva tutto il lavoro svolto al fine di produrre questa tesi.

I problemi affrontati riguardano il calcolo degli equilibri e delle soluzioni
periodiche. la complessità di questi problemi è in parte conseguenza di
quella degli stessi modelli che appaiono effettivamente nelle applicazioni. In
particolare, questi modelli sono spesso formulati in termini di membri destri
molto complessi, come nel caso del modello consumatore-risorsa della pulce
d’acqua Daphnia magna che si ciba di alghe [Diekmann, Gyllenberg, Metz,
Nakaoka and de Roos, J. Math. Biol. 61 (2010)]. Inoltre, i modelli realistici
dipendono da diversi parametri (variabili o dai valori incerti). In effetti, tutti
gli approcci presentati sono pensati per un utilizzo all’interno di un metodo
di continuazione dei parametri.

È legittimo affermare che i metodi di collocazione costituiscono il filo con-
duttore della tesi. Nella fattispecie, sono alla base del metodo standard
per discretizzare i sistemi dinamici di interesse al fine di trasformarli in si-
stemi finito-dimensionali - un processo che è alla base dell’applicazione di
qualsiasi metodo numerico.

I metodi presentati nella tesi mostrano anche come la collocazione può
essere usata per migliorare i metodi già sviluppati per la continuazione degli
equilibri - noti per essere poco efficienti in molti casi realistici -, nonché per
il calcolo delle soluzioni periodiche.

Riguardo a queste ultime, è opportuno menzionare che la letteratura at-
tuale sulle RE è meno sviluppata di quella sulle DDE. In particolare, il noto
metodo presentato nel lavoro [Engelborghs, Luzyanina, in ’t Hout and

Roose, SIAM J. Comput. 22 (2001)] per il calcolo delle soluzioni periodiche
di DDE non era mai stato esteso alle RE in precedenza.

Il principale contributo teorico della tesi è la dimostrazione di convergenza
di una variante del metodo per le DDE, ampiamente basato sull’approccio
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astratto in [Maset, Numer. Math. 133 (2016)]. A conoscenza dell’autrice,
tale dimostrazione non era mai stata ottenuta in precedenza, se non per
qualche forma specifica di DDE.

Riassumendo, i contributi originali della tesi riguardano lo studio nume-
rico di alcune equazioni con ritardo sotto diversi aspetti. In particolare, la
descrizione del nuovo metodo per il calcolo di equilibri (dipendenti da pa-
rametri) è accompagnata da alcune simulazioni numeriche che mostrano la
sua superiorità rispetto ai metodi standard in termini di efficienza. Allo stes-
so modo, la validità del metodo per il calcolo delle soluzioni periodiche di
equazioni con ritardo è supportata da alcune simulazioni qui presentate.
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1 I N T R O D U C T I O N : M O D E L I N G
D E L AY E D E F F E C T S

Ordinary Differential Equations (ODEs) describe the rate of change of a
quantity at a specific time as a function of the value of the quantity itself
at the same time. Their use in mathematical modeling dates back to the
eighteenth century, when Malthus formulated his exponential growth law
in one of the overall first works in the field of population dynamics [76].
Progress has been made since then: ODEs are nowadays a widespread tool
in all areas of social and natural sciences, and can be solved numerically with
a high accuracy. However, in many social and natural phenomena, there is
a delay between a cause and the corresponding effect. In other words, the
present evolution of the relevant quantities is also influenced by their past
values, and ODEs are often not able to capture this dependence on the past
adequately.

One of the first works concerning the theory of systems which take delay
effects into account dates back to the beginning of the twentieth century
[103]. Some time later, delay models started to become more popular, as a
result of the spread of automatic control systems in engineering. A popular
example in this area is the hot shower problem [68], where a measurement
delay arises. Indeed, the change of the temperature of the water can only be
perceived by the relevant device after a certain amount of time.

More natural examples of models involving delays can be found in sev-
eral areas of biology (see, e.g., [71] or [95] for a general reference). A first
example in population dynamics is the delayed logistic equation, introduced
in [63] to improve the logistic equation proposed by Verhulst in [102], which,
in turn, aimed at including competition within the species in the model
of Malthus. Other examples are the Physiologically Structured Population
Models (PSPM) [37, 38, 39, 40, 43], where delays appear as a result of the
presence of different life stages (e.g., juveniles and adults). In epidemiology,
delays can be used to model latent periods (when individuals are infected
but not yet contagious) or incubation periods (when individuals are infected
but do not yet show any symptoms). In behavioral epidemiology, delays
have been introduced to model, e.g., the vaccination coverage at birth as a
function of some memory variable, which contains information about past
values of the relevant quantities (see [48] as one of the first works on the
subject, and [47] as a general reference on behavioral epidemiology).

The class of models of interest in this thesis can be expressed in the general
form {

x(t) = F(xt, yt)

y′(t) = G(xt, yt),
(1.1)

where

F : X× Y→ RdX , G : X× Y→ RdY

1



2 introduction: modeling delayed effects

are autonomous, in general nonlinear functions for positive integers dX and
dY, and the state spaces X and Y are Banach spaces classically (see, e.g., [40])
defined respectively as

X := L1([−τ, 0],RdX ), Y := C([−τ, 0],RdY)

for some τ > 0, called the delay. The x-component of the state of the dynam-
ical system on the state space X× Y at time t associated to (1.1) is denoted by
xt, defined as

xt(θ) := x(t + θ), θ ∈ [−τ, 0], (1.2)

and the same notation holds for the y-component.
The first equation of (1.1) is called a Renewal Equation (RE) and the second

is a Delay Differential Equation (DDE). In its most general form, (1.1) is
called coupled or delay equation or system.

Coupled systems have appeared more and more frequently in modeling
of structured populations [21, 41, 42, 43, 44, 64, 65, 82, 91]. In these realistic
cases, the function F defining the right hand side of the RE has a smoothing
effect, i.e., is integral in the x-component. Examples are

F(ϕ) =
∫ 0

−τ
H(θ, ϕ(θ))dθ (1.3)

for some nonlinear function H, or

F(ϕ) = g
(∫ 0

−τ
H(θ)ϕ(θ)dθ

)
(1.4)

for some nonlinear function g. Given the interest towards this class of
models, many works have also recently appeared concerning numerical ap-
proaches for their stability and bifurcation analyses [22, 23, 24, 25, 26, 38, 90].

In the following sections of this introductory chapter, several aspects of de-
lay models will be introduced. In particular, Section 1.1 will give a general
mathematical background, while Sections 1.2 and 1.3 will give an overview
on the numerical issues concerning delay equations and on related software,
respectively. Section 1.4 will introduce an emblematic complex PSPM de-
scribed by a coupled system.

1.1 dynamical systems (from delay equations)

A (continuous-time) dynamical system is a triple {T, X, {T(t)}t∈T} where
the set of times T ⊆ R contains 0 and is closed under addition, the state space
X is the set of possible values of the evolving quantities, and {T(t)}t∈T are
evolution operators on X, i.e., they satisfy the following properties:

• T(0) = I;

• T(t + s) = T(t) ◦ T(s), t, s ∈ T.

In particular, the operator T(t) : X → X is defined as

T(t)x0 = xt,

if x0 is the initial state and xt is the state at time t.
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Many real-life phenomena in science and engineering are defined by Ini-
tial Value Problems (IVPs). Those for autonomous ODEs, DDEs and REs
define dynamical systems, as long as they are well-posed, i.e., their solu-
tions exist and are unique. For example, an IVP for the DDE

y′(t) = G(yt), (1.5)

with state space Y ⊆ F([−τ, 0],Rd) := { f : [τ, 0] → Rd}, is defined by an
initial function ϕ ∈ Y and some M > 0, and consists of finding a solution of
(1.5) on [−τ, M] which satisfies the initial condition y0 = ϕ, i.e., a solution of{

y′(t) = G(yt), t ∈ [0, M],

y0 = ϕ, t ∈ [−τ, 0].
(1.6)

In this context, y′(t) stands for the right-hand derivative y′(t)+. A sufficient
condition for the well-posedeness of the problem is given by the following
theorem.

Theorem 1.1 ([68, Theorem 2.1, Chapter 3]). Given an open set Ω ⊆ Y, if G is
locally Lipschitz continuous in Ω, then for all ϕ ∈ Ω there exists M > 0 such that
(1.6) has a unique solution in [−τ, M].

Results concerning the well-posedeness of IVPs for RE defined by a gen-
eral right hand side and in particular of the form (1.3) can be found in [59,
Sections 12.1 and 12.2].

The evolution operator T(t) of a dynamical system as the one above is
also called solution operator. In this context, an invariant set for all solution
operators is simply called invariant set. These include equilibria, i.e., constant
solutions, or cycles, i.e., periodic solutions.

In many applications, there is a strong interest in determining the stabil-
ity properties of invariant sets. An invariant set S ⊆ X is stable if for all
neighborhoods U ⊃ S there exists a neighborhood V ⊃ S such that T(t)
maps V to U for all t ≥ 0. It is unstable otherwise. If S is stable and there
exists a neighborhood VS ⊃ S such that T(t)VS → S as t → +∞, then S is
asymptotically stable.

A nonlinear system can be linearized around an equilibrium or a periodic
solution; for instance, in the case of (1.5), linearization around a solution y∗

would read
y′(t) = DG(y∗t )yt. (1.7)

If the relevant solution is an equilibrium, then the linearized system will be
autonomous, while if it is a periodic solution, then the linearized system will
have periodic coefficients. The linearization procedure turns out to be crucial
upon studying the stability properties of an invariant set (see, e.g., [75]).
Indeed, in general the local stability properties of a solution are strongly
related to those of the null solution of the relevant linearized system (e.g., [45,
Section 5 of Chapter VII]). In the case of linear autonomous DDEs and REs,
they are in turn determined by the spectrum of the semigroup of solution
operators of the linearized problem, or that of its infinitesimal generator (see
[51] as a general reference).
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Theorem 1.2 (Principle of linearized stability for equilibria of DDEs, [45,
Theorem 6.8, Chapter VII]). Let G ∈ C1(Y,Rd) and let y∗ be an equilibrium of
(1.5). If all the eigenvalues of the infinitesimal generator of the semigroup of solution
operators of (1.7) have negative real part, then y∗ is asymptotically stable. If at least
one has positive real part, then y∗ is unstable.

Similar results for equilibria of REs can be found in [40, Section 3.4]. In the
case of linear periodic DDEs, which can arise upon linearization around a
periodic solution, the stability properties of the null solution are determined
by the eigenvalues of the monodromy operator, i.e., the evolution operator
which shifts a state of one period. Such eigenvalues are called the Floquet
multipliers or characteristic multipliers. As stated in, e.g., [68, Theorem 1.6,
Chapter 4], if all of them, except the multiplier 1 whenever it is simple, are
inside the unit circle then the null solution is asymptotically stable. If at least
one of them is outside of the unit circle, then the null solution is unstable.
Similar results for REs have only recently been obtained (see [27]).

Note that, if the equations are not autonomous, then their evolution vary
with time. This is expressed by defining solution operators {T(t, s)}t>s∈T
depending on two time parameters, and satisfying the properties

• T(t, t) = I, t ∈ T;

• T(t, s) = T(t, r) ◦ T(r, s), t > r > s ∈ T.

1.2 the complexity of delay models

The main difficulties arising from the inclusion of delay terms are at-
tributable to the consequent enlargement of the state space, in particular
from finite- to infinite-dimensional. Indeed, as mentioned in Section 1.1, for
an IVP to be well-posed, a single initial value is no longer sufficient. Rather,
a history map defined in [−τ, 0] is necessary. Moreover, this leads to infinite
dimensionality of the evolution operators defining delay dynamical systems
and, potentially, an infinite amount of eigenvalues to detect in order to de-
termine the stability of a certain invariant set.

Clearly, such a theoretical investigation is not feasible in practice. How-
ever, analyzing the stability of an equilibrium or periodic solution, as well as
detecting bifurcations, are all typical targets in this context. This brings the
need for some kind of discretization, i.e., transformation of the problem into
a finite-dimensional one which preserves the relevant properties. To this
aim, several works proposing and developing a pseudospectral discretiza-
tion technique (based on collocation, see Section 3.3) have appeared in the
past decade. In particular, the stability of linear DDEs was first tackled in
[29]. [26] is the first systematic attempt to attack the stability of periodic so-
lutions of REs, which was extended to coupled systems in [27]. Eventually,
in [22] the method is extended to nonlinear equations in a way such that
linearization and discretization commute (see Section 4.2 for more details).

The relevance of the latter work is explained by the wide availability of
software tools for ODEs which are able to investigate stability and bifurca-
tions, taking only the (discretized) right-hand side as an input (e.g., Mat-
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Cont [4], AUTO [1]). However, this approach has a downside: it becomes
very computationally demanding when applied to realistic models defined
by a complicated right-hand side. For instance, it is often the case - especially
in PSPM, see Section 1.4 - that the right-hand side is not given by an exact
expression, but rather through solutions of external ODEs. Indeed, those
ODEs are solved within the function defining the right-hand side, and not
directly by MatCont, which means that they have to be solved from scratch
for every value of the continuation parameter.

In other words, it is impossibile to exploit the intermediate results ob-
tained during previous continuation steps (e.g., the solutions of external
ODEs for other values of the continuation parameter). It is fair to assume
that this plays a role in determining the overall computational cost, and to
conjecture that the inclusion of the (resolution of) the external problems into
the continuation framework would help lighten the computational burden.

This alternative internal continuation approach is proposed and described
in full detail in Chapter 4. Experimental proof of its validity - and superiority
over the standard external approach - for the continuation of equilibria is also
provided therein, by means of numerical simulations on PSPM-like models
of growing complexity. The plan for the immediate future is to extend the
approach in order to be able to compute more general solutions, in particular
periodic ones.

The computation of periodic solutions, indeed, is often a topic of inter-
est in applications of delay equations. A numerical method for DDEs was
proposed in [53], but was never extended to REs (or coupled systems), for
which such methods still lack. An attempt to extend the approach in [53]
to REs will be presented in Chapter 5. It will be also shown, through some
numerical simulations, that the orders of convergence obtained in [53] also
hold for REs and coupled systems.

From a more theoretical point of view, references lack even in the case of
DDEs. To the best of the author’s knowledge, a full analysis of the error and
the relevant convergence of the method has never been performed for the
general case (1.5), but rather only in some specific cases (see Sections 6.1 for
more details). Chapters 6 and 7 will describe an attempt to bridge this gap,
based on the abstract framework proposed in [79] for computing solutions
of Boundary Value Problems (BVPs) for delay equations. It will be shown,
in particular, that the reformulation of the problem as a BVP requires an
infinite-dimensional boundary condition in order to fit into the class of BVPs
considered in [79]. Eventually, convergence of the finite element method (see
Subsection 3.3.1) will be proved and accompanied by a detailed convergence
analysis.

Thus, the continuation of equilibria and the computation of periodic solu-
tions of delay equations constitute the main contributions of this work, and
both relate to the use of collocation methods as a discretization tool.
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1.3 software tools: state of art

The growing interest in dynamical systems has naturally led to a growing
number of numerical packages for stability and bifurcation analyses. As
mentioned in Section 1.2, most of them are only suited for finite dimensional
systems (i.e., ODEs), e.g., MatCont [4] and AUTO [1].

Some classes of delay equations can still be partially studied without a
(manual) prior discretization. In particular, several software packages are
available for DDEs defined by discrete delays only, i.e., with right-hand side
of the form

G(y(t), y(t− τ1), . . . , y(t− τn)).

Examples are DDE-biftool [2], XPP-Aut [6], Knut [3] and PyDSTool [5].
Other software is available for the study of PSPM described by a coupled

system, as will be described in Section 1.4. Examples are EBTtool [36] and
PSPManalysis [35]. The work [90], which will be mentioned in Chapter 4,
is based on the same ideas. As general references on numerical methods for
DDEs and related software, one can consider [17] and [30].

1.4 daphnia

Coupled RE/DDE equations often arise in PSPM. In these models, the vi-
tal rates of the individuals (e.g., rates of reproduction, death or consumption
of some resources) depend on one or more real variables that constitute the
structure of the individuals (usually their size) which, in turn, vary piecewise
continuously with their age. The potential discontinuity points are due to
the different life stages of individuals (e.g., juvenile and mature), that are
reached as soon as the structuring variables pass certain treshold values. In
the majority of cases, the model includes some feedback from the environ-
ment (e.g., when they involve predator-prey interactions). A famous exam-
ple that can be used to illustrate these concepts is the one of the Daphnia
magna, or simply Daphnia [43]. The following description is mainly inspired
by [25].

Daphnia feeds on a resource which has concentration S(t) at time t. In the
absence of consumers, this concentration evolves according to an IVP for an
ODE of the form {

S′(t) = f (S(t)), t ≥ 0,
S(0) = S0

(1.8)

for given f : [0,+∞) → R and S0 > 0, the latter condition in order to be
biologically meaningful. In the classical version of the model, the resource
history St is defined on a closed interval [−amax, 0], meaning that there is a
maximum age amax that individuals can reach.

The structuring variable of the model is the size ξ(a, St), which depends on
both the age and the experienced resource history. The size ξ̄(α) := ξ̄(α; a, ψ)
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at age α ∈ [0, a] of an individual that at age a has experienced a resource
history ψ is defined by means of the solution of the IVP{

ξ̄ ′(α) = g(ξ̄(α), ψ(−a + α)), α ∈ [0, a],
ξ̄(0) = ξb,

(1.9)

for a given growth rate g : [ξb,+∞)× [0,+∞) → (0,+∞) and size at birth
ξb > 0. Then ξ(a, ψ) := ξ̄(a; a, ψ).

The vital rates involved are the survival probability and the birth and
consumption rates. The former, just like the size, is defined by means of
the solution of an IVP. The survival probability F̄ (α) := F̄ (α; a, ψ) at age
α ∈ [0, a] of an individual that at age a has experienced a resource history ψ

is given by {
F̄ ′(α) = −µ(ξ̄(α), ψ(−a + α))F̄ (α), α ∈ [0, a],
F̄ (0) = 1

(1.10)

for a given mortality rate µ : [ξb,+∞)× [0,+∞)→ (0,+∞). Then F (a, ψ) :=
F̄ (a; a, ψ). The other vital rates are defined through given functions β, γ :
[ξb,+∞)× [0,+∞) → R. In particular, the reproduction and consumption
rates of a consumer individual that at time t has age a and size ξ(a, St) are
denoted respectively β(ξ(a, St), S(t)) and γ(ξ(a, St), S(t)).

The lifespan of the individual consists of two stages, juveniles and adults,
the former being unable to reproduce. The adult stage is reached when the
size passes the maturation size ξA (> ξb), which is the only possible breaking
point of the vital rates (with respect to their first argument on [ξb,+∞)), as
well as of the growth rate. The maturation age aA is implicitly given through
the maturation condition

ξ(aA, ψ) = ξA. (1.11)

The model consists, therefore, of a coupled RE/DDE system. The RE
describes the consumer birth rate b(t), which is obtained by integrating with
respect to the age the contribution of the individuals who are in the adult
stage at the present time t, i.e.,

b(t) =
∫ amax

aA(St)
β(ξ(a, St), S(t))F (a, St)b(t− a)da.

The length of the age interval involved is therefore not fixed, but rather state-
dependent, i.e., depending on the resource history (through (1.11)).
The DDE describes the dynamics of the resource by subtracting the total
consumption from the right-hand side of the ODE in (1.8), i.e.,

S′(t) = f (S(t))−
∫ amax

0
γ(ξ(a, St), S(t))F (a, St)b(t− a)da. (1.12)

The presence of all the complications above, in particular external ODEs
and the implicit equation defining the maturation age, make Daphnia a good
representative of the class of problems of interest in this thesis.



8 introduction: modeling delayed effects

1.5 organization of the thesis

The rest of the thesis will be organized as follows. The current Chapter
will be concluded with Section 1.6, which introduces the relevant notation
that will be later used in the rest of the thesis. Chapters 2 and 3 will summa-
rize some well-known results which are used in the rest of the thesis (while
being explicitly referenced), and may, therefore, be skipped by the reader
who has already some experience with the relevant topics. In particular,
Chapter 2 will introduce the theoretical preliminaries. These include general
properties of Banach spaces, as well as some theory concerning DDEs and
REs. Chapter 3 will present, on the other hand, the numerical preliminar-
ies. Being most of the work for the thesis focused on (piecewise) polynomial
collocation methods, some attention will be devoted to polynomial inter-
polation and how its properties affect the relevant collocation framework.
Moreover, general results on parameter-dependent numerical continuation
will be provided. Chapter 4 will focus on the continuation of equilibria in
the context of parameter-dependent models, particularly on the proposed
internal continuation. Chapters 5, 6 and 7 will concern the computation of
periodic solutions. The former, from a more experimental point of view: in
particular, the method proposed in [53] for DDEs is extended to REs and
tested to an example of RE from the work [23]. Chapter 6 will describe the
work done in view of a theoretical convergence analysis of the aforemen-
tioned method for DDEs, based on the abstract approach in [79]. Chapter 7

will play the role of appendix of Chapter 6, by containing the proof of some
results that are considered rather technical. Finally, Chapter 8 will provide
some conclusions, as well as possible perspectives for future work.

1.6 notation and conventions

• | · | denotes any norm in Rn, for any n ∈ N.

• ∥ · ∥B denotes the norm of an infinite-dimensional Banach space B.

• F denotes the set of all the functions, that is

F(A, B) = { f : A→ B}.

• C = C0 denotes the set of all the continuous functions, and is a Banach
space when equipped with the uniform norm. For functions in C(A, B),
this is defined as

∥ f ∥∞ = sup
x∈A
∥ f (x)∥B.

Ck denotes the set of all the functions having continuous k-th deriva-
tive, and is a Banach space when equipped with the norm defined by

∥ f ∥Ck =
k

∑
i=0
∥ f (i)∥∞.

C∞ is defined as the intersection
⋂

k∈N Ck.
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• B∞ denotes the measurable and bounded functions, intended as func-
tions which are defined pointwise, and not classes of functions which
are equal almost everywhere. B1,∞ denotes the continuous functions
having derivative in B∞. They are Banach spaces when equipped with
the norms defined respectively as

∥ f ∥B∞ := ∥ f ∥∞

and
∥ f ∥B1,∞ := ∥ f ∥∞ + ∥ f ′∥∞. (1.13)

• Given G : Rm × Rp → Rn and (x̄, ȳ) ∈ Rm × Rp, Gx(x̄, ȳ) ∈ Rn×m

denotes the matrix ⎛⎜⎜⎜⎜⎝
∂G1

∂x1
(x̄, ȳ) · · · ∂G1

∂xm
(x̄, ȳ)

...
. . .

...
∂Gn

∂x1
(x̄, ȳ) · · · ∂Gn

∂xm
(x̄, ȳ)

⎞⎟⎟⎟⎟⎠
• IB : B → B denotes the identity operator on a Banach space B. I

without a subscript is used in the place of IB whenever there is no
ambiguity concerning the relevant Banach space.

• With reference to a Banach space B, the notation B refers to the closed
set

B(b, r) := {b′ ∈ B | ∥b− b′∥B ≤ r}, b ∈ B.

• Πn denotes the space of Rd-valued (for any d) polynomials of degree
at most n.

• Given U1, U2 normed spaces, unless otherwise specified, the norm of
the space U := U1 ×U2 is

∥ · ∥U = max{∥ · ∥U1 , ∥ · ∥U2}, (1.14)

and makes U a Banach space whenever U1, U2 are Banach spaces.

• L(U, V) is the set of linear bounded operators U → V, equipped with
the induced norm

∥A∥V←U = sup
u∈U\{0}

∥Au∥V

∥u∥U
. (1.15)
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2.1 linear (periodic) ddes

This section collects some of the results of [61, Chapters 6, 8 and 9] and is
devoted to the representation of the solution of linear inhomogeneous DDEs
of the form

y′(t) = L(t, yt) + h(t), (2.1)

as well as the relevant theory of adjoint equations. Most of the content of
this section is relatively advanced, when compared to other topics included
in this Chapter. The reason why it is nevertheless presented in this prelim-
inary Chapter is to improve the flow of reading in Subsection 6.3.1, which
constitutes one of the main contributions of this thesis and is heavily based,
indeed, on the theory of adjoint equations.

Before introducing the latter, a couple of well-known results in the context
of linear DDEs will be presented.

Theorem 2.1 (Variation of constants formula, [61, Theorem 2.1 and (2.7) in
Chapter 6]). Let h : [0,+∞) → Rd be a Lebesgue integrable function in each
compact subset of its domain. Let Y be a subset of F([−τ, 0],Rd), and let L :
R× Y→ Rd be a function which is linear with respect to the second argument and
can be written through the Riemann-Stieltjes integral

L(t, ψ) =
∫ 0

−τ
dσn(t, σ)ψ(σ), (2.2)

where n : R×R→ R is normalized so that

n(t, θ) = 0, θ ≥ 0, n(t, θ) = n(t,−τ), θ ≤ −τ,

for t ∈ R, n(t, ·) : [−τ, 0]→ Rd×d is of bounded variation and n(t, ·) : (−τ, 0)→
Rd×d is continuous from the left. Moreover, assume that there is a Lebesgue inte-
grable function m : R→ R such that |L(t, ψ)| ≤ m(t)|ψ| for all ψ ∈ Y. Then, the
solution y∗ of the IVP {

y′(t) = L(t, yt) + h(t), t ≥ 0,

y0 = ψ

satisfies the variation of constants formula

y∗t = ψ +
∫ t

0
[T(t, s)X0]h(s)ds, t ≥ 0, (2.3)

where T(t, s) is the solution operator of the linear homogeneous part and

X0(θ) :=

{
0, θ ∈ [−τ, 0),

I, θ = 0.

11
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A general reference for functions of normalized bounded variation and
Riemann-Stieltjes integral can be found in [45, Appendix I].

A sufficient condition for a linear functional to satisfy the hypotheses of
Theorem 2.1 is given by the following result.

Theorem 2.2 ([45, Theorem 1.1, Chapter I]). Let L be a continuous linear map-
ping from Y into Cd. Then there exists a unique function of normalized bounded
variation n : [−τ, 0]→ Cd×d such that, for all ψ ∈ Y,

Lψ =
∫ 0

−τ
dσn(σ)ψ(σ),

where the integral is a vector whose i-th component reads

d

∑
j=1

∫ 0

−τ
ψj(σ)dσni,j(σ).

The rest of the Section focuses on periodic DDEs, particularly concerning
the theory of adjoint equations. (2.1) can be written, through (2.2), as

y′(t) =
∫ 0

−τ
dσn(t, σ)y(t + σ) + h(t). (2.4)

Assuming it has a solution defined on the whole line, the corresponding
formal adjoint equation reads

z(t) +
∫ ∞

t
z(σ)n(σ, t− σ)dσ = constant, (2.5)

where z(t) is intended as a row vector. An element of the corresponding
state space is denoted by

zt(θ) := z(t + θ), θ ∈ [0, τ].

Note that ω-periodic equations are exactly the ones defined by some ω-
periodic h and some n which is ω-periodic with respect to the first argument.

Theorem 2.3 ([61, Lemma 2.1, Chapter 8]). Consider the bilinear form

(ψ, ϕ)t := ψ(0)ϕ(0) +
∫ 0

−τ
dβ

[∫ τ

0
ψ(ξ)n(t + ξ, β− ξ)dξ

]
ϕ(β). (2.6)

If y is a solution of (2.4), and z is a solution of (2.5) for t ≥ σ, then

d
dt
(zt, yt)t = y(t)h(t).

The following results concern homogeneous systems. Recall that the char-
acteristic multipliers of an equation are the eigenvalues of the relevant mon-
odromy operator (see Section 1.1). In particular, a solution is periodic if
and only if its state at any time t is an eigenvector corresponding to the
eigenvalue 1.

Lemma 2.4. If h is the null function and n is periodic with respect to its first argu-
ment, then µ is a characteristic multiplier of (2.4) if and only if µ is a characteristic
multiplier of (2.5).
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Proof. By [61, Section 8.2], the monodromy operators of (2.4) and of its ad-
joint (2.5) share the same spectrum (see [61, Section 6.4] for the relevant
definitions and properties in the autonomous case).

Corollary 2.5. Under the hypotheses of Lemma 2.4, (2.4) has an ω-periodic solution
if and only if (2.5) does.

Proposition 2.6 ([61, page 200]). Under the hypotheses of Lemma 2.4, if Λ(t) is
a basis of the generalized eigenspace corresponding to the multiplier λ of (2.4) and
Λ̃(t) is a basis of the generalized eigenspace corresponding to the same multiplier for
(2.5), then the matrix (Λ(t), Λ̃(t)) defined by the bilinear form (2.6) is nonsingular.

The last result concerns again inhomogeneous linear periodic systems.

Theorem 2.7 ([61, Theorem 1.2, Chapter 9]). If h is ω-periodic and so is the
linear term of (2.4), then the latter has a ω-periodic solution if and only if∫ ω

0
z(t)h(t)dt = 0

for all ω-periodic solutions z of (2.5).

As a final remark, it is worth observing that the results of this section
concerning the adjoint theory could be seen in the general framework of
Fredholm theory, see, e.g., [70, Chapter 4]. Indeed, by choosing suitable
(subspaces of the) state spaces of (2.4) and (2.5), the bilinear form (2.6) is
nondegenerate, and the spaces constitute a dual system. Moreover, by [61,
Equation (2.12), Section 8.2], their respective monodromy operators are ad-
joint. Thus, it follows from the first Fredholm theorem [70, Theorem 4.14]
that (2.4) and its adjoint (2.5) have the same number of linearly independent
1-periodic solutions. The fact that they are not orthogonal (c∗ ̸= 0) would
follow from the Fredholm alternative theorem [70, Theorem 4.17] and the
decomposition (6.36).

2.2 periodic boundary value problems

A periodic solution of (1.1) with period ω > 0 can be obtained by solving
a BVP of the form⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x(t) = F(xt, yt), t ∈ [0, ω],

y′(t) = G(xt, yt), t ∈ [0, ω],

(x0, y0) = (xω, yω),

p(x|[0,ω], y|[0,ω]) = 0

(2.7)

where p : RdX × RdY → R is a (usually linear) function defining the phase
condition, which is necessary in order to remove translational invariance.
An example of phase condition is the trivial one, of the form

xk(0) = x̂ or yk(0) = ŷ, (2.8)

for some k ∈ {1, . . . , dX} or k ∈ {1, . . . , dY} (respectively) where x̂ and ŷ are
fixed. Otherwise, an integral phase condition is of the form∫ ω

0
⟨xk(t), x̃′k(t)⟩dt = 0 or

∫ ω

0
⟨yk(t), ỹ′k(t)⟩dt = 0, (2.9)
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for some k ∈ {1, . . . , dX} or k ∈ {1, . . . , dY} (respectively) where x̃ and ỹ
are given reference solutions [46]. The solutions of (2.7) are intended as
functions defined in [−ω, ω].

Since the period ω is unknown, it is numerically convenient (see, e.g., [53])
to reformulate (2.7) through the map sω : R→ R defined by

sω(t) :=
t
ω

. (2.10)

(2.7) is thus equivalent to⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x(t) = F(xt ◦ sω, yt ◦ sω), t ∈ [0, 1],

y′(t) = ωG(xt ◦ sω, yt ◦ sω), t ∈ [0, 1],

(x0, y0) = (x1, y1)

p(x|[0,1], y|[0,1]) = 0,

(2.11)

the solution of which is intended to be defined in [−1, 1] and represents a
1-periodic function, while the corresponding natural state spaces are Banach
spaces of functions defined in [− τ

ω , 0]. However, note that one could choose
spaces of functions defined in [−r, 0] for any r ≥ τ

ω . This can be, in fact,
necessary in cases when ω might vary while the spaces need to be fixed,
such as, e.g., in Chapter 6. Note that, in the context of periodic solutions,
one can always consider τ ≤ ω without loss of generality, since a solution
with period ω is also a solution with period kω for any positive integer k.
Indeed, such assumption will be made throughout the thesis.

Alternatively to (2.11), a BVP for the original equation (1.1) can also be
formulated by considering the solutions over just one period (namely, in
[0, 1]) and imposing the periodicity to the solution values at the extrema of
the period, rather than to the whole state. Note, however, that this requires
to evaluate x and y at points that fall off the interval [0, 1], due to the delay.
In order to deal with this issue, one can exploit the assumed periodicity to
bring back the evaluation to the domain [0, 1]. Formally, this means defining
a periodic state xt ∈ X (the same holds for yt ∈ Y) as

xt(θ) =

{
x(t + θ), t + θ ∈ [0, 1],

x(t + θ + 1), t + θ ∈ [−1, 0),
(2.12)

and rewrite (2.11), equivalently, as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x(t) = F(xt ◦ sω, yt ◦ sω), t ∈ [0, 1],

y′(t) = ωG(xt ◦ sω, yt ◦ sω), t ∈ [0, 1],

(x(0), y(0)) = (x(1), y(1))

p(x, y) = 0.

(2.13)

Both formulations (2.11) and (2.13) are present in the literature on periodic
BVPs. However, the latter is much more common (see Section 6.1 for more
details).
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2.3 fréchet derivatives and differentials

All the results in Chapter 6 concern normed spaces and operators between
them. This section is devoted to Fréchet-differentiability, which is a regular-
ity property of operators between Banach spaces, for which a good general
reference is [8, Chapter 1].

Definition 2.8 ([8, Definition 1.1.1]). Let U and V be normed spaces and
u0 ∈ U. A function F : U → V is Fréchet-differentiable at u0 if there is
L ∈ L(U, V) such that

∥F(u0 + u)− F(u0)− L(u)∥V = o(∥u∥U), u ∈ U.

L is called Fréchet differential of F at u0.

Note that the Fréchet differential is well defined. Let L1, L2 ∈ L(U, V)

satisfy Definition 2.8 for some u0 ∈ U. It follows that

∥L1(u)− L2(u)∥V = o(∥u∥U).

Assume for a contradiction that L1 ̸= L2, and let u ∈ U such that

l := ∥L1(u)− L2(u)∥V ̸= 0.

Then, for h ∈ R,

h · o(∥u∥U) = ∥o(∥hu∥U)∥L1(hu)− L2(hu)∥V = |h|∥L1(u)− L2(u)∥V = hl,

which gives o(∥u∥U) = l, a positive constant, and that is a contradiction.

Definition 2.9 ([8, Definition 1.1.5]). If W ⊆ X is the set of points at which
F is Fréchet-differentiable, DF ∈ L(W, V) denotes the Fréchet derivative of F,
which maps each u0 ∈W to the relevant Fréchet differential.

C1(U, V) denotes the set of maps F : U → V which are continuously
Fréchet-differentiable in U, i.e., such that DF : U → L(U, V) is continuous.

The following theorem summarizes the main properties of the Fréchet
differential.

Theorem 2.10 ([8, Proposition 1.1.4]).

(i) (Linearity) If U, V are normed spaces, F, G : U → V are Fréchet-differentiable at
u0 ∈ U and a, b ∈ R, then aF + bG : U → V is Fréchet-differentiable at u0 ∈ U
and

D(aF + bG)(u0) = aDF(u0) + bDG(u0).

(ii) (Chain rule) If U, V, Z are normed spaces, F : U → V is Fréchet-differentiable
at u0 ∈ U and G : F(U) → Z is Fréchet-differentiable at F(u0) ∈ F(U), then the
composite map G ◦ F : U → Z is Fréchet-differentiable at u0 and

D(G ◦ F)(u0) = DG(F(u0))DF(u0).
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3.1 approximation of functions

Approximation of functions, particularly through polynomials, plays a
major role in this thesis. Collocation methods (see Section 3.3) aim at dis-
cretizing infinite-dimensional problems to finite-dimensional ones, where
the solution lies in, e.g., polynomial or piecewise polynomial spaces (see,
e.g., [98] as a general reference). Thus, these techniques are strongly reliant
on Lagrange interpolation, which will be presented in Subsection 3.1.2 af-
ter summarizing, in Subsection 3.1.1, the key ideas behind polynomial best
approximation (e.g., [87]).

Moreover, continuation (see Section 3.4) of problems defined by integrals
require quadrature formulas to approximate the latter. This is the case of,
e.g., the Daphnia model presented in Section 1.4. Subsections 3.1.3 and 3.1.4
will describe the main features of two different sets of nodes that will be
referred to in this thesis, and are used as collocation or quadrature nodes.
Finally, Subsection 3.1.5 features an example of interpolatory quadrature
formula.

3.1.1 Best approximation

This Subsection lists some basic results on best polynomial approximation,
which plays an important role in estimating the interpolation error, as it will
be clear from the following Subsections, starting from Theorem 3.6.

Definition 3.1 ([87, Example I.1]). For a given f ∈ C([a, b],Rd) and n ∈ N,
the best approximation of f in [a, b] of degree n is a polynomial p∗n ∈ Πn which
satisfies

∥ f − p∗n∥∞ ≤ ∥ f − pn∥∞

for all pn ∈ Πn.

A preliminary bound on the best approximation error En( f ) := ∥ f − p∗n∥∞

can be obtained by the following theorem.

Theorem 3.2 (Taylor’s theorem, [96, Theorem 1 at page 409]). For a given
degree n, let f ∈ Cn−1([a, b],Rd) be such that f (n) is defined in (a, b). Let α ∈ (a, b)
and consider the polynomial

p(x) =
n−1

∑
k=0

f (k)(α)
k!

(x− α)k.

Then

lim
x→α

f (x)− p(x)
(x− α)n = 0.

17
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Recall the definition of modulus of continuity ω of f on [a, b], given by

ω(δ; f ) := sup
x1,x2∈[a,b]
|x1−x2|≤δ

| f (x1)− f (x2)|.

The main result on best approximation of continuous functions is the follow-
ing Jackson’s theorem.

Theorem 3.3 ([87, Corollary 1.4.1], Jackson’s theorem). If f ∈ C([a, b],Rd),
then

En( f ) ≤ 6ω

(
b− a

2n
; f
)

.

It follows from Jackson’s theorem that if f ∈ C([a, b],Rd) is Lipschitz con-
tinuous, then

En( f ) ≤ C
n

,

for some constant C independent of n. The following result is a generaliza-
tion.

Corollary 3.4 ([87, Theorem 1.5]). If f ∈ Ck([a, b],Rd) and n > k, then

En( f ) ≤ 6
n(n− 1) · · · (n− k + 1)

ω

(
b− a

2(n− k)
; f (k)

)
.

Moreover, if f (k) is Lipschitz continuous, then

En( f ) ≤ Ck

nk+1 ,

for some constant Ck independent of n.

3.1.2 Lagrange interpolation

Consider a set of points {xi}0≤i≤n in some interval [a, b] ∈ R, and a set of
corresponding values {yi}0≤i≤n ⊂ Rd. The unique polynomial p of degree
up to n interpolating the values {yi}0≤i≤n at the nodes {xi}0≤i≤n, i.e., such
that p(xi) = yi for i = 0, . . . , n, can be expressed as a linear combination of
the Lagrange coefficients

ℓi(x) :=
n

∏
j=0
j ̸=i

x− xj

xi − xj
, 0 ≤ i ≤ n,

defined so that ℓi(xj) = 1 if and only if i = j, and ℓi(xj) = 0 otherwise. Thus,
from the uniqueness of p, and the fact that p(xi) = yi for all i = 0, . . . , n, it
is straightforward to check that the Lagrange form of p is given by

p(x) =
n

∑
i=0

yiℓi(x). (3.1)

A continuous function defined in [a, b] can be discretized by a polynomial
as follows. To the set of nodes {xi}0≤i≤n one can associate the Lebesgue
interpolation operator Ln : C([a, b],Rd)→ Πn defined by

(Ln f )(x) :=
n

∑
i=0

f (xi)ℓi(x).
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The uniform norm of such operator is bounded by the Lebesgue constant

Λn := max
x∈[a,b]

n

∑
i=0
|ℓi(x)|,

to which the following theorem gives a lower bound.

Theorem 3.5 ([87, Theorem 4.2]). For any choice of interpolation nodes,

Λn >
4

π2 log(n + 1)− 1.

The following theorem, on the other hand, provides an upper bound on
the interpolation error and underlines the roles of both En( f ), which de-
pends exclusively on the relugarity of f , and Λn, which depends exclusively
on the choice of the interpolation nodes. Note that the former goes to 0 as n
goes to infinity, by Theorem 3.3, but the latter does not, by Theorem 3.5.

Theorem 3.6 ([87, Theorem 4.1]). If f ∈ C([a, b],Rd), then

∥ f −Ln f ∥∞ ≤ (1 + Λn)En( f )

for any choice of interpolation nodes.

Another theorem that provides such an upper bound without making use
of the best approximation, but at the price of more regularity, is the follow-
ing.

Theorem 3.7 (Cauchy interpolation remainder, [67, Section 6.1, Theorem 2]).
Let f ∈ Cn+1([a, b],Rd), and p be the polynomial interpolating f at n + 1 distinct
points x0, . . . , xn in the interval [a, b]. Then, for each x ∈ [a, b] there exists ξx ∈
(a, b) such that

f (x)− p(x) =
1

(n + 1)!
f (n+1)(ξx)π(x).

where π(x) = ∏n
i=0(x− xi) is the so-called nodal polynomial.

The ultimate negative result on polynomial interpolation is given by the
following theorem, stating that continuity is not enough to get convergence
of the interpolation process.

Theorem 3.8 (Faber’s Theorem, [56]). For any interpolation scheme, there exists
f ∈ C([a, b]) for which the interpolation process is not convergent.

Moving to the numerical aspects of the Lagrange polynomial interpola-
tion, the standard method to implement it is given by the barycentric for-
mula [19].

Consider the nodal polynomial

π(x) :=
n

∏
i=0

(x− xi).

The barycentric weights, defined for i = 0, . . . , n, are given by

wi :=
1

∏
j ̸=i

(xi − xj)
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and allow to rewrite p as

p(x) = π(x)
n

∑
i=0

wi

x− xi
yi. (3.2)

Manipulating the interpolating polynomials through the first form of the
barycentric interpolation formula (3.2) is more efficient than using (3.1) di-
rectly, since the barycentric weights can be computed once and for all - for a
given set of nodes - and do not depend on either the values {yi}0≤i≤n or the
point at which p will have to be evaluated. Their computation costs O(n2),
and subsequent evaluations of p cost O(n) each. Moreover, adding a new
interpolation node to the old ones also costs O(n).

The barycentric interpolation formula can be also expressed in another
form, which improves the stability properties of the evaluation p(x) when-
ever x ≈ xi for some i. Based on the identity

1 = π(x)
n

∑
i=0

wi

x− xi
,

which comes straightforward from the definition of the quantities wi, the
second form of the barycentric interpolation formula reads

p(x) =

n

∑
i=0

wi

x− xi
yi

n

∑
i=0

wi

x− xi

.

3.1.3 Chebyshev nodes

Chebyshev polynomials are a family of orthogonal polynomials, i.e., such
that any pair of distinct polynomials in the sequence are orthogonal accord-
ing to the inner product

(p, q)w :=
∫ b

a
w(x)p(x)q(x)dx,

where [a, b] is an interval and w ∈ C([a, b], [0,+∞)) is a weight function. In
particular, the family of Chebyshev polynomials is defined on [−1, 1] as

Tn(x) := cos(n arccos(x)), n ∈ N.

The Chebyshev zeros of order n, also known as Chebyshev nodes of the first
kind, are the zeros of Tn, namely

xi := cos
(
(2i− 1)π

2n

)
, i ∈ {1, . . . , n}.

The Chebyshev extrema of order n are the extremal points of Tn, namely

yi := cos
(

iπ
n

)
, i ∈ {0, . . . , n}.
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Both sets of nodes correspond to the x coordinates of equally spaced points
on a semicircle. It is straightforward to define Chebyshev nodes in any
interval [a, b] through a change of variable:

x ↦→ b− a
2

x +
a + b

2
∈ [a, b], x = x1, . . . , xn.

The following properties of Chebyshev nodes constitute the key results on
the convergence of Lagrange interpolation.

Theorem 3.9 ([87, Theorem 4.5]). Let Λn be the Lebesgue constant relative to the
Chebyshev zeros. Then

Λn <
2
π

log(n + 1) + 4.

Theorem 3.10 ([50, Satz 4]). Let Λn be the Lebesgue constant relative to the Cheby-
shev extrema. Then{

Λn <
2
π log n + 4, n odd,

Λn <
2
π log n + 4− αn, 0 < αn < 1

n2 , n even,

Finally, the following holds.

Theorem 3.11. If f ∈ C([a, b],Rd) is Lipschitz continuous, then interpolation on
Chebyshev nodes is convergent.

Proof. From the corollary of Jackson’s theorem (Theorem 3.3) and Theorem
3.9 (or Theorem 3.10), we obtain

∥ f −Ln f ∥∞ = O
(

log n
n

)
.

Using Corollary 3.4, the following generalization is straightforward.

Corollary 3.12. If f ∈ Ck([a, b],Rd), and f k is Lipschitz continuous, then

∥ f −Ln f ∥∞ = O
(

log n
nk+1

)
.

In particular, polynomial interpolation on Chebyshev nodes has infinite order of
convergence on arbitrarily smooth functions.

The following theorem gives a bound on the derivative of the interpolation
error.

Theorem 3.13. Let f ∈ Ck([−1, 1],Rd). Then, for i = 0, . . . , k and q = i, . . . , k,
the interpolation on Chebyshev zeros satisfies

∥ f (i) − (Ln f )(i)∥∞ ≤ c
En−q( f (q))

nq−i log(n + 1).

Proof. It follows directly from [80, Theorem 4.2.11] with α = β = 1
2 , r = s =

1.
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3.1.4 Gauss-Legendre nodes

Legendre polynomials constitute another family of orthogonal polynomi-
als. They are defined on [−1, 1] from the constant weight function w = 1
and can be expressed by

Pn(x) :=
(−1)n

2nn!
dn

dxn (1− x2)n, n ∈ N \ {0}.

The Gauss-Legendre nodes of order n are the zeros of Pn, and are the nodes
used in Gauss formulae, quadrature formulae that maximize the degree of
precision, i.e., the maximum degree d such that the monomial xd is inte-
grated exactly.

Theorem 3.14 ([62, Theorem 1, pag. 327]). The maximum degree of precision of
a quadrature formula using n+ 1 nodes is 2n+ 1. The nodes of such formula are the
zeros of the (n + 1)-th orthogonal polynomial with respect to the weight w(x) = 1.

3.1.5 Clenshaw-Curtis quadrature

The Clenshaw-Curtis formula (described, e.g., in [98]) is an interpolatory
quadrature formula, i.e., given by

Sn+1( f ) :=
n

∑
i=0

wi f (yi),

such that

wi =
∫ b

a
ℓi(x)dx, i ∈ {0, . . . , n}

where {ℓi}0≤i≤n is the Lagrange basis associated to the quadrature nodes
{yi}0≤i≤n. In the case of Clenshaw-Curtis, [a, b] = [−1, 1], the quadrature
nodes are the Chebyshev extrema, and the weights can be computed explic-
itly as described in [98, Chapter 12, program clencurt.m].

The Clenshaw-Curtis quadrature has an infinite order of convergence for
smooth integrands [99, Theorem 4.5].

3.2 linear operators

This section includes some essential results on linear operators on Banach
spaces, particularly on their approximation. They will be needed in some of
the convergence proofs in Chapter 6.

Theorem 3.15 (Banach perturbation lemma, [83, Theorem 2.1.1]). Let B be
a Banach space and L, L̂ be linear operators on B such that L is invertible and
∥L−1(L− L̂)∥B←B < 1. Then L̂ is invertible and

∥L̂−1∥B←B ≤
∥L−1∥B←B

1− ∥L−1(L̂− L)∥B←B
.

Theorem 3.15 is a powerful tool in a context where there is a sequence
{Ln}n∈N of linear operators such that

∥Ln − L∥B←B → 0, n→ ∞.
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Indeed, the above implies that there exists n ∈ N such that, for all n > n, the
hypothesis ∥(Ln − L)L−1∥B←B < 1 is satisfied. Thus, invertibility of L leads
to invertibility of Ln for sufficiently large n.

The lemma below, also concerning converging sequences of linear opera-
tors, gives an estimate on the convergence order of the corresponding eigen-
values and eigenfunctions.

Lemma 3.16. Let B be a Banach space, L a linear and bounded operator on B, and
{Ln}n∈N a sequence of linear and bounded operators such that

∥Ln − L∥B←B → 0, n→ ∞.

Assume that µ is an eigenvalue of L with finite algebraic multiplicity ν, ascent l
and eigenfunction φ normalized as ∥φ∥B = 1, and that there is r > 0 such that
µ is the only eigenvalue of L in B(µ, r) ⊂ C. Then there exists a positive integer
N such that, for every n ≥ N, Ln has exactly ν eigenvalues µn,j, j ∈ {1, . . . , ν}
(counted with their multiplicities) in B(µ, r) and, moreover, if Mµ is the generalized
eigenspace of µ and ϵn := ∥(Ln − L) ↾Mµ ∥B←Mµ

, then

max
j∈{1,...,ν}

|µn,j − µ| = O(ϵ1/l
n ), max

j∈{1,...,ν}
∥φn,j − φ∥B = O(ϵ1/l

n ),

where φn,j is the eigenfunction associated to µn,j normalized as ∥φn,j∥B = 1.

Proof. By [34, Example 3.8 and Theorem 5.22], for all µ in the resolvent set of
L the strongly stable convergence Ln − µ

ss−→ L− µI holds. By [34, Theorem
5.6], this implies the existence of N ∈ N satisfying the hypotheses in the
statement. Finally, the results on the order of convergence follow from [34,
Theorem 6.7].

3.3 collocation methods

Collocation methods are numerical methods to find an approximation of
the solution of nonlinear functional equations. In particular, they are com-
monly used to solve several kinds of integro-differential equations (see, e.g.,
[32, 33, 60, 98]). They require to choose a finite-dimensional subspace of
the solutions space, which plays the role of the space of candidate (approxi-
mate) solutions, and a finite set of collocation points (or nodes) in the domain
of the relevant equation. Such choices must be made so that there exists a
unique element of the finite-dimensional subspace which satisfies the origi-
nal equation at the collocation points, taking into account for possible initial
or boundary conditions. The goal is, indeed, to find such unique element,
which will be the numerical solution.

Typical examples for the choice of the finite-dimensional subspace are the
polynomial space Πn (for some fixed n) or the piecewise polynomial space

Πt
n :=

{
p ∈ C(R,Rd)

⏐⏐ ∀i < m p|[ti ,ti+1] ∈ Πn

}
,

where the mesh t := (t0, . . . , tm) satisfies t0 < · · · < tm. The mesh can be
adaptive, i.e., not fixed but rather varying according to some information on
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the problem which was acquired, e.g., during previous computations (see,
e.g., [89]). Adaptivity can be costly to implement but sometimes necessary:
higher resolution can be required to deal with difficult regions (e.g., contain-
ing discontinuities or steep gradients).

In order to show how collocation works in practice when differentiation
is involved, the following IVP for ODEs can be considered as a didactic
example. Given {

u′(t) = g(u(t)), t ∈ [a, b],

u(a) = u0

and n > 0, the polynomial space of degree up to n can be chosen as the
space of candidate solutions. Moreover, let a = θ0 < · · · < θn = b be
the collocation nodes. Then, the collocation problem consists in finding a
polynomial p of degree n satisfying{

p′(θi) = g(p(θi)), i = 1, . . . , n,

p(θ0) = u0.

Such p can be obtained, as described below, using the differentiation matrix
Dn := Dn(θ0, . . . , θn) of the collocation nodes (see, e.g., [98, 104]), which
transforms a vector of data at the collocation points into approximate deriva-
tives (of the interpolating function) at those points. It is straightforward to
check that such a matrix must be given by

Dn =

⎛⎜⎝d0,0 d0,1 . . . d0,n
...

...
. . .

...
dn,0 dn,1 . . . dn,n

⎞⎟⎠ :=

⎛⎜⎝ℓ′0(θ0) ℓ′1(θ0) . . . ℓ′n(θ0)
...

...
. . .

...
ℓ′0(θn) ℓ′1(θn) . . . ℓ′n(θn)

⎞⎟⎠
with {ℓi}0≤i≤n the Lagrange basis associated to the collocation nodes, de-
fined as in Subsection 3.1.2.

In order to conclude that p is unique, and therefore the collocation method
above is well defined, it can be observed that p is the n-degree polynomial
interpolating the values ui, i = 0, . . . , n, defined from the system

A

⎛⎜⎜⎜⎝
u0

u1
...

un

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
u0

g(u1)
...

g(un)

⎞⎟⎟⎟⎠ ,

where A is obtained after editing the first row in order to force p(θ0) = u0,
that is

A =

⎛⎜⎜⎜⎝
1 0 . . . 0

d1,0 d1,1 . . . d1,n
...

...
. . .

...
dn,0 dn,1 . . . dn,n

⎞⎟⎟⎟⎠ .

3.3.1 Collocation error

Collocation methods can be used to obtain better and better approxima-
tions of the solutions of interest, by increasing the discretization level.



3.4 numerical continuation 25

In the case of polynomial collocation, the discretization level is given by
the maximum degree n which defines the space Πn of candidate solutions.
As a consequence of Corollary 3.12, the resulting method exhibits spectral
accuracy whenever the approximand is smooth, i.e., the error decays faster
than O(n−k) for any integer k.

In the case of piecewise polynomial collocation, the discretization level is
determined by both the degree n and the number m of mesh intervals. As a
result, there are two possibilities:

• the Spectral Element Method (SEM), where the mesh t is fixed and the
degree n goes to infinity;

• the Finite Element Method (FEM), where n is fixed and m goes to infinity.

SEM is a straightforward generalization of the spectral collocation using a
single polynomial. Thus, Corollary 3.12 holds, and the regularity of the
approximand (or better, its lack of regularity) gives an upper bound to the
order of convergence.

In the FEM case, the Lebesgue constant Λn does not vary as m goes to
infinity, and a bound for the order of convergence is given by the Cauchy
remainder formula (Theorem 3.7) in [ti, ti+1]. Thus, if f ∈ Cn+1([a, b],Rd),
then

∥ f −Ln f ∥∞ = O(hn+1),

where h := max0≤i<m |ti+1 − ti|.

3.4 numerical continuation

Numerical continuation is a widely used method in dynamical system
theory, in particular to compute equilibria or periodic solutions and ana-
lyze their stability and bifurcations under parameter variation. This section,
which is based on [46], contains some basic results that establish under what
conditions continuation can actually be applied, and then provides the ba-
sics of some examples of continuation algorithms, which will be mentioned
in Chapter 4.

The content of this section is somehow less standard than the content of
the other sections of this chapter. For this reason, the proofs of most of the
relevant results will be provided as well.

Let G : Rn+1 → Rn. We consider the problem

G(v) = 0. (3.3)

Since continuation methods are applied in a parameter-dependent setting,
the problem (3.3) is usually described with an explicit continuation parameter
λ ∈ R, and can therefore be formulated as

G(u, λ) = 0, (3.4)

where u ∈ Rn. In principle, however, any component of v can serve as a
parameter.
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In particular, we are interested in identifying solution branches, i.e., one-
dimensional continua of solutions parametrized by λ, defined by

u = u(λ)⇔ G(u, λ) = 0.

Numerical continuation aims, indeed, at approximating a branch through
a sequence of points {(ui, λi)}i∈N. The algorithms that implement it are
largely based on the implicit function theorem.

Theorem 3.17 (Implicit function theorem, e.g., [88, Theorem 9.28]). Let G :
Rn ×Rm → Rn satisfy

• G(u0, λ0) = 0 for some u0 ∈ Rn and λ0 ∈ Rm;

• Gu(u0, λ0) is nonsingular;

• there is ρ > 0 such that G and Gu are Lipschitz continuous in B((u0, λ0), ρ),
where Rn ×Rm is equipped with the maximum norm.

Then, there exists 0 < δ ≤ ρ such that there is a unique function u(λ) defined in
B(λ0, δ) such that u(λ0) = u0 and

G(u(λ), λ) = 0

for all λ ∈ B(λ0, δ). Moreover, u(λ) is uniformly continuous in B(λ0, δ).

(u, λ) is a regular solution if G(u,λ)(u, λ) has maximal rank.

Theorem 3.18 (Existence of a solution branch, [46, Theorem 5]). Let G : Rn ×
R → Rn. Let v0 := (u0, λ0) be a regular solution of G. Assume that there
is ρ > 0 such that G and Gu are Lipschitz continuous in B(v0, ρ). Then there
exists 0 < δ ≤ ρ such that B(v0, δ) contains a unique solution branch v such that
v(0) = v0.

Proof. Since G(u,λ)(v0) has maximal rank, then either Gu(v0) has in turn max-
imal rank, or there exists i ≤ n such that the matrix obtained from G(u,λ)(v0)

by removing the i-th column does. In the latter case, we can rearrange the
columns of G(u,λ)(v0) and consistently change parametrization, in order to
fall in the former case.
Therefore, Gu(v0) has a bounded inverse, the hypotheses of the implicit func-
tion theorem are satisfied, and the thesis follows.

The following results concern the regularity of the solution branch.

Lemma 3.19 (Banach lemma, [46, Lemma 1]). Let B be a Banach space and
L : B → B a linear operator such that ∥L∥B←B < 1. Then the operator I + L is
invertible and

∥(I + L)−1∥B←B ≤
1

1− ∥L∥B←B
.

Proof. If there existed b ∈ B \ {0} such that (I + L)b = 0, then we would
have

∥b∥B = ∥Lb∥B ≤ ∥L∥B←B∥b∥B < ∥b∥B,

contradiction. Therefore, I + L is invertible. From (I + L)(I + L)−1 = I we
get

(I + L)−1 = I − L(I + L)−1,
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and therefore

∥(I + L)−1∥B←B ≤ 1 + ∥L∥B←B∥(I + L)−1∥B←B,

from which the bound follows.

Lemma 3.20 ([46, Lemma 2]). Let G : Rn × R → Rn satisfy the conditions of
the implicit function theorem (Theorem 3.17). Then there exists δ > 0 such that,
for all (u, λ) ∈ B((u0, λ0), δ), Gu(u, λ) is nonsingular and ∥G−1

u ∥Rn←B((u0,λ0),δ)
is bounded.

Proof. Let L : Rn ×R→ Rn be given by

L(u, λ) := (Gu(u0, λ0))
−1(Gu(u, λ)u− G(u0, λ0)).

Let M := ∥Gu(u0, λ0)−1∥Rm×B and let K be the Lipschitz constant of both G
and Gu in B((u0, λ0), ρ). Let δ := 1

4MK . Then, for all (u, λ) ∈ B((u0, λ0), δ),

∥L(u, λ)∥B ≤ M∥Gu(u, λ)− Gu(u0, λ0)∥B ≤MK(∥u− u0∥B + ∥λ− λ0∥)
≤ 2MKδ < 1.

Thus, ∥L∥Rn←B((u0,λ0),δ) < 1. Therefore, by the Banach lemma (Lemma
3.19), we have

∥(I + L)−1∥Rn←B((u0,λ0),δ) ≤
1

1− ∥L∥Rn←B((u0,λ0),δ)
.

For all u ∈ Rn and λ ∈ R,

Gu(u, λ) = Gu(u0, λ0) + Gu(u, λ)− Gu(u0, λ0) = Gu(u0, λ0)(I + L(u, λ)).

Therefore,

∥G−1
u ∥Rn←B((u0,λ0),δ) ≤ M∥1 + L∥Rn←B((u0,λ0),δ) ≤

M
1− ∥L∥Rn←B((u0,λ0),δ)

,

which means in particular that ∥G−1
u ∥Rn←B((u0,λ0),δ) is bounded.

Theorem 3.21 (Differentiability of a solution branch, [46, Theorem 3]). Let
G : Rn ×R→ Rn satisfy the conditions of the implicit function theorem (Theorem
3.17). Moreover, assume that Gλ(u, λ) is continuous in B((u0, λ0), δ), where δ is
defined in Lemma 3.20. Then, u(λ) has a continuous derivative in B((u0, λ0), δ).

Proof. Let h1 : Rn ×Rn ×R and h2 : Rn ×R×R be defined by

h1(u1, u2, λ) := G(u1, λ1)− G(u2, λ1)− Gu(u1, λ1)(u1 − u2),

and

h2(u1, λ1, λ2) := G(u1, λ1)− G(u1, λ2)− Gλ(u1, λ1)(λ1 − λ2).

From the hypotheses, it follows that, for all (u1, λ1) ∈ B((u0, λ0), δ),

|h1(u1, u, λ1)|
|u1 − u| → 0 as |u1 − u| → 0
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and
|h2(u1, λ1, λ)|
|λ1 − λ| → 0 as |λ1 − λ| → 0. (3.5)

Let λ2 ∈ B(λ0, δ). Then

0 = G(u(λ1), λ1))− G(u(λ2), λ2)

= G(u(λ1), λ1))− G(u(λ2), λ1)) + G(u(λ2), λ1)− G(u(λ2), λ2)

= Gu(u(λ1), λ1)(u(λ1)− u(λ2)) + h1(u(λ1), u(λ2), λ1))

+ Gλ(u(λ2), λ1)(λ1 − λ2) + h2(u(λ2), λ1, λ2).

(3.6)

Let h : B(λ0, δ)→ Rn be defined by

h(λ1, λ2) := (Gu(u(λ1), λ1)− Gu(u(λ2), λ2))(λ1 − λ2)

+ h1(u(λ1), u(λ2), λ1) + h2(u(λ2), λ1, λ2).

By the continuity of u and Gλ, it follows that

|(Gu(u(λ1), λ1)− Gu(u(λ2), λ2))(λ1 − λ2)|
|λ1 − λ2|

→ 0 as |λ1 − λ2| → 0.

By the uniform continuity of u and (3.5), it follows that

|h1(u(λ1), u(λ2), λ1)|
|λ1 − λ2|

=
|h1(u(λ1), u(λ2), λ1)|
|u(λ1)− u(λ2)|

· |u(λ1)− u(λ2)|
|λ1 − λ2|

→ 0

as |λ1 − λ2| → 0. Finally, by (3.5),

|h2(u(λ1), λ2, λ1)|
|λ1 − λ2|

→ 0 as |λ1 − λ2| → 0,

and thus
|h(λ1, λ2)|
|λ1 − λ2|

→ 0 as |λ1 − λ2| → 0. (3.7)

From the existence of Gu(u(λ1), λ1)
−1 (Lemma 3.20), (3.6) can be rewritten

as

u(λ1)− u(λ2) = −Gu(u(λ1), λ1)
−1(Gλ(u(λ1), λ1)(λ1 − λ2)− h(λ1, λ2)).

(3.8)
∥G−1

u ∥Rn←B((u0,λ0),δ) is bounded by Lemma 3.20, thus, by (3.7),

|Gu(u(λ1), λ1)
−1h(λ1, λ2)|

|λ1 − λ2|
→ 0 as |λ1 − λ2| → 0,

which implies, by (3.8), that −Gu(u(λ), λ)−1Gλ(u(λ), λ) is the derivative of
u(λ) in B((u0, λ0), δ). Therefore, its continuity follows from the continuity
of −Gu(u(λ), λ)−1, which, in turn, follows from the inequality

|Gu(u(λ1), λ1)
−1 − Gu(u(λ2), λ2)−1|

= |Gu(u(λ1), λ1)
−1(Gu(u(λ2), λ2)− Gu(u(λ1), λ1))Gu(u(λ2), λ2)−1|

≤ K∥G−1
u ∥2

Rn←B((u0,λ0),δ)
(|u(λ1)− u(λ2)|+ |λ1 − λ2|),

where K is the Lipschitz constant of Gu in B((u0, λ0), δ).

The algorithms for numerical continuation compute a sequence of points
in the relevant branch using a predictor-corrector procedure (see, e.g., [7, 55,
58]). The rest of the section will be dedicated to the description of some
examples of such algorithms.
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3.4.1 Pseudo-arclength continuation

The algorithm described in this subsection constitutes the foundation for
many widely used continuation-based software packages (e.g., AUTO [1],
MatCont [4] and XPPAUT [6]) and is described in [46].
Given a known point of the solution branch v0 := (u0, λ0) and a length ∆s,
the prediction for the following point consists in computing the unit vector
v̇0 which is tangent to the branch (Euler tangent prediction, Figure 3.1, left),
and taking a step of length ∆s along that vector. The correction consists
in computing the hyperplane which is perpendicular to v̇0 and contains v0,
and then looking for the intersection with the relevant branch. This means
solving the nonlinear determined system{

G(v1) = 0

(v1 − v0)T v̇0 − ∆s = 0.
(3.9)

The last equation is called pseudo-arclength condition and imposes the length
of the projection of v1 − v0 and the tangent vector.

v0

v1

∆s

v̇0

λ

∆s

u

u0

u1

λ0

u(0)
1

(u̇0, λ̇0)

Figure 3.1: Pseudo-arclength continuation (left) with natural parameterization
(right). Original figure from [11], courtesy of AIMS.

The method can vary according to the chosen way to solve (3.9), usually
a Newton-like method. In particular, using the classical Newton’s method,
the k-th iteration would read(

Gv(v
(k)
1 )

v̇T
0

)
∆v(k)1 = −

(
G(v(k)1 )

(v(k)1 − v0)T v̇0 − ∆s

)
, k ≥ 0, (3.10)

with initial guess given by the prediction step

v(0)1 = v0 + ∆s v̇0

and updates

v(k+1)
1 = v(k)1 + ∆v(k)1 , k ≥ 0.

Note that the computation of the new tangent vector requires very little
computational effort, once v1, as well as the Jacobian at v1, have been com-
puted. Indeed, it is (a unit multiple of) the solution of(

Gv(v1)

v̇T
0

)
v̇1 =

(
0

1

)
,
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where the equation v̇T
0 v̇1 = 1 guarantees the preservation of the orientation

of the branch (if ∆s is small enough).
The applicability of Newton’s method to solve (3.9) is supported by the fol-
lowing theorem

Theorem 3.22. The Jacobian in system (3.10) is nonsingular at a regular solution
point.

Proof. Let v0 be a regular solution point. The relevant Jacobian matrix is(
Gv(v0)

v̇T
0

)
.

From the regularity of v0, we know that Gv(v0) has maximal rank and, there-
fore, nullspace of dimension 1. This means that its nullspace is span{v̇0}.
Assume for a contradiction that there exists z ̸= 0 in the null space of the
Jacobian. This would imply Gv(v0)z = 0, from which we get z = cv̇0 for
some c ∈ R. But it also implies

c = c∥v̇0∥2 = czTz = v̇T
0 z = 0,

contradiction.

Other Newton-like methods can be used, for instance the Broyden’s up-
date [31], which might reduce the computational effort by avoiding the cal-
culation of the Jacobian matrix in (3.10) at each iteration. Indeed, at the k-th
iteration for k > 1, Gv(v

(k)
1 ) is approximated using the secant equation in the

finite-difference approximation, i.e.,

Gv(v
(k)
1 ) ≈ Gv(v

(k−1)
1 )

+
G(v(k)1 )− G(v(k−1)

1 )− Gv(v
(k−1)
1 )∆v(k−1)

1∆v(k−1)
1

2 ·
(
∆v(k−1)

1

)T.

As mentioned at the beginning of section 3.4, the pseudo-arclength contin-
uation can be formulated according to different parametrizations. In the case
of (3.4) we talk about natural parameterization and we look for the solution
branch (u(λ), λ) or, basically, for u(λ). Then (3.9) becomes{

G(u1, λ1) = 0

(u1 − u0)T u̇0 + (λ1 − λ0)λ̇0 − ∆s = 0,

Figure 3.1 (right). The k-th iteration of Newton’s method reads(
Gu(u

(k)
1 , λ

(k)
1 ) Gλ(u

(k)
1 , λ

(k)
1 )

u̇T
0 λ̇0

)(
∆u(k)

1

∆λ
(k)
1

)
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−
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G(u(k)
1 , λ

(k)
1 )

(u(k)
1 − u0)T u̇0 + (λ

(k)
1 − λ0)λ̇0 − ∆s

)
,

with initial prediction (
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1

λ
(0)
1

)
=

(
u0

λ0

)
+ ∆s

(
u̇0

λ̇0

)
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and updates (
u(k+1)

1

λ
(k+1)
1

)
=

(
u(k)

1

λ
(k)
1

)
+

(
∆u(k+1)

1

∆λ
(k+1)
1

)
, k ≥ 0.

The new tangent vector is obtained by normalizing the solution of(
Gu(u1, λ1) Gλ(u1, λ1)

u̇T
0 λ̇0

)(
u̇1

λ̇1

)
=

(
0

1

)
.

3.4.2 Natural continuation

Natural continuation is based on a simpler idea. Given a known point of
the solution branch and a fixed real number ∆λ, the predictor computes the
direction of the vector which is tangent to the branch and takes a step along
that vector so that the continuation parameter increases by ∆λ. The cor-
rection consists in computing the hyperplane which is perpendicular to the
direction orthogonal to the one of the continuation parameter and contains
the predicted point, and then looking for the intersection with the relevant
branch, Figure 3.2 (left). The method can be further simplified by substi-
tuting the prediction along the tangent vector with that along the secant
through the two preceding steps, Figure 3.2 (right).

λλ0 λ1

u1
u̇0

∆λ
u(0)
1

u0

u

λ

∆λ

u

u0

u1

u2
u̇1

λ1 λ2

u(0)
2

Figure 3.2: Natural continuation with tangent (left) and secant (right) prediction.
Original figure from [11], courtesy of AIMS.

Nevertheless, natural continuation is less commonly used than pseudo-
arclength continuation since the former may fail close to fold bifurcations in
the solution branch (see, e.g., [72, Sections 3.2 and 3.3]), i.e., in the latter
case mentioned in the proof of Theorem 3.18. Indeed, if that holds, then the
unique solution branch cannot be parametrized by λ.

3.5 discretization of fixed point problems

This section describes some general notions and principles concerning the
discretization of an infinite-dimensional problem, which will play a role in
Chapter 6. Indeed, many of the proofs contained therein are rather technical.
Thus, it might be worth to outline here the relevant discretization theory
principles separately, in order to better understand where in the general
framework each technical result fits.
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In particular, the focus will be on fixed point problems on Banach spaces,
i.e., problems of the form

x = Φ(x) (3.11)

for some operator Φ : X → X, where X is a Banach space. It is assumed that
a solution x∗ to (3.11) exists and is locally unique.

A discretization scheme for (3.11) is defined by a finite-dimensional subset
X̂ ⊂ X, equipped with a projection operator P : X → X̂. The resulting
discrete problem is

x = Φ̂(x), (3.12)

where Φ̂ : X̂ → X̂ is defined as P ◦Φ. The dimension of X̂ corresponds to
the level of the discretization.

For a discretization scheme to be meaningful, the problem (3.12) must be
(locally) uniquely solvable. Subtracting x∗ = Φ(x∗) to equation (3.12), one
obtains

x− x∗ = Φ̂(x)−Φ(x∗)

= Φ̂(x)− Φ̂(x∗) + Φ̂(x∗)−Φ(x∗)

= PΦ(x)− PΦ(x∗) + PΦ(x∗)−Φ(x∗)

= P(Φ(x)−Φ(x∗)) + PΦ(x∗)− x∗.

(3.13)

The term εC := PΦ(x∗)− x∗ in the right-hand side measures the extent to
which the solution of (3.11) satisfies (3.12), and is called the consistency error.
The scheme is consistent if the norm of the consistency error goes to 0 as the
discretization level goes to infinity.

The following are classical assumptions in discretization theory (see, e.g.,
[69, Lemma 19.1]).

Assumption 3.23. The operator Φ : X → X has a bounded Fréchet derivative
in a neighborhood of the fixed point x∗.

Assumption 3.24. The operator I −DΦ(x∗) : X → X has a bounded inverse.

If Assumption 3.23 holds, then (3.13) can be rewritten as

x− x∗ = P(Φ(x)−Φ(x∗)− DΦ(x∗)(x− x∗)) + PDΦ(x∗)(x− x∗) + εC,

leading to

(I − PDΦ(x∗))(x− x∗) = P(Φ(x)−Φ(x∗)− DΦ(x∗)(x− x∗)) + εC. (3.14)

Note that the well-posedeness of the discrete problem (3.12) is equivalent
to the existence and (local) uniqueness of x̂ ∈ X̂ satisfying (3.14). This is,
in turn, equivalent to the existence and uniqueness of the discretization error
x̂ − x∗ ∈ X satisfying (3.14). Given the expression of the left-hand side
of the latter, a necessary condition for the sought well-posedeness is the
invertibility of the operator I − PDΦ(x∗). In this regard, the scheme is stable
if the stability constant ∥(I − PDΦ(x∗))−1∥X←X is uniformly bounded as the
discretization level goes to infinity.

Stability is closely related to Assumption 3.24. Indeed, it can be derived
from the latter if, e.g., the hypotheses of the Banach perturbation lemma
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(Theorem 3.15) are satisfied. In some cases, however, the derivation is not so
immediate (see paragraph after the proof of Proposition 6.18 in Chapter 6).

Note that, if Φ is a linear operator, the right-hand side of (3.14) reduces to
εC and, in particular, does not contain x. This means that, in this case, the
stability of the method is also a sufficient condition for the well-posedeness.

If Φ is not linear, thanks to Assumption 3.23 the right-hand side of (3.14)
reduces to o(∥x− x∗∥X) + εC (recall Definition 2.8), leading to

x− x∗ = (I − PDΦ(x∗))−1(h(x) + εC) (3.15)

for some h(x) ∈ o(∥x− x∗∥X). If, in addition, the bound

∥(I − PDΦ(x∗))−1∥X←X · |h(x)| ≤ r∥x− x∗∥X (3.16)

holds uniformly for some r < 1, then (3.15) gives

∥x− x∗∥X =
1

1− r
∥(I − PDΦ(x∗))−1∥X←X · εC. (3.17)

(3.16) holds near x∗ if, e.g., DΦ (or, indeed, PDΦ) is Lipschitz continuous
with a small Lipschitz constant. To sum up, if a discretization scheme is
stable, consistent, and satisfies (3.16), then by (3.17) the discretization error
goes to 0 as the discretization level goes to infinity. In other words, the
scheme in convergent. In particular, the discrete method is eventually well-
posed.

The general notions described so far in this Section will be applied to
analyze the convergence of the method described in Chapter 6. In particular,
Proposition 6.2 proves the validity of Assumption 3.23, while Proposition
6.11 deals with Assumption 3.24.

On the other hand, obtaining the bound (3.16) can possibly be considered
the subtlest part of the overall proof. The reason is that the condition on
the Lipschitz continuity of DΦ (which, as anticipated, would be sufficient)
cannot hold due to the nature of the problem, which concerns periodic BVPs
(see Section 2.2). In particular, the map DωΦ cannot be continuous since
differentiating with respect to the period ω involves the composition with
the map sω. However, the problem is overcome through the (weaker but
sufficient) condition that DΦ is locally Lipschitz continuous in the solution
x∗ (see Propositions 6.7, 6.18) with a sufficiently small Lipschitz constant
(see Proposition 6.23). The latter is possible thanks to the fact that x∗ lies in
a more regular subspace than the space X (see Lemma 7.5 in Chapter 7).

Finally, stability is proved through Lemma 6.22, while consistency is proved
within Proposition 6.23. Section 6.5 is dedicated to a conclusive analysis of
the consistency and the convergence error.





4 C O N T I N U AT I O N O F E Q U I L I B R I A

As shown in section 1.4, the Daphnia model [43] is described by a coupled
RE/DDE and has several complications. This chapter, the content of which
is mostly included in the paper [11], deals indeed with the difficulties that
arise from the presence of these external complications when standard con-
tinuation techniques are applied to, e.g., compute equilibria which depend
on some parameter.

4.1 continuation for daphnia

In the Daphnia model, defined by equations (1.9)-(1.12), the growth rate
and the survival probability are only defined by means of solutions of exter-
nal ODEs, and the delay aA(St) in the RE depends on the state through a
nonlinear equation. In addition, the dependence on the state concerns also
the breaking point between the juvenile and the mature life stages.

The Daphnia model can have trivial equilibria, i.e., (b, S) ≡ (0, S) for S any
zero of f in (1.12), as well as nontrivial equilibria (b, S) ≡ (b, S), where S
satisfies ∫ amax

aA

β(ξ(a, S), S)F (a, S)da = 1 (4.1)

for aA := aA(S) and b is consequently given by

b =
f (S)∫ amax

0 γ(ξ(a, S), S)F (a, S)da
.

The focus of this chapter is only on the nontrivial equilibria, in particular
the component S given by (4.1), since the computation of the trivial ones is
not affected by the difficulties mentioned above. The objective is to continue
a solution branch of S with respect to a selected model parameter, while the
values of all the other model parameters remain fixed. The choices for those
values are the same as in [25] and are reported in Table 4.1. Most of them
are hidden in (4.1), appearing only in the definitions of the various rates
defining the model.

4.2 external continuation

This section describes and compares two approaches to solve the problem
of the continuation for Daphnia, which are examples of external continua-
tion, in that the solutions of the external IVPs (1.9) and (1.10) and of the
maturation condition (1.11) are computed externally with respect to the con-
tinuation process.

35
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resource intrinsic rate of change f (S) = a1S(1− S/C)
consumer growth rate g(ξ, S) = γg (ξm fr(S)− ξ)

consumer mortality rate µ(ξ, S) = µ

consumer adults reproduction rate β(ξ, S) = rm fr(S)ξ2

consumer ingestion rate γ(ξ, S) = νS fr(S)ξ2

Holling type II functional response fr(S) := σS/(1 + σS)

size at birth ξb = 0.8
size at maturation ξA = 2.5

maximum size ξm = 6.0
growth time constant γg = 0.15

functional response shape parameter σ = 7.0
maximum feeding rate νS = 1.8

maximum reproduction rate rm = 0.1
mortality rate parameter µ = varying

environment carrying capacity C = 0.5
flow-through rate a1 = 0.5

maximum age amax = 70

Table 4.1: Rates (top) and parameters (bottom) of the considered Daphnia model.

The technique proposed in [22] can be used to reduce a nonlinear delay
system to a system of ODEs, having in mind the idea of applying standard
continuation tools for ODEs to such system via a pseudospectral discretiza-
tion [57]. It extends the concept of infinitesimal generator for linear delay
systems (e.g., [51, 3.29, Chapter II]), and consequently the IG-approach for
linear delay systems (e.g., [28]) to nonlinear ones. The first step consists in
transforming the delay equation into an equivalent nonlinear abstract differ-
ential equation (ADE). For example, consider an IVP of the form{

y′(t) = G(yt), t ≥ 0

y0 = ψ,
(4.2)

with ψ ∈ Y := C([−τ, 0],Rd) and G : Y → Rd. If AG is the corresponding
generator and ψ belongs to its domain, then (4.2) is equivalent to the ADE{

v′(t) = AG(v(t)), t ≥ 0

v(0) = ψ,
(4.3)

in the sense that if y is a solution of (4.2), then the map defined by v(t) := yt

is a solution of (4.3) and viceversa.

The pseudospectral discretization of degree M is defined as follows. The
discretization of the state space Y is given by YM := Rd(M+1). A state ψ ∈
Y is discretized by the vector ψM containing the values of ψ at the M + 1
Chebyshev extrema {θM,i}i≤M in [−τ, 0]. By means of the reconstruction
operator RM : YM → Y, which interpolates ψM at the Chebyshev extrema,
the discrete version of G can be defined by

GM(ψM) = G(RM(ψM))

and, consequently, the discrete version of AG is given by

AG,M(ψM) =

(
GM(ψM),

d
dθ

RM(ψM)(θ)|θ=θM,1 , . . . ,
d
dθ

RM(ψM)(θ)|θ=θM,M

)
.
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Eventually, (4.3) is discretized as{
v′M(t) = AG,M(vM(t)), t ≥ 0

vM(0) = ψM.
(4.4)

The following theorems are then proved.

Theorem 4.1 (One-to-one correspondence, [22, Theorem 2.4]). If y ∈ Y is an
equilibrium for (4.2), then (y, vM) defined by

vM,i = y, i = 1, . . . , M, (4.5)

is an equilibrium for (4.4). Conversely, if (y, vM) is an equilibrium for (4.4), then
(4.5) holds and y is an equilibrium for (4.2).

Theorem 4.2 (Commutativity, [22, Theorem 2.5]). Linearization around an equi-
librium and pseudospectral discretization commute.

Therefore, the problem of approximating the relevant eigenvalues of AG
through the ones of AG,M can be reduced to its linear counterpart and the
spectral accuracy of the approximation can be derived from the following
theorem.

Theorem 4.3 ([28]). Let y be an equilibrium of the DDE in (4.2) and let L :=
DG(y). Let λ be an eigenvalue of AL of multiplicity m. Then, for sufficiently large
M, there exist eigenvalues λM,1, . . . , λM,m of AL,M, counted with their multiplici-
ties, such that

max
i=1,...,m

|λM,i − λ| ≤ C2

(
1√
M

(
ϵ +

C1|λ|τ
M

)M
) 1

m

,

where ϵ takes into account the possible error in the approximation of L, and C1, C2

are constants independent of M.

The method is then extended naturally to REs and coupled systems, which
had been treated, respectively, in [24] and [25] in the linear case. The dis-
cretization obtained is then meant to be given as input to some software tool
which is able to perform the continuation of the desired equilibrium auto-
matically (e.g., MatCont).

Another numerical approach to continue equilibria of PSPM was devel-
oped in [90]. It is based on a natural continuation with secant prediction,
recall Figure 4.1 (right), where the correction step is made by using the Broy-
den’s update. Integrals and external IVPs are solved simultaneously via the
embedded Runge-Kutta pair DOPRI54 [49].

4.2.1 Preliminary numerical tests

Figure 4.1 shows the results of the continuation of the S component of the
equilibria where the mortality rate µ is chosen as the continuation param-
eter, and was already presented in [11]. The curves in the left panel have
been obtained as described next. The solid curve with bullets is the result
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of the approach in [22] using MatCont. The resolution of the external IVPs
(1.9) and (1.10) (by Matlab’s ode45) are performed automatically inside the
routine. The dashed curve with diamonds is, instead, the result of the ap-
proach in [90]. Both DOPRI54 and ode45 are capable of event detection, i.e.,
can automatically detect when the maturation condition (1.11) is satisfied
during the integration of (1.9). However, all these calculations are repeated
from scratch at every continuation step, done by MatCont or the natural
continuation used in [90], with no possibility of exploiting the information
available from the previous step.

The marked points represent the continuation steps. Some work was re-
quired so that each continuation step corresponded to (approximately) the
same value of µ in the two cases, which was necessary in order to make a fair
comparison. The difficulties were mostly due to the fact that MatCont con-
tains a routine to control the step size of the continuation automatically; the
user can only give a minimum and maximum step size as input, but cannot
otherwise influence the way it varies during the computation. It was nev-
ertheless possible to control the step size in the natural continuation based
on [90], so that eventually the same range for µ was covered using the same
amount of continuation steps.

0.1 0.15 0.2 0.25 0.3 0.35 0.4
µ

0

5

10

15

20

S̄

0.404 0.406 0.408 0.41

10

15

20

0.1 0.15 0.2 0.25 0.3 0.35 0.4
µ

10-15

10-10

10-5

Figure 4.1: Equilibrium branch S(µ) with zoom (left) and relevant residual (right)
of the Daphnia model, computed with [22] (solid line with bullets) and
[90] (dashed line with diamonds). Original figure from [11], courtesy of
AIMS. See text for more details.

As for the left panel of the figure, the inner zoom highlightens the part of
the outer plot where the two curves can be distinguished, which correspond
to the greater values of µ.

The right panel shows the residual obtained along the branch with the
two methods, i.e., the absolute difference between the right-hand and left-
hand side of (4.1), where the continuation solution is plugged in at the left-
hand side. Thanks to the choices in Table 4.1 the integral in (4.1) could be
evaluated analytically as follows at the various input values for S.

The solution of the IVP (1.9) for g given by Table 4.1 is

ξ(α) = ξbe−γgα + ξm f (S)(1− e−γgα),

which gives ξ(a, S) = ξbe−γga + ξm f (S)(1 − e−γga). From (1.11), it follows
that

aA = −
log
(

ξa − ξm f (S)
ξb − ξm f (S)

)
γg

.
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The solution of the IVP (1.10) gives simply F (a, S) = e−µa, being µ a constant
function. Thus, the right-hand side of (4.1) reads

rm fr(S) ·
( ∫ amax

aA

((ξb − ξm f (S))2e−2γga+ 2(ξb − ξm f (S))ξm f (S)e−γga

+ ξ2
m f (S)2)e−µa da

)
= −rm fr(S) ·

(
(ξb − ξm f (S))2

2γg + µ
e−(2γg+µ)a+

2(ξb − ξm f (S))ξm f (S)
γg + µ

e−(γg+µ)a

+
ξ2

m f (S)2

µ
e−µa

)⏐⏐⏐⏐amax

aA

.

The outcomes of the computations with either [22] of [90] are compara-
ble in terms of order of magnitude, even though a slightly increasing trend
emerges for [22]. It is not immediate to tell which of the many possible
sources of error (quadrature, IVPs, maturation condition, correction proce-
dures, MatCont inner tolerances) determine the difference.

Similarly, there is no clear explanation for the relatively high difference in
terms of the computational time needed to trace the equilibrium branch, but
the fact that the approach in [90] is specific to the class of models of interest,
and not as general as MatCont. The total elapsed time amounts indeed to
257.59 s with [22] and 59.32 s with [90], both implemented in Matlab and
run on a MacBook Pro 2.3GHz Intel Core i7 16GB, the same hardware used
to perform also the tests in Section 4.4. Regardless of this difference, these
data on the computational time are what motivate the attempt described in
the next section to improve the continuation strategy for complex models
like the Daphnia one.

4.3 internal continuation

As anticipated in subsection 4.2.1, none of the standard techniques to con-
tinue the equilibria of the models of interest for this work involves the pos-
sibility of taking advantage of the information available from the previous
step. The new strategy proposed in this section is indeed based on the
idea that exploiting such information can be crucial in determining the over-
all computational cost. Having in mind the class of Daphnia-like models,
the internal continuation method consists in including into the continuation
framework the solution of the external IVPs (1.9) and (1.10) as well as the so-
lution of the maturation condition (1.11). Aiming at proving its validity, the
following subsections show the results of some tests on prototype problems,
obtained by simplifying the Daphnia model. At first, all the techincalities of
the model are dropped, but for the presence of an external ODE. Then, each
of the other prototype models tackles one single challenge of the original
model, namely a state-dependent maturation age, possible discontinuities
among juveniles and adults and, finally, systems of external ODEs. It is also
described how each of these challenges is addressed in the framework of the
newly proposed internal continuation.

The choice of the specific instances of prototype problems allows to obtain
a known analytic expression of the solution branch, and therefore measure
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the true error due to the applied continuation. As for the notation used
within the prototype models, the letter λ ∈ R indicates the varying param-
eter, and the objective is that of determining a quantity x ∈ R as a function
of λ, defined implicitly through an integral condition. With reference to the
case of Daphnia, x corresponds to S, λ to the the mortality parameter µ (recall
Table 4.1) and the integral condition to (4.1). In what follows, unless other-
wise specified, the true error of a continuation curve {(xi, λi)}i<k obtained
after k continuation steps with respect to exact curve x(λ), will be defined
as

ϵx = max
i<k
|xi − x(λi)|. (4.6)

Note that in the case of the search of the nontrivial equilibrium the family
of ODEs (1.9) parametrized by the age α ∈ [0, amax] reduces to a single ODE
since the resource ψ = S is constant in time, being at equilibrium. However,
this is not the case for other solutions (e.g., periodic ones), and the study
of equilibria is just the first step of the dynamical analysis which shall be
continued and extended beyond equilibria, in the future, as mentioned in
Section 1.2. This is the reason why the internal continuation, as well as
the relevant prototype problems, have been formulated in this more general
way.

4.3.1 Alternative PDE formulation

The Daphnia model can be derived from the classical PDE formulation
used to describe a size-structured population (feeding on some resource), as
done in [37, Chapter 6].

The unknown function of the relevant PDE is given by n(t, ξ), the den-
sity of individuals with size ξ at time t, while g(ξ, S) is the growth rate of
an individual with size ξ under resource S, and individuals are born with
minimal size ξb.

The usual PDE formulation of a size-structured model is (assume µ con-
stant for simplicity, as in Table 4.1)

∂

∂t
n(t, ξ) +

∂

∂ξ
[g(ξ, S(t))n(t, ξ)] = −µn(t, ξ) (PDE)

g(ξb, S(t))n(t, ξb) =
∫ ∞

ξb

β(ξ, S(t))n(t, ξ)dξ. (BC)

plus the equation for S, which reads

S′(t) = f (S(t))−
∫ ∞

ξb

γ(ξ, S(t))n(t, ξ)dξ.

The renewal equation is obtained by defining

b(t) := g(ξb, S(t))n(t, ξb) (4.7)
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and using (BC) with ξ = ξ(t, a), dξ/da = g(ξ(t, a), S(t)) to write

b(t) =
∫ ∞

ξb

β(ξ, S(t))n(t, ξ)dξ

=
∫ ∞

0
β(ξ(t, a), S(t))n(t, ξ(t, a))

dξ(t, a)
da

da

=
∫ ∞

0
β(ξ(a), S(t))n(t, ξ(a))g(ξ(a), S(t))da.

So the classical renewal equation can be obtained from

n(t, ξ(t, a))g(ξ(t, a), S(t)) = b(t− a)e−µa, (4.8)

which in turn can be proved by integration along characteristics of (PDE). The
latter method consists in reducing the PDE to a family of ODEs which in
turn define a family of curves in the (ξ, t) plane (namely, the characteristics).
This is achieved by introducing an extra variable α ≥ 0 (which, in this case,
plays the role of age) and using a change of variables t = t(α) and ξ = ξ(α)

such that
ξ ′(α) = g(ξ(α), S(t(α)), ξ(0) = ξb

and
t′(α) = 1, t(0) = t− a.

a is an extra parameter that corresponds to the age of an individual that has
size ξ at time t (so, in practice, t(α) = t− a + α) Thus, from (PDE) it follows
that

d
dα

n(t(α), ξ(α)) =
∂

∂t
n(t(α), ξ(α)) +

dξ(α)

dα

∂

∂ξ
n(t(α), ξ(α))

=
∂

∂t(α)
n(t(α), ξ(α)) +

∂

∂ξ
[g(ξ(α), S(t))n(t(α), ξ(α))]

− n(t(α), ξ(α))
∂

∂ξ
g(ξ(α), S(t))

= −[µ +
∂

∂ξ
g(ξ(α), S(t))]n(t(α), ξ(α)).

(4.9)

The (linear) ODE for n(t(α), ξ(α)) can be integrated, giving

n(t(α), ξ(α)) = n(t(0), ξ(0))e
−µα−

∫ α

0

∂

∂ξ
g(ξ(θ), S(t(θ)))dθ

= n(t(0), ξ(0))e
−µα−

∫ ξ

ξb

∂
∂ξ g(η, S(t− a + θ(η)))

g(η, S(t− a + θ(η)))
dη

,

where η represents size and η := ξ(θ) represents age. From∫ ξ

ξb

∂
∂ξ g(η, S(t− a + θ(η)))

g(η, S(t− a + θ(η)))
dη = log

g(ξ(α), S(t− a + α))

g(ξb, S(t− a))

and (4.7), for α ∈ [0, a] (4.9) becomes

n(t(α), ξ(α)) = n(t(0), ξ(0))
g(ξb, S(t(0)))

g(ξ(α), S(t− a + α))
e−µα

= n(t− a, ξb)
g(ξb, S(t− a))

g(ξ(α), S(t− a + α))
e−µα

=
1

g(ξ(α), S(t− a + α))
b(t− a)e−µα.



42 continuation of equilibria

Finally, (4.8) follows by taking α = a, so that t(a) = t and ξ(a) = ξ.

Note that the collocation of the external ODEs in [0, a] for every a ∈
[0, amax] is only naturally linked to the renewal formulation. Indeed, the
age does not even appear explicitly in the original PDE since the latter refers
to a size-structured population rather than to an age-structured one. This
constitutes the main drawback of this PDE formulation in the context of
parameter continuation of solutions, for the reasons mentioned prior to the
beginning of this Subsection, i.e., the need of formulating the internal ap-
proach in order to be able to deal with non-steady solutions. Nevertheless,
the PDE could also be equivalently formulated using age as the structuring
variable, so that the unknown functions n(t, a) and ξ(t, a) depend on the age
a and are defined through the PDEs

∂

∂t
n(t, a) +

∂

∂a
n(t, a) = −µn(t, a)

∂

∂t
ξ(t, a) +

∂

∂a
ξ(t, a) = g(ξ, S(t))

with boundary conditions

n(t, 0) =
∫ amax

aA

β(ξ(t, a), S(t))n(t, a)da, ξ(t, 0) = ξb (4.10)

plus the equation for S, which reads

S′(t) = f (S(t))−
∫ amax

0
γ(ξ(t, a), S(t))n(t, a)da.

In particular, this reformulation has a state-dependent boundary condition
(the first of (4.10)), while avoiding the state-dependence of the characteristic
speed.

4.3.2 The basic prototype problem

The basic prototype problem is represented by the continuation of the
curve x(λ) defined by ∫ 1

0
f (a, x, λ)da = 0, (4.11)

where f (a, x, λ) := φ(a; a, x, λ) and φ(α; a, x, λ) ∈ R is the solution of{
φ′(α; a, x, λ) = g(φ(α; a, x, λ), a, x, λ), α ∈ [0, a],
φ(0; a, x, λ) = φ0

(4.12)

for some g : R× [0, 1]×R2 → R and φ0 ∈ R.

As anticipated, the only challenge in this basic case is the fact that the
integral corresponding to the one in (4.1) is defined through the solution of
one external IVP (systems are dealt with in Subsection 4.3.4). The integration
extrema are kept fixed in order to avoid state-dependency (which is treated
in Subsection 4.3.3).

The definition of the problem depends on the choices on how to approxi-
mate both the integral in (4.11) and the solution of the IVP (4.12) needed to
compute the relevant values of the integrand function.
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The former is approximated through the Clenshaw-Curtis quadrature de-
scribed in Subsection 3.1.5. The same quadrature is used also for the forth-
coming prototypes.

The IVP (4.12) is solved numerically by means of polynomial colloca-
tion, described in Section 3.3. This is done in order to obtain the value
f (aj, x, λ) for each j = 1, . . . , N given x and λ, where a0, . . . , aN are the
Chebyshev nodes in [0, 1] (a0 is excluded with these quadrature nodes be-
cause f (a0, x, λ) = φ0 is given). Thus, collocation is used to compute an
n-degree polynomial p(j)(α) := p(α; aj, x, λ) such that{

p(j)′(α
(j)
i ) = g(p(j)(α

(j)
i ), aj, x, λ), i ∈ {1, . . . , n},

p(j)(α
(j)
0 ) = φ0,

where the collocation points 0 = α
(j)
0 < · · · < α

(j)
n = aj, j ∈ {1, . . . , N}, are

the Chebyshev nodes in [0, aj].

The variables included in the continuation framework are those consitut-
ing the vector u given by

u := (p(1)(α(1)
1 ), . . . , p(1)(α(1)

n ), . . . , p(N)(α
(N)
1 ), . . . , p(N)(α

(N)
n ), x)T ∈ RnN+1,

(4.13)
and include, in particular, all the collocation variables p(j)(α

(j)
i ), i = 1, . . . , n,

j = 1, . . . , N.
Then G in (3.4) is given componentwise by⎧⎨⎩ p(j) ′(α

(j)
i )− g(p(j)(α

(j)
i )), i = 1, . . . , n, j = 1, . . . , N

∑N
j=0 wj p(j)(α

(j)
n ).

which leads to a bordered block diagonal structure of the resulting Jacobian
matrix, as shown in figure 4.2.

Figure 4.2: An example of bordered block diagonal structure of the Jacobian matrix
for n = 10 (determining the size of the diagonal blocks) and N = 5
(determining the number of the diagonal blocks). Original figure from
[11], courtesy of AIMS.

Note that the presence of a continuation framework eliminates the classi-
cal problem with solving IVPs (or any kind of nonlinear equations) through
collocation, that is, the choice of a suitable initial guess to start the chosen
iterative solver. Since the collocation variables are included into the contin-
uation framework, such an initial guess is given by the same variables as
computed at the previous continuation step.
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The above cannot happen within the external continuation, since the stan-
dard initial value solvers (e.g., ode45 in Matlab) can only use the information
on the initial value φ0 in order to start the computation, and none of the
quantities computed at the preceding continuation step. This should be the
main source of computational advantage of the internal strategy proposed.

Note that the increased number of equations of the continuation problem,
namely O(nN) as opposed to O(N) for the external approaches (quadrature
is anyway necessary in all cases), does not correspond to an increase in com-
putational complexity. Indeed, using a classical external integration method
of order O(n) also has, in general, computational complexity O(nN).

4.3.3 The state dependent prototype problem

In the state-dependent problem, one extremum of integration in (4.11) de-
pends on the unknown x.

Such problem is represented by the continuation of the curve x(λ) defined
by ∫ 1

a
f (a, x, λ)da = 0, (4.14)

where f (a, x, λ) is defined as in Subsection 4.3.2 ans a = a(x, λ) is implicitly
defined by

f (a, x, λ) = φ (4.15)

for given φ. In this case, polynomial collocation is used to compute the
value of f (aj, x, λ) for each j = 1, . . . , N given x and λ, where a0, . . . , aN

are the Chebyshev nodes in [a, 1] (a0 = a is excluded with these quadrature
nodes because f (a0, x, λ) = φ is given).

The extra challenge in this case is the addition of the nonlinear condition
(4.15) to the problem. This corresponds to the addition of an extra continua-
tion variable, which is indeed a. Hence (4.13) becomes

u := (p(1)(α(1)
1 ), . . . , p(1)(α(1)

n ), . . . , p(N)(α
(N)
1 ), . . . , p(N)(α

(N)
n ), x, a)T ∈ RnN+2,

implying that also the computation of the value of a takes advantage of the
correspondent value computed at the previous continuation step, which is
used to start the iterative solver at the current step.

Discontinuous right-hand side

As briefly anticipated in section 1.4, vital rates may be discontinuous at a
finite number of points, corresponding to the beginning of the various life
stages. This holds in particular in the case of Daphnia, where the growth rate
of the consumer population is in general different between juveniles and
adults, and therefore the right-hand side of the ODE in (1.9) may change
across a.

The state-dependent prototype problem with discontinuous right-hand
side is represented by the continuation of the curve x(λ) defined by equa-
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tion (4.14), where f (a, x, λ) := φ(a; a, x, λ), a is defined by (4.15), while
φ(α; a, x, λ) ∈ R is the solution of{

φ′(α; a, x, λ) = g1(φ(α; a, x, λ), a, x, λ), α ∈ [0, a],
φ(0; a, x, λ) = φ0

if a ≤ a, while for a > a it is the solution of⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
φ′(α; a, x, λ) = g2(φ(α; a, x, λ), a, x, λ), α ∈ [a, a],

φ(a; a, x, λ) = φ,

φ′(α; a, x, λ) = g1(φ(α; a, x, λ), a, x, λ), α ∈ [0, a],

φ(0; a, x, λ) = φ0.

(4.16)

for some g1, g2 : R× [0, 1]×R2 → R and φ0 ∈ R.

The extra challenge with respect to the simpler state-dependent problem
is due to the different choices concerning the collocation in the case a > a.
Now, the collocation solution is a continuous piecewise polynomial in [0, a],
with a the only breaking point. Although, in principle, a different number of
collocation nodes can be used in the two intervals, the chosen nodes are the
Chebyshev nodes 0 = α0 < · · · < αn = a in [0, a] and the Chebyshev nodes
a = α

(j)
0 < · · · < α

(j)
n = aj, j = 1, . . . , N in [a, aj]. The values of the solution

at all those nodes are all included into the internal continuation, and the
dimension of the problem becomes O(2nN).

4.3.4 The double size prototype problem

As shown in section 1.4, the Daphnia model is, in fact, defined by two
external ODEs.

The double size prototype problem accomodates this feature, and is rep-
resented by the continuation of the curve x(λ) defined by∫ 1

0
f (a, x, λ)c(a, x, λ)da = 0, (4.17)

where f (a, x, λ) := φ(a; a, x, λ), c(a, x, λ) := γ(a; a, x, λ), while φ(α; a, x, λ)

and γ(α; a, x, λ) ∈ R constitute the solution of the system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
φ′(α; a, x, λ) = g(φ(α; a, x, λ), γ(α; a, x, λ), a, x, λ), α ∈ [0, a],

γ′(α; a, x, λ) = h(φ(α; a, x, λ), γ(α; a, x, λ), a, x, λ), α ∈ [0, a],

φ(0; a, x, λ) = φ0,

γ(0; a, x, λ) = γ0

(4.18)

for given g, h : R2 × [0, 1] × R2 → R and φ0, γ0 ∈ R. The choice of the
integrand in (4.17), which may in principle be any function of f (a, x, λ) and
c(a, x, λ), is motivated by the need to obtain an exact solution. Other simple
choices, such as linear combinations, are possible. The dimension of the
continuation problem (which is not state-dependent) is again O(2nN). With
respect to (4.13), the collocation unknowns are grouped as block-vectors with
blocks of size 2, so that (4.13) remains unchanged but for the range of p
which is now in R2.
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4.4 numerical tests

Subsections 4.4.1 to 4.4.3 show the results of numerical simulations us-
ing internal continuation on the prototype models described in Section 4.3.
The relevant algorithms are implemented in Python - which is an arbitrary
choice, in fact, everything could be implemented just as well using other
software. In order to make a fair comparison with the external continuation
approach, the behavior of the relevant classical continuation-based software
tools is emulated using the correspondent Python routines. The codes for the
simulations are available at http://cdlab.uniud.it/software#int-cont.

In particular, the IVPs are solved by scipy.integrate.odeint, a Python
IVP solver from the scipy package [66], based on the LSODA solver from the
FORTRAN library odepack, which is able to switch automatically between
non-stiff problems (solved using the implicit Adams formula) and stiff ones
(solved using backward differentiation formulas), according to the method
proposed in [84].

The nonlinear equation representing the maturation condition is solved by
scipy.optimize.fsolve, which is based on the HYBRD and the HYBRJ solvers
from the FORTRAN library minpack, which implement a variant of Powell’s
hybrid method [85].

Both the internal and the external approaches are implemented using
pseudo-arclength continuation with tangent prediction and Newton’s cor-
rection (see Subsection 3.4.1), the tolerance of which is set to 10−13. All the
tests are run on a MacBook Pro 2.3GHz Intel Core i7 16GB.

Subsection 4.4.4 shows the results of similar numerical simulations on the
complete Daphnia model, and compares them with the results relevant to
Figure 4.1 as described at the end of Section 4.1.

All the results of the simulations which are shown in this Section were
presented in [11].

4.4.1 The basic prototype problem

Consider g : R× [0, 1]×R2 → R defined by

g(φ(α; a, x, λ), a, x, λ) := λφ(α; a, x, λ) + 2xe−λa. (4.19)

The solution of (4.12) for g defined as in (4.19) can be obtained, e.g., using
the Variation of Constants Formula, and reads

φ(α; a, x, λ) = eλa φ0 +
x
λ
(eλ(α−a) − eλa).

With reference to Subsection 4.3.2, it follows that

f (a, x, λ) = φ(a; a, x, λ) = eλa φ0 +
x
λ
(1− eλa).

Thus,

∫ 1

0
f (a, x, λ)da =

∫ 1

0
eλa φ0 +

x
λ
(1− eλa) =

eλ

λ
φ0 +

x
λ
+

x
λ2 (e

−λ − 1)

http://cdlab.uniud.it/software#int-cont
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and the solution branch defined by (4.11) reads

x(λ) =
φ0

2
· λ(1− eλ)

λ + e−λ − 1
. (4.20)

The analytical expression of x(λ) in (4.20) allows to evaluate the true error
(4.6) on the continuation curve by varying the number of collocation and
quadrature nodes, while running a fixed number of continuation steps (pre-
cisely 10) so that the same range for the continuation parameter is covered
with both the internal and external approaches. As anticipated in Section
4.3, this is what motivates the choice of the specific instances of the proto-
type problems used for the simulations, and in fact it holds also for all the
forthcoming tests.

Figure 4.3 (top) shows the error (4.6) obtained with respect to the curve
(4.20) when the right-hand side of (4.12) is given by (4.19) with φ0 = 1, using
N = 10 quadrature nodes. The error decays spectrally as the number n of
collocation nodes increases in the internal case (line with bullets), which is
the expected behavior of collocation when the problem is smooth [100]. Hor-
izontal lines are the result of the external continuation where the tolerances
of odeint and fsolve are both set to 10−8, 5× 10−10, 10−13 respectively. For
each of those values there is (at least) a value of n for which the internal
continuation performs better in terms of both time and error. The diamond
markers in Figure 4.3 (bottom) show that this holds for n = 7, 8, 11 respec-
tively.
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Figure 4.3: Internal (lines with bullets) versus external continuation (horizontal
lines) for (4.19): error (4.6) on the true curve (4.20) (top) and elapsed
time (bottom, s) using n collocation points and N = 10 quadrature
nodes. Original figure from [11], courtesy of AIMS. See text for more
details.

Different choices for N are possible. In fact, the simulations above were
replicated using different values for N, up to 100, and always gave, qualita-
tively speaking, the same results. Figure 4.4 is a partial evidence of this. It is
obtained fixing n = 12 (for which, as shown in Figure 4.3, the internal con-
tinuation approach turns out to be superior to the external one when N = 10
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and the tolerance is set to 10−13) and increasing N. Figure 4.4 (top) shows
the error (4.6) obtained on the true curve (4.20), while Figure 4.4 (bottom)
compares the elapsed time. Lines marked with bullets refer to the internal
continuation, while the ones with squares refer to the external continuation
with external tolerances fixed to 10−13. For all values N in the Figure (be-
tween 8 and 15), the internal continuation performs better in terms of both
time and error.
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Figure 4.4: Internal (lines with bullets) versus external continuation (lines with
squares) for (4.19): error (4.6) on the true curve (4.20) (top) and elapsed
time (bottom, s) using n = 12 collocation points and N quadrature
nodes. Original figure from [11], courtesy of AIMS. See text for more
details.

4.4.2 The state dependent prototype problem

Consider g : R× [0, 1]×R2 → R defined by

g(φ(α; a, x, λ), a, x, λ) := −(a + 1)x(λ2 + 2)
(

φ(α; a, x, λ)− φ0

x(λ2 + 2)(a + 1)
+ 1
)2

.

(4.21)
The solution of (4.12) for g defined as in (4.21) reads

φ(α; a, x, λ) = (a + 1)x(λ2 + 2)
(

1
α + 1

− 1
)
+ φ0,

which is well defined for α ∈ [0, 1]. With reference to Subsection 4.3.2, con-
sider the choice

φ = φ0 − 1 (4.22)

in (4.15). It follows that

f (a, x, λ) = φ(a; a, x, λ) = −ax(λ2 + 2) + φ0.

In particular, from (4.22),

a =
1

x(λ2 + 2)
,
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thus∫ 1

a
f (a, x, λ)da = −x(λ2 + 2)

a2

2
+ φ0a

⏐⏐⏐1
a
= − x(λ2 + 2)

2
+ φ0 +

−2φ0 + 1
2x(λ2 + 2)

.

The solution of (4.14) is given by either x(λ2 + 2) = 1 or x(λ2 + 2) = 2φ0− 1.
Since the former gives a = 1, the only nontrivial solution branch reads

x(λ) =
2φ0 − 1
λ2 + 2

. (4.23)

Note that this instance of a prototype problem does not have any immedi-
ate biological meaning since, when g represents a growth rate as in Daphnia,
it must be φ(α; a, x, λ) > 0 and in particular φ > φ0 > 0. However, as far as
only prototype problems are concerned, these and similar constraints are ig-
nored, the focus being instead on obtaining exact expressions of the solution
branches.

Figure 4.5 (top) shows the error (4.6) obtained with respect to the curve
(4.23) when the right-hand side of (4.12) is given by (4.21) and the maturation
condition by (4.22), with φ0 = 3

2 , using N = 10 quadrature nodes. Again,
horizontal lines are the result of external continuation where the tolerances
of odeint and fsolve are both set to 10−8, 5× 10−10, 10−13 respectively. For
each of those values there is (at least) a number n of collocation points for
which the internal continuation performs better in terms of both time and
error. The diamond markers in Figure 4.5 (bottom) show that this holds for
n = 13, 12, 17 respectively.

As a side remark, note that the external continuation takes slightly less
time for 5× 10−10 than for 10−8: this can be somehow related to the auto-
matic error control of either odeint or fsolve.
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Figure 4.5: Internal (lines with bullets) versus external continuation (horizontal
lines) for (4.21) and (4.22): error (4.6) on the true curve (4.23) (top) and
elapsed time (bottom, s) using n collocation points and N = 10 quadra-
ture nodes. Original figure from [11], courtesy of AIMS. See text for
more details.
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Discontinuous right hand side

Consider g1 : R× [0, 1]×R2 → R defined by

g1(φ(α; a, x, λ), a, x, λ) := −x(λ2 + 1)
(

φ(α; a, x, λ)− φ0

x(λ2 + 1)
− 1

2

)2

. (4.24)

The solution of (4.12) for g1 defined as in (4.24) reads

φ1(α; a, x, λ) = x(λ2 + 1)
(

1
α− 2

+
1
2

)
+ φ0,

which is well defined for α ∈ [0, 1]. With reference to Subsection 4.3.3, con-
sider the choice

φ =
1
2

φ0 (4.25)

in (4.15). It follows that

1
2

φ0 = f (a, x, λ) = φ1(a; a, x, λ) = x(λ2 + 1)
(

1
a− 2

+
1
2

)
+ φ0

and thus
a =

2φ0

x(λ2 + 2)
.

Consider g2 : R× [0, 1]×R2 → R defined by

g2(φ(α; a, x, λ), a, x, λ) := −(a + 1)x(λ2 + 1)
(

φ(α; a, x, λ)− φ

x(λ2 + 1)(a + 1)
+

1
a + 1

)2

.

(4.26)
The solution of (4.16) for g2 defined as in (4.26) reads

φ2(α; a, x, λ) = (a + 1)x(λ2 + 1)
(

1
α + 1

− 1
a + 1

)
+ φ,

which is well defined for α ∈ [0, 1]. It follows that, for a > a,

f (a, x, λ) = φ2(a; a, x, λ) = x(λ2 + 1)
a− a
a + 1

+ φ,

thus ∫ 1

a
f (a, x, λ)da = x(λ2 + 1)

aa− a2/2
a + 1

+ φa
⏐⏐⏐1

a

= (1− a)
(

x(λ2 + 1)
a− 1

2(a + 1)
+ φ

)
.

Apart from the trivial solution a = 1 of (4.14), the other solutions are given
by x(λ2 + 1) = −2φ0 and x(λ2 + 1) = 3φ0. Since the former gives a = −2,
the only nontrivial solution branch reads

x(λ) =
3φ0

λ2 + 1
. (4.27)

Figure 4.6 (top) shows the error (4.6) obtained with respect of the true curve
(4.27), when the right hand side of (4.16) is given by (4.24) and (4.26), and the
maturation condition by (4.25), with φ0 = 1, using N = 10 quadrature nodes.
Horizontal lines are the result of external continuation where the tolerances
of odeint and fsolve are both set to 10−8, 5× 10−10, 10−13 respectively. For
each of those values there is (at least) a number n of collocation points for
which the internal continuation performs better in terms of both time and
error. The diamond markers in Figure 4.6 (bottom) show that this holds for
n = 8, 10, 11 respectively.
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Figure 4.6: Internal (lines with bullets) versus external continuation (horizontal
lines) for (4.24), (4.26) and (4.25): error (4.6) on the true curve (4.27)
(top) and elapsed time (bottom, s) using n collocation points and N = 10
quadrature nodes. Original figure from [11], courtesy of AIMS. See text
for more details.

4.4.3 The double size prototype problem

Consider g, h : R× [0, 1]×R2 → R defined by⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

g(φ( α; a, x, λ), γ(α; a, x, λ), a, x, λ) :=

−(a + 1)x(λ2 + 1)
(

φ(α; a, x, λ)− φ0

x(λ2 + 1)(a + 1)
+ 1
)(

γ(α; a, x, λ)− γ0

(λ2 + 1)(a + 1)
+ 1
)

h(φ( α; a, x, λ), γ(α; a, x, λ), a, x, λ) :=

−(a + 1)(λ2 + 1)
(

φ(α; a, x, λ)− φ0

x(λ2 + 1)(a + 1)
+ 1
)(

γ(α; a, x, λ)− γ0

(λ2 + 1)(a + 1)
+ 1
)

.

(4.28)
The solution of (4.18) for g, h defined as in (4.28), reads⎧⎪⎪⎨⎪⎪⎩

φ(α; a, x, λ) = (a + 1)x(λ2 + 1)
(

1
α + 1

− 1
)
+ φ0

γ(α; a, x, λ) = (a + 1)(λ2 + 1)
(

1
α + 1

− 1
)
+ γ0,

which are well defined for α ∈ [0, 1]. With reference to Subsection 4.3.4, it
follows that {

f (a, x, λ) = φ(a; a, x, λ) = −ax(λ2 + 1) + φ0

c(a, x, λ) = γ(a; a, x, λ) = −a(λ2 + 1) + γ0,

thus∫ 1

0
f (a, x, λ)c(a, x, λ)da =

1
3

x(λ2 + 1)2 − 1
2
(λ2 + 1)(φ0 + xγ0) + φ0γ0

and the solution of (4.17) is given by

x(λ) =
3φ0

λ2 + 1
· λ2 + 1− 2φ0

2(λ2 + 1)− 3γ0
. (4.29)
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Figure 4.7 (top) shows the error (4.6) obtained with respect of the curve (4.29)
when the right-hand sides of (4.18) are given by (4.28), with φ0 = γ0 = 1,
using N = 10 quadrature nodes. Horizontal lines are the result of exter-
nal continuation where the tolerances of odeint and fsolve are both set to
10−8, 5× 10−10, 10−13 respectively. Unlike the previous scalar cases, the exter-
nal continuation seems to perform slightly better in terms of both time and
error. The diamond markers in Figure 4.7 (bottom) show that this holds for
n = 12, 13, 18 respectively (mind anyway the time scale in the bottom panel).
The explanation might reside in the increased dimension of the continuation
problem for the internal approach, as mentioned in Subsection 4.3.4, and
the denser block structure of the resulting Jacobian matrix with respect to
the state-dependent prototype problem with discontinuous right-hand side,
which shares the same increase in dimension (see Subsection 4.3.3).
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Figure 4.7: Internal (lines with bullets) versus external continuation (horizontal
lines) for (4.28): error (4.6) on the true curve (4.29) (top) and elapsed
time (bottom, s) using n collocation points and N = 10 quadrature
nodes. Original figure from [11], courtesy of AIMS. See text for more
details.

4.4.4 The complete Daphnia problem

The last numerical results presented in this Section concern the continua-
tion of the branch S(µ), as the ones in Subsection 4.2.1 with the approaches
described in [22] and in [90]. In particular, both these approaches are com-
pared with the internal one.

As it was done for the [90] approach, within the internal one it is also
possible to control the step size, in order to cover approximately the same
range for µ as the [22] approach (Figure 4.1) with 30 steps. The tolerance of
the Newton’s corrections is set to 10−6 in all cases.

Figure 4.8 shows the results of three runs, which use the same number
of quadrature and collocation nodes (n = N) and differ only by the choice
of such number, respectively n = N = 10, 15, 20. The results obtained are
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superposed to Figure 4.1. In particular, the left panel only differs from the
one in Figure 4.1 in that the curve obtained with n = N = 20 (dash-dot
line with stars) is added. In the right panel, the residual for all the three
choices of n = N, defined as in Section 4.1 (again dash-dot lines with stars).
is added: lines with smaller residual correspond to larger values of n = N.
Table 4.2 shows the results concerning the computational time in relation to
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Figure 4.8: Equilibrium branch S(µ) with zoom (left) and relevant residual (right)
of the Daphnia model, computed with the internal continuation (dash-
dot line with stars), superposed to Figure 4.1 for comparison. Original
figure from [11], courtesy of AIMS. See text for more details.

the maximal residual, in all cases. As expected from the results on the pro-
totype problems, the outcome demonstrates the superiority of the internal
continuation with respect to either [22] or [90].

Note that the internal continuation is implemented in Python, whereas
[22] and [90] are implemented in Matlab (for the former there is no alterna-
tive due to MatCont, for the latter the relevant codes are available only in
Matlab). However, in neither case the different language is responsible for
such an evident speed-up. Moreover, recall that [90] is implemented with
secant prediction and Broyden’s update, both choices favoring the latter (in
terms of computational time) with respect to the internal approach for avoid-
ing the computation of the Jacobian.

method computational time maximal residual

[22] 257.59s 6.6357× 10−4

[90] 59.32s 4.6768× 10−6

internal continuation with n = N = 10 1.73s 8.1723× 10−3

internal continuation with n = N = 15 4.40s 3.6517× 10−5

internal continuation with n = N = 20 9.18s 3.6854× 10−7

Table 4.2: Computational time and maximal residual for the continuation of the
Daphnia model. Original table from [11], courtesy of AIMS.





5 A P P R O X I M AT I O N O F P E R I O D I C
S O L U T I O N S

This chapter, the content of which is mostly included in the paper [9]1,
deals with the computation of periodic solutions of (1.1). This is, somehow,
another instance of internal approach, in that the computation of the solution
takes advantage of the results obtained in previous steps (i.e., to compute
solutions for other values of the model parameters). The technique which
will be described in the following was developed and experimentally tested
in [53] for DDEs, but was never extended to REs or coupled systems. The
possibility of such extension, is supported by the numerical tests which will
be shown, performed first separately on DDEs and REs, then on coupled
systems.

5.1 collocation of the periodic boundary value
problem

(2.13) can be solved numerically through (e.g., polynomial) collocation. As
explained in Section 3.3, this would mean looking for m-degree polynomials
u and v in [0, 1] such that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

u(θj) = F(uθj ◦ sω, vθj ◦ sω), j = 1, . . . , m,

v′(θj) = ωG(uθj ◦ sω, vθj ◦ sω), j = 1, . . . , m,

(u(0), v(0)) = (u(1), v(1))

p(u, v) = 0

for given collocation points 0 ≤ θ1 < · · · < θm ≤ 1, where sω, u and v are
defined as in Section 2.2.

Moreover, following [53], the method can be improved using piecewise
polynomial collocation. As explained in Section 3.3, in this case the nu-
merical solution in [0, 1] is obtained by solving the following system having
dimension (1 + Lm)× (dX + dY) + 1:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

u(θj) = F(uθi,j ◦ sω, vθi,j ◦ sω), j ∈ {1, . . . , m}, i ∈ {0, . . . , L− 1},
v′(θj) = ωG(uθi,j ◦ sω, vθi,j ◦ sω), j ∈ {1, . . . , m}, i ∈ {0, . . . , L− 1},

(u(0), v(0)) = (u(1), v(1))

p(u, v) = 0
(5.1)

for a given mesh 0 = t0 < · · · < tL = 1 and collocation points

ti ≤ θi,1 < · · · < θi,m ≤ ti+1

for all i ∈ {0, . . . , L− 1}.
1In particular, almost all the figures in the chapter have already been accepted for publi-

cation in [9], but not yet officially published at the time of the submission of this thesis.
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The variables which are included in the continuation framework are, other
than ω, those of the form ui,j := u(ti,j) and vi,j := v(ti,j) for i ∈ {0, . . . , L− 1},
j ∈ {0, . . . , m}, and fixed representation nodes

ti = ti,0 < · · · < ti,m = ti+1,

which can be chosen independently from the collocation nodes. If {ℓi,j}0≤j≤m
is the Lagrange basis associated to the representation nodes in [ti, ti+1] (see
Subsection 3.1.2), then such variables consitute the solution of the system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑m
k=0 ℓi,k(uθi,k ◦ sω, vθi,k ◦ sω) = F(uθi,j ◦ sω, vθi,j ◦ sω), j ∈ {1, . . . , m},

i ∈ {0, . . . , L− 1},
∑m

k=0 ℓ
′
k,j(uθi,j ◦ sω, vθi,j ◦ sω) = ωG(uθi,j ◦ sω, vθi,j ◦ sω), j ∈ {1, . . . , m},

i ∈ {0, . . . , L− 1},
u0,0 − uL,0 = 0

v0,0 − vL,0 = 0

p(u, v) = 0,

where all the values ℓ′i,k(θi,k) are computed through the differentiation ma-
trix, defined in Section 3.3.

As far as the phase condition p is concerned, note that in the case of nu-
merical approximations through iterative methods either some x̂ (or ŷ) or
some x̃ (or ỹ), defined as in Section 2.2, is available: indeed, if the continu-
ation starts close to a Hopf bifurcation (see, e.g., [72, Sections 3.4 and 3.5]),
i.e., at a “newborn” limit cycle, a coordinate of the equilibrium giving rise
to it is a natural choice for x̂ (or ŷ). Alternatively, a possible reference so-
lution x̃ (or ỹ) can be given by a cycle with period 2π/β, where β is (the
absolute value of) the imaginary part of the conjugate pair determining the
Hopf bifurcation. This cycle is intended to represent an approximation of
a periodic solution corresponding to a value of the parameter obtained by
slightly perturbing the Hopf one, and a reasonable guess for the amplitude
is given by

√
α, where α is the real part of the aforementioned conjugate

pair at the perturbed value of the parameter. On the other hand, at the sub-
sequent continuation steps, x̃ (or ỹ) can be defined as a component of the
periodic solution computed at the previous continuation step.

5.2 periodic bvp for ddes

The following theorem provides a bound on the collocation error, in the
case of IVPs for DDEs, assuming that the relevant breaking points (see, e.g.,
[18] for a general reference) are included in the discretization mesh.

Theorem 5.1 ([53, Theorem 4.1]). Consider an IVP of the form{
y′(t) = G(yt), t ∈ [0, ω],

y0 = ϕ
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such that G and ϕ are arbitrarily smooth. Let z be its exact solution and let u ∈ Πt
n

be a solution obtained through a piecewise polynomial collocation scheme, using any
mesh t and any set of collocation nodes. Let h := max0≤i<n ti+1 − ti. Then

max
t∈[0,ω]

∥z(t)− u(t)∥ = O(hm).

Moreover, if the collocation nodes are chosen as the Gauss-Legendre nodes in each
[ti, ti+1], then

max
t∈[0,ω]

∥z(t)− u(t)∥ = O(hm+1).

Since, in the case of ODEs, the same convergence orders hold for IVPs
and BVPs (using similar meshes), in [53], the same order of convergence is
conjectured also for the BVP⎧⎪⎨⎪⎩

y′(t) = G(yt), t ∈ [0, ω],

y0 = yω

p(y0, yω) = 0

(5.2)

and supported by several numerical tests. It is worth remarking that, any-
way, a theoretical proof of convergence is still missing, and the one in [13]
does not consider the presence of any unknown parameters (in particular,
the period is assumed to be known).

The first of these test was replicated here, and the results are shown below.
The relevant DDE is the delayed logistic equation

y′(t) = (λ− y(t− 1))y(t), (5.3)

for which λ = π/2 is a Hopf bifurcation point. Starting from a sinusoidal
perturbation of the corresponding equilibrium, the branch of periodic orbits
was continued up to λ = 1.7, using a trivial phase condition at the first step
with ŷ = π/2, and an integral phase condition at the other steps, with ỹ the
solution found at the previous continuation step.

Note that this does not mean that the continuation is dependent on the
parameter λ in the sense of Section 3.4. In fact, formally speaking, λ is not
even included in the continuation, since otherwise the continuation variables
would outnumber the equations. Rather, this manual continuation requires,
at each step, to increase λ by some ∆λ > 0, and simply substitute λ + ∆λ to
λ in all the relevant positions of the Jacobian matrix. The solution obtained
at the previous continuation step will be the prediction at the current step,
without further modifications.

At λ = 1.7, a periodic solution of period T ≈ 4.0964 was found, Figure
5.1. Gauss-Legendre collocation points were used. Since there is no way
to obtain an exact expression of the relevant periodic solution, the error
was computed with respect to a reference solution obtained with L = 1000
and m = 4. Indeed, Figure 5.2 confirms the O(hm+1) behavior for both the
continuous (uniform) and discrete (maximum at the mesh points) errors,
where the former was computed by taking the maximum of the errors at the
4001 representation points relevant to the reference solution.
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Figure 5.1: Periodic solution of (5.3) at λ = 1.7: reference solution obtained using
L = 1000 and m = 4 (solid line) compared with the solution approxi-
mated using L = 10 and m = 4 (circles). Original figure from [9]1.
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Figure 5.2: Periodic solution of (5.3) at λ = 1.7: continuous (squares) and discrete
(stars) errors for m = 3 (dashed line) and m = 4 (solid line). Original
figure from [9]1.

5.3 periodic bvp for res

Given the numerical proof, found in [53], that the same order of con-
vergence as Theorem 5.1 holds also for (5.2), the same behavior can be
expected in the case of REs with a smoothing right-hand side, such as
those of the form (1.3) and (1.4). Our expectation is indeed satisfied as
shown by the test described below. The relevant code is available at http:
//cdlab.uniud.it/software#per-sol.

The relevant RE is

x(t) =
γ

2

∫ −1

−3
x(t + θ)(1− x(t + θ))dθ (5.4)

(with trivial phase condition), for which, as shown in [23], the exact expres-
sion of the periodic solution between a Hopf bifurcation point and the first
period doubling is

x(t) = σ + A sin
(π

2
t
)

, (5.5)

http://cdlab.uniud.it/software#per-sol
http://cdlab.uniud.it/software#per-sol
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Figure 5.3: Periodic solution of (5.4) at γ = 4.327: exact solution (solid line) com-
pared with the solution approximated using L = 10, m = 4 and Cheby-
shev points (circles). Original figure from [9]1.
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Figure 5.4: Periodic solution of (5.4) at γ = 4.327: continuous error for m = 3
(dashed line) and m = 4 (solid line) using Chebyshev points, compared
to straight lines having angular coefficient 3 (dashed) and 4 (solid).

where ⎧⎪⎪⎨⎪⎪⎩
σ =

1
2
+

π

4γ
,

A2 = 2σ

(
1− 1

γ
− σ

)
,

and γ = 2 + π/2 is a Hopf bifurcation point. Here, γ plays the same role as
λ from (5.3) in the continuation, meaning that it is updated manually.

The integral representing the distributed delay was approximated through
a Clenshaw-Curtis quadrature [98] rescaled to the interval [−3,−1] (see Sub-
section 3.1.5).

Starting from the exact solution at γ = 4, the branch of periodic orbits was
continued up to γ = 4.327, corresponding to the first period doubling after
the Hopf bifurcation, Figure 5.3.

The continuation was performed using trivial phase condition with x̂ = σ.
Both Chebyshev and Gauss-Legendre collocation points were used to test
convergence. Figure 5.5 confirms the O(hm) behavior for both the continuous
and discrete errors for the former, while Figure 5.4 confirms the O(hm+1)

behavior for the latter.
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Figure 5.5: Periodic solution of (5.4) at γ = 4.327: continuous error for m = 3
(dashed line) and m = 5 (solid line) using Gauss-Legendre points. Orig-
inal figure from [9]1.

5.4 periodic bvp for coupled systems

Thanks to the scalar phase condition introduced in Section 2.2, the dimen-
sion of system (5.1) is as high as the number of unknowns, regardless of the
quantities dX and dY. This is a necessary condition for the corresponding
numerical problem to be well-posed.

It is, in principle, not sufficient, in the sense that poor choices of the phase
conditions might lead to a numerical problem having multiple solutions or
no solutions at all. This can happen, e.g., if x̂ (or ŷ) and k defined as in
Section 2.2 are chosen so that any periodic solution of the original equation
satisfies xk(t) = x̂ (or yk(t) = ŷ) for multiple values of t ∈ [0, 1), or for no
values at all. However, in the generic case of a single DDE or a single RE,
finding a suitable phase condition is not an issue.

A general assumption when dealing with problems that are solved through
Newton’s method is that the Fréchet derivative of the original problem has
a bounded inverse in the solution (recall Assumption 3.24). In many re-
alistic cases, the assumption seems to guarantee the convergence of New-
ton’s method. However, the question is not so trivial in the general case
dX + dY ≥ 2, which includes, in particular, all coupled systems. For instance,
in the extreme case of a system given by two completely independent equa-
tions (with the exception of the period ω, which needs to be the same for the
two corresponding solutions), local uniqueness cannot hold when using one
of the typical phase conditions, which only involve one of the components.
In other words, the sought solution is not isolated. Keeping this example in
mind, one can conclude that the various components of the system must be
interdependent to some extent, in order to apply (the natural extension of)
the method in [53].

This complicates the search for a possible coupled system to test the
method on, especially if requiring the corresponding periodic solutions to
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Figure 5.6: Periodic solution of (5.6) at γ = 4.327: continuous error for m = 3
(dashed line) and m = 5 (solid line) of the x-component (stars) and the
y-component (squares), using Gauss-Legendre points.

have an exact expression (in order to monitor the true error). An example of
coupled system leading to an ill-posed periodic BVP is

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
x(t) = γ

2

∫ −1

−3
x(t + θ)(1− x(t + θ))dθ, t ∈ [0, ω],

y′(t) = γx(t)(x(t− 1)(1− x(t− 1))− x(t− 3)(1− x(t− 3)), t ∈ [0, ω],

(x0, y0) = (xω, yω),

p(x|[0,ω]) = 0,
(5.6)

defined starting from (5.4). Indeed, for all y0 ∈ R, the functions given by
(5.5) and

y(t) = x2(t) + y0

constitute a continuum of solutions of (5.6), and the corresponding New-
ton’s method was not able to reach convergence within the tests run by the
author. However, one could think of using a 2-dimensional phase condition,
at the expense of one collocation condition (in order to keep the right num-
ber of equations) although, normally, this would not be a good idea (see
Remark 5.2). Figure 5.6 shows the error obtained, after this modification, by
continuing the branch of periodic orbits from γ = 4 up to γ = 4.327, as
done in Section 5.3. The continuation was performed using a trivial phase
condition with x̂ = σ and ŷ = σ2, and removing the last collocation condi-
tion relevant to the DDE. Both Chebyshev and Gauss-Legendre collocation
points were used to test convergence. In particular, Figure 5.6 confirms the
O(hm+1) behavior in the latter case.

On the other hand, the test described below (code available at http://

cdlab.uniud.it/software#per-sol) shows that the method in [53] can be

http://cdlab.uniud.it/software#per-sol
http://cdlab.uniud.it/software#per-sol
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Figure 5.7: Periodic solution of (5.7) at γ = 4.327: continuous error for m = 3
(dashed line) and m = 5 (solid line) of the x-component (stars) and the
y-component (squares), using Gauss-Legendre points.

extended naturally to well-posed periodic BVPs defined from coupled sys-
tems. This is the case, for instance, of the BVP⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x(t) = γ
2

∫ −1

−3
x(t + θ)(1− x(t + θ))dθ,

y′(t) = γx(t)(x(t− 1)(1− x(t− 1))− x(t− 3)(1− x(t− 3)) + y(t),

(x0, y0) = (xω, yω),

p(x|[0,ω]) = 0,
(5.7)

defined for t ∈ [0, ω], starting from (5.6). Indeed, thanks to the variation of
constant formula (2.3), the unique ω-periodic solution is given by (5.5) and

y(t) =
2e4

1− e4 ·
∫ 4

0
e−θx′(t + θ)x(t + θ)dθ.

Figure 5.7 shows the error obtained when continuing the branch of periodic
orbits from γ = 4 up to γ = 4.327, as done in Section 5.3. The continuation
was performed using a trivial phase condition with x̂ = σ. Both Chebyshev
and Gauss-Legendre collocation points were used to test convergence. In
particular, Figure 5.7 confirms the O(hm+1) behavior in the latter case.

In conclusion, the method in [53] can be extended to any well-posed pe-
riodic BVP, leading to the same order of convergence obtained in the case
of periodic BVPs defined from DDEs only. However, the role of the phase
condition in determining the well-posedeness of the BVP is still being inves-
tigated, as well as some correspondence between the well-posedeness of the
theoretical problem and that of the numerical one. Such a correspondence
is, indeed, not necessarily trivial even for ODEs (see, e.g., [20]).

Remark 5.2. A more natural way to treat ill-posed problems such as (5.6) con-
sists in using a 2-dimensional phase condition while adding a new variable,
in order to obtain again the same number of equations and variables. For
instance, one could use a trivial phase condition with x̂ = σ and ŷ = σ2

while adding a variable d (which will be 0) to the relevant DDE as

y′(t) = γx(t)(x(t− 1)(1− x(t− 1))− x(t− 3)(1− x(t− 3)) + d, t ∈ [0, ω].

Figure 5.8 shows the error obtained, after this modification, by continuing
the branch of periodic orbits from γ = 4 up to γ = 4.327, as done in Section
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Figure 5.8: Periodic solution of (5.6) at γ = 4.327: continuous error for m = 3
(dashed line) and m = 5 (solid line) of the x-component (stars) and the
y-component (squares), using Gauss-Legendre points.

5.3. Both Chebyshev and Gauss-Legendre collocation points were used to
test convergence. In particular, Figure 5.8 confirms the O(hm+1) behavior in
the latter case. A special thanks goes to one of the referees, who indicated
this alternative. ◁





6 T H E O R E T I C A L C O N V E R G E N C E O F
T H E C O L LO C AT I O N M E T H O D

This chapter represents one of the main original contributions of this thesis
from a theoretical point of view, and most of it is included in a work which
was recently submitted [10]. Such work is highly reliant on the paper [79],
where a general framework for solving a certain class of BVPs is presented,
and accompanied by a rigorous proof of convergence of the corresponding
iterative method. In particular, it concerns BVPs for neutral delay differential
equations, i.e., functional equations which involve also evaluation in the past
of the derivative.

The goal of this work is to adapt the approach in [79] to compute periodic
solutions of (non-neutral) DDEs, which, after scaling time through (2.10),
can be written in the form

y′(t) = ωG(yt ◦ sω), t ∈ [0, 1], (6.1)

where G is defined on some state space Y as described at the beginning of
Chapter 1, and sω is defined as in (2.10). Recall that Y does not need to be
a space of continuous functions. Indeed, from now on, Y will be a generic
subspace of F([−τ, 0],RdY). Although the problem of computing periodic so-
lutions of DDEs has already received some consideration in literature, little
has been done on the theoretical analysis of the error and the convergence
of the relevant iterative methods (see Section 6.1). Indeed, as far as the au-
thor’s knowledge goes, this would be the first work addressing the problem
of convergence of piecewise collocation methods for the computation of pe-
riodic solutions of general DDEs of the form (1.5), with no limitations on the
number or type of delays or constraints on the relation between delays and
period.

Recalling the formulations (2.11) and (2.13) of a BVP for a delay system,
the correspondent formulations for the DDE (6.1) would read⎧⎪⎨⎪⎩

y′(t) = ωG(yt ◦ sω), t ∈ [0, 1],

y0 = y1

p(y|[0,1]) = 0,

(6.2)

where the periodicity condition is on the state and the solution is intended
in [−1, 1], and ⎧⎪⎨⎪⎩

y′(t) = ωG(yt ◦ sω), t ∈ [0, 1],

y(0) = y(1)

p(y) = 0,

(6.3)

where the use of periodic states allows to formulate a finite dimensional peri-
odicity condition and the solution is intended in [0, 1]. Recall that derivatives
with respect to time are defined from the right in the context of DDEs.
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The contributions of this research consist in the proofs of the validity of
the assumptions required to apply the abstract approach of [79] in the case
of periodic BVPs. The assumptions concerning exclusively the formulation
of the original problem will be addressed in Section 6.3, while the ones
concerning the discretization method will be treated in Section 6.4.

Although the general BVP in [79] considers unknown parameters explic-
itly, in the periodic case the period plays the role of the (main) unknown
parameter of the problem. The troubles in the effort of validating the as-
sumptions are mostly due to the special role that the period plays in the
BVP, since it is directly linked to the course of time through (2.10). This also
affects the regularity that must be required from the functionals involved,
and therefore the choice of the relevant spaces where the solution, its deriva-
tive or the states must lie.

The more technical parts of the relevant proofs will be presented sepa-
rately in Chapter 7, which plays the role of an appendix for this Chapter.

6.1 state of art

[79, Section 1.1] contains an exhaustive description of the literature on the
BVPs for (neutral) functional differential equations. As far as non-neutral
differential equations are concerned, a brief introduction of the two equiv-
alent alternatives can be found in [53, Section 2], where it is also recalled
that (6.2) is an instance of Halanay’s BVP (so named in [68]), i.e., a BVP with
boundary condition of the form

N (y0, yω) = 0

for some N : Y× Y → Y. However, the majority of works address formula-
tion (6.3), e.g., [12, 13, 14, 15, 16, 17, 52, 53, 73, 77, 78, 79, 86], while only few
treat the BVP using formulation (6.2) [54, 74, 101].

Among the works cited above, very few include a theoretical proof of
the convergence of the method, e.g., [13, 52]. In particular, [13] does not
consider the presence of unknown parameters, and [52], despite dealing
explicitly with periodicity, assumes the period to be known (and equal to 1)
and restricts its analysis to linear problems. Moreover, neither of the works
considers a general right hand side, but rather one containing only (a finite
number of) discrete delays.

The approach proposed in [79] is, on the other hand, very general and
abstract, while two more concrete instances of the method are illustrated
in [77, 78]. In particular, in the former the problem is discretized through
collocation, in the latter through the Fourier series method. However, in all
cases the treatment is devoted to general BVPs, not necessarily restricted to
the periodic case, and not addressing explicitly the presence of the period as
a parameter.

For these reasons the work described in this chapter aims at applying this
general approach to both (6.2) and (6.3). Note that the latter, through the
definition of periodic state, is the periodic instance of the side condition con-
sidered in [79] (eq. (7), page 526), while the former is not even mentioned.
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In fact, the entire analysis is carried out while assuming that the bound-
ary condition is finite-dimensional, although it is mentioned that it can also
be applied to cases where it is infinite-dimensional, by adding further dis-
cretization. In spite of this, it will be shown in Section 6.3 that only (6.2) is
amenable of the treatment in [79]. Therefore, in the subsequent Sections the
proofs will only be given for (6.2), reserving to comment about (6.3) up to
the point where it fails to fit into [79].

6.2 the problem in abstract form

This section describes the general form of the BVP addressed in [79], and
shows how both formulations (6.2) and (6.3) of the periodic boundary value
problem can fit into it.

The BVP considered in [79] has the form{
u = F (G(u, α), u, β)

B(G(u, α), u, β) = 0,

and its relevant solution is v := G(u, α), which lies in a normed space
V ⊆ F([a, b],Rd), while u is its derivative and lies in a Banach space U ⊆
F([a, b],Rd). The operator G : U×A → V represents a (linear) Green oper-
ator which reconstructs the solution v = G(u, α) given its derivative u and
some α in a Banach space A which plays the role of an initial state or initial
value. A classic example of the second instance is

G(u, α)(t) := α +
∫ t

c
u(s)ds, t ∈ [a, b],

for some c ∈ [a, b].
Finally, β is a vector of parameters which vary together with the solution

and live in a Banach space B.
The first line defines the functional equation of neutral type from the func-

tion F : V×U× B → U, which represents its right-hand side. The second
line represents the boundary condition through a function B : V×U×B→
A× B, which usually includes a classical boundary condition (the compo-
nent in A) and an extra condition which poses the necessary constraints on
the parameters (the component in B) .

The method in [79] is based on the translation of the BVP into a fixed point
problem. The Problem in Abstract Form (PAF) consists in finding (v∗, β∗) ∈
V×B with v∗ := G(u∗, α∗) and (u∗, α∗, β∗) ∈ U×A×B such that

(u∗, α∗, β∗) = Φ(u∗, α∗, β∗) (6.4)

for Φ : U×A×B→ U×A×B given by

Φ(u, α, β) :=

(
F (G(u, α), u, β)

(α, β)−B(G(u, α), u, β)

)
. (6.5)

In the sequel, the apex ∗ will denote quantities relevant to fixed points.
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6.2.1 Equivalent formulations

This subsection shows that (6.2) and (6.3) are both instances of (6.4).

In the case of (6.3) the domain of the BVP is [a, b] = [0, 1]. U = U1 and
V = V1 are chosen so that U1,V1 ⊆ F([0, 1],Rd), while A = A1 = Rd. The
only unknown parameter is the original period, therefore B = B1 = R. In
the sequel, ω will be used in place of β. The Green operator G = G1 is chosen
as the operator G1 : U1 ×A1 → F([0, 1],Rd) defined as

G1(u, α)(t) := α +
∫ t

0
u(s)ds, t ∈ [0, 1]. (6.6)

The solutions of (2.13) are exactly the pairs (v∗, ω∗) ∈ V1 × B1 with v∗ :=
G1(u∗, α∗) and (u∗, α∗, ω∗) ∈ U1 ×A1 × B1 the fixed points of the map Φ1 :
U1 ×A1 ×B1 → U1 ×A1 ×B1 defined by

Φ1(u, α, ω) :=

⎛⎜⎜⎝
ωG(G1(u, α)(·) ◦ sω)

G1(u, α)(1)

ω− p(G1(u, α))

⎞⎟⎟⎠ .

Above α plays the role of the initial value v(0), v(·) denotes the map t ↦→ vt.
Thus, with the above choices, (6.3) leads to an instance of (6.5) with F = F1 :
V1×U1×B1 → U1 and B = B1 : V1×U1×B1 → A1×B1 given respectively
by

F1(v, u, ω) := ωG(v(·) ◦ sω)

and

B1(v, u, ω) :=

(
v(0)− v(1)

p(v)

)
.

Note that the boundary operator is linear and only includes the periodicity
and the phase conditions, none of which depend on ω. Moreover, note that,
using this formulation, G needs to be defined on discontinuous functions as
well. Indeed, G1(u, α) is generally not periodic, which means that G1(u, α)(·)
is not continuous, according to the definition of periodic state. This will be
addressed in Section 6.3.

In the case of (6.2) the domain of the BVP is again [a, b] = [0, 1]. U = U2

and V = V2 are chosen so that U2 ⊆ F([0, 1],Rd), and V2 ⊆ F([−1, 1],Rd)

while A = A2 ⊆ F([−1, 0],Rd). A is meant to represent a subset of the
state space, which consists of functions in F([− τ

ω , 0],Rd). However, A is not
allowed to vary together with ω. Therefore, it must be defined as a subset
of the enlarged state space Y ⊆ F([−1, 0],Rd), defining yt ∈ Y as

yt(θ) := y(t + θ), θ ∈ [−1, 0]. (6.7)

In fact, Y is enlarged thanks to the assumption τ ≤ ω (recall Section 2.2).
Again, the only parameter is ω, therefore B = B2 = R. The Green operator
G = G2 is chosen as the operator G2 : U2 ×A2 → F([−1, 1],Rd) defined as

G2(u, ψ)(t) :=

⎧⎨⎩ψ(0) +
∫ t

0
u(s)ds, t ∈ [0, 1],

ψ(t), t ∈ [−1, 0],
(6.8)
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which corresponds to the operator V first introduced in [29]. The solutions
of (6.2) are exactly the pairs (v∗, ω∗) ∈ V2 × B2 with v∗ := G2(u∗, ψ∗) and
(u∗, ψ∗, ω∗) ∈ U2×A2×B2 the fixed points of the map Φ2 : U2×A2×B2 →
U2 ×A2 ×B2 defined by

Φ2(u, ψ, ω) :=

⎛⎜⎜⎝
ωG(G2(u, ψ)(·) ◦ sω)

G2(u, ψ)1

ω− p(G2(u, ψ)|[0,1])

⎞⎟⎟⎠ . (6.9)

Above ψ plays the role of the initial state v0, and this motivates the choice
of changing the notation concerning to A, i.e., in this case it contain states
ψ ∈ A2 ⊆ Y rather than solution values α ∈ A1 = Rd. With these choices it
follows that (6.2) leads to an instance of (6.5) with F = F2 : V2×U2×B2 →
U2 and B = B2 : V2 ×U2 ×B2 → A2 ×B2 given respectively by

F2(v, u, ω) := ωG(v(·) ◦ sω) (6.10)

and

B2(v, u, ω) :=

(
v0 − v1

p(v|[0,1])

)
. (6.11)

Again, the boundary operator is linear and independent of either u or ω.

Note that the need for the relevant Banach spaces to remain fixed and in-
dependent from the values of the parameters is also the main reason why
the change of variable (2.10) is needed. Indeed, without it, the domain of
the BVP would be [0, ω] and the spaces would be consequently defined ac-
cording to the current (unknown) value of ω.

6.3 validation of the theoretical assumptions

As shown in Subsection 6.2.1, both formulations (6.2) and (6.3) can be
translated into instances of the PAF in multiple ways: indeed, in princi-
ple, different choices for the Banach spaces U1,U2,V1,V2,A2 (and relevant
norms) are possible, according to the regularity of the sought solution. How-
ever, this does not imply that the the convergence framework in [79] can be
applied either way. In fact, several theoretical assumptions are required, and
their validity depends on the choices of the spaces, as well as on the regu-
larity of the right-hand side G. This section includes the definitions of such
assumptions and their statements as propositions, instanced according to
the problems of interest in this chapter.

In the case of formulation (6.2), their validity will be proved under specific
choices of the relevant Banach spaces (the norms of which are indicated in
Section 1.6) and regularity properties of G. For ease of reference throughout
the text, the corresponding hypotheses are collected below.

(T1) Y = B∞([−τ, 0],Rd), Y = B∞([−1, 0],Rd).

(T2) U2 = B∞([0, 1],Rd), V2 = B1,∞([−1, 1],Rd), A2 = B1,∞([−1, 0],Rd).

(T3) G : Y→ Rd is Fréchet-differentiable at every y ∈ Y.
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(T4) G ∈ C1(Y,Rd).

(T5) There exist r > 0 and κ ≥ 0 such that

∥DG(y)− DG(v∗t ◦ sω∗)∥Rd←Y ≤ κ∥y− v∗t ◦ sω∗∥Y

for every y ∈ B(v∗t ◦ sω∗ , r), uniformly with respect to t ∈ [0, 1].

The reason why V2 must be contained in B1,∞([−1, 1],Rd) will be clear in
the proof of Proposition 6.2, concerning the first assumption that needs to be
verified. Indeed, due to the role played by the parameter ω in the course of
time, the states vt will need to have measurable and bounded derivative for
all v ∈ V2. On the other hand V2 cannot be restricted to C1([−1, 1],Rd). Even
if one chose to work with Y = C1([−τ, 0],Rd), the derivatives of the elements
of V2 cannot all be continuous at 0, since that would imply ψ′(0−) = G(ψ)

for all ψ ∈ Y.
The argument above is what motivates the choice of V2 (and, consequently,

of U2 and A2) in (T2). Note that spaces of bounded and measurable functions
are also used in the theory of DDEs, instead of the standard continuous ones,
if one weakens the notion of solution (see, e.g., [45, Exercise 2.1, Chapter 0]).

It is worth mentioning that (T5) could never be satisfied if state-dependent
delays were taken into account. Indeed, in that case, the expression of the
partial derivative of G(vt ◦ sω) with respect to v would contain v′ and could
not be (Lipschitz) continuous with respect to v. Thus, the framework de-
scribed is limited to constant delays.

Meanwhile, as far as formulation (6.3) is concerned, it will be shown that
there are no possible choices for the Banach spaces which allow to satisfy
all the assumptions, as well as some comments on the validity of some of
them under specific choices. The first theoretical assumption concerns the

Fréchet-differentiability (see Section 2.3) of the operators F and B appearing
in (6.5).

Assumption 6.1 (AFB, [79, page 534]). The operators F and B are Fréchet-
differentiable at any point (v0, u0, β0) ∈ V×U×B.

The trickiest part while proving this assumption in our case is the differ-
entiation with respect to ω, since it involves the composition with sω.

Since p is linear in (6.11), so it is B, hence it is Fréchet-differentiable. Thus,
with respect to the validity of Assumption AFB using the formulation (6.2),
it is sufficient to prove the following.

Proposition 6.2. Under (T1), (T2) and (T3), there exists r ∈ (0, ω∗) such that
F2 in (6.10) is Fréchet-differentiable, from the right with respect to ω, at every
(v̂, û, ω̂) ∈ B((v∗, u∗, ω∗), r), and

DF2(v̂, û, ω̂)(v, u, ω) = L2(·; v̂, ω̂)[v(·) ◦ sω̂] + ωM2(·; v̂, ω̂) (6.12)

for (v, u, ω) ∈ V2 ×U2 × (0,+∞), where, for t ∈ [0, 1],

L2(t; v, ω) := ωDG(vt ◦ sω) (6.13)

and
M2(t; v, ω) := G(vt ◦ sω)− L2(t; v, ω)[v′t ◦ sω] ·

sω

ω
. (6.14)



6.3 validation of the theoretical assumptions 71

Recall that derivatives with respect to time are defined from the right.
Thus, the derivative with respect to the period is intended from the right
since the period affects the course of time in the domain of the state space
through (2.10), which is increasing with respect to ω as far its argument is
negative.

Note that the Fréchet derivative cannot, in any case, be continuous, as
explained at the end of Section 3.5. However, the problem will be overcome
thanks to its Lipschitz continuity in the solution (v∗, u∗, ω∗) (Proposition 6.7)
and the fact that (v∗, u∗, ω∗) lies in a more regular subspace than the space
V2 ×U2 ×R (Lemma 7.5 in Chapter 7).

Proof. The thesis holds once that (6.12) is proved according to Definition 2.8,
i.e., u ∈ U, v ∈ V and ω > 0,

∥F2(v̂ + v, û + u, ω̂ + ω)−F2(v̂, û, ω̂)− DF2(v̂, û, ω̂)(v, u, ω)∥U2

= o (∥(v, u, ω)∥V2×U2×B2) .

As for the left-hand side, by using (6.10), the choice of V2 in (T2) leads to
evaluate

(ω̂ + ω)G((v̂+ v)t ◦ sω̂+ω)− ω̂G(v̂t ◦ sω̂)− ω̂DG(v̂t ◦ sω̂)[vt ◦ sω̂]

− ωG(v̂t ◦ sω̂) + ωDG(v̂t ◦ sω̂)[̂v′t ◦ sω̂] · sω̂

= (ω̂ + ω)[G((v̂ + v)t ◦ sω̂+ω)− G(v̂t ◦ sω̂)]

− ω̂DG(v̂t ◦ sω̂)[vt ◦ sω̂] + ωDG(v̂t ◦ sω̂)[v̂′t ◦ sω̂] · sω̂

(6.15)

for t ∈ [0, 1]. From Definition 2.8, (T3) allows to write

G((v̂ + v)t ◦ sω̂+ω)− G(v̂t ◦ sω̂) = DG(v̂t ◦ sω̂)ξ
t + o(∥ξt∥Y) (6.16)

for
ξt := (v̂ + v)t ◦ sω̂+ω − v̂t ◦ sω̂.

This, in turn, leads to evaluate ξt(σ) for every σ ∈ [−τ, 0] given the choice
of Y in (T1). Then (1.2) gives

ξt(σ) = v̂(t + sω̂+ω(σ))− v̂(t + sω̂(σ)) + v(t + sω̂+ω(σ))

= v̂′(t + sω̂(σ))η(σ) + o(|η(σ)|) + v(t + sω̂+ω(σ))
(6.17)

for
η(σ) := sω̂+ω(σ)− sω̂(σ),

which follows from Taylor’s theorem (Theorem 3.2) to v̂ thanks to the choice
of V2 in (T2). Since

η(σ) =
σ

ω̂ + ω
− σ

ω̂
= −sω̂(σ) ·

ω

ω̂ + ω
> 0 (6.18)

follows from (2.10), substitution into (6.17) leads to

ξt = −v̂′t ◦ sω̂ · sω̂ ·
ω

ω̂ + ω
+ vt ◦ sω̂+ω + o(ω)

with
∥ξt∥Y = O(ω + ∥v∥V2).
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Substitution first into (6.16) and then into (6.15) leads to

(ω̂ + ω)G ((v̂ + v)t ◦ sω̂+ω)− ω̂G(v̂t ◦ sω̂)− ω̂DG(v̂t ◦ sω̂)[vt ◦ sω̂]

− ωG(v̂t ◦ sω̂) + ωDG(v̂t ◦ sω̂)[v̂′t ◦ sω̂] · sω̂

= (ω̂ + ω)DG(v̂t ◦ sω̂)

(
[−v̂′t ◦ sω̂] · sω̂ ·

ω

ω̂ + ω
+ vt ◦ sω̂

)
+ o(ω + ∥v∥V2)− ω̂DG(v̂t ◦ sω̂)[vt ◦ sω̂] + ωDG(v̂t ◦ sω̂)[v̂′t ◦ sω̂] · sω̂

= o(ω + ∥v∥V2) + O(ω · ∥v∥V2).

The thesis is now straightforward since

∥(v, u, ω)∥V2×U2×B2 = max{∥v∥V2 , ∥u∥U2 , ω}

by (1.14).

As far as formulation (6.3) is concerned, it can checked whether there are
any choices for V1 and U1 in (T2) such that, assuming again (T1) and (T3)
as well, the theorem above still holds. To this end, one can go through the
steps of the proof and look for the ones that depend on the choices in (T2).
Differentiabilty of vt is still required, even to formulate the proposition, and
in general this is not satisfied at σ = −ωt by a solution of (6.3), due to the
definition of the periodic state in (2.12). However, recall that derivatives with
respect to time are only considered from the right. The key step in the proof
is (6.17), where the application of Taylor’s theorem is indeed subject to the
differentiability of vt, but η(σ) is positive in (6.18) and thus differentiability
from the right is sufficient. Thus, the theorem holds under (T1), (T3) and

U1 = B∞([0, 1],Rd), V1 = B1,∞([0, 1],Rd).

Note that, just like in the case of formulation (6.2), the spaces above cannot
be restricted to C([0, 1],Rd) and C1([0, 1],Rd) respectively, since the map
t ↦→ yt introduced in (2.12) is not even continuous, but rather includes a
jump discontinuity of y(0)− y(1) at −t. Right continuity is thus preserved.

The second theoretical assumption concerns the Fréchet-differentiability
(see Section 2.3) of the Green operator G appearing in (6.5).

Assumption 6.3 (AG, [79, page 534]). The linear operator G is bounded.

The following proposition concerns the validity of Assumption AG using
the formulation (6.2).

Proposition 6.4. Under (T2), G2 is bounded.

Proof. Thanks to the inequality

∥G2(u, ψ)∥V2

∥(u, ψ)∥U2×A2

=
max{∥ψ(0) +

∫ ·
0 u(s)ds∥∞ + ∥u∥∞, ∥ψ∥A2}

max{∥u∥U2 , ∥ψ∥A2}

≤ max{∥ψ∥∞ + ∥u∥∞ + ∥u∥∞, ∥ψ∥A2}
max{∥u∥U2 , ∥ψ∥A2}

,

which holds for all nonzero pairs (u, ψ) ∈ U2 ×A2, it can be concluded that

∥G2∥V2←U2 ≤ 3.
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Note that the choice of the relevant Banach spaces also play a role in the
well-posedeness of the PAF. In fact, the latter requires the range of G to lie in
V. Indeed, under (T2), the derivative of ψ ∈ A2 is measurable and bounded,
and so is u ∈ U2. Due to the fact that time derivatives are intended from
the right, it is not required that ψ′(0) = u(0): G2 verifies anyway the sought
requirement under (T2).

Since the operator G2 is linear, it is Fréchet-differentiable. Consequently,
Proposition 6.2 guarantees the Fréchet-differentiability of the fixed point op-
erator (6.9) as stated next.

Corollary 6.5. Under (T1), (T2) and (T3), there exists r ∈ (0, ω∗) such that Φ2 in
(6.9) is Fréchet-differentiable at every (û, ψ̂, ω̂) ∈ B((u∗, ψ∗, ω∗), r), from the right
with respect to ω, and

DΦ2(û, ψ̂, ω̂) (u, ψ, ω) =⎛⎜⎜⎝
L2(·;G2(û, ψ̂), ω̂)[G2(u, ψ)(·) ◦ sω̂] + ωM2(·;G2(û, ψ̂), ω̂)

G2(u, ψ)1

ω− p(G2(u, ψ)|[0,1])

⎞⎟⎟⎠
for (u, ψ, ω) ∈ U2 ×A2 × (0,+∞), L2 in (6.13) and M2 in (6.14).

Proof. The only nonlinear component of Φ2 in (6.9) is the first one, i.e., the
one in U2 given by F2 in (6.10). The result is thus provided directly by
Proposition 6.2.

As far as formulation (6.3) is concerned, the same result holds, given that G1

is still linear, hence Fréchet-differentiable, and the range of G1 is in V1 under

U1 = B∞([0, 1],Rd), V1 = B1,∞([0, 1],Rd).

The third theoretical assumption concerns the local Lipschitz continuity of
the Fréchet derivative of the fixed point operator at the relevant fixed points.

Assumption 6.6 (Ax∗1, [79, page 536]). There exist r0 > 0 and L ≥ 0 such
that

∥DΦ(u, α, β)− DΦ(u∗, α∗, β∗)∥U×A×B←U×A×B

≤ L∥(u, α, β)− (u∗, α∗, β∗)∥U×A×B
for all (u, α, β) ∈ B((u∗, α∗, β∗), r0)).

In the sequel (u∗, ψ∗, ω∗) ∈ U2 × A2 × (0,+∞) is a fixed point of Φ2 in
(6.9) and y∗ is the corresponding 1-periodic solution of (1.5). With respect to
the validity of Assumption Ax∗1 using the formulation (6.2), the following
holds.

Proposition 6.7. Under (T1), (T2), (T3) and (T5), there exist r2 ∈ (0, ω∗) and
κ2 ≥ 0 such that

∥DΦ2(u, ψ, ω)− DΦ2(u∗, ψ∗, ω∗)∥U2×A2×B2←U2×A2×(0,+∞)

≤ κ2∥(u, ψ, ω)− (u∗, ψ∗, ω∗)∥U2×A2×B2

for all (u, ψ, ω) ∈ B((u∗, ψ∗, ω∗), r2).
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Proof. In this proof, the notations

v := G2(u, ψ), v∗ := G2(u∗, ψ∗), v := G2(u, ψ)

will be used for brevity. According to (1.15), the thesis is equivalent to the
existence of r2 > 0 and κ2 ≥ 0 such that

∥DΦ2(u, ψ, ω) (u, ψ, ω)− DΦ2(u∗, ψ∗, ω∗)(u, ψ, ω)∥U2×A2×B2

≤ κ2∥(u, ψ, ω)∥U2×A2×B2 · ∥(u, ψ, ω)− (u∗, ψ∗, ω∗)∥U2×A2×B2

for all (u, ψ, ω) ∈ B((u∗, ψ∗, ω∗), r2) and all (u, ψ, ω) ∈ U2 × A2 × (0,+∞).
Since both G2 and p are linear, following the proof of Corollary 6.5, it is
sufficient to prove the statement with respect to the first component of DΦ2,
i.e., the one in U2. Then, by defining

P(t) := ωDG(vt ◦ sω)vt ◦ sω −ω∗DG(v∗t ◦ sω∗)vt ◦ sω∗ , (6.19)

Q(t) := ω[G(vt ◦ sω)− G(v∗t ◦ sω∗)] (6.20)

and

R(t) := −ω[DG(vt ◦ sω)v′t ◦ sω · sω − DG(v∗t ◦ sω∗)v∗t
′ ◦ sω∗ · sω∗ ] (6.21)

through (6.13) and (6.14), the goal is to bound

|P(t) + Q(t) + R(t)|

for all t ∈ [0, 1] given the choice of U2 in (T2).
As for (6.19), it can be rewritten as

P(t) = (A1 + A2)(B1 + B2)(C1 + C2)− A2B2C2

= A1B1C1 + A1B1C2 + A1B2C1 + A1B2C2+

+A2B1C1 + A2B1C2 + A2B2C1

(6.22)

for
A1 := ω−ω∗, A2 := ω∗,

B1 := DG(vt ◦ sω)− DG(v∗t ◦ sω∗), B2 := DG(v∗t ◦ sω∗)

and
C1 := vt ◦ sω − vt ◦ sω∗ , C2 := vt ◦ sω∗ .

The plan is to bound every single term Ai, Bi and Ci, i = 1, 2, to eventually
get the desired bound for P. Then the same will be done for R in (6.21),
while a bound for Q in (6.20) can be obtained more straightforwardly. Note
that all quantities with the apex ∗ are constant since related to the fixed point.
Clearly

|A1| ≤ ∥(u, ψ, ω)− (u∗, ψ∗, ω∗)∥U2×A2×B2

follows from (1.14), while
|A2| = ω∗.
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As for B1, (T5) gives

∥B1∥Rd←Y ≤ κ∥vt ◦ sω − v∗t ◦ sω∗∥Y
≤ κ∥vt ◦ sω − v∗t ◦ sω∥Y + κ∥v∗t ◦ sω − v∗t ◦ sω∗∥Y.

As for the first addend in the right-hand side above,

∥vt ◦ sω − v∗t ◦ sω∥Y ≤ 2∥(u, ψ, ω)− (u∗, ψ∗, ω∗)∥U2×A2×B2 (6.23)

follows directly from (6.8) and (1.14) again. As for the second addend,

∥v∗t ◦ sω − v∗t ◦ sω∗∥Y ≤ ∥(u∗, ψ∗, ω∗)∥U2×A2×B2 · ∥sω − sω∗∥∞

follows by Lemma 7.4 in Chapter 7. Since

|sω(σ)− sω∗(σ)| =
⏐⏐⏐ σ

ω
− σ

ω∗

⏐⏐⏐ ≤ τ|ω−ω∗|
ω∗ω

(6.24)

holds for every σ ∈ [−τ, 0], then ∥sω − sω∗∥∞ ≤ τ|ω−ω∗|
ω∗ω . Moreover, from

|ω−ω∗| ≤ ∥(u, ψ, ω)− (u∗, ψ∗, ω∗)∥U2×A2×B2 , it follows that

∥v∗t ◦ sω− v∗t ◦ sω∗∥Y

≤ τ∥(u∗, ψ∗, ω∗)∥U2×A2×B2

ω∗(ω∗ − r)
· ∥(u, ψ, ω)− (u∗, ψ∗, ω∗)∥U2×A2×B2

(6.25)
for every ω ∈ B(ω∗, r), and r in (T5). Eventually,

∥B1∥Rd←Y ≤ κ
(

2 +
τ∥(u∗,ψ∗,ω∗)∥U2×A2×B2

ω∗(ω∗−r)

)
· ∥(u, ψ, ω)− (u∗, ψ∗, ω∗)∥U2×A2×B2 .

As for B2, it is possible to define

κ2,1 := max
t∈[0,1]

∥DG(v∗t ◦ sω∗)∥Rd←Y,

since the map t ↦→ v∗t is uniformly continuous and so is DG at the state
corresponding to the fixed point, under (T5). This leads to the bound

∥B2∥Rd←Y ≤ κ2,1. (6.26)

The same arguments used above for B1 and B2 lead also, respectively, to

∥C1∥Y ≤
τ∥(u, ψ, ω)∥U2×A2×B2

ω∗(ω∗ − r)
· ∥(u, ψ, ω)− (u∗, ψ∗, ω∗)∥U2×A2×B2

and
∥C2∥Y ≤ 2∥(u, ψ, ω)∥U2×A2×B2 .

Eventually, note that every triple AiBjCk for i, j, k ∈ {1, 2} in the last mem-
ber of (6.22) contains exactly a C-term, which is either bounded by a constant
times ∥(u, ψ, ω)∥U2×A2×B2 or by a constant times

∥(u, ψ, ω)∥U2×A2×B2∥(u, ψ, ω)− (u∗, ψ∗, ω∗)∥U2×A2×B2 .

Moreover, every triple contains at least a factor of index 1, which, in the case
of A and B, are bounded by some constant times

∥(u, ψ, ω)− (u∗, ψ∗, ω∗)∥U2×A2×B2 .
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Therefore, for each triple there exist κi,j,k such that

∥AiBjCk∥U2 ≤ κi,j,k∥(u, ψ, ω)∥U2×A2×B2 · ∥(u, ψ, ω)− (u∗, ψ∗, ω∗)∥m
U2×A2×B2

for some m ∈ {1, 2, 3}. Note that, for ∥(u, ψ, ω) − (u∗, ψ∗, ω∗)∥ ≤ 1, the
inequality

∥(u, ψ, ω)− (u∗, ψ∗, ω∗)∥m ≤ ∥(u, ψ, ω)− (u∗, ψ∗, ω∗)∥

holds for m ∈ {1, 2, 3}. Thus, for r2,P := min{r/2, 1}, where r is as in (T5),
by virtue of (6.23) there exist κ2,P := maxi,j,k κi,j,k ≥ 0 such that

∥P∥U2 ≤ κ2,P∥(u, ψ, ω)∥U2×A2×B2 · ∥(u, ψ, ω)− (u∗, ψ∗, ω∗)∥U2×A2×B2

for all (u, ψ, ω) ∈ B((u∗, ψ∗, ω∗), r2,P). Since every triple contains exactly one
A-term, one B-term and one C-term, the constant κ2,P can be defined as

κ2,P := max{1, ω∗} ·max
{

κ
(

2 +
τ∥(u∗,ψ∗,ω∗)∥U2×A2×B2

ω∗(ω∗−r)

)
, κ2,1

}
·max

{
τ

ω∗(ω∗−r) , 2
}

.

A bound for the term Q in (6.20) can be retrieved by noting that, under
(T3), G satisfies the hypotheses of the mean value theorem, i.e., Theorem 3.2
with n = 1, in a neighborhood of v∗t ◦ sω∗ , which leads, under (T5), to

∥Q∥U2 ≤ |ω|maxy∈B(v∗t ◦sω∗ ,r) ∥DG(y)∥Rd←Y∥vt ◦ sω − v∗t ◦ sω∗∥Y
≤ ∥(u, ψ, ω)∥U2×A2×B2(κr + κ2,1)∥vt ◦ sω − v∗t ◦ sω∗∥Y.

Then, by (6.23) and (6.25), for r2,Q := r/2 and

κ2,Q := (κr + κ2,1)

(
2 +

τ∥(u∗, ψ∗, ω∗)∥U2×A2×B2

ω∗(ω∗ − r)

)
the bound

∥Q∥U2 ≤ κ2,Q∥(u, ψ, ω)∥U2×A2×B2 · ∥(u, ψ, ω)− (u∗, ψ∗, ω∗)∥U2×A2×B2

holds for all (u, ψ, ω) ∈ B((u∗, ψ∗, ω∗), r2,Q).
The term R in (6.21), as well as the term P above, can be written in the

form
R(t) =−ω[(B1 + B2)(D1 + D2)(E1 + E2)− B2D2E2]

=−ω[B1D1E1 + B1D1E2 + B1D2E1 + B1D2E2+

+B2D1E1 + B2D1E2 + B2D2E1]

(6.27)

for the same B1 and B2 above plus

D1 := v′t ◦ sω − v∗t
′ ◦ sω∗ , D2 := v∗t

′ ◦ sω∗

and
E1 := sω − sω∗ , E2 := sω∗ .

R(t) is the most subtle term in proving the Proposition. The sought
bounds can be obtained thanks to the fact that the fixed point lies indeed
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in a more regular subspace than U2 × A2 × [0,+∞) (see Lemma 7.5). In
particular, D1 can be bounded as

∥D1∥Y ≤ ∥v′t ◦ sω − v∗t
′ ◦ sω∥Y + ∥v∗t ′ ◦ sω − v∗t

′ ◦ sω∗∥Y
≤ 2∥(u, ψ, ω)− (u∗, ψ∗, ω∗)∥U2×A2×B2

+ ∥(u∗′, ψ∗′)∥U2×A2 · ∥sω − sω∗∥∞,

where the inequality for the former addend follows from (6.8) and (1.14), and
the one for the latter follows from Lemma 7.5. By (6.24) and the inequality
|ω−ω∗| ≤ ∥(u, ψ, ω)− (u∗, ψ∗, ω∗)∥U2×A2×B2 , this implies

∥D1∥Y ≤
(

2 +
τ∥(u∗′, ψ∗′)∥U2×A2

ω∗(ω∗ − r)

)
· ∥(u, ψ, ω)− (u∗, ψ∗, ω∗)∥U2×A2×B2 .

D2, instead, is bounded by a constant, namely

∥D2∥Y ≤ 2∥(u∗, ψ∗, ω∗)∥U2×A2×B2 .

As for E1, the bound

∥E1∥∞ ≤
τ

ω∗(ω∗ − r)
· ∥(u, ψ, ω)− (u∗, ψ∗, ω∗)∥U2×A2×B2

follows directly from (6.24), while E2 is bounded by a constant, that is,

∥E2∥∞ ≤
τ

ω∗
.

Eventually, note that every triple BiDjEk for i, j, k ∈ {1, 2} in the last member
of (6.27) contains a factor of index 1, which are always bounded by some
constant times ∥(u, ψ, ω)− (u∗, ψ∗, ω∗)∥U2×A2×B2 , while the factors of index
2 are simply bounded by constants. Arguing as done above for P, for r2,R :=
min{1, r/2} there exists κ2,R ≥ 0 such that

∥R∥U2 ≤ κ2,R∥(u, ψ, ω)∥U2×A2×B2 · ∥(u, ψ, ω)− (u∗, ψ∗, ω∗)∥U2×A2×B2

for all (u, ψ, ω) ∈ B((u∗, ψ∗, ω∗), r2,R). In particular, κ2,R can be defined as

κ2,R := max
{

κ
(

2 +
τ∥(u∗,ψ∗,ω∗)∥U2×A2×B2

ω∗(ω∗−r)

)
, κ2,1

}
·max

{(
2 +

τ∥(u∗′,ψ∗′)∥U2×A2
ω∗(ω∗−r)

)
, 2
}
· τ

ω∗(ω∗−r) .

The thesis eventually follows by choosing

r2 = min{r2,P, r2,Q, r2,R} = min{1, r/2}, κ2 = κ2,P + κ2,Q + κ2,R.

Remark 6.8. Observe that the Lipschitz constant κ2 grows unbounded as
ω∗ → 0 due to the presence of the latter at the denominator of several of
its terms. ◁
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As far as formulation (6.3) is concerned, for the previous choice

U1 = B∞([0, 1],Rd), V1 = B1,∞([0, 1],Rd)

the above proof would fail because of the relevant term C1, i.e.,

G1(u, α)t ◦ sω − G1(u, α)t ◦ sω∗ .

Indeed, as already observed, the function G1(u, α)t is always discontinuous
at time −t, preventing the achievement of the necessary Lipschitz condition.
Alternatively, a possible remedy is that of restricting to the spaces

U1 = B∞
π ([0, 1],Rd) :=

{
u ∈ B∞([0, 1],Rd) :

∫ 1
0 u(s)ds = 0

}
(6.28)

and

V1 = B1,∞
π ([0, 1],Rd := {v ∈ B1,∞([0, 1],Rd) : v(0) = v(1)}. (6.29)

These choices guarantee not only that G1(u, α)t is continuous, but also
Lipschitz continuous thanks to the constraint of zero mean imposed to the
derivative u. Indeed,

G1(u, α)t(θ1)− G1(u, α)t(θ2) =⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∫ t+θ1

t+θ2

u(s)ds, θ1, θ2 ≥ −t,∫ t+θ1

0
u(s)ds +

∫ 1

1+t+θ2

u(s)ds, θ1 ≥ −t > θ2,∫ 1+t+θ1

1+t+θ2

u(s)ds, θ1, θ2 < −t.

Thus,
|G1(u, α)t(θ1)− G1(u, α)t(θ2)| ≤ |θ1 − θ2|∥u∥U1 .

Note that the choices (6.28) and (6.29) allow to satisfy the previous assump-
tions as well, since U1 and V1 are subsets, respectively, of

U1 = B∞([0, 1],Rd), V1 = B1,∞([0, 1],Rd),

defined in the previous choice, but share the same norm.
Finally, note that in principle there can be other ways to deal with the need

of restricting to spaces of functions having a null average. In [92], e.g., the
problem is dealt with by considering

G(u, α) := α +
∫ t

0
[Q0u](s)ds, [Q0u](t) = u(t)−

∫ 1

0
u(s)ds. (6.30)

The fourth (and last) theoretical assumption concerns the well-posedness
of a linear(ized) inhomogeneous version of the PAF (6.4).

Assumption 6.9 (Ax∗2, [79, page 536]). The linear bounded operator I −
DΦ(u∗, α∗, β∗) is invertible, i.e., for any (u0, α0, β0) ∈ U× A× B the linear
problem {

u = DF∗(G(u, α), u, α) + u0

DB∗(G(u, α), u, α) = (α0, β0),

where DF∗ = DF(v∗, u∗, β∗) and DB∗ = DB(v∗, u∗, β∗), has a unique solu-
tion (u, α, β) ∈ U×A×B.
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One of the requirements for its validity is a consequence of hyperbolicity
of the concerned periodic solution, which is a standard assumption in the
context of application of the principle of linearized stability (see, e.g., [45,
Chapter XIV]) or [61, Chapter 10]), in which one derives information on the
stability of such solution by investigating the stability of the zero solution of
(6.1) linearized around the periodic solution itself. The linearization of (1.5)
around the ω∗-periodic solution y∗ leads to the linear homogeneous DDE

y′(t) = L2(t; v∗, ω∗)[yt ◦ sω∗ ] (6.31)

for L2 in (6.13). Under (T4) the associated initial value problem is well-posed,
and so is T∗2 (t, s) : Y → Y, the relevant evolution operator (see Section 1.1)
for s ∈ R and t ≥ s. T∗2 (1, 0) represents thus the corresponding monodromy
operator. Then hyperbolicity implies the required additional hypothesis of
1 being a simple Floquet multiplier, i.e., a simple eigenvalue of T∗2 (1, 0), be-
sides having no other Floquet multipliers on the unit circle.

Remark 6.10. 1 is always a Floquet multiplier due to linearization. Indeed, as
a general fact the derivative of a solution of a nonlinear problem is always
a solution of the problem obtained by linearizing around this solution. For
instance, if y∗ is a solution of (1.5), then y∗′ satisfies equation (6.31). But if the
original solution is periodic then so is its derivative, i.e., it is an eigenvector
of the monodromy operator with respect to the eigenvalue 1. ◁

In the following, the notation will refer to the one of Proposition 6.7. It is
also convenient to introduce the abbreviations

L∗ := L(·; v∗, ω∗), M∗ := M(·; v∗, ω∗). (6.32)

Concerning the validity of Ax∗2, the following will be proved.

Proposition 6.11. Under (T1), (T2) and (T4), if 1 ∈ σ(T∗2 (1, 0)) is simple, then
the linear bounded operator IU2×A2×B2 − DΦ2(u∗, ψ∗, ω∗) is invertible, i.e., for all
(u0, ψ0, ω0) ∈ U2×A2×B2 there exists a unique (u, ψ, ω) ∈ U2×A2×B2 such
that ⎧⎪⎪⎨⎪⎪⎩

u = L∗2 [G2(u, ψ)(·) ◦ sω∗ ] + ωM∗2 + u0

ψ = G2(u, ψ)1 + ψ0

p(G2(u, ψ)|[0,1]) = ω0.

(6.33)

The proof will be divided in two parts. The first part follows next, and
is rather technical. The second one, on the other hand, is not as immediate,
despite its appearence: in fact, it only concerns the outrule of a nongeneric
case (k1 = 0 in the proof below). Since this “secondary” proof represents
a main contribution of this thesis, it will be presented afterwards in a ded-
icated Subsection, and the fact will be taken as granted until then, so that
its analysis can be expanded in detail without interrupting the main reading
flow. Below σ(A) denotes the spectrum of an operator A, i.e., the set

{λ ∈ C : λI −A is not invertible}.

Proof. The proof is based on treating (6.33) as an initial value problem for
v = G2(u, ψ), i.e.,{

v′(t) = L∗2(t)[vt ◦ sω∗ ] + ωM∗2(t) + u0(t)

v0 = ψ
(6.34)
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for t ∈ [0, 1], imposing then the boundary conditions in (6.33). Being the
DDE in (6.34) linear inhomogeneous with continuous linear part under (T4),
for every ψ ∈ A2 there exists a unique solution v whose state can be ex-
pressed through the variation of constants formula (2.3)

vt = T∗2 (t, 0)ψ +
∫ t

0
[T∗2 (t, s)X0][ωM∗2(s) + u0(s)]ds, t ∈ [0, 1],

see Theorem 2.1. The first boundary condition in (6.33) gives then

ψ = T∗2 (1, 0)ψ +
∫ 1

0
[T∗2 (1, s)X0][ωM∗2(s) + u0(s)]ds + ψ0. (6.35)

Let now R and K be, respectively, the range and the kernel of IY − T∗2 (1, 0).
Then, from a well-known result in spectral theory (see, e.g., [45, Theorem
2.5, Chapter IV]),

Y = R⊕ K (6.36)

and, by the hypothesis on the multiplier 1, K = span{φ} for φ an eigen-
function of the multiplier 1 itself. Moreover, it is reasonable to assume
p(v(·; φ)|[0,1]) ̸= 0 (see Remark 6.12 below), where v(·; φ) denotes the so-
lution of (6.34) exiting from φ.

From (6.35) let us define the elements of Y

ξ∗1 :=
∫ 1

0
[T∗2 (1, s)X0]M

∗
2(s)ds, ξ∗2 :=

∫ 1

0
[T∗2 (1, s)X0]u0(s)ds + ψ0,

so that (6.35) becomes

[IY − T∗2 (1, 0)]ψ = ωξ∗1 + ξ∗2 . (6.37)

Note that ψ0 ∈ Y since A2 ⊆ Y. From (6.36) it follows that ξ∗1 can be written
uniquely as

ξ∗1 = r1 + k1φ, (6.38)

where r1 ∈ R and k1 ∈ R. Similarly, ξ∗2 = r2 + k2φ. Then from (6.37) it
must be ωξ∗1 + ξ∗2 ∈ R, which implies ωk1 + k2 = 0. Therefore, by assuming
k1 ̸= 0, it follows that

ω = −k2/k1 (6.39)

is the only possible solution. For the time being, as anticipated, k1 ̸= 0 will
just be assumed, while the case k1 = 0 will be ruled out in the forthcoming
Subsection.

Eventually, let η be such that ωξ∗1 + ξ∗2 = η − T∗2 (1, 0)η. Then every
ψ satisfying (6.37) can be written uniquely as η + λφ for some λ ∈ R.
The value of λ is fixed by imposing the second boundary condition in
(6.33), i.e., p(v(·; η)|[0,1]) + λp(v(·; φ)|[0,1]) = ω0. Uniqueness follows from
p(v(·; φ)|[0,1]) ̸= 0.

Remark 6.12. The condition p(v(·; φ)|[0,1]) ̸= 0 is generic and not restrictive at
all. In any case, it is always possible to change p in order to meet the above
requirement. ◁
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As for (6.3), it is immediate to verify that the similar result cannot be
obtained under the choices (6.28) and (6.29). Indeed, these choices would
require v(1) = v(0) = α for v = G1(u, α) according to (6.6), that is, for every
α0 ∈ A1 one should find a unique α ∈ A1 satisfying α = G1(u, α)(1) + α0,
but since u ∈ U1 implies that u has zero mean, it must necessarily be
G1(u, α)(1) = α, i.e., α0 = 0. In this sense, the approach proposed in [79]
is not applicable to formulation (6.3), although, in principle, one could try
to reformulate the latter using, e.g., (6.30) and replacing the periodicity con-
dition with ∫ 1

0
G(G(u, α)t)dt = 0.

The rest of the Chapter only focuses on formulation (6.2). In particular, in
the remaining of the work the index 2 referring to (6.2) will be dropped to
lighten the notation.

6.3.1 The nongeneric case

The content of this Subsection completes the proof of Proposition 6.11 by
showing that k1 ̸= 0 must necessarily hold in (6.38). A key step is repre-
sented by equation (6.44) which, indeed, is an instance of the more general
fact that left and right eigenvectors of simple eigenvalues are not orthogo-
nal in some sense. The proof will be done by contradiction, assuming that
k1 = 0, which is equivalent to ξ∗1 ∈ R. Therefore, there exists γ ∈ Y such that

[IY − T∗2 (1, 0)]γ = ωξ∗1 ,

which amounts to say that

y′(t) = L∗2(t)[yt ◦ sω∗ ] + ωM∗2(t) (6.40)

has a 1-periodic solution (with y0 = γ). The proof given next requires several
tools (anticipated in Section 2.1).

By (T4) and Theorem 2.2, L∗2 can be expressed through the Riemann-
Stieltjes integral (2.2) as

L∗2(t)ψ ◦ sω∗ =
∫ 0

−τ
dσn

∗(t, σ)ψ(sω∗(σ)), ψ ∈ Y,

where, for every σ ∈ [−τ, 0], n∗(·, σ) : R → Rd×d is 1-periodic. Then, by
(6.14), M∗2 becomes

M∗2(t) = G(v∗t ◦ sω∗)−
∫ 0

−τ
dσn

∗(t, σ)v∗′(t + sω∗(σ)) ·
sω∗(σ)

ω∗

=
1

ω∗

(
v∗′(t)−

∫ 0

−r
dθn∗(t, θ)v∗′(t + θ)θ

) (6.41)

for n(t, θ) = n(t, sω∗(σ)) := n(t, σ) thanks to the change of variable (2.10) for
ω = ω∗, and by using the fact that v∗ is the 1-periodic solution of (6.1) for
ω = ω∗ again.
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The rest of the proof requires tools from the theory of adjoint equations
for DDEs. Note that periodic solutions are defined on the whole line. Thus,
through (2.4), (6.31) reads

y′(t) =
∫ 0

−r
dθn∗(t, θ)y(t + θ), (6.42)

while (2.5) reads

z(t) +
∫ ∞

t
z(θ)n∗(θ, t− θ)dθ = constant. (6.43)

From Theorem 2.3, it follows that

(zt, yt)t = c

for some constant c ∈ R independently of t.

It was observed in Remark 6.10 that (6.42) has a 1-periodic solution (viz.
v∗′). Under the hypothesis of Proposition 6.11, this is the only 1-periodic
solution. Thus, by Lemma 2.4, the adjoint equation (6.43) has also a (unique)
1-periodic solution, say z∗. By Proposition 2.6, it follows that

(z∗t, v∗t
′)t = c∗ ̸= 0. (6.44)

Integrating over one period gives

c∗ =
∫ 1

0
c∗ dt =

∫ 1

0
z∗(t)v∗′(t)dt

+
∫ 1

0

∫ 0

−r
dβ

[∫ r

0
z∗(t + ξ)n∗(t + ξ, β− ξ)dξ

]
v∗′(t + β)dt.

As for the last integral, thanks to the periodicity of v∗′, z∗ and n∗, by ex-
changing the order of integration and by observing that

∫ b

a
dθn∗(t, θ)v∗′(t + θ) = 0
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whenever a > 0 or b < −r, it follows that∫ 1

0

∫ 0

−r
dβ

[ ∫ r

0
z∗(t + ξ)n∗(t + ξ, β− ξ)dξ

]
v∗′(t + β)dt

=
∫ 0

−r
dβ

∫ r

0

[ ∫ 1

0
z∗(t + ξ)n∗(t + ξ, β− ξ)v∗′(t + β)dt

]
dξ

=
∫ 0

−r
dβ

∫ r

0

[ ∫ 1

0
z∗(t)n∗(t, β− ξ)v∗′(t + β− ξ)dt

]
dξ

=
∫ 1

0
z∗(t)

∫ 0

−r
dβ

[ ∫ r

0
n∗(t, β− ξ)v∗′(t + β− ξ)dξ

]
dt

=
∫ 1

0
z∗(t)

∫ r

0

[ ∫ 0

−r
dβn∗(t, β− ξ)v∗′(t + β− ξ)

]
dξ dt

=
∫ 1

0
z∗(t)

∫ r

0

[ ∫ −ξ

−ξ−r
dθn∗(t, θ)v∗′(t + θ)

]
dξ dt

=
∫ 1

0
z∗(t)

∫ r

0

[ ∫ −ξ

−r
dθn∗(t, θ)v∗′(t + θ)

]
dξ dt

=
∫ 1

0
z∗(t)

∫ 0

−r
dθ

[ ∫ −θ

0
n∗(t, θ)v∗′(t + θ)dξ

]
dt

=
∫ 1

0
z∗(t)

∫ 0

−r
dθn∗(t, θ)v∗′(t + θ)

[ ∫ −θ

0
dξ

]
dt

= −
∫ 1

0
z∗(t)

∫ 0

−r
dθn∗(t, θ)v∗′(t + θ)θ dt.

Finally, by using (6.41),

c∗ =
∫ 1

0
z∗(t)v∗′(t)dt−

∫ 1

0
z∗(t)

∫ 0

−r
dθn∗(t, θ)v∗′(t + θ)θ dt

=
∫ 1

0
z∗(t)

(
v∗′(t)−

∫ 0

−r
dθn∗(t, θ)v∗′(t + θ)θ

)
dt

= ω∗
∫ 1

0
z∗(t)M∗2(t)dt.

(6.45)

Going back to (6.40), note that it has a 1-periodic solution if k1 = 0. But
then Theorem 2.7 gives c∗ = 0 by (6.45), which is a contradiction thanks to
(6.44).

6.4 validation of the numerical assumptions

As shown in Section 6.3, formulation (6.2) satisfies the theoretical assump-
tions required in [79] under the choices (T1) and (T2) of the relevant spaces
and the hypotheses (T3), (T4) and (T5) on the regularity of the right-hand
side. On the other hand, this does not hold for formulation (6.3) under any
choices of the relevant spaces. Thus, in the sequel only formulation (6.2)
will be considered, and the index 2 will be dropped in order to lighten the
notation.

This section includes the definitions of the other assumptions required
in [79], namely the numerical ones, and their statements as propositions in-
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stanced according to formulation (6.2). Such assumptions concern the cho-
sen discretization scheme for the numerical method, which is defined by the
primary and secondary discretizations, described below.

The primary discretization consists in reducing the spaces U and A to
finite-dimensional spaces UL and AL, given a level of discretization L. This
happens by means of restriction operators

ρ+L : U→ UL, ρ−L : A→ AL

and prolongation operators

π+
L : UL → U, π−L : AL → A,

which extend respectively to

RL : U×A×B→ UL ×AL ×B, RL(u, ψ, ω) := (ρ+L u, ρ−L ψ, ω) (6.46)

and

PL : UL ×AL ×B→ U×A×B, PL(uL, ψL, ω) := (π+
L uL, π−L ψL, ω). (6.47)

All the operators above can in principle be defined freely, as long as they
are linear and bounded. The specific choices made in this context, based on
piecewise polynomial interpolation, will be described below.

The discretization of the space U concerns the interval [0, 1]. Consider
then an outer mesh

Ω+
L := {t+i = ih : i = 0, 1, . . . , L, h = 1/L} ⊂ [0, 1], (6.48)

and inner meshes

Ω+
L,i := {t+i,j := t+i−1 + cjh : j = 1, . . . , m} ⊂ [t+i−1, t+i ], i = 1, . . . , L, (6.49)

where 0 < c1 < · · · < cm < 1 are given abscissae for m a positive integer.
Correspondingly, the discretized space is defined as

UL := R(1+Lm)×d, (6.50)

whose elements uL are indexed as

uL := (u1,0, u1,1, . . . , u1,m, . . . , uL,1 . . . , uL,m)
T

with components in Rd. Moreover, the restriction operator reads

ρ+L u := (u(0), u(t+1,1), . . . , u(t+1,m), . . . , u(t+L,1) . . . , u(t+L,m))
T ∈ UL (6.51)

for any u ∈ U and, for uL ∈ UL, its prolongation π+
L uL ∈ U is the unique

element of the space

Π+
L,m := {p ∈ C([0, 1],Rd) : p|[t+i−1,t+i ]

∈ Πm, i = 1, . . . , L} (6.52)

such that

π+
L uL(0) = u1,0, π+

L uL(t+i,j) = ui,j, j = 1, . . . , m, i = 1, . . . , L. (6.53)
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The piecewise polynomial p ∈ Π+
L,m can be represented through its pieces as

p|[t+i−1,t+i ]
(t) =

m

∑
j=0

ℓm,i,j(t)p(t+i,j), t ∈ [0, 1], (6.54)

where
t+i,0 := t+i−1, i = 1, . . . , L, (6.55)

and {ℓm,i,0, ℓm,i,1, . . . , ℓm,i,m} is the Lagrange basis relevant to the nodes {t+i,0}
∪Ω+

L,i. Observe that the latter is invariant with respect to i as long as the
abscissae cj, j = 1, . . . , m, defining the inner meshes (6.49), are fixed. Indeed,
for i = 1, . . . , L and j = 1, . . . , m,

ℓm,i,j = ℓm,j

(
t− t+i−1

h

)
, t ∈ [t+i−1, t+i ].

where {ℓm,0, ℓm,1, . . . , ℓm,m} is the Lagrange basis relevant to the nodes c0, . . . ,
cm in [0, 1] with c0 = 0. Thus, the corresponding Lebesgue constant (see
Subection 3.1.2)

Λm,i = max
t∈[t+i−1,t+i ]

m

∑
j=0
|ℓm,i,j(t)| (6.56)

is independent of the index i, and in the sequel will be simply denoted by
Λm. The constant

Λ′m,i := max
t∈[t+i−1,t+i ]

m

∑
j=0
|ℓ′m,i,j(t)| (6.57)

is independent of i as well, and in the sequel will be denoted by Λ′m.

Similarly, the discretization of the space A concerns the interval [−1, 0].
The corresponding outer mesh is given by

Ω−L := {t−i = ih− 1 : i = 0, 1, . . . , L, h = 1/L} ⊂ [−1, 0], (6.58)

while the inner meshes are

Ω−L,i := {t−i,j := t−i−1 + cjh : j = 1, . . . , m} ⊂ [t−i−1, t−i ], i = 1, . . . , L.

Correspondingly, the discretized space is defined as

AL := R(1+Lm)×d (6.59)

with indexing

ψL := (ψ1,0, ψ1,1, . . . , ψ1,m, . . . , ψL,1 . . . , ψL,m)
T.

The restriction operator reads

ρ−L ψ := (ψ(−1), ψ(t−1,1), . . . , ψ(t−1,m), . . . , ψ(t−L,1) . . . , ψ(t−L,m))
T ∈ AL (6.60)

for any ψ ∈ A and, for ψL ∈ AL, its prolongation π−L ψL ∈ A is the unique
element of the space

Π−L,m := {p ∈ C([−1, 0],Rd) : p|[t−i−1,t−i ]
∈ Πm, i = 1, . . . , L} (6.61)
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such that

π−L ψL(−1) = ψ1,0, π−L ψL|[t−i−1,t−i ]
(t−i,j) = ψi,j, j = 1, . . . , m, i = 1, . . . , L.

(6.62)
Elements in Π−L,m are represented in the same way as those of Π+

L,m by suit-
ably adapting both (6.54) and (6.55), so that also Λm and Λ′m in (6.57) are
unchanged.

Note that, under the choices above, the actual discretization level is de-
pendent on both L and m. Fixing the polynomial degree m and choosing the
number L of mesh intervals as discretization index corresponds to the FEM
(see Subsection 3.3.1), in that the interest is towards the behavior as L → ∞.
This is also the traditional approach followed in practical implementations,
as, e.g., in MatCont for ODEs [4] or in older versions DDE-Biftool for DDEs
[2]. Being the SEM of less interest in the context of practical applications, its
convergence under this framework will only be briefly commented at the
end of this Chapter (Subsection 6.5.3). However, it is worth noting that the
newer versions of DDE-Biftool [93] allow to work with polynomials of arbi-
trarily large degree.

If the operator F in (6.10) cannot be computed exactly, then a secondary
discretization is needed as well. It consists in defining, for a given level of
discretization M, an operator FM that is meant to be used in place of F .
In particular, FM is defined through an approximated version GM of the
right-hand side G as

FM(u, ψ, ω) := ωGM(G(u, ψ)(·) ◦ sω). (6.63)

Correspondingly, ΦM is the operator obtained by replacing F in Φ in (6.9)
with its approximated version, i.e., ΦM : U×A×B→ U×A×B defined by

ΦM(u, ψ, ω) :=

⎛⎜⎜⎝
ωGM(G(u, ψ)(·) ◦ sω)

G(u, ψ)1

ω− p(G(u, ψ)|[0,1])

⎞⎟⎟⎠ . (6.64)

A typical reason why the introduction of GM is needed is the presence in G
of integrals defining distributed delays, which might need indeed the appli-
cation of suitable quadrature rules. The operator G, on the other hand, does
not need to be discretized since it can be evaluated exactly in π+

L UL × π−L AL

according to (6.50) and (6.59), if the quadrature formula has a sufficient
degree of precision (recall Subsection 3.1.4). Moreover, it is reasonable to
assume that the operator p defining the phase condition in (6.2) can be eval-
uated exactly in G(π+

L UL, π−L AL)|[0,1]), since this is the case, for instance, of
the trivial (2.8) and integral (2.9) phase conditions. In the latter case, this fol-
lows from the possibility of applying the piecewise quadrature based on the
mesh of the primary discretization, which is indeed the standard approach
used in practical applications.

Using the two discretizations together, one can define the discrete version

ΦL,M := RLΦMPL : UL ×AL ×B→ UL ×AL ×B (6.65)
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of the fixed point operator Φ in (6.9) as

ΦL,M(uL, ψL, ω) :=

⎛⎜⎜⎝
ωρ+L GM(G(π+

L uL, π−L ψL)(·) ◦ sω)

ρ−L G(π
+
L uL, π−L ψL)1

ω− p(G(π+
L uL, π−L ψL)|[0,1])

⎞⎟⎟⎠ .

The results in Section 6.5 will involve fixed points (u∗L,M, ψ∗L,M, ω∗L,M) of ΦL,M,
which can be found by standard solvers for nonlinear systems of algebraic
equations. PL(u∗L,M, ψ∗L,M, ω∗L,M) will be the sought approximation of a fixed
point (u∗, ψ∗, ω∗) of Φ in (6.9) and, correspondingly, the solution v∗ =

G(u∗, ψ∗) of (6.2) will be approximated by v∗L,M := G(π+
L u∗L,M, π−L ψ∗L,M).

In the rest of the Section, the validity of the numerical assumptions in
[79] will be proved under specific choices of the discretization scheme and
regularity properties of the discretized right-hand side. As done in Section
6.3, for ease of reference throughout the text, all the hypotheses that will be
used are collected below.

(N1) The primary discretization of the space U is based on (6.48)–(6.52).

(N2) The primary discretization of the space A is based on (6.58)–(6.61).

(N3) For all positive integers M, GM is Fréchet-differentiable at every y ∈ Y.

(N4) For all positive integers M, GM ∈ C1(Y,Rd).

(N5) There exist r > 0 and κ ≥ 0 such that

∥DGM(y)− DGM(v∗t ◦ sω∗)∥Rd←Y ≤ κ∥y− v∗t ◦ sω∗∥Y

for every y ∈ B(v∗t ◦ sω∗ , r), uniformly with respect to t ∈ [0, 1] and for
every positive integer M.

(N6)
lim

M→∞
|GM(v∗t ◦ sω∗)− G(v∗t ◦ sω∗)| = 0

holds uniformly with respect to t ∈ [0, 1].

(N7)
lim

M→∞
∥DGM(v∗t ◦ sω∗)− DG(v∗t ◦ sω∗)∥Rd←Y = 0

holds uniformly with respect to t ∈ [0, 1].

Note that the uniformity with respect to M of r and κ in (N5) is not as
restrictive as it might seem. As anticipated, among the main reasons to in-
troduce GM is the quadrature of distributed delays. Indeed, if one considers
right-hand sides G of the form (1.3) for some integration kernel H with lo-
cally Lipschitz continuous derivative with respect to the second argument,
uniformly with respect to the first argument, then (T5) is satisfied and also
(N5) follows from the application of any convergent interpolatory formula.
The same argument holds also if G is of the form (1.4), for some g with
locally Lipschitz continuous derivative and any integration kernel H.

The first numerical assumption concerns the Fréchet-differentiability of
the operator FM defined in (6.63), and is the discrete version of Assumption
6.1.
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Assumption 6.13 (AFKBK, [79, page 535]). For every positive integer M, the
operators FM and BM are Fréchet-differentiable at any point (v0, u0, β0) ∈
V×U×B.

As anticipated, the boundary operator for formulation (6.2) does not need
a secondary discretization, thus BM = B for all M, and thus the validity of
the assumption is a consequence of the following theorem.

Proposition 6.14. Under (T1), (T2) and (N3), there exists r ∈ (0, ω∗) such that
FM is Fréchet-differentiable at every (v̂, û, ω̂) ∈ B((v∗, u∗, ω∗), r), from the right
with respect to ω, and

DFM(v̂, û, ω̂)(v, u, ω) = LM(·; v̂, ω̂)[v(·) ◦ sω̂] + ωMM(·; v̂, ω̂)

for (v, u, ω) ∈ V×U× (0,+∞), where, for t ∈ [0, 1],

LM(t; v, ω) := ωDGM(vt ◦ sω) (6.66)

and
MM(t; v, ω) := GM(vt ◦ sω)− LM(t; v̂, ω̂)[v′t ◦ sω] ·

sω

ω
. (6.67)

Proof. The result follows from applying Proposition 6.2 to FM.

Proposition 6.14 guarantees the Fréchet-differentiability of the fixed point
operator ΦM in (6.64), as stated next.

Corollary 6.15. Under (T1), (T2) and (N3), there exists r ∈ (0, ω∗) such that ΦM

in (6.64) is Fréchet-differentiable at every (û, ψ̂, ω̂) ∈ B((u∗, ψ∗, ω∗), r), from the
right with respect to ω, and

DΦM(û, ψ̂, ω̂)(u, ψ, ω)

=

⎛⎜⎜⎝
LM(·;G(û, ψ̂), ω̂)[G(u, ψ)(·) ◦ sω̂] + ωMM(·;G(û, ψ̂), ω̂)

G(u, ψ)1

ω− p(G(u, ψ)|[0,1])

⎞⎟⎟⎠
for (u, ψ, ω) ∈ U×A× (0,+∞), LM in (6.66) and MM in (6.67).

Proof. The result follows from applying Corollary 6.5 to the map ΦM.

Note that the operator ΦL,M in (6.65), used to compute the discrete ap-
proximations, is not defined on the same space as Φ, and therefore cannot
be used directly to analyze the convergence of the method. Rather, the op-
erator PLRLΦM will play that role. This and the relation between all the
relevant fixed points are arguments of Section 6.5. Meanwhile, in order to
ease the notation, it is useful to define Ψ, ΨL,M : U×A×B→ U×A×B as

Ψ := IU×A×B −Φ, ΨL,M := IU×A×B − PLRLΦM. (6.68)

Note that both Ψ and ΨL,M are Fréchet-differentiable, the first thanks to
Corollary 6.5 and the second thanks to Corollary 6.15 and the linearity of
both PL and RL.

The other numerical assumptions concern the stability of the chosen dis-
cretization. The first one is somehow the discrete version of Assumption
6.6.
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Assumption 6.16 (CS1, [79, page 537]). There exists r1 > 0 and, for any
positive integers M and L, LL,M ≥ 0 such that

∥DΨL,M(u, α, β)− DΨL,M(u∗, α∗, β∗)∥U×A×B←U×A×B

= ∥PLRL(DΦM(u, α, β)− DΦM(u∗, α∗, β∗))∥U×A×B←U×A×B

≤ LL,M∥(u, α, β)− (u∗, α∗, β∗)∥U×A×B

for all (u, α, β) ∈ B((u∗, α∗, β∗), r1)).

Correspondingly, the second one is somehow the discrete version of As-
sumption 6.9.

Assumption 6.17 (CS2, [79, page 537]). There exists a positive integer N such
that, for all L, M ≥ N, DΨL,M(u∗, α∗, β∗) is invertible and

limL,M→∞
1

r2(L, M)
∥[DΨL,M(u∗, ψ∗, ω∗)]−1∥U×A×B←U×A×B

·∥ΨL,M(u∗, ψ∗, ω∗)∥U×A×B = 0,

where

r2(L, M) := min
{

r1,
1

2LL,M∥[DΨL,M(u∗, ψ∗, ω∗)]−1∥U×A×B←U×A×B

}
with r1 and LL,M given as in Assumption 6.16.

For the sequel, it is convenient to introduce the abbreviations

L∗M := LM(·; v∗, ω∗), M∗M := MM(·; v∗, ω∗) (6.69)

in accordance with (6.32).

The validity of Assumption 6.16 is address by the following proposition.

Proposition 6.18. Under (T1), (T2), (N1), (N2), (N3) and (N5), there exist r1 ∈
(0, ω∗) and κ ≥ 0 such that

∥DΨL,M(u, ψ, ω)− DΨL,M(u∗, ψ∗, ω∗)∥U×A×B←U2×A×(0,+∞)

≤ κ∥(u, ψ, ω)− (u∗, ψ∗, ω∗)∥U×A×B

for all (u, ψ, ω) ∈ B((u∗, ψ∗, ω∗), r1) and for all positive integers L and M.

Proof. Applying Proposition 6.7 to the map ΦM, it follows that there exist
r1 ∈ (0, ω∗) and κ1 ≥ 0 such that

∥DΦM(u, ψ, ω)− DΦM(u∗, ψ∗, ω∗)∥U×A×B←U×A×B

≤ κ1∥(u, ψ, ω)− (u∗, ψ∗, ω∗)∥U×A×B

for all (u, ψ, ω) ∈ B((u∗, ψ∗, ω∗), r1). In particular, correspondingly to what
was obtained in Proposition 6.7, one can choose r1 = min{1, r/2} for r in
(N5). By Corollary 7.3, the thesis follows directly from the second of (6.68)
by choosing κ = 1 + κ1 ·max{Λm + Λ′m, 1}.
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Note that κ is independent of L thanks to (7.6) and independent of M
thanks to (N5). However, it depends on m.

The proof of the validity of Assumption 6.17 consists of two parts. The
main one concerns the invertibility of DΨL,M(u∗, ψ∗, ω∗) and will be, in turn,
divided into several lemmas. Indeed, it is not as straightforward as it might
appear at a first glance. Although it is known, by Proposition 6.11, that
DΨ(u∗, ψ∗, ω∗) is invertible, a trivial application of the Banach perturbation
lemma (Theorem 3.15) is not feasible. That is, it is not true that

lim
L,M→∞

∥DΨL,M(u∗, ψ∗, ω∗)− DΨ(u∗, ψ∗, ω∗)∥U×A×B←U×A×(0,+∞) = 0.

Indeed, this in turn would require

lim
L→∞
∥(IA − π−L ρ−L )G(u, ψ)1∥A = 0

through (6.46), (6.47), (6.64) and (6.68). The latter cannot hold for all (u, ψ) ∈
U × A given the choice A in (T2) (recall the definition of its norm in the
second of (1.13)).

However, the Banach perturbation lemma represents a sufficient but not
necessary criterion. In the following, the invertibility of DΨL,M(u∗, ψ∗, ω∗)

will be proved by following the lines of the proof of Proposition 6.11 and,
indeed, other instances of the Banach perturbation lemma will be applied at
several points.

The first step of the proof consists in showing that the initial value problem
for

y′(t) = [π+
L ρ+L L

∗
M[y(·) ◦ sω∗ ]](t) (6.70)

is well-posed, and thus an associated evolution operator T∗L,M(t, s) : Y → Y
can be defined for t, s ∈ [0, 1] and t ≥ s. In the sequel it is also convenient to
use the abbreviations

G+u := G(u, 0), G−ψ := G(0, ψ),

K∗,+u := L∗[(G+u)(·) ◦ sω∗ ], K∗,−ψ := L∗[(G−ψ)(·) ◦ sω∗ ],

K∗,+M u := L∗M[(G+u)(·) ◦ sω∗ ], K∗,−M ψ := L∗M[(G−ψ)(·) ◦ sω∗ ].

(6.71)

Lemma 6.19. Under (T1), (T2), (T4), (N1), (N2), (N4) and (N7), there exist pos-
itive integers L and M such that, for every L ≥ L and M ≥ M, the initial value
problem {

y′(t) = [π+
L ρ+L L

∗
M[y(·) ◦ sω∗ ]](t), t ∈ [0, 1],

y0 = ψ
(6.72)

for ψ ∈ Y has a unique solution yL,M.

Proof. Set u(t) := y′(t) for t ∈ [0, 1] and use y = G(u, ψ) according to (6.8).
By virtue of (6.71), (6.72) becomes

u = π+
L ρ+LK

∗,+
M u + π+

L ρ+LK
∗,−
M ψ.

Well-posedness is thus equivalent to the invertibility of IU − π+
L ρ+LK

∗,+
M :

U → U. Since the invertibility of IU −K∗,+ : U → U is guaranteed, under
(T4), by the well-posedness of the initial value problem for (6.31), thanks to
(7.7) in Lemma 7.6 the thesis follows by applying the Banach perturbation
lemma.
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Lemma 6.20. Under (T1), (T2), (T4), (N1), (N2), (N4) and (N7),

lim
L,M→∞

∥T∗L,M(t, s)− T∗(t, s)∥Y←Y = 0 (6.73)

uniformly with respect to t, s ∈ [0, 1], t ≥ s. If, in addition, 1 ∈ σ(T∗(1, 0)) is
simple with eigenfunction φ normalized as ∥φ∥Y = 1 and r > 0 is such that 1 is
the only eigenvalue of T∗(1, 0) in B(1, r) ⊂ C, then there exist positive integers
L and M such that, for every L ≥ L and M ≥ M, T∗L,M(1, 0) has only a simple
eigenvalue µL,M in B(1, r) and, moreover,

lim
L,M→∞

|µL,M − 1| = 0, lim
L,M→∞

∥φL,M − φ∥Y = 0, (6.74)

where φL,M is the eigenfunction associated to µL,M normalized as ∥φL,M∥Y = 1.

Proof. The proof will be given for s = 0, the extension to s ∈ (0, 1) being
straightforward.

Let G(u, ψ) be the solution of (6.31) exiting from a given ψ ∈ Y, where u
satisfies u = L∗[G(u, ψ)(·) ◦ sω∗ ]. Correspondingly, thanks to Lemma 6.19, let
G(uL,M, ψ) be the solution of (6.70) exiting from the same ψ, where uL,M sat-
isfies uL,M = π+

L ρ+L L
∗
M[G(uL,M, ψ)(·) ◦ sω∗ ]. The relevant evolution operators

are defined, for t ∈ [0, 1], respectively by

T∗(t, 0)ψ = G(u, ψ)t and T∗L,M(t, 0)ψ = G(uL,M, ψ)t.

The linearity of G in (6.8) leads to

T∗L,M(t, 0)ψ− T∗(t, 0)ψ = G(uL,M − u, 0)t = G+(uL,M − u)t.

Therefore, (6.73) is equivalent to showing that

lim
L,M→∞

∥eL,M∥U = 0 (6.75)

for eL,M := uL,M − u. Using the abbreviations (6.71), one can write

uL,M = π+
L ρ+LK

∗,+
M uL,M + π+

L ρ+LK
∗,−
M ψ, u = K∗,+u +K∗,−ψ,

therefore
eL,M = π+

L ρ+LK
∗,+
M eL,M + r+L,M + r−L,M,

where

r+L,M := (π+
L ρ+LK

∗,+
M −K∗,+)u, r−L,M := (π+

L ρ+LK
∗,−
M −K∗,−)ψ.

Through the Banach perturbation lemma, upon showing in the proof of
Lemma 6.19 that IU − π+

L ρ+LK
∗,+
M is invertible, one can also show that

∥(IU − π+
L ρ+LK

∗,+
M )−1∥U←U ≤ 2∥(IU −K∗,+)−1∥U←U

holds for L and M sufficiently large. Now (6.75) follows since both

∥r+L,M∥U ≤ ∥π
+
L ρ+LK

∗,+
M −K∗,+∥U←U∥u∥U

and
∥r−L,M∥U ≤ ∥π

+
L ρ+LK

∗,−
M −K∗,−∥U←A∥ψ∥A

vanish by Lemma 7.6.
The second part follows by Lemma 3.16 for ν = l = 1.
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The last step needed to prove the invertibility of DΨL,M(u∗, ψ∗, ω∗) is
given by the following proposition.

Proposition 6.21. Under (T1), (T2), (T4), (N1), (N2), (N4), (N6) and (N7),
there exist positive integers L and M such that, for every L ≥ L and M ≥ M,
DΨL,M(u∗, ψ∗, ω∗) is invertible, i.e., for all (u0, ψ0, ω0) ∈ U×A×B there exists
a unique (uL,M, ψL,M, ωL,M) ∈ U×A×B such that⎧⎪⎪⎨⎪⎪⎩

uL,M = π+
L ρ+L L

∗
M[G(uL,M, ψL,M)(·) ◦ sω∗ ] + ωL,Mπ+

L ρ+L M
∗
M + u0

ψL,M = π−L ρ−L G(uL,M, ψL,M)1 + ψ0

p(G(uL,M, ψL,M)|[0,1]) = ω0.

(6.76)

Proof. As anticipated, this proofs follows the lines of the one of Proposition
6.11. Consider (6.76) as an initial value problem for vL,M := G(uL,M, ψL,M),
i.e.,{

v′L,M(t) = (π+
L ρ+L L

∗
M[vL,M,· ◦ sω∗ ])(t) + ωL,Mπ+

L ρ+L M
∗
M(t) + u0(t)

vL,M,0 = ψL,M
(6.77)

for t ∈ [0, 1], where vL,M,t is a shortcut for (vL,M)t, defined in (6.7). The
variation of constants formula (2.3) gives, for t ∈ [0, 1],

vL,M,t = T∗L,M(t, 0)ψL,M +
∫ t

0
[T∗L,M(t, s)X0][ωL,Mπ+

L ρ+L M
∗
M(s) + u0(s)]ds,

which, together with the first boundary condition in (6.76), leads to

ψL,M = π−L ρ−L T∗L,M(1, 0)ψL,M

+π−L ρ−L

∫ 1

0
[T∗L,M(1, s)X0][ωL,Mπ+

L ρ+L M
∗
M(s) + u0(s)]ds + ψ0.

For L ≥ L and M ≥ M, with L and M given by Lemma 6.20, let µL,M be the
relevant simple multiplier of T∗L,M(1, 0). Then the last equation reads

µL,MψL,M = T∗L,M(1, 0)ψL,M

+π−L ρ−L

∫ 1

0
[T∗L,M(1, s)X0][ωL,Mπ+

L ρ+L M
∗
M(s) + u0(s)]ds

+ψ0 + νL,M

(6.78)

for
νL,M := (π−L ρ−L − IA)T∗L,M(1, 0)ψL,M + (µL,M − 1)ψL,M. (6.79)

Note that, under (T2), T∗L,M(1, 0)ψL,M = G(uL,M, ψL,M)1 ∈ A.
The state space can be decomposed as

Y = RL,M ⊕ KL,M (6.80)

for RL,M and KL,M the range and the kernel of µL,M IY − T∗L,M(1, 0), respec-
tively. Since µL,M is simple, KL,M = span{φL,M} for some φL,M an eigenfunc-
tion of the multiplier µL,M. Recalling Remark 6.12, it is reasonable to assume
p(v(·; φL,M)|[0,1]) ̸= 0 for v(·; φL,M) the solution of (6.77) exiting from φL,M,
thanks to the linearity of p and to the second of (6.74) in Lemma 6.20 .
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Consider the elements of Y

ξ∗L,M,1 := π−L ρ−L

∫ 1

0
[T∗L,M(1, s)X0]π

+
L ρ+L M

∗
M(s)ds,

ξ∗L,M,2 := π−L ρ−L

∫ 1

0
[T∗L,M(1, s)X0]u0(s)ds + ψ0.

(6.81)

Then, (6.78) becomes

[µL,M IY − T∗L,M(1, 0)]ψL,M = ωL,Mξ∗L,M,1 + ξ∗L,M,2 + νL,M. (6.82)

From (6.80), there exist unique rL,M,1, rL,M,2, sL,M ∈ RL,M and kL,M,1, kL,M,2,
hL,M ∈ R such that

ξ∗L,M,1 = rL,M,1 + kL,M,1 φL,M,

ξ∗L,M,2 = rL,M,2 + kL,M,2 φL,M,

νL,M = sL,M + hL,M φL,M.

(6.83)

Thus, from (6.82) it must be ωL,Mξ∗L,M,1 + ξ∗L,M,2 + νL,M ∈ RL,M, which implies
ωL,MkL,M,1 + kL,M,2 + hL,M = 0. By (7.14) in Proposition 7.8, kL,M,1 → k1 for
k1 in the proof of Proposition 6.11. As the latter is proved to be different
from 0 in Subsection 6.3.1, the same holds for kL,M,1 for L and M sufficiently
large. Therefore, kL,M,1 ̸= 0 can be assumed, leading to

ωL,M = − kL,M,2 + hL,M

kL,M,1
(6.84)

being the only possible solution. Eventually, let ηL,M be such that

[µL,M IY − T∗L,M(1, 0)]ηL,M = ωL,Mξ∗L,M,1 + ξ∗L,M,2 + νL,M.

Then, every ψL,M satisfying (6.82) can be written as ηL,M +λL,M φL,M for some
λL,M ∈ R. The value of the latter can be fixed uniquely by imposing the
phase condition, i.e., p(v(·; ηL,M)|[0,1]) + λL,M p(v(·; φL,M)|[0,1]) = ω0.

The last step to complete the proof of the validity of Assumption 6.17

is represented by Proposition 6.23 below, and consists in showing that the
inverse of DΨL,M(u∗, ψ∗, ω∗) is bounded uniformly with respect to L and M.

Lemma 6.22. Under (T1), (T2), (T4), (N1), (N2), (N4), (N6) and (N7), the inverse
of DΨL,M(u∗, ψ∗, ω∗) is uniformly bounded with respect to both L and M.

Proof. Proposition 6.21 guarantees that, given (u0, ψ0, ω0) ∈ U×A×B, there
exists a unique (uL,M, ψL,M, ωL,M) ∈ U×A×B satisfying

DΨL,M(u∗, ψ∗, ω∗)(uL,M, ψL,M, ωL,M) = (u0, ψ0, ω0).

The thesis is thus equivalent to the fact that ∥(uL,M, ψL,M, ωL,M)∥U×A×B is
bounded uniformly with respect to both L and M. In order to prove that, it
is useful to relate (uL,M, ψL,M, ωL,M) to the solution of the collocation of an
equivalent reformulation of (the secondary discretization of) (6.33), defined
as follows, according to the primary discretization under (N1) and (N2).
Such a reformulation comes from the need to give a proper sense to the
collocation problem since, in general, u is not continuous therein, while the
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range of π+
L ρ+L contains only continuous functions. The terms of (6.33) can

be rearranged as⎧⎪⎪⎨⎪⎪⎩
z = L∗[G(z, γ)(·) ◦ sω∗ ] + ωM∗ + L∗[G(u0, ψ0)(·) ◦ sω∗ ]

γ = G(z, γ)1 + G(u0, ψ0)1

p(G(z, γ)|[0,1]) = ω0 − p(G(u0, ψ0)|[0,1])

(6.85)

obtained from (6.33) by setting z := u − u0 and γ := ψ − ψ0. Note that
z is continuous as it follows from the first equation in (6.85) under (T4).
Correspondingly, (6.76) can be rewritten as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

zL,M = π+
L ρ+L L

∗
M[G(zL,M, γL,M)(·) ◦ sω∗ ] + ωL,Mπ+

L ρ+L M
∗
M

+π+
L ρ+L L

∗
M[G(u0, ψ0)(·) ◦ sω∗ ]

γL,M = π−L ρ−L G(zL,M, γL,M)1 + π−L ρ−L G(u0, ψ0)1

p(G(zL,M, γL,M)|[0,1]) = ω0 − p(G(u0, ψ0)|[0,1])

(6.86)

for zL,M := uL,M − u0 and γL,M := ψL,M − ψ0. It follows

uL,M = e+L,M + u, ψL,M = e−L,M + ψ, (6.87)

where e+L,M := zL,M − z and e−L,M := γL,M − γ are the collocation errors of
the components in U and A, respectively, given that (zL,M, γL,M, ωL,M) is the
collocation solution of (the secondary discretization of) (6.85) according to
(N1) and (N2). Subtracting (6.85) from (6.86) leads to⎧⎪⎪⎨⎪⎪⎩

e+L,M = π+
L ρ+L L

∗
M[G(e+L,M, e−L,M)(·) ◦ sω∗ ] + εω,L,M + ε+L,M

e−L,M = π−L ρ−L G(e
+
L,M, e−L,M)1 + ε−L,M

p(G(e+L,M, e−L,M)|[0,1]) = 0

(6.88)

for

εω,L,M := ωL,Mπ+
L ρ+L M

∗
M −ωM∗,

ε+L,M := π+
L ρ+L L

∗
M[G(u0, ψ0)(·) ◦ sω∗ ]− L∗[G(u0, ψ0)(·) ◦ sω∗ ],

ε−L,M := (π−L ρ−L − IA)G(u0, ψ0)1.

(6.89)

By (6.71), the first two equations of (6.88) read{
e+L,M = π+

L ρ+LK
∗,+
M e+L,M + π+

L ρ+LK
∗,−
M e−L,M + εω,L,M + ε+L,M

e−L,M = π−L ρ−L G
+
1 e+L,M + π−L ρ−L G

−
1 e−L,M + ε−L,M,

(6.90)

where G(e+L,M, e−L,M)1 = G+1 e+L,M + G−1 e−L,M for

(G+1 e+L,M)(t) :=
∫ 1+t

0
e+L,M(s)ds, (G−1 e−L,M)(t) = e−L,M(0) (6.91)

and t ∈ [−1, 0] according to the definition of G in (6.8). Allowing for a block-
wise definition of operators in U×A, which should be self-explaining in the
following, (6.90) becomes(

e+L,M

e−L,M

)
=

(
π+

L ρ+LK
∗,+
M π+

L ρ+LK
∗,−
M

π−L ρ−L G
+
1 π−L ρ−L G

−
1

)(
e+L,M

e−L,M

)
+

(
εω,L,M + ε+L,M

ε−L,M

)
.
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In order to get a bound on ∥(e+L,M, e−L,M)∥C([0,1],Rd)×A, that is, a bound on the
collocation error, it is crucial to observe that e+L,M is continuous since so is z
by construction, while zL,M belongs to Π+

L,m. Moreover, also εω,L,M and ε+L,M
in (6.89) are continuous under (T4) and (N4). In what follows, the notation

C+ := C([0, 1],Rd) (6.92)

will be used for brevity.
Note that existence and uniqueness of (e+L,M, e−L,M) follows already from

Propositions 6.21 and 6.11, so that the invertibility of the operator(
IC+ 0

0 IA

)
−
(

π+
L ρ+LK

∗,+
M π+

L ρ+LK
∗,−
M

π−L ρ−L G
+
1 π−L ρ−L G

−
1

)
: C+ ×A→ C+ ×A

is already proved. The following step consists in proving that

lim
L,M→∞


(

π+
L ρ+LK

∗,+
M π+

L ρ+LK
∗,−
M

π−L ρ−L G
+
1 π−L ρ−L G

−
1

)
−
(
K∗,+ K∗,−

G+1 G−1

)
C+×A←C+×A

= 0,

meaning to apply then the Banach perturbation lemma to recover the bound
[(

IC+ 0

0 IA

)
−
(

π+
L ρ+LK

∗,+
M π+

L ρ+LK
∗,−
M

π−L ρ−L G
+
1 π−L ρ−L G

−
1

)]−1


C+×A←C+×A

≤ 2


[(

IC+ 0

0 IA

)
−
(
K∗,+ K∗,−

G+1 G−1

)]−1


C+×A←C+×A

,

(6.93)

for sufficiently large L and M, which is also uniform with respect to both L
and M. Indeed, Proposition 6.11 gives the invertibility of the operator(

IC+ 0

0 IA

)
−
(
K∗,+ K∗,−

G+1 G−1

)
: C+ ×A→ C+ ×A.

Note that Lemma 7.6 holds as well if one replaces U with C+ since the norm
is the same. Therefore, (6.93) holds thanks to Lemma 7.9, and gives

∥(e+L,M, e−L,M)∥C+×A ≤ κ∥(εω,L,M + ε+L,M, ε−L,M)∥C+×A

for some constant κ independent of L and M. By the definition (6.89), one
can write

ε+L,M = π+
L ρ+L (L

∗
M−L∗[)G(u0, ψ0)(·) ◦ sω∗ ]+ (π+

L ρ+L − IU)L∗[G(u0, ψ0)(·) ◦ sω∗ ],
(6.94)

so that ε+L,M vanishes as L, M → ∞ under (T4) and (N7) by (7.1) of Lemma
7.1 and (7.9) of Lemma 7.7. On the other hand, the derivative of G(u0, ψ0)1,
namely u0, is not necessarily continuous, which means that Lemma 7.2 can-
not be used to prove that

ε−L,M := (π−L ρ−L − IA)G(u0, ψ0)1.

vanishes. However, it is anyway bounded uniformly with respect to L and M
since u0 is bounded, and in particular ∥ε−L,M∥A ≤ ∥ψ0∥A+ 2∥u0∥U, where the
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factor 2 comes from taking into account for possible jumps in u0. Eventually,
as far as εω,L,M is concerned, note that according to its definition in (6.89)

εω,L,M = ωL,Mπ+
L ρ+L (M

∗
M −M∗) + ωL,M(π+

L ρ+L − IU)M∗ + (ωL,M −ω)M∗,

the first and the second addends of the right-hand side vanish thanks to the
same arguments adopted for (6.94) under (T4), (N6) and (N7). As for the
third addend, ωL,M → ω follows from Proposition 7.8, and, therefore, the
first addend vanishes thanks to (7.1) in Lemma 7.1.

Finally, (7.18) shows that ψL,M is uniformly bounded. Thus, eventually,
it can be concluded that ∥(uL,M, ψL,M, ωL,M)∥U×A×B is bounded uniformly
with respect to both L and M, thanks to (6.87) and Proposition 6.11.

All the steps to prove the validity of Assumption 6.17 are collected by the
following Proposition.

Proposition 6.23. Under (T1), (T2), (T4), (N1), (N2), (N4), (N6) and (N7),

limL,M→∞
1

r2(L, M)
∥[DΨL,M(u∗, ψ∗, ω∗)]−1∥U×A×B←U×A×B

·∥ΨL,M(u∗, ψ∗, ω∗)∥U×A×B = 0,
(6.95)

where

r2(L, M) := min
{

r1,
1

2κ∥[DΨL,M(u∗, ψ∗, ω∗)]−1∥U×A×B←U×A×B

}
with r1 and κ as in Proposition 6.18.

Proof. Thanks to Lemma 6.22 and to the fact that r1 and κ in Proposition 6.18

are independent of L and M (as observed right after its proof), it remains to
prove that ∥ΨL,M(u∗, ψ∗, ω∗)∥U×A×B vanishes. The fact that (u∗, ψ∗, ω∗) is a
fixed point for Φ gives

∥ΨL,M(u∗, ψ∗, ω∗)∥U×A×B ≤ ∥(IU×A×B − PLRL)(u∗, ψ∗, ω∗)∥U×A×B
+∥PLRL[ΦM(u∗, ψ∗, ω∗)−Φ(u∗, ψ∗, ω∗)]∥U×A×B.

(6.96)

The second addend in the right-hand side above vanishes under (N6) and
(N7) and thanks to (7.6) of Corollary 7.3. The first addend vanishes as well
by Lemma 7.5, which shows in particular that u∗ and ψ∗′ are continuous.

6.5 convergence

As shown in Sections 6.3 and 6.4, formulation (6.2) satisfies all the as-
sumptions required in [79] under certain choices on the relevant spaces, the
discretization, and the regularity of both the original and the discrete right
hand side. The proof of the convergence of the relevant FEM (see Subsection
3.3.1) will be concluded in this section, by stating two theorems, namely [79,
Theorems 1 and 2], which ensure the convergence of the general method pro-
vided that all the required assumptions are satisfied. The rest of the section
will be dedicated to comment on the resulting rate of convergence, as well
as some comments on the convergence of the SEM.
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Theorem 6.24 ([79, Theorem 1, page 538]). Under (T1), (T2), (T4), (N1), (N2),
(N4), (N5), (N6) and (N7), there exists a positive integer N such that, for every
L, M ≥ N, given r2(L, M) defined as in Proposition 6.23, PLRLΦM has a unique
fixed point (ũ∗L,M, ψ̃∗L,M, ω̃∗L,M) in B((u∗, ψ∗, ω∗), r2(L, M)) which satisfies

∥(ũ∗L,M, ψ̃∗L,M, ω̃∗L,M)− (u∗, ψ∗, ω∗)∥U×A×B
≤ 2∥[DΨL,M(u∗, ψ∗, ω∗)]−1∥U×A×B←U×A×B

·∥ΨL,M(u∗, ψ∗, ω∗)∥U×A×B.

Moreover, we have the expansion

(ũ∗L,M, ψ̃∗L,M, ω̃∗L,M)− (u∗, ψ∗, ω∗)

=−[DΨL,M(u∗, ψ∗, ω∗)]−1ΨL,M(u∗, ψ∗, ω∗) + δL,M,

where

∥δL,M∥U×A×B ≤ 4κ · ∥[DΨL,M(u∗, ψ∗, ω∗)]−1∥3
U×A×B←U×A×B

·∥ΨL,M(u∗, ψ∗, ω∗)∥2
U×A×B

for κ defined as in Proposition 6.18.

Theorem 6.25 ([79, Theorem 2, page 539]). Under (T1), (T2), (T4), (N1), (N2),
(N4), (N5), (N6) and (N7), there exists a positive integer N̂ such that, for all L, M ≥
N̂, the operator RLΦMPL has a fixed point (u∗L,M, ψ∗L,M, ω∗L,M) and

∥PL(u∗L,M, ψ∗L,M, ω∗L,M) − (u∗, ψ∗, ω∗)∥U×A×B
≤ 2 ∥[DΨL,M(u∗, ψ∗, ω∗)]−1∥U×A×B←U×A×B

·∥ΨL,M(u∗, ψ∗, ω∗)∥U×A×B

and

PL(u∗L,M, ψ∗L,M, ω∗L,M)− (u∗, ψ∗, ω∗)

=−[DΨL,M(u∗, ψ∗, ω∗)]−1ΨL,M(u∗, ψ∗, ω∗) + δL,M,

where δL,M is bounded as in Theorem 6.24. Moreover, if (û∗L,M, ψ̂∗L,M, ω̂∗L,M) is
another fixed point of RLΦMPL, then

∥PL(û∗L,M, ψ̂∗L,M, ω̂∗L,M)− (u∗, ψ∗, ω∗)∥U×A×B > r2(L, M)

and
∥(û∗L,M, ψ̂∗L,M, ω̂∗L,M)− (u∗L,M, ψ∗L,M, ω∗L,M)∥UL×AL×B

>
r2(L, M)

2 ·max{∥π+
L ∥U←UL , ∥π−L ∥A←AL , 1}

for r2(L, K) defined as in Proposition 6.23. Finally,

∥(v∗L,M, ω∗L,M)− (v∗, ω∗)∥V×B ≤ 2 ·max{∥G∥V←U×A, 1}

·∥[DΨL,M(u∗, ψ∗, ω∗)]−1∥U×A×B←U×A×B

·∥ΨL,M(u∗, ψ∗, ω∗)∥U×A×B.

(6.97)
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As a side remark, it is worth observing that Assumption 6.6 is not directly
needed to prove the two final theorems above. However, Assumption 6.16

is needed, and its validity implies anyway the one of Assumption 6.6 for
a given approximation GM in place of G, the proof of which would be
unchanged. Moreover, in many cases, this implies in turn the validity of
Assumption 6.6 for G: indeed, when the approximation GM is needed to
discretize a distributed integral, G is at least as regular as GM. These are the
reasons why the proof of Theorem 6.7 has been presented in Section 6.3 in
full detail, as to follow the presentation in [79]. Eventually, observe that the
comment given after the proof about the failure of formulation (6.3) holds
unaltered, since the mentioned critical step is independent of G or GM.

Note that the second factor in the right-hand side of (6.97) is well-defined
thanks to Proposition 6.4. Thanks to Lemma 6.22, the error on (v∗, ω∗) is
determined by the last factor, namely the consistency error. The bound (6.96)
for the latter, in view of Corollary 7.3, leads to the bound

∥ΨL,M(u∗, ψ∗, ω∗)∥U×A×B ≤ εL + max{Λm + Λ′m, 1}εM, (6.98)

where
εL := ∥(IU×A×B − PLRL)(u∗, ψ∗, ω∗)∥U×A×B

and
εM := ∥ΦM(u∗, ψ∗, ω∗)−Φ(u∗, ψ∗, ω∗)∥U×A×B. (6.99)

are the key contributions to the consistency error, called respectively primary
and secondary consistency errors, and will be analyzed separately in the fol-
lowing Subsections.

6.5.1 Primary consistency error

According to (6.46), (6.47) and (1.14), the primary consistency error is
bounded as

εL ≤ max{∥u∗ − π+
L ρ+L u∗∥U, ∥ψ∗ − π−L ρ−L ψ∗∥A}.

Therefore an upper bound on εL is determined by the regularity of both u∗

and ψ∗, according to the result below.

Theorem 6.26. Let G ∈ C p(Y,Rd) for some integer p ≥ 1. Then, under (T1),
(T2), (N1) and (N2), it holds that u∗ ∈ Cp([0, 1],Rd), ψ∗ ∈ Cp+1([−1, 0],Rd),
v∗ ∈ Cp+1([−1, 1],Rd) and

εL = O
(

hmin{m,p}
)

. (6.100)

Proof. Note that v∗ = G(u∗, ψ∗) satisfies (6.2), hence its periodic extension
to [−1, ∞] is a (periodic) solution of (6.1). Thus, being v∗ continuous, if
G is continuous, then v∗ is continuously differentiable in [0,+∞), which
implies that u∗ is continuous. Moreover, ψ∗ is continuously differentiable
by periodicity and, ψ∗′(0) = u∗(0) follows again by periodicity since v∗′ is
continuous at 1. This means that v∗ is continuously differentiable in [−1, 1].
As a consequence, if p = 1, u∗ becomes continuously differentiable and the
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whole reasoning can be repeated, proving the first part of the thesis. This is
a consequence of the well-known smoothing effect of DDEs.

To prove (6.100), note that

∥u∗ − π+
L ρ+L u∗∥U ≤

∥u∗(m+1)∥∞

(m + 1)!
· hm+1 (6.101)

holds if p ≥ m + 1, while

∥u∗ − π+
L ρ+L u∗∥U ≤ (1 + Λm)

(
h
2

)p cp

mp · ∥u
∗(p)∥∞ (6.102)

holds if p ≤ m + 1, with cp a positive constant independent of m. (6.101) is a
direct consequence of the standard Cauchy interpolation reminder (Theorem
3.7). (6.102) follows from Theorems 3.3 and 3.6.

Secondly, similar results can be obtained for the component in A, by re-
calling that ∥ · ∥A is given by the second of (1.13). Indeed, on the one hand,
based on the same arguments used above for (6.101) and (6.102),

∥ψ∗ − π−L ρ−L ψ∗∥∞ ≤
∥ψ∗(m+1)∥∞

(m + 1)!
· hm+1

holds if p ≥ m, while

∥ψ∗ − π−L ρ−L ψ∗∥∞ ≤ (1 + Λm)

(
h
2

)p+1 c′p
mp+1 · ∥ψ

∗(p+1)∥∞

holds if p ≤ m, with c′p a positive constant independent of m. On the other
hand,

∥(ψ∗ − π−L ρ−L ψ∗)′∥∞ ≤
∥ψ∗(m+1)∥∞

m!
· hm (6.103)

holds if p ≥ m, while

∥(ψ∗ − π−L ρ−L ψ∗)′∥∞ ≤ Λm

(
h
2

)p c′′p
mp−1 · ∥ψ

∗(p+1)∥∞ (6.104)

holds if p ≤ m, with c′′p a positive constant independent of m. In particular,
(6.103) follows by the Cauchy interpolation reminder (Theorem 3.7), after
taking the first derivative of the reminder itself. Moreover, (6.104) follows
similarly to (7.5) in the proof of Lemma 7.2 thanks to [81, (12) at page 331]
and Theorem 3.3.

According to the theorem above, O(hm) is a lower bound for the global
consistency error in (6.98), even in the case that the periodic solution were
smooth enough, i.e., p > m + 1, and assuming the absence of a secondary
discretization. This is in contrast to the estimate O(hm+1) obtained in [77]
(see in particular the conclusions therein). This difference is due to the fact
that in formulation (6.2) the space A is infinite-dimensional and needs to
be discretized, possibility which is only mentioned in [79], rather than be-
ing concretely elaborated and, simultaneously, to the fact that functions in
A must be differentiable, due, in turn, to the need of differentiating with
respect to the period, as already remarked several times. After all, formula-
tion (6.3), in which A is finite-dimensional, does not satisfy all the required
assumptions to develop this convergence analysis.
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Figure 6.1: Periodic solution of (5.3) at λ = 1.7: continuous error for L = 1 using
Chebyshev points.

6.5.2 Secondary consistency error

The error term εM in (6.99) concerns only the secondary discretization and,
according to (6.9) and (6.64), it reduces to

εM := ω∗∥GM(v∗(·) ◦ sω∗)− G(v∗(·) ◦ sω∗)∥U. (6.105)

Although this error is absent in case a secondary discretization is not needed,
it was already remarked that the latter is (at least) necessary when the equa-
tion contains distributed delays, in which case it consists in applying suitable
quadrature rules to approximate the concerned integrals. In all cases where
the presence of integrals is the only thing that prevents the possibility to
compute the right hand side exactly, (6.105) can be seen as a quadrature er-
ror. Therefore, the secondary discretization plays a minor role in determin-
ing the overall consistency error, provided that one chooses a quadrature
formula that guarantees at least the same order of the primary consistency
error (as far as M varies proportionally to L). Otherwise, assuming that
(6.105) falls below a given tolerance, say TOL, the consistency error decays
down to TOL as fast as the primary consistency error.

6.5.3 Convergence of the spectral element method

As explained in Subsection 3.3.1 two methods can be considered as far as
the convergence of the proposed piecewise collocation strategy is concerned,
namely the FEM and the SEM. In particular, with reference to the primary
discretization under (N1) and (N2), the FEM consists in letting L→ ∞ while
keeping m fixed, while the SEM consists in letting m → ∞ while keeping
L fixed. The analysis carried out in Sections 6.3 and 6.4 are presented for
the FEM, concerning which Theorem 6.26 guarantees an error of magnitude
O(L−m) under suitable regularity conditions.

On the other hand, it is not yet clear whether the convergence of the SEM
is guaranteed under the general framework of reference for the current work.
Note that, even if it were not the case, this would not imply that the SEM
does not converge for periodic BVPs. Indeed, some numerical experiments
run by the author suggest the opposite. Figure 6.1 shows the results of one
of such experiments, suggesting a spectral decay of the error.

Thus, it is anyway likely that an error analysis different from the one
proposed in [77, 78, 79] would work.
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The rest of this subsection will aim at going through the various argu-
ments used in the analysis in Sections 6.4, 7.1, 7.3 and Subsection 6.5.1 which
would fail for the SEM based on (N1) and (N2). Some of these arguments
can be readapted (possibly by adding further assumptions, e.g., on the re-
quirements of regularity), yet some others seem not amenable of a definitive
solution, or at least of a simple one.

Starting from Section 6.4, the first point suggesting that the SEM might
fail is in the proof of Lemma 6.19, in particular due to (7.7) in Lemma 7.6. In
the case of the SEM indeed,

lim
m,M→∞

∥(π+
L ρ+L − IU)K∗,+M ∥U←U = 0

cannot hold by Faber’s theorem (Theorem 3.8), since (N4) only guarantees
that functions in the range of K∗,+M are continuous, as observed in the proof
of Lemma 7.6. Nevertheless, the problem can be easily overcome by assum-
ing (N5), which guarantees the functions in the range of K∗,+M to be Lips-
chitz continuous (since G+ already maps to Lipschitz continuous functions),
thanks to Theorem 3.11. The same argument is used in the proofs of both
Lemma 6.20 and Lemma 6.22, which can be fixed similarly.

There is also another issue which emerges in the proof of Lemma 6.22,
concerning the first addend in the right-hand side of (6.94). Indeed, by
Theorem 3.5, Λm in (7.1) of Lemma 7.1 grows unbounded independently of
the choice of the collocation abscissae, at least as O(log m) (and at most with
the same order in case of Chebyshev-type nodes, see Theorems 3.9 and 3.10).
Therefore, in order to ensure convergence one should assume to balance
this growth with the rate of convergence of the secondary discretization,
being the attention focused on the term π+

L ρ+L (L
∗
M −L∗). Since primary and

secondary discretizations can be chosen independently, this balance can be
a reasonable option. Of course, if a secondary discretization is not required,
the term is not even present and the issue becomes meaningless. Note that
similar issues appear in the proof of the convergence of εω,L,M in (6.89). In
the latter also the convergence of ωL,M to ω is required, which should follow
from Proposition 7.8, whose validity for the SEM will be discussed next.

As for the proof of the first part, namely (7.11), in Proposition 7.8 the con-
vergence of ξ∗L,M,1 depends on the four terms at the right-hand side of (7.12).
In particular, for the first and the third ones, the same balance between pri-
mary and secondary discretization mentioned above has to be considered.
The second addend could be made vanishing by ensuring that the interpo-
lation error ∥(π+

L ρ+L − IU)M∗M∥U decays fast enough to override the growth
of π−L ρ−L . The latter, thanks to Theorems 3.9 and 3.10, according to (7.3) of
Lemma 7.2, grows at best as O(m log m) for Chebyshev-type nodes. Con-
sequently, M∗M should be at least continuously differentiable with Lipschitz
continuous first derivative, thus guaranteeing, by Corollary 3.12 with k = 1,
that the above interpolation error is O(log m/m2) and the sought balance is
scored. Finally, the fourth term concerns the interpolation error in A of the
function

∫ 1
0 [T

∗(1, s)X0]M∗(s)ds. As this is the state at 1 of (7.13), the above
map has a Lipschitz continuous first derivative under (T5). Thus, if the ab-
scissae c1, . . . , cm−1 are chosen corresponding to Chebyshev-type zeros, as
well as cm = 1, one can apply Theorem 3.13 with i = q = 1 to replace (7.5)
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in Lemma 7.2 with ∥(π−L ρ−L ψ− ψ)′∥∞ ≤ cΛmEm−1(ψ
′). Note that, for other

choices of the abscissae there are no similar results: indeed, a further factor
m may, in principle, appear in the right-hand side (but not more, thanks to
[81, (12) at page 331]), thus requiring a degree of regularity that cannot be
obtained when the same analysis is carried-out for ξ∗L,M,2 (see (7.16) and the
relevant comments).

Despite the remedies to the problems above, to complete the proof of
Proposition 7.8 boundedness of ψL,M is required, and the latter becomes
mandatory for Lemma 6.22 to hold. However, such boundedness is not
guaranteed by (7.18) given (7.3) of Lemma 7.2. Yet it could well be that the
norm of [DΨL,M(u∗, ψ∗, ω∗)]−1 grows with m, but not as fast as the (square
root of the) consistency error ∥ΨL,M(u∗, ψ∗, ω∗)∥U×A×B decays, recall in fact
(6.95) in Proposition 6.23. The hypothesis is not far from being reasonable,
given that the consistency error depends on the regularity of the periodic
solution at hands, in view of a possible variant for the SEM of Theorem 6.26.
In any case, proving (or disproving) this requires a much deeper analysis
than the one carried for FEM in this chapter.



7 P R O O F S O F T E C H N I C A L R E S U LT S

This chapter contains the proofs of some results which have been used
in Chapter 6. Being these proofs rather technical, they were not included
therein in order to not interrupt the main reading flow.

7.1 basic results on the discretization

Lemma 7.1. Let ρ+L , π+
L and Λm be defined respectively in (6.51), (6.53) and (6.56)

under (N1) and let C+ be defined in (6.92). Then, under (T2),

∥π+
L ρ+L ∥U←U ≤ Λm (7.1)

holds for all positive integers L and

lim
L→∞
∥π+

L ρ+L u− u∥U = 0 (7.2)

holds for all u ∈ C+.

Proof. According to the notation of Section 6.4,

π+
L ρ+L u(t) =

m

∑
j=0

ℓm,i,j(t)u(t+i,j)

holds for u ∈ U and t ∈ [t+i−1, t+i ], i = 1, . . . , L. Then (7.1) follows from

∥π+
L ρ+L u∥U ≤ max

i=1,...,L
max

t∈[t+i−1,t+i ]

m

∑
j=0
|ℓm,i,j(t)|∥u∥U = Λm∥u∥U,

which in turn follows from the fact that the Lebesgue constant is indepen-
dent of i. As for (7.2),

(π+
L ρ+L u− u)(t) =

m

∑
j=0

ℓm,i,j(t)u(t+i,j)−
m

∑
j=0

ℓm,i,j(t)u(t) +
m

∑
j=0

ℓm,i,j(t)u(t)− u(t)

=
m

∑
j=0

ℓm,i,j(t)[u(t+i,j)− u(t)] +

(
m

∑
j=0

ℓm,i,j(t)− 1

)
u(t)

=
m

∑
j=0

ℓm,i,j(t)[u(t+i,j)− u(t)]

holds always for t ∈ [t+i−1, t+i ], i = 1, . . . , L. Therefore

∥π+
L ρ+L u− u∥U ≤ Λmω(u; h),

where ω denotes the modulus of continuity. The latter vanishes as h → 0
only if u is at least continuous.

103
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Lemma 7.2. Let ρ−L , π−L , Λm and Λ′m be defined respectively in (6.60), (6.62),
(6.56) and (6.57) under (N2) and let C1,− := C1([−1, 0],Rd). Then, under (T2),

∥π−L ρ−L ∥A←A ≤ Λm + Λ′m (7.3)

holds for all positive integers L and

lim
L→∞
∥π−L ρ−L ψ− ψ∥A = 0 (7.4)

holds for all ψ ∈ C1,−.

Proof. The proof of (7.3) is analogous to that of (7.1) in Lemma 7.1 once
considered that ∥ · ∥A is given by (1.13). As for (7.4), ∥π−L ρ−L ψ − ψ∥∞ ≤
Λmω(ψ; h), follows similarly by the proof of (7.2) in Lemma 7.1, while

∥(π−L ρ−L ψ− ψ)′∥∞ ≤ c(m + 1)ΛmEm−1(ψ
′) (7.5)

holds for some positive constant c thanks to [81, (12) at page 331], where
Em( f ) denotes the best uniform approximation error of f with (piecewise)
polynomials of degree m. As for the latter Em−1(ψ

′) ≤ 6ω(ψ′, h/2m) holds
thanks to Theorem 3.3, so that it vanishes as h → 0 only if ψ is at least
continuously differentiable.

Corollary 7.3. Let RL, PL and Λm be defined respectively in (6.46), (6.47) and
(6.56) under (N1) and (N2). Then

∥PLRL∥U×A×B←U×A×B ≤ max{Λm + Λ′m, 1} (7.6)

holds for all positive integers L.

Proof.

∥PLRL∥U×A×B←U×A×B = max{∥π+
L ρ+L ∥U←U, ∥π−L ρ−L ∥A←A, ∥IB∥B←B}

≤max{Λm, Λm + Λ′m, 1}
= max{Λm + Λ′m, 1},

thanks to (1.14), (7.1) in Lemma 7.1 and (7.3) in Lemma 7.2.

7.2 results concerning the theoretical assump-
tions

Lemma 7.4. Let (u∗, ψ∗, ω∗) ∈ U×A× B be a fixed point of Φ in (6.9). Then,
under (T2), v∗ := G(u∗, ψ∗) for G in (6.8) is Lipschitz continuous, in particular

|v∗(t1)− v∗(t2)| ≤ ∥(u∗, ψ∗, ω∗)∥U×A×B · |t1 − t2|

holds for all t1, t2 ∈ [−1, 1].

Proof. By the choice of V2 in (T2), the derivative v∗′ of v∗ is bounded, and by
the choice of A2 in (T2) it can be expressed as

v∗′(t) :=

⎧⎨⎩u∗(t), t ∈ [0, 1],

ψ∗′(t), t ∈ [−1, 0).



7.3 results concerning the last numerical assumption 105

Therefore,

∥v∗′∥∞ = max{∥u∗∥∞, ∥ψ∗′∥∞} ≤max{∥u∗∥U2 , ∥ψ∗∥A2}

≤ ∥(u∗, ψ∗, ω∗)∥U×A×B,

from which it follows that

|v∗(t1)− v∗(t2)| ≤ ∥v∗′∥∞ · |t1 − t2| ≤ ∥(u∗, ψ∗, ω∗)∥U×A×B · |t1 − t2|.

Lemma 7.5. Let (u∗, ψ∗, ω∗) ∈ U × A × B be a fixed point of Φ in (6.9) and
v∗ := G(u∗, ψ∗) for G in (6.8). Then, under (T2) and (T5), u∗, ψ∗′ and v∗′ are
Lipschitz continuous, in particular

|v∗′(t1)− v∗′(t2)| ≤ ω∗κ2,1∥(u∗, ψ∗, ω∗)∥U×A×B · |t1 − t2|

hold for all t1, t2 ∈ [−1, 1], where κ2,1 is defined as in (6.26).

Proof. Thanks to (T5), the constant κ2,1 in (6.26) is well-defined, and, for
t1, t2 ∈ [0, 1],

|u∗(t1)− u∗(t2)| ≤ ω∗κ2,1∥v∗t1
◦ sω∗ − v∗t2

◦ sω∗∥Y.

Thus, u∗ is Lipschitz continuous with constant ω∗κ2,1∥(u∗, ψ∗, ω∗)∥U×A×B by
Lemma 7.4. The same holds for ψ∗′ by periodicity and, in turn, for v∗′, being
it the continuous junction of two Lipschitz continuous functions with the
same constant.

7.3 results concerning the last numerical as-
sumption

Lemma 7.6. Let ρ+L and π+
L be defined respectively in (6.51) and (6.53) under (N1),

K∗,+M and K∗,−M , K∗,+ and K∗,− be defined in (6.71). Then, under (T2), (N4) and
(N7),

lim
L,M→∞

∥π+
L ρ+LK

∗,+
M −K∗,+∥U←U = 0, (7.7)

and
lim

L,M→∞
∥π+

L ρ+LK
∗,−
M −K∗,−∥U←A = 0. (7.8)

Proof. As for (7.7), a bound can be obtained by the inequality

∥π+
L ρ+LK

∗,+
M −K∗,+∥U←U ≤ ∥(π+

L ρ+L − IU)K∗,+M ∥U←U + ∥K∗,+M −K∗,+∥U←U.

The second addend in the right-hand side above vanishes thanks to (N7). It
thus also follows that K∗,+M is uniformly bounded with respect to M. This in
turn makes the first addend vanish as well, given that K∗,+M U ⊆ C([0, 1],Rd)

as it follows from (6.8) through the definition of G+ in (6.71) and the conti-
nuity of L∗M under (N4). The same arguments hold for (7.8).
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Lemma 7.7. Let L∗,M∗ and L∗M,M∗M be defined respectively in (6.32) and (6.69).
Then, under (N6) and (N7),

lim
M→∞

∥L∗M − L∗∥L(Y,Rd)←[0,1] = 0 (7.9)

and
lim

M→∞
∥M∗M −M∗∥∞ = 0. (7.10)

Proof. (7.9) follows directly by (N7). (7.10) follows by (N6) and (N7).

Proposition 7.8. Let ω and ωL,M be given as in (6.39) and (6.84), respectively.
Then, under (T4), (N4), (N6) and (N7),

lim
L,M→∞

ωL,M = ω.

Proof. Let ξ∗1 and ξ∗2 be as in the proof of Proposition 6.11 and ξ∗L,M,1, ξ∗L,M,2
and νL,M be as in (6.83). The first step consists in proving that

lim
L,M→∞

∥ξ∗L,M,1 − ξ∗1∥Y = 0. (7.11)

From (6.38) and the first of (6.81), it follows that

ξ∗L,M,1 − ξ∗1 = π−L ρ−L

∫ 1

0
[T∗L,M(1, s)X0]π

+
L ρ+L M

∗
M(s)ds

−
∫ 1

0
[T∗(1, s)X0]M

∗(s)ds

= π−L ρ−L

∫ 1

0
[(T∗L,M(1, s)− T∗(1, s))X0]π

+
L ρ+L M

∗
M(s)ds

+π−L ρ−L

∫ 1

0
[T∗(1, s)X0][π

+
L ρ+L − IU]M∗M(s)ds

+π−L ρ−L

∫ 1

0
[T∗(1, s)X0](M

∗
M(s)−M∗(s))ds

+(π−L ρ−L − IA)
∫ 1

0
[T∗(1, s)X0]M

∗(s)ds.

(7.12)

From Lemma 7.7, it follows that M∗M is uniformly bounded. As a conse-
quence, the third addend in the right-hand side of the last equality above
vanishes thanks to (7.3) of Lemma 7.2, and the first addend vanishes as well
also thanks to Lemma 6.20 and (7.1) of Lemma 7.1. Since M∗M is continuous
under (N4) thanks to Lemma 7.5 (recall its definition from (6.14) and the
second of (6.32)), the second addend vanishes similarly thanks to (7.2) of
Lemma 7.1. Finally, as for the last addend, note that

∫ 1
0 [T

∗(1, s)X0]M∗(s)ds
is the state solution at 1 of{

v′(t) = L∗(t)[vt ◦ sω∗ ] +M∗(t), t ∈ [0, 1],

v0 = 0,
(7.13)

as it can be seen by applying the variation of constants formula as done for
(6.77). As such it is continuously differentiable, being the right-hand side
of the DDE continuous under (T4) similarly as already observed above for
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M∗M. Therefore, also this addend vanishes thanks to (7.4) of Lemma 7.2, thus
(7.11) holds. Moreover,

lim
L,M→∞

kL,M,1 = k1 (7.14)

follows from the second of (6.74) in Lemma 6.20. Note that the definition of
ξ∗1 does not change if one considers system (6.85) in place of (6.33). Similarly,
the definition of ξL,M,1 does not change if one considers system (6.86) in
place of (6.76).

Note now that the same reasoning cannot be used to prove that

lim
L,M→∞

∥ξ∗L,M,2 − ξ∗2∥Y = 0. (7.15)

From the second of (6.81), it follows that

ξ∗L,M,2 − ξ∗2 = π−L ρ−L

∫ 1

0
[T∗L,M(1, s)X0]u0(s)ds

−
∫ 1

0
[T∗(1, s)X0]u0(s)ds

= π−L ρ−L

∫ 1

0
[(T∗L,M(1, s)− T∗(1, s))X0]u0(s)ds

+(π−L ρ−L − IA)
∫ 1

0
[T∗(1, s)X0]u0(s)ds.

(7.16)

However, in the last addend,
∫ 1

0 [T
∗(1, s)X0]u0(s)ds is the state solution at 1

of {
v′(t) = L∗(t)[vt ◦ sω∗ ] + u0(t), t ∈ [0, 1],

v0 = 0,

and the latter is not necessarily continuously differentiable since u0 ∈ U is
not necessarily continuous, so that (7.4) of Lemma 7.2 cannot be applied as
done above. Nevertheless, one can define ξ∗2 from system (6.85) in place of
(6.33), i.e.,

ξ∗2 :=
∫ 1

0
[T∗(1, s)X0](L

∗[G(u0, ψ0)· ◦ sω∗ ])(s)ds + ψ0.

Similarly, one can define ξL,M,2 from system (6.86) in place of (6.76), i.e.,

ξ∗L,M,2 := π−L ρ−L

∫ 1

0
[T∗(1, s)X0]π

+
L ρ+L (L

∗
M[G(u0, ψ0)· ◦ sω∗ ])(s)ds + ψ0,

giving

ξ∗L,M,2− ξ∗2 = π−L ρ−L

∫ 1

0
[T∗L,M(1, s)X0]π

+
L ρ+L (L

∗
M[G(u0, ψ0)· ◦ sω∗ ])(s)ds

−
∫ 1

0 [T
∗(1, s)X0](L∗[G(u0, ψ0)· ◦ sω∗ ])(s)ds

= π−L ρ−L

∫ 1

0
[(T∗L,M(1, s)− T∗(1, s))X0]π

+
L ρ+L (L

∗
M[G(u0, ψ0)· ◦ sω∗ ])(s)ds

+ π−L ρ−L

∫ 1

0
[T∗(1, s)X0][π

+
L ρ+L − IU](L∗M[G(u0, ψ0)· ◦ sω∗ ])(s)ds

+ π−L ρ−L

∫ 1

0
[T∗(1, s)X0](L

∗
M[G(u0, ψ0)· ◦ sω∗ ]− L∗[G(u0, ψ0)· ◦ sω∗ ])(s)ds

+ (π−L ρ−L − IA)
∫ 1

0
[T∗(1, s)X0](L

∗[G(u0, ψ0)· ◦ sω∗ ])(s)ds.
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Thus, the proof of (7.15) can be accomplished by using the same arguments
adopted in the proof of (7.11), since the term L∗[G(u0, ψ0)· ◦ sω∗ ] is continu-
ous under (T4) and therefore the fourth addend vanishes. Moreover,

lim
L,M→∞

kL,M,2 = k2 (7.17)

thanks to (6.74) in Lemma 6.20.
Note that ψL,M is bounded, from

∥ψL,M∥A ≤ (Λm + Λ′m)∥G(uL,M, ψL,M)1∥∞ + ∥ψ0∥A, (7.18)

which, in turn, follows from the second of (6.76), where

∥G(uL,M, ψL,M)1∥∞ = ∥G(uL,M, ψL,M)|[0,1]∥∞

is bounded as it follows from the third of (6.76) and the continuity of p.
Eventually,

lim
L,M→∞

hL,M = 0 (7.19)

follows since in the third of (6.83) φL,M converges to φ thanks to Lemma
6.20 again and νL,M in (6.79) vanishes. The latter statement is a consequence
of ψL,M being bounded, µL,M → 1 from Lemma 6.20 and that (π−L ρ−L −
IA)T∗L,M(1, 0) vanishes since

(π−L ρ−L − IA)T∗L,M(1, 0) = (π−L ρ−L − IA)[T∗L,M(1, 0)− T∗(1, 0)]

+ (π−L ρ−L − IA)T∗(1, 0).

Indeed, the right-hand side above vanishes under (N2) thanks to (7.4) of
Lemma 7.2, Lemma 6.20 again and to the fact that the range of T∗(1, 0)
contains only continuously differentiable functions.

In conclusion, by (7.14), (7.17) and (7.19),

lim
L,M→∞

(ωL,M −ω) = lim
L,M→∞

(
− kL,M,2 + hL,M

kL,M,1
+

k2

k1

)
= lim

L,M→∞

−kL,M,2k1 − hL,Mk1 + k2kL,M,1

kL,M,1k1

=
−k2k1 − 0 · k1 + k2k1

k1k1
= 0.

Lemma 7.9. Let ρ−L and π−L be defined respectively in (6.60) and (6.62) under (N2)
and G+1 ,G−1 be defined in (6.91). Then, under (T2),

lim
L,M→∞

∥π−L ρ−L G
+
1 − G

+
1 ∥A←C+ = 0 (7.20)

and
lim

L,M→∞
∥π−L ρ−L G

−
1 − G

−
1 ∥A←A = 0. (7.21)

Proof. (7.20) follows from the fact that G+1 C+ contains only continuously dif-
ferentiable functions by the first of (6.91). (7.21) follows from the fact that
G−1 A contains only constant functions by the second of (6.91).



8 C O N C L U D I N G R E M A R K S A N D
F U T U R E W O R K

As explained in Section 1.2, the infinite dimensionality of delay dynamical
systems poses serious challenges in their qualitative and quantitative study.
As a result, much work is still required to develop a comprehensive theory
of DDEs and REs, as well as relevant numerical methods, particularly in the
latter case. This thesis is meant to represent a (small) step towards this di-
rection, proposing means to improve the performance of existing techniques
(Chapter 4) and extensions of known numerical methods to new classes of
equations (Chapter 5), as well as addressing theoretical problems concerning
the convergence of such methods (Chapters 6 and 7).

In particular, it was proved in Chapter 4, through numerical experiments,
that the internal approach proposed is more efficient than the standard ap-
proaches for the continuation of equilibria. Note that this efficiency comes
at the cost of loss of generality, and possibily a higher implementation time,
when considering general-purpose software such as MatCont [4] for com-
parison. However, the internal approach was also shown to be superior to
that proposed in [90] (as well as in [35]), which features the same lack of
generality.

Given the interest towards periodic solutions in applications of delay equa-
tions, extending the approach in order to continue non-steady solutions
could be worth the effort. As anticipated at the end of Section 1.2, this is
indeed the final goal as far as internal continuation is concerned, and this
extension would somehow translate into merging the approach with the one
described in Chapter 5 to compute periodic solutions.

Further (heuristic) improvements of both approaches can also be consid-
ered. Specifically, one could think of refining the relevant Newton’s step by
exploiting the band diagonal structure of the corresponding Jacobian matrix.

Finally, the work presented in Chapter 6 (as well as in Chapter 7) is an
attempt to carry a convergence analysis of the FEM to compute periodic
solutions of DDEs. It constitutes only the first step towards the final goal
of proving the convergence of the method for coupled RE/DDE systems.
In the case of DDEs, the method does not quite correspond to the (more
natural) approach in [53] (described in Section 5.2), in that it involves the
collocation of the function appearing on the left-hand side (i.e., the deriva-
tive, and not the solution itself). However, the latter approach is indeed the
natural one when it comes to REs or neutral DDEs. In both cases, further
substantial work would probably be needed, given the different smoothness
requirements for the functional spaces involved in the analysis. Indeed, as
it was clear at several points of the analysis presented, due to the need for
differentiating with respect to parameters, such requirements are highly in-
fluenced by the role of the period ω, which is directly linked to the course of
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time. Moreover, the problem will probably require fundamentally different
Banach spaces.

The possibility of extending the method to DDEs with different type of
delays (e.g., state-dependent) is also an open problem. Although, in this case,
the relevant Banach spaces do not necessarily have to change, other issues
may be encountered (recall the comment concerning (T5) before Assumption
6.1).

It is worth mentioning that verifying the hyperbolicity of the periodic orbit
needed in Proposition 6.11 can be reduced to checking the eigenvalues of
a certain finite-dimensional characteristic matrix of the periodic orbit (see
[94, 97]).

The main result of this Chapter is the O(L−m) convergence order for FEM,
for a fixed m and an increasing number L of mesh intervals. Note, how-
ever, that the whole analysis can also be performed by considering differ-
ent choices for the discretization, for instance nonuniform (adaptive) outer
meshes. In this case, the convergence order would be O(hm), where h is the
(vanishing) size of the largest mesh interval.

It might be worth to make some final observations concerning formula-
tions (6.2) and (6.3). Although the two formulations are formally different,
they lead to fundamentally equivalent numerical methods. In fact, when
discretizing the problem (6.2) one just introduces redundant variables. Thus,
it is reasonable to conjecture that a theoretical convergence analysis can be
also carried out using formulation (6.3), using a different choice for the fixed
point problem.
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