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And you may ask yourself, well,
“How did I get here?”

And you may ask yourself,
“How do I work this?”

And you may ask yourself,
“Am I right? Am I wrong?”

And you may say yourself,
“My God! What have I done?”

– Talking Heads





Abstract

Data science is a well-known buzzword, that is in fact composed of two distinct
keywords, i.e., data and science. Data itself is of great importance: each analysis
task begins from a set of examples. Based on such a consideration, the present
work starts with the analysis of a real case scenario, by considering the development
of a data warehouse-based decision support system for an Italian contact center
company. Then, relying on the information collected in the developed system, a
set of machine learning-based analysis tasks have been developed to answer spe-
cific business questions, such as employee work anomaly detection and automatic
call classification. Although such initial applications rely on already available al-
gorithms, as we shall see, some clever analysis workflows had also to be developed.
Afterwards, continuously driven by real data and real world applications, we turned
ourselves to the question of how to handle temporal information within classical
decision tree models. Our research brought us the development of J48SS, a decision
tree induction algorithm based on Quinlan’s C4.5 learner, which is capable of deal-
ing with temporal (e.g., sequential and time series) as well as atemporal (such as
numerical and categorical) data during the same execution cycle. The decision tree
has been applied into some real world analysis tasks, proving its worthiness. A key
characteristic of J48SS is its interpretability, an aspect that we specifically addressed
through the study of an evolutionary-based decision tree pruning technique. Next,
since a lot of work concerning the management of temporal information has already
been done in automated reasoning and formal verification fields, a natural direction
in which to proceed was that of investigating how such solutions may be combined
with machine learning, following two main tracks. First, we show, through the de-
velopment of an enriched decision tree capable of encoding temporal information
by means of interval temporal logic formulas, how a machine learning algorithm
can successfully exploit temporal logic to perform data analysis. Then, we focus on
the opposite direction, i.e., that of employing machine learning techniques to gen-
erate temporal logic formulas, considering a natural language processing scenario.
Finally, as a conclusive development, the architecture of a system is proposed, in
which formal methods and machine learning techniques are seamlessly combined to
perform anomaly detection and predictive maintenance tasks. Such an integration
represents an original, thrilling research direction that may open up new ways of
dealing with complex, real-world problems.
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Introduction

Data science is a broad term. In [95], it is defined as a multi-disciplinary field that
relies on scientific methods, processes, algorithms and systems to extract knowledge
and insights from structured and unstructured data. Another way of looking to it is
to consider that data science has in fact two distinct keywords, that are, data and
science [10].

Data is of the uttermost importance. Either if supervised or unsupervised learn-
ing is used, or a simple exploration is performed, all starts from a set of examples.
Based on this consideration, the thesis starts by considering a real business scenario,
in which an enterprise-wide, event-based data warehouse is built for an Italian multi-
skill, multi-channel contact center company [61]. As we shall see, the warehouse has
become the fulcrum of the enterprise’s whole IT infrastructure, also thanks to the
development of a business intelligence layer capable of supporting OLTP (On-Line
Transaction Processing) as well as OLAP (On-Line Analytical Processing) queries;
the latter, in turn, allowed for the development of utilities such as daily reports,
real-time call flow tracking and employee performance monitoring, giving rise to a
fully-fledged decision support system.

Then, there is science: data science is only useful when the data are used to an-
swer a question [10]. Empowered by the business intelligence layer, a set of machine
learning-based analysis tasks have been developed over the warehouse, including
employee work anomaly detection and call classification [68]. Such initial applica-
tions relied on already available algorithms, even if some clever analysis workflows
had to be developed, as in the case of the feature selection experiment described
in Section 3.1, and published as a standalone paper in [63]. Observe that feature
selection plays a major role in those applications where data and model readability
are of paramount importance, which can be the case, for example, of a business set-
ting, where a domain expert may want to read and validate a model before putting
it into production. We specifically addressed such an interpretability requirement
by investigating on the possibility of employing multi-objective evolutionary opti-
mization techniques to the task of decision tree pruning [65], so to achieve a better
trade-off between model size and classification performance.

The data modelling and preparation steps performed through the data ware-
house development, together with these first research work helped us to understand
the importance of relying on real data, and working on real world applications. On
the basis of this wisdom, and always taking such considerations into account, we
then focused on the main topic of this thesis, i.e., how to handle temporal infor-
mation in data mining tasks. In fact, temporal data plays an important role in the
extraction of information in many applications, and it comes in at least two flavours:



xii Introduction

it can be represented either by a discrete sequence of finite-domain values, e.g., a
sequence of purchases, as well as by a real-valued time series (for instance, think of
a stock price history). Sometimes, temporal information is complemented by other,
“static” kinds of data, which can be numerical or categorical. As an example, this
is the case with the medical history of a patient, which may include: (i) categorical
attributes, with information about the gender or the smoking habits; (ii) numer-
ical attributes, with information about the age and weight; (iii) time series data,
tracking the blood pressure over several days, and (iv) discrete sequences, describ-
ing which symptoms the patient has experienced and which medications have been
administered to her/him. Such a heterogeneous set of information pieces may be
useful, among others, for classification purposes, such as trying to determine the
disease affecting the patient. Another use case is that of phone call classification
in contact centers [61]: a conversation may be characterized by sequential data (for
instance, textual data obtained from the call recordings), one or more time series
(keeping track of the volume over time), and a set of categorical or numerical at-
tributes (reporting, e.g., information pertaining to the speakers, or the kind of call).
Unfortunately, different kinds of data typically require different kinds of preprocess-
ing techniques and classification algorithms to be managed properly, which usually
means that the heterogeneity of data and the complexity of the related analysis tasks
are directly proportional. Moreover, since multiple algorithms have to be combined
to produce a final classification, the final model may lack in interpretability. Again,
this is a fundamental problem in domains where understanding and validating the
classification process is as important as the accuracy of the classification itself, e.g.,
production business systems and life critical medical applications.

Thus, we turned ourselves to the development of J48S (later further extended into
J48SS) [66, 67, 69] which, as we shall see, is a decision tree induction algorithm based
on WEKA’s J48 (a Java implementation of C4.5 [274]). The algorithm is capable of
naturally exploiting categorical and numerical attributes as well as sequential and
time series data during the same execution cycle. Moreover, the resulting decision
tree models are intuitively interpretable, meaning that a domain expert may easily
read and validate them. J48SS has been applied to two distinct real world tasks,
proving its worthiness within a phone call analysis framework (given that a phrase
can be considered as a sequence of words) [66], and in a pollution analysis task [64].

Since a lot of work on the management of temporal information has been done
in automated reasoning and formal verification, a natural direction in which to pro-
ceed with the research was then that of investigating how such solutions can be
combined with machine learning algorithms. In the last part of the thesis, we start
such an exploration following two main directions. First, we show how a machine
learning algorithm can successfully exploit temporal logic to perform data analysis.
More precisely, we present an enrichment of decision tree models with temporal in-
formation, encoded by interval temporal logic formulas [64]. Then, we focus on the
opposite direction, i.e., that of employing machine learning techniques to generate
temporal logic formulas. We consider the task of natural language English utter-
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ance formalization: we give an overview of the state of the art, we make a critical
experimental evaluation of existing solutions, and we outline some promising direc-
tions for future research [70]. Finally, as a conclusive development, we propose the
architecture of a system, in which formal methods and machine learning techniques
are seamlessly combined to perform anomaly detection and predictive maintenance
tasks [60].

The latter topic represents, at the same time, the culmination of the entire
research path, and the starting point for a new journey. We started from some basic
data modelling and analysis tasks, and this led us to consider temporal information
under different aspects, and in ever increasing complexity. The final outcome of
our work is an integrated framework that allows us to deal with both temporal as
well as different kinds of atemporal information. We believe that, as it is emerging
from the most recent literature in the field, a new, thrilling research direction is
that of combining machine and statistical learning solutions with logics and formal
methods techniques, to deal with complex real-world problems [172], that can be
characterized by several kinds of sequential and temporal information.

The thesis is structured as follows. Chapter 1 provides some background knowl-
edge on which the main topics discussed in the thesis are based, including a focus on
learning with sequential and time series data, dimensionality reduction via feature
selection, decision tree models and their ensembles, and multi-objective evolutionary
computation. Chapter 2 presents the development of a data warehouse-based deci-
sion support system for Gap Srlu company, an Italian business process outsourcer
focused on contact center services. Chapter 3 discusses an advanced analysis task
developed over the warehouse, that deals with classical (categorical and numerical)
data: a methodology is presented, that makes use of feature selection and fuzzy
classification to predict whether an inbound call will or will not be served on time
by the contact center staff. Chapter 4 describes an approach to decision tree pruning
based on multi-objective evolutionary computation, that allows the user to easily
choose the most appropriate trade-off between accuracy and readability of the gen-
erated models. Chapter 5 presents J48S, a first extension to J48 which is capable of
handling sequential data; the algorithm is then applied within a phone call analysis
framework inside Gap Srlu company. Chapter 6 focuses on time series data, and
presents J48SS, a further enhancement of J48S which is also capable of dealing with
time series attributes for classification purposes; the model is profitably applied to a
pollution analysis task on a heterogeneous dataset collected in the city of Wroc law,
Poland. Chapter 7 deals with the combination of machine learning and temporal
logic: Temporal ID3, a decision tree capable of extracting interval temporal logic
formulas from raw temporal data is presented; then, a review of the state of the art
concerning the formalization of English utterances by means of machine learning
and temporal logic is discussed, along with some possible research paths. Also, a
system is proposed, that combines formal methods and machine learning techniques
to perform failure detection and predictive maintenance tasks. Finally, we provide
an overall assessment of the work done, together with future research directions.
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1
Background

This chapter gives an overview of the main topics discussed in the thesis. Specif-
ically, Section 1.1 is devoted to data mining and machine learning, and includes a
focus on learning with sequential and time series data, and dimensionality reduction
through feature selection. Then, decision trees are presented, both with respect to
single (Section 1.2) and ensembles (Section 1.3) of models. Finally, in Section 1.4
evolutionary algorithms are discussed, with a special attention to NSGA-II and
ENORA, two multi-objective optimization algorithms that we relied on in our work
(see, e.g., Sections 3.1 and 6.1).

1.1 Data mining and machine learning

If we consider data to be a raw collection of known facts, then we may define in-
formation as a set of concepts, regularities, and patterns that are buried in them.
Data mining is the process of extracting relevant and previously unknown informa-
tion from (big) quantities of data [331]. The discovered information may then be
encoded in suitable models (e.g., decision trees, see Section 1.2), so that data mining
can also be referred to as a process of abstraction. Such models are typically built
by means of machine learning algorithms, that automatically or semi-automatically
delve into data, providing a “technical” foundation to the whole process. Learning
may be divided into two broad categories, i.e., supervised and usupervised learning.

In a supervised learning task, an algorithm is given a training dataset in which
each instance is characterized by one or more input variables x (predictors, or fea-
tures) and an output variable Y (label). The goal is that of inferring a function f ,
capable of mapping the input into the output: Y = f(x). Then, based on the kind
of label, a supervised learning task may be considered to be a regression (in which
Y is numerical) or a classification (in which Y is categorical) task.

On the other hand, unsupervised learning does not make use of labels. An algo-
rithm is given a dataset of instances, each characterized by one or more predictors.
The goal is that of modelling the underlying structure or identify general patterns
in the data, so as to discover useful information. Examples of unsupervised learning
are given by clustering and association rule learning tasks.
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Most machine learning applications deal with static, atemporal data, some ex-
amples of which are presented in Section 2.6 and Chapter 3. Nevertheless, the
temporal aspect plays an important role in the extraction of information in many
domains, and it comes in at least two flavours: it can be represented either by a
discrete sequence of finite-domain values (e.g., a sequence of purchases), as well as
by a real-valued time series (think for example about a stock price history). Thus,
Section 1.1.1 introduces the task of learning on sequential data, whereas Section
1.1.2 presents an overview on the analysis of time series, specifically focused on the
task of classification by means of a particular kind of patterns, called shapelets.

Regardless of the type of learning, the data mining process always begins with
the data collection phase, followed by its preparation, that typically includes tasks
such as data cleaning and normalization, missing values imputation, feature engi-
neering and dimensionality reduction. The latter aspect is particularly important
when dealing with high-dimensional datasets, as it allows to reduce the number
of features, which may lead to smaller and more accurate models being trained.
Among the different dimensionality reduction techniques, this thesis presents some
original feature selection approaches (see Chapter 3). For this reason, the present
background chapter also includes an overview of feature selection, presented in Sec-
tion 1.1.3.

1.1.1 Learning on sequential data: sequential pattern min-
ing

Sequences arise naturally in many domains: let us think for example about tracking
all the purchases made by a customer on an online shopping website, or even consider
natural language textual data, which is essentially a list of words; also, they may be
the result of a time series discretization process (see Section 1.1.2).

Sequential pattern mining is a popular data mining task aimed at discovering
“interesting” patterns in sequences [123, 224], that is, patterns that can prove to be
useful for supervised or unsupervised learning tasks.

Following the original definition given by [26], the problem of sequential pattern
mining can be described as follows. Consider a database D of customer transactions,
where each entry is characterized by the fields Customer-id, Transaction-time, and
the kinds of items that the customer bought in the specific transaction. Then, an
itemset is a non-empty set of items, and a sequence can be considered as an ordered
list of itemsets. Given the information contained in database D, we may easily
construct the sequence of purchases for each customer, as shown in Tables 1.1 and
1.2. Then, a possible pattern that may be extracted from the first sequence in Table
1.2 is, for instance, {A}, {C}, {A,B}.

Finally, we may intuitively define the problem of sequential pattern mining as the
one of finding interesting patterns made by lists of (sub)itemsets, i.e., concatenations
of symbols taken from the original sequences that are useful for the specific task at
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Table 1.1: An exemplary database of customer transactions.

Customer-id Transaction-time Items bought

1 2018-01-01 {A, B, C}
1 2018-01-15 {A, C}
1 2018-02-20 {A, B}
1 2018-02-22 {C, D}
2 2018-01-23 {A, C}
2 2018-02-18 {A, C, D}
2 2018-03-07 {D}

Table 1.2: Sequences corresponding to the customer transactions.

Customer-id Associated sequence

1 {A, B, C}, {A, C}, {A, B}, {C, D}
2 {A, C}, {A, C, D}, {D}

hand. Such patterns may also be simple concatenations of items, as in the case of
patterns extracted from textual data, that are made of words.

The work presented in Chapter 5 deals with the extraction of frequent patterns,
which are concatenations of symbols that frequently appear in a set of sequences,
with a frequency that is no less than a user-specified minimum support threshold [26].
Several sequential pattern mining algorithms have been proposed over the years, such
as PrefixSpan [264], SPADE [338], and SPAM [40]. However, a drawback of such
algorithms is that they typically generate a large amount of patterns, which may be
redundant. This is problematic for two reasons: (i) it makes it difficult for a user
to gain any insight based on the generated output, and also to exploit the patterns
for further data mining tasks, and (ii) very large sets of patterns may imply that
many resources are consumed and an extremely high computation time is required
in the generation process. In order to reduce the computational burden of the
mining tasks, and also to present a reduced set of patterns to the user, some concise
representations of frequent sequential patterns have been designed. A frequent closed
sequential pattern is a frequent sequential pattern such that it is not included in any
other sequential pattern having exactly the same frequency, that is, it is “maximal”.
Algorithms that have been developed to extract such patterns include CloSpan [336],
BIDE [325], ClaSP [143], and CM-ClaSP [121]. Another possible solution is given by
sequential generator patterns. Opposite to the concept of closed patterns, generators
are “minimal”, meaning that a pattern is considered to be a generator if it does not
exist any pattern which is contained in it and has the same frequency. According
to the minimum description length (MDL) principle [285], generators are preferable
over closed patterns for model selection and classification, since they may be less
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prone to overfitting effects [221]. There also exists a very recent solution capable of
extracting patterns according to different concise representations during the same
execution cycle [101].

In this thesis, we make use of the algorithm VGEN [122] (see Section 5.1), which,
at the best of the our knowledge, represents the state-of-the-art in the extraction
of general sequential generator patterns. VGEN operates in a top-down fashion,
starting from the most general patterns down to more specific ones. A pattern is
considered as a sequence of itemsets, which are in turn unordered sets of distinct
items. An item is an element that may appear in a sequence belonging the considered
dataset. Intuitively, items that belong to the same itemset are considered to occur
at the same time. The algorithm starts by listing all single-itemset, single-item
frequent patterns, and then it grows them by means of the so-called s-extension
operations (in which a new itemset is enqueued to the pattern) and i-extension
operations (in which a new item is added to the last itemset), ensuring also that
only generator patterns are produced. Of course, as a pattern grows, its support
(number of instances in the dataset that contain the pattern) decreases, and the
growing phase continues until a minimum support threshold is reached, which may
be specified by the user. The algorithm is also capable of extracting non strictly
contiguous patterns, by specifying a maximum gap tolerance between the itemsets.

1.1.2 Learning on time series data: shapelet based time se-
ries classification

As we have already discussed, temporal data plays a major role in many fields,
ranging from healthcare [234], to weather prediction [232], and financial data analysis
[313]. Temporal data mining is a specific instance of data mining that deals with
the extraction of useful information from temporal data, which is often represented
by time series, that in turn basically consist of a sequence of real values sampled at
regular time intervals [238].

Typical time series-based tasks include clustering [212] and forecasting [239],
although this thesis mainly focuses on time series-based classification, which is rec-
ognized as a difficult problem in the literature [164].

A commonly adopted solution to classification involves summarizing the content
of a time series (or parts of it, for instance through windowing [238]) by means of
statistical measures such as mean, variance, maximum, minimum, and so on. The
resulting dataset may then be processed by classical learning algorithms, such as
decision trees or support vector machines. Despite the simplicity of the approach, it
has a clear downside, i.e., the loss of any explicitly represented temporal information.

Another possible strategy is that of performing a preliminary data discretization
step by means of approaches such as Equal Width or Equal Frequency binning [238],
or more advanced strategies like Symbolic Aggregate Approximation (SAX) [214]
or Persist [240]. This step allows one to build a symbolic representation of the
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Figure 1.1: A time series (blue solid line) and a possible shapelet (red dotted line).
The two lines are intentionally shifted for the ease of comprehension.

time series, that can be then analyzed with traditional pattern mining algorithms
[224]. Such an approach has been followed in many studies, e.g., in [240, 244, 340].
However, also the discretization phase typically involves a loss in information, and
may reduce the interpretability of the results.

Alternative approaches rely on patterns that can be generated directly from
the numerical data, such as time series shapelets. Shapelets have been originally
presented in [337] as contiguous time series subsequences which are in some sense
maximally representative of a class. The overall idea is that shapelets are meant to
capture local features of the time series, which should be more resistant to noise and
distortions than global characteristics. Figure 1.1 shows an example of a shapelet,
together with a time series. Since a shapelet is defined as an arbitrary-length con-
tiguous subsequence of a training set time series, we may determine the total number
of shapelets that can be obtained from a dataset. Let us consider n instances, and
define as li the length of the time series of the ith instance. Then, the total number
of shapelets that may be generated is

∑n

i=1(li!) . Given such an enormous space,
an exhaustive search for the best shapelets is unfeasible and, indeed, several con-
tributions have concentrated on the problem of speeding up the shapelet extraction
process [148, 149, 162, 192, 280, 284, 330], following, for instance, heuristic search,
or random sampling of the shapelet candidates. In the present thesis, an evolution-
ary algorithm-based solution to the problem of shapelet generation is presented in
Section 6.1.

Typically, shapelets are used in the following way. Given a training dataset made
of time series, k shapelets are extracted through a suitable method. As a result,
each of the instances is represented by k predictor attributes: each one of them
encodes the distance between the corresponding shapelet and the instance’s time
series. For its simplicity, the Euclidean distance is the most used distance metric:
the final value corresponds to the minimum distance between the time series and the
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shapelet, calculated with a sliding window approach. Measures based on Dynamic
Time Warping [295] or Mahalanobis distance [35] have also been investigated in the
literature.

1.1.3 The feature selection process

Feature selection is the process of removing attributes from the data set that are
irrelevant to task to be performed [216]. Its main aim is to facilitate data understand-
ing, and to reduce storage and computation time requirements for model learning,
while retaining a suitably high accuracy in representing the original information.
Feature selection algorithms may be classified into several categories, depending on
the specific criterion under consideration. According to whether the training set
is composed of labelled instances or not, the selection may be, respectively, super-
vised or unsupervised. Methods in the former category seek for correlations between
attribute and class label values, whereas those in the latter employ (usually, de-
scriptive) statistical tests over attributes, such as, for example, a near-zero-variance
test. Feature selection methods consist of four steps, namely subset generation, sub-
set evaluation, stopping criterion, and result validation. The design of such steps
entails the selection of: (i) a target to which to apply the procedure; (ii) a search
strategy, to guide the incremental generation of the feature set; (iii) an evaluation
strategy, which depends on the target type and, in the case of supervised method-
ologies, may imply choosing an actual classifier; (iv) an evaluation metric used to
score the candidates.

Subset generation. Subset generation methods (also referred to as search strate-
gies) are used to guide the iterative generation of the feature set, in the space
of all the possible combinations of features. They can be categorized into deter-
ministic and probabilistic methodologies, the former giving back the same set of
attributes if repeatedly executed (such as WEKA’s BestFirst [263]), and the latter
taking non-deterministic choices during execution (as in the case of WEKA’s Ge-
neticSearch [141]). Moreover, in the former category it is possible to distinguish
strategies according to their search direction: forward search strategies start with
an empty attribute set, and then grow it; backward search strategies begin with
an initial set consisting of all attributes, and proceed by discarding elements; bi-
directional search strategies consider an initial point in the subset space, and then
proceed in both directions; on the contrary, probabilistic (or random) strategies do
not follow a predefined search direction, for example in optimization through genetic
algorithms.

Subset evaluation. According to the target of the selection procedure, it is possi-
ble to classify evaluation strategies into univariate and multivariate. Strategies that
belong to the former category evaluate attributes independently; as a result, they
are computationally less demanding than those that belong to the latter, which con-
sider subsets of attributes as a whole. Moreover, multivariate approaches can also



1.2. Decision trees 7

take into account complex relationships between features, such as redundancy. In
Chapter 3 we take into consideration supervised methods, and, in particular, filter
and wrapper models. Filter models are independent from the successive classifier
learning phase, and are based only on general measures such as the correlation or
consistency with the variable to predict. Filter techniques scale well with the size
of data sets; however, since they ignore the classification performance, they might
not always provide the best results [99, 265]. Wrapper models, on the other hand,
evaluate the predictive accuracy of the attribute set with a selected classifier. These
techniques typically offer better results than filters, at the cost of being computa-
tionally more demanding, and more prone to overfitting [217].

1.2 Decision trees

As it is commonly recognized, decision trees have still a very important position
among classification models [331]. This is mainly due to the facts that (i) they
can be trained and applied efficiently even on big datasets, and (ii) they are easily
interpretable. Thanks to the latter feature, they turn out to be useful not only for
prediction, but also for highlighting relevant patterns or regularities in the data.
This is extremely beneficial in those application domains where understanding the
classification process is at least as important as the accuracy of the prediction itself.

A typical decision tree is constructed recursively, starting from the root, following
the traditional top down induction of decision rees (TDIDT) approach: at each node
the attribute that best partitions the training data, according to a predefined score,
is chosen as a test to guide the partitioning of instances into child nodes, and the
process continues until a sufficiently high degree of purity (with respect to the target
class), or a minimum cardinality constraint (with respect to the number of instances
reaching the node), is achieved in the generated partitions. A decision tree induced
by the TDIDT approach tends to overgrow, and this leads to a loss in interpretability
as well as to a risk of overfitting training data, that results in capturing unwanted
noise. As a direct consequence, such trees typically do not perform well on new,
independent instances, since they fit the training data “too perfectly”.

In order to simplify the tree structure, thus making the trees more general, prun-
ing methods are typically applied. According to the time when such an operation
is performed, we may distinguish among: (i) pre-pruning, consisting of interrupting
the construction of the decision tree according to a stopping criterion such as min-
imum node cardinality, or when none of the attributes leads to a sufficiently high
splitting score, and (ii) post-pruning, that is, building the entire tree first, and then
removing or condensing some parts of it. While pre-pruning has the advantage of
not requiring the construction of the whole tree, it usually leads to worse accuracy
results than post-pruning [274]. There are two main strategies for evaluating the
error rate in a post-pruning setting. The first one consists of keeping part of the
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training data as an independent hold out set (and, thus, working on three, indepen-
dent, datasets: training, hold out, and test), and deciding whether to prune a section
of the tree or not on the basis of the resulting classification error on it. Examples
of such techniques include a variant of CART’s Cost-Complexity Pruning [56] and
the so-called Reduced-Error Pruning [273]. It should be noticed that splitting data
in three different partitions reduces the amount of labelled instances available for
training, which, in some cases, are already scarce. The second strategy, on the con-
trary, focuses on estimating the apparent classification error due to pruning on the
basis of the training data only, as in, for instance, Pessimistic Error Pruning [273]
and C4.5’s Error-Based Pruning [274].

From a computational point of view, it is known that the problem of constructing
an optimal binary decision tree is NP-Complete [165]. The result is that all practi-
cal implementations of TDIDT algorithm and pruning methodologies are based on
heuristics, that typically have a polynomial complexity in the number of instances
and features in the training set.

The present thesis focuses on one of the most used and well known decision tree
induction algorithms, i.e., C4.5 [274]1. For this reason, the next section is devoted
to a thorough description of such an algorithm, while Section 1.2.2 gives a short
account of C5.0, an updated and commercial version of C4.5.

1.2.1 C4.5 decision tree learner

Construction of the tree To guide the splitting process in the decision tree
building phase, J48/C4.5 adopts information gain (an entropy-based criterion) as
the scoring strategy [273]. Given a set of observable values V = (v1, . . . , vn), with
associated probabilities P = (p1, . . . , pn), the information conveyed by P, or the
entropy of P, is defined as

E(P ) = −
n

∑

i=1

pi ∗ log2(pi) . (1.1)

If a dataset T of instances is partitioned into disjoint exhaustive subsets C1, . . . , Ck

on the basis of the class value, then the information needed to identify the class of
an element of T is

Info(T ) = E(P ), where P = (|C1|/|T |, |C2|/|T |, . . . , |Ck|/|T |) .

Intuitively, the purer T is with respect to the class values, the lower the entropy, and
the easier to identify the class of an instance. Given T and a categorical attribute X
of the dataset (non class), we may partition the instances into subsets T1, T2, . . . , Tj

1Specifically, we make use of J48, the WEKA’s Java implementation of C4.5 [125]. The terms
J48 and C4.5 will be used interchangeably in the remainder of the thesis.
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on the basis of the value they take on X. Then, the information needed to identify
the class of an element of T becomes the weighted average of the information needed
to identify the class of an element of Ti for each i = 1, . . . , j, that is,

Info(X, T ) =

j
∑

i=1

(|Ti|/|T |) ∗ Info(Ti) . (1.2)

We may now define information gain as the difference between the information
needed to identify an element of T and the information needed to identify such an
element after the value it takes on X has been obtained:

Gain(X, T ) = Info(T )− Info(X, T ) . (1.3)

Thus, the information gain represents precisely the gain in information due to at-
tribute X. Starting from the root, at each node of the tree C4.5 chooses to branch
on the attribute of the data which it considers best, namely the one with the highest
information gain ratio, defined as

GainRatio(X, T ) =
Gain(X, T )

SplitInfo(X, T )
, (1.4)

where

SplitInfo(X, T ) = E(|T1|/|T |, . . . , |Tj|/|T |) (1.5)

is the split information metric, that takes into account the number and size of
branches that would be generated if the split on attribute X is chosen. Introducing
SplitInfo corrects the bias that information gain has towards highly branching
attributes (as an example, consider a dataset of people containing the attribute
social security number, having unique values; a split on that attribute would produce
single-instance subsets, leading to the highest possible information gain).

C4.5 also supports numerical attributes. In order to branch on a numerical
attribute, the algorithm identifies a threshold and then splits the instances into
those whose attribute value is above the threshold and those that are less than or
equal to it [275]. This means that numerical splits are always binary, contrary to
the categorical ones, which generate a number of children equal to the number of
distinct values. Let us now consider the selection of a threshold for a numerical
attribute A, belonging to a dataset D. If there are N distinct values of A in D,
then there are (N − 1) thresholds that could be used differently for a binary test
on A during the tree construction phase, since any threshold between two values
will have the same effect in dividing the instances. Each threshold gives unique
subsets D1 and D2, so in this case the value of the gain ratio is not only a function
of the attribute, but also of the threshold. Thus, a straightforward extension to the
categorical approach is to evaluate the ratio for each of the (N − 1) split points,
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choosing the one that leads to the highest value. The gain ratio value for that
particular split point is considered to be the gain ratio value for the attribute. To
overcome the overfitting problems of this approach, an MDL-based adjustment [285]
to the information gain for splits on numerical attributes was included in [275]: if
there are K candidate splits on a certain numerical attribute at the node currently
considered for splitting, log2(K)/M is subtracted from the information gain, where
M is the number of instances at the node. Observe that the resulting value may be
negative after the subtraction operation, and tree growing will stop if there are no
attributes left with a positive information gain.

Pruning of the tree After the tree growing phase, two default, independent,
methodologies are typically employed together to reduce the size of the generated
model, that are, Collapsing and Error-Based Pruning (EBP).

Collapsing a tree can be seen as a special case of pruning, in which parts of the
tree that do not improve the classification error on the training data are discarded.
For example, given a node N that roots a subtree in which all leaves predict the
same class C, the entire subtree can be collapsed into the node N that becomes a
leaf predicting C.

EBP is based on a different idea. Since the decision tree error rate on the train-
ing set is biased by the learning phase, it does not provide a suitable estimate for
the classification performance on future cases. Intuitively, EBP consists of system-
atically evaluating each node N and deciding, using statistical confidence estimates,
whether to prune the subtree rooted in N or not. Since pruning always worsens the
accuracy of the tree on the training dataset (or leaves it unchanged), EBP evaluates
the effect of a pruning by trying to correct the bias, that is, estimating the true
error that would be observed on independent data.

In essence, given a node covering n training instances, e of which misclassified,
the observed error rate f = e/n is calculated; then, the method tries to estimate the
true error rate p that would be observed over the entire population of instances ever
reaching that node, based on several additional hypothesis, among which assuming
a binomial distribution for the error.

This solution gives rise to a simple method to control the pruning aggressiveness
consisting in suitably varying the binomial confidence intervals [152], but, at the
same time, it has been criticized for the lack of a proper statistical foundation.
Also, it has been observed to have a tendency for under-pruning, especially on large
datasets [110].

1.2.2 C5.0 decision tree learner

C5.0 (also known as See5 ) is an updated, commercial version of C4.5, reported to
be much more efficient than its predecessor in terms of memory usage and com-
putation time [287]. Moreover, the resulting trees tend to be smaller and more
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accurate than those generated by C4.5 [7]. The learning algorithm follows a simi-
lar TDIDT strategy as its predecessor, relying on information gain and gain ratio
scores to partition the training instances. The pruning is based on an EBP-like
strategy, complemented by an optional global pruning step. Other important char-
acteristics of C5.0 include the possibility of generating an ensemble of trees through
boosting, the integration of an attribute selection strategy, called winnowing, the
support for asymmetric costs for different kinds of error, soft-thresholds for numeri-
cal attributes, splitting on value subsets for discrete attributes, and a multi-threaded
architecture [3]. A single-threaded version of C5.0 is available under the GNU GPL
(https://www.rulequest.com/download.html).

1.3 Decision tree ensembles

Section 1.2 discussed decision trees, remarking upon the fact that they are easily
interpretable. However, a drawback of decision trees is that they are usually less
accurate in their predictions than other methodologies, and have a tendency to
overfit training data [157]. A possible way to improve their accuracy, at the expense
of a loss in the interpretability of the model and of a higher complexity in the
training and prediction phases, is to build a set of different trees (ensemble), and
then combine the single predictions in order to output the final result. Various
methodologies can be used to build such an ensemble; one of the most popular is
bootstrap aggregating, or bagging.

Consider a labelled dataset D, made by n instances, and a decision tree learning
algorithm L. Decision tree learning algorithms have the characteristic of being
unstable, meaning that little changes in the input may produce very different trees
as output. In order to train an ensemble of k tree models, bagging exploits such
an instability in the following way: for i = 1, . . . k, a dataset Di is generated by
randomly drawing |D| instances from D with replacement (that is, the same instance
may occur multiple times in Di). Then, algorithm L is applied on each of the
datasets, with the result of obtaining k different trees. In the prediction phase, the
single tree outcomes are combined by voting (in a classification setting) or averaging
(in case of regression).

The popular Random Forest (RF) algorithm [55] can be viewed as an evolution
of the bagging methodology. Let k be the number of trees to generate in the en-
semble. In the learning phase, the WEKA’s implementation [125] of the Random
Forest algorithm operates as follows: as in bagging, the dataset is repeatedly sam-
pled with replacement for k times, obtaining k different datasets having the same
cardinality as the original one. Then, a so-called random tree is built from each
dataset, according to the traditional recursive TDIDT approach: starting from the
root, at each node the algorithm randomly determines a (sub)set of the predictor
attributes, from which it then chooses the one (categorical or numerical) that most
effectively splits the set of samples into subsets with respect to the class labels. The
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reason for considering only a subset of all attributes at each split is the correlation
of the trees in an ordinary bagging approach: if one or a few attributes are very
strong predictors for the response variable, these features will be selected in many of
the trees in the ensemble, thus preventing one from achieving a high degree of vari-
ability among the models. In the regression setting, the choice of the best splitting
attribute is made according to a numerical variance criterion: the attribute that
maximizes the difference between the variance of the original node (calculated over
the labels) and the sum of the variances of the child nodes is chosen. The splitting
process continues until a predefined stopping condition is met, such as a constraint
on the minimum number of instances in a node, a minimum reduction in variance,
or when the tree has reached its maximum allowed height. In such cases, the corre-
sponding node becomes a leaf of the tree, predicting the average label value of the
training instances that belong to it. Notice that, unlike other decision tree learning
algorithms, random trees do not perform any kind of pruning. Finally, the overall
prediction of the forest is given by averaging the single tree predictions. Empirically,
the RF algorithm exhibited a very good performance in terms of prediction accuracy
in many application domains [331].

Among the different use cases in which the Random Forest algorithm has been
profitably applied in the literature, we collaborated to the development of a solution
to the problem of outdoor positioning based on cellular fingerprints, presenting a
novel fingerprint comparison method capable of adapting to dynamic and large scale
contexts. Specifically, test carried out on real business data, with different tracking
devices and environmental settings, confirm that the novel approach is capable of
providing consistently better estimations than all the other strategies previously
considered in the literature. Since the work is out of scope with respect to the
present thesis, we refer the interested reader to the original publications [322, 323].

1.4 Evolutionary algorithms

Evolutionary Algorithms (EAs) are population-based metaheuristics which rely on
mechanisms inspired by the process of biological evolution and genetics in order to
solve (typically discrete) optimization problems [105], that indicate the process of
selecting a best element with respect to some criteria [185]. Unlike blind random
search algorithms, EAs are capable of exploiting historical information to direct
the search into the most promising regions of the search space, relying on methods
designed to imitate the processes that in natural systems lead to adaptive evolution.

In nature, a population of individuals tends to evolve, in order to adapt to
the environment in which they live; in the same way, EAs are characterized by a
population, where each individual represents a possible solution to the optimization
problem. Every solution is evaluated with respect to its degree of “adaptation” to
the problem through a single- or multi-objective fitness function.

During the computation of the algorithm, the population iteratively goes through
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a series of generations. At each generation step, some of the individuals are picked
by a selection strategy, and go through a process of reproduction (i.e., new candidate
solutions are generated), by the application of suitable crossover and mutation oper-
ators. In short, crossover is the EA equivalent of natural reproduction, by which the
characteristics of two individuals are combined to generate one or more offspring,
while mutation is used to maintain the genetic diversity in the elements of the pop-
ulation, through applying random changes in the encoding of the selected solution.
Typically, a high crossover probability tends to pull the population towards a local
minimum or maximum, while a high degree of mutation allows to explore the search
space more broadly.

The selection strategy is perhaps the factor that mainly distinguishes between
evolutionary-based meta-heuristics, although typically individuals with high degree
of adaptation are more likely to be chosen (elitism): in this way, the elements of the
population iteratively evolve toward better solutions. Finally, the algorithm termi-
nates when a predefined criteria is satisfied, such as an upper bound on the number
of generations, or a minimum fitness increment that must be achieved between sub-
sequent evolution steps of the population.

Generalization is the ability of a model to perform well on new cases, not belong-
ing to the training set. On the contrary, overfitting is a phenomenon which occurs
when a model is too closely fit to a specific and limited set of examples, and thus fails
in applying its knowledge to new data. Evolutionary techniques tend to produce
solutions that are as good as possible for a given set of instances, against which the
fitness function is evaluated, without considering the performances on possible new
cases. This may be a problem when they are used within a broader machine learning
process. Thus, in the recent years, generalization in evolutionary computation has
been recognized as an important open issue [146], and several efforts are being made
to solve such a problem [88]. For example, to reduce overfitting and improve gener-
alization, in [146], the authors propose to use, through the generations, a small and
frequently changing random subset of the training data. Another approach is given
by bootstrapping, i.e., the repeated re-sampling of training data with replacement,
with the goal of simulating the effect of unseen data. Then, the errors of each solu-
tion with respect to the bootstrapped datasets are evaluated, speculating that the
lower their variance, the higher the generalization capability of the solution [119].
Also, an independent validation set may be used to separately assess the fitness of
each individual in the population, which is nevertheless still evolved with respect
to the training set [129]. Other strategies are based on the concept of reducing the
functional complexity of the solutions. This is somewhat different than reducing the
bloat (i.e., an increase in mean program size without a corresponding improvement
in fitness), as it has already been observed in the past that bloat and overfitting are
not necessarily correlated [318].

The previously discussed generalization techniques may also be implemented
by means of two or more objective functions. Multi-objective EAs are designed
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to solve a set of minimization/maximization problems for a tuple of n functions
f1(~x), . . . , fn(~x), where ~x is a vector of parameters belonging to a given domain. A
set F of solutions for a multi-objective problem is said to be non dominated (or
Pareto optimal) if and only if for each ~x ∈ F , there exists no ~y ∈ F such that (i)
fi (~y) improves fi (~x) for some i, with 1 ≤ i ≤ n, and (ii) for all j, with 1 ≤ j ≤ n
and j 6= i, fj (~x) does not improve fj (~y). The set of non-dominated solutions
from F is called Pareto front. Multi-objective approaches are particularly suitable
for multi-objective optimization, as they search for multiple optimal solutions in
parallel. Such algorithms are able to find a set of optimal solutions in the final
population in a single run, and once such a set is available, the most satisfactory
one can be chosen by applying a preference criterion.

The next section briefly describes the selection strategy of NSGA-II [91], which
is one of the most used and well-known multi-objective evolutionary algorithms to
date. In the present work, it has been used to develop novel solutions for the tasks
of decision tree pruning (see Chapter 4) and time series classification (see Section
6.1). Another original application which we worked on, but that is not discussed
in the present thesis, is in the context of information retrieval systems evaluation
[286]. Then, Section 1.4.2 briefly discusses ENORA, another intensively studied
evolutionary algorithm, which we applied within the context of feature selection
and fuzzy classification (see Chapter 3).

1.4.1 NSGA-II multi-objective evolutionary algorithm

NSGA-II (Nondominated Sorting Genetic Algorithm) [91] is perhaps the most known
and used multi-objective evolutionary algorithm to date. As previously discussed,
the most important aspect regarding the algorithm is its selection strategy, which
is based on the concepts of ranking and crowding distance, and it aims to ensure
elitism (meaning that the best solutions are given the opportunity to be carried
to the following generations), as well as diversity in the population: the entire
population is sorted into fronts, according to non-domination. A first front is made
by the individuals which are non-dominated. A second one is composed of the
individuals which are dominated by the elements in the first front only, and so on
for the remaining fronts. Then, pairs of individuals are randomly selected from
the population; finally, a Binary Tournament selection is carried out for each pair,
considering a better-function based on the concepts of rank (which considers the
front which the instance belongs to) and crowding distance (intuitively, it measures
how close an individual is to its neighbours, and it is used to enhance the population
diversity). Observe that, after the offspring generation phase, the population has
doubled in size. In order to select the individuals to pass to the next generation,
the entire population is sorted again based on non-domination, and the best ones,
according to the same function as before, are selected (elitist criterion).
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Figure 1.2: Individuals rank assignment with ENORA (left) vs. NSGA-II (right).

1.4.2 ENORA multi-objective evolutionary algorithm

ENORA (Evolutionary NOn-dominated Radial slot- based Algorithm) is a multi-
objective evolutionary algorithm that has been intensively studied during the last
decade: it has been applied to constrained real-parameter optimization [178], fuzzy
optimization [182], fuzzy classification [181] and feature selection for regression [180].
The fundamental difference between ENORA and NSGA-II is how the calculation
of the ranking of the individuals in the population is performed. In ENORA each
individual belongs to a slot (as established in [180]) of the objective search space, and
the rank of an individual in a population is the non-domination level of the individual
in its slot. Conversely, in NSGA-II, the rank of an individual in a population is the
non-domination level of the individual with respect to the whole population. The
main reason that makes ENORA and NSGA-II behave differently is as follows.
NSGA-II never selects the individual which is dominated by another one in the
binary tournament, while in ENORA, the dominated individual may still be the
winner of the tournament. Figure 1.2 shows this behaviour graphically for a multi-
objective optimization problem. For example, if individuals B and C are selected
for binary tournament with NSGA-II, individual B wins C because B dominates C.
Conversely, individual C wins B with ENORA because individual C has a better
rank in his slot than individual B. In this way, ENORA allows the individuals in
each slot to evolve towards the Pareto front encouraging diversity. Even though in
ENORA the individuals of each slot, when compared, may not be the best, this
approach generates a better hypervolume than that of NSGA-II throughout the
evolution process. This superiority of ENORA over NSGA-II has been verified in
some feature selection problems for regression and classification tasks and for fuzzy
classification in [179, 180] and [181] respectively.
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2
An Event-based Data Warehouse to

Support Decisions in Contact Centers

Nowadays, more and more companies deal with very large amounts of heterogeneous
information related to their fields of interest, which are potentially extremely useful
in developing current and future business strategies. Business Intelligence (BI) is
a set of tools and techniques for the transformation of raw data into meaningful
and useful pieces of information for business analysis purposes1. BI entails the
management of (often huge) amounts of unstructured data to help in identifying,
improving, and possibly defining new strategic business opportunities. In particular,
BI aims at providing historical, current, and predictive views of business operations.

Unfortunately, apart from being unstructured, data of interest are often stored
in several databases, possibly provided by different vendors, and may adopt dif-
ferent naming conventions or storage formats. Possible reasons for this situation
are the gradual, step-by-step extension of company’s information infrastructure, or
the use of heterogeneous, independent software modules to satisfy different business
needs. This makes the exploitation of information very hard. In many cases, the
first step toward a profitable use of data is the creation of a single and unified repos-
itory, collecting and organizing all the needed pieces of information, namely, a data
warehouse.

In most enterprises, a data warehouse is the core constituent of the company’s
Decision Support System (DSS) [227]. A DSS allows the company to manage all rel-
evant pieces of information by leveraging a set of Information Technology (IT) tools
and techniques, including traditional business intelligence and more sophisticated
approaches to data analysis, such as data mining.

Decision Management Systems (DMSs) [311] are a further development of a com-
pany’s infrastructure, whereby an Artificial Intelligence (AI) layer complements a
decision support system, allowing preventive automated actions based on input in-
formation, possibly affecting the production systems. Thus, one may think of the
entire process as a sense-decide-act cycle. Various authors have proposed the adop-
tion of such systems in different domains, ranging from infrastructure management

1Business Intelligence on Forrester website: https://www.forrester.com/report/Topic+

Overview+Business+Intelligence/-/E-RES39218
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[262] to medicine [268] and education [299].

This chapter presents the development of a DSS for a multi-channel and multi-
service contact center for front office business process outsourcing (BPO), along
with its prospective extension to a DMS. At the best of the authors’ knowledge,
such a domain, which offers various interesting insights, has not been thoroughly
investigated so far. The case project has been chosen on the basis of an ongoing
research collaboration between the university and the R&D office of Gap Srlu contact
center company, that provided many interesting insights on domain problems and
inspired several meaningful research topics, part of which are explored in the present
thesis, including an end-to-end natural language processing workflow for anomaly
detection in call conversations (Section 5.2).

Since a BPO contact center typically deals with many different clients, the DSS
must handle a huge amount of heterogeneous data, continuously originating from
different sources, thus dramatically benefitting from a centralized data repository
that allows many advanced data analysis tasks, e.g., enterprise-wide activity tracking
of employees. To cope with data heterogeneity and fragmentation, an event-based
data abstraction has been devised, which plays a fundamental role in the developed
system.

The chapter is organized as follows. Section 2.1 provides some background knowl-
edge, giving a short account of DSS, DMS, data warehousing, and data integration
concepts. Then, Section 2.2 introduces the application domain, which is set in the
context of BPO and contact centers, followed in Section 2.3 by a description of the
infrastructure of a typical BPO information system, inspired by a real company. Af-
terwards, Section 2.4 outlines a new system infrastructure based on an original DSS.
In doing that, special attention is devoted to the development of the new enterprise-
wide data warehouse, based on the general concept of event, which is the core of the
infrastructure (Section 2.5). Next, Section 2.6 presents some simple analysis tasks
supported by the system. Then, the impact of the new system on the company
operational processes is discussed. The remaining part of the work outlines system’s
extensions, that include the evolution of the DSS into a DMS, and the integration
of more advanced analysis tasks, based on natural language processing.

2.1 Decision support systems and decision man-

agement systems

This section gives a short account of the fundamental notions of decision support
system, decision management system, data warehouse, data loading, and data inte-
gration.
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2.1.1 Decision support systems (DSSs)

A decision support system consists of a set of interactive and expandable IT tech-
niques and tools for data processing and analysis, that supports managers in decision
making [142]. To store, manage, and review strategic information, decision support
systems make use of data warehouses [227], which explicitly support strategic rea-
soning. While traditional (operational) information systems are the typical sources
of business data, they are not well-suited for dealing with information in DSSs.

A data warehouse is a large collection of data, useful for decision-making pro-
cesses. Operationally, it aims at supporting Online Analytical Processing (OLAP)
queries rather than Online Transaction Processing (OLTP) ones. Its distinctive
features are [166]: (i) it is subject-oriented, rather than application-oriented, that
is, unlike operational databases, which hang on enterprise-specific applications, and
thus contain data which is typically organized by business processes belonging to the
workflow of the company, it relies on enterprise-specific concepts, such as customers,
products, sales, and orders; (ii) it is integrated and consistent, i.e., a warehouse is
loaded from different sources that store information in various formats according to
different conventions; during the migration process, specific tasks are used to check,
clean, and transform data into a unified representation to make it possible to easily
and efficiently access it; (iii) it is append-only, that is, once the data is inserted in
the warehouse, it is neither changed nor removed; (iv) it evolves over time (time-
variant), that is, since data is not volatile, a data warehouse includes time as a
variant, that allows one, for instance, to distinguish current valid data from older
“rewritten” entries (historical data).

There are two main approaches to the design of a data warehouse: top-down
and bottom-up. The former starts with the design and development of an enterprise-
wide database, making use of the Entity-Relationships and relational modelling
techniques. Then, it proceeds with the creation of data marts, which store in-
formation according to the dimensional model: they source information from the
central repository, filtering and aggregating it on the basis of the needs of particular
enterprise departments or categories of users [166]. The latter first builds several
multi-dimensional data marts that serve the different analytical needs of enterprise
departments, starting by creating conformed dimensions that are universally shared
across facts; then, the data warehouse results from the conglomerate of all of them
[194].

Together with the design of the data warehouse, the location, acquisition, and
integration of information generated by data sources play a major role in determining
the success or failure of an overall DSS project, since they are among the most time-
consuming, tedious, and error-prone tasks of the entire development process [277]. In
the literature, the whole process is commonly referred to as Extract, Transform and
Load (ETL for short) process. The ETL process starts with schema matching, which
establishes semantic correspondences between elements in the source databases and
in the data warehouse (tables and attributes). In the literature, it is possible to find
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several approaches to (semi)automating schema matching [47, 278]. Nevertheless, it
is still an open problem, and most currently-available solutions extensively resort to
manual interventions by domain experts. Once all the correspondences have been
established, the next step of the ETL process is schema mapping : given two input
schemas and a set of correspondences between them, enrich those correspondences
with semantics, i.e., rules that specify how to translate instances of the elements in
the first schema into instances of elements in the second one. Like automatic schema
matching, also automatic schema mapping is still an open problem, although [53]
provide some insights regarding such a process. Even though schema matching and
mapping are far from being completely automated [245], there is a variety of tools for
defining and scheduling ETL workflows. One of the most well-known among them is
the open source tool Pentaho Data Integration, a comprehensive data integration and
business analytics platform, which is part of the larger Pentaho Suite2. Alternatives
are Open Studio by Talend3, a Java-based open source data integration software,
and the Tamr software4 (previously known as Data Tamer [304]), which employs
machine learning algorithms to support ETL processes.

2.1.2 Decision management systems (DMSs)

One may think of decision management systems as an “action-oriented” evolution
of decision support systems [311]. Generally speaking, a decision is the selection of
a course of action from a set of alternatives, and it results in an action being taken,
not just knowledge being added to what is known. DSSs aim at recommending such
an action by offering managers information upon which to come up with an idea and
ultimately to make a choice. DMSs make one step more and take decisions without
human intervention on the basis of known information and a set of coded business
rules. Of course, not all judgments may be automated. For instance, strategic
decisions always need human consideration. However, in many companies there is
a large set of recurring operational decisions, which involve a selection among a
set of predefined actions. The logic behind them is usually simple and based on
well-known data and operation patterns.

2.2 The application domain

Business process outsourcing (BPO) is the contracting of a specific business task, to
a third-party service provider. Usually, a company implements it as a cost-saving
measure for tasks that it requires, but do not constitute its actual core business
[44]. As an example, a utility company may outsource its entire customer-care
service, consisting of two interconnected processes: trouble ticketing and support

2Pentaho website: http://www.pentaho.com
3Talend Open Studio website: https://www.talend.com/products/talend-open-studio/
4Tamr website: http://www.tamr.com/product/
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team field service management. In the considered scenario, the third party provider
is a contact center that plays a key role as a multi-channel and multi-service hub,
capable of coordinating such elaborated tasks.

2.2.1 The call center domain

This work focuses on contact centers for front office business process outsourcing.
Let us introduce the call center domain.

Telephone call centers, as an integral part of many businesses, are an important
part of today’s business world. They act as a primary customer-facing channel for
firms in many different industries, and they employ millions of operators across the
globe. At its core, a call center consists of a set of resources, typically personnel,
computers, and telecommunication equipment, which enable the delivery of services
via the telephone. The common work environment is a very large room, with numer-
ous open-space workstations, in which employees, called operators5, equipped with
headphones sit in front of computer terminals, providing teleservices to customers
on the phone. A current trend, made possible by IT advancements, is the extension
of call centers into multi-channel contact centers, where employees complement their
“phone operator” role by services offered via other media, such as email, chat, or
web pages [132]. As it operates, a large call center generates vast amounts of data,
which one may split in two classes: operational and service data. The former con-
cerns the technical information of a call (phone number, the operator who has served
the call, possible call transfers, timestamps, . . . ), by which it is in principle possible
to reconstruct a detailed history of each call that enters the system. The latter is
related to the service for which the call has been made, e.g., in case of an outbound
survey service, data would include all the answers given by the interviewed person.

2.2.2 Inbound and outbound call centers

It is possible to categorize call centers according to different dimensions. As an
example, one may consider the functions they provide, such as customer services,
telemarketing, emergency response, help-desk, and order taking. This notwithstand-
ing, a primary distinction is between inbound and outbound activities.

Inbound call centers handle incoming traffic, which means that they answer to
calls received from the customers, as in the case of help-desks. Note that inbound
operations may also generate outgoing calls, as in the case of callback services, i.e.,
outbound calls made to high-value customers who have abandoned their (inbound)
calls before being served, for example because of long waiting times.

Outbound call centers handle outgoing calls, that originate from the call center.
Such calls may involve telemarketing initiatives or surveys. Typically, operators

5Observe that, in the context of this thesis, we may refer to operators also as internal agents,
or simply agents.
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dealing with this kind of operations follow a pre-defined script, which tells them
precisely how to manage each call, e.g., how to announce themselves to the called
person, how to carry on the call, how to answer to possible questions, and so on.
In both inbound and outbound operations, the call center agency establishes with
its clients a Service Level Agreement (SLA), that is, a quality level to guarantee for
incoming calls, or a set of goals to reach during an outbound campaign.

2.3 The infrastructure of a typical system

This section presents an instance of a typical information system infrastructure,
inspired by a concrete multi-channel and multi-service BPO contact center located
in northern Italy.

As shown in Figure 2.1, the company makes use of two different Customer Rela-
tionship Management (CRM) systems to manage the (phone) interactions: one for
the inbound activities and one for the outbound ones.

Data generated during the operations is stored into two distinct operational
databases, one for each system, based on Microsoft SQL Server, and on a series of
different MySQL databases, one for each offered service.

Each call generates two data sets: a technical and a service data set. The former
is automatically generated by the two CRM systems, and it includes the time and
the date of the beginning and ending of the calls, the caller and the called telephone
numbers, and so on. The loading into the operational data servers is automatic.
The latter is customer-related and usually manually generated by the call center
operators. It includes, for instance, the answers given by the interviewed people to
the interviewer and the annotations made upon a call by an operator. Once inserted,
information is stored in service-dedicated databases.

All historical data coming from the operational data sources is then recorded
into two distinct PostgreSQL databases, one for each CRM system, by means of
an ETL process. This acquisition process does not execute any transformation: it
simply copies new data from the operational to the storage databases. Then, other
ETL scripts synthesize relevant information from data stored in the two archives and
loads it into an Oracle database. Data in this latter system is ready to be displayed
or used for SLA maintenance. Finally, an Enterprise Resource Planning (ERP)
system has access to such data for invoicing and other project-support activities.
The presence of many different databases (and Database Management Systems,
DBMS), which may appear (and actually is) a source of problems, is quite common
in companies which have been active for a long time, and thus have experienced
successive upgrades of their information system infrastructure.

The number and variety of problems induced by the above-described architecture
is large. First, the fragmentation of the data into different repositories makes it
difficult to formulate complex statistical queries as well as to monitor the behavior
of operators and customers by means of queries like ‘what is the entire work history
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Figure 2.1: The infrastructure of a typical contact center information system.

of operator X?’ or ‘which is the complete set of interactions that person Y has had
with the contact center up to the current date?’.

Moreover, the two operational databases have been automatically deployed by
a commercial CRM software, and they are poorly designed. First, tables and at-
tributes have been tailored to the working logic of the systems, and their intended
meaning is often unclear, making it difficult to understand their exact role. As an
example, the queue waiting time for an inbound call may be obtained in two ways:
directly, by reading the value stored in a dedicated attribute, or by subtracting the
timestamps associated with the beginning and ending of the queue period. Due
to internal rounding policies of the inbound CRM system, the two values may dif-
fer. Second, the two databases fail to enforce many typical relational constraints,
such as foreign keys or unique attributes; this inevitably leads to the introduction
of large quantities of truncated, replicated, and possibly conflicting entries. Third,
there is a lot of redundancy in the data, which may easily lead to inconsistencies.
Fourth, software bugs may exacerbate the problem of data inconsistency. As an
example, the inbound CRM relies on different clocks for registering queue waiting
times and call conversation durations. Fifth, even within each CRM different codes
and conventions are used for storing information. As an example, it is possible to
store a phone number as a single string, or by dividing it into a country code, an
area code and a number; in turn, a country code may use a “+” or a “00” prefix.
This makes data comparisons quite hard. The very same problems affect the two
historical databases, since new data is simply copied into them. Last but not least,
the whole system architecture is strongly coupled to the specific CRM systems used,
and thus it turns out to be extremely rigid.

2.4 A new system infrastructure

The proposed decision support system architecture, depicted in Figure 2.2, easily
maps on the general infrastructure for decision support systems defined by [300],
and later extended by [227] and [308].

Data is collected from several sources: the process does not only consider CRMs
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Figure 2.2: The architecture of the proposed DSS.

and service databases, but also automatically acquires raw files and company in-
tranet data, as they provide useful information and insights on business rules, work
specifications, and contracts with client companies. Also, it imports open data,
including public telephones, address directories, and demographic statistics.

Dedicated ETL tasks load all information into an enterprise-wide data ware-
house. The warehouse includes a relational schema for the memorization of struc-
tured data, such as those automatically generated by CRMs, and a data lake for
storing semi-structured and unstructured information, including contents originat-
ing from parsed disk files containing answers to specific opinion surveys. Data may
also pass from the data lake to the relational schema, as its structure evolves over
time to accommodate new kinds of information.

Integrated, relationally stored information feeds a set of data-marts, which con-
tain data required for specific business processes or of interest for specific categories
of users, and adopt a multidimensional model: they pre-aggregate data, in order to
speed up statistical queries needed by the enterprise.

Various categories of employees, including contact center operators, managers,
operational staff (e.g., room supervisors and team/project leaders), and other do-
main experts, may access the system through a dedicated presentation and reporting
layer, which provides relevant information, such as SLA maintenance reports, Key
Performance Indicator (KPI) tracking, and present and past work statistics.

Besides supporting enterprise-wide, past-oriented statistical queries, data inte-
gration sets the basis for more complex, prediction- and action-oriented analytical
tasks. Using the presentation interface, indeed, domain experts may set up statis-
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Figure 2.3: The relational sub-schemas of the data warehouse.

tical simulations, based on previously-observed traffic patterns, to test “what if”
scenarios. As an example, they can formulate exploratory queries like: ‘How long
should I expect a particular inbound service queue to be if I am to add three operators
to the workforce?’.

Finally, data unification and reconciliation make exploitation of data mining
techniques easier. By means of them, domain experts may be able to discover
hidden patterns and regularities in data, and to predict future trends [331]. Some
advanced applications are also described in this work, in Section 2.6 and Chapter 3.

2.5 The development of the data warehouse

The schema of the data warehouse at the core of the proposed infrastructure follows
a normalized data model. Then, upon it, a multidimensional analysis layer has been
defined as a constellation schema [176] including several star schemas, each of them
providing a different insight on the data.

The main schema consists of three sub-schemas, namely, the service, the event,
and the agent sub-schema, each of them focused on a distinct part of the domain.
They are depicted in Figure 2.3 where double lines represent interactions between
elements of the different sub-schemas (the representation of the corresponding re-
lationships has been omitted; however, an intuitive account of them is given in the
following). As a matter of fact, the proposed schema is general enough to allow one
to adapt it, with a little effort, to various application domains different from the one
of contact center operation.

A series of working sessions with the company’s R&D and Operation offices
brought us towards the definition of the final Entity-Relationship (E-R) schema.

2.5.1 The Service sub-schema

This sub-schema stores information about the inbound, outbound, and back-office
services offered by the contact center. As an example, a service may be the toll-free
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Figure 2.4: The service sub-schema.

number of an airline company. Each service consists of one or more activities. The
airline company toll-free number service, for instance, may include ticket reserva-
tion, car rental, and so on. Related services are grouped into a commission, which
is agreed upon with and offered on behalf of one or more contact center client com-
panies (a consortium in the latter case). A graphical account is given in Figure 2.4.

2.5.2 The Event sub-schema

This sub-schema, depicted in Figure 2.5, is the most important component of the
whole schema, as it is in charge of registering events, which are the fundamental
“building blocks” of the sessions. Events are typically bound to the execution of a
particular activity ; a session, in turn, refers to a service (see Figure 2.4), and it may
involve one or more customer files (see Figure 2.6) which are being carried out. Each
closed session has an outcome that depends on the events that happened during the
session. Conceptually, one may think of an event as something that has happened at
a certain time (possibly for an extended period of time), and which is of importance
to the company. Through events, it is possible to describe the operations carried out
by an operator when doing back-office work, or to track the history of a particular
phone call. Thanks to the general concept of event, it is also possible, through
suitable specializations, to support to multi-channel communication, as events may
describe various kinds of activity, such as chat conversations, email exchanges, and
back-office work. As can be seen in the diagram (double lines), event is a weak
entity that depends on the session.

Let us consider the case of phone calls. Each phone call initiates a new session,
which is characterized by the people who are talking, their phone numbers (iden-
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Figure 2.5: The event sub-schema.

tifiers, see Figure 2.6), the state of the involved phones (connecting, connected,
on hold, etc.), the specific activity carried on (or activities, if there has been any
internal call transfer), and so on.

Events are used to keep track of these characteristics and of their evolution over
time. The recursive relationship on the entity Event deals with the case of an event
generating a set of other events. As an example, consider a person who has called
the contact center and is now selecting, through the phone keypad, the appropriate
service to be linked to (the so called “Interactive Voice Response, IVR, choice”).
The workflow event tracking the customer choice may start a new Workflow event,
together with a Queue telephone event, as soon as the caller ends up in the appro-
priate waiting queue. Finally, observe that Event is a weak entity: within a given
session, each event is uniquely identified by its type and start instant.

2.5.3 The Agent sub-schema

This sub-schema represents information about agents, that is, subjects who can take
part to events. As depicted in Figure 2.6, each Agent is uniquely identified by its
Social Security Number (SSN) or Value Added Tax (VAT) number, which is the
minimum amount of information required to instantiate the entity (if there is no
such a number, it is still possible to store residual data in the data lake).

Every instance of Agent is (disjointly) specialized into either a Contact or an
Internal agent. The first one corresponds to subjects external to the company, e.g.,
customers of inbound services, while the latter represents the ones working for the
contact center, like, for instance, the phone operators6. In a similar way, Contact is
specialized into Individual or Legal entity, e.g., an enterprise.

Each contact may have one or more identifiers (not to be confused with the

6Observe that, in the context of this thesis, we may refer to internal agents as simply agents or
operators, while external subjects are always referred to as contacts.



28 2. An Event-based Data Warehouse to Support Decisions in Contact Centers

Figure 2.6: The agent sub-schema.

entity identifiers of the E-R model), which are values that characterize the external
subject in the contact center domain. Identifiers are, for instance, telephone numbers
or email addresses. As a matter of fact, they provide a semi-characterization of
contacts, as, in general, they may be shared by different contacts (think of two
persons who are living together and share the same home phone number). One or
more files can be associated with a contact to describe the history of the contact’s
relationships with the contact center in the context of different services. As an
example, a file may consist of all the calls (sessions) made to a particular person
in order to complete a survey. Each file, once closed, has an outcome, which is in
general independent of the outcomes of the sessions associated with it, and is strictly
related to the specific service. Finally, an Internal agent, which is either a human
or an Interactive Voice Response (IVR) system, may belong to an Operator group,
i.e., a set of contact center operators who work on particular services.

2.5.4 The analysis layer

A set of multidimensional data-marts, which together form the so-called analysis
layer, is continuously populated with data coming from the main database, whose
schema has been outlined above. Such a layer is used to pre-aggregate data in order
to speed up common OLAP queries needed by the company, such as knowing the
current status of outbound survey campaigns, or accessing SLA maintenance statis-
tics for inbound services. The schema of the analysis layer is arranged according to
a constellation pattern, that is, it consists of several facts and several dimensions,
which are possibly shared by facts [176]. The result can be seen as a “composition”
of star schemas. The star schema related to inbound queue information is illus-
trated in Figure 2.7 (other schemas, which consider workflow aspects or outbound
telephone conversations, follow a similar pattern). There is a fact table, namely,
inbound queue event, surrounded by four dimensions: time interval, outcome, ac-
tivity, and service. Data in the fact table is aggregated by time-slot granularity,
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Figure 2.7: The star schema related to inbound queue information.

recording the number of enqueued calls for a particular service or activity, the total,
maximum, and minimum queue times, and the maximum queue length.

2.6 Some analysis tasks

This section describes a representative set of analysis tasks made possible by the new,
integrated DSS, ranging from patterns of global operator performance assessment
to call-flow simulation and more advanced data mining analysis tasks. Note that all
agent-related data have been anonymized in order to protect their privacy.

The first functionality that has been added to the new system is a method to
formally compute operator performance by means of a single, integrated function,
using information gathered from the data warehouse and a statistical model tailored
to our specific requirements. Consider a set of attributes typically used in key
performance indicators, such as, to mention a few: average call duration, amount
of post-call work, percentage of successful outbound surveys, and metrics about
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Table 2.1: Possible operator performance indicators.

Inbound

Average conversation time

Average post-call time

Generic call notes compiled per session

Percentage of correctly filled script fields

Purpose of the call

Outcome of the call

Outbound

Average conversation time

Average post-call time

Amount of surveys over calls

Number of answered calls per hour

General

Number of different kinds of services managed by an operator

Degree of interleaving between services

Respect of work schedule

Turn flexibility

how operators record written information. For each service, within a suitable time
frame, reliable average values for such attributes can be derived. Then, given a
single operator working on a service over a certain period of time, it is possible
to calculate averages over the same attributes and compare the results. Finally, a
proper aggregation of the single performances synthesizes a global score. The overall
result of the process is the building of general performance patterns, which allow
the operational staff to have a high-level overview of service workflows.

Table 2.1 lists a set of possible performance indicators, while Figure 2.8 illustrates
an interface for assessing the score evolution over time.

The curved line represents the global operator performance, which is periodically
calculated. The straight, horizontal dashed line shows the operator average trend
for the service. By selecting a single data point, it is possible to get additional
information on the values for each skill used to compute the score. The performance
dashboard is a valuable help for supervisors, as it allows them to examine the scores
of each operator, compare different results, and discover possible criticalities that
need to be addressed. Moreover, the performance function is a fundamental step
in the development of the prospective DMS, for it may allow automated actions
such as the assignment of a service to the best qualified operators or the issuing of
operator-tailored training tasks.

A simulator capable of statistically predicting contact center inbound call-flow
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Figure 2.8: Operator performance assessment interface.

has also been developed. It is based on past-observed behaviors, and it is extremely
useful for testing “what if” scenarios, such as the effect on waiting queues of the
relocation of an operator from a service to another. Moreover, simulation also allows
the operational staff not only to anticipate what will happen, but it could shed a
light on the reasons why a particular situation has emerged, thus on the correct
actions to take. This moves us from a predictive to a more prescriptive analysis.

The simulator interface, shown in Figure 2.9, presents much key information.
The central, large graph keeps track of the global average durations of the different
inbound call phases, such as the arrival time (during which the caller is making
his/her IVR choice), the queue time (the caller has made his/her IVR choice and
is now waiting to be served), the conversation time (the caller has been engaged by
a call center agent), and the post-call time (the call has finished, and the agent is
completing his/her last tasks). Right below, a second graph shows the proportion
between the closed (served) and abandoned (renounced by the caller before being
served) calls. On the last row, from the left to the right, one may find: the cumulative
conversation time, the average response time, the cumulative number of incoming
calls, and the queue size evolution over time. At the end of its execution, the
simulator also presents a summary of call traffic statistics, such as the average
conversation time, the average ratio of closed calls, and the average queue size.

Finally, also some more advanced solutions, based on data mining, have been
developed. Several data mining tools are available. Among them, there is the well-
known language R that can be used for the task. Another popular choice is the open
source WEKA suite [125], developed at the University of Waikato. In the context of
DMSs, one may rely on data mining to develop models capable of predicting future
trends, thus allowing the proper proactive actions to be taken.

The first application is concerned with the analysis of the set of written notes,
recorded by call center operators during their calls. Such a task allowed the com-
pany’s supervising staff to better understand the different profiles of the operators.
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Figure 2.9: Call-flow simulator interface.

We followed the bag-of-words approach, according to which a text may be repre-
sented as the bag (multiset) of its words, disregarding their order. From the bag of
each available written note, we then derived a set of quantitative attributes, such as,
for instance, the number of adjectives, verbs, articles, dictionary-recognized terms,
and dominion terms.

Then, a representative subset of all the notes has been selected, spanning all op-
erators and services. Finally, unsupervised learning techniques have been employed
to search for generic patterns in the dataset, specifically making use of Expectation-
Maximization (EM), which is a distribution-based clustering algorithm [183] avail-
able on WEKA. One of the reasons that led to such a choice is the fact that in EM
there is no need to manually specify the number of clusters to build, unlike other
approaches like k-means. As a result, 6 clusters have clearly emerged, respectively
representing: (i) notes mainly composed of abbreviated terms, (ii) well written, but
not very well articulated, notes, i.e., notes that do not make extensive use of arti-
cles, connectives, and prepositions, (iii) well written and articulated notes, (iv) notes
with a large degree of service-specific domain terms, (v) notes with a large portion
of unrecognized words, and (vi) hybrid notes, mixing characteristics of the other
clusters. In order to be able to classify all other (and also future) notes, a custom-
made procedure enriched instances in the dataset with their cluster label; then, on
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Figure 2.10: Operator notes interface.

the obtained training set, WEKA’s J48 classification algorithm has been trained
(an implementation of C4.5 [274], see Section 1.2.1), with the goal of predicting the
cluster label. In this particular case, tests made in cross-validation mode reported
an accuracy above 95%. Figure 2.10 shows the resulting operator notes interface.
In the first bar, there is the proportion of notes of each kind written by the operator
in a specific period of time for the service. The second and third bar show the gen-
eral writing behavior of the operator and the overall distribution of service notes,
respectively. Using the graphical interface, the personnel in charge of supervising
the operators may quickly detect anomalies as they occur, e.g., a high degree of
unrecognized notes compared to the average value for the service may indicate the
occurrence of a pattern typical of a hurried operator; on the contrary, an operator
writing too many well-structured notes may suggest a behavior in which the script
fields are not used correctly.

The second data mining application is in the context of outbound services. Out-
bound calls follow a pre-defined script, which allows one to predict, to a certain
extent, their outcome based just on dialling, conversation, and post-call times. This
is extremely useful in outbound survey campaigns, as it may allow supervisors to
detect contact center operators who systematically annotate wrong call outcomes,
either by mistake or to simulate surveys which did not take place. The main idea
is thus to build a classification model trained separately for each survey campaign,
once again relying on the J48 classification algorithm. The first step is the extrac-
tion of the training set, which consists of sessions managed by extremely reliable
operators, thus having their outcomes correctly set. Then, after an additional data
cleansing phase, the tree-inducing algorithm is run on the training set. A tree model
generated by such a procedure looks like the one depicted in Figure 2.11. In this
example, the tree classifies as non-answered all phone sessions having a dialling
time over 30 seconds, and in which no conversation took place. Moreover, calls
with a conversation time between 76 and 87 seconds are classified as successful or
unsuccessful based on post-call duration. This is reasonable, as an operator may
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Figure 2.11: Decision tree for operator’s fraud detection.

try to save conversation time by writing down only a trace of given answers on the
fly, extending and completing them after the call. In such cases, successful phone
conversations may show a below average conversation time, complemented by an ac-
tive post-call phase. For this particular model, tests made in cross-validation mode
reported an accuracy above 93%. Given the tree, it is straightforward to detect
misclassified phone sessions, which may indicate wrongly reported outcomes. In the
context of DMSs, a further development may allow for automatic call tagging. This
is particularly useful for inbound activities: phone calls which are not believed to
be ended with a positive outcome may be inserted in a recall queue by the system.

Observe that the above presented applications can be considered as simple and
immediate consequences of the decision support system development. A more com-
plex and advanced case study that makes use of contact center data is discussed in
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Chapter 3, where a methodology that relies on feature selection and fuzzy classifi-
cation techniques to predict whether an inbound call will or will not be abandoned
by the caller before being served is presented [63].

2.7 On the impact on company operational pro-

cesses

As confirmed by the initial findings, the development of the new infrastructure, and
in particular of the enterprise-wide data warehouse, had a profound impact on the
company in several respects. First of all, it allowed the operational staff to get
complex historical information that was previously difficult or simply impossible to
obtain, given the fragmentation of data. Moreover, it led to a more rational use
of company resources, as it allowed to uniform all the analytical tools, effectively
decoupling the sources of information, e.g., the CRM systems, from the data itself.
This is extremely beneficial, since it permits to seamlessly change parts of the IT
infrastructure, having only to redefine the mappings established between them and
the warehouse. In fact, as a further proof supporting these claims, the entire in-
bound contact center system has been swiftly upgraded, preserving all the previously
existing analytical processes. Finally, it opened for the contact center the possibility
to manage data supplied by third-party companies. This represents a whole new
business opportunity for the enterprise, which is about providing an outsourced data
analysis service to third-party companies. As a matter of fact, the company has al-
ready started the deployment of the first analytics-on-demand service for an Italian
airline company.

Let us now consider in detail the impact of the new analysis tasks. A typical
decision making process in a contact center is mostly reactive rather than predictive.
The introduction of predictive analytics and simulation tools supported by a data
warehouse deeply changed the way decisions are taken in contact center manage-
ment. In particular, initial findings provide some compelling examples showing that
the decision support system can bolster several tasks, such as: (i) operator training,
i.e., the assessment of typical operator’s weakness and the administration of specific
learning solutions; (ii) resource planning, e.g., a skill-based assignment that seeks
to establish the best operator-service pairings; (iii) dynamic resource allocation, to
determine the optimal number of operators for each service; (iv) detection of typical
error and fraud patterns.

The proposed DSS tackles all these decision processes by providing a set of
tools that help the operational staff at different levels of decision making, some-
times highlighting elements not usually considered. As an example, unified operator
performance pattern evaluation, possibly complemented by hand-written call notes
analysis, gives the staff a new overall perspective on contact center operators. This
influences at least two of the previously-described decision processes, namely, oper-
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ator training and skill-based assignment.

Another key application is the automatic call outcome classification, which sup-
ports one of the most important decision-making processes in contact center room
management: the prompt detection of patterns related to errors and frauds. Given
the expected high turnover and the possibly huge volume of managed contacts, this
is a key factor. Predictive analysis exposes now to the operating staff the opportu-
nity of detecting the so-called “operator anomalous behaviours”, allowing them to
take various actions, including: (i) issuing specific warnings to the operational staff;
(ii) removing and reprocessing the fraudulent call; (iii) checking audio for further
investigation.

Finally, it is worth stressing that the above-described operational decisions may
be taken in a fully automatic way by defining a suitable rule set, thus driving the
extension of the DSS into a proper DMS, as explained in the next section. Over-
all, the work done provides concrete evidence for the following general implication:
it is possible to move the way of thinking from “supporting” to “(automatically)
managing” decisions.

2.8 System’s extensions

This section illustrates some extensions to the project, including the evolution of
the DSS into a DMS, and the addition of other advanced analysis tasks, involving
natural language processing.

2.8.1 Prospective DMS infrastructure

As already observed, one may extend the decision support system into a decision
management system in order to automate routine contact center decisions, leaving
managers free to dedicate themselves to the most important tasks, still supported
by the DSS.

For instance, based on SLA maintenance requests and key performance indica-
tors, a DMS may decide to: (i) allocate an additional operator to a service which is
about to exceed SLA, searching for the best match between the profiles of the avail-
able operators and the characteristics of the service; (ii) assign the best available
operator to each inbound call, considering the best match between customer and
operator profiles; (iii) set a higher priority to a service which is experiencing long-
queuing times; (iv) schedule outbound campaigns differently, according to their goal,
e.g., in the management of enterprise-oriented calls, avoid typical break/congestion
periods; (v) assign additional training tasks according to the emergent behavioral
patterns in a service.

Such decisions impact directly on production systems and on the data they will
generate, so one may think of the entire process as an automatic “sense-decide-act
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Figure 2.12: DMS infrastructure.

cycle” (see Figure 2.12). Based on advanced analysis tasks, such as data mining,
indeed, the system may also act in a proactive way.

2.8.2 Analysis of call recordings

An enhancement to operator performance assessment can be based on the analysis
of call recordings. The most straightforward approach is that of directly processing
the raw audio files, evaluating indicators built on characteristics such as volume,
pitch, energy, conversation turns, and pause durations. As an example, long conver-
sation pauses might indicate deficiencies in training or “difficult” calls. Moreover,
new indicators based on raw audio traces might permit to classify phone sessions
according to the overall sentiment, as, for instance, in [30, 81, 89].

Also, automatic transcription of phone conversations may allow for more com-
plex analysis, as discussed in Section 5.2, where a system capable of tracking and
analysing anomalous call conversations is presented, that fully integrates in the al-
ready developed agent performance assessment applications.
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3
Working with Numerical and

Categorical Data

As discussed in Section 2.6, this chapter presents a case study based on the data
collected in Gap’s data warehouse, consisting of a methodology, based on feature
selection and fuzzy classification, to predict whether an inbound call will or will not
be served on time by the contact center staff. The study has been published as a
standalone paper in [63].

3.1 Evolutionary feature selection and fuzzy clas-

sification of contact center data

As already mentioned in Section 2.2, when a contact center inbound phone session
starts, after a pre-queue period during which the caller may be engaged via IVR
(Interactive Voice Response) or simple vocal messages, the session is inserted into
a waiting queue, and, in absence of more elaborate techniques, waiting sessions are
scheduled to be managed by an agent via a simple First-In-First-Served protocol.
Given the high number of sessions in a medium-sized contact center, and the limited
number of resources, some sessions may never be managed by an agent (since the
caller may abandon the call). It is important to notice that a simple statistical
analysis of this problem, limited to the set of abandoned calls, presents a number
of well-known issues. In particular, such an analysis would ignore the potential
information carried by the set of non-abandoned calls and, therefore, it would be
limited to an estimation of the number, frequency, and/or probability of abandoned
calls, without highlighting the driving factors that lead to abandonment. Instead,
the main purpose of this work is to answer the following question: which factors most
probably lead to an abandoned call? In other words, we want to establish which data
of an inbound session may influence its probability to be managed and, secondly, to
build an interpretable classifier based on this analysis. In terms of practical usability,
contact centers are interested in understanding which factors can help to minimize
the number of abandoned calls and, in particular, to highlight the non-trivial ones.
Such a knowledge becomes essential in this domain, where one of the main goals is
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to optimize the engagement of the customer.
Specifically, in this work, we consider a real dataset again provided by Gap

Srlu, consisting of more than thirty-thousand inbound phone-based sessions over
a period of three months, for which the values of twenty features, including the
outcome (a binary class, indicating whether the incoming call has been eventually
managed or not), has been recorded. As we shall see, compared to previous data
mining experiments on contact center datasets, the quality of the information at our
disposal is considerably higher. Previous experiments, such as, for instance, those
reported in [289], focus on service tree optimization, which is part of the design
(as opposed to the evaluation) of a contact center. Other work on contact center
datasets include [260], where the classification problem is approached via a hybrid
model that uses several different techniques, however neglecting feature selection.
In addition, the authors rely on a very restricted set of attributes, thus limiting the
significance of the results. Instead, we focus on the problem of determining the call
abandoning factors, modelling it as a feature selection task relying, as we shall see,
on a wrapper methodology based on multi-objective evolutionary feature selection.
Then, over the selected features, a set of interpretable rules is built by means of
multi-objective evolutionary fuzzy classification techniques.

The use of evolutionary strategies for the selection of features has been initially
proposed in [298]. Since then, it has been regarded as a powerful tool for fea-
ture selection in machine learning [316] and proposed by numerous authors as a
search strategy (see, e.g., [32, 107]). In the first evolutionary approach involving
multi-objective feature selection [167], three criteria (accuracy, number of features,
and number of instances) are aggregated and then a single-objective optimization
algorithm is applied. A formulation of feature selection as a multi-objective opti-
misation problem using a neuro-fuzzy based wrapper has been proposed in [108].
Other approaches, such as [106, 133, 173, 184, 321], propose to exploit NSGA-II [91]
in combination with wrapper methods that use decision trees (such as C4.5 [173]),
support vector machines [133, 184], maximal entropy-based models [106], or a filter
method [321] that includes measures of consistency, dependency, and distance in-
formation. Finally, in [204] the evolutionary algorithm GENESIS has been adapted
to work as a filter, using an inconsistency rate to evaluate individuals. As for our
research, we have already relied on multi-objective evolutionary algorithms for the
task of establishing the factors that in a contact center play a predominant role in
the performance assessment of employees (see the work in [62]).

Evolutionary computation applied to fuzzy rule learning can be found, among
others, in [90, 344], and it is advocated in recent surveys such as [160]. The first
approaches in this direction appeared in the late nineties [144, 169, 310]. In [169],
a non-Pareto multi-objective algorithm is used to minimize the classification error
and the number of rules. A three-objective evolutionary algorithm for linguistic
rule extraction is proposed in [170], which extends [169] with a new objective to
minimize the length of the rules. In [177], Pareto-based evolutionary fuzzy rule
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learners are used for function approximation and dynamic modelling in standard
test problems studied in the literature, while in [310], a single objective genetic al-
gorithm is considered to minimize the approximation error, complexity, sensitivity
to noise, and continuity of rules by means of a weighted approach. Moreover, multi-
objective evolutionary algorithms are used in [85] to perform feature selection and
fuzzy set granularity learning in order to obtain compact and comprehensible fuzzy
rule systems with high classification capacity, and in [171] to select fuzzy rules after
extracting a large number of candidate rules by a heuristic approach. Both in [145]
and in [171], sets of fuzzy rules, each one represented as an integer vector, are gen-
erated with different trade-offs between accuracy and complexity/interpretability.
An effective multi-objective evolutionary algorithm has been proposed in [27], that
makes a fast learning of simple and accurate linguistic fuzzy models possible. In
[98], PAES-RCS method is used to maximize accuracy and minimize the total rule
length for internet traffic classification. In [34], IT2-PAES-RCS extends PAES-RCS
to employ Type-2 fuzzy sets, where sensitivity, specificity and total rule length are
optimized for financial data classification. Finally, a distributed version of PAES-
RCS by using Apache Spark as the data processing framework is proposed in [116],
and in [117] Apache Spark is used as framework of a distributed multi-objective evo-
lutionary algorithm to learn concurrently the rule and datasets of fuzzy rule-based
classifiers by maximizing accuracy and minimizing complexity.

3.1.1 Objectives of the work

As already mentioned, the main goal of the work is to determine the innermost
factors that lead to a call to be abandoned. To this end, we propose to exploit a
multi-objective evolutionary algorithm as a strategy for feature selection in a super-
vised classification context, as a component of a full methodology that integrates
pre-processing, feature selection for classification, model evaluation (and statistical
test), and decision making, in order to choose the most satisfactory model according
to an a-posteriori elaboration, driven by an external process, in a multi-objective
context. We compare two state-of-the-art multi-objective evolutionary algorithms
for this task, namely, ENORA (see Section 1.4.2) and NSGA-II (see Section 1.4.1),
and we do so by designing two essentially different feature selection schemata: the
first based on a wrapper with the decision tree learning system J48/C4.5 (Section
1.2.1), and the second based on the WEKA’s Correlation-based Feature Selector
multivariate filter CfsSubsetEval [153]. These four selection methodologies are, in
turn, compared with two, more classical, strategies, that are: a single-objective
wrapper based on WEKA’s BestFirst [263] search strategy and J48/C4.5 as the
evaluator, and WEKA’s univariate filter InfoGain Ranker [96]. We perform an ex-
tensive test to evaluate the performances of the selected features for classification
to establish which methodology behaves better. Figure 3.1 (upper part) recaps the
considered feature selection strategies.
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Of course, the number of possibilities for the comparative analysis is enormous,
given the large number of search strategies, classifiers for wrapper methods and
statistical measures for filter methods that can be considered. Our selection has
been made based on the following criteria: (i) ENORA is a multi-objective evolu-
tionary algorithm that has been intensively studied during the last decade: it has
been applied to constrained real-parameter optimization [178], fuzzy optimization
[182], fuzzy classification [181] and feature selection for regression [180]; (ii) NSGA-
II, introduced by Deb, has proven itself very powerful and fast in multi-objective
optimization contexts of all kinds, and most researchers in multi-objective evolution-
ary computation use NSGA-II as a baseline for comparison against new algorithms;
although NSGA-II was born in 2002, to this day it remains a state-of-the-art al-
gorithm, and its improvement can still be seens as a challenge; (iii) J48/C4.5 is
a classifier that gathers different excellent characteristics for the usage in wrapper
methods being fast, precise and interpretable; (iv) the correlation method used in
CfsSubsetEval is a standard measure, widely used and documented in the literature,
where subsets are evaluated considering the individual predictive ability of each fea-
ture along with the degree of redundancy among them; it is typically used today for
comparison with multivariate methods [333]; (v) BestFirst is a hill climbing method
that we consider in the comparison due to its simplicity, to establish a baseline;
finally, (vi) InfoGain is often used together with a Ranker method in univariate
feature selection tasks [51].

On the obtained reduced dataset, we then apply fuzzy classification. Again,
we compare the performances of ENORA and NSGA-II adapted for such a task,
against each other and against the WEKA’s classification systems J48/C4.5, Ran-
domForest, Logistic and FURIA. Note that RandomForest (and, to a certain extent
Logistic, if we consider non-IT domain-experts) is a non-interpretable classifier that
is typically more accurate than interpretable classifiers such as C4.5: if we compare
interpretable classifiers with non-interpretable classifiers in terms of accuracy only,
clearly the former are at a disadvantage thus, in this work, we do not only consider
how accurate a classifier is, but also its degree of interpretability for a non-computer
scientist domain expert. The comparison with J48/C4.5 and FURIA has also an-
other objective. In this case both learners are, potentially, easily interpretable (the
first uses decision trees while the second relies on fuzzy rules). We want to determine
which classifier has a better trade-off between interpretability and accuracy, and to
measure the former we consider the model complexities (tree size and number of
leaves in C4.5, and number of rules and fuzzy sets in the rule-based classifiers).

Finally, this work extends the one reported in [179], that focuses on the appli-
cation of attribute selection and supervised classification to phone session outcome
prediction. A first, notable difference is given by the training dataset: in [179],
only technical information is considered as the basis for the prediction of outcomes,
which are manually set by human operators; even though this led to some inter-
esting insights on the domain, the results indicated the presence of a semantic gap
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Figure 3.1: Proposed methodology for feature selection.

between the predictors and the predicted variable; on the contrary, here we look
for relationships between the technical information of a call and the fact of it being
managed or not, which is also an automatically recorded value.

3.1.2 A multi-objective evolutionary model for feature se-
lection and fuzzy classification

In this section, we describe how the tasks of feature selection and fuzzy classifi-
cation can be modelled as multi-objective optimization problems. As for feature
selection, two methodologies are presented: a wrapper-based system with multi-
objective evolutionary search that relies on the standard decision tree J48/C4.5 as
the classification algorithm; and a multi-objective evolutionary search applied to the
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standard multivariate filter CfsSubsetEval. As for the task of fuzzy rules extraction,
a multi-objective constrained optimization model is proposed.

Supervised feature selection via wrapper and via filter

In adapting ENORA and NSGA-II to the task of feature selection, a fixed-length
representation is used, where each individual consists of a list of M bits, each one
representing a selected (1) or non selected (0) feature, being M the total number of
features in the dataset.

As far as the wrapper-based methodology is concerned, an individual I is eval-
uated by means of two fitness functions, f1 (I) and f2 (I), corresponding to the two
objectives of the multi-objective optimization model:

{

f1 (I) = ACC (I)
f2 (I) = C (I)

(3.1)

Let Nc(I) and Nt(I) be the number of correctly classified instances and the
number of total instances, respectively, of the J48/C4.5 classifier over the dataset
with the attributes selected by the the individual I. ACC (I) is the accuracy of the
classifier, which is defined as:

ACC (I) =
Nc(I)

Nt(I)
(3.2)

Hence, the function f1 (I) must be maximized. C (I) is the cardinality of the subset of
the selected features represented by individual I, and thus the function f2 (I) has to
be minimized. The intervals of f1 and f2 are obviously [0, 1] and [1,M ], respectively.
As for the wrapper approach based on the multivariate filter CfsSubsetEval, an
individual I is evaluated according to:

{

f1 (I) = COR (I)
f2 (I) = C (I)

(3.3)

where f2 is the same as before, and f1 is now based on the measure:

COR (I) =
C (I) ·Rcf (I)

√

C (I) + C (I) · (C (I)− 1) ·Rff (I)
(3.4)

where Rcf (I) is the mean class-feature correlation (for each feature selected by I)
and Rff (I) is the average feature-feature correlation (again, features selected by I),
by means of which a subset is evaluated considering the individual predictive ability
of each feature along with the degree of redundancy between them. Subsets of
features that are highly correlated with the class while having low inter-correlation
are preferred [153]. Clearly, COR (I) must be maximized. Notice that while this
metric can be naturally applied to nominal attributes, numerical attributes may
only be considered after a discretization step.
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As for the remaining adaptations, both ENORA and NSGA-II have been con-
figured with uniform random initialization, binary tournament selection, ranking
based on non-domination level with crowding distance, and self-adaptive uniform
crossover and one flip mutation operators (see, e.g., [105, 180]).

An optimization model for fuzzy classification

In [181], a multi-objective constrained optimization model is proposed that allows to
identify both accurate and interpretable fuzzy classifiers, as well as an evolutionary
learning system to search for multiple Pareto-optimal solutions (classifiers) simul-
taneously, taking into account accuracy and interpretability according to the opti-
mization model. Also, a detailed account of its main components is given, namely,
solution representation, constraint handling, initial population, and evolutionary
operators. The proposed optimization model can be described as follows:

{

f1 (I) = ACC (I)
f2 (I) = NR(I)

(3.5)

subject to:














NR(I) ≥Mmin

NR(I) ≤Mmax

NL (I) ≤ Lmax

S (I) ≤ gs

(3.6)

where f1 takes into account, as before, the accuracy of the model, and thus must
be maximized, and f2 reflects the simplicity of the model established by counting
the number of rules, and hence must be minimized. An individual I is a fuzzy
rule-based classifier composed by NR(I) fuzzy rules, where each fuzzy rule RI

j ,
j = 1, . . . ,NR(I) has the following structure:

RI
j : if x1 is A

I
1j ∧ . . . ∧ xp is A

I
pj → z is CI

j (3.7)

where xi ∈ [li, ui] ⊂ IR, i = 1, . . . , p, p ≥ 0, are real input attributes, and
z ∈ {1, . . . , w}, w > 1 is a categorical output attribute. Each fuzzy set AI

ij,
i = 1, . . . , p, j = 1, . . . ,NR(I) is defined with a gaussian membership function [199].
The function ACC(I) is the accuracy of the classifier represented by the individ-
ual I over the dataset. The function NR(I) is minimized, and the constraints
NR(I) ≥Mmin and NR(I) ≤Mmax limit the number of rules of the classifier rep-
resented by I to the interval [Mmin,Mmax] (Mmin is fixed to the number of classes of
the output attribute, while Mmax is given by user). The constraint NL(I) ≤ Lmax

limits the number of linguistic labels1 of the real input variables to Lmax. Finally,
the constraint S(I) ≤ gs ensures a maximum similarity gs (0 < gs ≤ 1) between
the fuzzy sets; the similarity value of a classifier I represents the maximum value of

1As we shall see, each fuzzy set is associated to a linguistic label that is easily interpretable.
For instance, a fever below 38 degrees may be labelled as low.
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overlapping among their fuzzy sets for any input variable. The constraint S(I) ≤ gs
is handled by the multi-objective evolutionary algorithm by means of a repair al-
gorithm2, which is applied after the initialization of the solutions, and after the
crossing and mutation operations. As for the reasoning method (which can be in-
tended as the firing policy in the fuzzy context), we rely on the maximum matching
where the compatibility degree (i.e., the amount of applicability) of the rule RI

j for
the example x is calculated as:

ϕI
j (x) =

p
∏

i=1

µAI
ij

(xi) , (3.8)

where µAI
ij

(xi) is the membership degree of the ith-component (attribute) of x to the

fuzzy set AI
ij. The compatibility degree is obtained by applying a t-norm product

to the degree of satisfaction of the clauses xi is AI
ij. The association degree of the

example x with the class C, is calculated by summing the compatibility degrees of
each rule RI

j whose value for the categorical output attribute CI
j is equal to C, that

is:
λIC (x) =

∑

j = 1, . . . ,NR(I)
CI

j = C

ϕI
j (x) (3.9)

The classification for the example x or output of the classifier I, corresponds to the
class C whose association degree is maximum, that is:

fI (x) = argC

w
max
C=1

λIC (x) (3.10)

ENORA and NSGA-II have been implemented for this task using variable-length
representation with floating-point input variables with a Pittsburgh approach, uni-
form random initialization, binary tournament selection, handling constraints using
a repair algorithm, ranking based on non-domination level with crowding distance,
and self-adaptive variation operators which work on different levels of the fuzzy
classifier: fuzzy set crossover, rule crossover, rule incremental crossover, gaussian
set center mutation, gaussian set variance mutation, fuzzy set mutation, rule incre-
mental mutation, and integer mutation (for categorical data) [181]. Once the fuzzy
rule set has been extracted, a linguistic label is assigned to each fuzzy set. The
assignment of linguistic tags to fuzzy sets is performed at the end of the process by
means of an algorithm (Linguistic Labeling Algorithm) whose details are shown in
[181]. Algorithm 1 briefly reproduces its basic steps. Basically, the procedure con-
sists of, first, calculating the number of linguistic labels from the distance between

2Intuitively, a repair algorithm can be thought of as a procedure that takes as input a model
which violates some constraints, and applies some minimal modifications to it in order to make
it satisfy such constraints. For example, in an evolutionary setting, the individuals which do
not adhere to some given constraints may be given a penalty, while still being included in the
population [324].
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the centers of the fuzzy sets for each variable (steps 1 to 6). Next, the names of
the linguistic labels are established according to the number of fuzzy sets previously
calculated (steps 7 to 15; L:Low, M:Medium, H:High, VH:Very-High). The names
used for the linguistic labels are standard names commonly used in fuzzy logic. Fi-
nally, the best approximating linguistic label is assigned to each fuzzy set (step 16
to 20).

Algorithm 1 Linguistic labeling algorithm

Require: Aij = (aij, σij), i = 1, . . . , p, j = 1, . . . ,M ⊲ M is the number of rules of
the classifier

Require: li,ui (li < ui), i = 1, . . . , p ⊲ li and ui are the lower and upper limits for
real input variable i

1: for i = 1 to p do
2: if there is only one different fuzzy set for i real input variable then
3: Ni ← 1
4: else
5: Si ← min

j = 1, . . . ,M
k = 1, . . . ,M
Aij 6= Aik

|aij − aik|

6: Ni ← max
(

2,
⌈

ui−li
Si
− 0.5

⌉)

7: switch(Ni)
8: aaacase 1: Li ← {DCC} ⊲ Don’t care condition
9: aaacase 2: Li ← {L,H}
10: aaacase 3: Li ← {L,M,H}
11: aaacase 4: Li ← {L,ML,MH,H}
12: aaacase 5: Li ← {L,ML,M,MH,H}
13: aaacase 6: Li ← {V L, L,ML,M,MH,H}
14: aaacase 7: Li ← {V L, L,ML,M,MH,H, V H}
15: end switch
16: for k = 1 to Ni do
17: Cik ← li + (k − 0.5) ui−li

Ni

18: for j = 1 to M do

19: l ← argk

Ni

min
k=1
|aij − Cik|

20: LABELij ← Lil

21: return LABELij, i = 1, . . . , p, j = 1, . . . ,M
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3.1.3 Justification of the components of the multi-objective
evolutionary algorithms

We chose not to report all the implementation details in this work because they are
already described in [180] for feature selection and in [181] for fuzzy classification.

Regarding the choice of the different components of the evolutionary algorithms,
the justification is as follows: NSGA-II is a powerful multi-objective evolutionary
algorithm which we have compared ENORA with, and that uses (µ + λ)-strategy
and stochastic binary tournament. When two algorithms are compared, it is well
known that they must have exactly the same components, and be executed with
the same evaluations of the objective function, so that the differences in perfor-
mance fall exclusively on the mechanism of the rank assignation of the individuals.
Both ENORA and NSGA-II algorithms have been implemented with self-adaptive
variation operators, with exactly the same crossover and mutation operators. Flip
mutation and uniform crossover are typical mutation operators used for binary rep-
resentations in feature selection. The variation operators used in fuzzy classification
were designed for exploitation and exploration at all levels of the individual. As the
individuals represent fuzzy set classifiers, the variation operators can operate at rule
level or at fuzzy set level.

3.1.4 Feature selection: experiment design and results

This section illustrates the results of the experiment with the Gap Srlu dataset,
obtained by a methodology which includes pre-processing of the data, feature selec-
tion, optimizers’ performances comparison (based on hypervolume metrics), classi-
fier learning construction, and test, as shown in Figure 3.1.

The Gap dataset

By a complex integration of various data systems [61], Gap Srlu it keeps a rich
and detailed record of each agent-customer communication, that is, of each session,
including both operational and service data. For inbound phone-based communica-
tions, recorded information includes operational data generated automatically such
as the time slot (hour of the day, day of the week, day of the month, month of the
year) at which the session has taken place, queue information (queue length, waiting
time), the total duration of the session, the line type (mobile or home phone), and lo-
cation of the caller; in addition, it includes service data related to the specific service
for which the call has taken place, including cumulative workload/service up to the
current time, service/activity category, and service priority. Overall, the raw data
for the experiments include 19 features (numerical and categorical), and a boolean
class that distinguishes the calls that have been managed by an operator from those
that have been instead abandoned. A detailed account of the features can be found
in Table 3.1. The purpose of the experiment is to identify which features, among
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Table 3.1: A short account of the dataset attributes.
Attribute Description

day num Day of month on which the call has arrived
week day Day of week on which the call has arrived
month Month in which the call has arrived
queue size Length of the inbound waiting queue on call arrival
arrival period Time spent before entering a queue (e.g., making an IVR choice)
queue period Time spent in the waiting queue
tot duration Total duration of the call
calls serv mon Number of calls of the specific service managed over the current month
sess serv inc Number of incoming calls for the specific service, until the present call
sess serv day Number of incoming calls for the specific service, over the current day
sess serv mon Number of incoming calls for the specific service, over the current month
active sess ect Number of active calls in the system at the end of the present call
queue size ect Number of queued calls in the system at the end of the present call
phone type Whether the call is on a land line or a mobile line
caller area region Region of origin of the call
service type Type of the service called
activity type Type of the activity selected via IVR
service priority Priority of the called service
session time slot Hour slot at which the call has arrived
managed or not Whether the call has been managed by an operator or not (class)

these, influence the fact that a session will eventually be managed by an operator.
In the second phase, the identified (optimal) subset of features will be used to per-
form a fuzzy classification. The outcome can be particularly useful, as analyzing the
fuzzy classification model Gap personnel may highlight factors influencing the fact
that a session is never managed, thus possibly improving the service.

Data pre-processing

The initial dataset consisting of 19 features has been pre-processed as follows. First,
all the missing values for categorical and numerical attributes have been replaced
by, respectively, the modes and means from the training data using the procedure
ReplaceMissingValues from the weka.filters.unsupervised.attribute package. Such
a technique has the benefit of not changing the sample mean for the considered
variable, however, mean imputation can be observed to attenuate any correlations
involving the variable(s) that are imputed. Next, all features with too small variation
have been removed, using the procedure NearZeroVar from Caret R [276]. As a
matter of fact, no feature has been eliminated via this process, indicating that,
potentially, all of them might influence the fact that the current session will or will
not be managed by an agent.
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Feature selection: experiment design and results

Both search strategies ENORA and NSGA-II have been integrated into a C4.5-based
wrapper feature selection method, using the two objective functions described in
Section 3.1.2, namely, accuracy maximization and cardinality minimization. After
30 runs, on each non-dominated individual of the last population of each strategy, a
10-folds cross-validation, by using the ACC metrics, has been performed, identifying
the solution with the best cross-validation value (one for ENORA and one for NSGA-
II). Specifically, for each run, the following evaluator has been considered:

weka.attributeSelection.WrapperSubsetEval -B weka.classifiers.trees.J48 -F 5 -T
0.01 -R 1 -E acc – -C 0.25 -M 2 .

Alongside, both ENORA and NSGA-II have been integrated as search strategies in
the multivariate filter Correlation-based Feature Selector (CFS), using, as already
explained, the following objective functions: subset worth maximization and cardi-
nality minimization. After 30 runs, the best non-dominated individual, according to
the COR metrics, that is, the one which performs best regarding non-redundancy
and predictive degree with respect to the class (again, one for ENORA and one for
NSGA-II), has been extracted. In this case, for each run, the following evaluator
has been used:

weka.attributeSelection.CfsSubsetEval -P 1 -E 1 .

As a result, each of the 4 solutions determined a reduced dataset based on the
selected features.

The two search strategies (ENORA and NGSA-II) have been implemented with
dynamically adapted parameters [301], and written in Java by relying on the WEKA
package [331]. Both have been run with the number of generations set to 100 and the
number of individuals in each population set to 100, for a total of 10000 evaluations.
The search strategy ENORA is incorporated into WEKA as an official package,
namely MultiObjetiveEvolutionarySearch package [228].

Since the search for an optimal subset of features is performed by two different
evolutionary algorithms, it makes sense to compare the hypervolume of the two
executions, that is, the volume of the search space dominated by a population P
[90]. The statistical comparison of the results obtained by the two optimizers, using
a confidence interval of 90% for the mean obtained with a pairwise t-test [257],
showed no statistically significant differences between the two search strategies, as
witnessed also by the respective evolution diagrams (Figure 3.2). It is therefore
possible to conclude that ENORA and NSGA-II show a similar behaviour for both
problems (3.1) and (3.3), without statistically significant differences. In fact, the two
search strategies ENORA and NSGA-II returned precisely the same results (Figure
3.3) with respect to both the J48/C4.5 and CFS based methologies. Therefore,
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Figure 3.2: Mean hypervolume evolution (left: problem eq. (3.1), right: problem
eq. (3.3)) – feature selection phase.

Table 3.2: Selected features for classification, for each method.
Attribute WRAPPER-MO-DS CFS-DS WRAPPER-BF-DS INFOGAIN-DS

arrival period X X
queue period X X X
tot duration X X X X
queue size X X X
queue size ect X X X
sess serv mon X

2 (instead of 4) reduced datasets have finally been obtained: WRAPPER-MO-
DS and CFS-DS, both with 3 out of 19 features (see Table 3.2). The classical
feature selection methods, namely, BestFirst (with the same J48/C4.5 evaluator)
and InfoGain Ranker, have produced two more datasets, hereby called WRAPPER-
BF-DS and INFOGAIN-DS, with 5 attributes each.

All selections have been tested and compared configuring the Experimenter tool
available in WEKA with the two datasets to perform a 10-fold cross-validation
using the following classifiers: J48, PART (which produces a decision list from a
partial C4.5 decision tree by transforming the best leaf into a rule [126]), ZeroR
(which is a simple classifier to predict the mode for a nominal class [126]), Logistic
and RandomForest (the latter being a non-interpretable classifier), all run with the
default parameters set by WEKA. The result of the experiment has been analyzed
through a paired t-test corrected, with 0.05 significance (being WRAPPER-MO-
DS the test base). The following measures have been compared:(i) the percent of
correct classifications; (ii) the (weighted) area under the ROC curve; (iii) the Kappa
statistics; (iv) the serialized model size.

The outcomes of the test are shown in Table 3.3, where ORIGINAL-DS denotes
the original dataset after the pre-processing. In terms of the performances of the
classification models, all feature selection methods were able to reduce the number of
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Figure 3.3: Pareto front of the best execution with ENORA and NSGA-II, last
population (left: problem eq. (3.1), right: problem eq. (3.3)) – feature selection
phase.

features in a very significant way (selections have a cardinality ranging from 3 to 5),
allowing for an easier interpretation of the results; the performances of all classifiers
obtained by means of the wrapper-based methodology in terms of all parameters
stand out in most cases.

From the above analysis, WRAPPER-MO-DS, composed of 3 attributes (see
Table 3.2), emerges as the best selection of the 19 original features. This is jus-
tified by, first, generally better performances (see Table 3.3) and, second, expert
evaluation. As a matter of fact, the selection WRAPPER-MO-DS gives more in-
teresting insights on a fundamental aspect: the potential relationship between the
arrival period (that is, the amount of time that the caller spends while engaged with
the IVR) and the queue period (that is, the amount of time that the caller spends
while simply waiting). On the other hand, the selection CFS-DS shows features
that only take into account aspects related to the queue dimension, which might
be less interesting. Finally, note that the set of variables selected by WRAPPER-
MO-DS is included in the set of variables selected by WRAPPER-BF-DS. That
means that the variables common to both sets are very important to the problem at
hand. Additionally, WRAPPER-MO-DS has discarded 2 variables that are instead
selected by WRAPPER-BF-DS, which means that the multi-objective optimization
is being effective. As for INFOGAIN-DS, it somewhat hybridizes the results given
by WRAPPER-MO-DS and CFS-DS, and it is also the only one that considers the
attribute sess serv month.

In conclusion, the feature selection phase confirmed that the probability of a ses-
sion being eventually managed by an agent (therefore not being abandoned) is influ-
enced by the quantity of time that the customer spends in the waiting phase (which
is partially active, when engaged by an IVR); while this might not be surprising, the
relationship that emerges among the selected features via the fuzzy classification,
explained in the next section, may lead to some interesting observations.
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Table 3.3: Comparative results of the test.
WRAPPER-MO-DS CFS-DS WRAPPER-BF-DS INFOGAIN-DS ORIGINAL-DS

Percent correct
J48 99.6072 91.4558 99.6085 99.2661 99.5422
PART 99.5890 91.3280 99.5556 99.2389 99.3555
Random-Forest 99.8128 90.5964 99.7731 99.3442 98.7015
Logistic 99.9964 86.7527 99.9947 98.6166 89.3069
ZeroR 83.4948 83.4948 83.4948 83.4948 83.4948

Weighted avg. area under ROC
J48 0.9944 0.9288 0.9946 0.9901 0.9943
PART 0.9962 0.9424 0.9967 0.9958 0.9923
Random-Forest 0.9997 0.9110 0.9997 0.9982 0.9983
Logistic 0.9999 0.8863 0.9999 0.9980 0.9411
ZeroR 0.5000 0.5000 0.5000 0.5000 0.5000

Kappa statistics
J48 0.9858 0.6541 0.9858 0.9733 0.9834
PART 0.9851 0.6512 0.9839 0.9724 0.9767
Random-Forest 0.9932 0.6355 0.9918 0.9762 0.9523
Logistic 0.9999 0.3975 0.9998 0.9496 0.6062
ZeroR 0.0000 0.0000 0.0000 0.0000 0.0000

Serialized model size
J48 52979.4000 20617.1600 50661.3200 65121.4400 55717.8800
PART 129450.0500 100447.7500 124713.5700 176653.8300 356636.7400
Random-Forest 767094.9400 3439187.3100 764803.3400 1047677.7700 2187567.8300
Logistic 7649.0000 7662.0000 8671.0000 8883.0000 17942.0000
ZeroR 907.0000 907.0000 907.0000 907.0000 907.0000

Fuzzy classification: experiment design and results

In order to improve the interpretability of the results, let us now focus on the reduced
dataset WRAPPER-MO-DS and search for a fuzzy classification model, as explained
in Section 3.1.2. Data need not to be pre-processed again; therefore, the remainder
of the present section is going first to describe how the experiment has been designed
and, then, the results that have been obtained.

Once again, the search strategies ENORA and NSGA-II have been adapted fol-
lowing the methodology outlined in Section 3.1.2. They are both available in the
WEKA class

weka.classifiers.rules.MultiObjectiveEvolutionaryFuzzyClassifier .

The goal is that of searching for fuzzy sets with a minimum of 2 and a maximum
of 12 rules, with a maximum similarity (gs) of 0.4. The maximum number of lin-
guistic labels has been limited to 7. Both search strategies have been run with 100
individuals in each population and 100000 evaluations. The purpose of this phase is
threefold: (i) to establish, via hypervolume test, the best search strategy for fuzzy
classification among ENORA and NGSA-II for this particular dataset; (ii) to obtain
an interpretable classification model, and compare it with other interpretable clas-
sifiers based on decision trees (C4/J48) and fuzzy rules (FURIA3 [163]); and (iii) to

3FURIA (Fuzzy Unordered Rule Induction Algorithm) extends the well-known RIPPER rule
learner, while preserving its advantages, such as the generation of simple and comprehensible rule
sets. In addition, it includes a number of modifications and extensions. In particular, FURIA learns
fuzzy rules instead of conventional rules and unordered rule sets instead of rule lists. Moreover, to
deal with uncovered examples, it makes use of an efficient rule stretching method.
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Figure 3.4: The proposed methodology for fuzzy classification.

analyze how accurate our fuzzy rule-based classifier can be by comparing it with
highly accurate non-interpretable classifiers, such as RandomForest.

A stratified partition, that is, a partition whose elements preserve the class dis-
tribution, is obtained by means of the WEKA’s algorithm Stratified Remove Folds
[331]. The two generated subsets include 66% and 33% of the instances, respec-
tively, and are denoted here as WRAPPER-DS2T and WRAPPER-DS1T. Two
fuzzy classifiers (one with ENORA and one with NSGA-II) have been trained over
WRAPPER-DS2T. Then, the best two individuals after 30 runs have been chosen
based on their performances over WRAPPER-DS1T, and compared against each
other and against a decision tree learned with J48 over WRAPPER-DS2T and
tested over WRAPPER-DS1T (see Figure 3.4).

In terms of hypervolume statistics, the result of the comparison can be found in
Table 3.4, together with the relative evolution graph in Figure 3.5. Most notably,
unlike the feature selection phase, in the fuzzy classification phase ENORA outper-
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Table 3.4: Mean hypervolume statistics over 30 runs – fuzzy classification phase.

ENORA NSGA-II
Minimum 0.0049 0.0428
Maximum 0.0975 0.1546
Mean 0.0285 0.1122
S.D. 0.0231 0.0443
C.I. Low 0.0198 0.0956
C.I. High 0.0371 0.1287

S.D = Standard Deviation
C.I. = Confidence Interval (95%)

Figure 3.5: Mean hypervolume evolution – fuzzy classification phase.

formed NSGA-II. As can be seen in Figure 3.6, the Pareto front of ENORA contains
8 classifiers, with 2, 3, 4, 5, 6, 7, 8 and 10 rules respectively, while the Pareto front
of NSGA-II contains 4 classifiers with 2 , 3, 4 and 5 rules respectively. This means
that ENORA shows more diversity than NSGA-II. Although the classifier with 10
rules is the most accurate in ENORA, we have finally chosen (a posteriori) the
classifier with 4 rules, given that the difference in accuracy between such classifiers
is very small (approximately 0.001) but, nevertheless, the 4-rule classifier is much
more interpretable than the 10-rule classifier. For NSGA-II, the final decision was
the 5-rule classifier.

Let us now analyze both fuzzy models. They are referred to as ENORA-RULES
and NSGA-II-RULES, and have been obtained, as explained, in full-training mode
over the dataset WRAPPER-DS2T, which contains a stratified partition of two
thirds of the instances of the dataset WRAPPER-MO-DS. ENORA-RULES contains
4 rules and 8 labels, while NSGA-II-RULES contains 5 rules and 8 labels. In terms of
performance, not only ENORA-RULES is more interpretable than NSGA-II-RULES
but, also, ENORA-RULES is more accurate than NSGA-II-RULES. In other words,
it is a more interpretable and precise classifier, that can be used to reveal correlations
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Figure 3.6: Pareto front of the best execution, last population (left: ENORA, right:
NSGA-II) – fuzzy classification phase.

Table 3.5: Fuzzy rule-based classifier learned with ENORA.

Rules

#Rules arrival period queue period tot duration Class

r1 M M ML managed
r2 L VH VH managed
r3 VH VH MH managed
r4 M VH MH not managed

between the different waiting times and the probability of a session being managed
or abandoned. In particular, the rules show that the time spent during the IVR
phase is important, and, in particular, that calls are more likely to be abandoned
when the IVR phase is not too short nor too long. This can be interpreted as follows:
if the IVR phase is short, then the call is managed quickly (which turns out to be
in fact a characteristic of the Gap services considered in this dataset), while if it is
particularly long, the caller has already “invested” so much time that is not willing
to give up. Concerning the number of rules and the different fuzzy sets for each
variable, as already reported the model is compact. The similarity of fuzzy sets
is minimal, even if a maximum value of 0.4 has been imposed, and the linguistic
labels that have been found are acceptable in number. Therefore, the chosen model
entirely fulfils the interpretability and compactness criteria that have been imposed.
In Figure 3.7, the fuzzy sets are shown in graphical form. ENORA-RULES is shown
in Table 3.5, and the relative fuzzy sets are shown in Table 3.6.

Finally, both ENORA-RULES and NSGA-II-RULES have been contrasted to
J48/C4.5, RandomForest, Logistic and FURIA learning algorithms, trained over
WRAPPER-DS2T, and the results of such a comparison over the test dataset
WRAPPER-DS1T are shown in Table 3.7. Table 3.7 also shows that, while ENORA
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Table 3.6: Fuzzy sets for the classifier learned with ENORA.

Gaussian Fuzzy Sets

Attribute Mean S.D. Linguistic Labels

arrival-period 19.0568 12.9271 Low (L)
52.6136 19.9698 Medium (M)
93.4797 11.1821 Very High (VH)

queue-period 1629.2688 222.6852 Medium (M)
3163.1231 298.3534 Very High (VH)

tot-duration 22070.0134 2243.1530 Moderately Low (ML)
42962.2793 7010.2555 Moderately High (MH)
62834.9403 9233.0987 Very High (VH)

Figure 3.7: Gaussian fuzzy sets with ENORA.

has behaved better than NSGA-II to find an interpretable classifier, the best clas-
sifier is the Logistic one4. This is reasonable, as the problem of establishing the
probability of a call being managed or not can intuitively be seen a logistic classifi-
cation task. RandomForest also obtained a very high accuracy, better than that of
ENORA-RULES, which was also to be expected, since usually black-box classifiers
are more accurate than interpretable ones. Regarding the comparison with the other
classifiers we can observe the following: J48/C4.5 obtained a precision of 0.995738
with a tree size of 255 nodes (128 leaves), while FURIA obtained a precision of
0.997104 with 106 fuzzy rules. Clearly both models are hardly interpretable since
they convey an overwhelming amount of information. In conclusion, following our
proposal we obtained a fuzzy rule-based classifier that, although reporting a slightly
lower accuracy, has a low number of rules and linguistic labels, which makes it highly
interpretable.

4The results are rounded to the 3rd decimal digit, and it appears to be 1.000 even if one instance
is misclassified; the actual accuracy given by logistic regression is 0.999945.
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Table 3.7: Performances of the fuzzy classifiers.

Classifier Accuracy TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area

ENORA-RULES 0.995 0.995 0.008 0.995 0.995 0.995 0.984 0.994 0.994
NSGA-II-RULES 0.848 0.848 0.722 0.830 0.848 0.803 0.267 0.563 0.752

J48 0.996 0.996 0.009 0.996 0.996 0.996 0.985 0.995 0.996
RandomForest 0.998 0.998 0.003 0.998 0.998 0.998 0.993 1.000 1.000

Logistic 1.000 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000
FURIA 0.997 0.997 0.006 0.997 0.997 0.997 0.990 0.998 0.998

3.1.5 Discussion

Wrapping up, in this work, we have tried to establish the main factors that determine
whether an inbound call will be managed before being abandoned in a contact center,
considering a real world dataset provided by Gap Srlu.

This has been done by comparing two different feature selection techniques (a
wrapper technique based on the J48/C4.5 decision tree learner and a Correlation-
based Feature Selector filter) driven by two different search strategies (the evolu-
tionary algorithms ENORA and NSGA-II), along with two classical feature selection
methods. The outcome of the experiment is that, in the considered domain, the
wrapper methodology behaves better than the filter (both univariate and multivari-
ate), and that the two search strategies behave in a comparable way. Then, after
selecting the optimal subset of features (considering also domain expert validation),
the behaviours of ENORA and NSGA-II in a fuzzy classifier learning setting have
been compared. As a result, ENORA extracted a more interpretable, more accurate,
and more useful (from the domain point of view) set of fuzzy rules. Such results
have then been confronted with those provided by some classical classification algo-
rithms. Specifically, RandomForest and Logistic classifiers obtained a slightly better
accuracy than ENORA, although they are less interpretable by a domain expert, if
at all. Moreover, the classifiers J48/C4.5 and FURIA have also generated decision
trees and fuzzy rules respectively with too much information to be easily interpreted
by a human, so we have considered them non-interpretable in this study.

We conclude that the classifier obtained following our proposal is highly inter-
pretable and sufficiently accurate, offering a better trade-off between interpretability
and accuracy than the rest of the classifiers analyzed in this study. From the se-
mantical point of view, the rules show that the time spent during the IVR phase
is important, and, in particular, that calls are more likely to be abandoned when
the IVR phase is not too short nor too long. This can be interpreted as follows:
if the IVR phase is short, then the call is managed quickly (which turns out to be
in fact a characteristic of the Gap services considered in this dataset), while if it is
particularly long, the caller has already “invested” so much time that is not willing
to give up.
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Working on Model Interpretability

This chapter focuses on model interpretability. Specifically, an approach to the
post-pruning of decision trees based on Evolutionary Algorithms (EAs) [65] is pre-
sented, that can be used as a possible way of finding the best trade-off between the
readability and accuracy of a model.

4.1 Evolutionary-based decision tree pruning

As it is commonly recognized, decision trees have a predominant position among
classification models [331]. This is mainly due to the facts that (i) they can be
trained and applied efficiently even on big datasets and (ii) they are easily inter-
pretable. Thanks to the latter feature, they turn out to be useful not only for
prediction, but also for highlighting relevant patterns or regularities in the data.
This is extremely beneficial in those application domains where understanding the
classification process is at least as important as the accuracy of the prediction itself.

A typical decision tree is constructed recursively, starting from the root, follow-
ing the traditional Top Down Induction of Decision Trees (TDIDT) approach. A
decision tree induced by the TDIDT approach tends to overgrow, and this leads to
a loss in interpretability as well as to a risk of overfitting training data. In order to
simplify the tree structure, thus making the trees more general, pruning methods
are typically applied (for further details, see Section 1.2).

EAs have already been successfully applied to the various phases of the decision
tree induction process (see, for instance, [42]). As for the decision tree pruning,
the problem can actually be seen as a search problem in the space of possible sub-
trees [109], and EAs seem to be a natural solution to solve such a problem. Despite
of that, to the best of our knowledge, the only proposed EA for classical, that is,
not oblique [159], decision tree post-pruning is Chen and al.’s single-objective al-
gorithm [77]. In that work, the fitness function is given by a weighted sum of the
number of nodes in the tree and the error rate. Oddly enough, the latter is estimated
directly on the same test dataset also used to evaluate the accuracy of the final so-
lution. As pointed out in [42], this constitutes a serious methodological mistake,
since the test set should only be used to assess the validity of the finally generated
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Figure 4.1: A maximum-height binary decision tree.

tree, and the training set, or an independent pruning set, should have been used in
evaluating the fitness of individuals during EA computation.

This work corrects and extends the approach outlined in [77], making use of the
well-known, elitist, multi-objective evolutionary algorithm NSGA-II [91]. A post-
pruning strategy for J48 [274] is designed that seeks to optimize two objectives: the
accuracy of the obtained tree (on the training dataset) and the number of its nodes.
The novel approach is compared with the default post-pruning methodologies of
both the algorithms J48 (Error-Based Pruning, see Section 1.2.1) and C5.0 [3]. In
both cases (EA-based pruning and default pruning strategies), a third hold-out set
is not necessary: this makes our comparison easier and, of course, it is advantageous
for those cases in which training instances are scarce.

The work is organized as follows: Section 4.1.1 provides a sound justification
for the evolutionary algorithm approach to the decision tree post-pruning problem.
Section 4.1.2 presents the proposed approach in detail. Section 4.1.3 is devoted to
the experimental analysis of the achieved solution. Finally, the obtained results are
discussed in Section 4.1.4.

4.1.1 On the complexity of the decision tree pruning prob-
lem

Let us now focus our attention on the pruning problem viewed as a search problem.
We are interested in establishing suitable lower and upper bounds to the search
space and, to this end, we restrict our attention to binary trees, which makes it
simpler to compute the bounds. More general lower and upper bounds can then be
easily derived. Notice that binary decision trees are always full, that is, each node
has zero or two children, and thus the pruning of a full binary decision tree, for any
given internal node, either removes both subtrees or maintains both of them.

The search space consists of all the different pruned trees that can be obtained
from a fully grown tree, that is, from the tree generated by the TDIDT recursive
procedure.
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Figure 4.2: A balanced and complete binary decision tree.

Let n be the number of nodes of the given (fully grown) tree. A lower bound on
the cardinality of the search space is given by the number of pruned trees that can
be obtained from the highest full binary decision tree that can be generated with n
nodes at our disposal. Consider the case with n = 7. The height of the highest full
binary decision tree with 7 nodes is h = 3 (see Figure 4.1). The number of distinct
pruned trees that can obtained from it is 4: the complete tree, the one obtained by
deleting nodes 3 and 4, the one obtained by deleting nodes 2, 3, 4, and 5; and the
one consisting of the root 0 only. In general, if the height of the highest full binary
decision tree is h, the number of its distinct pruned trees is h+ 1, i.e., O(h).

An upper bound on the cardinality of the search space is given by the number
of pruned trees that can be obtained from the perfect binary tree, whose levels are
all complete (see Figure 4.2). In such a case, the number of pruned trees can be
determined by a recursive formula, as precisely stated by the following proposition.

Proposition 1. Let us consider a perfect binary decision tree of height h. The
number of pruned trees that can be obtained from it is expressed by the following
recursive equation:

f(h) =

{

1 if h=0 ;

f(h− 1)2 + 1 otherwise .
(4.1)

Proof. Let h = 0. There is only one possible perfect binary decision tree of height 0
which just consists of the root node. By definition, f(0) = 1 and indeed such a tree
can generate only one pruned tree, that is, the root node itself.

Let h > 0. Since the tree is a perfect binary tree, it consists of a root node with
exactly two perfect and binary subtrees, whose height is h − 1. By the inductive
hypothesis, f(h − 1) pruned trees can be obtained from each of the two subtrees.
The total number of pruned trees that can be obtained from the entire tree is thus
equal to the number of possible combinations of the subtrees’ pruned trees, which
is equal to f(h− 1)2, plus the pruned tree consisting of its root only. The resulting
value is then f(h) = f(h− 1)2 + 1.
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An upper bound on the cardinality of the search space is thus O(f(h)) = Ω(2h),
which is a function that grows very fast. As an example, we have that:

f(0) = 1 f(4) = 677

f(1) = 2 f(5) = 458.330

f(2) = 5 f(6) = 210.066.388.901

f(3) = 26 f(7) = 4, 412788775 ∗ 1022 .

The above formula can be easily generalized to cope with non-perfect, non-binary,
and, therefore, non-full, decision trees.

Let N be the root of the given tree, let f ′(N) be the function that computes the
number of its pruned trees (we identify the tree with its root), and let C(N) be the
set of all children of the node N . The function f ′, that generalizes f , can be defined
as follows:

f ′(N) =







1, if N is a leaf ;

1 +
∏

M∈C(N)

f ′(M) otherwise . (4.2)

Clearly, both f and f ′ grow too fast to allow a systematic search of the space of all
the pruned trees.

To see how the number of solutions may grow in real-world cases, consider, as an
example, the decision tree generated by applying WEKA’s J48 on the UCI’s Soy-
bean benchmark dataset (683 instances, 36 attributes [331]), disabling pruning and
collapsing operations (weka.classifiers.trees.J48 -O -U -M 2). The resulting
model has 207 nodes (141 leaves) and, according to the previous formula, it admits
131.165.197.804 possible pruned trees. For the sake of comparison, the default EBP
pruned version has 93 nodes (61 leaves).

To conclude our analysis, it is worth mentioning that also optimal, linear compu-
tational complexity (with respect to the tree size) methods to perform post-pruning
of decision trees do exist. Nevertheless, to the best of our knowledge, they all re-
quire the presence of a separate, hold-out set. An example is given by Reduced Error
Pruning (REP) [273], where the additive property of the error rate for decision trees
is exploited to design a bottom-up strategy to derive the smallest version of the most
accurate subtree with respect to the hold-out set. In [110], the importance of hav-
ing a large hold-out set is specifically remarked, to avoid the bias of REP towards
overpruning.

4.1.2 Evolutionary algorithm-based pruning

This section presents a novel, wrapper-based approach to the pruning of decision
trees. In wrapper-based pruning, a search algorithm explores the search space of all
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(a) A full-grown decision tree with
nodes labelled in a pre-order fash-
ion.

(b) The corresponding gene, representing a solu-
tion.

Figure 4.3: A full-grown decision tree and the corresponding gene representation.

possible pruned trees that can be obtained from a single, unpruned and uncollapsed
decision tree, and potential candidates are evaluated step-by-step.

The methodology is implemented on J48, the WEKA implementation of the
algorithm C4.5 and with the evolutionary search algorithm known as NSGA-II (see
Chapter 1) through the jMetal framework [102].

Representation of solutions and initial population

Given a training dataset, a fully grown, uncollapsed and unpruned J48 decision tree
is first built.

Each solution to the search problem is conveniently represented as a binary array,
whose size is equal to the number of nodes of the original J48 tree given as input.
Each cell of the arrays tracks whether the subtree rooted at the specific node of the
tree is being kept or not. In order to establish a correspondence between the tree
and the array, nodes are numbered according to a pre-order visit of the tree.

As an example, the tree represented in Figure 4.3a corresponds to the binary
array of Figure 4.3b. The decision tree obtained by removing the subtree rooted at
node 1 and, consequently, the subtree rooted at node 3, is represented in Figure 4.4a.
Its corresponding gene representation is shown in Figure 4.4b. Basically, each gene
keeps track of the subtree status with respect to the original, fully grown decision
tree.

The initial population has been generated with the following schema to ensure
both its correctness and its heterogeneity.

A binary array corresponding to a particular solution is initially set to represent
the fully grown tree. Then, a “non-pruning probability threshold” t is established
(empirical evaluation suggested a random value in the range [0.85, 0.95] for the
threshold). For each cell of the array, the strategy proceeds as follows. The distance
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(a) The pruned decision tree, with
nodes labelled in a pre-order fash-
ion.

(b) The gene representing the pruned tree.

Figure 4.4: The pruned decision tree and the corresponding gene representation.

d of the corresponding node from the root of the tree is computed (starting from 1),
and, then, d random values are generated: if at least one of them is greater than t,
the subtree corresponding to the array cell is pruned, that is, the cell is set to 0.

The idea behind such a generation strategy is that pruning at higher levels should
be more difficult than pruning at lower levels, as pruning a shallow node removes
most of the tree. Obviosly, pruning operations must be carried out in such a way
that the resulting tree is a valid tree: if the subtree rooted at node N is removed,
then all subtrees rooted at descendants of N must be removed as well.

Operators

Let us now consider the crossover and mutation operators, that in the evolutionary
algorithm are used to generate new individuals.

Given two parent solutions, two children solutions are generated via crossover
by simply performing a pairwise AND and a pairwise OR of the two corresponding
binary arrays. Thus, one child will contain the subtrees which are in common
between the two parents, whereas the other one will contain the union of the subtrees
of the two parents. Correctness of the generated solutions straightforwardly follows
from the correctness of the parents.

Given a binary array of length l corresponding to a solution, mutation is carried
out as follows. A random number n, 1 ≤ n ≤ l is generated, and n random flips are
carried out in the binary array, preserving the correctness of the generated solution:
if the subtree rooted at N is removed, then all subtrees rooted at descendants of N
must be removed as well, and if the subtree rooted at node N is restored, then all
subtrees rooted at ancestors of N must be restored as well.
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Fitness function

A bi-objective fitness function is employed. The first objective is to maximize the
accuracy of the pruned tree on the training dataset and, to this end, we used the
standard evaluation method provided by J48. The second objective is to minimize
the size of the pruned tree and, for such a purpose, a simple function to count the
number of nodes is used, also provided by WEKA. The two objectives are clearly
antithetical: pruning a tree may possibly reduce the accuracy of it on the training
set, but it never increases it.

Decision method

As it happens with any other multi-objective optimization algorithm, the result of
our post-pruning method is a set of non dominated solutions.

To evaluate the quality of the proposed method, the solutions it returns are
compared with the solutions provided, on the same training datasets, by C4.5 and
by C5.0. Thus, an a posteriori decision-making method must be designed to select
a single solution (or a subset of solutions) in a systematic and controllable way. The
proposed strategy is inspired by the Minimum Description Length (MDL) principle
(see, e.g., [233]), which is based on the assumption that any regularity in a given
dataset can be exploited to compress the data.

Specifically, each non dominated tree can be considered as a theory, which can
be used to “explain” the training data. Each theory will have a related (possibly
empty) set of exceptions, which are not “captured” by the model. Thus, we may
define the coding cost of a candidate solution as the coding cost of the theory (in
the present case, the relative size of the tree with respect to the original one) plus
the coding cost of the exceptions, that is, the error rate of the tree, calculated over
the entire training set. Both values, denoted here by SIZE and ER, respectively,
belong to interval [0, 1], and they can be arranged into a weighted sum as follows:

W ∗ ER + (1−W ) ∗ SIZE , (4.3)

where W ∈ [0, 1] is a weight which can be modified by the user in order to vary the
pruning aggressiveness.

The candidate solution with the lowest combined value is selected. Intuitively,
a large value of W tends to favor larger, but more accurate, models, as far as the
training set is concerned, whereas smaller W values should result in more general
trees being selected. Intentionally, the weightW plays a similar role as the confidence
factor in C4.5 and C5.0, and this makes it possible to better compare the results.

4.1.3 Experimental task

This section provides an experimental comparison among three post-pruning ap-
proaches, that is, the standard C4.5 and C5.0 EBP pruning and our wrapper-based
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Table 4.1: The UCI datasets under study.

Dataset # inst # attrs Predictors type # nodes unpr

Adult 48842 14 nominal, numerical 31145

Bank 41188 20 numerical 6820

Breast W 699 9 numerical 53

Credit Card 30000 23 numerical 5613

Credit G 1000 20 nominal, numerical 433

Diabetes 768 8 numerical 69

Eye State 14980 14 numerical 1579

Labor 57 16 nominal, numerical 16

Sonar 208 60 numerical 29

Spambase 4601 57 numerical 361

Voting 435 16 numerical 51

Waveform 5k 5000 40 numerical 555

EA for post-pruning. All experiments have been carried out on an Intel Core i5
processor running at 2.4 GHz, equipped with a main memory of 8 GB.

Datasets

Experiments are based on 12 standard UCI datasets1, which have been selected in
order to maximize the variability in terms of number of instances as well as number
and types of attributes.

As witnessed by the recent literature, UCI datasets are a standard de facto in
the machine learning community (see, e.g., [77, 110, 115, 152]). The chosen datasets
are detailed in Table 4.1, where, for each case, we show the number of nodes in the
respective uncollapsed and unpruned J48 decision tree (# nodes unpr).

Methods

The experimental phase has been designed as follows. Each dataset has been par-
titioned into a training set (75%) and a test set (25%), according to a stratified
approach. Then, on each dataset, the three methods, namely, J48, C5.0, and EA-
based, for post-pruning have been applied.

As for C4.5 and C5.0, the followed approach is similar to the one adopted in [152].
In particular, a set of 27 decision trees has been trained for each dataset by varying

1https://archive.ics.uci.edu/ml/datasets.html
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Table 4.2: Number of evaluations and computation time per dataset.

Dataset # evaluations Computation time (sec)

Adult 75000 3200

Bank 100000 720

Breast W 10000 < 1

Credit Card 60000 400

Credit G 100000 46

Diabetes 10000 1

Eye State 100000 188

Labor 10000 < 1

Sonar 10000 < 1

Spambase 100000 50

Voting 10000 1

Waveform 5k 60000 37

the confidence factor over in the range [0.001, 0.49] (this is the widest implemented
range). The tested values range from 0.1 to 0.49 (included) by steps of 0.02, other
than the very low values 0.005 and 0.001 — the lower the confidence factor, the more
aggressive the pruning performed. For the sake of comparison, recall that WEKA’s
default confidence factor is 0.25.

Collapsing option has also been activated. Moreover, in the case of C5.0, trees
have been generated non-bagged, winnowing has been disabled, while global pruning
and soft thresholds remained active.

On the other hand, the EA-based experiment has been designed as follows. On
each dataset 30 independent runs have been executed, each with a different seed
value. This led to 30 sets of non dominated solutions which have been merged into
a final, single set (from which all dominated solutions have been eliminated). The
population size has been set to 100, while crossover and mutation probabilities have
been set to 0.9 and 0.2, respectively.

Moreover, a series of experiments has been performed for each dataset to empir-
ically assess the minimum amount of evaluations, in the range [10000, 100000], that
are necessary to reach a satisfactory solution (given the population size of 100, 10000
evaluations correspond to 100 evolution steps). Table 4.2 summarizes the number
of evaluations, and the required computation time, for each independent run over
the considered datasets.
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Results

For each dataset, the results of the three post-pruning methods have been compared.
The results are shown in a number of figures (from Figure 4.5 to Figure 4.16). Each
graph shows the relation that emerges between the predictive accuracy (on the test
set) and the size (number of leaves) of each tree produced by a specific setting of
the parameter that governs the pruning aggressiveness (confidence interval for C4.5
and C5.0, weight W for the EA-based wrapper), generating three curves for each
dataset. Each point in the graphs represents a model.

Even if the focus was not on learning more precise trees than classical methods,
in 7 out of 12 cases, the EA-based pruning produced at least one tree with equal or
better predictive accuracy than the best tree produced by C4.5 or by C5.0, regardless
its size. These are: Breast W, Credit Card, Diabetes, Labor, Spambase, Sonar, and
Voting.

In the case of Breast W (Figure 4.7) the EA-based pruning generated a tree
with 20 leaves and 97.7% accuracy (best overall accuracy), and the smallest tree
generated by classical methods has 5 leaves and an accuracy of 94.2%, while the
wrapper has been able to produce a tree with only 2 leaves and an accuracy of
93.7%.

In the case of the dataset Credit Card (Figure 4.8), a tree with 24 leaves and
82.2% accuracy (best overall accuracy) has been produced, as well as the same
smallest result as C5.0 (2 leaves, 81.7% accuracy), and the evolutionary approach
also surpassed the smallest tree generated by J48 (7 leaves and 81.8% accuracy).

As for Diabetes (Figure 4.10), the EA-based pruning matches the best result
obtained by J48 (3 leaves and 75.5% accuracy), and proposes a smaller but almost
as much as accurate tree (2 leaves and 75.0% accuracy), while C5.0 is capable of
achieving the same result but with a (slightly) bigger tree (3 leaves, 75.0% accuracy).

In the case of Labor (Figure 4.12), J48, C5.0 and the EA-based wrapper are
all capable of generating the best tree (2 leaves and 85.7% accuracy), while in the
case of Sonar (see Figure 4.13), the wrapper constantly surpasses J48 in terms of
classification performance, and it is also capable of achieving the same accuracy
result of C5.0 (78.4%) with a slightly smaller tree (9 vs 11 leaves).

As for Spambase (Figure 4.14), we may observe that the results obtained by
the three approaches tend to be quite similar; however, the wrapper is capable of
generating the best tree (141 leaves and 92.7% accuracy) as well as a very small
(smaller than those proposed by J48 and C5.0) yet accurate enough tree (12 leaves,
89.6% accuracy).

Finally, in the case of Voting (Figure 4.15), the three methods all produce the
best (and smallest) tree (2 leaves and 96.3% accuracy).

In the case of the dataset Adult (Figure 4.5), the best accuracy is obtained by
C5.0; however, while the most accurate model generated by J48 has 144 leaves and
56.7% accuracy, its smallest tree has 17 leaves and 56.5% accuracy. In comparison,
the wrapper produced a pruned tree with 10 leaves, while still retaining an accuracy
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of 56.1%. Given the exceptionally big unpruned tree, probably, a better result would
be obtained with more EA evaluations.

As for the dataset Bank (Figure 4.6), even if the wrapper is surpassed by both
J48 and C5.0 in terms of accuracy, it is still capable of generating a pruned tree
with 7 leaves, while still retaining a test set accuracy of 91.1%, and a tree with
only 3 leaves, keeping an accuracy of 90.1%. This contrasts with the smallest tree
generated by J48 (25 leaves and 91.5% accuracy) and the one produced by C.50 (13
leaves and 91.2% accuracy.

In the case of Eye State (Figure 4.11), while the wrapper does not reach the
same accuracy as C4.5 and C5.0, it is able of providing a variety of much smaller
trees, without loosing too much accuracy.

Finally, in the case of Credit G (Figure 4.9), the wrapper achieved an overall
higher accuracy than J48 (74.0% vs 73.6%), but lower than C5.0 (74.8%), while in
the case of Waveform 5k (Figure 4.16) the wrapper produced more accurate trees
than J48, and, while the most accurate model is generated by C5.0 (120 leaves and
77.9% accuracy), the wrapper generated two smaller, yet accurate enough, models
(one with 76 leaves and 77.7% accuracy and the other with 39 leaves and 75.4%
accuracy).

4.1.4 Discussion

Results reported in Section 4.1.3 clearly show that the proposed EA approach to
pruning decision trees is capable of matching, and sometimes surpassing, the per-
formances of classical C4.5 and C5.0 strategies in terms of the size-to-accuracy ratio
of the generated trees. In particular, the proposed method is capable of produc-
ing a more variegate set of solutions, often characterized by smaller trees, which,
nevertheless, preserve most of the accuracy of those traditionally pruned.

The proposed EA-based pruning approach starts from a full-grown C4.5 decision
tree. Given that, as reported in [7], the trees grown by C5.0 tend to behave better
than those grown by C4.5, we may speculate that better results could be achieved
by applying the EA method to the former instead of the latter. Moreover, there are
several EA-related aspects that could be taken into account to enhance our results.

First, the classical selection strategy implemented in NSGA-II has been improved
in, for instance, the algorithm ENORA [178, 179]. Second, independently from the
selection strategy, state-of-the-art implementations of EAs do not require explicit
and fixed setting of the crossover and mutation rates, which are, instead, considered
as characteristics of adaptiveness of each of the solutions. Empirically, adaptation
has been observed to better the performance of traditional operators in terms of con-
vergence to the Pareto optimal front and in diversity of the final solutions. Finally,
in the last few years, the use of fitness functions is being progressively substituted by
convergence directly based on the hypervolume, which seems to behave better than
traditional fitness-based methods [168], and it would be interesting to understand



70 4. Working on Model Interpretability

its effects on our method as well. Overall, this entire work should be considered as
a worthy proof-of-concept of the idea of EA-based post-pruning, which in our opin-
ion deserves some further investigation. Previous to this work, to the best of our
knowledge, only Chen et al. [77] approach to (non-oblique) decision tree pruning
has used evolutionary algorithms. Their method and the present one differ from
each other in various nontrivial aspects. First of all, Chen’s pruning is applied to a
fully-grown ID3 decision tree, which is a predecessor of C4.5 [272]. Concerning the
representation of the solutions, the hereby presented encoding is similar to theirs,
except for the fact that it denotes nodes, that is, subtrees, instead of edges. On the
contrary, the proposed crossover operator is very different from the one of [77], where
its application partitions each of the two parents into a prefix and suffix substrings
(then, to generate the offspring, the prefix of the first parent is combined with the
suffix of the second parent, and vice versa). Moreover, the present mutation strategy
is more aggressive than Chen’s, where a single random bit flip is performed: em-
pirically, allowing to perform more than one flip per individual has proven to help
avoiding local optima convergence. Additionally, in [77], the single-objective fitness
function is evaluated directly on the test dataset. As pointed out in [42], this is a
serious methodological mistake, since such data should be kept aside for validation
purposes, and not being used for tuning the algorithm. Finally, UCI datasets were
also used in [77], although the authors have relied on just 4 datasets, making the
present experimental setting more comprehensive and variegate.
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Figure 4.5: Results on the Adult dataset.
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Figure 4.6: Results on the Bank dataset.
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Figure 4.7: Results on the Breast W dataset.
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Figure 4.8: Results on the Credit Card dataset.
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Figure 4.9: Results on the Credit G dataset.
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Figure 4.10: Results on the Diabetes dataset.
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Figure 4.11: Results on the Eye State dataset.
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Figure 4.12: Results on the Labor dataset.
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Figure 4.13: Results on the Sonar dataset.
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Figure 4.14: Results on the Spambase dataset.
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Figure 4.15: Results on the Voting dataset.
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Figure 4.16: Results on the Waveform 5k dataset.



5
Working with Sequential Data

In the present chapter, we focus on the analysis of sequential data. Specifically,
Section 5.1 presents and motivates the development of J48S [66], which is an exten-
sion to J48, the WEKA’s Java implementation of C4.5 [125] decision tree inducing
algorithm. Then, based on the fact that text can be considered as a kind of sequen-
tial information where single words are items that make up a sequence, Section 5.2
describes a task dealing with transcription-based phone call classification in contact
centers, where J48S has been profitably employed [68].

5.1 J48S: a novel decision tree approach for the

handling of sequential data

This section presents a novel decision tree model based on the well-known inducer
C4.5 [273] and the algorithm VGEN [122] for the extraction of frequent patterns
(for an introduction to both tools, see Sections 1.2.1 and 1.1.1, respectively). The
proposed algorithm is able to mix the use of categorical, numerical, and sequen-
tial attributes during the same execution cycle, leading to several benefits, most
importantly: (i) a simplification of the data preparation phase, especially in the
preprocessing of sequential (such as textual) attributes, and (ii) a very high inter-
pretability of the generated models.

As we shall see in Section 5.2, the proposed solution has been successfully applied
to a text classification task in the context of a real business case, with the aim of
detecting problematic phone calls. This should not come as a surprise, since call
conversation transcripts may be regarded as (a kind of) sequential data, where
sequences are made of words.

In the next two sections, all the modifications that have been made to integrate
VGEN and J48S are thorougly described. Then, Section 5.1.3 briefly recaps the
main characteristics of the novel algorithm, and provides a solid justification for its
development.
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Figure 5.1: Pattern information gain and its theoretical upper bound with respect
to the support on a randomly generated dataset.

5.1.1 Adapting VGEN

As discussed in Section 1.1.1, VGEN produces frequent generator patterns in a top-
down fashion, until a user-defined minimum support threshold is reached. Since
the goal here is not that of obtaining frequent patterns, but rather discriminative
patterns that may help in the classification process, the information gain criterion
has been integrated into the algorithm. For the sake of simplicity, let us consider the
two-class classification problem; the concepts can be easily extended to multi-class
classification by means of an one-vs-all approach.

First, note that the information gain of a pattern may be calculated by parti-
tioning the instances in the dataset into those that satisfy it, and those which do
not. As observed in [79], the information gain can be considered as a function of the
support of the pattern: patterns having a very high or very low support are typically
not very informative, the former being simply too common, and the latter having
a too limited coverage in the dataset. On the basis of these assumptions, in [79],
a strategy to derive an upper bound to the information gain based on the support
of the pattern is presented. The behavior of such an upper bound is illustrated as
the solid curve in Figure 5.1, which considers data taken from a randomly gener-
ated binary class dataset: as expected, from left to right, the upper bound increases
as long as the support increases, until it peaks, and then starts decreasing as the
relative support reaches 1. The graph also shows the information gain and support
of each pattern extracted by VGEN on the same dataset (red dots). Thus, given
the upper bound calculation strategy, it is possible to provide a stopping criterion
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for the pattern growing phase (remember that, as a pattern grows, its support may
only decrease). During the pattern generation process a dedicated variable stores
the best information gain found so far. Then, given a pattern, one may decide if it
is worth growing as follows: if the support of the pattern corresponds to a point in
the curve where the derivative is positive or zero, then growing it may only decrease
its upper bound or leave it unchanged. In such a situation, if the best information
gain found so far is already greater or equal to the information gain upper bound
of the pattern, its growing process may be stopped. This strategy constitutes a
second stopping condition, which is employed together with the minimum support
threshold method.

VGEN has also been modified with respect to its output. As we shall see, VGEN
is called at each node during the tree construction phase to obtain a candidate
pattern to guide the split operation. So, we are not interested in obtaining a set of
patterns (as returned by the standard VGEN algorithm), but rather in the single
most useful pattern at that stage. Note, however, that sometimes we cannot just
take the most informative one, as it might be too complex and thus overfit training
data. Hence, we proceed as follows. The best pattern (in terms of information gain)
for each encountered pattern size is stored. Then, at the end of the algorithm, the
following formula (again, inspired by the MDL principle [285]), is evaluated for each
of the stored patterns:

W ∗ (1− patternrIG) + (1−W ) ∗ patternrlen (5.1)

where W ∈ [0, 1] is a weight that can be customized by the user, patternrIG ∈ [0, 1] is
the relative information gain of the pattern with respect to the highest information
gain observed, and patternrlen ∈ [0, 1] is the relative length of the pattern, with
respect to the longest pattern that has been discovered (in number of items). Finally,
the pattern the minimizes the value of such formula is selected. Thus, intuitively,
the larger the user sets the weight, the longer and more accurate (on the training
set) the extracted pattern will be. On the contrary, selecting a low weight should
lead to a shorter, and more general pattern being selected. In essence, setting W
allows one to control the level of abstraction of the extracted patterns.

5.1.2 Adapting J48 to handle sequential data

The decision tree J48 is capable of handling both categorical and numerical at-
tributes. Its extension J48S adds the possibility of managing also sequences, which
are represented as properly formatted strings. The design is inspired by [112], in
which the authors propose a decision tree construction strategy for sequential data.
The present work improves [112] mainly over three aspects: (i) it relies on a well-
established algorithm such as J48, instead of designing a new one; (ii) the novel
decision tree is capable of mixing the usage of sequential and classical (i.e., cat-
egorical or numerical) data during the same execution cycle; (iii) the proposed
implementation allows the tuning of the abstraction level of the extracted patterns.
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The first modification concerns the splitting criterion. Instead of relying on the
gain ratio, the so-called normalized gain [186] is used, which is defined as:

NormIG(X, T ) =
Gain(X, T )

log2n
, n ≥ 2 (5.2)

where n is the split arity. Note that this allows for a seamless integration between the
decision tree learner and the modified VGEN algorithm, since the normalized gain
is exactly equal to the information gain for binary splits, as in the case of a pattern-
based split (recall that the criterion is the presence or absence of the pattern in the
instance). At each node of the tree, the learner determines the most informative
attribute among the categorical and numerical ones. Then, it calls VGEN along
with two fundamental parameters: (i) the user-defined weight for controlling the
abstraction level of the extracted pattern, W ; and (ii) the information gain of the
best attribute found so far, so that it can be used to prune the pattern search space
as discussed in 5.1.1. Once VGEN exits, if a pattern is returned, its normalized gain
is compared with the best previously found. If it is better, then, a binary split is
created on the basis of the presence or absence of the pattern. Otherwise, the best
numerical or categorical attribute is used.

Algorithm 2 describes the main recursive procedure used in the tree building
phase, that is in charge of determining the split of an internal node, or of labelling
it as a leaf. It takes in input a node (initially, the root node of the tree, in which all
instances reside), and proceeds as follows. If the given node is pure (i.e., all instances
have the same label) or another stopping criteria is met (e.g., based on a minimum
cardinality constraint), then the node is transformed into a leaf of the tree. Oth-
erwise, the algorithm determines the best attribute for the split (best attr, together
with its normalized gain value, best ng) in the following way. First, it evaluates
all static attributes (categorical and numerical), determining their normalized gain
value (variable a ng), following the default J48/C4.5 strategy (see Section 1.2.1).
Then, it focuses on string attributes that encode sequences: the best closed frequent
pattern is extracted for each attribute (pat, together with its normalized gain value,
pat ng), calling VGEN algorithm. Observe that the sequential pattern mining algo-
rithm is intentionally called after determining the best normalized gain among static
attributes, so as to use such a value for search space pruning purposes. Finally, the
attribute with the maximum normalized gain is selected to split the node, and the
algorithm is recursively called on each of the children.

Table 5.1 lists the six parameters that have been added to J48S, with respect to
the original J48. Observe, in particular, the role of maxGap: it allows to tolerate
gaps between itemsets which, in a text classification context, means that it is possible
to extract and apply n-grams capable of tolerating the presence of some noisy or
irrelevant words. Note that when maxGap is set to values larger than 1, it greatly
affects the computation time of the pattern extraction phase: in general the higher
its value, the slower the algorithm. As an example, Figure 5.2 presents an archetypal
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Algorithm 2 Node splitting procedure (J48S)

1: procedure node split(node)
2: if NODE is “pure” or other stopping criteria met then
3: make NODE a leaf node
4: else
5: best attr← null
6: best ng← 0
7: for each numerical or categorical attribute a do
8: a ng←get information gain of a
9: if a ng > best ng then

10: best ng← a ng
11: best attr← a
12: for each sequential string attribute s do
13: pat, pat ng←get best frequent pattern in s
14: if pat ng > best ng then
15: best ng← pat ng
16: best attr← pat

17: children nodes← split instances in NODE on best attr
18: for each child node in children nodes do
19: call NODE SPLIT(child node)
20: attach child node to NODE
21: return NODE

J48S decision tree, built by integrating the extension to WEKA data mining suite
[331]. The reference dataset is characterized by three features: sequence attribute,
which is of type string and represents a sequence of itemsets; attribute numeric which
has an integer value; attribute nominal, which may only take one out of a predefined
set of values. The class is binary, and has two labels: class 0 and class 1. The first
test made by the tree on a given instance is whether its sequential attribute contains
the pattern (A,B) > D or not, meaning that there should be an itemset containing
A, B, followed (within the maximum gap constraint) by an itemset containing D.
If this is the case, the instance is labelled with class 0, otherwise the tree proceeds
by testing on the numerical and nominal attributes.

5.1.3 Discussion

As discussed in the Introduction, sequences play a major role in the extraction of in-
formation from data, and may be sometimes complemented by other, “static” kinds
of data, which can be numerical or categorical. Unfortunately, different kinds of data
typically require different kinds of preprocessing techniques and classification algo-
rithms to be managed properly, which usually means that the heterogeneity of data
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Table 5.1: Custom parameters in J48S.

Parameter name Default Description

maxGap 2 max gap between itemsets (1 = contiguous)

maxPatternLength 20 max length of a pattern, in number of items

maxTime 30 max running time of the algorithm, per call

minSupport 0.5 min support of a pattern

patternWeight 0.5 weight used in VGEN for the result extraction

useIGPruning True activate pruning of the pattern search space

sequence_attribute !contains (A,B)>D 

|   attribute_numeric <= 20: class_1  

|   attribute_ numeric > 20 

|   |   attribute_nominal = value_1: class_0  

|   |   attribute_nominal = value_2: class_1  

sequence_ attribute contains (A,B)>D: class_0  

Figure 5.2: A typical J48S decision tree built by means of WEKA.

and the complexity of the related analysis tasks are directly proportional. Moreover,
since multiple algorithms have to be combined to produce a final classification, the
final model may probably lack in interpretability. This is a fundamental problem in
domains in which understanding and validating the classification process is as im-
portant as the accuracy of the classification itself, such as in the case of production
business systems or life critical medical applications. As previously discussed, the
key characteristic of J48S is that it is capable of managing static (categorical and
numerical) as well as sequential data during the same execution cycle, meaning that
a single model may be used for the whole analysis process. Moreover, as we shall
also see in the application scenario presented in Section 5.2, the resulting decision
tree models are intuitively interpretable, so that a domain expert may easily read
and validate them.
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5.2 A combined approach to speech conversation

analysis in a contact center

Nowadays, more and more companies strive to extract relevant knowledge regarding
their business. Although such data may in fact be an important source of strategic
information, it is sometimes stored in an unstructured and hard to exploit form as,
for instance, in the case of data generated from text or audio flows. Specifically, the
ability to analyze conversational data plays a major role in contact centers, where the
core part of the business still focuses on the management of oral interactions [288].

The analysis of texts originating from oral conversations has to face two main
challenges: (i) the intrinsic characteristics of conversational dynamics, which are
different from those of written texts, and (ii) the presence of a transcription process,
which introduces a bias between the spoken interaction and its written form. The
combined effect of these two factors asks for a specific treatment, different from the
ones exploited for written compositions.

In this section, we focus on the specific case of a real company, to root our work
on actual issues emerging from practice, but the solutions we propose are of general
validity.

We analyze a dataset of recorded anonymized agent-side call conversations pro-
duced by a wide range survey campaign made on a large part of the Italian pop-
ulation by Gap Srlu company which, as we have already mentioned, is an Italian
business process outsourcer specialized in contact center services. Such an analysis
is extremely valuable to the company, as it may be easily integrated in a broader,
existing decision support system as the one we presented in Chapter 2. It should be
noted that, to the best of our knowledge, this work is one of the few to tackle with
speech analytics applied to a real business case, in Italian language.

The ultimate goal of the work is the introduction of a reliable speech analytics so-
lution having a real operational impact on company processes, such as, for instance,
in assessing the overall training level of human employees. We specifically aim at
determining whether it is possible to develop a full-fledged speech analytics system
at a relative low industrial cost by relying on interpretable models only, that can
be validated by a domain expert before being put into production. As we shall see,
this led us to neglect two approaches that are commonly used in natural language
processing, i.e., neural networks and Conditional Random Fields (CRFs).

In order to develop the system, the first step is that of assessing the feasibility
of building a proprietary transcription model trained on a relatively small dataset.
The comparison with a commercial cloud transcription solution is then mandatory
in order to evaluate its costs and performances.

The second main challenge concerns the tagging of conversation transcripts. We
investigate potentialities and limitations of a machine learning solution. More pre-
cisely, we try to establish whether an approach based on machine learning may be
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reliable enough, and more efficient than a classical linguistic solution based on do-
main expert-defined regular expressions. As a by-product, we assess the effectiveness
of a combined approach to tagging that mixes the two.

Finally, the impact on the text analysis process of a solution based on J48S
decision tree induction algorithm (see Section 5.1) is evaluated. The outcome of
such an evaluation is that the proposed solution has at least two major key benefits:
the simplification of the data preparation phase and the high interpretability of the
final model which, as we have already mentioned, is one of our main goals.

The rest of the section is organized as follows. Section 5.2.1 outlines the general
framework of our speech analytics process. It first gives a short account of related
work on the analysis of call interactions in contact centers, and then it describes
the specific speech analytics task which we focus on, that is, the semantic tagging
of conversations recorded in the context of a specific outbound survey. Section
5.2.2 deals with the first part of the analytics workflow, namely, the transcription of
phone conversations. Section 5.2.3 focuses on the second phase of the analysis, which
consists of the semantic tagging of telephone conversation transcripts. Section 5.2.4
focuses on J48S which, as he have seen in Section 5.1, handles sequential data, such
as textual data, for classification purposes. Section 5.2.5 discusses the operational
impact of the proposed speech analytics solution. Finally, we provide an overall
assessment of the work done.

5.2.1 The general framework

In this section, we first give a short account of related work on the analysis of speech
conversations in a contact center, and then we outline the general structure of the
solution that we propose.

A short account of related work

As we have already pointed out, speech analytics may play an important role in
the domain of contact centers. Among the benefits that its use can lead, we would
like to mention the possibility to exploit it to distinguish between well-behaved and
problematic calls.

Existing solutions can be roughly partitioned into those that operate directly on
raw audio data and those that turn them into textual data.

An analysis directly based on raw audio features has been proposed in [39],
where the authors look for specific sound patterns which can be interpreted as, for
instance, turn taking, hesitation, or voice overlap. Similarly, in [259], the authors
rely on patterns based on the so-called speaking rate, which is expressed as the
number of spoken words per minute. Both approaches take into consideration no-
table beahavioural patterns, emerging from an acoustic analysis, with the goal of
obtaining a classification of conversations.
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As an alternative, the analysis may rely on textual information. This is the case
with [73, 346]. These approaches consist of two fundamental steps. The first step
generates the textual data from the raw audio files by making use of an automatic
transcription process. Then, text mining techniques are applied to the resulting
texts with the final objective of determining the overall quality of the interaction.

A more advanced approach is proposed in [135, 237], which makes use of ad-
vanced natural language processing (NLP) techniques, such as noun group, named
entity recognition, and divergence of corpus statistics, to analyze the obtained tran-
scriptions in the context of a broader architecture for conversation analysis.

In [45], the DECODA project is illustrated, which aims at facilitating the devel-
opment of robust speech data mining tools in the context of contact center evaluation
and monitoring. The main contribution is the proposal of a French language cor-
pus originated from the Parisian public transportation call center, which ought to
reduce the development cost of speech analytics systems by limiting the need for
manual data annotation. Based on such a corpus, several studies have been con-
ducted, including theme identification [111, 241, 243, 261], dialogue classification
[196, 242], named entity and semantic concept extraction [138], and speech summa-
rization [314].

Nevertheless, as we have already mentioned, to the best of our knowledge, no
systematic work on speech analytics applied to a real business scenario has been
presented for the Italian language, yet.

The analysis of speech conversations in a contact center

In this section, we give a general overview of the developed system. The work done
is inspired by the approach followed in [135, 237], and it sets the basis for a flexible
and modular framework for conversation analysis in a contact center.

The system consists of two main modules: the first one is in charge of the
automatic transcription of speech conversations, while the second one analyzes the
generated texts. The analysis step actually includes two distinct phases, i.e., a
lexical and a logical one.

Such a modular approach allows us to provide specific problem-tied solutions
and makes it easier to analyze and compare various methods. As a matter of fact,
the proposed solution has enabled us to test and combine different methodologies
both for the transcription and the text analysis activities, highlighting the best
performing configuration.

We focus our attention on the analysis of agent side calls originated in the con-
text of an outbound survey service, carried out by Gap Srlu. In order to guarantee
the privacy of the individual agents, all data have been anonymized. As explained in
Section 2.2, agents performing outbound calls ought to complete a predefined script
in order for a call to be considered successful. Such a rigid structure makes it easier
to analyze a conversation and to establish whether the agent has followed all the
required steps or not. Although such an analysis may seem trivial, it has very deep
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Figure 5.3: The call analysis workflow.

practical implications for the company. As a matter of fact, the common practice
in the domain of call centers is that the overall quality of phone conversations is
manually checked by supervising staff by simply listening to a random number of
calls. Such an operation is clearly time-consuming and it requires a lot of enterprise
resources. An automatic analysis module may simplify it a lot by identifying “prob-
lematic” calls that require further investigation, thus reducing the time needed for
verification and increasing the overall efficacy of the process. Based on the analysis
tasks, the supervising staff may then identify the need for further training or specific
deficiencies that have to be solved.

The workflow of the process of call analysis is depicted in Figure 5.3. During
each phone conversation, two distinct voice recordings are generated, one for each
side of the conversation. The two recordings have exactly the same length, meaning
that they are filled with silence phases when the other side is speaking. The first
step in the processing of the raw audio is the splitting of the agent-side record-
ing, which is done by considering the pauses (see Section 5.2.2, proprietary corpus
(spontaneous)). The result is a set of segments, which are individually passed to
the following transcription step. Transcription may be performed either by means
of Google Cloud Speech API, or by exploiting an internal, self-trained Kaldi model,
as explained in Section 5.2.2. Once the transcripts have been generated, they can
be tagged with proper keywords, encapsulating the semantic content of the conver-
sation. As explained in detail in Section 5.2.3, transcribed segments may be tagged
following two main strategies: the first one relies on regular expressions defined by
domain experts, the other one makes use of machine learning algorithms. Finally,
results of the analysis are stored in the company’s data warehouse. Data may then
be used for reporting purposes, or may form the basis for more advanced tasks such
as the firing of automatic rule-based actions.

5.2.2 Transcription of phone conversations

In this section, we address the problem of speech-to-text transformation of phone
calls, with reference to the transcription of agent side phone conversations on a spe-
cific outbound survey service. To this end, we analyze and compare the performance
of Kaldi ASR framework [269] and Google Cloud Speech API [147].
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Table 5.2: Corpora used for model training and evaluation

Corpus name # utterances Recording time
training test training test

CLIPS 1025 - 2h 30m -
QALL-ME 1208 - 2h 20m -
Proprietary (read) 3467 - 4h 28m -
Proprietary (spontaneous) 201 339 30m 35m

Transcribing with internal Kaldi model

Kaldi is a free, open-source toolkit for speech recognition written in C++, and avail-
able for both Windows and Unix-like systems for research purposes. The core library
supports the modeling of arbitrary phonetic-context sizes, and acoustic modeling
with Gaussian mixture models (SGMM) as well as deep neural networks. Other
than having a large online documentation, the software comes with a variety of
recipes, i.e., sets of already worked-out scripts to carry out automatic speech recog-
nition (ASR) tasks, that can be tailored to the specific use case.

Data resources and data preparation For the training of the Kaldi model, we
relied on four data sources, each composed of a collection of manually transcribed
speech utterances. Two of them, namely, CLIPS and QALL-ME corpora, are freely
available for download on their respective websites. The remaining two have been
developed inside Gap Srlu, and are proprietary datasets. Table 5.2 lists the amount
of data contained in each dataset. Note that the overall amount of transcribed
instances available for training is rather low (less then 10 hours of speech) and that
just about half of them are generated by the company. Nevertheless, as we shall
see in Section 5.2.2, they allowed us to reach a good enough level of transcription
performances, in a cost-effective manner.

CLIPS. CLIPS is a collection of Italian speech and text corpora, freely available for
research purposes [210]. The entire dataset consists of about 100 hours of speech,
equally represented by male and female voices, for a total amount of about 300
speakers. Recordings have been captured in 15 Italian cities, selected on the basis of
linguistic and socio-economic principles of representativeness. For each city, several
kinds of speech have been included, ranging from radio and television broadcasts
to telephone conversations. For the purposes of our work, we focused on a subset
of the telephone speech corpora, whose audio is stored in monophonic .wav format
files, 32 bit, 8kHz, 128Kb/s. Overall, we considered 1025 transcribed utterances,
for a total conversation time of about 2 hours and a half. Each utterance is the
result of a role play, in which a human person acts as a tourist who is calling a hotel
reception to require a service or ask for information. Although using such a small
amount of the entire corpus may seem an unusual choice, we purposely did that
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in order to keep training data as coherent to the domain as possible. The latter
consists of phone recordings, that typically exhibit specific characteristics in terms
of audio quality, presence of noise, and way to speak. On the contrary, tv, radio,
and similar recordings are characterized by a significantly different phraseological
articulation and sound quality.

QALL-ME. The QALL-ME benchmark consists of 4501 single-speaker utterances
[225], declined in several languages. The data were produced by 113 different speak-
ers, mostly native-ones, and equally distributed between males and females. Ut-
terances are divided into spontaneous and read ones. The first are produced by
speakers within a scenario which prompts them to ask for information such as, for
instance, the opening times of a local museum, the prices of a certain restaurant,
and the time a particular movie is showing. The latter are predefined texts read
out loudly by speakers. Audio is stored in monophonic .wav format files, 32 bit,
8kHz, 128Kb/s. For the aims of our work, we selected 1208 transcribed spontaneous
utterances in Italian language, for a total recording time of about 2 hours and 20
minutes.

Proprietary corpus (read). It consists of 3467 transcribed utterances, for a total
recording time of about 4 hours and a half. Following the typical workflow of
the specific outbound survey service under study, a series of typical, agent-side
phrases have been prepared, each corresponding to an utterance. A set of selected,
Italian-native contact center agents has then been instructed, through a specific
data gathering protocol, to read each of the phrases while wearing a typical phone
headset, that has been used to record the voice. Each audio file has then been saved
in monophonic .wav format, 32 bit, 8 kHz, 128Kb/s Windows PCM.

Proprietary corpus (spontaneous). It consists of agent-side recordings taken from
successful calls made for the specific outbound service under study. Audio files
have been automatically generated by the company CRM systems, and saved in
monophonic .wav format, 32 bit, 8 kHz, 128Kb/s. To integrate such data with that
of the other datasets, as a first step, each call recording has been split into segments,
on the basis of conversation silences. In order to do that, a Python script relying on
the pydub library has been coded. Pydub has the ability to split audio considering:
(i) minimum silence length for the pause to be detected, which, in our case, has been
set to 750ms; (ii) silence threshold, i.e., the noise cut-off level used in identifying
silence, which we empirically set to -34dB; (iii) keep silence, by which an amount
of silence is kept at the beginning and end of each segment in order to avoid abrupt
cuts, set to 450ms. Out of the obtained segments, we kept those lasting at least 3
seconds. The result is a net speaking time of about 65 minutes, over 540 segments.

Training of the model A Kaldi ASR model consists of two parts, a language
model and an acoustic model. The first basically defines, by analyzing the training
transcripts, the set of phrases that are to be accepted by the recognizer, establishing
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the likelihood of a word following another. In other words, the language model gives
the prior probability of a word sequence. The latter represents the relationship
between an audio signal and the linguistic units, such as phonemes, that make
up speech. As we shall discuss, for the training of both models, we relied on the
GMM-based vystadial Kaldi recipe, which has been adapted for our purposes of
building an off-line transcriber for the Italian language. As already pointed out,
we decided to neglect more advanced neural network-based acoustic models for a
matter of industrial cost: we wanted to determine whether the already present,
general purpose system infrastructure could be used to develop the speech analytics
solution, without relying on more specialized and expensive hardware.

Language model. The language model has been built by making use of trigrams. The
full vocabulary is made of 1873 distinct Italian words. For common Italian words,
the pronunciation dictionary, i.e., the mapping between words and phonemes, has
been extracted from the Italian version of the Festival text-to-speech software [87]
by means of a custom script. For custom, or domain-oriented words, pronunciations
have been manually defined. As a result, a set of 48 phonemes in ARPAbet format
has been established, including a list of frequent onomatopoeiae. Although the
size of the dictionary may seem small, recall that we are going to analyze agent-
side outbound phone conversations, which ought to show a relatively little variance.
Thus, also the vocabulary used by the agents is expected to be rather small.

Acoustic model. As mentioned before, given the scarcity of available training data,
and the lack of dedicated hardware, for the training of the acoustic model we relied
on GMMs, neglecting the use of neural networks, which would have required a far
greater number of already transcribed utterances, other than increasing the overall
development cost. In particular, we relied on a customization of vystadial en recipe
[198], building a triphone model (LDA + MLLT feature transformation, Maximum
Mutual Information objective function), where a triphone is a sequence of three
phones that captures the context of single phone. The model has been trained on
a dedicated virtual machine running CentOS 7, and featuring a 3.1GHz quad-core
processor as well as 8 GB RAM. Despite the relative modest computing resources,
the training process took approximately 5 hours.

Transcribing with Google Cloud Speech API

Google Cloud Speech API [147] is a general purpose ASR service that can be used
to transcribe conversations in over 80 languages. One of its distinctive features is
that it allows for an easy integration into developer applications. Both online (real
time) and offline (batch) transcription is supported. Moreover, the service can be
tailored to a specific domain, by providing a set of words or phrases that may be
pronounced. Such a functionality turns out to be extremely useful, because it allows
one to detect personalized names, acronyms, and so on.

We tested the API by developing a Python script that performs a batch tran-
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scription of a set of already split segments, providing also a set of custom words to
tailor the transcriptions to the specific outbound service of choice.

A critical evaluation of the two solutions

The two approaches (Kaldi and Google Cloud Speech API) have been evaluated
against the same set of 339 manually transcribed segments (see Table 5.2). The
outcome is as follows: the word error rate of the former is 28.77%, while the latter
has performed better, showing a word error rate of 18.70%. It should be observed
that such a result considers common stopwords as well, which can mask the true
performance of automatic speech recognition for the intended task. Thus, in an
attempt to concentrate on “important” terms, we have also evaluated the two tran-
scription systems against the same 339 segments, but neglecting Italian stopwords
(as listed in the package NLTK). The results we obtained are not significantly dif-
ferent (in fact, they are sligthly better), showing a word error rate of 28.33% and
18.51% for Kaldi and Google, respectively.

While it is not surprising that Google Speech surpassed the Kaldi solution in
terms of raw transcription accuracy, it should be remarked that the in-house model
has been trained on a reduced quantity of data, at a relatively low expense for the
company. Moreover, while Kaldi is a free solution, the use of Google Speech requires
an amount of fees per second of conversation to be paid. Finally, as we shall see in
the next section, the quality of the transcriptions generated by Kaldi is good enough
to allow for their tagging.

Even though it is true that the evaluation has been carried out on a single service,
for which the Kaldi model has been specifically trained, it can be argued that such
a model can be easily extended to deal with other kinds of outbound calls by simply
increasing the training set, with a limited effort for the company. Notice that, as
the model will become more capable of transcribing heterogeneous conversations, it
will be possible to apply it, with increasing success, to the inbound case as well.

5.2.3 Semantic tagging of phone conversation transcripts

In this section, we concentrate upon the semantic tagging of the conversation tran-
scripts generated by Kaldi and Google (that may thus be affected by noise and
errors). Such a process involves the definition of a suitable conceptual schema to
represent the keywords within the existing Gap’s enterprise-wide data warehouse
(see Chapter 2), and the set up of linguistic as well as machine learning strategies
to guide the tagging process.

The database conceptual schema

In order to tag the transcribed phone conversations, we first defined a suitable con-
ceptual (database) schema for the encoding of relevant information. The proposed
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Figure 5.4: A conceptual schema for the tagging process.

schema is depicted in Figure 5.4, using the Entity-Relationship model. As a matter
of fact, it is an extension to the company’s data warehouse schema discussed in
Chapter 2.

Each transcription segment is typically tagged by one or more keywords, that
is, a word or a combination of words encapsulating a semantic meaning, which ex-
presses what is going on in the corresponding part of the call. Examples of such
keywords are first survey question, greetings formula, and closing formula. A key-
word is thus a very general concept that allows one to manage in a uniform way
highly heterogeneous phone calls.

A keyword is detected by means of one or more atoms (the name suggests the
fact that they are the fundamental building blocks of the structure), which can be
thought of as strategies to analyze textual segments. Each atom determines one
and only one keyword, and is designed to handle the transcriptions generated by a
specific speech-to-text approach, e.g., Kaldi or Google Speech, in the context of a
service offered by the company. As an example, each service typically has its own
greetings formula, that has to be detected in a dedicated way.

Atoms are currently specialized into two non-overlapping categories: RegEx and
Machine Learning (ML), though the generality of the schema makes it easier to
add other ones. The former relies on regular expressions designed with the help of
domain experts to detect the semantic content of the text. The latter makes use
of machine learning models to identify such content. Specifically, an ML-Atom is
designed to be as general as possible. As such, it contains: (i) a reference to the
specific model that has to be used, e.g., a logistic regression one, which can be coded
directly in an SQL function or into an external script; (ii) a list of parameters to be
fed to the model, such as the regression coefficients; and, (iii) a list of the attributes
to extract from the textual information to be used as predictors, such as the presence
or absence of specific (combinations of) words.
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Each atom belongs to a module. Modules are basically lists of atoms that have
to be checked together, in a specific order. As an example, a module may refer to
three questions which have to be asked in sequence during an outbound interview,
each detected by a single atom. Like atoms, also modules are declared for a specific
speech-to-text service. In this regard, it is worth noting that a module should be
homogeneous, that is, it should only contain atoms pertaining to the same service.

Finally, modules are used in the context of an inbound or outbound service
offered by the contact center, an example of which is the toll-free number of an
airline company.

Data description

In this section, we give a short account of the actual data for the considered outbound
survey service. The list of defined keywords is the following:

• age: the agent asked the interviewed person his/her age;

• call permission: the agent asked the called person for the permission to con-
duct the survey;

• duration info: the agent informed the called person about the duration of the
survey;

• family unit : the agent asked the called person about his/her family unit;

• greeting initial : the agent introduced himself/herself correctly at the beginning
of the phone call;

• greeting final : the agent pronounced the scripted goodbye phrases;

• person identity : the agent asked the called person for a confirmation of his/her
identity;

• privacy : the agent informed the called person about the privacy implications
of the phone call;

• profession: the agent asked the interviewed person about his/her job;

• question 1 : the agent asked the first question of the survey;

• question 2 : the agent asked the second question of the survey;

• question 3 : the agent asked the third question of the survey.

Table 5.3 shows some hand-made transcriptions with the associated keywords. Once
again, observe that keywords are general concepts, which are independent from the
specific service under consideration.
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Table 5.3: Some exemplary, hand-made transcriptions with the associated keywords.
Data has been anonymized, and punctuation has been added to the transcriptions
for ease of reading.

Phrase (It) Phrase (En) Tags

Si pronto buongiorno sono X
dalla X di X, parlo con la sig-
nora X?

Hello, my name is X and I am
calling from X of X, am I talk-
ing with Mrs X?

greeting initial,
person identity

Lei è pensionato. Ultima do-
manda, senta, a livello statis-
tico la data solo di nascita...
millenovecento...?

You are a pensioner. Last
question, listen, statistically,
the birth date only... nineteen
hundred...?

age, profession

Ho capito. Posso chiederle il
nome di battesimo?

Understood. May I ask you
for your first name?

person identity

Mi permette? Trenta secondi,
tre domande velocissime...

May I? Thirty seconds, three
quick questions...

duration info

To allow for the training of the machine learning models, and for the evaluation of
all the approaches, a set of 4884 text segments originated from 482 distinct outbound
sessions of the considered survey service have been manually tagged by domain
experts, so that each instance is characterized by the transcription, and by a list
of Boolean attributes that track the presence or absence of each specific keyword.
Each session has been independently transcribed by Kaldi and Google, in order to
evaluate the tagging performance based on both services. The transcriptions may
indeed contain some errors, and this is deliberate, since we are not interested in
assessing the tagging performances over perfectly transcribed data, but rather in
assessing the noise tolerance of the tagging models.

Table 5.4 reports, for each tag, the number of instances in which it is present or
not. The resulting dataset has then been split into a training (75%, 3696 instances)
and a test (25%, 1188 instances) set, according to a stratified random sampling by
group approach, where each single session is a group on its own. This allowed us
not to fragment segments belonging to a single session between the two sets and,
moreover, to preserve the keyword distribution between them.

Tagging with Regular Expressions

Domain expert-defined regular expressions (RegEx ) have already been used in order
to extract knowledge from textual data, e.g., in [140].

In the present work, 12 RegEx atoms, which encapsulate the semantic content
of utterance transcriptions, have been manually defined, one for each of the key-
words that have to be recognized. By exploiting regular expressions, these atoms
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Table 5.4: Number of instances in which each tag is present or not, in the full
dataset.

Keyword name # present % present # not present % not present

age 638 13.1 4246 86.9
call permission 565 11.6 4319 88.4
duration info 491 10.1 4393 89.9
family unit 506 10.4 4378 89.6
greeting initial 560 11.5 4324 88.5
greeting final 453 9.3 4431 90.7
person identity 600 12.3 4284 87.7
privacy 440 9.0 4444 91.0
profession 391 8.0 4493 92.0
question 1 516 10.6 4368 89.4
question 2 496 10.2 4388 89.8
question 3 500 10.2 4384 89.8

make it possible to deal with the plain text of the transcriptions, without requiring
any further data transformation process, like, for instance, stemming or stopwords
removal. As the defined regular expressions try to locate linguistic patterns inside
transcriptions, we refer to this tagging strategy as a linguistic approach.

In order to make it evident how difficult is the process of defining suitable regular
expressions, Table 5.5 provides some complexity measures on them. As it can be
observed, expressions are typically quite long when measured in terms of the number
of characters and, most notably, they are inherently complex, as the corresponding
Deterministic Finite Automata (DFA) have a large number of states. As an example,
the regular expression .*(you born|age|how old are you|you were born in|(in|from)
which year|less than eighty).*, translated and reworked from Italian into English,
recognizes the atom age.

Evaluation of tagging performance Each of the 1188 segments in the Kaldi
and Google test sets has been evaluated against the presence of every possible key-
word, looking for the concordance between its manual annotations and the ones
given by the regular expressions. This is, to all intents and purposes, a supervised
classification problem, and the performances of our model, shown in Table 5.6, can
be measured by standard metrics:

• accuracy, which tracks the fraction of times when a tag has been correctly
identified in a segment as present or absent;

• precision, which is the fraction of segments in which a specific tag has been
identified as present by the method, and in which the tag is indeed present;
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• recall, that reports the proportion of segments presenting the specific tag, that
have been in fact identified as such by the method;

• true negative rate (TNR), which shows the proportion of segments not pre-
senting the specific tag, that have been classified as negative by the method.

The above-described metrics will be used throughout the experimentations to test
the performance of the different approaches to tagging. As shown by Table 5.6,
the regular expressions are capable of reaching a very high accuracy in tagging the
segments, considering both Kaldi and Google transcriptions. Such a result, however,
is not indicative of the true performance, since it is biased by the large disproportion
between the instances in which the tags are present and those in which they are not.
More useful indicators are the true negative rate, the precision and, especially, the
recall, which reveals the tags that are most difficult to identify. As a matter of
fact, looking at Kaldi transcribed data, satisfactory results are obtained for most
of the tags, except for call permission, that has a fairly low precision and recall.
Then, also the tags greeting initial, person identity, and profession show a recall
performance somewhat under the average, and seem in general hard to identify. As
for the results on Google transcriptions, accuracy tends to be slightly lower than
Kaldi, with the notable exception of call permission. Moreover, while precision
seems to be better in general, recall is overall significantly lower. While this may
come as a surprise, given the fact that Google transcripts are in general less error
prone than Kaldi ones, it can, however, be easily explained, since it turns out that
domain experts have defined the regular expressions based on Kaldi transcriptions
only. This highlights the necessity of dealing with Kaldi and Google transcriptions
separately, an approach that we are indeed going to pursue in the following sections.

Table 5.5: Complexity measures on the defined regular expressions.

Keyword name # chars in regex # states in DFA

age 94 79
call permission 143 102
duration info 158 104
family unit 135 97
greeting initial 30 23
greeting final 143 99
person identity 189 121
privacy 101 65
profession 103 85
question 1 107 80
question 2 244 126
question 3 209 141
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Table 5.6: Tagging performance with the linguistic approach over Kaldi (K) and
Google (G) transcriptions.

Accuracy Precision Recall TNR
Keyword K G K G K G K G

age 0.971 0.902 0.906 0.988 0.884 0.435 0.985 0.999
call permission 0.918 0.949 0.697 0.732 0.539 0.598 0.969 0.981
duration info 0.982 0.942 0.884 0.635 0.953 0.922 0.985 0.944
family unit 0.969 0.944 0.857 0.897 0.864 0.684 0.982 0.987
greeting initial 0.949 0.919 0.987 0.988 0.549 0.488 0.999 0.999
greeting final 0.991 0.977 0.991 1.000 0.916 0.747 0.999 1.000
person identity 0.944 0.934 0.818 0.925 0.657 0.609 0.981 0.991
privacy 0.991 0.908 0.963 1.000 0.937 0.030 0.996 1.000
profession 0.970 0.908 0.969 1.000 0.646 0.101 0.998 1.000
question 1 0.967 0.987 0.990 1.000 0.723 0.873 0.999 1.000
question 2 0.978 0.964 0.943 0.990 0.833 0.728 0.994 0.999
question 3 0.960 0.964 0.942 0.976 0.653 0.690 0.995 0.998

We conclude by remarking that the definition of suitable regular expressions
comes at a cost. As already discussed, each keyword is evaluated by a corresponding
regular expression, which must be defined by domain experts on the basis of their
personal knowledge, through a delicate, empirical, and long refining process.

Tagging with Logistic Regression

Let us consider now an alternative approach to tagging based on machine learning
techniques. One of its advantages is that it allows us to get rid of the support from
domain experts in the definition of suitable rules for the identification of tags in the
transcriptions.

Since we are interested in determining the presence or absence of a tag in a
segment, we focus on a subset of machine learning algorithms, namely, classification
algorithms. Moreover, given that the classification task under consideration is a
binary one, and that we are interested not only in getting a result, but also in
somehow tracking the decision process that has been followed, we opt for logistic
regression.

Logistic regression generates an interpretable model, as it exposes the relative
importance of the features and how they contribute to the overall outcome. It should
be remarked that interpretability is a fundamental requirement for the company,
since it allows for the validation of the model by domain experts, that, in turn,
constitutes an essential step before entering the production phase. This, together
with assessments regarding the complexity of the problem, led us to this solution,
rather than, for instance, to the use of support vector machines, Conditional Random
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Table 5.7: Original number of attributes per dataset, considering Kaldi and Google
transcription models.

Number of predictors
Model Unigram datasets Bigram datasets Trigram datasets

Kaldi 177 154 102
Google 444 747 664

Fields, or neural networks.

Data preparation Starting from the data described in Section 5.2.3, the training
and test datasets have been prepared independently considering Kaldi and Google
transcripts as follows. First of all, the text has been converted to lowercase, and
all non-alphabetical characters have been removed from each segment. Next, all
Italian stopwords have been also removed. Then, Porter2 stemming algorithm for
Italian has been applied. Finally, we extracted from the processed text all unigrams,
bigrams, and trigrams with a frequency of at least 1%, as calculated on the training
dataset. All operations have been carried out by means of custom-made Python
scripts, by making use of the NLTK library.

Three training and test dataset pairs have then been created for each keyword,
considering the different n-gram lengths. Each dataset consists of a set of predictor
attributes that track whether the corresponding n-gram is present or not in the
transcription, plus the class. As we have already mentioned, such a setting has been
replicated for both Kaldi and Google transcriptions, so to train two independent sets
of models, following the observation expressed at the end of Section 5.2.3. Thus,
given the 12 possible tags, the 3 different n-gram lengths, and the 2 transcription
models that have been considered, we generated a total of 72 training and test
dataset pairs. For each dataset, Table 5.7 shows the number of originally considered
predictors. As it can be seen, the number of attributes generated from the Google
transcriptions is considerably higher than Kaldi’s. This might be explained by the
small dictionary employed by the latter transcription model.

Training of the models In order to train the models, we relied on WEKA’s
Logistic algorithm [331]. However, given the very high number of predictors involved,
an attribute selection step has been applied in order to reduce the dimension of the
datasets before actually proceeding with the training phase.

Recall that, as explained in Section 1.1.3, the design of a feature selection step
entails the selection of a search strategy, to guide the incremental generation of
the feature set, and of an evaluation strategy, to score the candidates (subsets of
attributes).

As for the search strategy, we considered WEKA’s BestFirst [263], which is
an implementation of beam search, that searches the space of attribute subsets by
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Table 5.8: Number of attributes per dataset after the attribute selection step, con-
sidering Kaldi (K) and Google (G) transcriptions.

# preds unigram # preds bigram # preds trigram
Keyword name K G K G K G

age 8 45 11 66 8 68
call permission 8 17 9 21 9 71
duration info 14 18 11 22 10 64
family unit 15 20 12 65 10 58
greeting initial 11 18 14 69 13 72
greeting final 11 14 13 17 11 58
person identity 8 17 9 72 9 80
privacy 10 13 12 70 10 69
profession 11 22 9 22 24 66
question 1 11 15 13 74 16 72
question 2 10 14 10 66 9 68
question 3 12 14 10 58 12 62

greedy hill climbing, augmented with a backtracking capability.
As for the evaluation strategy, WEKA’s multivariate filter CfsSubsetEval [153]

has been used. Such a filter evaluates the worthiness of a subset of attributes by
considering the individual predictive power of each feature, together with the degree
of redundancy between them, preferring subsets of features that are highly correlated
with the class while having low intercorrelation among them.

The results of the attribute selection phase are reported in Table 5.8. As it turned
out, many of the attributes have been discarded, meaning, perhaps not surprisingly,
that only certain n-grams are useful for determining the presence or absence of each
specific keyword. Once again, observe that the Google based datasets have a higher
number of attributes than Kaldi’s.

Evaluation of tagging performance We considered the performance of the
models based on, respectively, unigrams, bigrams, and trigrams on each of the 1188
segments in the Kaldi and Google test sets. The results are reported in Table 5.9.

Considering both Kaldi and Google transcripts and models, precision does not
show a consistent behaviour among the n-gram sizes, while in many cases recall
decreases sharply with the larger n-gram sizes. It is also interesting to observe that,
as the n-grams grow in size, the accuracy seems to slightly decrease. This behavior
can be explained in two ways: (i) there might not be a sufficient number of instances
in the datasets to justify the adoption of bigrams and trigrams; (ii) the presence or
absence of a keyword in calls generated in the context of the specific service that has
been considered is not a difficult concept to learn, and thus unigrams are sufficient
for the task.
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Table 5.9: Tagging performance with the Logistic Regression approach, over Kaldi
(K) and Google (G) transcriptions.

Accuracy Precision Recall TNR
Keyword K G K G K G K G

age-uni 0.966 0.953 0.897 0.957 0.854 0.988 0.984 0.788
age-bi 0.961 0.953 0.940 0.968 0.768 0.976 0.992 0.842
age-tri 0.924 0.934 0.963 0.940 0.470 0.982 0.997 0.701

call permission-uni 0.931 0.959 0.798 0.765 0.560 0.713 0.981 0.981
call permission-bi 0.910 0.947 0.713 0.727 0.404 0.552 0.978 0.982
call permission-tri 0.902 0.942 0.705 0.736 0.305 0.448 0.983 0.986

duration info-uni 0.967 0.955 0.908 0.807 0.773 0.696 0.991 0.982
duration info-bi 0.963 0.951 0.912 0.821 0.727 0.628 0.992 0.986
duration info-tri 0.913 0.939 0.833 0.785 0.234 0.500 0.994 0.986

family unit-uni 0.963 0.972 0.893 0.930 0.758 0.868 0.989 0.989
family unit-bi 0.955 0.943 0.944 0.960 0.636 0.625 0.995 0.996
family unit-tri 0.900 0.915 1.000 0.918 0.099 0.441 1.000 0.993

greeting initial-uni 0.977 0.949 0.921 0.900 0.872 0.759 0.991 0.985
greeting initial-bi 0.961 0.963 0.922 0.957 0.714 0.795 0.992 0.993
greeting initial-tri 0.931 0.940 0.947 0.964 0.406 0.639 0.997 0.996

greeting final-uni 0.994 0.997 0.991 0.990 0.950 0.980 0.999 0.999
greeting final-bi 0.990 0.989 0.965 0.968 0.933 0.909 0.996 0.997
greeting final-tri 0.986 0.985 0.964 1.000 0.891 0.838 0.996 1.000

person identity-uni 0.937 0.943 0.750 0.868 0.679 0.733 0.971 0.980
person identity-bi 0.932 0.935 0.811 0.859 0.533 0.683 0.984 0.980
person identity-tri 0.910 0.923 0.800 0.891 0.292 0.559 0.991 0.988

privacy-uni 0.991 0.998 0.955 0.990 0.946 0.990 0.995 0.999
privacy-bi 0.988 0.995 0.945 0.990 0.928 0.960 0.994 0.999
privacy-tri 0.973 0.979 0.891 0.976 0.811 0.792 0.990 0.998

profession-uni 0.987 0.975 0.893 0.873 0.958 0.881 0.990 0.985
profession-bi 0.929 0.944 1.000 0.889 0.125 0.514 1.000 0.993
profession-tri 0.919 0.911 - 0.769 0.000 0.184 1.000 0.994

question 1-uni 0.984 0.993 0.968 0.972 0.891 0.955 0.996 0.997
question 1-bi 0.985 0.995 0.984 0.982 0.883 0.973 0.998 0.998
question 1-tri 0.980 0.987 0.991 1.000 0.832 0.873 0.999 1.000

question 2-uni 0.984 0.990 0.924 0.970 0.917 0.949 0.992 0.996
question 2-bi 0.976 0.991 0.933 0.992 0.817 0.934 0.993 0.999
question 2-tri 0.974 0.977 0.932 0.959 0.800 0.853 0.993 0.995

question 3-uni 0.985 0.990 0.942 0.973 0.911 0.931 0.993 0.997
question 3-bi 0.976 0.987 0.936 0.964 0.823 0.914 0.993 0.996
question 3-tri 0.973 0.985 0.942 0.981 0.790 0.879 0.994 0.998
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Tagging with a hybrid approach

In this section, we explore a simple hybrid approach to tagging that combines the
linguistic and machine learning based strategies.

In developing it, we took into account that, even though the company is definitely
interested in finding patterns of problematic calls, it is also true that the supervising
staff ought not to be overwhelmed with false notifications (a correct call signaled as
problematic) carrying requests for verification.

On the basis of empirical evaluations, it has been found out that a simple com-
bination of the results of the linguistic and machine learning approaches leads to
satisfactory results: a keyword is considered to be present if at least one of the two
individual strategies marks it as present.

Table 5.10 reports the detailed figures, obtained from the combination between
the results given by the regular expressions and the unigram logistic models. As
it can be observed for both Kaldi and Google transcripts, the accuracies typically
show a slight improvement over the two individual approaches. Moreover, as ex-
pected, given the specific combination strategy, the precision has decreased a little
bit, while the recall has gained a considerable boost. This is exactly what had to
be accomplished: it is now more likely to predict a tag as present, and thus the
problematic calls are limited to the most serious cases.

A critical evaluation of the proposed solutions

We conclude the section with a comparison of the proposed solutions. Consider
Table 5.11. As it turns out, the regular expression approach has an overall accuracy
comparable to the one exhibited by the unigram-based machine learning approach,
which has already been shown to be the best n-gram choice for the problem. How-
ever, the unigram approach exhibits a clearly better behaviour for what concerns
the recall which, as we already pointed out, is the key performance indicator for
the considered problem. In addition, the definition of suitable regular expressions
is a tedious and error-prone process, that has to be done manually, which in turn
consumes a significant amount of company time and personnel resources. As for
the hybrid approach, it has proven itself capable of boosting recall, although at the
cost of a slight decrease in precision. Finally, it should be observed that the results
based on Kaldi transcripts are just slightly inferior to those obtained on Google ones,
especially when considering the hybrid solution. Thus, at least for the considered
tagging task, the in-house and low-cost developed solution seems to be sufficient to
accomplish the intended goals.

5.2.4 An alternative approach to the tagging of segments

In this section, we illustrate the setup and the results of an alternative approach
to the tagging of segments carried out with J48S decision tree algorithm, that has
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Table 5.10: Tagging performance with the hybrid approach, over Kaldi (K) and
Google (G) transcriptions.

Accuracy Precision Recall TNR
Keyword K G K G K G K G

age 0.966 0.962 0.897 0.943 0.854 0.836 0.984 0.989
call permission 0.923 0.955 0.699 0.723 0.610 0.737 0.965 0.976
duration info 0.982 0.941 0.879 0.637 0.961 0.958 0.984 0.939
family unit 0.962 0.968 0.800 0.880 0.879 0.922 0.973 0.977
greeting initial 0.981 0.942 0.917 0.900 0.910 0.721 0.990 0.985
greeting final 0.995 0.995 0.991 0.983 0.958 0.964 0.999 0.999
person identity 0.946 0.949 0.784 0.846 0.803 0.796 0.965 0.976
privacy 0.992 0.999 0.955 0.993 0.955 1.000 0.995 0.999
profession 0.987 0.981 0.886 0.925 0.969 0.905 0.989 0.991
question 1 0.985 0.993 0.969 0.953 0.898 0.980 0.996 0.994
question 2 0.984 0.992 0.924 0.963 0.917 0.970 0.992 0.995
question 3 0.985 0.993 0.934 0.978 0.919 0.958 0.993 0.997

been presented in Section 5.1.

Data preparation

Starting from the data described in Section 5.2.3, the training and test datasets
have been prepared as follows. As done for the logistic regression case, the text has
been converted to lowercase, and all non-alphabetical characters have been removed
from each segment. Then, stopwords have been discarded, and Porter2 stemming
algorithm has been applied. A training and a test dataset have been created for each
keyword and transcription model, where each of the instances is characterized by
just two attributes: the processed text of the segment, and an attribute identifying
the presence or absence of the specific keyword.

Table 5.11: Average performance per method, over Kaldi (K) and Google (G) tran-
scriptions.

Accuracy Precision Recall TNR
Keyword K G K G K G K G

Regular expressions 0.966 0.942 0.912 0.928 0.763 0.575 0.990 0.992
Logistic, unigram 0.972 0.973 0.903 0.916 0.839 0.870 0.989 0.973
Logistic, bigram 0.961 0.966 0.917 0.923 0.691 0.789 0.992 0.980
Logistic, trigram 0.940 0.951 - 0.910 0.494 0.666 0.995 0.895
Hybrid 0.974 0.973 0.886 0.894 0.886 0.896 0.985 0.985
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Training of the model

All algorithm parameters have been left with their default values, except for min-
Support, which has been set to 0.01 (1%), in order to allow for the extraction of
uncommon patterns, without performing any specific kind of tuning.

Evaluation of tagging performance

Following the same approach as the one used for the evaluation of the RegEx and
logistic regression strategies, we measured the performance of J48S in determining
the presence or absence of each keyword in the same test set made of 1188 segments.
As shown by the results reported in Table 5.12, J48S is capable of matching the
accuracy of the hybrid approach. Moreover, though having a slightly worse precision
than regular expression and logistic models, it surpasses the hybrid method score.
As for the recall, it is only beaten by the hybrid solution, which nonetheless is much
more complex, making use of two distinct strategies.

All in all, we can conclude that J48S is able of providing results comparable to the
ones of the hybrid approach. Moreover, it is worth mentioning that: (i) the measured
performances have been obtained training the algorithm with the default parameters
(except for the minimum support value), and thus we may expect to be able to obtain
better values through a dedicated tuning phase; (ii) the complexity of the data
preparation phase is greatly reduced, since the decision tree is capable of directly
exploiting textual information, allowing one to avoid the n-gram preprocessing step,
and the related a-priori choices of the n-gram sizes, frequencies, and feature selection
strategies altogether; (iii) sequential patterns may be more resistant to noise in the
data than bigrams and trigrams, as they are capable of skipping irrelevant words
thanks to the maxGap parameter; (iv) finally, and most importantly, the constructed
trees are much more understandable to domain experts (which are not computer
scientists) than regression models. As an example, in Figure 5.5 we show a very
simple model that recognizes the presence of the tag greeting final. Observe how
the decision tree is capable of combining patterns having different length: given a
transcription to be classified, the model starts by testing whether the text contains
the single term recontact ; if this is not the case, then it checks the transcription
against the presence of the word thank followed by the word cooperation; if this
pattern is not satisfied either, and the utterance does not contain the term inform,
finally the instance is given class 0 (no greeting final tag has been detected).

5.2.5 On the operational impact of the speech analytics pro-
cess

The introduction of a speech analytics process in a contact center may have a really
wide and deep impact. Improving customer experience, reducing costs, identifying
selling opportunities, reducing attrition and churn, evaluating agents, and rising
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Table 5.12: Tagging performance with J48S, over Kaldi (K) and Google (G) tran-
scriptions.

Accuracy Precision Recall TNR
Keyword K G K G K G K G

age 0.964 0.957 0.935 0.964 0.793 0.985 0.991 0.821
call permission 0.923 0.958 0.671 0.776 0.681 0.678 0.955 0.983
duration info 0.971 0.955 0.891 0.821 0.828 0.677 0.988 0.985
family unit 0.971 0.970 0.877 0.929 0.864 0.855 0.985 0.989
greeting initial 0.973 0.974 0.924 0.921 0.827 0.910 0.992 0.986
greeting final 0.988 0.990 0.965 0.989 0.916 0.899 0.996 0.999
person identity 0.944 0.940 0.763 0.830 0.752 0.758 0.970 0.972
privacy 0.992 0.995 0.955 0.990 0.955 0.960 0.995 0.999
profession 0.984 0.974 0.897 0.893 0.906 0.844 0.991 0.989
question 1 0.990 0.992 0.985 0.972 0.927 0.946 0.998 0.997
question 2 0.980 0.990 0.914 0.963 0.883 0.956 0.991 0.995
question 3 0.983 0.992 0.919 0.974 0.919 0.948 0.991 0.997

Average 0.972 0.974 0.891 0.919 0.854 0.868 0.987 0.976

service quality are some of the sought-after advantages. Among them, the improve-
ment of service quality and the overall evaluation of the workforce are very important
business goals, and constitute the main driving factors of the present study.

Most of the operational processes that take place in a contact center are quite
complex and, in a modern company, widely based on business intelligence. The
experimentation illustrated in the present work shows that with a relatively small
effort it is possible to develop a fully fledged in-house speech analytics solution, the
adoption of which may imply a refactoring of operational processes in order to get
the best results in terms of service quality and costs control.

In detail, Gap Srlu makes use of a call quality assurance process having two di-
mensions: external, aimed at the needs of customers and of final users, and internal,
pointing to operational issues such as, for instance, agent management. The process
consists of a series of steps:

1. call scope evaluation, that is, determining if the call is pertinent to the service;

2. checking of mandatory contents, e.g., checking whether or not all the relevant
questions of an outbound survey have been asked;

3. proper data collection and actions to be performed, e.g., sending a payment
reminder as one of the results of a call;

4. correct call outcome classification, by which the call outcome manually set by
the agent is validated;
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transcription !contains recontact 

|   transcription !contains thank>cooperation 

|   |   transcription !contains inform: 0  

|   |   transcription contains inform 

|   |   |   transcription !contains inform>company_name: 0  

|   |   |   transcription contains inform>company_name 

|   |   |   |   transcription !contains allow: 0  

|   |   |   |   transcription contains allow: 1 

|   transcription contains thank>cooperation 

|   |   transcription !contains ok>finish>thank>behalf 

|   |   |   transcription !contains allow>inform 

|   |   |   |   transcription !contains cooperation>day: 0  

|   |   |   |   transcription contains cooperation >day: 1  

|   |   |   transcription contains allow>inform: 1  

|   |   transcription contains ok>finish>thank>behalf: 1  

transcription contains recontact: 1 

 

Figure 5.5: J48S decision tree recognizing the presence (class = 1) of the tag greet-
ing final.

5. evaluation of soft skills, e.g., checking whether the agent has been polite during
the call.

Speech analytics clearly impacts on all the above-listed steps, as the exploitation
of conversation transcripts may potentially play a major role in each of the tasks.
Moreover, all phases are susceptible of being automatized, and, by formulating suit-
able business rules, several automatic actions may be performed. Examples include
signalling to the operational staff the most problematic calls, or issuing specific
training tasks to cope with the deficiencies emerged in the handling of the calls.

Highlighting some detail, in order to better identify relevant parts of the agent
side speech, Gap Srlu operational staff has organized the semantic tags discovered
by the speech analytics process in a set of logical rules. The Boolean values of the
rules identify in a simple way what is considered to be compliant and what is not,
according to the service operational guidelines. As a further step, a partitioning of
the tags into three groups helps the operational staff in identifying the severity level
of the flaws discovered in a call.

Let us now give an example that shows how tags, logical rules, and severity
levels work together in the process. The operational guidelines state that the ini-
tial greeting and the call permission items have to be evaluated together, and the
corresponding check is considered to be passed only if both of them are present.
This can be represented by means of a simple logical rule: greeting initial AND
call permission. Moreover, the tag partitioning leads to establish the severity level
of potentially missing tags. According to the guidelines, in our example the tags
greeting initial and call permission are both categorized in the same set associated
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Table 5.13: Corrispondence among tags, logical rules, and severity levels.

Tag Logical rule Severity

age, person identity age ∧ person identity 1
greeting initial, call permission greeting initial ∧ call permission 2
question 1, question 2, question 3 question 1 ∧ question 2 ∧ question 3 3

with the severity level 2 (mid-level, which means that the call has some problems, but
the survey is still valid). Table 5.13 presents some further concrete examples taken
from the service operational guidelines (all proposed rules rely on conjunctions; of
course, any other logical connective can in principle be used).

To summarize, by combining semantic tags, logical rules, and partitioning, each
single call may be analyzed in detail and a clear assessment pattern emerges. Such
a method gives the operational staff the ability to gain solid insights in a faster way
and with more precise results with respect to a manual call monitoring procedure.
The supervising staff confirms an improvement of 15% in the overall quality of the
process with respect to the old procedure, which required a manual sampling of
the calls to be monitored, followed by a completely handmade evaluation of their
contents. Considering the time spent for the analysis, the gain is about 17%. If we
restrict our attention to the detection of surveys to be cancelled for serious flaws
committed by the agents, then the increment is sensible, with results from the field
indicating a gain of more than 300%.

It is worth to underline once more that, as shown, these results an be accom-
plished by relying on the Kaldi-based proprietary transcription model, confirming
that the operational fallout is pretty good, despite its higher word error rate with
respect to the Google Speech API solution. Moreover, the tested solution has vir-
tually no costs except for the internal one and this is clearly a relevant benefit for a
company.

As already pointed out, the Gap Srlu IT and operational staffs are evaluating
further automatic steps that can be possibly added to the call quality assurance pro-
cess. As an example, on the basis of the logical rules outcomes and the severity level
of the flaws, a set of e-learning modules could be suggested to the involved agents.
This would lead to an instance of what is known as the “learning analytics cycle”
[83], i.e., an ongoing (and almost fully automated) circular process involving learn-
ers (the agents), data (the transcribed speech), metrics (the speech analysis), and
interventions (the e-learning and supervisoring). This seems to be a very effective
and interesting evolution for the operational impact of the entire project.

5.2.6 Discussion

In this work, the experimentation of a speech analytics process for an Italian contact
center has been described, which consists of two distinct phases: a transcription
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step, where agent side conversations are transformed to text, and a tagging step,
where semantic content is attached to the transcripts. As for the transcription
phase, the feasibility of building an in house solution, relying on a small amount of
training data has been confirmed, by effectively developing a model using the Kaldi
framework and comparing its results with those obtained by Google Cloud Speech
API. As for the tagging phase, the tested machine learning based strategies have
proven themselves to be reliable, and more efficient than classical solutions based
on regular expressions.

Finally, the decision tree inducing algorithm J48S, applied to the problem of tag-
ging, has exhibited a performance comparable to the hybrid solution, while relying
on just a single, highly interpretable model.

Overall, based on the experimental evidence that we provided, we can safely
claim that the considered speech analytics process can be built at a low-cost for the
company, relying on in-house developed models with respect to both the transcrip-
tion and the tagging phases.

Such an analytics module can be easily integrated in the architecture presented
in Chapter 2, for instance, as an extension of the operator performance assessment
tool.



6
Working with Time Series Data

This chapter deals with the analysis of time series data. In particular, Section 6.1
describes J48SS [67], which is a further extension to J48S decision tree inducing
algorithm (see Section 5.1). Then, Section 6.2 presents the results of the application
of J48SS to a real case problem, that is, a pollution analysis task on data collected
in the city of Wroc law, Poland [64]. As we shall see, J48SS excels when run on
datasets where each instance is characterized by heterogeneous information, such
as, for instance, in the considered pollution analysis task. For the cases in which an
instance is represented just by a time series and possibly some derived attributes
(as in the case of the UCR datasets tested in Section 6.1), better results might be
obtained through the use of dedicated algorithms, like recurrent neural networks.

6.1 J48SS: a novel decision tree approach for the

handling of time series

Time series play a major role in many domains. As an example, in economy, they
may be used for stock market price prediction [249]; in medicine, they may help in
forecasting the patient arrival rate in emergency centers [326]; in geophysics, they
convey important information about the evolution of the temperature in the oceanic
waters [281].

This work focuses on the general problem of time series classification. Given a
training dataset of labelled time series data, the goal is to derive a model capable of
assigning a label to new, unlabelled instances. Various techniques have been used in
the past for such a purpose, ranging from support vector machines [189] to neural
networks [190]. However, when understanding and validating the decision process is
as important as the accuracy degree of the prediction itself, decision trees are still
a popular choice among classification models (see, for instance, [25]).

The main contribution of this work is a novel decision tree learner based on
the J48S extension [66] of C4.5 [274], called J48SS, which is capable of exploiting
static (categorical and numerical) attributes as well as sequential and time series
data during the same execution cycle. As mentioned in the Introduction, such a
mixture of heterogeneous data can actually be observed in many domains. For in-
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stance, we may think of a fault prediction scenario, where an industrial machine
may be characterized by (i) static attributes, such as the machinery model and its
age of service, (ii) sequential attributes, storing information about the history of
states and warnings the machine has gone through in the past, and (iii) time se-
ries, tracking the machine production rate over time, or other kinds of sensor data.
Based on such pieces of information, one may perform a classification task, with the
aim of identifying, for instance, the fault that most likely is affecting the machine,
if any. Clearly, the availability of a single, universal model for the classification
of such heterogeneous data greatly reduces the data preparation effort, and eases
the subsequent analysis phase. The proposed algorithm makes use of the concept
of shapelet (see Section 1.1.2), originally introduced in [337]. A shapelet may be
thought of as a time series pattern that is useful for classification purposes. In the
recent years, several contributions have employed such a primitive for time series
analysis [148, 149, 162, 192, 280, 284, 330], although, to the best of our knowledge,
the present approach is the first one that relies on multi-objective evolutionary
computation for the shapelet generation process, in the context of decision tree clas-
sification. Moreover, unlike most of the previous studies, the proposed solution does
not require the generated shapelets to be part of the training set, and it provides an
effective strategy to control their degree of complexity, which can be easily adapted
to the requirements of the specific classification task.

Experimental results show that J48SS is capable of producing interpretable mod-
els, that nevertheless achieve better classification performances than previous solu-
tions based on single decision trees, while keeping a low computation time. Moreover,
preliminary insights suggest that J48SS trees might be combined in smaller and pos-
sibly more accurate ensemble models than those proposed in the past, although at
the price of a loss in interpretability.

In the literature, some very recent approaches have been presented that achieve
a higher accuracy on pure time series classification than the one provided by J48SS
(see, e.g., [292]). Nevertheless, these approaches typically lack two distinctive fea-
tures of the novel decision tree, namely, the ability of natively dealing with mixed
data, and the interpretability of the generated models.

The work is organized as follows: Sections 6.1.1 and 6.1.2 present respectively
the implementation of NSGA-II and the extensions made to J48S in order to handle
time series classification. Section 6.1.3 describes the experiments carried out with
the proposed algorithm, and presents the collected results with respect to single
models and ensembles. The last section provides an overall assessment of the work
done.

6.1.1 Using NSGA-II to extract time series shapelets

Evolutionary algorithms have already been successfully applied to various phases
of the decision tree induction process in the past [42]. Recall that the description
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Figure 6.1: IEEE 754 double-precision floating point format.

of the implementation of an evolutionary algorithm involves the description of: (i)
how the single solutions are represented; (ii) how the initial population is set up;
(iii) which evolutionary operators (crossover, mutation) are employed; (iv) which
fitness function is used, and (v) in a multi-objective setting, which decision method is
adopted to select a single solution from the resulting Pareto front. All these points
are discussed in the following. As we shall see, unlike the majority of previous
contributions, the proposed solution does not require shapelets to be part of the
specific training set, but they may evolve freely through the evolutionary operators.
All code pertaining to the evolutionary algorithm has been implemented in the
jMetal framework [102].

Representation of the solutions and initial population Each shapelet in the
population is represented by an ordered list of binary arrays. Each binary array in
the list corresponds to a floating point value, encoded in IEEE 754 double-precision
64 bit format (see Figure 6.1): the first, leftmost bit establishes the sign of the
number, the following 11 bits represent the exponent, and the remaining 52 bits
encode the fraction. As we shall see, this kind of representation makes it extremely
convenient to apply the mutation operator. Given n the number of elements in the
population, each of the instances is initialized in the following way. A time series is
randomly selected from the dataset, and then a begin and end index are randomly
generated. The shapelet is then simply extracted from the portion of the time series
that lies between the two indexes.

Crossover operator A strategy similar to the single-point crossover [105] is used.
Given two parent solutions, i.e., two lists of binary arrays, two random indexes are
generated, one for each parent. Such indexes define the beginning of the tails of the
two lists, which are then swapped between the parents, generating two offspring. A
graphical representation of the crossover operation, where the two indexes happen
to have the same value, is shown in Figure 6.2. Observe that, given the operator,
the two offspring may have different lengths than those of the two parents.

Mutation operator A proper mutation operator should not try to purposely im-
prove a solution, since this would bias the evolution process of the population. In-
stead, it should cause random, unbiased changes in the solution components [105].
In the present implementation, mutation is carried out by performing random flips in
the binary array representation of the elements composing the shapelet. Recall that
the binary arrays follow the double-precision IEEE 754 notation. Thus, the higher
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(a) Shapelets before the crossover operation.

(b) Shapelets after the crossover operation.

Figure 6.2: Crossover operation. Dotted lines represent the tails of the shapelets,
that are being swapped.

the index in the array, the less significant the corresponding bit. The probability of
flipping the ith bit is thus given by Pmut−Pmut ∗ log65(65− i−1) , where Pmut is the
overall mutation probability, established by the mutationP parameter. Intuitively,
such a formula penalizes flipping the most significant bits in the representation. The
rationale behind this choice is that abrupt changes of the values of the shapelets are
unwanted, since they might hinder the convergence of the algorithm to a (local)
optimum. Finally, observe that randomly flipping the bits may lead to undesired
results, encoded in the IEEE 754 format as NaN (Not a Number). To solve such
infrequent cases, a further random flip is carried out in the exponent section of the
binary array.

Fitness function One of the distinctive features of the proposed algorithm is the
bi-objective fitness function it exploits. The first objective is to maximize the Infor-
mation Gain (IG) of the given shapelet (which corresponds to the normalized gain,
since a split over a shapelet is always binary), as calculated on the training instances
belonging to the specific tree node. To determine the IG of a shapelet, first its min-
imum Euclidean distance with respect to every time series is determined, following
a sliding window approach. Then, the resulting values are dealt with following the



6.1. J48SS: a novel decision tree approach for the handling of time series 111

same strategy as the one used by J48/C4.5 for splitting on numerical attributes
(see [274]). Note that, in principle, any other distance metric may be used in the
objective, by simply defining a proper procedure. The second objective is to re-
duce the functional complexity [318] of the shapelet, in order to avoid unwanted
overfitting phenomena that might occur if considering only the first objective. To
do so, the well-known Lempel-Ziv-Welch (LZW) compression algorithm [327] is re-
lied on: the (decimal) string representation of the shapelet is compressed through
LZW, then the ratio between the lengths of the compressed and the original strings
is evaluated. Note that such a ratio is typically less than 1, except for very small
shapelets, in which the overhead of the LZW algorithm might make the compressed
string actually larger than the original one. Finally, NSGA-II is set to minimize
the ratio: the underlying idea is that “regular”, well-generalizing shapelets should
be more prone to compression than complex, overfitted ones. As a side effect, also
extremely small (typically singleton) and uninformative shapelets are discouraged
by the objective. Observe again that, since a bi-objective fitness function is used,
the final result is a set of Pareto-optimal solutions, with respect to the Information
Gain and the compression ratio. This is an extremely important characteristic of the
present approach as different problems may require different functional complexities
of the shapelets in order to be optimally solved. As we shall see, a trade-off between
the two objectives may be easily achieved. It is worth mentioning that also other
fitness functions have been tested, inspired by the approaches described in Section
1.4. Among them, the best results have been given by:

• an early-stopping strategy inspired by the separate-set evaluation discussed
in [129]. The training instances are divided into two equally-sized datasets.
Then, the evolutionary algorithm is trained on the first subset, with a single-
objective fitness function aimed at maximizing the information gain of the
solutions. The other dataset is used to separately assess a second information
gain value for each of the solutions. During the algorithm computation, the
best performing individual according to the separated set is kept track of, and
the computation is stopped after k non improving evolutionary steps. Finally,
the best individual according to the separated set is returned;

• a bootstrap strategy inspired by the one presented in [119]. The evolutionary
algorithm evaluates each individual along 100 different datasets (each having
the same size of the original one), obtained from a random sampling (with
replacement) of the original dataset. Then, two objectives are optimized:
maximize the average information gain of the shapelet, as calculated along
the 100 datasets, while minimizing its standard deviation, in an attempt to
search for shapelets that are good in general.

Nevertheless, both of the strategies provided inferior accuracy performances than
the previously discussed bi-objective fitness function. While for the first approach
this might be explained by the fact that the number of training instances is greatly
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reduced (a problem that is exacerbated in the smallest nodes of the tree), the reason
why the second one performed so poorly is still unclear, and will be investigated in
further studies.

Decision method As it happens with any multi-objective optimization task, the
result of the shapelet generation phase is a set of non-dominated solutions, in this
case with respect to the two objectives: maximizing the information gain, while min-
imizing the compression ratio of the individuals. Thus, to extract a single shapelet
out from the set, a decision method is needed. To this end, each solution is evalu-
ated with respect to the following formula, similarly to what is done for J48S and
sequential frequent patterns:

(1−W ) ∗ ComprRatiorel +W ∗ (1− InfoGainrel) (6.1)

where W ∈ [0, 1] is a weight that can be customized by the user (by the pattern-
Weight parameter), ComprRatiorel ∈ [0, 1] is the relative compression ratio of the
shapelet, and InfoGainrel ∈ [0, 1] is the relative information gain of the shapelet,
with reference to the respective highest values observed in the population. The
shapelet that minimizes the value of such a formula is selected as the final result of
the optimization procedure, and is returned to the decision tree for the purpose of
the splitting process. Intuitively, the larger the user sets W , the more accurate on
the training set the extracted shapelet will be. On the contrary, smaller values of
W should result in less complex solutions being selected.

An overview of the algorithm NSGA-II applied to the shapelet extraction prob-
lem is presented in Figure 6.3. For more details regarding the inner workings of the
chosen evolutionary algorithm, see Section 1.4.1.

6.1.2 Adapting J48 to handle time series data

Let us now focus on the execution of J48SS on time series data. As in the classical
C4.5 algorithm, the learning procedure is made of two distinct phases: a growing
one, in which the tree is built, and a final pruning step, that discards the non-relevant
parts of the tree, improving its generalization capability and readability (for details
on this latter phase see, for example, [65]). Algorithm 3 shows the main recursive
procedure used in the tree building phase. It takes in input a node (initially, the root
node of the tree, in which all instances reside), and proceeds as follows. If the given
node is pure (i.e., all instances have the same label) or another stopping criteria is
met (e.g., based on minimum cardinality), then the node is transformed to a leaf
of the tree. Otherwise, the algorithm determines the best attribute for the split.
It first evaluates all static attributes (categorical and numerical), determining their
normalized gain value (see Section 5.1.2), following the default J48/C4.5 strategy.
Then, it focuses on string attributes that encode sequences: for each of them, the
best closed frequent pattern is extracted, following the strategy described in Section
5.1. Finally, for each string attribute of the dataset that encodes a time series, it
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Figure 6.3: Overview of the algorithm NSGA-II applied to the shapelet extraction
problem.

runs NSGA-II with respect to the set of instances belonging to the node (details are
provided in the remainder of this section). As a result, a single shapelet is returned.
The shapelet is evaluated as if it was a numerical attribute, considering the Euclidean
distance between each instance’s time series and itself (adopting also the subsequence
distance early abandon strategy to speed-up the computation, as suggested in [337]).
In this way, its normalized gain value is calculated, and compared with the best
found one. As a final step, the attribute with the maximum normalized gain is used
to split the node, and the algorithm is recursively called on each of the children.
As for the input parameters of new algorithm specific to the shapelet extraction
process, they are listed in Table 6.1. Apart from patternWeight, which determines
the degree of complexity of the shapelet returned to the decision tree by NSGA-II
(see Algorithm 3), they all control the evolutionary process:

• crossoverP determines the probability of breeding two individuals of the pop-
ulation;

• mutationP determines how often an element undergoes a random mutation;

• popSize determines the number of individuals in the population;

• numEvals sets the number of evaluations (and, thus, generations) that are
going to be carried out during the optimization process.
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Table 6.1: Custom parameters for time series shapelet extraction in J48SS.

Parameter name Default Description

crossoverP 0.8 crossover probability to be used in the EA

mutationP 0.1 mutation probability to be used in the EA

numEvals 500 # of evaluations to be carried out by the EA

patternWeight 0.75 weight for the extraction of the final shapelet

popSize 100 population size to be used by the EA

Note that the number of evaluations (numEvals) should typically be higher than
the population size (popSize): high popSize values, combined with small numEvals
values, will indeed reduce the heuristic to a blind random search. Each parameter
has already a default value that has been empirically determined, though a dedicated
tuning phase of patternWeight and numEvals is advisable in order to obtain the best
performances.

6.1.3 Experimental task

This section presents the experimental tasks which J48SS has been evaluated on.
First the considered datasets are described, which have been selected from a well-
known, public repository. Then, the experimental workflow is detailed. Finally, the
results are presented.

Datasets

All experiments are based on a selection of 16 UCR [78] datasets since, as witnessed
by the recent literature, such a collection is a standard de facto in the machine learn-
ing community (see, for instance, [162, 192, 284, 292, 330]). Moreover, the chosen
datasets make our results comparable to the ones presented in [284]. Table 6.2 details
the number of training and test instances, and the length of the time series in the
datasets under study. Observe that, although the considered time series have fixed
length, J48SS is capable of handling also time series of heterogeneous sizes. Every
dataset has been pre-processed by means of a dedicated Python script. As a result,
each instance is described by the following set of heterogeneous attributes (other
than the class label), so to try to exploit the capabilities of the novel algorithm:

• the original time series, encoded as a string;

• the minimum, maximum, average, and variance numerical values obtained
from the original time series;

• the time series skewness and kurtosis [297] numerical values;
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Table 6.2: The UCR datasets under study, with the tuned values of patternWeight
and numEvals.

Dataset |train| |test| TS length # classes patternWeight numEvals

Adiac 390 391 176 37 0.4 800

Beef 30 30 470 5 0.5 800

ChlorineC 467 3840 166 3 0.9 800

Coffee 28 28 286 2 0.0 800

DiatomSize 16 306 345 4 0.0 400

ECGFiveD 23 861 136 2 0.4 200

FaceFour 24 88 350 4 0.5 200

GunPoint 50 150 150 2 0.8 800

ItalyPower 67 1029 24 2 0.6 800

Lighting7 70 73 319 7 0.9 800

MedicalIm 381 760 99 10 0.2 400

MoteStrain 20 1252 84 2 0.9 200

SonyAIBO 20 601 70 2 0.2 200

Symbols 25 995 398 6 1.0 800

Trace 100 100 275 4 0.5 400

TwoLead 23 1139 82 2 0.7 200

• the slope time series, obtained from the original one and encoded as a string;

• the minimum, maximum, average, and variance numerical values obtained
from the slope time series;

• the slope time series skewness and kurtosis [297] numerical values.

Methods

Based on the selected UCR datasets, the performance of J48SS has been evaluated
against the accuracy results presented in [284] (Random Shapelet). This work has
been chosen for comparison as it is relatively recent and presents thorough details
on the experimentation phase. Moreover, like in J48SS, it embeds the shapelet gen-
eration phase in the decision tree inducing algorithm. In short, Random Shapelet
works by randomly selecting a certain percentage of shapelet candidates (with re-
spect to all the possible shapelets obtainable from traning set data) to be evaluated
in each node during the decision tree construction phase. Parameters such as the
shapelet sizes to be considered have to be tuned in advance.
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For each dataset, 100 single models have been built by varying the initial seed
used by the evolutionary algorithm, in order to get statistically reliable results. The
two parameters that are most likely to control the degree of generalization of the
models have been tuned by means of averaging the results of 100-times 10-fold cross-
validation on training data: first patternWeight, over the range [0.1, 0.2, . . . , 1.0];
then, numEvals, considering the values [200, 400, 800]. Table 6.2 reports the adjusted
values of the two parameters for each dataset. Note that, for time constraints, tuning
was not performed on a grid-search, although such an approach would have allowed
us, in principle, to find better combinations of the two values. All other parameters
have been left at their default values.

Also, a series of experiments aimed at collecting statistics on the running time of
the algorithm, the model sizes, and the generalization capability of the evolutionary
approach have been conducted by varying the numEvals parameter only, which has
been tested with the values [200, 400, 800, 1600] (all other parameters have been left
at their default values). Again, on each selected dataset and for each value of the
parameter, 100 models have been built by varying the evolutionary algorithm seed
in order to get statistically meaningful results.

Although the main focus of the work is on evaluating single, interpretable trees,
it is also interesting to get at least some preliminary insights on the performances
of ensembles of J48SS models. To this end, 100 ensemble models, each made of 100
trees, have been built through Weka’s Random Subspace [161] method by varying
the initial seed used by the evolutionary algorithm and keeping the tuned values for
patternWeight and numEvals. The average accuracy results have been compared
with those presented in [192] (Generalized Random Shapelet Forests) which, to the
best of our knowledge, has been the only attempt so far of embedding shapelets in
a forest inducing algorithm for time series classification (as an example, in [330],
a shapelet extraction algorithm is used to transform the dataset before applying a
random forest classifier). Similarly to the Random Shapelet approach, also in Gen-
eralized Random Shapelet Forests a random set of shapelet candidates is considered
at each node. Moreover, taking inspiration from Random Forest [55], an ensemble
of trees is built, considering a random subset of training instances for each tree.

Along with the accuracy results, computation times are reported, despite the
fact that the referenced paper does not present any absolute computation time.
Note that the Random Subspace function has a seed that should be independently
changed with respect to the one used by the evolutionary algorithm in order to get
proper statistically accurate results; nevertheless, this fact has been neglected due
to time constraints. The same constraints led us to test ensembles made by only
100 trees, which is a relatively small number compared, e.g., to the 500 trees that
have been suggested as a suitable forest size for traditional random forests [54].

Although we acknowledge the limits of such a preliminary experimentation, and
look forward to thoroughly investigate the performances of different kinds of ensem-
bles of J48SS models in future work, the obtained results are still useful to establish
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a baseline.

Results

This section presents the results of the experiments carried out on the selection of
UCR datasets, with respect to single trees and ensembles of J48SS models.

Results of single J48SS models Table 6.3 presents the results of the experi-
mentation, along with the accuracies reported in [284] (Random Shapelet), which
were also calculated over 100 executions of the algorithm. The Random Shapelet
approach results are obtained by sampling different percentages of the total number
of shapelets (ranging from 0.10% to 50%). The asterisk (*) symbol refers to tests
that were reported not to converge in a reasonable amount of time (several weeks).
Regarding J48SS, we may observe that, despite the mild tuning, the algorithm is
capable of achieving an overall better accuracy result than Random Shapelet. Even
better performances may be achieved by means of a dedicated full-parameter tuning
phase, using a grid-search approach, and/or extending the search range. Neverthe-
less, observe that, on some datasets, J48SS has shown inferior performances with
respect to the largest sampling variants of the competitor. However, as reported in
[284], such higher performances of Random Shapelet are obtained at the price of long
training times: typically hundreds of seconds are required for building a single model
on the smaller datasets, and thousands of seconds (or worse) are needed on the big-
ger ones, when the larger sampling values are used. On the contrary, while J48SS
training times tend to increase with the number of evaluations, they are relatively
low. Specifically, Table 6.4 reports the average of the training times (in seconds)
for the J48SS models on the 16 datasets. With respect to the importance of weight
tuning, Figure 6.4 shows the average accuracy over 100 executions for the datasets
ECGFiveD and SonyAIBO, over different values of patternWeight (all other param-
eters have been left at their default values). As can be seen, the two datasets behave
very differently with respect to the values of the parameter: while in ECGFiveD the
best performances are provided by high-performing shapelets (with respect to the
Information Gain), SonyAIBO tends to favor simple patterns. This confirms the
importance of tuning the value of patternWeight. Concerning the generalization
capabilities of the evolutionary approach, Figure 6.5 shows the trend of the test
set accuracy of the J48SS models, over the number of evaluations, for three selected
datasets, leaving all other parameters at their default values. The typically observed
behavior is the one of DiatomSize: the accuracy tends to grow as the number of
evaluations increases, till it peaks, and then starts to decrease, due to overfitting
in the evolutionary algorithm. There are also other two notable tendencies, that
have been rarely seen and typical, for instance, of datasets Beef and ECGFiveD :
in the former, the accuracy increases consistently, although we may speculate that
it would peak, and then decrease if given a sufficiently high number of evaluations;
in the latter, the accuracy decreases steadily, potentially suggesting that the chosen
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Table 6.3: Accuracy of the Random Shapelet approach, compared with the results
obtained by J48SS. Note that, when larger sampling is used in Random Shapelet,
computation times may be orders of magnitude larger than those required by J48SS.
Asterisk characters (*) represent missing values, due to too long computation times
(several weeks).

Dataset Random Shapelet J48SS

0.10 0.20 0.50 1.00 2.00 10.00 20.00 25.00 33.33 50.00

Adiac 45.4 47.7 49.6 50.6 51.9 51.6 51.3 51.7 50.3 51.8 60.5

Beef 40.0 39.3 36.8 35.5 33.6 32.4 31.6 32.0 31.8 31.2 55.4

ChlorineC 54.2 54.8 55.7 55.9 56.0 57.2 57.2 55.5 58.1 * 61.4

Coffee 69.0 70.3 73.1 74.1 76.4 76.9 78.1 78.3 78.3 78.3 100.0

DiatomSize 83.6 85.4 82.5 80.5 78.6 77.4 79.5 79.8 79.9 79.7 82.7

ECGFiveD 94.2 96.2 96.7 97.2 97.3 97.7 97.3 97.0 96.7 96.1 96.2

FaceFour 72.1 71.6 73.8 72.9 72.8 74.2 74.6 75.0 75.5 74.4 84.5

GunPoint 89.3 88.3 87.9 87.3 87.3 84.4 82.9 82.7 82.8 82.9 91.8

ItalyPower 87.1 87.8 90.0 90.4 90.8 92.4 93.0 93.0 93.1 93.2 92.7

Lighting7 61.9 61.0 58.1 56.9 56.9 63.50 63.5 63.9 64.9 63.0 66.0

MedicalIm 58.3 58.5 58.8 58.9 58.8 59.2 59.6 59.8 59.7 60.6 65.8

MoteStrain 78.4 78.9 79.2 79.2 79.2 81.5 81.8 82.3 82.2 82.0 81.5

SonyAIBO 83.8 84.9 85.5 86.9 86.3 86.8 87.2 87.9 88.6 89.8 89.2

Symbols 78.0 76.1 76.0 75.2 76.8 79.5 80.6 80.8 80.7 80.6 77.6

Trace 94.4 94.5 95.0 95.0 94.6 93.4 93.1 93.1 93.0 93.0 95.0

TwoLead 82.2 85.6 87.4 89.5 90.2 91.4 92.1 92.1 92.1 92.0 90.6

Average 73.2 73.8 74.1 74.1 74.2 75.0 75.2 75.3 75.5 N/A 80.7

fitness function is failing in avoiding the overfitting. As for the interpretability of
the generated models, Figure 6.6 shows the average sizes in total number of nodes of
the trees built on the 16 UCR datasets, together with their standard deviations. As
can be seen, decision trees are typically small, with the evident exceptions of Adiac,
ChlorineC, and MedicalIm. Of course, the size of the decision trees may be tuned by
customizing two parameters of J48SS that govern the pre- and post-pruning aggres-
siveness (already present in J48). Figure 6.7 shows one of the J48SS models that
have been trained on the Beef dataset. Starting from the root, the tree first checks
the distance between the specific shapelet and the time series attribute named TS
(the pattern may be easily visualized, for example by plotting its list of values).
If such a value is less than 0.109855, then it tests the distance between another
shapelet and the time series named TS slope. If the distance is less than 0.01709,
finally it assigns the class 2 to the instance. Also, observe that not only time series
attributes are used by the tree, but also numerical ones, such as the kurtosis value
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(a) Dataset ECGFiveD (b) Dataset SonyAIBO

Figure 6.4: Average test set accuracy of J48SS, with respect to different values of
patternWeight.

(a) Dataset Beef. (b) Dataset DiatomSize. (c) Dataset ECGFiveD.

Figure 6.5: Average test set accuracy of J48SS, with respect to the number of
evaluations of the evolutionary algorithm.

of the original time series and the average value of the slope time series. The specific
decision tree has a test set accuracy of 53.33%, a value which is largely superior to
the ones provided by the Random Shapelet approach. Figure 6.8 shows the shapelet
tested at the root of the tree with respect to two time series of the train portion of
dataset Beef, the first being representative of class 1, while the second being typical
of class 5. As it can be seen, the time series having class 1 has a bigger distance
than the one having class 5, which is consistent with the splits taken in the decision
tree. Finally, observe that, although in this case the shapelet is quite short with
respect to the time series, this does not represent a common phenomenon in our
experiments: in fact, other shapelets have emerged whose length is comparable to
the one of the considered time series; indeed, the fitness function only indirectly
influences the length of the generated shapelets.
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Table 6.4: Average of J48SS training times (in seconds), given the number of eval-
uations of the evolutionary algorithm.

Dataset 200 evals 400 evals 800 evals 1600 evals

Adiac 14.1 20.8 37.8 98.9

Beef 3.7 5.2 7.72 14.8

ChlorineC 24.5 30.1 44.2 86.4

Coffee 1.1 1.4 2.0 4.0

DiatomSize 1.9 2.5 4.1 10.9

ECGFiveD 0.8 1.1 1.4 2.2

FaceFour 2.1 2.8 4.3 8.2

GunPoint 1.3 1.5 1.9 2.6

ItalyPower 0.8 0.9 1.3 2.4

Lighting7 4.6 6.6 10.2 18.6

MedicalIm 8.3 11.0 17.4 38.4

MoteStrain 0.6 0.7 0.9 1.3

SonyAIBO 0.6 0.8 1.0 1.9

Symbols 2.7 3.9 6.3 14.5

Trace 2.2 3.0 4.6 9.5

TwoLead 0.5 0.7 0.9 1.5

Results of Ensembles of J48SS Models

Let us now briefly report the outcomes of the experimentation with ensembles of
J48SS models. Table 6.5 reports the average of the accuracies and training times
of the generated models (EJ48SS ), with respect to the accuracies reported in [192]
(Generalized Random Shapelet Forests, gRSF ). Again, note that the EJ48SS mod-
els are made of just 100 trees, with respect to the 500-tree forests used in gRSF.
Although the results should just be considered as a baseline for future studies on
J48SS ensembles, it is interesting to observe that in 8 out of 16 datasets J48SS
ensembles have been able to match or outperform the performance gRSF, despite
being much smaller considering the total number of trees. Moreover, taking into
account the observations done about the importance of properly tuning the param-
eters of the single decision trees, it seems reasonable to assume that better results
might be obtained without overly-increasing the size of the ensembles. As already
stated before, such considerations, along with the assessment of different kinds of
ensemble methods, are going to be addressed in future work.
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Figure 6.6: Average and standard deviation of the decision tree size per dataset.

d(TS,[-0.21788,-0.21741,-0.21622,-0.21433,-0.20888,-0.20046,-0.19195,-0.18197,-0.15951,-0.14946,-0.13987,-0.036398,-0.04448]) <= 0.109855 
|   d(TS_slope,[-0.080505,4.35E-4]) <= 0.01709: 2 

|   d(TS_slope,[-0.080505,4.35E-4]) > 0.01709 
|   |   d(TS_slope,[-0.0429]) <= 5.95E-4 
|   |   |   kurtosis <= 0.197753: 5 
|   |   |   kurtosis > 0.197753: 3  
|   |   d(TS_slope,[-0.0429]) > 5.95E-4: 5 
d(TS,[-0.21788,-0.21741,-0.21622,-0.21433,-0.20888,-0.20046,-0.19195,-0.18197,-0.15951,-0.14946,-0.13987,-0.036398,-0.04448]) > 0.109855 
|   slope_avg <= -0.003305: 4 

|   slope_avg > -0.003305: 1 

Figure 6.7: One of the J48SS models trained on dataset Beef.

6.1.4 Discussion

The experimental results reported in the previous section allow us to conclude that
J48SS is capable of achieving a competitive classification performance with respect
to the task of time series data classification. Moreover, as a further advantage over
previous methods, the trees built by the proposed algorithm are easily interpretable,
and powerful enough to effectively mix decision splits based on several kinds of
attribute. Finally, such a flexibility allows one to reduce the data preparation effort.

As a matter of fact, the datasets used for the experimental tasks did not take
full advantage of the capabilities of the new algorithm, as they consist of time series
only, and all static attributes are simply derived ones. In order to fully exploit
the potentialities of J48SS, a dataset should contain sequential and/or time series
data, and it should include meaningful static (numerical or categorical) attributes,
somehow independent from the previous ones. The latter condition means that
static attributes should not simply synthesize information already contained in the
sequences/time series, but add something per se. Such a dataset has proven to
be difficult to find in the literature, maybe because of the lack, until now, of an
algorithm capable of training a meaningful model on it. Nonetheless, Section 6.2
describes the application of J48SS to a real analysis task in the context of pollution
modelling, in which such a mixture of attributes can actually be found.
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(a) Time series typical of class 1 (b) Time series typical of class 5

Figure 6.8: Two exemplary time series from the Beef dataset, with respect to the
shapelet tested in the root of the decision tree of Figure 6.7. The best matching
position according to the Euclidean Distance has been enlightened.

Table 6.5: Accuracy and training time (in seconds) of the J48SS ensemble models
(100 trees), with respect to Generalized Random Shapelet Forests (500 trees).

Dataset gRSF acc. EJ48SS acc. EJ48SS tr. time (s)

Adiac 74.2 78.1 2196.8

Beef 80.0 67.5 269.1

ChlorineC 67.3 72.2 2230.9

Coffee 100.0 100.0 49.0

DiatomSize 96.4 86.8 57.6

ECGFiveD 100.0 100.0 6.2

FaceFour 100.0 92.8 36.8

GunPoint 100.0 98.0 40.2

ItalyPower 94.0 95.6 19.3

Lighting7 69.9 73.1 410.5

MedicalIm 73.3 75.5 392.2

MoteStrain 92.1 92.6 6.5

SonyAIBO 92.5 90.4 6.4

Symbols 96.8 76.1 215.2

Trace 100.0 99.1 61.5

TwoLead 100.0 97.1 5.8

Average 89.8 87.2
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Algorithm 3 Node splitting procedure (J48SS)

1: procedure node split(node)

2: if NODE is “pure” or other stopping criteria met then

3: make NODE a leaf node

4: else

5: best attr← null

6: best ng← 0

7: for each numerical or categorical attribute a do

8: a ng←get information gain of a

9: if a ng > best ng then

10: best ng← a ng

11: best attr← a

12: for each sequential string attribute s do

13: pat, pat ng←get best frequent pattern in s

14: if pat ng > best ng then

15: best ng← pat ng

16: best attr← pat

17: for each time series string attribute t do

18: shap, shap ng←get shapelet in t using NSGA-II

19: if shap ng > best ng then

20: best ng← shap ng

21: best attr← shap

22: children nodes← split instances in NODE on best attr

23: for each child node in children nodes do

24: call NODE SPLIT(child node)

25: attach child node to NODE

26: return NODE
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6.2 Assessing the role of temporal information in

air pollution modelling

In this work, we focus on assessing how different ways of handling temporal infor-
mation may bring to different results in a real classification scenario. To do that, we
consider an environmental problem, that is, the problem of identifying the relation-
ships between the concentrations of the pollutants NO2 (nitrogen dioxide), NOX

(nitrogen oxides), and PM2.5 (particulate matter), and a set of variables, describing,
among others, meteorological conditions and traffic flow, in the city of Wroc law in
Poland. Specifically, we build on a previous work [187], where the authors tried to
model such relationships by means of atemporal regression models. Instead, we con-
sider the task as a classification one, which allows us to apply the recently proposed
J48SS decision tree inducer (see Section 6.1), that, as we have seen, generates models
capable of handling both temporal (sequences and time series) and atemporal (cate-
gorical and numerical) attributes. We compare its performance with those reported
by J48 (WEKA’s [331] implementation of Quinlan’s C4.5 [274]) and Random Forest
[55] runs on both an atemporal, as well as a transformed version of the original
dataset, that makes use of lagged variables, showing that, at least in this case, time
series and temporal sequences give rise to models with superior performance.

The content is organized as follows: Section 6.2.1 briefly discusses some previous
work, and presents the original problem and dataset, as considered in [187]. Section
6.2.2 describes the data preparation step, and the differences with respect to the
original work. Section 6.2.3 discusses the results that have been obtained with J48
and Random Forest neglecting temporal information, which are useful to establish a
baseline. In Section 6.2.4, we formulate the problem with classical models, based on
the use of lagged variables. In Section 6.2.5, we discuss the performance of J48SS on
this problem. Finally, in Section 6.2.6 we provide an assessment of the work done
and point out some possible future research directions.

6.2.1 Background

Over the recent years, machine learning-based environmental pollution studies have
been gaining more and more traction in the scientific community. For instance, in
[94], decision trees are used to predict PM2.5 levels in the city of Quito, the capital
of Ecuador, based on wind (speed and direction) and precipitation levels. In [332],
the correlation between wind data and a wide range of pollutants in China’s Pearl
River delta region is investigated. In [296], Classification and Regression Trees
(CART) and Ensemble Extreme Learning Machine (EELM) algorithms are used
to model hourly PM2.5 concentrations in the city of Yancheng, China. Finally, in
[231], a machine learning approach based on two years of meteorological and air
pollution data analysis is built to predict the concentrations of PM2.5 from wind
and precipitation levels in Northern Texas.
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The present work builds on the findings presented in [187], where an environ-
mental study conducted in Wroc law (Poland) is reported. The overall goal of the
study was that of determining how the levels of specific pollutants, namely, NO2,
NOX , and PM2.5, are related to the values of other attributes, such as weather
conditions and traffic intensity, with the purpose of building an explanation model
(in opposition to a prediction model). In such an explanation model, the value of a
pollutant at a certain time instant is linked to the value of the predictor attributes
from the same time instant; discovering such a relationship is extremely important,
as it may allow the city’s government to identify the most critical factors that influ-
ence pollution levels, and to take them into consideration when developing proper
corrective measures.

The considered dataset spans over the years 2015–2017, and it records informa-
tion at one hour granularity. The dataset attributes are listed in Table 6.6: they are
all numerical, with the exception of holiday or not, which has a binary categorical
value, and wind direction categ, that may take the values N, NE, E, SE, S, SW, W,
and NW. The attribute traffic refers to the number of vehicle crossings recorded at
a large intersection equipped with a traffic flow measurement system, whereas the
air quality information have been recorded by a nearby measurement station. We
may broadly classify the predictors into three categories:

• traffic intensity : traffic;

• timestamp1: year, month, dom, dow, hour, date, holiday or workday;

• weather conditions : air temp, wind speed, wind direction (categorical and nu-
merical), rel humidity, air pressure.

Three atemporal Random Forest models have been trained on such data to perform
a regression task on each of the three pollutants: NO2, NOX and PM2.5. The
conclusion was that in modelling nitrogen oxides concentration at a certain time,
the most important variable is the traffic flow at the same time, while for PM2.5

meteorological conditions seem to play a more predominant role. Starting from such
a result, we now want to asses if more reliable explaining models can be found by
taking into account the historical values of the predictor variables.

6.2.2 Data preparation

Let us now turn our attention to the description of the dataset used in this work.
Although data are essentially the same as the one described in Section 6.2.1, it is
important to underline once more that there is a fundamental difference between our
work and the work reported in [187]: we consider a classification problem, instead

1We use the term timestamp to refer to the kind of variables that identify a specific time instant,
to distinguish them from those we will consider to be proper temporal features, i.e., the ones that
encode historical values.
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Table 6.6: Features in the original dataset.

Feature Description

year year which the instance refers to
month month which the instance refers to
dom day of the month which the instance refers to
dow day of the week which the instance refers to
hour hour which the instance refers to
date full date which the instance refers to
holiday or workday whether the day which the instance refers to is a workday or not
traffic hourly sum of vehicle numbers at the considered intersection
air temp hourly recording of the air temperature
wind speed hourly recording of the wind speed
wind direction num hourly recording of the wind direction (numerical, degrees)
wind direction categ hourly recording of the wind direction (discretized)
rel humidity hourly recording of the relative air humidity
air pressure hourly recording of the air pressure
NO2 conc hourly recording of the NO2 concentration level
NOX conc hourly recording of the NOX concentration level
PM25 conc hourly recording of the PM2.5 concentration level

of a regression one. In that respect, the first step has been the choice of a sensible
discretization technique for the pollutant attributes. To this end, we relied on official
European Union directives [6, 11], that led us to define the following classes2:

• NO2: intervals [0, 40), [40, 80), [80,∞);

• NOX : intervals [0, 40), [40, 200), [200,∞);

• PM2.5 intervals [0, 25), [25,∞).

Such a discretization led to the class distributions depicted in Figure 6.9, which,
as can be seen, are rather unbalanced. As a consequence, in order to evaluate the
performances of the classifiers developed in this work, we shall use the F1 score
[291], instead of the more common accuracy index. In short, F1 is defined as the
harmonic mean of precision and recall :

F1 =
2PR

P +R
. (6.2)

Thus, an F1 score reaches its best value at 1 (perfect precision and recall) and its
worst at 0. Intuitively, it allows one to evaluate the balance between precision and

2Note that the European directives identify the two relevant values of 0 and 200 for NO2

concentrations. However, we chose here to rely on different interval boundaries, since in the
considered data there are just 4 instances with values over 200. Although this is a rather arbitrary
choice, it does not compromise the goal of the work, namely, assessing the role played by temporal
information in the overall classification task.
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Figure 6.9: Class distributions (in number of instances) for the pollutants NO2,
NOX , and PM2.5. Labels on the x axis refer to the lower bounds of each discretiza-
tion interval.

recall, which is extremely useful for evaluating classifiers performance in situations
where there is an uneven class distribution, and false positive kinds of error have
the same importance as false negative ones.

Let us now focus on the predictors, which have also undergone some changes
with respect to the original features. First, a season attribute has been added,
that (as it can be expected) tracks the season to which an instance refers (Winter,
Spring, Summer, Autumn). Moreover, the timestamp attributes month, dom, dow,
and hour have been replaced by two attributes each, based on the two trigonometric
transformations:

SIN(2 ∗ π ∗ x/δ) , COS(2 ∗ π ∗ x/δ) , (6.3)

where x represents the original value, and δ is the length of the period, e.g., 24 for the
attribute hour, and 7 for the attribute dow. Relying on the two trigonometric trans-
formations allows us to take into account the periodicity of the timestamp attributes.
In this way, for instance, the value 11 pm hours becomes close to that of midnight
and of 1 am hours. A similar motivation is behind replacing wind direction num by
its two trigonometric transformations, although the idea here is not that of deal-
ing with periodicity, but, again, that of treating in the same way wind directions
that are close to each other, e.g., 359° and 1°. Figure 6.10 shows the result of
such a transformation on the values of the attribute wind direction num. Observe
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Figure 6.10: Result of the two trigonometric transformations applied to the attribute
wind direction num.

that both trigonometric transformations are necessary in order to derive the original
value, e.g., to distinguish 100° from 260°.

The final step consists of identifying which attributes might carry a tempo-
ral content, that is, which attributes can be interpreted as collection of historical
values. They are traffic, air temp, wind speed, wind direction num (trigonometric
transforms), wind direction categ, rel humidity, and air pressure. Sections 6.2.4 and
6.2.5 present two different approaches by which it is possible to model such temporal
aspects.

6.2.3 Classification with atemporal data

Before delving into how temporal data may be handled, let us establish a baseline
by developing a set of atemporal classification models. We consider WEKA’s J48
decision tree learner and Random Forest ensemble technique, that will be compared
to single J48SS trees and ensembles of J48SS trees, respectively. The considered
predictors are thus season, month (trigonometric transforms), dom (trigonomet-
ric transforms), dow (trigonometric transforms), hour (trigonometric transforms),
holiday or workday, traffic, air temp, wind speed, wind direction num (trigonomet-
ric transforms), wind direction categ, rel humidity, and air pressure, for a total of
18 attributes. The dataset has been partitioned into a training (66%) and a test
(33%) set according to a stratified approach. Then, to account for the uneven class
distribution, proper instance weights have been derived by means of Scikit-learn’s
compute class weight function [15], and have been used for model learning.

Three Random Forest models have been considered (Scikit-learn’s implementa-
tion [16]), each performing classification on a different pollutant. For each of them,
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Table 6.7: Hyperparameter search space and best parameters for Scikit-learn’s Ran-
domForestClassifier algorithm, over the three datasets.

Parameter Search space Atemporal Lag 1 2 3 4 Lag 6 12 18 24

n estimators
10, 25, 50, 75, 100, 125,
150, 175, 200, 250, 300,
400, 500, 700, 1000

NO2: 150 NO2: 1000 NO2: 175
NOX : 300 NOX : 700 NOX : 300
PM2.5: 1000 PM2.5: 1000 PM2.5: 1000

criterion gini, entropy
NO2: gini NO2: gini NO2: entropy
NOX : entropy NOX : entropy NOX : entropy
PM2.5: entropy PM2.5: entropy PM2.5: entropy

min samples split 2, 4, 6, 8, 10, 15, 20
NO2: 15 NO2: 20 NO2: 20
NOX : 8 NOX : 10 NOX : 15
PM2.5: 2 PM2.5: 2 PM2.5: 4

max features sqrt, log2
NO2: log2 NO2: sqrt NO2: sqrt
NOX : log2 NOX : sqrt NOX : sqrt
PM2.5: log2 PM2.5: sqrt PM2.5: sqrt

we proceeded in the following way. To start with, we performed a hyperparameter
tuning step by means of 3-fold cross-validation on training data. Table 6.7 reports
the hyperparameters search space and the best performing ones, that have been then
used to train the final model (column Atemporal). Observe that the Random Forest
classifier does not have a deterministic behaviour, but relies on an initial seed to
guide some random choices during the learning process. Thus, in order to get some
confidence intervals over the test set performance, we trained 10 different models
by varying the initial seed. We then considered the average and standard deviation
of the F1 score, as shown in Figures 6.11 through 6.13 (label RF atemporal). As a
side note, observe also that the F1 score returned by each model is actually a macro
average of the F1 scores calculated for each class. Similarly, we trained three single
J48 decision trees over the same data. However, unlike the previous case, we did not
perform any tuning over these models, because, as we shall see in Section 6.2.5, this
allows us to perform a fair comparison with J48SS. Performance results for J48 are
also reported in Figures 6.11 through 6.13 (label J48 atemporal). Note that, being
J48 a deterministic algorithm, no standard deviation is observed.

As it could be expected, Random Forest is capable of obtaining F1 scores con-
siderably higher than J48, in all three classification tasks. Moreover, standard de-
viations exhibited by Random Forest are quite small, which is the result of them
being composed of a relatively large number of trees.

6.2.4 Classification with classical models and lagged vari-
ables

In this section, we report the outcomes of the classification by means of classi-
cal models and lagged variables. Recall that in Section 6.2.2 we identified the at-
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Figure 6.11: Average and standard deviation of the F1 macro average scores over
the dataset NO2.

tributes that may be susceptible of carrying temporal information, namely, traffic,
air temp, air pressure, wind speed, wind direction num (trigonometric transforms),
wind direction categ, and rel humidity.

We want to assess now the impact on the classification performances of models
learned by J48 and Random Forest using the historical data of these attributes. We
modeled the temporal aspect by means of lagged variables, which is a commonly
used technique in the literature (see, for instance, [328]). In short, a lagged variable
is a delayed variable that can be used to keep track of historical values for a given
attribute. For instance, given the amount of traffic at the current instant, we may
as well be interested in knowing how many vehicles crossed the same intersection
two hours ago.

We started from the same set of attributes as described in Section 6.2.3 and we
added, for each of the 8 mentioned attributes, a set of lagged variables. Specifically,
we considered two different datasets, characterized by the use of either: (i) lagged
variables for 1, 2, 3, and 4 hours before the current value, or (ii) lagged variables
for 6, 12, 18, and 24 hours before. In both cases, the resulting dataset encompasses
50 attributes (18 atemporal + 32 lagged).

We trained three Random Forest and three J48 models, following the same tun-
ing, training, and test protocol followed in Section 6.2.3. The results of the tuning
phase are presented in Table 6.7 (columns Lag 1 2 3 4, and Lag 6 12 18 24 ), while
their performances on the test set are depicted in Figures 6.11 through 6.13 (labels
RF lag 1 2 3 4, RF lag 6 12 18 24, J48 lag 1 2 3 4, and J48 lag 6 12 18 24 ).
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Figure 6.12: Average and standard deviation of the F1 macro average scores over
the dataset NOX .

We observe that the performances of the models trained on the lagged datasets
tend to be higher than or equal to those of the ones built on the atemporal features
only, with the exception of J48 on the PM2.5 classification task; such a behaviour
might be explained by the high number of attributes that the decision tree has to
consider, and might be improved with an additional, intermediary feature selection
step.

It should finally be observed that the choice of the number and granularity of
lagged variables to employ is a rather arbitrary choice which may also be susceptible
of tuning. As we shall see in the next section, relying on J48SS allows one to deal
with temporal information in a much more natural way.

6.2.5 Classification with J48SS

J48SS makes it much easier to integrate temporal information starting from the
atemporal dataset discussed in Section 6.2.3: for each of the 8 temporal attributes
identified in Section 6.2.2, we simply build a string storing the past 24 values. Thus,
we end up with a total of 26 features (18 atemporal + 8 temporal). Recall that
J48SS makes use of a further parameter, denoted by W ∈ [0, 1] (weight), to evaluate
the abstraction level of each temporal pattern extracted from either a sequence or
a time series and, thus, control overfitting (as suggested in [69]). Intuitively, larger
values of W should lead to more powerful patterns being extracted, in terms of class
discrimination performance (at least, on the training set). Conversely, smaller values
of W should result in less complex, more general features being selected. We tuned
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Figure 6.13: Average and standard deviation of the F1 macro average scores over
the dataset PM2.5.

W over a stratified training data split (considering 66% as actual training data, and
33% as validation data), finding that its best values are 0.9, 1.0, and 0.75 for NO2,
NOX , and PM2.5 classification tasks, respectively. Observe that we did not perform
any tuning on the atemporal part of J48SS, which behaves exactly in the same way
as the original J48. Then, for each prediction task, we averaged the performance on
the test set of 10 single J48SS models; this is necessary since, as mentioned before,
J48SS extracts time series shapelets by means of an evolutionary algorithm, which
in turn is non deterministic and makes use of an initial random seed to guide the
search. Results are depicted in Figures 6.11 through 6.13 (label J48SS ).

As a final step, we considered ensembles of J48SS models. Specifically, we built
three models, each composed of 10 (tuned) J48SS trees, relying on the WEKA’s
RandomSubSpace method [161]. In short, RandomSubSpace tries to build a deci-
sion tree ensemble that maintains the highest possible accuracy on training data,
and improves on generalization accuracy as it grows in complexity. The trees in
the ensemble are constructed systematically by pseudorandomly selecting random
samples of features instead of the entire feature set, that is, the trees are constructed
in randomly chosen subspaces. We did not perform any tuning over the ensemble
method hyperparameters, relying on the default choice for the subspace size, i.e.,
50%. As usual, the results, computed over the execution of 10 models, are presented
in Figures 6.11 through 6.13 (label J48SS ensemble).

As it can be seen, single J48SS trees score better than plain J48 models, although
they typically perform worse than Random Forests. The observed standard devi-
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ation is higher than that of Random Forest; however this is expected, being these
models composed of just a single decision tree. More importantly, very small ensem-
bles of J48SS trees are capable of achieving results higher than large Random Forest
ensembles, that may in turn include up to 1000 trees. This is a clear indication that
frequent patterns and shapelets are capable of extracting more information than
lagged variables. Moreover, observed standard deviations are also reduced, which is
a trend that is expected to continue as the ensemble size grows. Finally, using time
series and sequences in J48SS allows one to reduce the arbitrariness related to the
lagged variable approaches, although, as we have witnessed, one has still to decide
the appropriate length for the temporal attributes’ histories.

6.2.6 Discussion

In this work, we considered how different ways of encoding temporal information
may impact on the performance of a classification task. We considered a real case
scenario, that is, that of assessing the relationships between concentrations of the
pollutants NO2, NOX , and PM2.5, and a set of variables describing, among others,
meteorological conditions and traffic flow in the city of Wroc law, in Poland. Through
a series of experiments, we showed that accounting for the historical values of the
features by means of lagged variables helps in improving the overall accuracy results.
Moreover, an ever higher performance is obtained by relying on J48SS. Although
the J48SS approach to the management of temporal data is quite natural and less
complex than relying on lagged variables, some degree of arbitrariness still remains
for what concerns the choice of the length of the histories for the temporal attributes.
Moreover, it may be sensibly argued that the most straightforward way to deal with
the consider pollution analysis would have been that of employing regression, instead
of classification. In fact, this is a current limitation of J48SS, which may be extended
in the future to deal with regression tasks.

Finally, observe that, although J48SS is capable of handling temporal informa-
tion, it does so by testing existential conditions over single attributes (i.e., establish-
ing the presence of a pattern). More powerful models could be developed by taking
into account relationships between the values of different temporal features, a task
on which we focus on in Section 7.1.
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7
Combining Learning and Temporal

Logic

In this chapter we discuss how machine learning and temporal logic can be com-
bined, considering two possible aspects: (i) the case when temporal logic is used as a
means inside of a machine learning algorithm to perform data analysis, as in the in-
terval temporal logic-based decision tree presented in Section 7.1; and, (ii) a setting
in which machine learning techniques are employed to generate temporal logic for-
mulas, as in the task of natural language English utterance formalization, discussed
in Section 7.2. Finally, as a conclusive development, in Section 7.3 we propose the
architecture of a system, in which formal methods and machine learning techniques
are seamlessly combined to perform anomaly detection and predictive maintenance
tasks [60]. As we have already mentioned, we believe the integration between ma-
chine learning and statistical learning solutions with logics and formal methods
techniques to constitute an original, thrilling research opportunity that promises to
shed light on new ways of dealing with complex, real-world problems [172].

7.1 Interval temporal logic decision tree learning

As we have seen in Sections 5.1 and 6.1, J48SS is capable of handling categori-
cal, numerical, sequential and time series data during the same execution cycle.
This allows us to successfully handle analysis tasks characterized by heterogeneous
datasets, such as the one described in Section 6.2. Nevertheless, the way in which
the algorithm deals with temporal information has one, essential, limitation: the
decision tree is just capable of handling existential conditions over single temporal
attributes, that is, determining if a given instance satisfies a specific pattern (either
a list of itemsets or a shapelet). A natural way to extend its capabilities is that of
taking into account relationships between the values of different temporal attributes.
This section discusses a convenient solution based on temporal logic (the original
paper can be found in [71]).

A decision tree can be seen as a structured set of rules: every node of the tree
can be thought of as a decision point, and, in this way, each branch becomes a
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conjunction of such conditional statements, that is, a rule of the form X1 ∧ X2 ∧
· · · ∧Xn → C, where the left-hand part represents tests on the instance’s attributes
and the right-hand part is the predicted class. A conditional statement may have
many forms: it can be a yes/no statement (for binary categorical attributes), a
categorical value statement (for non-binary categorical attributes), or a splitting
value statement (for numerical attributes); the arity of the resulting tree is two if all
attributes are binary or numerical, or more, if there are categorical attributes with
more than two categories. Each statement can be equivalently represented with
propositional letters, so that a decision tree can be also seen as a structured set of
propositional logic rules.

Temporal classification: static solutions. As we have already discussed, just fo-
cusing on the static aspects of data is not always adequate for classification. Within
static decision tree learning, temporal information may be aggregated in order to
circumvent the absence of explicit tools for dealing with temporal information (for
example, a patient can be labelled with a natural number describing how many
times he/she has been running a fever during the observation period); the ability
of a decision tree to perform a precise classification based on such processed data,
however, strongly depends on how well data are prepared, and therefore on how
well the underlying domain is understood. Alternatively, decision trees have been
proposed that use frequent patterns [79, 122, 215] in nodes, considering the pres-
ence/absence of a frequent pattern as a categorical attribute [66, 67, 112] (such as
J48SS). Nevertheless, as briefly stated before, despite being the most common ap-
proach to (explicit) temporal data classification, frequent patterns in sequences or
series have a limited expressive power, as they are characterized by being existential
and by intrinsically representing temporal information with instantaneous events.

Our approach: interval temporal logic decision trees. A different approach
to temporal classification is mining temporal logic formulas, and since temporal
databases universally adopt an interval-based representation of time, the ideal choice
to represent temporal information in data is interval temporal logic. The most
representative propositional interval temporal logic is Halpern and Shoham’s Modal
Logic of Allen’s Relations [154], also known as HS. Its language encompasses one
modal operator for each interval-to-interval relation, such as meets or before, and the
computational properties of HS and its fragments have been studied in the recent
literature (see, e.g. [57, 58, 59]). The very high expressive power of HS, as well
as its versatility, make HS the ideal candidate to serve as the basis of a temporal
decision tree learning algorithm. Based on these premises, we propose in this work
a decision tree learning algorithm that produces HS-based trees. Our proposal,
Temporal ID3, is a direct generalization of the ID3 algorithm [272], founded on the
logical interpretation of tree nodes, and focuses on data representation and node
generation; we borrow other aspects, such as splitting based on information gain
and the overall learning process from the original algorithm. The accuracy of a
decision tree and its resilience to over-fitting also depends on the stopping criterion
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and possible post-pruning operations, but we do not discuss these aspects here.

Existing approaches to temporal logic decision trees. Learning temporal
logic decision trees is an emerging field in the analysis of physical systems, and,
among the most influential approaches, we mention learning of automata [31] and
learning Signal Temporal Logic (STL) formulas [43, 72, 250, 279]. In particular, STL
is a point-based temporal logic with until that encompasses certain metric capabil-
ities, and learning formulas of STL has been focused on both the fine tuning of the
metric parameters of a predefined formula and on learning the innermost structure
of a formula; among others, decision trees have been used to this end [52]. Compared
with STL decision tree learning, our approach has the advantage of learning formulas
written in a well-known, highly expressive interval-based temporal logic language;
because of the nature of the underlying language and of the interval temporal logic
models, certain application domains fit naturally into this approach. Moreover,
since our solution generalizes the classical decision tree learning algorithm ID3, and,
particularly, the notion of information gain, it is not limited to binary classification
only. Moreover, in [50] a first-order framework for TDIDT is presented with the
attempt to make such paradigm more attractive to inductive logic programming
(ILP). Such a framework provides a sound basis for logical decision tree induction;
in opposition, we employ the framework to represent modal, instead of first-order,
relational data. Additionally, our approach should not be confused with [230], in
which the term interval indicates an uncertain numerical value (e.g., the patient has
a fever of 38 Celsius versus the patient has a fever between 37.5 and 38.5 Celsius),
and in which an algorithm for inducing decision trees on such uncertain data is pre-
sented that is based on the so-called Kolmogorov-Smirnov criterion, but the data
that are the object of that study are not necessarily temporal, and the produced
trees do not employ any temporal (logical) relation. In [33, 191, 317], the authors
present two other approaches to a temporal generalization of decision tree learn-
ing. In the former, the authors provide a general method for building point-based
temporal decision trees, but with no particular emphasis on any supporting formal
language. In the latter, the constructed trees can be seen as real-time algorithms
that have the ability to make decisions even if the entire description of the instance
is not yet available. Finally, in [84], a generalization of the decision tree model is
presented in which nodes are possibly labelled with a timestamp to indicate when
a certain condition should be checked.

Summarizing, our approach is essentially different from those presented in the
literature in several aspects. As a matter of fact, by giving a logical perspective to
decision tree learning, we effectively generalize the learning model to a temporal one,
instead of introducing a new paradigm. In this way, instances that present some
temporal component are naturally seen as timelines, and, thanks to the expressive
power provided by HS, our algorithm can learn a decision tree based on the temporal
relations between values, instead of the static information carried by the values.
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7.1.1 Preliminaries: interval temporal logic

Let D ⊆ N. In the strict interpretation, an interval over D is an ordered pair [x, y],
where x, y ∈ D and x < y, and we denote by I(D) the set of all intervals over D. If
we exclude the identity relation, there are 12 different Allen’s relations between two
intervals in a linear order [28]: the six relations RA (adjacent to), RL (later than),
RB (begins), RE (ends), RD (during), and RO (overlaps), depicted in Figure 7.1, and
their inverses, that is, RX = (RX)−1, for each X ∈ A, whereA = {A,L,B,E,D,O}.
Halpern and Shoham’s modal logic of temporal intervals (HS) is defined from a set
of propositional letters AP , and by associating a universal modality [X] and an
existential one 〈X〉 to each Allen’s relation RX . Formulas of HS are obtained by

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈X〉ϕ | 〈X〉ϕ , (7.1)

where p ∈ AP and X ∈ A. The other Boolean connectives and the logical constants,
e.g.,→ and ⊤, as well as the universal modalities [X], can be defined in the standard
way. For each X ∈ A, the modality 〈X〉 (corresponding to the inverse relation RX of
RX) is said to be the transpose of the modalities 〈X〉, and vice versa. The semantics
of HS formulas is given in terms of timelines T = 〈I(D), V 〉1, where D is a linear
order and V : AP → 2I(D) is a valuation function which assigns to each atomic
proposition p ∈ AP the set of intervals V (p) on which p holds. The truth of a
formula ϕ on a given interval [x, y] in an interval model T is defined by structural
induction on formulas as follows:

T, [x, y]  p if [x, y] ∈ V (p), for p ∈ AP ;
T, [x, y]  ¬ψ if T, [x, y] 6 ψ ;
T, [x, y]  ψ ∨ ξ if T, [x, y]  ψ or T, [x, y]  ξ ;
T, [x, y]  〈X〉ψ if there is [w, z] s.t [x, y]RX [w, z] and T, [w, z]  ψ ;
T, [x, y]  〈X̄〉ψ if there is [w, z] s.t [x, y]RX̄ [w, z] and T, [w, z]  ψ .

HS is a very general interval temporal language and its satisfiability problem is
undecidable [154]. Our purpose here, however, is to study the problem of formula
induction in the form of decision trees, and not of formula deduction, and therefore
the computational properties of the satisfiability problem can be ignored at this
stage.

7.1.2 Motivations

In this section, we present some realistic scenarios in which learning a temporal
decision tree may be convenient, and, then, we discuss aspects of data preprocessing
related to the temporal component.

1We deliberately use the symbol T to indicate both a timeline and an instance in a dataset.
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Figure 7.1: Allen’s interval relations and HS modalities.

Learning. There are several application domains in which learning a temporal
decision tree may be useful. Consider, for example, a medical scenario in which
we consider a dataset of classified patients, each one characterized by its medical
history, as in Figure 7.2, top. Assume, first, that we are interested in learning a
static (propositional) classification model. The history of our patients, that is, the
collection of all relevant pieces of information about tests, results, symptoms, and
hospitalizations of the patient that occurred during the entire observation period,
must be processed so that temporal information is subsumed in propositional letters.
For instance, if some patient has been running a fever during the observation period,
we may use a proposition fever, with positive values for those patient that have had
fever, and negative values for the others (as in Figure 7.2, bottom, left). Depending
on the specific case, we may, instead, use the actual temperature of each patient,
and a static decision tree learning system may split over fever < t, for some thresh-
old temperature t, effectively introducing a new propositional letter, and therefore a
binary split. Either way, the temporal information is lost in the preprocessing. For
example, we can no longer take into account whether fever occurred before, after,
or while the patient was experiencing headache (head), which may be a relevant
information for a classification model. By generating, instead, the timeline of each
patient (as in Figure 7.2, bottom, right), we keep all events and their relative qual-
itative relations. By learning a decision tree on a preprocessed dataset such as the
one in Figure 7.2 (bottom, left), we see that the attribute head has zero variance,
and therefore zero predictive capabilities; then, we are forced to build a decision tree
using attribute fever alone, which results in a classifier with 75% accuracy. On the
contrary, by using the temporal information in the learning process, we are able to
distinguish the two classes: C1 is characterized by presenting both head and fever,
but not overlapping, and this classifier has, in this toy example, 100% accuracy.
In this example, the term accuracy refers to the training set accuracy (we do not
consider independent trainining and test data), that is, the ability of the classifica-
tion system to discern among classes on the data used to train the system itself; it
should not be confused with test set accuracy, which measures the real classification
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Patient Symptom TimeStamp
P1 fever [3,4]
P2 fever [4,5]
P3 fever [3,5]
P1 head [2,4]
P2 head [3,5]
P3 head [2,4]
P4 head [4,6]

Patient Class
P1 C1
P2 C1
P3 C2
P4 C2

Patient fever head Class
P1 yes yes C1
P2 yes yes C1
P3 yes yes C2
P4 no yes C2

P1

P2

P3

P4

fever
head

fever
head

fever
head

head

C1

C1

C2

C2
0 1 2 3 4 5 6

static
temporal

Figure 7.2: Example of static and temporal treatment of information in the medical
domain.

performances that can be expected on future, real-life examples.

Alternatively, consider a problem in the natural language processing domain. In
this scenario, a timeline may represent a conversation between two individuals. It
is known that, in automatic processing of conversations, it is sometimes interesting
to label each interval of time with one or more context, that is, a particular topic
that is being discussed [29, 41, 270], in order to discover the existence of unexpected
or interesting temporal relations among them. Suppose, for example, that a certain
company wants to analyze conversations between selling agents and potential cus-
tomers: the agents contact the customers with the aim of selling a certain product,
and it is known that certain contexts, such as the price of the product (price), its
known advantages (advantages) over other products, and its possible minor defects
(disadvantages) are interesting. Assume that each conversation has been previously
classified between those that have been successful and those that ended without
the product being acquired. Now, we want to learn a model able to predict such
an outcome. By using only static information, nearly every conversation would be
labelled with the three contexts, effectively hiding the underlying knowledge, if it
exists. By keeping the relative temporal relations between contexts, instead, we may
learn useful information, such as, for example, if price and disadvantages are not
discussed together, the conversation will be likely successful.
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Preprocessing. Observe, now, how switching from static to temporal information
influences data preparation. First, in a context such as the one described in our
first example, numerical attributes may become less interesting: for instance, the
information on how many times a certain symptom occurred, or its frequency, are
not needed anymore, considering that each occurrence is taken into account in the
timeline. Moreover, since the focus is on attributes relative temporal positions, even
categorical attributes may be ignored in some contexts: for instance, in our scenario,
we may be interested in establishing the predictive value of the relative temporal
position of fever and head regardless of the sex or age of the patient. It is also
worth underlining that propositional attributes over intervals allow us to express a
variety of situations, and sometimes propositional labelling may result in gaining
information, instead of loosing it. Consider, again, the case of fever, and suppose
that a certain patient is experiencing low fever in an interval [x, y], say, a given day,
and that during just one hour of that day, that is, over the interval [w, z] strictly con-
tained in [x, y], he/she has an episode of high fever. A natural choice is to represent
such a situation by labelling the interval [x, y] with lo and its sub-interval [w, z] with
hi. On the other hand, representing the same pieces of information as three intervals
[x, w], [w, z], [z, y] respectively labelled with lo, hi, and lo, which would be the case
with a point-based representation (or with an interval-based representation under
the homogeneity assumption), would be unnatural, and it would entail hiding a po-
tentially important information such as: “the patient presented low fever during the
entire day, except for a brief episode of high fever”. Building on such considerations,
our approach is based on propositional, non-numerical attributes only.

7.1.3 Learning interval temporal logic decision trees

In this section we describe a generalization of the algorithm ID3 that is capable of
learning a binary decision tree over a temporal dataset, as in the examples of the
previous section; as in classical decision trees, every branch of a temporal decision
tree can be read as a logical formula, but instead of classical propositional logic we
use the temporal logic HS. To this end, we generalize the notion of information gain,
while, at this stage, we do not discuss pre-pruning, post-pruning, and purity degree
of a sub-tree [56, 273].

Data preparation and presentation. We assume that the input dataset contains
timelines as instances. For the sake of simplicity, we also assume that all timelines
are based on the same finite domain D of length N (from 0 to N − 1). The dataset
T can be seen as an array of n structures; T [j] represents the j-th timeline of the
dataset, and it can be thought of as an interval model. Given a dataset T , we denote
by AP the set of all propositional letters that occur in it.

Temporal information. We are going to design the learning process based on
the same principles of classical decision tree learning. This means that we need to
define a notion of splitting as well as a notion of information conveyed by a split,
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and, to this end, we shall use the truth relation as defined in Section 7.1.1 applied
to a timeline. Unlike the atemporal case, splits are not performed over attributes,
but, instead, over propositional letters. Splitting is defined relatively to an interval
[x, y], and it can be local, if it is applied on [x, y] itself, or temporal, in which case
it depends on the existence of an interval [z, t] related to [x, y] and the particular
relation RX such that [x, y]RX [z, t] (or the other way around). A local split of T
into T1 and T2, where [x, y] is the reference interval of T , and p is the propositional
letter over which the split takes place is defined by:

T1 = {T ∈ T | T, [x, y]  p} ,
T2 = {T ∈ T | T, [x, y]  ¬p} .

(7.2)

On the contrary, a temporal split, in the same situation, over the temporal relation
RX , is defined by:

T1 = {T ∈ T | T, [x, y]  〈X〉p} ,
T2 = {T ∈ T | T, [x, y]  [X]¬p} .

(7.3)

Consequently, the local information gain of a propositional letter p is defined as:

LocalGain(p, T ) = Info(T )−

(

(
|T1|

|T |
)Info(T1) + (

|T2|

|T |
)Info(T2)

)

, (7.4)

where T1 and T2 are defined as in (7.2), while the temporal information gain of a
propositional letter p is defined as:

TempGain(p, T ) = Info(T )−min
X∈A

{

(
|T1|

|T |
)Info(T1) + (

|T2|

|T |
)Info(T2)

}

, (7.5)

where T1 and T2 are defined as in (7.3) and depend on the relation RX . Therefore,
the information gain of a propositional letter becomes:

Gain(p, T ) = max{LocalGain(p, T ), T empGain(p, T )} , (7.6)

and, at each step, we aim to find the letter that maximizes the gain.

The algorithm. Let us analyze the code in Figure 7.3. At the beginning, the
timelines in T are not assigned any reference interval, and we say that the dataset is
unanchored. The procedure FindBestUnanchoredSplit systematically explores every
possible reference interval of an unanchored dataset, and, for each one of them,
calls FindBestAnchoredSplit, which, in turn, tries every propositional letter (and,
implicitly, every temporal relation) in the search of the best split. This procedure
returns the best possible triple < X, p, g >, where X is an interval relation, if the
best split is temporal, or it has no value, if the best split is local, p is a propositional
letter, and g is the information gain. Temporal ID3 first creates a root node, and then
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proc FindBestUnanchoredSplit (T )


























































gBest = 0
for ([x, y] ∈ I(D))


























AssignReferenceInterval(T , [x, y])
< X, p, g >= FindBestAnchoredSplit(T )
if (g > gBest)
then

{

< XBest, pBest, gBest >=< X, p, g >

[xBest, yBest] = [x, y]
AssignReferenceInterval(T , [xBest, yBest])
return < XBest, pBest, gBest, [xBest, yBest] >

proc FindBestAnchoredSplit (T )


























gBest = 0
for (p ∈ AP)






< X, g >= Gain(p, T )
if (g > gBest)
then < XBest, pBest, gBest >=< X, p, g >

return < XBest, pBest, gBest >

proc Temporal ID3 (T )
{

c = CreateNode()
Learn(T , c)

proc Learn (T , c)










































































if NoStop(T )
then



























































if UnAnchored(T )
then

{

< X, p, g, [x, y] >= FindBestUnanchoredSplit(T )
Label(c, [x, y])
else < X, p, g >= FindBestAnchoredSplit(T )

(T1, T2) = Split(T , X, p)
c1 = CreateLeftChild(c)
c2 = CreateRightChild(c)
Learn(T1, c1)
Learn(T2, c2)

Figure 7.3: The algorithm Temporal ID3.

calls Learn. The latter, in turn, first checks possible stopping conditions, and then
finds the best split into two datasets T1 and T2. Of these, the former is now anchored
(to the reference interval returned by FindBestUnanchoredSplit), while the latter is
still unanchored. During a recursive call, when T1 is analyzed to find its best split,
the procedure for this task will be FindBestAnchoredSplit, called directly, instead
of passing through FindBestUnanchoredSplit. So, in our learning model, all splits
are binary. Given a node, the ‘lefthand’ outgoing edge is labelled with the chosen
〈X〉p, or just p, when the split is local, whereas the corresponding ‘righthand’ edge
is labelled with [X]¬p (or just ¬p); also, the node is labelled with a new reference
interval if its corresponding dataset is unanchored. After a split, every T ∈ T1
(the existential dataset, which is now certainly anchored) is associated with a new
witnessing interval: in fact, those instances satisfy 〈X〉p on [x, y], and, for each one
of them, there is a possibly distinct witness. Witnesses are assigned by the function
Split; while the witnessing interval of an instance may change during the process,
its reference interval is set only once.

Consider, now, the function AssignReferenceInterval and the example shown in
Figure 7.4. As can be seen, neglecting the temporal dimension, one may classify the
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Patient Symptom TimeStamp
P1 fever [0,2]
P2 fever [1,3]
P3 head [0,2]
P4 head [1,3]

Patient Class
P1 C1
P2 C1
P3 C2
P4 C2

P1

P2

P3

P4

fever

fever

head

head

0 1 2 3−2 −1 4 5

C1

C1

C2

C2

Figure 7.4: Example of a problematic dataset.

instances with just a single split based on the presence of the symptom fever (or
headache). On the contrary, given the temporal dataset with domain D = {0, 1, 2, 3}
it is not possible discriminate the classes within a single step. A natural solution
consists of augmenting D in such a way to simulate the behaviour of an infinite
domain model. In our example, it suffices to consider D = {−2,−1, 0, 1, 2, 3, 4, 5},
so that a single split may be based on the rule: 〈L〉fever → C1, otherwise C2
holding on [−2,−1] (or, equivalently, its inverse formulation on [4, 5]). Thus, the
function AssignReferenceIntervals, while searching all possible reference intervals,
takes into consideration two extra points at each side of the domain. Although
it is possible to obtain a similar result by adding less than four points (in our
example, -2 and -1 suffice), this is no longer true if we include the possibility that
Temporal ID3 is called on a subset of HS modalities, for example, for computational
efficiency reasons. Adding four points, on the other hand, guarantees that the most
discriminative split can always be found.

Analysis. We now analyze the computational complexity of Temporal ID3. To
this end, we first compute the cost of finding the best splitting. Since the car-
dinality of the domain of each timeline is N , there are O(N2) possible intervals.
This means that, fixed a propositional letter and a relation RX , computing T1 and
T2 costs O(nN2), where n is the number of timelines. Therefore, the cost of Find-
BestAnchoredSplit is obtained by multiplying the cost of a single (tentative) splitting
by the number of propositional letters and the number of temporal relations (plus
one, to take into account the local splitting), which sums up to O(13nN2|AP|).
The cost of FindBestUnanchoredSplit increases by a factor of N2, as the for cycle
ranges over all possible intervals, and therefore it becomes O(13nN4|AP|). We can
increase the efficiency of the implementation by suitably pre-computing the value of
〈X〉p for each temporal relation, each propositional letter, and each interval, thus
eliminating a factor of N2 from both costs.
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If we consider AP as fixed, and N as a constant, the cost of finding the best
splitting becomes O(n), and, under such (reasonable) assumption, we can analyze
the complexity of an execution of Learn in terms of the number n of timelines. Two
cases are particularly interesting. In the worst case, every binary split leads to a
very unbalanced partition of the dataset, with |T1| = 1 and |T2| = n − 1 (or the
other way around). The recurrence that describes such a situation is:

t(n) = t(n− 1) +O(n) , (7.7)

which can be immediately solved to obtain t(n) = O(n2). However, computing the
worst case has only a theoretical value; we can reasonably expect Temporal ID3
to behave like a randomized divide-and-conquer algorithm, and its computational
complexity to tend towards the average case. In the average case, every binary split
leads to a non-unbalanced partition, but we cannot foresee the relative cardinality
of each side of the partition. Assuming that every partition is equally probable, the
recurrence that describes this situation is:

t(n) =
1

n

n
∑

k=1

(t(k) + t(n− k)) +O(n) . (7.8)

We want to prove that t(n) = O(n log(n)). To this end, we first prove a useful

bound for the expression
n
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k=1
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Now, we prove, by induction, that t(n) ≤ an log(n) + b for some positive constants
a, b, as follows:
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[0, 1]
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C2
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Figure 7.5: A decision tree learned by Temporal ID3 on the example in Figure 7.2.
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Example of execution. Consider our initial example of Figure 7.2, with four time-
lines distributed over two classes. Since this is a toy example, there are many differ-
ent combinations of intervals, relations, and propositional letters that give the same
information gain. Figure 7.5 gives one possible outcome, generated by a Python-
based prototype implementation of the algorithm, which seems to indicate that,
looking at the entire history, the class C2 is characterized by presenting headache
and overlapping fever, or no fever at all.

There are several running parameters that can be modulated for an execution
of Temporal ID3, and further analysis is required to understand how they influence
the final result, and, particularly, the properties of the resulting classifier. The most
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important ones are: (i) how to behave in case of two splits with the same information
gain; (ii) how to behave in case of more than one possible witness interval for
a given timeline; (iii) how to behave in case of more than one optimal reference
interval for a given unanchored temporal dataset. If we allow, in all such cases,
a random choice, the resulting learning algorithm is not deterministic anymore,
and different executions may result in different decision trees. This is a typical
situation in machine learning (e.g., in algorithms such as k-means clustering, or
random forest), that involves some experience in order to meaningfully assess the
results.

7.1.4 Discussion

Machine learning is generically focused on a non-logical approach to knowledge
representation. However, when learning should take into account (qualitative) tem-
poral aspects of data, a logical approach can be associated to classical methods, and
besides decision tree learning, interval temporal logics has been already proposed
as a possible tool, for example, for temporal rules extraction [92]. Focusing these
approaches on fragments of interval temporal logics whose satisfiability problem is
decidable (and tractable) may result into an integrated systems that pairs induction
and deduction of formulas, intelligent elimination of redundant rules, and automatic
verification of inducted knowledge against formal requirement. Also, using a logical
approach in learning may require non-standard semantics for logical formulas (e.g.,
fuzzy semantics, or multi-valued propositional semantics); these, in turn, pose orig-
inal and interesting questions on the theoretical side concerning the computational
properties of the problems associated with these logics (i.e., satisfiability), gener-
ating, de facto, a cross-feeding effect on the two fields. In this work, through the
development of our interval temporal logic based decision tree prototype, we have
taken a first step towards these research directions. As for future work, we plan to
experiment with the use of Temporal ID3 on a selection of real datasets.
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7.2 Synthesis of LTL formulas from natural lan-

guage texts

In Section 7.1 we have looked at how temporal logic can be used as a means inside
of a machine learning algorithm to help in classification tasks. In this section,
we deal with the opposite direction, i.e., we consider a setting in which machine
learning techniques are employed to generate temporal logic formulas. Specifically,
we focus on the task of natural language English utterance formalization through
linear temporal logic formulas (the original work can be found in [70]).

Linear temporal logic (LTL) is a formalism which is widely used in model check-
ing (see, for instance, [137, 175]); moreover, LTL formulas make it possible to un-
ambiguously describe the relationships among occurrences of events over time, a
capability which turns out to be quite important in many automated reasoning
fields. For these reasons, LTL can be considered as a preferred means to formalize
and then reason upon natural language texts, which is most useful in tasks such as
requirement specification and, more generally, the analysis of temporally-declined
semantic content in texts [307].

Despite of their usefulness, the correct specification and interpretation of tem-
poral logic formulas typically requires a strong mathematical background, and this
severely limits their applicability by untrained domain experts. In such contexts,
a system capable of automatically translating between English and temporal logic
would be of great help.

Concerning the LTL-to-English translation, it may be achieved in a relatively
easy way, by simply parsing the logical formula by means of an attribute grammar
and applying some heuristics to make the English translation sound as natural as
possible [282]. As for the opposite direction, several issues have to be dealt with, such
as the inherent ambiguity of natural language, the possible lack of an explicit context
in the sentences, or reference to background knowledge which may not be included
in the utterance. For all these reasons, the task of translating a free, unconstrained
English text into a free, unbounded LTL formula is still an open problem, although
several partial solutions have been proposed over the years (see Section 7.2.2).

In this part of the thesis, we give an overall assessment of the state of the art for
what concerns English-to-LTL translation. In addition, we make a critical evaluation
of some of the currently available tools which may be adapted and combined for such
a task, and we outline some possible future research directions.

The work is organized as follows. In Section 7.2.1, we introduce the problem of
English-to-LTL translation. Then, in Section 7.2.2, we provide a short state of the
art. Next, in Section 7.2.3, we outline possible future research directions. Finally,
in Section 7.2.4, the outcomes of an experimental evaluation of some of the most
significant tools proposed in the literature that may be used to develop an English-
to-LTL translation architecture are reported. Finally, a brief discussion summarizes
the main contributions of the work done.
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7.2.1 Problem definition

The problem of extracting temporal logic formulas from a natural language utter-
ance may be considered as an instance of the Semantic Parsing task, that is, the
process of mapping a natural-language sentence into a formal, typically machine-
understandable representation of its meaning [329].

It must be observed that such a problem differs from the one of inferring logical
formulas from examples. In the latter, a dataset of logs, or traces, resulting from the
execution of a given system is considered, with the goal of determining which formu-
las characterize and distinguish between examples that describe a good behaviour
of the system from those that do not (see, for instance, [247]).

In the present work, we focus on Linear-Time Temporal Logic (LTL for short)
[267]. An LTL formula is built from a finite set of proposition letters by making
use of Boolean connectives and the temporal modalities X (next) and U (until).
Formally, LTL formulas can be defined as follows:

• if p ∈ AP , then p is an LTL formula;

• if ψ and φ are LTL formulas, then ¬ψ, φ∨ψ, Xψ, and φUψ are LTL formulas.

On the basis of these temporal operators, additional modalities can be defined, most
commonly the Boolean connectives ∧ (and), → (imply), true, and false, and the
temporal modalities G (globally) and F (eventually).

As for the semantics, let w = a0, a1, a2, . . . (ai ∈ 2AP) be an infinite sequence
of truth evaluations for proposition letters in AP , and let w(i) denote the truth
evaluation at position i. The satisfaction relation |= between w and an LTL formula
can be defined as follows:

• w |= p if p ∈ w(0);

• w |= ¬ψ if w 6|= ψ;

• w |= φ ∨ ψ if w |= φ or w |= ψ;

• w |= Xψ if w(1) |= ψ;

• w |= φUψ if ∃ i ≥ 0 s.t. w(i) |= ψ and ∀ 0 ≤ k < i w(k) |= φ.

The semantics of the derived modalities is then defined as follows:

• true ≡ p ∨ ¬p;

• false ≡ ¬true;

• φ ∧ ψ ≡ ¬(¬φ ∨ ¬ψ);

• φ→ ψ ≡ ¬φ ∨ ψ;
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• Fψ ≡ trueUψ;

• Gψ ≡ ¬F¬ψ.

As an example, consider the following statement:

“After the button is pressed, the light will turn red until the elevator
arrives at the floor and the doors open.”

Such a situation can be captured by the following LTL formula:

p→ X ( q U ( s ∧ v ) )

where p, q, s, and v are proposition letters corresponding to the button being pressed,
the light turning red, the elevator arriving, and the doors opening, respectively.

7.2.2 A short state of the art

Over the years, several authors have devised methodologies to translate English sen-
tences into LTL formulas. However, they typically do not deal with the most general
case of translating natural, unbounded, English sentences into general, unbounded
LTL formulas: assumptions are made that either reduce the generality of the input
text or the output formula.

In [103], the authors present a pattern-based approach to the encoding of prop-
erty specifications for finite-state system verification. Among other contributions,
they provide a set of 55 LTL-based formulas that should capture typical patterns
that come into play in the design of concurrent and reactive systems, such as the
existence of a specific condition or the conditional response to a stimulus. A detailed
description of such patterns, together with a repository of examples, are available
on the SAnToS laboratory website [8]. Such a set of patterns has been later ex-
tended to deal with more advanced scenarios, such as, for instance, timed property
specifications [150] and real-time systems [197].

In [252], the authors start from the LTL repository available in [8], identifying
the 8 patterns that, according to their analysis, are the most frequently used in
temporal requirement specification, covering over 80% of the cases they encountered,
that all lie in the aerospace domain. Then, they develop a set of shallow classifiers
(such as Random Forests [55] and Support Vector Machines [86]) that are capable
of detecting the presence of such patterns in textual technical specifications. As for
the predictor attributes, they make use of a bag-of-words approach, enriched with
information derived from Part of Speech (PoS) tagging. It should be observed that
no solution is given to the problem of instantiating a detected pattern on the specific
textual data. Thus, such an approach is not able of deriving a complete translation
from English to the restricted set of LTL formulas they consider.

In [343], an algorithm is presented to translate a property, which is specified
by making use of a predefined subset of English (referred to as controlled English),
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to LTL. The approach relies on syntactical properties only, being based on text
processing techniques like grammatical dependency parsing.

In [213], LTL is used as a formalization technique within an integrated system for
generating, managing, and executing controllers for autonomous robots. The idea is
that a user should be capable of instructing a robot by means of natural language,
so no assumption is made on the form of English text that is given as input to the
system. A textual instruction is processed making use of tools for speech tagging,
dependency parsing, and null element restoration (see, for instance, [128]). Then,
all verbs are identified, together with their arguments. Finally, each verb is mapped
into a set of senses in VerbNet [293]. Although in principle no restriction is made
on the kind of input phrases that a user may submit to the system, in practice the
translation is based on a mapping between senses and LTL formulas, that is in turn
based on different, manually specified, combinations of so-called macros.

In [335], a framework for requirement consistency management is presented. In
order to formalize requirements, the system automatically translates natural lan-
guage descriptions of functionalities into a logic representation. However, a restricted
English grammar is considered, to avoid problems such as semantic ambiguity and
to make the overall translation process easier.

In [139], the ARSENAL framework for translating natural language requirements
into analyzable formal representations is discussed. Given an input sentence, the first
step exploits both domain-specific and domain-independent knowledge to identify
entity n-grams, such as, for instance, “Lower Desired Temperature”, which are then
converted into single terms like, e.g., Lower Desired Temperature. In addition,
common expressions, such as “is greater than or equal to”, are converted into simple
terms, like dominates, in an attempt to regularize the input text and reduce its
complexity. Next, a dependency parsing step is performed to extract grammatical
relationships between phrase elements. These pieces of information, together with
PoS tags, are then fed to a so-called semantic processor, that guides the translation
from English to an internal, intermediate representation. It should be observed that
such a module relies on a set of hand-made rules, that inevitably are domain-specific
and can only work for restricted scenarios. Finally, the intermediate representation
can be converted into several formalisms, including LTL.

Last but not least, a controlled natural language is defined in [290], which can
be used to specify restrictions on how a system model interacts with its environ-
ment. Sentences formulated in such a constrained language are then automatically
translated to LTL by means of hard-coded rules.

Broadening the attention scope to other kinds of (temporal) logical formalisms,
the following contributions are worth mentioning.

In [113], the authors present a tool for the automatic translation of natural
language sentences into formulas of the action-based temporal logic ACTL, in the
context of the formalization of reactive systems requirements. A corpus of sentences
is analyzed and, starting from it, a context-free grammar is manually built that
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allows one to parse the considered instances. Such a grammar is augmented with
attributes, that allow one to generate the target ACTL formula during the parsing
process.

In [248], a translation method is discussed that converts constrained English
utterances into a representation level based on Kamp’s Discourse Representation
Theory [188]. Such an intermediate representation is then translated into an ACTL
temporal logic formula.

In [104], the authors present a methodology to translate natural language in-
structions into a formal logical description of goals, that can then be issued to and
followed by robots. The target formalisms are CTL∗ and first-order dynamic logic
(FDL). The translation process is carried out by means of a hand-made combinatory
categorial grammar [303].

In [155], hand-made attribute grammars are employed to generate Computa-
tion Tree Logic (CTL) formulas from Hardware Description Language (HDL) code
comments written in English.

Finally, in [306], a two-phase approach to parsing natural language into formal
logic is presented. The first phase aims at extracting the generic structure of the
logical expression associated with a given natural language utterance. The general
idea is that of building a dependency parse of the input utterance, and then attaching
to its nodes λ-expressions chosen from a pre-specified finite set, by means of a
specifically trained model. The node assignment to λ-expressions is then evaluated
to a generic logical form structure. The second phase instantiates the discovered
pattern on the specific utterance data. Some considerations are made about the
possibility of adopting LTL as a target formalism in future work.

Overall, the typical approach followed by these studies can be summarized as
follows: given an input English utterance, preprocess it to extract syntactical infor-
mation, which may include part of speech tagging, dependency parsing, semantic
role labelling, and so on. Then, enrich the input with these pieces of information.
Finally, run an attribute grammar-based parser, or rely on some hand-made rules,
to derive a translation into a target logical format. A notable exception is the work
of [306], where a fully-supervised learning setting is considered.

7.2.3 Possible future research directions

In the following, on the basis of the analysis of related work done in the previous
section, we outline some possible approaches to the problem of translating open
English utterances into general LTL formulas. For each of them, we identify existing
tools and solutions from the literature that can possibly be exploited.

LTL synthesis via classical semantic parsing

Classical approaches to semantic parsing involve the definition of a suitable gram-
mar, which it is possible to rely on to parse a given phrase, and to contextually
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generate a desired output. Typically, attribute grammars or combinatory categorial
grammars have been considered in the literature for this task (see Section 7.2.2),
although specifically developed grammars have also been proposed [246].

As already pointed out, the problem of generating LTL formulas from English
texts can be viewed as an instance of semantic parsing. Some frameworks that allow
one to develop semantic parsers are available in the literature, most notably KRISP
[193], SEMPRE [46], Cornell Semantic Parsing Framework [38], SippyCup [18], and
WASP [22].

However, the main difficulty remains that of defining a suitable grammar, a
task that for real-world applications cannot be performed by hand, especially when,
instead of restricting to a specific domain, we refer to a general translation scenario.
In an attempt to facilitate this task, several approaches to grammar induction have
been proposed over the years. Some of them are specifically oriented to natural
language processing, like, for instance, those presented in [100, 156, 302, 345]; others
are more general, e.g., [203, 258]. Nevertheless, they all require a quite large amount
of training data, a problem that is shared also by the (more promising) strategy
presented in the next section.

LTL synthesis as a translation problem

Machine translation can be viewed as the use of software to translate text or speech
from one language to another. Several approaches to translation have been proposed
over the years.

The first proposed one was the so-called rule-based paradigm, in which explicit
rules are given that guide the translation. The translation can be done in two
different ways: either directly mapping the source language into the target one,
or relying on some sort of interlingual representation. Of course, the richness and
complexity of natural language imply that such handcrafted approaches are only
suitable for very constrained domains. Nevertheless, some platforms for rule-based
translation are available, such as, for instance, Apertium [120].

Subsequently, statistical machine methods have gained in popularity. In such a
case, translations are not generated by ad-hoc developed rules anymore, but are,
instead, generated on the basis of statistical models, whose parameters are trained
on bilingual text corpora.

At the moment, the most popular approach is the one based on neural ma-
chine translation, where a large artificial neural network is used to predict, given an
utterance in the source language, the likelihood of a sequence of words in the tar-
get language. Several frameworks have been proposed in the literature to develop
general-purpose neural networks, such as, for instance, PyTorch [14], Tensorflow
[20], and Keras [9]. Recently, OpenNMT [195] has been presented as an open source
toolkit specifically oriented to neural machine translation. The system prioritizes
efficiency, modularity, and extensibility, and it allows one to develop state-of-the-art
solutions, based on Convolutional Neural Networks, LSTM, attention mechanisms,
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and word- as well as character-based embeddings, through a simple general-purpose
interface, that in principle requires only source and target files to be provided. Be-
sides language translation, the framework also supports other sequence generation
tasks, such as, for example, summarization, image-to-text and speech recognition2.

It is worth pointing out that most of the translation models from the literature
are based on a sequence-to-sequence architecture [309]. Nevertheless, since a logic
formula can be represented by a tree-like structure, it might be better to opt for a
sequence-to-tree approach [223], or for other constrained decoding techniques (see,
for instance, [17]).

Since the English-to-LTL mapping can be viewed as a language translation prob-
lem, it makes sense to think of training a neural network model to perform such
a task. The best candidate framework for doing that seems to be, to date, the
previously-discussed OpenNMT. Unfortunately, a major problem has to be solved
in order to actually pursue this approach, that is, the lack of a large training dataset
in which English utterances are paired with the corresponding LTL formulas. The
University of Kansas provides an online repository of temporal logic formulas that
represent the content of technical specifications [8]. However, just about a hundred
of English-to-LTL pairings are available. LTLStore3 is an online repository of around
one thousand LTL formulas, collected from previous studies. Although they lack an
English counterpart, they may still be useful as monolingual data [294].

Various approaches can be followed to address the problem of the scarcity of
training data. We would like to outline three of them.

The first, most trivial one consists of randomly generating a large set of LTL
formulas by means of a suitable grammar. Then, rules may be derived to translate
each formula into an English utterance. Also, some post-processing techniques can
be applied to make the resulting text more realistic, such as replacing proposition
letters by a set of words that represent them (e.g., button pressed might be mapped
to “the button is pressed”). Of course, the generated sentences would still make
use of a very constrained kind of English. Nevertheless, such an artificial training
dataset may be used as a starting point to determine which are the most promising
translation techniques.

The second approach consists of finding a kind of “bridging dataset”, i.e., a
tranining dataset that maps each English utterance in a formal representation that,
in turn, can be more or less easily converted into LTL by means of hardcoded rules.
As an example, it may be worth investigating the data used in semantic parsing com-
petitions, such as, for instance, SemEval4, that over the years included some tracks
concerned with the evaluation of temporal content in natural language phrases (this
is the case with TempEval). Other possibly useful resources are the TimeML [271]
annotated corpus TimeBank [283] and AQUAINT [2], ACE (Automatic Content Ex-

2Additional details can be found on OpenNMT website: http://opennmt.net/.
3LTLStore project website: https://gitlab.lrz.de/i7/ltlstore.
4SemEval 2019 website: http://alt.qcri.org/semeval2019/.
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traction) [1] and WikiWars [229] corpora, that all provide texts manually labelled
with events, temporal expressions, and relationships.

A third recent research line has managed to train both neural machine and
statistical machine translation systems using monolingual corpora only [36, 37, 201,
202]. Although accuracy results are still far from those guaranteed by state of the art,
bilingual data-based models, such approaches are worth some further investigation.

LTL synthesis through evolutionary computation

Both LTL synthesis via semantic parsing and LTL synthesis via machine translation
follow consolidated paths in the field. Now, we work out an alternative path that
makes use of evolutionary computation.

Recall, from Section 1.4, that Evolutionary Algorithms (EAs) are adaptive meta-
heuristic search algorithms, inspired by the process of natural selection, biology,
and genetics. Unlike blind random search, they are capable of exploiting historical
information to direct the search into the most promising regions of the search space
and, in order to achieve that, their basic characteristics are designed to mimic the
processes that, in natural systems, lead to adaptive evolution [105].

The English-to-LTL mapping problem may be thought of as an optimization one
(that in turn can be solved via evolutionary computation): given an input utterance,
the task is that of finding the temporal formula that best matches the content of
the text.

In the following, the main issues concerning the exploitation of an evolutionary
algorithm for the English-to-LTL mapping problem are discussed. They can be
summarized as follows: (i) how the single solutions are represented; (ii) how the
population is initialized; (iii) which evolutionary operators (crossover, mutation)
are employed; (iv) which fitness function is used.

Solution representation and population Each instance in the population rep-
resents an LTL formula, which may be conveniently coded by means of a tree-based
data structure. As for the initialization of the population, one may proceed as fol-
lows. In the first step, all proposition letters are extracted from the given utterance.
This can be done by means of a suitable predicate extraction process, that can rely
on available tools, such as, for instance, PredPatt [12, 339], or on custom-tailored
solutions based on Semantic Role Labeling or Open Information Extraction, making
use of natural language processing frameworks such as Stanford CoreNLP [226], the
SpaCy-based [19] AllenNLP [134], and TextPro [266]. Once all proposition letters
have been extracted, candidate LTL formulas may be randomly generated, ensuring
both to use all of the propositional letters (since the goal is that of fully encoding
what is happening in the utterance), and to respect LTL syntactical correctness
constraints.
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Evolutionary operators The representation of LTL formulas by means of tree-
like structures makes it quite straightforward to implement the crossover and muta-
tion operators. Both of them can, indeed, modify or generate a solution by acting on
subtrees, e.g., by adding, removing, raising, or swapping them, always making sure
that each proposition letter is appearing at least one time in the resulting formula.

Fitness function In order to establish how good a given formula is, it is neces-
sary to determine how well it captures the pieces of information contained in the
utterance. This is the most difficult step, since a properly designed fitness function
should be capable of capturing a semantic parallelism between the logical formula
and the natural language text, with an accuracy well beyond the one that can be
provided, for instance, by commonly used techniques such as Latent Dirichlet Allo-
cation (LDA) [49].

A possible solution can be that of extracting a suitable model from the text,
capable of capturing all pieces of information that are relevant for the evaluation
of the LTL formula. In order to do that, an initial step, as already discussed in
the case of population initialization, can be the extraction of all proposition letters
from the utterance. Then, these letters can be arranged in a Kripke structure [200],
that is, a model that keeps track of how and when they hold. To generate such
a model, the best approach seems to be the one pursued in [319], where a deep
learning solution is developed that is capable of assigning time intervals to the verbs
in a given text5 (a similar work is discussed in [209]). Once such time intervals
have been determined, the structure can be derived in a fairly straightforward way
and, based on it, the (still non trivial) question now becomes “how much and how
well the given LTL formula is describing what is happening in the Kripke model?”.
Finally, a second objective must be considered, that is, generating easy to read, and
thus understandable, formulas. Such a condition can be enforced by using fairly
natural metrics such as the nesting degree of the formula, the number of Boolean
and/or temporal operators employed, and so on.

LTL synthesis through event identification and ordering

Finally, the English-to-LTL translation problem can be addressed with an approach
which turns out to be somehow more hardwired than the ones discussed before, but,
nevertheless, makes use of some advanced machine learning methodologies.

The idea is that of first determining the syntactic structure of the utterance and
the events it refers to, then identifying the main agent and action of each of them,
and finally establishing an ordering over them. Based on such pieces of information,
it should be easier to derive a set of rules for the generation of the corresponding
LTL formula, at least up to a fixed, maximum degree of nesting. Of course, the
translated utterances could be fed in as training data to any other solution developed

5A working implementation can be found at: https://hub.docker.com/r/sidvash/temporal.
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according to the approaches described in Section 7.2.3. In the following, we give a
more detailed account of these phases.

As for the syntactic analysis, several frameworks can be found in the litera-
ture, most notably SpaCy [19], AllenNLP [134], which is based on SpaCy, Stanford
CoreNLP [226], NLTK [222], and TextPro [266]. All of them allow one to perform
the following syntactic analysis tasks, that are necessary to carry out the translation:

• part of speech tagging, by which components such nouns, verbs, and adjectives
are identified;

• construction of the dependency tree, that establishes the relationships between
“head” words and words which modify such heads;

• coreference resolution, that is, the identification of all the expressions that
refer to the same entity in the text;

• recognition of noun/prepositional/verb phrases, that may help in the later iden-
tification of proposition letters (for instance, “the big blue ocean” should be
considered as a single entity).

Then, proposition letters are to be extracted, relying on tools like, e.g., PredPatt
[12, 339], or on custom solutions, based on the previously-introduced frameworks,
making use of either:

• semantic role labeling, that is, the process that assigns labels to words or
phrases in a sentence that indicate their semantic role, such as, for instance,
agent or action, or

• open information extraction, that generates a structured, machine-readable
representation of the relevant data in the text, typically in the form of n-ary
propositions.

The next step is that of correlating proposition letters by making use of Boolean
connectives and temporal modalities. To this end, other than relying on the depen-
dency tree and on specific keyword extraction, it is possible to consider:

• temporal expression recognition and normalization, that is, the task of identify-
ing sequences of tokens in a given text that denote a point in time, a duration,
or a frequency, and of interpreting them. A lot of work has been done in
this respect (see, e.g., [97, 205, 219, 341]), including a number tools that can
be used for the task: PTime [13], SUTIME [76], UWTIME [207], ClearTK’s
TimeML module [5], HeidelTime [305], cogCompTime [256], SynTime [342],
and TextPro’s TimePro module [266]. In addition, AllenNLP and Stanford
coreNLP contain some modules that can be used as well. The typical perfor-
mance is higher than 80% precision and recall on benchmark data such as the
Platinum dataset from the TempEval3 workshop [315].
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• temporal relation identification, i.e., the task of determining a partial or total
ordering of events (e.g., identified by verbs) happening in an utterance. While
this can still be considered an open problem [93], a lot of work has already been
done in the literature [48, 130, 218, 235, 253, 254, 255], also driven by important
domain requirements, such as those in the medical field [118, 206, 312]. Some
tools are available that either (i) encode temporal relationships by means of
graphs, as it happens with CATENA [236], ClearTK’s TimeML module [5],
TextPro’s TempRelPro module [266], cogCompTime [256], CAEVO [4], and
TIPsem [21, 220], or, perhaps more naturally, (ii) assign a time interval to
each event, like in [319] (we have already referred to it in Section 7.2.3) and
[209].

Other resources that can be successfully exploited are WordNet [114], a well-
known lexical database for the English language that groups words into sets of
synonyms and records a number of relations among them, VerbNet [293], which
is the largest on-line verb lexicon currently available for English, PPDB [131], a
database containing hundreds of million paraphrase pairs, which capture many
meaning-preserving syntactic transformations, and VerbOcean, a repository that
encompasses the semantic relationships that in English language typically hold be-
tween verbs, including a happens-before relation [80].

7.2.4 An experimental evaluation of existing tools

This section is devoted to a critical experimental evaluation of some of the tools
that have been previously discussed. For such a purpose, two datasets have been
considered.

The first one is the US Government’s Accident Injuries collection6, that contains
information on all accidents, injuries, and illnesses reported by mine operators and
contractors beginning with 1/1/2000. Each instance corresponds to an accident
and is characterized, among all other pieces of information, by a free-text narrative
describing the event.

The second dataset has been provided by Main Roads Western Australia7, and
it includes information on fatal, serious, and medical car crashes recorded between
2013 and 2017 in Western Australia. As it happens with the previous collection,
each instance is characterized by a narrative describing how the incident occurred.

The two datasets are representative of two different kinds of narratives: in the
mining case, the textual description is typically short, and involves a single partic-
ipant. On the contrary, the car crash narratives are longer and more articulated,
may involve several participants, and tend to thoroughly describe the event.

6https://catalog.data.gov/dataset/accident-injuries.
7https://www.mainroads.wa.gov.au/Pages/default.aspx.
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For reference, the following representative utterance from the mining accidents
dataset is taken into account:

Employee was cleaning up at the Primary Crusher with the Dingo skid
steer. The employee slipped and fell while operating the skid steer and
the machine pinned him against the cement retaining wall.

As for the car crashes dataset, the following representative instance is considered:

B drove east on Gibbins Road, Coolup. It appears B has stopped at
the intersection of Maryfield Road and allowed a vehicle to pass before
proceeding into the intersection. B2 was driving north on Maryfield Road,
has observed B’s vehicle at the intersection noticing that B appeared to
be looking straight ahead. As B has proceeded into the intersection, B2
has applied the brakes on his vehicle, however he was unable to avoid
B’s vehicle and has ‘t-boned’ it, colliding with the drivers side of B’s
vehicle. B has died at the scene from injuries sustained. A preliminary
test conducted on B2 returned a negative reading.

The remainder of this section considers two main tasks that, according to Section
7.2.3, have to be carried out in order to synthesize an LTL formula that correctly
formalizes an utterance, that is, the extraction of the proposition letter candidates,
and the identification of the temporal relationships among them.

Concerning the extraction of proposition letters, we may identify two distinct
steps: first, coreference resolution, by which all references to the same entity are
identified and normalized8; second, the extraction of predicates, i.e., tuples composed
of an agent, the action that is being carried out, and possible other arguments.

As for coreference resolution, AllenNLP [134] relies on the state-of-the-art al-
gorithm presented in [208]. Tested on the mining accidents dataset instance, it
identifies two entities with coreferences, highlighted in red and blue colours:

Employee was cleaning up at the Primary Crusher with the Dingo

skid steer. The employee slipped and fell while operating the skid

steer and the machine pinned him against the cement retaining wall.

Although the result is fairly accurate, the algorithm fails to detect the the ma-
chine reference to the blue entity.

8Observe that coreference resolution implies entity identification which, nevertheless, is a much
easier task, that in general can be reliably solved by investigating the dependency tree and the
PoS tags of the given utterance.
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Table 7.1: Predicates extracted by PredPatt on the mining accidents dataset in-
stance. Results have been reworked for the ease of reading.

Agent Action

Employee was cleaning up
Employee slipped
Employee fell
the Dingo skid steer
the Dingo skid pinned Employee

Turning to a more challenging example, this is the result of its execution on the
second text9:

B drove east on Gibbins Road, Coolup. It appears B has stopped at the
intersection of Maryfield Road and allowed a vehicle to pass before pro-
ceeding into the intersection. B2 was driving north on Maryfield Road,
has observed B’s vehicle at the intersection noticing that B appeared to
be looking straight ahead. As B has proceeded into the intersection, B2

has applied the brakes on his vehicle, however he was unable to avoid
B’s vehicle and has ‘t-boned’ it, colliding with the drivers side of B’s

vehicle. B has died at the scene from injuries sustained. A preliminary
test conducted on B2 returned a negative reading.

Focusing on just two entities, it is immediately clear that the algorithm has
erroneously associated Coolup with B2. Even worse, judging from the result it
seems that B2 has been applying the brakes on B ’s vehicle, and that B was unable
to avoid himself. These two errors are enough to totally misinterpret the semantic
content of the utterance.

Once the entities have been found and normalized, it is possible to look for the
candidate proposition letter. In this respect, we investigated the use of PredPatt
[12, 339], since it is still a major component in many recent, state-of-the-art NLP
tools (see, for instance, [319]). To do that, we relied on two versions of the chosen
instances in which coreference resolution has been already correctly solved by hand.

The predicates extracted by PredPatt on the mining data utterance are reported
in Table 7.1. As it can be seen, the algorithm outputs 5 candidates. Again, with the
exception of the fourth candidate, the result is quite natural and intuitive, except
perhaps for the fact that the fourth and fifth candidates refer to the the Dingo skid
entity instead of the Dingo skid steer, considering steer as a verb.

Table 7.2 reports the predicates extracted by PredPatt algorithm on the car
crash dataset instance. Here, there are some spurious candidates as, for example,

9Note that the coreference resolution process extracted more than two entities. However, for
the sake of clarity, we concentrate here on the two main ones, that are, B and B2.
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Table 7.2: Predicates extracted by PredPatt on the car crashes dataset instance.
Results have been reworked for the ease of reading.

Agent Action

B drove east
It appears
A vehicle allowed to pass
[UNK] was driving north
B appeared to be looking straight ahead
B has proceeded into the intersection
B2 has applied the brakes on B2’s vehicle
[UNK] avoid B’s vehicle
[UNK] ‘t-boned’ it
[UNK] has died at the scene from injuries
A preliminary test returned negative reading

the one with It as the main agent. Moreover, for several results, the agent is not
clear (UNK ), or simply wrong (A vehicle allowed to pass). Finally, some predicates
are entirely missed, like in the case of B has stopped at the intersection.

Finally, let us consider the task of extracting the temporal relationships that
hold between each pair of predicates. Our original intention was that of evaluat-
ing cogCompTime [256] as the tool for generating an ordering graph over the set
of events, and the approach presented in [319] as the tool for assigning time in-
tervals to events, since they are two recently proposed solutions. Unfortunately,
since various weeks cogCompTime is experiencing some server problems (http:
//groupspaceuiuc.com/temporal/#), that do not allow us to experiment with it.
Thus, in the following, just the time interval approach presented in [319] is evaluated
with respect to the two selected utterances.

Figure 7.6 shows its results when applied on the mining dataset instance. As
it can be seen, the two occurrences of steer are still erroneously recognized as ac-
tions. Moreover, while the interval assigned to operating seems to be an appropriate
choice, the tool fails in identifying its overlap with the interval related to cleaning.
Furthermore, the events fell and slipped appear to be swapped.

Considering the car crashes instance, as depicted in Figure 7.7, the outcomes are
unfortunately quite poor, and do not seem to follow any reasonable pattern.

At this point, by looking at the underwhelming results obtained by the tools we
tested, we decided not to proceed with the LTL formula synthesis task any further.
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Figure 7.6: Events timeline in the mining dataset instance.

7.2.5 Discussion

Linear-time temporal logic (LTL) is a logical formalism which is commonly adopted
in formal verification, in particular in consistency and model checking, and it can be
a very useful tool for capturing the temporal content of natural language utterances.
Such capabilities can be exploited in many important applications, including dis-
ambiguation of technical requirements, log analysis, and automated reasoning over
temporal data.

Unfortunately, as it emerges from our comprehensive analysis of the literature
and of existing tools, a general enough solution, that is capable of translating free,
natural English texts into unbounded, general LTL formulas is still missing.

In this work, we provided a comprehensive review of the state of the art, as
defined by the relevant literature; moreover, an empirical evaluation has been con-
ducted on some of the currently available NLP tools, based on two real world in-
stances. Results show that further research work is needed on methods and tools
for various crucial tasks, such as coreference resolution, predicate extraction, and
temporal relation identification, in order to achieve a performance which is good
enough to allow for the synthesis of LTL formulas from unconstrained, natural lan-
guage texts. We highlighted some possible research directions that can be followed
to tackle such a complex problem.
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Figure 7.7: Events timeline in the car crashes dataset instance.
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7.3 Pairing monitoring with machine learning for

smart system verification and predictive main-

tenance

In Section 7.1 we have seen how temporal logic may be used within a machine learn-
ing algorithm to perform classification; conversely, in Section 7.2, we considered how
machine learning methodologies may be relied on to extract temporal logic formulas
from natural language texts. In this final section, we present the architecture of a
system in which machine learning and formal methods are seamlessly combined and
employed together to perform tasks such as anomaly detection and maintenance
prediction.

Over the last decades, thanks to new microelectronic technologies, even the sim-
plest measuring devices have progressively evolved into complex digital systems ca-
pable of performing several processing and communication operations related to the
measured values (smart sensors). A smart sensor can be defined as a device that
takes its input from the physical environment and uses built-in computational re-
sources to perform some predefined functions upon detection of specific input, thus
processing data before passing them on [127]. Such devices may be used to set up
monitoring and control mechanisms in a variety of contexts, including smart grids
[174], and they have several applications in agriculture [320], health-care [151], and
industry [251]. As an example, one may think of an industrial plant, where the
behaviour of all the different subsystems and components is tracked by means of
dedicated smart sensors embedded in the machinery.

In such a complex environment, formal methods can be exploited to devise meth-
ods and techniques for the automated verification of software and hardware systems,
a task which is of paramount importance in many critical domains. However, the
inherent complexity of the systems and the non-trivial ways in which their com-
ponents may interact among themselves and with the environment, make it very
difficult (and sometimes impossible) to specify in advance all the relevant properties
that have to be guaranteed (or, dually, avoided). To overcome these limitations,
some approaches that complement formal verification with model-based testing and
monitoring have been recently proposed in the literature (see, for instance, [75, 136]).

In this work, we focus our attention on monitoring, a runtime verification tech-
nique which is gaining more and more attention within the formal method and
verification community. We outline a novel framework for online system verification
that integrates monitoring with machine learning and can be applied in anomaly
detection and predictive maintenance tasks. As we shall see, the proposed approach
allows a domain expert to start with the specification of the most important and
natural properties to monitor. Then, the framework autonomously discovers new
relevant properties by means of an iterative refinement process, becoming capable,
over time, of identifying undesired behaviours in advance, with a considerably higher
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level of detail and coverage than the original specification.
In the following sections, after a brief introduction to the concept of system

monitoring, we envision a framework that combines it with machine learning, also
identifying some of the most promising approaches concerning the latter. We then
conclude with a short recap of the distinctive features of the proposed approach.

7.3.1 System monitoring

Monitoring [211] is a runtime verification technique that is gaining much interest in
the realm of formal methods for automated system verification.

Classic, static techniques, such as, for instance, model checking [82], perform an
exhaustive analysis of the system: satisfaction or violation of a property (typically
expressed by some temporal logic formula) by the system is established by exploring
all possible behaviours. On the contrary, monitoring allows one to detect satisfaction
or violation of a property by analyzing a single behaviour, called execution trace or
run, of the system. It is therefore a lightweight technique, but the gain in efficiency
is paid in terms of expressivity: monitorable properties are a subset of the class
of specifications expressible in temporal formalisms commonly used for automated
verification.

Even though monitoring has been mostly studied in the setting of linear time
temporal logics [158], a notable effort has been devoted to the investigation of mon-
itoring branching-time properties (see, for instance, [124]). A comparison of the two
settings can be found in [23].

The basic principles on which monitors (and the theory of monitorability) are
built are the ability of reaching a verdict by just observing a finite prefix of a single
execution trace (a finite trace) and the fact that, once a verdict is reached, it is
irrevocable, as it is a guarantee that the system satisfies or violates the property,
independently from all the other possible (unobserved) behaviours it might exhibit.
This latter feature ensures the soundness of a monitor. We introduce and discuss
the notion of completeness of a monitor below.

We say that a property is positively monitorable if every system satisfying it
features a finite trace that witnesses the satisfaction; conversely, we say that a
property is negatively monitorable if every system violating it features a finite trace
that witnesses the violation. A monitorable property is a property that is either
positively or negatively monitorable.

Safety properties are negatively monitorable, as their violation is witnessed by
a finite trace. Dually, co-safety properties are positively monitorable. On the other
hand, there exist properties like

it is possible to reach a success state, but it is not possible to reach it in less than
3 steps

which are neither positively nor negatively monitorable. A monitor observing a
system execution trace that is compatible with the property, e.g., a success state
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is reached at the third execution step, indeed, cannot issue a satisfaction verdict,
thus stating that the property is fulfilled by every run, as there might be a run along
which a success state is reached in less than 3 steps. Moreover, a system might
violate the property by never reaching a success state at all; in this case, no finite
trace witnesses the violation, as the success state might be reached at the next
step, or through a completely different run.

Instead, the property

it is not possible to reach a success state in less than 3 steps

is negatively monitorable, as every system violating it features a finite trace that
reaches a success state in less than 3 steps.

Given a positively (respectively, negatively) monitorable property P , we say that
a monitor is satisfaction-complete (respectively, violation-complete) for P if every
system satisfying P features a finite trace that is accepted (respectively, rejected)
by the monitor.

It is clear that sound and complete monitors only exist for monitorable prop-
erties. Thus, characterizing the set of monitorable properties is one of the major
challenges in the field. However, some work has also been done in the attempt of
weakening the notion of monitorability (see [24] for an account of such a research
direction) or of extending the realm of applicability of such a technique to specifi-
cations that are deemed not amenable to being runtime verified [124].

7.3.2 Integrating system monitoring and machine learning

As it is emerging from the most recent literature in the field, machine and statistical
learning solutions can be successfully combined with formal methods techniques
to deal with complex real-world problems [172]. One challenging scenario is that of
failure detection and predictive maintenance. As we have already pointed out, formal
methods allow one to synthesize monitors to check whether some good properties
(safety properties) are violated by a system during its operation and to detect those
system’s behaviours (traces) that violate them. Then, machine learning approaches
may be applied to analyze such traces.

For instance, frequent patterns (Section 1.1.1) or shapelets (Section 1.1.2) may be
extracted. As for a more formal characterization of a pattern, the task of learning
temporal logic formulas from examples is attracting an increasing interest. For
instance, this can be the case of the decision tree learning algorithm Temporal ID3,
which we discussed in Section 7.1. Also, a technique to learn general, unrestricted
linear temporal logic (LTL) formulas from a set of examples in the form of infinite,
ultimately periodic words, without relying on user-defined templates, is illustrated
in [247]. Variants and extensions of the latter result are considered in [74, 334].
More precisely, the case of LTL interpreted over finite traces is dealt with in [74],
while parametric linear temporal logic (pLTL) is analyzed in [334]. Finally, observe
that the task of extracting a temporal logic formula from a set of traces can be
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thought of as an optimization problem (similarly to what we discussed in Section
7.2.3), thus also evolutionary algorithms may be relied on for such a purpose.

In the following, we briefly outline a possible integration of monitoring and ma-
chine learning, that can be decomposed into five main phases.

Specification of the initial set of properties. Domain experts are asked to
specify the most significant properties that the system under consideration should
exhibit. These properties are then formalized in a suitable temporal logic and a
monitor that checks them against execution traces is synthesized (obviously, moni-
torability of the relevant formulas is a critical issue here).

Monitoring of system properties. The monitor checks whether the system
satisfies/violates the considered properties during its execution (monitoring).

Detection of a failure. Traces for which the monitor reaches a verdict of failure
are collected. These are considered to be failure traces. In addition, traces generated
by the system during previous normal behaviour are extracted, and considered to
be normal traces. Of course, the length of the time window that is used to extract
failure traces depends on the specific application domain, and it must be carefully
chosen according to the results of a dedicated tuning phase, possibly with the help
of domain experts.

Mining of the relevant behaviour patterns. Failure and normal traces are
put together to generate a dataset for supervised machine learning. Each instance
is characterized by a trace that can be numerical (as in the case of a temperature
signal) or categorical (this is the case, for instance, with a sequence of system calls
made in a Unix system). Moreover, each instance is labeled with a binary class,
that can be either failure or normal behaviour. Machine learning algorithms are
run on the dataset, with the goal of extracting the (temporal) logic formulas that
best characterize and discriminate between the two classes.

Extension of the pool of properties. The (temporal) logic formulas extracted
during the mining phase are added to the monitoring pool of properties (possibly
after their transformation into safety properties), and the process restarts from the
monitoring phase.

As it can be observed, the proposed framework works in an iterative way. It
starts from a set of basic properties, and new ones are then added over time. The
discovered logical properties are closely related to the original ones and, in principle,
they should allow the system to discover anomalous behaviours earlier and with ever
increasing accuracy and coverage.
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7.3.3 Discussion

Thanks to the new microelectronic technology advancements, measuring devices can
now be easily transformed into complex digital systems capable of processing data,
and of interacting with one another and with the surrounding environment. As a
result, their emerging behaviour is typically non trivial, and difficult to formalize
into a set of logical properties to be used for standard system verification, even for
a pool of domain experts. For such a reason, approaches that complement formal
verification with model-based testing and monitoring have been recently investigated
in the literature.

In this work, we outlined a possible solution to such a problem which inte-
grates machine learning and monitoring techniques. The proposed formal verifi-
cation framework starts with the runtime verification of the most important and
natural properties that should be guaranteed during the execution of the analyzed
system. Then, it autonomously discovers new ones in an iterative way, becoming
capable of identifying unwanted behaviours earlier, and with ever higher detail and
coverage than the original specification. In the long run, the verification tool is
expected to gain the ability of performing advanced tasks such as self-diagnosis,
predictive maintenance, adaptation, and robustness enhancement.

A practical implementation of the system introduced here in the context of a
real-world scenario represents a natural development of the present work.



Conclusions

In this thesis, we presented several data science applications, with a particular at-
tention to real case studies.

Since all starts from the data, we first presented the development of a data
warehouse-based decision support system for an Italian contact center company.
Then, we described several, classical analysis tasks that rely on the warehouse,
including employee performance evaluation, phone call outcome prediction and in-
bound call notes classification. A characteristic common to all the solutions we
developed is their interpretability, a concept which we specifically focused on in-
vestigating the possibility of performing decision tree pruning through evolutionary
computation.

Then, we unravelled the main topic of this work, that is, how to handle temporal
information in data mining tasks. We presented J48S, a novel decision tree induction
algorithm that is capable of handling categorical and numerical attributes, as well
as sequences, during the same execution cycle. The model has been applied within a
more general speech analytics process inside the previously mentioned contact center
company, following the observation that text can also be considered as a sequence
of words.

Always with an eye on the extension of the temporal capabilities of the decision
tree, we then discussed J48SS, that adds to J48S the possibility of dealing with
time series data. Such an algorithm has proven its value on an environmental study
set in the city of Wroc law, Poland, where it outperformed more classical solutions
based on the use of lag variables. The pollution classification task has also allowed
us to highlight an important point regarding J48SS: the decision tree is mostly use-
ful in those situations in which classification has to be performed on heterogeneous
datasets, where temporal and atemporal data are equivalently present and impor-
tant. On the other hand, when dealing with temporal data only, such as time series,
dedicated algorithms may be preferred, as the results of the application of J48SS on
the UCR time series datasets have shown.

Next, since a lot of work on the management of temporal information has been
done in automated reasoning and formal verification, a natural direction in which
to proceed with the research was that of investigating how such solutions can be
combined with machine learning algorithms. We explored two different paths: first,
we showed how temporal logic can be used within a machine algorithm, presenting
Temporal ID3, the prototype of an interval logic-based decision tree model; then,
conversely, we investigated how machine learning techniques can be employed to
generate temporal logic formulas, considering the task of natural language English
utterance formalization. Finally, as a conclusive development, we proposed the
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architecture of a system, in which formal methods and machine learning techniques
are seamlessly combined to perform tasks such as anomaly detection and predictive
maintenance.

This latter topic represents, at the same time, the culmination of the entire
research path, and the starting point for a new journey. We began with some basic
data collection and modelling tasks, and this led us to the first analytics applications.
Then, we naturally considered temporal information under different aspects, and in
ever increasing complexity. The final outcome of our work is an integrated framework
that allows us to deal with both temporal as well as different kinds of atemporal
information. We believe, as it is emerging from the most recent literature in the field,
a new, thrilling research direction to be that of combining machine and statistical
learning solutions with logics and formal methods techniques, to deal with complex
real-world problems, that can be characterized by several kinds of sequential and
temporal information. This would allow, in principle, to combine the best of both
worlds, i.e., inference from the data, and a high interpretability of the generated
models and solutions. But this is a story for another day.
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[129] C. Gagné, M. Schoenauer, M. Parizeau, and M. Tomassini. Genetic program-
ming, validation sets, and parsimony pressure. In Proceedings of the Euro-
pean Conference on Genetic Programming (EuroGP 2006), pages 109–120.
Springer, 2006.

[130] D. Galvan, N. Okazaki, K. Matsuda, and K. Inui. Investigating the challenges
of temporal relation extraction from clinical text. In Proceedings of the 9th In-
ternational Workshop on Health Text Mining and Information Analysis, pages
55–64, 2018.

[131] J. Ganitkevitch, B. V. Durme, and C. Callison-Burch. PPDB: The paraphrase
database. In Proceedings of the Human Language Technologies Conference of
the North American Chapter of the Association of Computational Linguistics
(NAACL-HLT 2013), pages 758–764, 2013.

[132] N. Gans, G. Koole, and A. Mandelbaum. Telephone call centers: Tutorial,
review, and research prospects. Manufacturing & Service Operations Manage-
ment, 5(2):79–141, 2003.
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[175] C. Jard and T. Jéron. On-line model checking for finite linear temporal logic
specifications. In Proceedings of the International Conference on Computer
Aided Verification (CAV 1989), pages 189–196, 1989.

[176] H. Jerbi, F. Ravat, O. Teste, and G. Zurfluh. A framework for OLAP content
personalization. In Proceedings of the 2010 East European Conference on
Advances in Databases and Information Systems (ADBIS 2010), pages 262–
277. Springer, 2010.
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[182] F. Jiménez, G. Sánchez, and P. Vasant. A multi-objective evolutionary ap-
proach for fuzzy optimization in production planning. Journal of Intelligent
and Fuzzy Systems, 25(2):441–455, 2013.

[183] X. Jin and J. Han. Expectation maximization clustering. In Encyclopedia of
Machine Learning, pages 382–383. Springer, 2011.



Bibliography 187

[184] Y. Jin, editor. Multi-objective Machine Learning, volume 16 of Studies in
Computational Intelligence. Springer, Warsaw, Poland, 2006.

[185] H. Jongen. Optimization Theory. Kluwer Academic Publishing, 2004.

[186] B. H. Jun, C. S. Kim, H.-Y. Song, and J. Kim. A new criterion in selection
and discretization of attributes for the generation of decision trees. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 19(12):1371–1375,
1997.
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[243] M. Morchid, G. Linarès, M. El-Bèze, and R. D. Mori. Theme identification
in telephone service conversations using quaternions of speech features. In
Proceedings of the 14th Annual Conference of the International Speech Com-
munication Association (Interspeech 2013), pages 1394–1398, 2013.

[244] R. Moskovitch and Y. Shahar. Classification-driven temporal discretization of
multivariate time series. Data Mining and Knowledge Discovery, 29(4):871–
913, 2015.

[245] L. Mukkala, J. Arvo, T. Lehtonen, T. Knuutila, et al. Current state of ontol-
ogy matching. A survey of ontology and schema matching. Technical report,
University of Turku, 2015.

[246] S. Muresan, T. Muresan, and J. L. Klavans. Lexicalized well-founded gram-
mars: Learnability and merging. Technical report, Columbia University, 2005.

[247] D. Neider and I. Gavran. Learning linear temporal properties. In Proceedings
of the 2018 Formal Methods in Computer Aided Design Conference (FMCAD
2018), pages 1–10, 2018.

[248] R. Nelken and N. Francez. Automatic translation of natural language sys-
tem specifications into temporal logic. In Proceedings of the 8th International
Conference on Computer Aided Verification (CAV 1996), pages 360–371, 1996.

[249] M. Nerlove, D. M. Grether, and J. L. Carvalho. Analysis of Economic Time
Series: A Synthesis. Academic Press, 2014.

[250] L. Nguyen, J. Kapinski, X. Jin, J. Deshmukh, K. Butts, and T. Johnson. Ab-
normal data classification using time-frequency temporal logic. In Proceedings
of the 20th International Conference on Hybrid Systems: Computation and
Control (HSCC 2017), pages 237–242, 2017.

[251] S. Nihtianov and A. Luque. Smart Sensors and MEMS: Intelligent Sensing
Devices and Microsystems for Industrial Applications. Woodhead Publishing,
2018.

[252] A. P. Nikora and G. Balcom. Automated identification of LTL patterns in nat-
ural language requirements. In Proceedings of the 20th International Sympo-
sium on Software Reliability Engineering (ISSRE 2009), pages 185–194, 2009.

[253] Q. Ning, Z. Feng, and D. Roth. A structured learning approach to tempo-
ral relation extraction. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing (EMNLP 2017), pages 1027–1037,
2017.



Bibliography 193

[254] Q. Ning, H. Wu, H. Peng, and D. Roth. Improving temporal relation ex-
traction with a globally acquired statistical resource. In Proceedings of the
2018 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, (NAACL-HLT 2018),
pages 841–851, 2018.

[255] Q. Ning, Z. Yu, C. Fan, and D. Roth. Exploiting partially annotated data for
temporal relation extraction. CoRR, abs/1804.08420, 2018.

[256] Q. Ning, B. Zhou, Z. Feng, H. Peng, and D. Roth. CogCompTime: A tool for
understanding time in natural language. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing (EMNLP 2018), pages
72–77, 2018.

[257] M. O’Mahony. Sensory Evaluation of Food: Statistical Methods and Proce-
dures. Taylor and Francis Inc., 2018.

[258] H. M. Pandey, A. Chaudhary, and D. Mehrotra. Grammar induction using
bit masking oriented genetic algorithm and comparative analysis. Applied Soft
Computing, 38:453–468, 2016.

[259] M. A. Pandharipande and S. K. Kopparapu. A novel approach to identify prob-
lematic call center conversations. In Proceedings of the 9th International Joint
Conference on Computer Science and Software Engineering (JCSSE 2012),
pages 1–5, 2012.

[260] M. Paprzycki, A. Abraham, R. Guo, and S. Mukkamala. Data mining ap-
proach for analyzing call center performance. In Proceedings of the 17th Inter-
national Conference on Industrial and Engineering Applications of Artificial
Intelligence and Expert Systems (IEA/AIE 2004), pages 1092–1101, 2004.

[261] T. Parcollet, M. Morchid, G. Linarès, and R. D. Mori. Quaternion convo-
lutional neural networks for theme identification of telephone conversations.
In Proceedings of the 2018 IEEE Workshop on Spoken Language Technology
(SLT 2018), pages 685–691, 2018.

[262] T. Park and H. Kim. A data warehouse-based decision support system for
sewer infrastructure management. Automation in Construction, 30:37–49,
2013.

[263] J. Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solv-
ing. Addison-Wesley Publishing Company, 1984.

[264] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal,
and M.-C. Hsu. Mining sequential patterns by pattern-growth: The Pre-
fixspan approach. IEEE Transactions on Knowledge and Data Engineering,
16(11):1424–1440, 2004.



194 Bibliography

[265] H. Peng, F. Long, and C. Ding. Feature selection based on mutual informa-
tion criteria of max-dependency, max-relevance, and min-redundancy. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 27(8):1226–1238,
2005.

[266] E. Pianta, C. Girardi, and R. Zanoli. The TextPro tool suite. In Proceedings
of the 6th International Conference on Language Resources and Evaluation
(LREC 2008), 2008.

[267] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual
Symposium on Foundations of Computer Science (FOCS 1977), pages 46–57,
1977.

[268] G. Polese. A decision support system for evidence based medicine. Journal of
Visual Languages & Computing, 25(6):858–867, 2014.

[269] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel, M. Han-
nemann, P. Motlicek, Y. Qian, P. Schwarz, J. Silovsky, G. Stemmer, and
K. Vesely. The Kaldi speech recognition toolkit. In Proceedings of the IEEE
2011 Workshop on Automatic Speech Recognition and Understanding (ASRU
2011), pages 1–4, 2011.

[270] I. Pratt-Hartmann. Temporal prepositions and their logic. Artificial Intelli-
gence, 166(1–2):1–36, 2005.

[271] J. Pustejovsky, J. M. Castaño, R. Ingria, R. Sauŕı, R. J. Gaizauskas, A. Set-
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[314] J. Trione, B. Favre, and F. Béchet. Beyond utterance extraction: Summary
recombination for speech summarization. In Proceedings of the 17th Annual
Conference of the International Speech Communication Association (Inter-
speech 2016), pages 680–684, 2016.

[315] N. UzZaman, H. Llorens, J. F. Allen, L. Derczynski, M. Verhagen, and
J. Pustejovsky. TempEval-3: Evaluating events, time expressions, and tempo-
ral relations. CoRR, abs/1206.5333, 2012.

[316] H. Vafaie and K. De Jong. Genetic algorithms as a tool for feature selection in
machine learning. In Proceedings of the 4th International Conference on Tools
with Artificial Intelligence (TAI 1992), pages 200–203, 1992.

[317] V. Vagin, O. Morosin, M. Fomina, and S. Antipov. Temporal decision trees
in diagnostics systems. In Proceedings of the 2018 International Confer-
ence on Advances in Big Data, Computing and Data Communication Systems
(icABCD 2018), pages 1–10, 2018.

[318] L. Vanneschi, M. Castelli, and S. Silva. Measuring bloat, overfitting and func-
tional complexity in genetic programming. In Proceedings of the 12th Annual
Conference on Genetic and Evolutionary Computation (GECCO 2010), pages
877–884, 2010.

[319] S. Vashishtha, B. V. Durme, and A. S. White. Fine-grained temporal relation
extraction. CoRR, abs/1902.01390, 2019.

[320] G. Vellidis, M. Tucker, C. Perry, C. Kvien, and C. Bednarz. A real-time wire-
less smart sensor array for scheduling irrigation. Computers and electronics in
agriculture, 61(1):44–50, 2008.

[321] M. Venkatadri and K. Srinivasa Rao. A multiobjective genetic algorithm for
feature selection in data mining. International Journal of Computer Science
and Information Technologies, 1(5):443–448, 2010.

[322] A. Viel, A. Brunello, A. Montanari, and F. Pittino. An original approach
to positioning with cellular fingerprints based on decision tree ensembles. In
Proceedings of the 14th International Conference on Location Based Services
(LBS 2018), pages 49–70, 2018.

[323] A. Viel, A. Brunello, A. Montanari, and F. Pittino. An original approach to
positioning with cellular fingerprints based on decision tree ensembles. Journal
of Location Based Services, 2018.



Bibliography 199

[324] A. Villagra, D. Pandolfi, J. Rasjido, C. Montenegro, N. Serón, and M. G.
Leguizamón. Repair algorithms and penalty functions to handling constraints
in an evolutionary scheduling. In Proceedings of the 16th Congreso Argentino
de Ciencias de la Computación (CACIC 2010), pages 41–51, 2010.

[325] J. Wang and J. Han. BIDE: Efficient mining of frequent closed sequences. In
Proceedings of the 20th IEEE International Conference on Data Engineering
(ICDE 2004), pages 79–90, 2004.

[326] L.-Y. Wei, D.-Y. Huang, S.-C. Ho, J.-S. Lin, H.-E. Chueh, C.-S. Liu, and
T.-H. H. Ho. A hybrid time series model based on AR-EMD and volatility
for medical data forecasting: A case study in the emergency department.
International Journal of Management, Economics and Social Sciences, 6:166–
184, 2017.

[327] T. A. Welch. A technique for high-performance data compression. Computer,
17(6):8–19, 1984.

[328] A. S. Wilkins. To lag or not to lag?: Re-evaluating the use of lagged depen-
dent variables in regression analysis. Political Science Research and Methods,
6(2):393–411, 2018.

[329] Y. Wilks and D. Fass. The preference xemantics family. Computers & Math-
ematics with Applications, 23(2-5):205–221, 1992.

[330] M. Wistuba, J. Grabocka, and L. Schmidt-Thieme. Ultra-fast shapelets for
time series classification. arXiv preprint arXiv:1503.05018, 2015.

[331] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal. Data Mining: Practical
Machine Learning Tools and Techniques. Morgan Kaufmann Publishers Inc.,
4th edition, 2016.

[332] J. Xie, Z. Liao, X. Fang, X. Xu, Y. Wang, Y. Zhang, J. Liu, S. Fan, and
B. Wang. The characteristics of hourly wind field and its impacts on air quality
in the Pearl River delta region during 2013–2017. Atmospheric Research,
227:112–124, 2019.

[333] Z. Xu, J. Liu, Z. Yang, G. An, and X. Jia. The impact of feature selection
on defect prediction performance: An empirical comparison. In Proceedings of
the IEEE 27th International Symposium on Software Reliability Engineering
(ISSRE 2016), pages 309–320, 2016.

[334] Z. Xu, M. Ornik, A. A. Julius, and U. Topcu. Information-guided temporal
logic inference with prior knowledge. In Proceedings of the 2019 American
Control Conference (ACC 2019), pages 1891–1897, 2019.



200 Bibliography

[335] R. Yan, C. Cheng, and Y. Chai. Formal consistency checking over specifica-
tions in natural languages. In Proceedings of the 2015 Design, Automation
& Test in Europe Conference & Exhibition (DATE 2015), pages 1677–1682,
2015.

[336] X. Yan, J. Han, and R. Afshar. CloSpan: Mining closed sequential patterns
in large datasets. In Proceedings of the 2003 SIAM International Conference
on Data Mining (SIAM 2003), pages 166–177, 2003.

[337] L. Ye and E. Keogh. Time series shapelets: A new primitive for data min-
ing. In Proceedings of the 15th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD 2009), pages 947–956, 2009.

[338] M. J. Zaki. SPADE: An efficient algorithm for mining frequent sequences.
Machine Learning, 42(1):31–60, 2001.

[339] S. Zhang, R. Rudinger, and B. V. Durme. An evaluation of PredPatt and Open
IE via stage 1 semantic role labeling. In Proceedings of the 12th International
Conference on Computational Semantics (IWCS 2017), 2017.

[340] J. Zhao, P. Papapetrou, L. Asker, and H. Boström. Learning from hetero-
geneous temporal data in electronic health records. Journal of Biomedical
Informatics, 65:105–119, 2017.

[341] X. Zhong and E. Cambria. Time expression recognition using a constituent-
based tagging scheme. In Proceedings of the 2018 World Wide Web Conference
on World Wide Web (WWW 2018), pages 983–992, 2018.

[342] X. Zhong, A. Sun, and E. Cambria. Time expression analysis and recognition
using syntactic token types and general heuristic rules. In Proceedings of the
55th Annual Meeting of the Association for Computational Linguistics (ACL
2017), pages 420–429, 2017.
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