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Abstract 

The covalent immobilization of antimicrobial molecules on biomedical devices could 

represent an effective strategy to prevent bacterial colonization of implants and reduce 

the use of antibiotics. The antimicrobial peptides (AMPs) are emerging as promising 

candidates in this regards due to potent microbicidal properties that can be retained 

upon immobilization. 

In the present thesis the widely used biocompatible material Titanium (Ti) was 

functionalized via thiol-maleimide chemistry with BMAP27(1-18), an α-helical 

cathelicidin peptide previously shown to retain potent staphylocidal activity when 

immobilized on agarose beads. Contact angle, Quartz Crystal Microbalance with 

Dissipation monitoring and X-ray Photoelectron Spectroscopy analyses confirmed 

successful peptide functionalization. A contact killing effect was observed on a reference 

biofilm-forming S. epidermidis strain, regardless of peptide C- or N- terminal orientation, 

by using CFU counts and SEM analyses. The immobilized peptide was not toxic to 

osteoblasts, which adhered and spread better on functionalized Ti also when co-

cultured with bacteria, compared to non-coated surfaces. 

An optimal design of antimicrobial coating requires a deep understanding of the 

mode of action of the immobilized molecules on whole bacteria. A part of this thesis was 

dedicated to the development of a rapid fluorescence microplate assay based on the 

combination of the potential-sensitive dye 3,3'-Dipropylthiadicarbocyanine Iodide, 

Propidium Iodide and CFU counts, which allows to distinguish between membrane 

depolarization due to ion movements across the membrane and membrane 

permeabilization due to pore formation. Applying this novel method, BMAP27(1-18) 

free and anchored to a model support via C- or N- terminus was evaluated for its 

membrane perturbing and bactericidal activity. Results showed a clear permeabilizing 

effect in solution, while alternative/additional mechanisms could be implicated for the 

immobilized peptide. 

This assay could be applied in ‘mode of action’ studies of other soluble and 

immobilized membrane active AMPs and could be useful to further improve the design 

of peptide coated biomaterials. In the case of BMAP27(1-18), results obtained with 

grafted titanium support its potential for biomedical applications. 
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1.1. Material used for bone replacement 

1.1.1. Biomaterials 

Biomaterial is an external material to the body designed to substitute a specific 

function or a part of the patient in a safe and physiologically acceptable way1–3. 

Biomaterials have been used in humans since about 2000 years. Ancient civilizations, 

such as ancient Romans and Aztecs used gold, silver, wood and animal bones as dental 

replacement, and tendons and fibers as suture material. These kind of substitutions 

were not successful due to the use of incorrect materials and their subsequent infections 

due to non-aseptic procedures. During the 1860s, aseptic surgery technique was 

developed, and the implantation of devices was improved, promoting an increment of 

the use of stainless steel and of the material engineering for biomedical applications. 

 
Figure 1.1. Different biomaterials with advantages (green), drawbacks (red) and their applications in 

medicine. 
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Biomaterials can be classified grouping them into several families: glasses, metals, 

ceramics, polymers and composites materials (Figure 1.1.)4,5. 

Biomaterials find a high number of applications in the medicine field. Some of these 

are hip prostheses, dental implants, knee prostheses, cardiac valves, intraocular lenses 

and left ventricular assist devices (Table 1.1.). 

Table 1.1.: Some Applications of Synthetic Materials and Modified Natural Materials in Medicine. 

Obtained from Ratner et al. 20046. 

Application Types of materials 

Skeletal system   

Joint replacements (hip, knee) Titanium, Ti–Al–V alloy, stainless steel, 

polyethylene 

Bone plate for fracture fixation Stainless steel, cobalt–chromium alloy 

Bone cement Poly(methyl methacrylate) 

Bony defect repair Hydroxyapatite 

Artificial tendon and ligament Teflon, Dacron 

Dental implant for tooth fixation Titanium, Ti–Al–V alloy, stainless steel, 

polyethylene Titanium, alumina, calcium 

phosphate 

Cardiovascular system  

Blood vessel prosthesis Dacron, Teflon, polyurethane 

Heart valve Reprocessed tissue, stainless steel, carbon 

Catheter  Silicone rubber, Teflon, polyurethane 

Polyurethane 

Organs  

Artificial heart  Polyurethane 

Skin repair template Silicone–collagen composite 

Artificial kidney (hemodialyzer) Cellulose, polyacrylonitrile 

Heart–lung machine Silicone rubber 

Senses  

Cochlear replacement  Platinum electrodes 

Intraocular lens Poly(methyl methacrylate), silicone rubber, 

hydrogel 

Contact lens  Silicone-acrylate, hydrogel 

Corneal bandage Collagen, hydrogel 

 

Titanium is the most used biomaterial for dental implants, but it is also extensively 

employed in orthopaedics, where higher mechanical requirements exists7,8. 

1.1.2. Titanium as biomaterial 

Titanium (Ti) is the ninth element most abundant in the world, discovered by William 

Gregor in 1791. During the 1940s, some researchers performed animal studies in order 

to analyse the bioactivity of stainless steel, CrCoMb and Ti, and they discovered that Ti 
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had the lowest elastic modulus, ductility, high strength and good biocompatibility9. This 

promoted the use of Ti as a material for implants6,10. 

Regarding physical properties, Ti is a transition element such as iron, nickel or cobalt. 

Ti can be considered a lightweight metal, with an excellent relationship between 

resistance/density. It has a high melting point, which allows its handling at high 

temperature. Moreover, it is important to highlight its low thermal capacity, comparable 

to stainless steel, its low conductivity coefficient and low thermal expansion. 

Concerning Ti chemical properties, it can be noted that it has 5 stable isotopes, with 

atomic weights between 46 and 50. The most abundant is Ti48. One of the most 

important characteristics of Ti is its thermal reactivity at high temperatures. Titanium 

thermal reactivity is highly increased, which can be observed with the extreme reactivity 

between titanium and oxygen or other gases at high temperatures that are spread to 

the crystalline titanium network. This high reactivity with oxygen results in a fast 

formation of an oxide surface layer (passivation) with heterogeneous grading depending 

on the diffusion. This layer is impermeable, allows the metal to be completely protected, 

and for that reason, titanium has the characteristic of high corrosion resistance6,10. 

Usually Ti has a low mechanical resistance. The mechanical properties of Ti depend 

on the percentage of contaminant interstitial elements (oxygen, nitrogen, carbon and 

hydrogen). For this reason, different degrees of commercially pure titanium are defined 

based on the content of these elements (which determine resistance and fragility) and 

iron (which affects their resistance to corrosion). Extra Low Interstitial (ELI) alloys are 

also defined with very low contents in interstitial elements, which guarantee good 

plasticity and low toxicity6,10. 

Table 1.2. reports the classification of commercially pure titanium according to ISO 

5832-2, as well as the mechanical properties of the different Ti purity grades10,11. 
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Table 1.2. Mechanical properties of titanium depending on purity degree for biomedical 

applications. Obtained from Brunette et al. 2001 and Adamovic et al. 201810,11. 

Properties CP Ti grade 1 CP Ti grade 2 CP Ti grade 3 CP Ti grade 4 

Yield strength (MPa) 170 275 380 485 

Tensile strength (MPa) 240 345 450 550 

Elongation (%) 24 20 18 15 

Reduction in area (%) 30 30 30 25 

Titanium grade 2 has bone-like mechanical properties, chemical stability, a good 

corrosion resistance and biocompatibility. For these reasons, it is the most widely used 

material in medicine6,10–12 in particular  for use in bone prostheses, dental implants and 

in other medical applications4,10–12. 

1.2. Problems derived from the interaction prosthesis-body 

During the last century, the increment of degenerative diseases of the bone such as 

wear or excessive loading, deficiency of biological self-healing processes, degeneration 

of human joints, generated a rise of the use of biocompatible materials for bone 

replacement. A 70-80% of biomedical implants are composed of metallic materials8. In 

addition, the number of elder people demanding a substitution for failed-tissue is 

rapidly growing and the population life expectance is increasing. Furthermore, 

approximately a 90% of population over 40 is affected by some kind of degenerative 

disease13. 

Nevertheless, an increment of replacement surgery is directly related to a rise in 

revision surgery for prosthesis failure. The implant failure can be caused by factors such 

as host response, allergy, stress shielding effect, poor osseointegration and infection. 

1.3. Host response 

Once a prosthesis is implanted in the body, this causes a response that is named 

foreign body reaction where the macrophages, lymphocytes and neutrophils try to start 

the wound healing process and at the same time neutralize the foreign material. It is 

important to prevent any exaggerated response caused by the implant during the 

healing process, because it could alter tissue repair, promoting pathological 

inflammation, and lead to implant failure. 
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1.3.1. Wound healing process 

Wound healing process is composed by four combined and overlapping phases: 

hemostasis, inflammation, proliferation and tissue remodelling14–16 (Table 1.3.). The 

process could be affected resulting in a chronic wound. If any phase is interrupted, 

aberrancies are promoted or prolonged in time16. 

1.3.2. Foreign body reaction 

Subsequently to prosthesis implantation, the body has an inflammatory and wound 

healing response where the foreign body reaction (FBR) is the final-phase response. 

FBRs to titanium and other materials have been studied in material sciences and 

orthopaedics for long time and are considered as multifactorial, immune-modulated, 

and complex healing processes where a high number of cells and mediators are 

implicated17. 

The reaction of the host depends on physico-chemical implant characteristics and 

starts 2-4 weeks after implantation although this response is always present at the 

tissue-material interface18. It involves macrophages and giant body cells that can affect 

the biocompatibility of the implanted prostheses. After surgical implantation, a protein 

layer composed by fibrinogen, albumin, fibronectin and other proteins, adheres to 

prosthesis surface where its interaction with adhesion receptors present on 

inflammatory cell populations can regulate the subsequent inflammatory and wound 

healing process19. 

 

Table 1.3. Normal Wound-healing process. Obtained from Guo et al. 201016. 

Phase Cellular and Bio-physiologic Events 

Hemostasis 1. Vascular constriction 

2. Platelet aggregation, degranulation, and fibrin 

formation (thrombus) 

Inflammation 1. Neutrophil infiltration 

2. Monocyte infiltration and differentiation to 

macrophages 

Proliferation 1. Re-epithelialization 

2. Angiogenesis 

3. Collagen synthesis 

4. ECM formation 

Tissue remodelling 1. Collagen remodelling 

2. Vascular maturation and regression 
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1.4. Infection 

During the last decades, biomedical implants have transformed medicine, but 

unfortunately these devices also promoted an infection risk increment20. One of the 

principal problems of implants is their infection that implies complex interactions 

between the biomaterial, the pathogen and the host immune response. 

In the infection associated to prosthesis, the implant induces an on-site tissue 

reaction that usually involves acute and chronic inflammation, a foreign body reaction, 

granulation tissue formation and fibrous encapsulation that make the implant 

susceptible to bacterial colonization, infection and subsequent biofilm formation21. 

Bacterial pathogenicity is mainly correlated to the capacity to adhere onto materials22,23 

and develop a multi-layered biofilm. The biofilm is composed of an aggregate of 

microorganisms, where the bacteria, often enclosed within a self-produced matrix of 

extracellular polymeric substances, adhere to each other and/or to the surface24. Biofilm 

formation allows pathogens to remain as reservoirs and to overcome innate immune 

defences resulting in long-term persistence of these infections25. Biofilm formation is 

composed of two phases. The first is the attachment of microbial cells to the surface, 

which depends on the physicochemical forces between the material and bacterial 

surface proteins, and the specific recognition between bacterial receptors and plasma 

and connective tissue proteins which cover prosthetic devices once implanted26. The 

second phase is the multiplication and accumulation of microorganisms, leading to the 

formation of multi-layered bacteria clusters via expression of specific polysaccharides 

and proteins on the surface of colonizing bacteria27. The orthopaedic prosthetic 

infections are usually caused by Gram-positive staphylococci, such as Staphylococcus 

aureus but also by some opportunistic pathogens, otherwise considered commensals, 

such as Staphylococcus epidermidis20,28. 

An international team from USA and EU reported differences in geographical 

distribution of orthopaedic implant infections caused by staphylococci. Specifically, they 

observed that S. aureus was the most frequent pathogen associated with total 

arthroplasty in the USA, whereas S. epidermidis was slightly more common in Europe 

(Table 1.4.). In the USA, 25.6% of all healthcare-associated infections are caused by 

infections related to biomedical devices29. A vast review of published reports 
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considering the distribution of causative agents of prosthetic joint infections indicated 

that coagulase-negative staphylococci, such as S. epidermidis, and S. aureus were found 

in equal proportions (about 30%)30. In infections caused by S. aureus, methicillin-

resistant S. aureus (MRSA) was predominant in early infections, while methicillin-

sensitive S. aureus (MSSA) was predominant in delayed and late infections30. Antibiotic 

resistance is a critical question in orthopaedic implant infections23.  Nearly 32% S. aureus 

and 40% S. epidermidis strains recollected from orthopaedic postsurgical and prosthesis-

associated infections were observed to be resistant to gentamicin31,32. 

 

 

Table 1.4. Major implant-infecting bacteria causing orthopaedic infections. Obtained from Arciola et al. 201820 

Species Prevalence in 

medical device 

infections (%) 

Prevalence in 

knee arthroplasty 

infections (%) 

Prevalence in 

hip arthroplasty 

infections (%) 

Prevalence in 

infections 

involving external 

fixation (%) 

Prevalence in 

infections 

involving 

internal fixation 

(%) 

Refs 

Staphylococcus aureus 31.7 21.1 22.2 54.5 47.8 33 

33.8 26.4 24.4 47.8 42.5 34 

13.0 (EU)a – 

31.0 (US)a 

12.1 (EU)a – 

29.6 (US)a 

13.6 (EU)a – 

32.6 (US)a 

ND ND 35 

Coagulase-negative 

staphylococci 

20.2 (US)a – 

39.3 (EU)a 

21.7 (US)a – 

37.0 (EU)a 

18.4 (US)a – 

40.7 (EU)a 

ND ND 35 

Staphylococcus 

epidermidis 

39.0 52.6 48.1 18.2 26.1 33 

31.5 41.8 43.6 15.2 21.9 34 

Coagulase-negative 

staphylococci other than 

Staphylococcus 

epidermidis 

11.6 ND ND ND ND 33 

12.8 ND ND ND ND 34 

Streptococcus spp. and  

Enterococcus spp. 

10.3 (US)a – 

14.5 (EU)a 

10.3 (US)a – 

14.5 (EU)a 

9.1 (US)a – 

12.1 (EU)a 

ND ND 35 

Enterococcus faecalis 2.4 2.6 0.0 0.0 6.5 33 

4.4 0.5 3.5 8.7 5.3 34 

Gram-negative bacteria ND 4.5 (EU)a – 

6.4 (US)a 

4.2 (EU)a – 

6.8 (US)a 

ND ND 35 

Pseudomonas 

aeruginosa 

6.1 10.5 3.7 18.2 4.3 33 

6.7 4.4 2.9 14.1 8.9 34 

Escherichia coli 2.4 5.3 0.0 0.0 0.0 33 

1.6 ND ND ND ND 34 

EU, data from a European reference clinical setting; ND, not determined; US, data from a US reference clinical setting. aInfections after 

total arthroplasty 
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1.5. Antimicrobial coatings 

Some of the first attempts to perform antimicrobial coatings for orthopaedic implants 

were made with conventional antibiotics, such as vancomycin and gentamicin36. 

However their limited antimicrobial activity and the delivery of these drugs at sub-MIC 

levels could evoke bacterial resistance37,38. Antibiotic-resistant bacteria are considered 

by the World Health Organization as one of the greatest threats to human health in the 

future and, specifically, as an important problem in orthopaedic implant infections39. It 

has been reported that some bacteria, such as S. aureus, show high rates of antibiotic 

resistance, and other species, such as S. epidermidis are developing an increase of 

antibiotic resistance40. 

Consequently, it is crucial to adopt strategies to prevent bacterial adhesion to and 

biofilm formation on the implant surfaces. Several approaches already exist, such as the 

screening and decolonization of MRSA in carriers, application of prophylactic antibiotics 

before implant surgery, skin preparation immediately before incision with an antiseptic 

solution, and others28. As they are not enough, it is important to improve the 

perioperative preventative measures, and to develop osteoblast-compatible 

biomaterials resistant to bacterial infection. 

The many events that happen upon prosthesis implantation can be described by the 

‘race for the surface’ concept. In the case that the tissue cells win this race, the implant 

surface is coated by tissue and would be more resistant to bacterial colonization. But if 

bacteria win this competition, they will promote the formation of biofilm on the implant 

surface reducing the possibility of tissue integration (Figure 1.2.)41–43. 
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Figure 1.2. Representative illustration of the process of biomaterial colonization starting from individual 

bacteria adhesion micro-colonies towards formation and maturation of biofilm (1); Schematic 

illustration about the “Race for the surface” Concept (2); illustrative image about the repulsion on 

bacteria in suspension caused by anti-adhesive coating. (3). Obtained from Gallo et al. 201444. 

 

Nowadays, diverse strategies are under study for orthopaedic applications36,44,45, 

which try to prevent the bacterial adhesion and adsorption, such as anti-adhesive 

polymers46,47, super-hydrophobic surfaces48,49, nano-patterned surface50,51, application 

of hydrogels52,53; or which attempt to kill bacteria via inorganic coatings, such as silver 

nanoparticles54,55, zinc56,57, selenium58,59 and copper ions60; or organic coatings, such as 

chitosan derivatives61,62, cytokines63 or enzymes64, surfaces covalently coated with 

antibiotics65,66, and also by using AMPs67,68. Among these strategies the formation of 

biomaterials with antimicrobial peptides attached to the surface could represent an 

effective approach to prevent bacterial colonization67,69,70. 

1.6. Antimicrobial Peptides 

Antimicrobial peptides (AMPs) represent an untapped reservoir of natural molecules 

with antimicrobial properties71,72. They are potential candidates as bactericidal agents, 

which have demonstrated their efficacy as a part of innate immunity73. AMPs or “host 

defense peptides” are components of the innate immune system, present in all living 

species, including bacteria, fungi, plants, insects, amphibians as well as other 

eukaryotes74. AMPs are molecules with high variability in size (<100 amino acids) and 

sequence. They are usually small, cationic and amphipathic. Many of them are 

membrane-active75,76, usually with broad spectrum activity including bacteria, fungi and, 
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in some cases parasites, enveloped viruses, and even cancerous cells73,77. There is no 

definite consensus about the amino acid sequence determining their biological activity. 

Nevertheless, some conserved traits exist, such as charge, hydrophobicity, and 

amphipathicity. These features helped to define a well-accepted classification, based on 

the secondary structure. It divides AMPs into four groups: α-helical peptides, β-sheets, 

mixed structures and extended peptides (Figure 1.3.)78,79. 

A detailed description of the various classes of AMPs goes beyond the scope of this 

thesis. The experimental part of this study is focused on the α-helical peptides, which 

appear the most suitable for prosthetic coatings applications due to their mode of action 

(see below). They are one of the most abundant AMPs that are present in insects, 

amphibian, and mammals. The AMPs of the cathelicidin family have been isolated from 

many different species of mammals. Cathelicidin proforms share a well-conserved N-

terminal prodomain (cathelin domain), for its more than 70% homology to cathelin, and 

inhibitor of cathepsin L.82. Nevertheless, these molecules are considerably different in 

the C-terminal antimicrobial domain, corresponding to the mature AMP, which becomes 

active upon its release from the holoprotein. Taking into account the structure of this 

domain, cathelicidins are additionally classified into cyclic and linear molecules. The 

cyclic peptides could contain one disulphide bond (e.g. cyclic dodecapeptide83), two 

disulphide bonds (e.g. protegrins84), could be rich in tryptophan residues (e.g. 

indolicidin85) or with a short tandem-repeat sequences (e.g. bovine bactenecins Bac5 

 

Figure 1.3. Classification of AMPs based on their structure. Obtained from Chakraborti et al.(chapter 5) 

201880 and corrected with Lehrer et al. 201281. 
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and Bac7 86). However, the major part of cathelicidin peptides are linear with 23-40 

amino acids, which adopt an α-helical conformation in anisotropic environments like the 

biological membranes (some examples of α-helical cathelicidins are rabbit CAP-18 87, 

mice CRAMP88, porcine PMAP-36 89 and -37 90, ovine SMAP-29 91 and -34 92, bovine 

BMAP-27, -28 93 and -34 94 and human hCAP-18 95 and LL-37 96,97). 

Most of these molecules have a mode of action based on membrane 

permeabilization. This accounts for a broad spectrum activity including antibiotic-

resistant clinical isolates98, efficacy against biofilm-embedded microorganisms, and low 

level of resistance induction76,99–101. Taking into consideration the increment of 

antibiotic-resistance problem102, thanks to these properties AMPs may represent an 

advantage respect to other strategies. 

As was mentioned previously, AMPs are molecules with high variability in sequences 

and size, thus they also have many different target sites or in other words many 

mechanisms of action depending on their targets. Currently, the first contact between 

AMPs and bacteria occurs at the microbial surfaces. As peptides are mainly cationic 

molecules, they interact with the anionic phospholipids of bacterial cytoplasmic 

membranes, such as the phosphate groups on Gram-negative outer membrane 

lipopolysaccharide (LPS), or the teichoic acids of Gram-positive bacterial 

peptidoglycan103,104. After the first contact with microbial surface, these peptides can 

interact in some different ways, such as disrupting the membrane integrity leading to 

cellular inactivation, or crossing the bacterial membrane without membrane 

permeabilization to reach intracellular targets that are essential for microbial metabolic 

pathways105. Currently, AMPs with membranolytic activity have two principal 

mechanisms, which depend on the relative position of the peptide respect to the 

bacterial membrane surface, that are called "carpet-like model" and "toroidal-pore 

model" (Figure 1.4.)75,106. 
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Figure 1.4. Schematic representation of the diverse events happening at the bacterial cytoplasmic 

membrane since initial AMP adsorption. These phenomena are not exclusive of each other and neither 

are inclusive. In this figure are described the classical models of membrane disruption (Toroidal pore 

model, Carpet-like model and Barrel stave model), other less common such as disordered toroidal pore, 

membrane thinning, charged lipid clustering, non-bilayer intermediate and also more specific situations 

as electroporation, non-lytic membrane depolarization, anion carrier and oxidized lipid targeting. 

Obtained from Nguyen et al. 201175. 

In the toroidal-pore model peptides lying onto the membrane are adsorbed with their 

axes parallel to bacterial surface, forcing the lipids to fold inwards, building a pore 

delimited by lipid headgroups and associated peptides103,106. Moreover, another version 

exists, called “disordered toroidal pore model” which involves the stochastic formation 

of the pore with lower peptides participation107. However, the resulting pores induce a 

strong membrane depolarization and escape of the cytoplasmic components which 

cause the cell death103. In the carpet-like model, the molecules of AMPs always remain 

positioned in parallel to the bacterial membrane surface and cover it in a disordered 

manner until they reach a critical concentration where the membrane integrity is 

affected losing its electrostatic interactions and consequently collapsing to micellar 
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form108,109. In the barrel stave model, peptide aggregate and reorientate, inserting 

perpendicular into the bacterial membrane with their hydrophobic regions aligned with 

acyl fatty chains and hydrophilic regions towards the central aqueous lumen, forming a 

membrane-spanning pore such as a classical protein pore110. Anyway, the insertion of 

any molecule into the bacterial membrane would modify the membrane stability and 

the membrane-protein functions. The formation of pores and channels, or less defined 

lesions could provoke a distinct leakage of essential cytoplasmic components, which 

could induce the membrane depolarization and membrane permeabilization 

phenomena. Hence, once AMPs reach the bacterial membrane surface or pass through 

the membrane arriving into the intracellular space, they can interact with crucial targets 

and promote cell degradation by induction of hydrolases or inhibiting cell-wall synthesis 

or metabolic enzymatic activity, and finally inducing cell death103,109,111,112. 

Moreover, several AMPs possess modulatory host cell functions71, also in the bone 

environment, such as LL-37 that promotes bone regeneration in vivo by diverse 

mechanisms implicating stimulation of other cell types113–115, or the β-defensins that 

elicit stimulatory effects on osteoblast proliferation and differentiation116. In view of 

these characteristics, AMPs could be helpful not only to kill bacteria, but also to promote 

bone regeneration. Hence, prosthetic implants functionalized with AMPs would be an 

interesting target to study the "Race for the Surface" concept.  

Several recent publications show successful binding of short cationic antimicrobial 

peptides to titanium (Ti) or other metals by using several different coupling 

methodologies117–125. These approaches include substantially the decision of tethering 

position (N- or C-terminus) and the nature and size of a possible spacer67,69,126. However, 

many researchers discuss about the antimicrobial efficacy of AMPs upon surface 

anchoring127–130. The efficacy depends on several variables associated to structural 

characteristics of the peptide and to coupling strategies. This means that an immobilized 

peptide could show distinct antimicrobial properties respect to the free peptide131–133. 

Numerous examples of antimicrobial peptides covalently immobilized to titanium are 

reported in the upper part of Table 1.5. Other useful information concerning coupling 

strategies and functional characterization are also provided. In addition, the lower part 
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of this table lists numerous examples of studies where AMPs were non covalently 

incorporated in various matrices for controlled release upon implantation. 

Taking into consideration covalent surface immobilization, membrane-active AMPs 

arise as the most appropriate candidates as they would not require to penetrate into 

the bacterial cell to reach intracellular targets. Moreover, the creation of short 

antimicrobial sequences would have a positive impact on the production costs. 
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Table 1.5. Examples of AMPs immobilized on titanium with different strategies. Obtained from Andrea et al. 2018134. 

Biomaterial AMP Sequence Coating Method Bacteria In Vitro Testing In Vivo Testing 
Biocompatibility 

Tested on 
Ref. 

Immobilized 

Titanium disks or 

hollow round casings 
Melimine 

CTLISWIKNKRKQRPRVSRRRR

RRGGRRRR 

Three-step: 

1. Silanization with APTES1 through vapour 

deposition. 

2. Cross-linker addition sulfo-SMCC2 by 

immersion. 

3. Cys-peptide addition by immersion. 

S. aureus strain 38 

P. aeruginosa PAO1 

Bacterial adhesion via 

fluorescence microscopy 

Mouse and rat subcutaneous 

infection models. CFU 

determination 

n/a 135 

Titanium, commercially 

pure Grade II disks 
GL13K GKIIKLKASLKLL-NH2 

Two-step: 

1. Silanization with (3-

chloropropyl)triethoxysilane. 

2. Peptide addition on the silane by 

immersion. 

Streptococcus gordonii 

 strain ML-5 

Drip Flow Bioreactor  

Culture 

CFU assay, ATP assay, L/D 

staining BacLight, SEM 

n/a n/a 136 

Titanium GZ3163 

4-methylhexanoyl-Cys-D-

Dab-Dab-Dab-Leu-D-Phe-

Dab-Dab-Leu-NH2 

Three-step: 

1. Silanization with APTES1. 

2. PEGylation with NHS-PEG24-MAL 3 ester, 

by immersion. 

3. Peptide coating by immersion. 

E. coli DH5α 

P. aeruginosa ATCC27853 

S. aureus10 

CFU assay, L/D staining 

BacLight, SEM 
n/a Mouse blood cells lysis assay 137 

Titanium, platelets LL-37 
CLLGDFFRKSKEKIGKEFKRIVQ

RIKDFLRNLVPRTES 

Three-step: 

1. Silanization with APTES1. 

2. PEG linker NHS-PEG-Mal4. 

3. Incubation with peptide. 

E. coli strain K12 

Bacterial killing assay 

(Propidium iodide 

staining) 

n/a n/a 138 

Titanium, deposited on 

silicon wafer 
Tet213 KRWWKWWRRC 

Three-step: 

1. Copolymer brushes 5 synthesized on Ti. 

2. Modification of the grafted chains using 

3-maleimidopropionic acid N-

hydroxysuccinimide ester. 

3. Peptide conjugation via cysteine residue. 

P. aeruginosa PA01 

(luxCDABE) 
CFU assay, luminescence n/a n/a 139 

Titanium, deposited on 

silicon wafer 
Tet-20 RWRIRVRVIRKC 

Three-step: 

1. Silanization with APTES1 through vapour 

deposition. 

2. N-substituted polyacrylamide brushes. 

3. One-end tethering of AMP. 

P. aeruginosa PA01 

(luxCDABE) 

CFU assay, luminescence, 

SEM 
Rat subcutaneous infection model 

MG-63 human osteoblast-like 

cells, Platelet activation, 

Complement activation analysis 

140 

Titanium, 

commercially pure 

Grade II 

hLF1-11 
MPA-Ahx-Ahx-Ahx-

GRRRRSVQWCA-NH2 6 

Three-step: 

1. Silanization with APTES 1. 

2. Bifunctional cross-linker iodoacetic 

acid N-hydroxysuccini- mide ester 

3. Peptide addition, by immersion. 

S. sanguinis 10 

L. salivarius 10 

CFU assay, L/D staining 

BackLight, 

CLSM, 

BacTiter-Glo Reagent 

for biofilm 

n/a Human foreskin fibroblasts 121 
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Titanium, 

commercially pure 

Grade II 

hLF1-11 
MPA-Ahx-Ahx-Ahx-

GRRRRSVQWCA-NH2 6 

Three-step: 

1. Silanization with either APTES 1 or 

CPTES 7. 

2. Addition of the bifunctional cross linker 

3-(maleimide)propionic acid N-

hydroxysuccinimide ester. 

3. Peptide addition, by immersion. 

S. sanguinis 11 

L. salivarius 11 

CFU assay, SEM, 

luminescence BacTiter-

Glo Reagent for biofilm 

n/a Human foreskin fibroblasts 120 

Titanium, 

commercially pure 

Grade II 

GL13K GKIIKLKASLKLL-NH2 

Two-step: 

1. Silanization with CPTES 7. 

2. Peptide addition by immersion. 

Porphyromonas 

gingivalis ATCC 33277 
ATP assay, CFU assay n/a 

Human gingival fibroblasts 

(HGF) and MC3T3-E1 murine 

osteoblasts 

141 

Titanium foils 99.2% 

pure 

Ti-binding- 

linker-

JPH8194 

RKLPDA-PAPAP-

KRLFRRWQWRMKKY 

Chimeric peptide, with titanium-binding 

domain. 

S. gordonii ATCC 

51656, S. sanguis ATCC 

10556 

L/D staining BacLight, 

CLSM 
n/a MC3T3-E1 Osteoblasts Culture 142 

Titanium alloy, 

Ti6AL4V 
Bacitracin 

Ile-Cys-Leu-d-Glu-Ile-

cy(Lys-d-Orn-Ile-d-Phe-

His-d-Asp-Asp) 

Polydopamine 
S. aureus ATCC 25923, 

MRSA 
n/a 

Rat model, Ti rods were 

implanted into the femurs. 

CFU on the implant and at the 

peri-implant tissues. 

Histopathology evaluation of 

the bone tissue around the Ti 

rod implant. nephrotoxicity of 

bacitracin-modified Ti in vivo 

143 

Titanium SESB2V [(RGRKVVRR)2K]2KK Polydopamine 

S. aureus ATCC 29213 

P. aeruginosa ATCC 

9027 

L/D staining BacLight 
rabbit keratitis model, 

CFU/cornea 
n/a 144 

Titanium alloy, 

Ti6Al4V 
SESB2V [(RGRKVVRR)2K]2KK Polydopamine 

B. cereus ATCC 14579 

E. coli ATCC 35218 

L/D staining, 

fluorescent microscopy 
n/a 

Human corneal stroma cells 

from donors tissue 
142 

Titanium, grade V 

powder 

AMP1 LKLLKKLLKLLKKL 
Chimeric peptide, with titanium-binding 

domain. 

E. coli ATCC 2592 

S. mutans ATCC 25175 

S. epidermidis ATCC 

29886 

SYTO9 green 

fluorescent nucleic acid 

stain fluorescent 

microscopy 

n/a n/a 145 

AMP2 KWKRWWWWR 

Release 

Titanium HHC-36 KRWWKWWRR-NH2 
hydrogel, cathehol functionalised, 

addition of AMP 

P. aeruginosa 

E. coli 

S. aureus 

S. epidermidis 

CFU assay, SEM n/a 
human mesenchymal stem 

cells 
146 

Titanium OP-145 

Ac-

IGKEFKRIVERIKRFLRELVRP

LR-NH2 

PLEX 8 coating, mixed with peptide. 

Immersion for in vitro testing, spraying 

for in vivo. 

S. aureus clinical strain 

JAR060131 

CFU assay, Crystal 

violet 

Mouse subcutaneous and 

Rabbit intramedullary nail 

infection models. Biopsy fom 

skin, subcutaneous tissue and 

implant. 

n/a 147 
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Titanium Tet213 KRWWKWWRRC 
Calcium phosphate by electrolytic 

deposition, soaking in the AMP solution. 

P. 

aeruginosa H1001: lux-

CDABE 

S. aureus ATCC 25293 

CFU assay, 

luminescence 
n/a 

MG-63 human osteoblast-like 

cells 
148 

Titanium HHC-36 KRWWKWWRR-NH2 

LBL 9 coating. Three layers of vertically 

oriented TiO2 nanotubes, a thin layer of 

calcium phosphate coating and a 

phospholipid. 

P. 

aeruginosa H1001: lux-

CDABE 

S. aureus ATCC 25293 

CFU assay, SEM n/a 

MG-63 human osteoblast-like 

cells 

Platelet activation 

Red blood cell (RBC) 

haemolysis assay 

149 

Titanium GL13K GKIIKLKASLKLL-NH2 TiO2 nanotubes. 

F. nucleatum ATCC 

25586 

P. gingivalis ATCC 

33277 

CFU assay n/a 

MC3T3-E1 cells, a clonal 

mouse preosteoblastic cell 

line, J774A.1 mouse 

macrophage 

150 

Titanium HHC36 KRWWKWWRR 

TiO2 nanotubes, adsorption via a simple 

vacuum-assisted physical adsorption 

method. 

S. aureus ATCC 25293 CFU assay, SEM n/a n/a 151 

Titanium alloy, 

Ti6Al4V 
Cateslytin RSMRLSFRARGYGFR 

Hydrogel made of natural 

polysaccharide, sodium alginate, 

modified by catechol groups along the 

polymer chain. 

P. gingivalis ATCC 

33277 

Alamar Blue cell 

viability assay 

CFU assay 

n/a Gingival fibroblasts HGF-1 152 

Titanium, solid 

medical grade 

implants 

SAAP-145 

Ac-

LKRLYKRLAKLIKRLYRYLKKP

VR-NH2 

Biodegradable PLEX was mixed with 

peptide. 

S. aureus JAR060131, 

MDR S. 

aureus LUH15101 

Propidium iodine 

fluorescence 

mouse model of subcutaneous 

biomaterial-associated 

infection. CFU on the implant 

and at the peri-implant area. 

Biopsies. 

n/a 153 

Titanium plaHNUtes Tet213 KRWWKWWRRC 

layer-by-layer assembly, chitosan, 

hyaluronic acid. 

AMP was covalently linked to free 

amines of collagen IV 

S. aureus ATCC 

25923, P. 

gingivalis ATCC 33277 

CFU and fluorescent 

microscopy 

mice, intraperitoneal 

administration 

Cytotoxicity Assay. HaCaT cells 

Human erythrocytes, 

haemolysis assay 

In vivo immunotoxicity assay. 

154 

1 APTES: 3-Aminopropyl triethoxysilane; 2 Sulfo-SMCC: 4-(N-maleimidomethyl)cyclohexane-1-carboxylic 3-sulfo-N-hydroxysuccinimide ester; 3 NHS-PEG24-MAL: succinimidyl-[N-maleimidopropionamido]-

poly(ethylene glycol); 4 NHS-PEG-Mal: α-N-hydroxysuccinimidyl-ω-maleimidyl-PEG; 5 Copolymer brushes: N,N-dimethylacrylamide-co-N-(3-aminopropyl)-methacrylamide hydrochloride); 6 Ahx: 6-aminohexanoic 

acid, as spacer, MPA: 3-mercaptopropionic acid, as anchoring group; 7 CPTES: (3-chloropropyl)triethoxysilane; 8 PLEX: biodegradable Polymer-Lipid Encapsulation MatriX, consisting of poly lactic-co-glycolic acid, 

dipalmitoyl phosphatidyl choline, distearoyl phosphatidyl choline and cholesterol; 9 LBL: Layer-by-Layer; 10 Strains not specified; 11 Streptococcus sanguinis (CECT 480, Colección Española de Cultivos Tipo (CECT), 

Spain) and Lactobacillus salivarius (CCUG 17826, Culture Collection University of Göteborg (CCUG), Sweden). n/a: not applicable, CFU: Colony Forming Units, L/D staining: Live/Dead staining, SEM: Scanning Electron 

Microscopy, CLSM: Confocal laser scanning microscopy. 
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2.1. Aim 

Bacterial infection of orthopaedic implants represents one of the major challenges in 

orthopaedic surgery being associated with huge morbidity, and healthcare and social 

costs. The problem is critical also in view of the increment of antibiotic resistance, 

particularly in hospital settings. The development of infection-resistant biomaterials 

could represent an effective strategy to prevent bacterial colonization of implants, 

reducing the need for antibiotics. The antimicrobial peptides are receiving increasing 

attention in this regard due to their potent antimicrobial and antibiofilm properties also 

upon immobilization, and low tendency to induce resistance1. 

Bovine cathelicidin BMAP-27 is a well-characterized α-helical peptide expressed by 

bovine neutrophils2. It displays potent antimicrobial activity against bacteria and fungi 

but also relevant cytotoxicity towards mammalian cells3. Previous studies focused on a 

fragment of this peptide, BMAP27(1-18), which maintained high bactericidal activity 

while displaying significantly lower cytotoxicity2,4. Specifically, this BMAP27 derivative 

was effective against Gram-positive isolates, its activity was retained also in the 

presence of biological components such as serum, hyaluronic acid and synovial fluid and 

proved biocompatible to osteoblasts, highlighting its potential for orthopaedic 

applications4. Notably, BMAP27(1-18) immobilized on solid support showed potent 

killing capacity against Staphylococcus aureus and Staphylococcus epidermidis4. 

In view of all these properties, it was decided to covalently immobilize BMAP27(1-18) 

peptide onto Titanium (Ti), a widely and routinely used metal for orthopaedic 

implants5,6, in order to possibly exploit the BMAP27(1-18) properties to inhibit bacterial 

colonization and enhance osseointegration of implants. The covalent immobilization 

was performed via thiol-maleimide chemistry and the functionalized Ti samples were 

physicochemically characterized and tested against a reference biofilm forming strain of 
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S. epidermidis7. Furthermore, osteoblast biocompatibility was evaluated in bacteria-

osteoblasts co-cultures in the frame of the “Race for the Surface” concept. 

In order to analyse the mechanism of action of the immobilised BMAP27(1-18) peptide, 

a relevant fraction of this thesis was dedicated to the development of a novel assay to 

get mechanistic and kinetic insights on the interaction of membrane active peptides with 

cytoplasmic membranes of whole bacteria. This rapid fluorescence based microplate 

assay was initially set up for soluble peptides using peptides with well-known 

mechanism of action as standards. In a subsequent step, this test was also applied to 

surface anchored peptides to gain mechanistic information that could be useful to 

further improve the design of peptide coated biomaterials. 
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3.1. Introduction 

As was mentioned in the previous chapter, the infection of implanted prostheses is 

the most serious trouble in arthroplasty procedures and it may lead to prosthetic 

failure1. Medical treatment is arduous mainly due to microbial biofilm formation on 

device surfaces1–3. Bacterial biofilms are less sensitive to antibiotics compared to 

planktonic organisms, and only few antibiotics with anti-biofilm efficacy are available3–

5. The principal microorganisms which cause prosthetic joint infections are Gram-

positive bacteria6, mainly Staphylococcus aureus (20 – 30 % of cases) and coagulase-

negative staphylococci (20 – 30 % of cases)4. In healthy subjects, Staphylococcus 

epidermidis is an inoffensive commensal bacteria, but is being considered an 

opportunistic pathogen in immunocompromised patients, and patients with inserted 

medical devices7. Additionally, its ability to adhere and form biofilm on biomedical 

surfaces is recognized as a true virulent factor8. Taking into consideration all this 

information, it is crucial to adopt strategies for the prevention of bacterial adhesion to 

and biofilm formation on the prosthetic surfaces. 

At present, many strategies are under study for orthopaedic applications9–11. Among 

these, the development of biomaterials coated with antimicrobial peptides (AMPs) 

could represent an effective approach to prevent bacterial colonization of implants12–14. 

Some AMPs have been reported to regulate host cell functions15, also in the bone 

environment16–18. In this respect, several studies report on successful coating of 

Titanium (Ti) or other metals with short cationic AMPs by applying diverse linking 

strategies19–27 which differ principally by the nature and length of a possible spacer and 

by tethering orientation (N- or C-terminus) of the selected peptide12,13,28. It is important 

to keep in mind that depending on coupling strategies and peptide structural 
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characteristics, an immobilized peptide could have different antimicrobial properties 

with respect to its soluble form29–31. 

At the beginning of my doctorate I was involved in the characterization of a 

cathelicidin derived α-helical peptide, namely BMAP27(1-18), which was selected for 

immobilization on solid support32. In solution this peptide presented potent bactericidal 

activity against Gram-positive clinical isolates, was active also in the presence of relevant 

biological components such as serum, hyaluronic acid and synovial fluid, and was 

biocompatible to osteoblasts32. Moreover, an N-biotinylated analogue bound to 

streptavidin resin beads exhibited potent killing capacity against S. aureus and S. 

epidermidis32. 

Based on these characteristics, in this part of my thesis a derivative of BMAP27(1-18) 

was covalently immobilized on the surface of titanium, which is a widely and routinely 

used metal for orthopaedic implants33,34. Functionalized Ti samples were characterized 

by contact angle (CA), quartz crystal microbalance with dissipation monitoring (QCM-D) 

and X-ray photoelectron spectroscopy (XPS). Their antimicrobial efficacy was 

investigated against a biofilm-forming S. epidermidis reference strain by colony forming 

unit (CFU) counts, evaluation of metabolic activity, and scanning electron microscopy 

(SEM). The aim was to assess whether Ti-immobilized BMAP27(1-18) was able to inhibit 

bacterial colonization in order to exploit the potential of this peptide for the production 

of infection-resistant titanium surfaces. 
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3.2. Results and Discussion 

3.2.1. Coupling strategy 

In collaboration with Biomaterials, Biomechanics & Tissue Engineering research 

group (BiBiTE) of the Polytechnic University of Catalonia (Barcelona, Catalonia, Spain), 

we decided to covalently bind BMAP27(1-18) to titanium surface via maleimide-thiol 

chemistry. To this purpose, the peptide was modified by attaching at the N-terminus 

three units of 6-aminohexanoic acid (Ahx) as a spacer and one unit of 3-

mercaptopropionic acid (MPA) as anchoring moiety bearing a free thiol. The derivative 

MPA-(Ahx)3-BMAP27(1-18) is hereafter referred to as B27(1-18)SH. In order to check 

whether the antimicrobial properties of the peptide derivative B27(1-18)SH have been 

affected by this modification, the minimum inhibitory concentrations (MIC) of both 

peptides against representative Gram-positive and Gram-negative bacterial species 

were determined (Table 3.1.). Apparently, B27(1-18)SH lost efficacy against gram-

negative bacteria, maintained efficacy against S. aureus and improved against S. 

epidermidis (Table 3.1.), but given the small differences in MIC values (one well 

corresponding to one double concentration), these can be regarded as negligible. 

Table 3.1. Antimicrobial activity of soluble 

peptides against reference strains. 

BMAP27(1-18) 32 B27(1-18)SH 

 MIC (µM)a,b 

S. epidermidis ATCC 35984 2 1 

S. aureus ATCC 25923 4 4 

E. coli ATCC 25922 2 4 

P. aeruginosa ATCC 27853 2 4 

a Determined in MH broth. 

b Data are means of at least 3 independent experiments. 

Given the long year experience of the BiBiTE research group in peptide coupling to 

various metals, we decided to apply the simple strategy that already gave satisfactory 

results with the cell adhesive RGD peptide, and the antimicrobial peptide hLF1-11 

tethered to tantalum and titanium, respectively22,23,35 and which is schematically 

illustrated in Figure 3.1. By using this procedure, B27(1-18)SH was covalently anchored 



 
41 

to titanium via its N-terminus and the coating was performed using two different 

peptide concentrations in the coupling solution. 

The procedure consists in the modification of Ti disks surface (Ti) with oxygen plasma 

treatment (Ti_Pl) to produce hydroxyl groups, required for the subsequent silanization 

of samples with the (3-aminopropyl)triethoxysilane (APTES). Afterwards, the surface is 

treated with the bifunctional crosslinker N-succinimidyl-3-maleimidopropionate (SMP), 

which reacts with the amino groups of the organosilane and bears the maleimide 

function (Ti_A), needed for the reaction with the thiol group on the peptide N-terminus 

(Ti_A_B27(1-18)SH) (Figure 3.1.). 

 

Figure 3.1. Schematic representation showing the coupling procedure of B27(1-18)SH to titanium by 

maleimide-thiol chemistry. 
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3.2.2. Physicochemical characterization of titanium samples 

To verify whether Ti functionalization was successful, Ti samples underwent 

physicochemical characterization by static contact angle (CA) measurements and XPS. 

CA technique allows to determine the hydrophilicity/hydrophobicity of the Ti surface 

(Figure 3.2.), which is supposed to change following the various treatments. CA thus 

gives information about physical modifications of the surfaces during the coupling 

procedure. 

 

 

 

 

 

 

CA analysis showed considerable and statistically significant modifications in 

wettability as a result of plasma treatment (Ti_Pl vs. Ti samples), as well as upon 

silanization (Ti_A vs. Ti_Pl). The subsequent peptide coupling caused significant 

modifications respect to controls (Ti_A_B27(1-18)SH 100 µM vs. Ti_Pl, and Ti_A_B27(1-

18)SH 100 µM vs. Ti_A; Ti_A_B27(1-18)SH 200 µM vs. Ti_Pl, and Ti_A_B27(1-18)SH 200 µM 

 

Figure 3.2. Representative image of a water drop on Titanium. Ysv=interfacial energy 

between solid-vapor; Ylv= interfacial energy between liquid-vapor; Ysl = interfacial 

energy between solid-liquid.; θ: contact angle of the liquid (L) and solid (S). 

Table 3.2. Average values of contact angles and calculation of surface free 

energy and of its polar and dispersive components. 

CAw (°) POL (mJ/m2) DISP (mJ/m2) SFE (mJ/m2) 

Ti 70.4 ± 0.5 8.0 ± 0.3 37.0 ± 0.2 45.1 ± 0.2 

Ti_Pl 7.5 ± 0.2 a 32.4 ± 0.1 a 46.5 ± 0.1 a 78.9 ± 0.1 a 

Ti_A 62.7 ± 0.9 a, b 12.0 ± 0.5 a, b 36.8 ± 0.5 b 48.9 ± 0.6 a, b 

Ti_A_B27(1-18)SH 100 µM 68.3 ± 0.9 b, c 8.6 ± 0.4 b, c 38.4 ± 0.5 a, b 47.0 ± 0.6 a, b 

Ti_A_B27(1-18)SH 200 µM 67.4 ± 0.5 a, b, c 9.1 ± 0.4 a, b, c 38.3 ± 1.1 b 47.4 ± 0.9 a, b 

CAw: contact angle water; POL: polar component; DISP: dispersive component and SFE: surface free energy. 

a Statistically significant differences versus control Ti (P < 0.05). 

b Statistically significant differences vs. Ti_Pl (P < 0.05). 

c Statistically significant differences vs. Ti_A (P < 0.05). 
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vs. Ti_A) (Table 3.2.). However, no difference was noted between samples obtained with 

the two different concentrations (i.e. 100 vs. 200 µM) of B27(1-18)SH. Based on these 

results we can conclude that the expected changes have occurred and that data are 

overall in line with others found in the literature22,23,35, obtained by using the same 

coupling strategy. 

The high-resolution spectra recorded using X-ray photoelectron spectroscopy (XPS) 

showed the chemical composition of the modified Ti surfaces (Figure 3.3.A). The 

presence of silicon (Si 2p) and the increment in carbon (C 1s) and nitrogen (N 1s) content 

in Ti_A vs. Ti disks favours proper silanization of samples. Moreover, the increment of 

carbon (C 1s) and nitrogen (N 1s), and the decrement of oxygen (O 1s) and titanium (Ti 

2p) percentage in Ti_A_B27(1-18)SH 100 µM samples, respect to Ti_A and Ti disks, 

 

Figure 3.3. Chemical composition (atomic percentage) obtained by XPS analysis of the indicated 

titanium surfaces. (A) Comparison of chemical compositions of Ti, Ti_A and Ti_A_B27(1-18)SH 100 µM. 

(B) Comparison of chemical compositions of Ti, Ti_A_B27(1-18)SH 100 µM and Ti_A_B27(1-18)SH 200 

µM. Results are the means ± SD of at least two independent experiments performed in duplicate. 
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respectively, indicates that the peptide molecules are stably and strongly bound to the 

silanized metal surfaces. Moreover, the chemical composition of samples obtained with 

different peptide coupling concentrations was very similar (Figure 3.3.A and B), in 

keeping with the findings reported for functionalization of titanium with the 

antimicrobial peptide hLF1-11 22. Thus, the XPS data confirm that the employed 

procedure for peptide tethering to titanium was sound and reliable. 

To quantify the peptide layer generated on Ti surface, the Quartz Crystal 

Microbalance with Dissipation monitoring (QCM-D) was used. This technique allows to 

quantify masses in the ng/cm2 range36. It is based on monitoring the resonance 

frequency of a suitable piezoelectric sensor crystal, which decreases proportionally to 

the adsorbed mass (defined as “adlayer”) on the surface of the sensor itself. 

Additionally, monitoring the dissipation factor enables a more accurate mass estimation 

because it takes into account the contribution of the adsorbed water to the adlayer 

mass37. 

 

Figure 3.4. Resonance frequency (A, C) and dissipation (B, D) of a Ti crystal sensor upon addition of 

100µM (A, B) and 200µM (C, D) B27(1-18)SH solution in a QCM-D assay. Prior to addition of peptide 

solution in PBS, the sensor has been treated as described in Materials and Methods. Data were fitted in 

the Voigt viscoelastic model to obtain surface mass density and thickness values. 
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In our case, to quantify the molecular layer formed by the peptide bound covalently 

to titanium, titanium crystal sensors were first treated with oxygen plasma, APTES and 

crosslinker, as described above for Ti disks, and extensively washed with PBS. Then, 100 

µM or 200 µM peptide solution was added and, as expected, changes in resonant 

frequency (ΔF, Figure 3.4.A, 3.4.C) and dissipation (ΔD, Figure 3.4.B, 3.4.D) were 

observed. The curves shown in Figure 3.4.C and 3.4.D indicate that at 200 µM peptide 

concentration the deposition of B27(1-18)SH did not occur properly. One possible 

explanation could be the formation of peptide dimers in the more concentrated peptide 

solution. In this case, the thiols would be engaged in disulfide bond formation and would 

not be available for the reaction with the maleimide groups. On the contrary, the 

changes observed after addition of 100 µM peptide solution (Figure 3.4.A and 3.4.B) 

indicated a stable layer deposition with a rapid ΔF drop, corresponding to a rapid ΔD 

increase, in the first 5 - 6 min, followed by stabilization of both parameters in the next 

15 – 20 min. The peptide solution was then replaced by PBS and the resonance 

frequency and dissipation were monitored for the subsequent 80 min without observing 

appreciable modifications, suggesting the formation of a stable peptide monolayer over 

the silanized surface. An average surface mass density of 456.32 ± 7.61 ng/cm2 and a 

layer thickness of 3.08 ± 0.06 nm were calculated after fitting data using the Voigt 

model38.

The results obtained with QCM-D measurements are in line with the values reported 

for cell-adhesive peptides adsorbed to CoCr sensors39 and for antimicrobial peptides 

attached to Ti sensors40. Moreover, the peptide layer thickness is equivalent to that 

achieved by a basically similar binding strategy for the antimicrobial peptide Dhvar5 

grafted on chitosan19 and for the titanium bound lactoferrin peptide23, both monitored 

by ellipsometry. Our surface mass density data are comparable to those obtained by 

other researchers with colorimetric methods19,20. Taking into consideration the 

physicochemical data, these indicate effective functionalization of Ti disks with the 

cathelicidin peptide derivative B27(1-18)SH at 100 µM. Hence, the analysis of the 

antimicrobial properties was performed on samples obtained by using this peptide 

concentration. 
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3.2.3. Analysis of antimicrobial properties of titanium samples 

The antimicrobial efficacy of peptide-functionalized surfaces was analysed in two 

steps, first testing the bacterial adhesion inhibition, and second, monitoring the 

bacterial ability to grow after being in contact with the functionalized surface. 

The adhesion of microorganisms is the first and crucial step for the bacterial 

colonization of implants and consequently its prevention would logically avoid the 

development of infection. 

Titanium samples were exposed to a suspension of Staphylococcus epidermidis ATCC 

35984, a reference strain with a well-documented biofilm-forming ability7, that is 

related to the pathogenicity of this commonly harmless microorganism2,7. 

S. epidermidis was allowed to adhere to Ti samples for 2h at 37°C, at that time 

planktonic cells were washed away and survived bacteria adhered to Ti surface 

recovered by a two-step vortexing procedure. The colony forming units (CFU) of S. 

epidermidis found on Ti_A_B27(1-18)SH disks were significantly less than those 

recovered from both controls, i.e. Ti and Ti_A samples (Figure 3.5.). These data would 

indicate that bacteria have been killed as a result of their contact with the peptide-

functionalized titanium, and/or their adhesion to Ti_A_B27(1-18)SH disks has been 

hindered in some manner. 

 

Figure 3.5. Adhesion of S. epidermidis to the indicated Ti samples. Following 2 h incubation at 37 °C, the 

CFUs of adherent microorganisms were recovered by a vortexing procedure, serial dilutions and plating 

on solid medium. Results are expressed as percent CFU respect to CFU recovered from bare titanium 

(Ti) and are the means ± SD of at least three independent experiments performed in triplicate. * 

Statistically significant difference vs. Ti and vs. Ti_A (P < 0.05). 



 
47 

In order to understand the events that take place at the metal surface during 

staphylococcal adhesion, in parallel to CFU determination, the morphology of the 

attached bacteria was analysed by SEM. This analysis revealed remarkable differences 

in the morphology of S. epidermidis cells on the different substrata (Figures 3.6.1.-

3.6.3.). 
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Figure 3.6.1. Morphology of S. epidermidis on titanium samples analysed by SEM (Panels A – F). Upon 2 h 

incubation samples were rinsed, fixed and processed for SEM analysis. Panel B and D are a higher magnification 

of the images presented in Panel A and C, respectively. Arrows indicate, division septa ( ), contact junctions (

), pseudopod-like structures ( ). Representative images from two experiments performed in duplicate are 

shown. 
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S. epidermidis cells on control Ti samples were opaque, round in shape, with smooth 

surface and with division septa clearly evident (Figures 3.6.1.E and 3.6.2.E). 

 

Figure 3.6.2. Morphology of S. epidermidis on Ti_A samples analysed by SEM (Panels A – F). Arrows indicate, 

respectively, division septa ( ), contact junctions ( ), halos ( ), pseudopod-like structures ( ). Representative 

images from two experiments performed in duplicate are shown. 
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Bacteria presented the expected size, with average diameter values between 0.55 

µm to 0.85 µm. Dividing microorganisms were frequent. This means that bacteria on 

bare titanium and Ti_A were viable and growing (Figures 3.6.1.E and 3.6.2.C-F). There 

were also many microbial agglomerates covered by a dense and grey layer, similar to a 

blanket (Figures 3.6.1.A, 3.6.1.C-D and 3.6.2.A-D). Single bacteria were tightly related 

to each other and connected by junctions (Figures 3.6.1.B, 3.6.1.D and 3.6.2.C). 

Moreover, in several clusters a halo surrounding the bacteria at the contact interface 

between bacterial and Ti surfaces was observed (Figure 3.6.2.D). In some groups of 

bacteria it was possible to see fimbriae-like surface appendages connecting bacteria to 

Ti (Figure 3.6.1.F and 3.6.2.F). All the observed elements probably represent 

extracellular matrix components and/or adhesion structures, what indicates early 

biofilm formation41–43. The morphological characteristics of bacteria visualized by SEM 

are in agreement with the well-known biofilm forming properties of S. epidermidis ATCC 

35984, which is a recognized heavy matrix producer7,8. Remarkably, we did not see 

significant morphological differences between bacteria adhered to bare Ti (Figure 3.6.1) 

and those attached to silanized Ti disks (Figure 3.6.2). 

On the contrary, Ti_A_B27(1-18)SH samples presented a lower number of S. 

epidermidis remaining attached to their surfaces, and bacterial morphology was 

dramatically affected (Figure 3.6.3). Dead S. epidermidis cells showed increased size and 

elongated shapes, and remarkably, bacteria lost their division septa (Figure 3.6.3.D). 

Furthermore, bacterial surface did not have a smooth appearance, many bacterial cells 

were collapsed, deflated, and appeared embedded into a layer of amorphous material 

deposited on Ti surface (Figures 3.6.3.A-D). In numerous cases, the dead elongated 

bacteria, similar to ghosts, were surrounded by an empty circle (Figure 3.6.3.E), and in 

some of them it was possible to observe extrusion of cytoplasmic material out of the cell 

(Figure 3.6.3.F). 
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Figure 3.6.3. Morphology of S. epidermidis on Ti_A_B27(1-18)SH samples analyzed by SEM (Panels A – F). 

Arrows indicate, respectively, empty circles ( ), extruded cytoplasmic material ( ). Representative images 

from two experiments performed in duplicate are shown. 



 
52 

These severe modifications of bacterial morphology pointed out that microbial cell 

growth has been impaired, as well as the cell division process, which is normally 

accomplished through formation of the division septum. In addition, the layer of 

amorphous material present on these samples could plausibly derive from dead S. 

epidermidis such as those appearing collapsed. In any case, the bacteria "deflated bag" 

morphology, in the absence of evident surface damage such as blebs or holes44, would 

indicate that digestion of bacterial content has occurred from inside, possibly upon 

activation of autolytic enzymes45. The changes in morphology observed in Ti_A_B27(1-

18)SH samples matched with the reduction in CFUs, demonstrating killing ability of Ti-

immobilized B27(1-18)SH. This finding was not unexpected, taking into consideration 

that BMAP27(1-18) has proved able to kill staphylococci when N-terminally attached to 

a model support32.  

However, all the collected data make us wonder what was the mode of action of 

B27(1-18)SH covalently anchored to a surface. The antibacterial activity of this peptide 

free in solution relies on its ability to perturb microbial membranes, and is closely 

correlated to its ability to adopt an amphipathic conformation46,47. It looks quite evident 

that, considering their limited mobility, the peptide molecules attached to Ti surface 

could interact only with superficial components of the bacterial cell. This means that the 

mode of killing action could be totally different from that displayed by this type of 

peptides in solution44,46,47. It is important to recall that the bovine cathelicidin BMAP-27, 

i.e. the molecule from which B27(1-18) was derived, shares highly similar structural and 

membrane perturbing properties with other α-helical AMPs of the same family such as 

for example the sheep cathelicidin SMAP-2948. In this respect, it is intriguing to note that 

the staphylococci adhered to peptide-functionalized Ti (Figure 3.6.3) were remarkably 

different from those examined in a previous study after treatment with the sheep 

peptide SMAP-29 free in solution, where bacteria presented extensive surface 

roughening and blebbing44. Such modifications were ascribed to the potent 

permeabilizing activity of this alpha-helical peptide in solution44. Interestingly, both 

peptides, SMAP-29 and BMAP-27, demonstrated antimicrobial efficacy when anchored 

to a solid support, but their mode of action in the immobilized state has not been 

elucidated yet49,50. 
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It could be that the negatively charged bacteria were initially attracted by the highly 

cationic B27(1-18)SH (net charge +10 32), but the microorganisms were killed upon their 

contact/adhesion to the metal surface, according to what suggested by other 

authors21,30. The morphological modifications could be the consequence of events 

triggered by a peptide-induced perturbation at the bacterial surface, as described with 

free peptides in solution45,51,52, and also suggested for immobilized AMPs30,53. 

Although Ti_A_B27(1-18)SH samples presented dead or heavily damaged bacteria, 

occasionally microcolonies with normal appearance adjacent to dead bacteria were also 

found (Figure 3.6.3.A and 3.6.3.C). This result prompted us to investigate whether the 

surviving bacteria could be able to regrow. Considering this objective, Ti samples have 

been exposed to a S. epidermidis suspension for 2 h as above and, after removal of 

planktonic bacteria and washings, the incubation has been extended for additional 22 h 

in fresh MH broth. As the presence of metal disks in the wells would not allow optical 

density measurements, bacterial growth was kinetically monitored by the PrestoBlue® 

dye, which emits fluorescence upon conversion by metabolically active microorganisms. 

 

Figure 3.7. Growth kinetics of S. epidermidis on the indicated Ti samples (Ti, circles; Ti_A, squares; 

Ti_A_B27(1-18)SH, triangles). After 2 h incubation and washing, fresh MH supplemented with the 

metabolic dye PrestoBlue® was added and adherent bacteria were allowed to grow overnight at 

37 °C. Growth kinetics was monitored by measuring fluorescence emission that is directly 

proportional to microbial viability. Results are reported as relative fluorescence units (RFU) and 

are the means ± SD of at least three independent experiments performed in triplicate. 
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S. epidermidis growth on control Ti disks (Ti and Ti_A) became detectable at 7 - 8h 

post-adhesion, with an exponential phase between 10 - 15 h, and a final plateau at 18-

20 h. On Ti_A_B27(1-18)SH samples, the survived bacteria showed an about 1.5-h delay 

both at the beginning and onset of the exponential growth phase, supposedly associated 

with their decreased initial number, in accordance with the results of bacterial adhesion 

assays (Figure 3.5.). Therefore, a reduction or total inhibition of early bacterial adhesion 

remains critical for long-lasting antimicrobial efficacy10. 

It must be emphasized that the experimental settings applied in our in vitro assays 

such as for instance a relatively high initial inoculum, could be different from those 

occurring in clinical conditions where a possible bacterial contamination would take 

origin from a very low bacterial number, as also verified by animal model studies54,55. 

According to what suggested by other authors20, one could reasonably expect a more 

effective protection under medically relevant conditions with only few bacteria present 

at the implant surface thanks to strictly antiseptic surgical procedures. 
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3.3. Conclusions 

- Data acquired by contact angle, XPS and QCM-D analyses indicate successful 

attachment of B27(1-18)SH to titanium surface. 

- The attempt to increase peptide concentration in the coupling solution did not 

increase surface coverage. To improve it, I would probably need to modify the 

coupling strategy substantially. 

- The bacterial inhibition tests showed that the adhesion of S. epidermidis to peptide-

functionalized titanium disks was remarkably inhibited respect to bare titanium, 

suggesting effective coupling of B27(1-18)SH to the metal surface in a form that 

preserves its activity. 

- Regarding the titanium anchored peptide, the remarkable changes in bacterial 

morphology observed by SEM suggest a different mode of action respect to that 

displayed in solution. 

- The results obtained in the present study are promising, highlighting the potential of 

B27(1-18)SH for the development of biomaterials refractory to microbial 

contamination. 
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3.4. Experimental procedure 

3.4.1. Peptide synthesis and characterization 

3.4.1.1. Reagent for peptide synthesis and characterization 

Polyethylene glycol–polystyrene (PEG-PS) resins, coupling reagents for peptide 

synthesis and 9-fluorenylmethoxy carbonyl (Fmoc)-amino acids have been purchased 

from Applied Biosystems, Novabiochem and ChemImpex. Peptide synthesis-grade 

N,N,dimethylformamide (DMF), dichloromethane, piperidine and HPLC-grade 

acetonitrile have been purchased from Biosolve (Valkenswaard, The Netherlands). 

Trifluoroacetic acid (TFA), trifluoroethanol and N-methylmorpholine have been 

purchased from Acros Chimica. (Beerse, Belgium). 6-aminohexanoic acid (Ahx) and 3-

mercaptopropionic acid (MPA) were purchased from Fluorochem Ltd (Hadfield, 

Derbyshire, UK). 

3.4.1.2. Peptide synthesis 

All peptides have been synthesized on a Biotage Initiator+ microwave-assisted 

automated peptide synthesizer in standard solid-phase using Fmoc-chemistry, 

according to published procedures32. 

The amino acid sequence of the α-helical cathelicidin derived peptide BMAP27(1-18) 

32 has been modified at the N-terminus by addition of three units of 6-aminohexanoic 

acid (Ahx) and one unit of 3-mercaptopropionic acid (MPA) as spacer and anchoring 

group, respectively. The resulting peptide MPA-(Ahx)3-BMAP27(1-18) is hereafter 

referred to as B27(1-18)SH (Table 3.3.). 

 

 

 

 

After cleavage and deprotection, the peptide was purified by reverse phase high 

performance liquid chromatography (RP-HPLC) on a C18 Delta-Pak column (Waters; 

USA) and confirmed by mass spectrometry using a Q-STAR hybrid quadrupole time-of-

flight mass spectrometer (Applied Biosystems/MDS Sciex, Concord, ON, Canada) 

equipped with an electrospray ion source. 

Table 3.3. Amino acid sequence of the selected AMP and its 

modifications at the N-terminus. 

Peptide Sequence 

BMAP27(1-18) GRFKRFRKKFKKLFKKLS-NH2 

B27(1-18)SH HS-MPA-(Ahx)3-GRFKRFRKKFKKLFKKLS 
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3.4.2. Determination of peptide concentration 

The concentration of the peptides in Table 3.3. has been determined in aqueous 

solution by measuring the UV absorbance at 257 nm taking into account the molar 

extinction coefficient (195.1 cm-1M-1) for each phenylalanine (Phe) residue32. 

3.4.3. Reverse phase chromatography 

Peptide purification was carried out with a semi-preparative reverse-phase high 

performance liquid chromatography (RP-HPLC) with a linear aqueous acetonitrile 

gradient containing 0.05% TFA on a C18 Delta-Pak column. 

3.4.4. Mass Spectrometry 

The Mass spectrometry is a sensitive and powerful analytical technique that provides 

qualitative and quantitative measures on nanomolar to attomolar amounts of 

molecules56. It is primary composed by an ion source, where the molecules may be 

ionized, a mass analyser that distributes ions according to their mass-to-charge ratio 

(m/z), a detector which measures the abundances of the separated ions as an electrical 

signal, and the recording device which modifies the detector signal into appropriate way 

for subsequent study and processing56. Mass spectra have been acquired and analysed 

to validate the peptide synthesis (Bruker Daltonics Esquire 4000). 

3.4.5. Peptide Immobilization on Solid support 

3.4.5.1. Titanium Preparation 

Commercially pure Titanium (Ti) grade II disks have been obtained from Technalloy 

S.A. (Sant Cugat del Vallès, Spain). The disks of 10 mm diameter and 2 mm height, have 

been polished with wet abrasive paper (800, 1200 and 2400 – European P-grade 

standard) and smoothed with an alumina suspension (1 µm and 0.05 µm particle size) 

on cotton clothes. Before the activation and silanization process, the samples were 

ultrasonically washed with cyclohexane, isopropanol, distilled water, ethanol and 

acetone and finally stored dried under vacuum. 

3.4.5.2. Activation and Silanization of titanium samples 

Ti surfaces have been activated by 10 min oxygen plasma treatment at 100W power 

in a Standard Plasma System (FEMTO, Diener electronic GmbH, Germany). Samples have 

been silanized with (3-aminopropyl)triethoxysilane (APTES) (2%, v/v) (Sigma-Aldrich, St 
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Louis, MO, USA) in anhydrous toluene for 1 h at 70  Cͦ under agitation and nitrogen 

atmosphere. Ti samples have been sonicated for 5 min and rinsed with toluene, 

isopropanol, distilled water, ethanol and acetone, and dried with nitrogen. Thereafter, 

aminosilanized samples have been immersed in a 7.5 mM solution of N-succinimidyl-3-

maleimidopropionate (SMP) bi-functional cross-linker agent in N,N-dimethylformamide 

(DMF) for 1 h under agitation at room temperature. At last, aminosilanized samples with 

SMP group (Ti_A) have been washed with DMF, distilled water, ethanol and acetone, 

and dried with nitrogen. 

3.4.5.3. Immobilization of peptide onto Ti samples 

B27(1-18)SH peptide has been dissolved in phosphate buffered saline (PBS), pH 6.5 at 

100 µM final concentration. Afterwards, it has been deposited onto the Ti_A samples 

(100 µL/disk) and incubated overnight at room temperature. Successively, B27(1-18)SH 

peptide functionalized titanium samples have been rinsed with PBS and dried with 

nitrogen. These samples have been designated as Ti_A_B27(1-18)SH. 

3.4.6. Physicochemical Characterization of the Biofunctionalized Titanium 

Surfaces 

3.4.6.1. Static Contact Angle Measurements and Surface Energy Calculations 

The sessile drop method has been used to determine the hydrophilicity of the Ti 

surfaces by a Contact Angle System (OCA15 plus, Dataphysics, Filderstadt, Germany). All 

measurements have been done at room temperature using Ultrapure distilled water 

(Millipore Milli-Q, Merck Millipore Corporation, USA) and diiodomethane (Sigma-

Aldrich, Spain) as wetting liquids (drop volume of 1 µL and 1 µL/min dosing rate). Static 

contact angles have been calculated using Laplace-Young fitting with SCA 20 software 

(Dataphysics). Young described the contact angle as the mechanical equilibrium of a 

liquid drop on an ideal solid surface under the action of three interfacial tensions57. 

 

 

 𝛾𝑆 = 𝛾𝑆𝐿 + 𝛾𝐿 cos𝜃 (1) 

 𝛾𝐿(1 + cos𝜃) = 2 ((𝛾𝐿𝑑𝛾𝑆𝑑)1 2⁄ + (𝛾𝐿𝑝𝛾𝑆𝑝)1 2⁄ ) (2) 

where γd
L, γd

S is the dispersive part and γP
L, γp

S is the polar part, respectively, 

of the liquid and solid surface tension (γL and γS). θ is the contact angle of 

the liquid (L)  and solid (S). 
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The surface free energy and its dispersive and polar components have been 

determined by Young-Laplace (1) and Owens, Wendt, Rabel and Kaeble (2) equations 

applied to both water and diiodomethane measurements22,58. 

Data are means of five measurements per disk for three sample replicates. 

3.4.6.2. X-ray photoelectron spectroscopy (XPS) 

X-ray photoelectron spectroscopy (XPS) is a technique to allow the semiquantitative 

analysis of surface composition. XPS can determine the elemental composition, 

empirical formula, chemical state and electronic state of the elements within a material. 

It is mainly composed by X-ray source, chamber sample, electron energy analyser and 

detector. It is based on the irradiation of a solid surface with a beam of X-rays while 

simultaneously measuring the kinetic energy and electrons that are emitted from the 

first 10nm of the material surface being analysed. 

The chemical composition of the surface of the Ti functionalized samples have been 

analysed using an XPS equipment (D8 advance, SPECS Surface Nano Analysis GmbH, 

Germany) with an Mg anode XR50 source operating at 150W and a Phoibos 150 MCD-9 

detector. High-resolution spectra have been registered with pass energy of 25 eV at 0.1 

eV steps at a pressure below 7.5 x 10-9 mbar. Binding energies have been referenced to 

the C1s signal at 284.8 eV. Two samples were studied for each working condition. Finally, 

data were analysed using the CasaXPS software (Version 2.3.16, Casa Software Ltd., 

Teignmouth, UK). 

3.4.6.3. Quartz Crystal Microbalance and Dissipation monitoring (QCM-D) 

Quartz Crystal Microbalance and Dissipation monitoring (QCM-D) is a reliable and 

sensitive method to measure very small masses in the order of ng/cm2. In this technique 

a piezoelectric quartz sensor undergoes oscillation upon application of an alternating 

electric field across the crystal. If a material is adsorbed on the crystal, the resonant 

frequency decreases proportionally to the mass of the component. The contribution of 

water to the mass of the adsorbed layer can be estimated from the dissipation factor. 

QCM-D measurements were performed on titanium crystal sensors (QSX 310, Q-

Sense, Sweden) in a D-300 instrument (Q-sense, Sweden), in order to quantify and 

characterize the peptide layer attached to the surfaces. Ti sensors, have been washed 
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as previously described39, have been activated with O2 plasma and subsequently treated 

with APTES and SMP as described above for Ti_A samples. Before studying the 

adsorption of B27(1-18)SH, the baseline was stabilized with PBS for 30 - 60 min. 

Subsequently, the B27(1-18)SH derivative was added (100 µM in PBS, pH 6.5) and 

changes in resonant frequency and dissipation was monitored at 25 °C for 100 minutes, 

in real-time employing a Qsoft software (Q-Sense, Sweden). Frequency and dissipation 

curves were fitted to a Voigt viscoelastic model38 to yield the adsorbed mass and 

thickness of the peptide layer, as well as kinetic information, by using the Q-tool data 

analysis software (Q-Sense, Sweden). 

3.4.7. Bacteria and antimicrobial activity assays 

The bacterial assays were performed with the reference strains Staphylococcus 

epidermidis ATCC 35984, Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 

25922 and Pseudomonas aeruginosa ATCC 27853. Bacteria were cultured either in liquid 

Brain Hearth Infusion (BHI) (both Staphylococcus species) or in Mueller-Hinton (MH) 

(both Gram-negatives) overnight at 37 °C. Antimicrobial activity of the titanium bound 

peptide was tested with S. epidermidis ATCC 35984. Stationary phase bacteria were 

harvested by 10 min centrifugation at 1000 x g and resuspended in sterile PBS (pH 7.4). 

Bacterial density was assessed by turbidity at 600 nm, with reference to previously 

determined standards. For the experiments, bacterial suspensions was prepared in MH 

broth at optimal density. 

3.4.7.1. Determination of the Minimum Inhibitory Concentration (MIC) 

The MIC of B27(1-18)SH in solution was determined by a broth microdilution assay in 96-

well microtiter plates, using MH broth with logarithmic-phase microorganisms at 5 × 105 

CFU/mL, as previously reported32, following Clinical and Laboratory Standards Institute 

(CLSI) guidelines. 

3.4.7.2. Evaluation of bacterial adhesion to titanium surface 

The evaluation of bacterial adhesion was studied by adapting a previously described 

protocol23. Before use in antimicrobial assays Ti, Ti_A and Ti_A_B27(1-18)SH samples 

were sterilized by 30 min treatment with 70 % ethanol, and washed with sterile PBS. 

Titanium samples were placed in a 24-well plate for better handling of samples and 

incubated with 1 mL of S. epidermidis at 1 x 105 CFU/mL for 2 h at 37 °C. The medium 
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containing planktonic bacteria was then aspirated and the samples rinsed three times 

with sterile PBS. Subsequently, disks were transferred to sterile tubes containing 1 mL 

of 50 % Mueller-Hinton in sterile PBS (MH-PBS), and adherent bacteria were detached 

by 10 min vortexing. To make sure that dislodging of bacteria from the surfaces was 

effective, after the first vortexing step the disks were transferred in new sterile tubes 

containing 1 mL of MH-PBS and vortexed again for 5 min. Bacterial suspensions from 

each vortexing step were then serially diluted in MH-PBS and seeded on BHI agar plates. 

The plates were incubated at 37 °C for 24 h and the resulting colonies counted. All 

experiments were performed in triplicate for each type of surface. 

3.4.7.3. Scanning Electron Microscopy (SEM) 

Scanning Electron Microscopy (SEM) is a technique to easily visualize specimens 

displayed as three-dimensional objects. Electron microscopes use electrons for imaging 

in a similar way that light microscopes use visible light. Specifically, SEM employ the 

electrons that are reflected or knocked off the near-surface region of a sample to create 

an image that is displayed on the computer screen. 

Nowadays, SEM is one of the best techniques among others to observe bacteria in a 

3D-high resolution. 

S. epidermidis morphology, when adhered to titanium samples, was studied by 

means of SEM (Quanta250 SEM, FEI, Oregon, USA) operated in secondary electron 

detection mode. The working distance was adjusted in order to obtain the suitable 

magnification; the accelerating voltage was set to 30 kV. SEM was performed in 

duplicate for each sample. Briefly, upon 2 h incubation as described above, all samples 

were rinsed three times with filtered sterile PBS, fixed with 2.5 % (v/v) glutaraldehyde 

for 30 min at 4 °C, washed three times with filtered sterile PBS and MilliQ ultrapure 

water, and dehydrated in graded series of ethanol solutions (20 min each). Immediately 

prior to SEM analysis, samples were sputter-coated with gold (Sputter Coater K550X, 

Emitech, Quorum Technologies Ltd, UK). 

3.4.7.4. Bacterial growth kinetics on titanium surfaces 

Titanium samples, placed in triplicate into 48-well plates, were immersed in 1 mL of 

S. epidermidis (6 × 104 CFU/mL) suspension in MH for 2 h. The medium containing 
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planktonic bacteria was removed, titanium disks washed with sterile PBS, and adherent 

bacteria allowed to grow at 37 °C for 22 h in fresh MH medium supplemented with 10 

% (v/v) PrestoBlue® metabolic dye. Bacterial growth kinetics was monitored 

fluorometrically according to PrestoBlue® manufacturer’s instructions by using a 

Multimode Plate Reader (EnSpireTM 2300, PerkinElmer, Waltham, MA, USA). 

3.4.8. Statistical analysis 

Data, presented as mean values ± standard deviations, have been analysed by a non-

parametric U Mann-Whitney test (IBM SPSS Statistics 20 software, Armonk, NY, USA). 

Statistical significance was set at P value <0.05. 
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4.1. Introduction 

The World Health Organization identified Antibiotic-resistant bacteria as one of the 

greatest threats to human health in the future. Antimicrobial Peptides (AMPs) are 

potential candidates as bactericidal agents, which have demonstrated their efficacy as 

part of innate immunity1. For development of novel antimicrobials, an interesting target 

is represented by bacterial cytoplasmic membrane where vital processes take place2. 

Membrane interactions of AMPs have been extensively investigated by using model 

membrane systems3–5. However interactions of AMPs with whole bacteria could be 

different due to complexity of living microbial membranes6. The membrane-targeting 

AMPs can alter the membrane function rising the membrane ion-permeability, 

promoting the formation of ion-conducting membrane pores or simulating an ion 

carrier7–9. For this reason, one of the key experiments to analyse the mode of action of 

membrane-targeting AMPs is the evaluation of membrane permeability. Nowadays, 

membrane impermeable fluorescent dyes such as Propidium Iodide (PI) 10 or SYTOX 

green11 are employed to detect alterations in membrane permeability. These nucleic 

acid staining dyes increment their fluorescence when the membrane integrity is critically 

damaged or large pores are formed11–13, but they are not useful to detect modifications 

in membrane potential14. The modifications in ion permeability could be studied using 

membrane potential-sensitive fluorescent distributional probes, for example oxonols, 

such as Bis-(1,3-Dibutylbarbituric Acid)Trimethine Oxonol (DiBAC4(3)) 15, or cationic dyes 

such as 3,3'-Dihexyloxacarbocyanine Iodide (DiOC6(3)) 16 and 3,3'-

Dipropylthiadicarbocyanine Iodide (diSC3(5)) 17. 
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In this chapter we described the development of a rapid fluorescence based microplate 

assay, by combining a potential sensitive dye with a nucleic acid stain, to get mechanistic 

and kinetic insights on the interaction of membrane active peptides with cytoplasmic 

membranes of whole bacteria, by monitoring simultaneously the phenomena of 

membrane depolarization, due to ion movements across the membrane, and membrane 

permeabilization, due to pore formation, in Staphylococcus species.   
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4.2. Results and Discussion 

4.2.1. Compatibility between the fluorescent dyes 

The fluorescent dyes used to develop this assay were DiBAC4(3), diSC3(5) and PI. 

DiBAC4(3) is a membrane-potential sensitive bis-oxonol dye that can penetrate bacterial 

cells and bind to intracellular proteins or to the membrane when these cells are 

depolarized15. This is observed as an increment of DiBAC4(3) fluorescence caused by a 

higher influx of the anionic dye into the microorganisms where it binds to the 

hydrophobic residues of the proteins15. On the other hand, Propidium Iodide is a 

classical intercalating dye which displays increase in fluorescence upon binding to 

nucleic acids18. 

To check whether the spectroscopic properties of the selected dyes were changed in 

our experimental conditions, excitation and emission spectra of 125, 250 and 500 nM 

DiBAC4(3) and 5, 10 and 20 µg/mL PI were first measured (Figure 4.1.). 

As shown in Figure 4.1.A and 4.1.B, for DiBAC4(3) the maximum excitation and 

emission wavelengths were 496 nm and 516 nm, respectively, in agreement with values 

reported by other authors (Table 4.1.). Moreover, the Figure 4.1.C and 4.1.D showed 

that the maximum excitation and emission wavelengths of PI are 490 nm and 617 nm, 

respectively. These data are in line with values obtained by other researchers (Table 

4.1.), but it is important to take into consideration that the maximum excitation 

wavelength of PI will shift from 490 nm to 535 nm in the presence of nucleic acids (Table 

4.1.). 

 Table 4.1. Reported fluorescent excitation and emission wavelengths of the tested dyes. 

 Molecular 

Weight 
Solubility Charge 

Excitation 

(λ) 

Emission 

(λ) 
References 

DiBAC4(3) 516.64 DMSO Anionic 494.5 516 15 

PI 668.4 H2O Cationic 490535 617 18 

diSC3(5) 546.53 DMSO Cationic 640-652 670 19–21 
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When the spectra of DiBAC4(3) were repeated in the presence of 10 µg/mL PI (Figure 

4.2.A – B), the excitation spectrum was completely modified with a decrease in 

fluorescence at its maximum excitation wavelength (496nm) from 3000 relative 

fluorescence units (RFU) (Figure 4.1.A) to less than 200 RFU (Figure 4.2.A) at 500 nM 

DiBAC4(3). Hence, excitation of DiBAC4(3) in this condition was virtually absent. Also the 

emission spectra were remarkably changed, with a drop at its maximum emission 

wavelength (516nm) from ≈5000 RFU (Figure 4.1.B) to less than 400 RFU (Figure 4.2.B), 

at 500nM DiBAC4(3). On the contrary, the emission of PI at 617nm was clearly evident 

(Figure 4.2.B). This means that PI strongly affected DiBAC4(3) fluorescence.  

The spectra were repeated in the presence of S. epidermidis (Figure 4.2.C – D). The 

excitation and emission spectra of DiBAC4(3) (Figure 4.2.C – D) were very similar to those 

obtained without bacteria (Figure 4.1.A – B). When DiBAC4(3) and PI were combined, 

 

Figure 4.1. Fluorescence Excitation (A, C) and Emission (B, D) spectra of DiBAC4(3) (A – B) and PI (C – D). A, 

excitation spectra with 516 nm detection wavelength and B, emission spectra with 496 nm excitation 

wavelength of three different DiBAC4(3) concentrations. C, excitation spectra with 617 nm detection 

wavelength and D, emission spectra with 490 nm excitation wavelength of three different PI 

concentrations. The maximum excitation and emission wavelengths are reported in each graph. For 

technical reasons due to instrument settings, spectra in A and B could not be measured at wavelengths 

>496 nm and <510 nm, respectively. 
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DiBAC4(3) excitation and emission spectra were clearly modified again (Figure 4.2.C – D) 

similar to what was observed in the absence of bacteria (Figure 4.2.A – B). 

At least two hypotheses could be postulated to explain why the excitation and 

emission peaks of DiBAC4(3) disappeared in the presence of PI. 

- Competition between dyes. Both dyes have very similar excitation wavelengths, but 

PI is present at about 30-120-fold higher concentration, on a molar basis, respect to 

DiBAC4(3). This means that PI could be preferentially excited by the light pulse, 

preventing light absorption by DiBAC4(3) and, consequently, its excitation. 

- FRET phenomenon. Both fluorescence dyes are excited by the light pulse, but the light 

emitted by DiBAC4(3) (λem=516 nm) is absorbed by PI as it falls in the range of PI 

excitation wavelengths. So, only PI emits fluorescence. 

Figure 4.2. Fluorescence Excitation (A, C) and Emission (B, D) spectra of DiBAC4(3)+PI (A – B), and 

DiBAC4(3) alone, and DiBAC4(3)+ PI, in the presence of bacteria (C – D). A, excitation spectra with 516 

nm detection wavelength (the error bars are not shown for clarity purposes) and B, emission spectra 

with 490 nm excitation wavelength of three different DiBAC4 (3) concentrations + 10 µg/ml PI. C, 

excitation spectra with 516 nm detection wavelength and D, emission spectra with 490 nm excitation 

wavelength of three different DiBAC4 (3) concentrations and 250nM DiBAC4(3) + 10 µg/ml PI in the 

presence of S. epidermidis. 
 



 75 

We feel that the most realistic explanation could be a combination of both 

hypotheses, with a clear competition between both dyes for being excited by the light 

pulse and, at the same time, absorption by PI of the DiBAC4(3) emission (Figure 4.3.). 

Taken together, all these results made the combination of DiBAC4(3) and PI unsuitable 

for our purposes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Given the interference of the oxonol dye with PI, in the next set of experiments it was 

replaced by diSC3(5), a cationic carbocyanine fluorescence probe with short alkyl tail (<4 

carbon atoms)20. It is membrane-permeable and accumulates on polarized cells until a 

Nernstian equilibrium across the membrane is reached22. The strong accumulation in 

energized cells causes quenching of its fluorescence. Once membrane is depolarized, 

the dye is quickly released in the medium and, as a consequence, its fluorescence is 

dequenched (Figure 4.4.)22. 

 

Figure 4.3. Final hypothesis representation. 
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To verify the compatibility between the two dyes in our experimental conditions, 

excitation and emission spectra of diSC3(5) alone and in the presence of PI were first 

measured. As shown in Figure 4.5.A – B, the maximum excitation and emission 

wavelengths were confirmed and diSC3(5) fluorescence was not affected by PI. On the 

other hand, it was also necessary to verify whether PI fluorescence was affected by 

 

Figure 4.4. Schematic representation of diSC3(5) fluorescence kinetics following interaction with cell 

membrane of metabolically active cells, and subsequent addition of a depolarizing agent. 

 

Figure 4.5. Fluorescence Excitation (A, C) and Emission (B, D) spectra of diSC3(5) and PI. A, excitation 

spectra with 672 nm detection wavelength and B, emission spectra with 652 nm excitation wavelength of 

0.4 µM diSC3 (5) + 5, 10 and 20 µg/mL PI (error bars are not shown for clarity purposes). C, excitation 

spectra with 617 nm detection wavelength and D, emission spectra with 490 nm excitation wavelength of 

0.4 µM diSC3 (5) + 5, 10 and 20 µg/mL PI. For technical reasons due to instrument settings, spectra in A 

and B could not be measured at wavelengths >650 nm and <670 nm, respectively.  
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diSC3(5), so measures were repeated by using the excitation and emission wavelengths 

reported for PI. Spectra show that there was no interference between the two dyes and 

that increased PI fluorescence intensities were well correlated to increased PI 

concentrations (Figure 4.5.C – D). 

Very similar spectra were measured in the presence of metabolically active S. 

epidermidis (Figure 4.5. and 4.6.). 

Therefore, the fluorescent probes diSC3(5) and PI were compatible because they did 

not show any interaction between them. Consequently, these dyes were suitable to 

function as membrane depolarization and membrane permeabilization markers in our 

assay. 

 

 

 

Figure 4.6. Fluorescence Excitation (A, C) and Emission (B, D) spectra of diSC3(5) with different PI 

concentrations in the presence of S. epidermidis. A, excitation spectra with 672 nm detection wavelength 

and B, emission spectra with 652 nm excitation wavelength of 0.4 µM diSC3 (5) + 5, 10 and 20 µg/mL PI 

(error bars are not shown for clarity purposes). C, excitation spectra with 617 nm detection wavelength 

and D, emission spectra with 490 nm excitation wavelength of 0.4 µM diSC3 (5) + 5, 10 and 20 µg/mL PI.  
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4.2.2. Selection of membrane-active antimicrobial peptides 

The next step was the selection of the antimicrobial peptide (AMPs) candidates as 

positive controls of membrane depolarization and membrane permeabilization events. 

We selected four membrane-active AMPs based on scientific literature: Gramicidin 

D, Cecropin A, Magainin 2, and Melittin. Gramicidin D is a bacterial antibiotic produced 

by Bacillus brevis. It is composed by a mixture of highly similar pentadecapeptides 

consisting of about 85% gramicidin A. The principal structural feature of this peptide is 

alternating hydrophobic L- and D-amino acid residues, and their organization in the 

membrane environment leads to the formation of an ion channel. The insect peptide 

Cecropin A, the frog peptide Magainin 2, and the cytolytic peptide Melittin from bee 

venom, are all cationic α-helical AMPs known to permeabilize bacterial membranes. 

Melittin in particular is well-known as a pore-forming peptide (Table 4.2.). 

Table 4.2. Selected membrane-active antimicrobial peptides for the development of the fluorescence-

based microplate assay.  

Peptide Sequence 
Molecular 

weight 
Solvent References 

Cecropin A 
KWKLFKKIEKVGQNIRDGIIKAGPAVAVV

GQATQIAK-NH2 
4003.78 DMSO 23–25 

Magainin 2 GIGKFLHSAKKFGKAFVGEIMNS-OH 2466.90 H2O 26–28 

Melittin GIGAVLKVLTTGLPALISWIKRKRQQ-NH2 2846.46 H2O 29–33 

Gramicidin D 
formyl-VGALAVVVWLWLWLWG-

NHCH2CH2OH 
1880.00 DMSO 34–37 

 

All these peptides are membrane-active and their antimicrobial activities are well 

characterized. However, it was necessary to verify their active concentrations in our 

experimental conditions. To this aim, the peptides were first tested against 

representative Gram-positive and Gram-negative reference strains in a standard broth 

microdilution assay. 
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Results in Table 4.3. show that only melittin and gramicidin D displayed activities 

against the Gram-positive S. aureus and S. epidermidis, which are the principal target of 

the present thesis.  

These results have been confirmed in the “adapted” assay conditions, i.e. with a 

higher inoculum (107 CFU/mL) and 30 min incubation in phosphate buffered saline (PBS) 

supplemented with 25 mM glucose (PBS-glc) (see paragraph 4. Experimental 

procedures). Based on their activity against S. aureus and S. epidermidis, melittin and 

gramicidin D were selected for further experiments. 

4.2.3. Interference of uncouplers and peptides with the fluorescent dyes 

To test whether the selected peptides display any interference with diSC3(5) or with 

PI, the fluorescence of both probes mixed together in the same wells was monitored 

kinetically at their specific excitation and emission wavelengths before and after the 

addition of the AMPs, without bacteria. The uncouplers Carbonyl cyanide 3-

chlorophenylhydrazone (CCCP) and Carbonyl cyanide 4-

(trifluoromethoxy)phenylhydrazone (FCCP), as well as the solvent dimethyl sulfoxide 

(DMSO), were also included in these experiments (Figure 4.7.). 

 

Table 4.3. Antimicrobial activities of selected AMPs against 

reference Gram-positive and Gram-negative strains. 

 

Cecropin A Melittin Magainin 2 Gramicidin D 

  MIC (MBC) (µM)a,b 

S. epidermidis ATCC 35984 > 128 0.5 (0.5) > 128 2 (4) 

S. aureus ATCC 25923 > 128 0.5 (1) 64 (128) 4 (8) 

E. coli ATCC 25922 0.75 (0.75) 1 (1) 8 (16) >32 

P. aeruginosa ATCC 27853 1 (2) 1 (2) 64 (64) >32 

a Determined in MH broth at 5·105 CFU/mL. 

b Data are means of at least 2 independent experiments. 
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It was observed that, at difference with both uncouplers which decrease diSC3(5) 

fluorescence, the peptides and the negative control (1% DMSO) display the same 

kinetics meaning that they have no interference (Figure 4.7.A). Likewise, no interference 

between PI and the added molecules was recorded (Figure 4.7.B). Unfortunately, the 

interference of the uncouplers with diSC3(5) fluorescence precluded their use in this 

assay. 

4.2.4. Correlation of membrane alterations with bacterial killing 

The interactions of membrane-active AMPs with target membranes have been 

extensively studied in artificial systems. Hence, in the present study our goal was to 

monitor the peptide-induced changes in membrane permeability in whole bacterial 

cells. By using membrane-targeting AMPs with well characterized mode of action, we 

wanted to monitor the phenomena of membrane depolarization and membrane 

permeabilization simultaneously, thanks to the combination of diSC3(5) and PI. The 

experiments were performed by incubating S. epidermidis ATCC 35984 and S. aureus 

ATCC 25923 with the ion channel forming gramicidin D and with the pore-forming 

melittin in PBS-glc containing 0.4 µM diSC3(5) and 5 µg/mL PI at 37 ˚C in low binding 96-

well black microtiter plates. Fluorescence was monitored throughout the assay and, at 

30 min incubation, aliquots were taken to determine bacterial viability by CFU counts. 

As shown in Figure 4.8., gramicidin D induced in both Staphylococcus spp. a 

significant increase of diSC3(5) (Figure 4.8.A and 4.8.D), but not of PI fluorescence 

(Figure 4.8.B and 4.8.E). The increase was rapid at bactericidal concentrations (i.e. >92% 

 
Figure 4.7. Interference of uncouplers and peptides with the fluorescent dyes. The kinetics of (A) diSC3(5) 

(λex = 652 nm, λem = 672 nm) and (B) PI (λex = 535 nm, λem = 617 nm) are shown in separate graphs for clarity 

purposes. The time necessary for the addition of peptides and uncouplers (indicated by an *) was about 6 

minutes. 
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killing), while it slowed down at descending peptide concentrations that also produced 

lower killing. Hence, there was a clear correlation between gramicidin D concentrations, 

bacterial killing, and diSC3(5) fluorescence kinetics, whereas in none of the cases PI 

fluorescence increased. This means that gramicidin D killed S. epidermidis and S. aureus 

by membrane depolarization without formation of larger pores that could enable PI 

uptake. 

 

 
Figure 4.8. Membrane depolarization (diSC3 (5)) (A, D), Permeabilization (PI) (B, E) and Killing percentage 

(C, F) of S. epidermidis (A – C) and S. aureus (D – F) caused by gramicidin D. Experiments were performed 

with 108 CFU/mL of the indicated strains in PBS-glc with 0.4 µM diSC3(5) (λex = 652 nm, λem = 672 nm) and 5 

µg/mL PI (λex = 535 nm, λem = 617 nm) at 37 ˚C. CFU counts were determined at 30 min incubation. diSC3(5) 

and PI kinetics are in separate graphs and only the initial 20’ are shown for clarity purposes. (*) peptide 

addition. 
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Moreover, it is important to note that diSC3(5) and PI per se were not toxic to bacteria 

because neither of the two probes showed an increase of fluorescence, or caused a 

decrease of CFUs. 

Our data are in line with those reported in the literature which reveal that gramicidin 

D causes a rapid and full dissipation of membrane potential by forming small cation 

specific channels34,36 and for this reason, many authors used this peptide as a positive 

control of membrane depolarization38–40. However, it is important to note that the 

diameter of gramicidin D-induced channels is estimated to measure about 4 Å, which is 

sufficient to accommodate the passage of monovalent cations34, but not the uptake of 

larger molecules such as PI (MW=668.4). As a consequence, interaction of PI with nucleic 

acids is precluded despite bacteria are dying18. 

The results obtained with melittin (Figure 4.9.) showed a completely different 

picture. This pore forming peptide caused a remarkable increase of PI fluorescence, with 

slower kinetics at sub-MIC and more rapid kinetics at bactericidal concentrations 

(killing>95%). Interestingly, diSC3(5) fluorescence increased only at bactericidal melittin 

concentrations. This means that the increase of diSC3(5) fluorescence did not indicate 

membrane depolarization as a primary event but was rather a consequence of 

irreversible membrane permeabilization, which appears as the key event in the case of 

melittin, it was for that reason that many authors use melittin as a positive control of 

the membrane permeabilization phenomenon41–43. 

Taking into consideration that melittin induced pores with a diameter of 25-30 Å 44 

are large enough to accommodate the passage of large molecules such as PI (Figure 

4.9.), one can reasonably expect that ion leakage may also occur. So, in principle melittin 

has the ability to alter the membrane potential. It is interesting to note, however, that 

melittin at sub-MIC concentrations induced slower PI uptake, correlated with lower 

killing activity, but no increase of diSC3(5) fluorescence (Figure 4.9.). This observation 

would suggest a limited membrane damage, probably caused by formation of transient 

pores, as reported in the literature33, and that bacteria could recover to some extent. 
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The findings observed thanks to the combination of both fluorescent dyes have 

important implications for the advancement of our knowledge concerning the mode of 

action of gramicidin D and melittin. If for instance the assay would have been performed 

by using diSC3(5) only, we would conclude that both peptides, gramicidin D and melittin, 

caused membrane depolarization (Figure 4.8. A, D and Figure 4.9.A, D) and in this case, 

the result obtained with melittin would be a false positive. On the contrary, if we had 

used only PI, the result of gramicidin D would be a false negative (Figure 4.8. B, E and 

Figure 4.9.B, E). We would speculate that gramicidin D, at difference with melittin, did 

 
Figure 4.9. Membrane depolarization (diSC3 (5)) (A, D), Permeabilization (PI) (B, E) and Killing percentage (C, F) of 

S. epidermidis (A-C) and S. aureus (D-F) caused by melittin and gramicidin D. Experiments were performed with 108 

CFU/mL of the indicated strains in PBS-glc containing 0.4 µM diSC3 (5) (λex = 652 nm, λem = 672 nm) and 5 µg/mL PI 

(λex = 535 nm, λem = 617 nm) at 37 ˚C. CFU counts were determined at 30 min incubation . The kinetics of diSC3(5) 

and PI are displayed in separate graphs, and error bars are not shown for clarity purposes. (*) peptide addition. 
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not cause membrane permeabilization and, perhaps it killed bacteria by acting on some 

internal target(s). 

Conversely, by using the combination of diSC3(5) and PI we measured the phenomena 

of membrane depolarization and permeabilization on the same bacterial population 

simultaneously. This assay thus enables to distinguish between these two phenomena 

and contributes to shed light on the mode of action of membrane-active agents such as 

the AMPs. This study confirmed that gramicidin D causes membrane depolarization and 

melittin induces membrane permeabilization. We also provide an additional evidence 

that melittin at low concentrations probably creates transient pores, which cause a 

membrane permeabilization which is reversible to some extent. 

With the aim to better understand the phenomena induced by melittin and 

gramicidin on S. epidermidis, at the end of fluorescence kinetics (30 min incubation) 

bacteria were processed for analysis by Field Emission Scanning Electron Microscopy 

(FE-SEM) (Figures 4.10.1. – 4.10.3.). 

Images of untreated bacterial cells, reported in Figure 4.10.1., show the normal, 

round and smooth appearance of vital and growing staphylococcal cells, similar to those 

observed in Chapters 3 and 5. 
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Figure 4.10.1. Morphology of S. epidermidis on polycarbonate filters analysed by FE-SEM (Panels A – F). 

Arrows indicate, respectively, division septa ( ), bacterial aggregates ( ). Representative images from 

two experiments performed in duplicate are shown. 

On the contrary, filters containing melittin treated S. epidermidis displayed a lower 

number of bacteria which presented clearly affected morphology in many cases (Figure 

4.10.2.). Dead bacteria had increased size, lost their division septa (Figure 4.10.2.B and 

4.10.2.D), their surface lost the smooth appearance, and many of them have some 

protrusions similar to blebs (Figure 4.10.2.B). These results are in agreement with the 
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fluorescence data and with the literature demonstrating that melittin causes a huge 

membrane damage42,45–47. 

Figure 4.10.2. Morphology of S. epidermidis treated with 1 µM melittin analysed by FE-SEM (Panels A 

– D). Arrows indicate, respectively, division septa ( ), bacterial aggregates ( ), collapsed bacteria ( ) and 

deflated bag ( ). Representative images from two experiments performed in duplicate are shown. 

The bacteria treated with gramicidin D, besides a lower number of bacteria on filter 

surface, also showed clearly affected morphology (Figure 4.10.3.). In addition, many 

bacteria were collapsed (Figure 4.10.3.C – D), some bacterial clusters presented 

extrusion of cytoplasmic material (Figure 4.10.3.B – C) and in many cases the “deflated 

bag” morphology was observed, suggesting impaired microbial cell growth as well as the 

cell division process, similar to what observed for Gramicidin S48. 
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Figure 4.10.3. Morphology of S. epidermidis treated with 30 µM Gramicidin D analysed by FE-SEM 

(Panels A – D). Arrows indicate, respectively, extruded cytoplasmic material ( ), collapsed bacteria ( ) 

and deflated bag ( ). Representative images from two experiments performed in duplicate are shown. 

4.2.5. Adaptation of the assay to lower bacterial loads 

Once the experimental conditions for the membrane depolarization and 

permeabilization assay were established, we wanted to adapt the assay to lower 

bacterial concentrations with the aim to make the assay more sensitive. In order to 

assess which of the fluorescent probes was more sensitive, the membrane 

depolarization and permeabilization events were analysed by using each probe with 

gramicidin D or melittin, in the presence of decreasing concentrations of S. epidermidis. 

Membrane depolarization kinetics of 108, 107, 5·106, 106 CFU/mL S. epidermidis, 

treated with gramicidin D, were monitored by using 0.4 µM diSC3(5), with killing activity 

performed in parallel (Figure 4.11.). As shown in Figure 4.11.A – B and 4.11.C – D, with 

108 and 107 CFU/mL, respectively, the membrane depolarization phenomenon in S. 

epidermidis, induced by a bactericidal concentration of gramicidin D, was clearly 
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evident. It was still evident at 5·106 CFU/mL (Figure 4.11.E – F), although with a less clear 

accumulation phase (see Figure 4.4.). Finally, with further lowering to 106 CFU/mL, the 

membrane depolarization event was far less evident with only a small increment in 

fluorescence respect to higher (Figure 4.11.G) bacterial concentrations (Figure 4.11.A,C 

and E). In this latter condition the duration of the accumulation phase almost doubled 

because it was difficult to establish when the potentiometric dye reached an equilibrium 

prior to adding the depolarizing agent. So we can conclude that membrane 

depolarization of S. epidermidis can be monitored with 0.4 µM diSC3(5) at 108, 107, and 

5·106 CFU/mL. All these experiments presented a clear correlation between membrane 

depolarization and killing activity (Figure 4.11.B, D, F and H). 
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Figure 4.11. Membrane depolarization (A, C, E, G) and Killing percentage (B, D, F, H) of S. epidermidis by 

gramicidin D. Experiments were performed with (A-B) 108, (C-D) 107, (E-F) 5·106 and (G-H) 106 CFU/mL of 

the indicated strain in PBS-glc using 0.4 µM diSC3 (5) (λex = 652 nm, λem = 672 nm) at 37 ˚C. At 30 min 

incubation aliquots were taken to determine bacterial viability by CFU counts. The time necessary for the 

addition of molecules (indicated by an *) was about 5-8 minutes. 



 90 

To test PI sensitivity, the fluorescence kinetics was studied at 5 and 10 µg/mL PI and 

108 and 107 CFU/mL S. epidermidis, treated with a bactericidal concentration of melittin. 

As reported in Figure 4.12.A and 4.13.A, with bacteria at 108 CFU/mL melittin addition 

induced an increment of PI fluorescence at both PI concentrations, in good correlation 

with bacterial killing (Figure 4.12.B and 4.13.B), whereas at 107 CFU/mL, it was 

impossible to measure membrane permeabilization (Figure 4.12C and 4.13C) despite 

100% killing (Figure 4.12.D and 4.13.D). This happened at both PI concentrations (Figure 

4.12. and 4.13.), thus indicating that the limiting factor is not PI concentration but the 

number of bacteria, or better, their nucleic acid content. As PI emits fluorescence only 

upon binding to DNA, fluorescence intensity will depend on the concentration of PI-DNA 

complexes. These will in turn reach a detectable concentration only with a sufficiently 

high inoculum. These considerations are of course limited to the instrument we selected 

to detect fluorescence because in flow cytometry49, for example, it was possible to 

 
Figure 4.12. Membrane permeabilization (A, C) and Killing percentage (B, D) of S. epidermidis by melittin. 

The experiment was performed with (A-B) 108, (C-D) 107 CFU/mL of the indicated strain in PBS-glc using 5 

µg/mL PI (λex = 535 nm, λem = 617 nm) at 37 ˚C. At 30 min incubation aliquots were taken to determine 

bacterial viability by CFU counts. The time necessary for the addition of molecules (indicated by an *) was 

about 4 minutes. 
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detect PI uptake with a lower bacterial suspension even in the case of staphylococci 

which are notoriously small. However, in the present thesis my attention was focused 

on the possibility to analyse fluorescence kinetics in multiple samples simultaneously, 

and this is possible to achieve with a multiplate reader. 

 

  

Figure 4.13. Membrane permeabilization (A, C) and Killing percentage (B, D) of S. epidermidis by 

melittin. The experiment was performed with (A-B) 108, (C-D) 107 CFU/mL of the indicated strain mid 

log phase in PBS-glc using 10 µg/mL PI (λex = 535 nm, λem = 617 nm) at 37 ˚C in 96 low binding black well 

plate. At 30 min incubation aliquots were taken to determine bacterial viability by CFU counts. The time 

necessary for the addition of molecules (indicated by an *) was about 4 minutes. 
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4.3. Conclusions 

- By combining the potential-sensitive dye diSC3(5) and the DNA staining dye PI, it was 

possible to discriminate between membrane depolarization and membrane 

permeabilization in whole Gram-positive bacteria. 

- Concerning sensitivity, a limiting factor using a microplate reader is the concentration 

of PI-DNA complexes which is correlated to bacterial density. Nevertheless, diSC3(5) 

allows to detect membrane depolarization at lower bacterial concentrations. This 

fact suggests that concerning membrane perturbation, diSC3(5) is a more sensitive 

tool for fluorescence-based assays using a microplate reader. 

- The use of microtiter plates allows the simultaneous evaluation of several membrane 

active antimicrobial agents. 

- Concerning timing, one limiting factor of a multiplate kinetic assay could be the time 

needed to add several agents simultaneously. This could be a problem with very fast 

acting antimicrobial agents. 

- FE-SEM analysis of melittin- and gramicidin-treated S. epidermidis confirmed 

different effects on bacterial morphology. 

- The assay was validated with soluble peptides. It would need further optimization for 

applications to surface immobilized peptides. 
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4.4. Experimental procedure 

4.4.1. Peptides and Uncouplers 

The selected membrane-active peptides Gramicidin D, Cecropin A, Magainin 2, and 

Melittin were purchased from Sigma-Aldrich® (USA). Cecropin A and Gramicidin D were 

dissolved in DMSO, and Magainin 2 and Melittin were dissolved in pyrogenic water. The 

stock solutions were kept at -20 ˚C. 

4.4.2. Bacteria and bacterial cultures 

Two Gram-positive, Staphylococcus epidermidis ATCC 35984 and Staphylococcus 

aureus ATCC 25923, and two Gram-negative, Escherichia coli ATCC 25922 and 

Pseudomonas aeruginosa ATCC 27853 reference strains were obtained from American 

Type Culture Collection (ATCC; Manassas, VA). Bacteria were maintained on Mueller-

Hinton (MH) agar plates. For antimicrobial assays, bacteria were cultured in liquid Brain 

Heath Infusion (BHI) overnight, 1:50-diluted in fresh medium and allowed to grow in 

orbital shaker at 37 ˚C. Mid-log phase bacteria were harvested after 10 min 

centrifugation at 1000 x g and resuspended in PBS to optimal density assessed by 

turbidity at 600 nm, with reference to previously determined standards. For 

fluorescence kinetics, mid-log phase bacteria were collected by centrifugation at 1000 x 

g, washed two times with PBS (pH 7.4), and finally resuspended in PBS supplemented 

with 25 mM glucose (PBS-glc) at the desired density assessed by turbidity at 600 nm, 

with reference to previously determined standards 

4.4.3. Determination of the standard Minimum Inhibitory Concentration 

(MIC) and Minimum Bactericidal Concentration (MBC) 

The minimum inhibitory concentration (MIC) of selected peptides was determined by 

a broth microdilution assay in 96-well microtiter plates, using MH broth with 

logarithmic-phase microorganisms at 5 × 105 CFU/mL, as previously reported50, 

following CLSI guidelines. The minimum bactericidal concentration (MBC) was 

determined seeding aliquots from wells showing no visible growth on solid medium to 

allow colony counts. 
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4.4.4. Reagent preparation 

Stock solutions were prepared as follows: 400 µM diSC3(5) in 100% DMSO, 50 µM 

DiBAC4(3) in 100% DMSO, and 1 mg/mL PI in ddH2O (PI would precipitate in a more 

concentrated solution). All stocks, protected from light by aluminium foil, are stable at -

20 ˚C for at least 6 months. 

4.4.5. Compatibility between fluorescence dyes 

The fluorometric measurements using membrane potential-sensitive fluorescent 

distributional probes (Bis-(1,3-Dibutylbarbituric Acid)Trimethine Oxonol (DiBAC4(3)) 15 

(Figure 4.13.A) and 3,3'-Dipropylthiadicarbocyanine Iodide (diSC3(5)) 17) (Figure 4.13.B), 

and the membrane impermeable fluorescencent dye Propidium Iodide (PI) 10 (Figure 

4.13.C) were performed with a Multimode Plate Reader (EnSpireTM 2300, PerkinElmer, 

Waltham, MA, USA) by using low-binding surface 96-black polystyrene microtiter plates 

(PerkinElmer), in order to prevent unspecific binding of the molecules used in the study 

to polystyrene surface of conventional plates. 

4.4.6. Excitation and Emission spectra 

To verify the correct excitation and emission wavelengths of each fluorescent dye, 

their excitation and emission spectra were measured in our assay conditions. DiBAC4(3) 

was studied at 125, 250 and 500 nM (λex=490 nm, λem=516 nm), and PI at 5, 10 and 20 

µg/mL (λex=535 nm, λem=617 nm) in PBS supplemented with 25 mM glucose (PBS-glc). 

Moreover, the excitation and emission spectra of DiBAC4(3) were recorded in the 

presence of 10 µg/mL PI, with and without S. epidermidis, in PBS-glc. Furthermore, the 

excitation and emission spectra of 0.4 µM diSC3(5) alone (λex=652 nm, λem=672 nm) and 

 
Figure 4.13. Chemical structures of (A) DiBAC4(3), (B) diSC3(5) and (C) PI. 
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0.4 µM diSC3(5) plus 5, 10 and 20 µg/mL PI (λex=652 and 490 nm, λem=617 and 672 nm), 

were measured in PBS-glc, in the presence and in the absence of S. epidermidis. 

4.4.7. Interference of uncouplers and peptides with the fluorescent dyes 

To evaluate if the uncouplers [Carbonyl cyanide 3-chlorophenylhydrazone (CCCP) and 

Carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP)], the solvent 

(dimethylsulfoxide (DMSO)) and the selected peptides (melittin and gramicidin D) have 

any interference with diSC3(5) or with PI, both fluorescent dyes combined together in 

the same wells [black-wellplate (Optiplate)] were monitored kinetically for 30 minutes 

at 37 °C in PBS-glc (diSC3(5); λex=652, λem= 672 nm and PI; λex= 490, λem=617 nm). 

4.4.8. Kinetic fluorescence measurements to detect membrane depolarization 

and permeabilization 

Mid-log phase S. epidermidis and S. aureus, resuspended at 1·108 CFU/mL in PBS-glc 

were incubated in the orbital shaker at 37 ˚C for 15 min. Therefter, diSC3(5) and PI were 

added at final concentrations of 0.4 µM and 5 µg/mL, respectively. The solution was 

mixed by short vortexing and 200 μL were added in duplicate to the wells of a black 96-

well plate (Optiplate, PerkinElmer). The samples were preincubated at 37 °C with 

fluorescence measurements every minute for 5-10 min, or until readings were stabilized 

(Accumulation phase). After this time, the plate was ejected. Depolarizing agents were 

added to their respective wells to the final concentrations of 15 - 30 µM gramicidin D, 

62.5 nM - 1 µM Melittin, 1% DMSO. The plate was placed back into the reader as quickly 

as possible to continue monitoring diSC3(5) and PI, every 0.5 minutes for around 10 – 20 

min. At the end of incubation (around 30 min), aliquots were withdrawn from each well, 

serially diluted and plated on MH agar to allow CFU determination. 

4.4.9. Field Emission Scanning Electron Microscopy (SEM) of S. epidermidis on 

Polycarbonate membrane filters 

The morphology of S. epidermidis, deposited on polycarbonate filters was studied by 

Field Emission Scanning Electron Microscopy (FE-SEM) (JEOL model JSM-7610FPlus) 

operated in secondary electron detection mode. The working distance was adjusted in 

order to obtain the suitable magnification; the accelerating voltage was set to 5 keV. 

SEM was performed in duplicate for each sample. Briefly, upon 30 min incubation as 
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described above, all samples were collected by centrifugation at 1000 x g for 10 min and 

fixed with 5% (v/v) glutaraldehyde in PBS for 2h at room temperature. Fixed bacteria 

were deposited on 0.2 µm Isopore polycarbonate membrane filters (Merck Millipore), 

extensively rinsed with filtered sterile PBS and dehydrated in graded series of ethanol 

solutions (20 min each). Immediately prior to SEM analysis, samples were sputter-

coated with a thin gold layer.  
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5.1. Introduction 

To obtain effective antimicrobial coatings with AMPs, it is crucial not to compromise 

their functionality upon immobilization. Several studies addressed these aspects by 

investigating the coupling chemistry, the role of spacer length or site of peptide 

anchoring, or peptide orientation on immobilized peptide activity1,2. Among these, some 

studies demonstrated ability of anchored peptides to permeabilize artificial lipid 

vesicles3–5, and Gabriel et al. demonstrated that N-terminally conjugated LL-37 was 

capable to permeabilize E. coli6. However, it is not clear how can membrane-active 

peptides, covalently anchored to a solid support, interact with the cytoplasmic 

membrane of whole bacteria, causing membrane permeabilization. This is particularly 

difficult to understand in the case of Gram-positive microorganisms, which are wrapped 

by a thick peptidoglycan layer7. Some authors suggest that an electrostatic imbalance 

on bacterial surface would affect the Donnan potential across the membrane, which 

would in turn activate lethal cellular events such as the activation of autolytic enzymes, 

or disruption of electrostatic balance of internal layers8. Although the exact molecular 

mechanism has not yet been unravelled, Hilpert et al. demonstrated by using the 

membrane potential-sensitive fluorescent distributional probe 3,3'-

Dipropylthiadicarbocyanine Iodide (diSC3(5)), that the immobilized peptides were able 

to destabilize the cell envelope of Gram-positive bacteria8. 

In this chapter we investigated the mode of action of surface-anchored B27(1-18). 

First we studied how peptide orientation, i.e. N-terminal or C-terminal immobilization, 

influences peptide behaviour on titanium. This was accomplished by comparing the 

antimicrobial efficacy of titanium samples functionalized with the cysteinylated 

derivatives B27(1-18)Cys and CysB27(1-18), against S. epidermidis. Additional mechanistic 

insights were obtained by applying the fluorescence-based assay, developed in the 
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previous chapter (chapter 4), to resin-bound analogues of B27(1-18). By using this 

approach it was possible to determine how antimicrobial activity was affected by 

orientation and to compare peptide efficacy and mode of action of free and anchored 

peptide derivatives.  
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5.2. Results and Discussion 

As continuation and deepening of the study described in chapter 3, in collaboration 

with Biomaterials, Biomechanics & Tissue Engineering research group (BiBiTE) from 

Polytechnic University of Catalonia (Barcelona, Catalonia, Spain), we decided to 

investigate the influence of peptide orientation on the antimicrobial performance of 

titanium functionalized with BMAP27(1-18)9. Similar to what reported in chapter 3, the 

amino acid sequence was modified at the N-terminus or C-terminus by addition of three 

6-aminohexanoic acid (Ahx) units as a spacer and one cysteine residue as anchoring 

moiety. The derivatives BMAP27(1-18)-(Ahx)3-Cys and Cys-(Ahx)3-BMAP27(1-18) are 

hereafter referred to as B27(1-18)Cys and CysB27(1-18). In order to verify whether the 

antimicrobial properties have been affected by this modification, their minimum 

inhibitory concentrations (MICs) against two Gram-positive bacterial species were 

determined in a standard MIC assay (Table 5.1.). Although the two cysteinylated 

derivatives displayed slightly lower MIC values (one well difference) against both strains 

compared to the original BMAP27(1-18), the differences are too small to be considered 

significant. Most important, the two derivatives did not display any difference in activity. 

 

 

 

 

 

 

 

 

 

For peptide coupling to titanium the same strategy described in chapter 3 was 

applied (Figure 5.1.). 

Table 5.1. Antimicrobial activity of soluble 

cysteinylated peptides against two Gram-positive 

reference strains. 

BMAP27(1-18) B27(1-18)Cys CysB27(1-18) 

MIC (µM)a,b 

S. epidermidis 

ATCC 35984 
2 1 1 

S. aureus 

ATCC 25923 
4 2 2 

a Determined in MH broth. 

b Data are means of at least 3 independent experiments. 
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5.2.1. Physicochemical characterization of titanium samples 

To verify whether Ti functionalization occurred properly, Ti samples were 

characterized by static contact angle (CA) measurements and XPS essentially as 

described in chapter 3. CA analysis revealed considerable modifications in wettability as 

a result of each treatment (Ti_Pl vs. Ti; Ti_A vs. Ti_Pl; Ti_A vs. Ti_A_B27(1-18)Cys and Ti_A 

vs Ti_A_CysB27(1-18)) (Figure 5.2.). Based on these findings, which are in line with 

previous reports10,11, we can reasonably deduce that the expected modifications have 

taken place. In addition, another important observation was the absence of any 

significant difference in wettability between Ti samples functionalized with B27(1-18)Cys 

and CysB27(1-18). 

 

Figure 5.1. Schematic representation of covalent anchoring of B27(1-18)Cys or CysB27(1-18) to titanium by 

maleimide-thiol chemistry. NB: the amino acid sequence of B27(1-18)Cys is written backwards and it does 

not represent a retro analogue. 
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The XPS spectra (data not shown) gave similar results, with an equal increment in 

carbon (C 1s) and nitrogen (N 1s) contents, along with reduction of oxygen (O 1s) and 

titanium (Ti 2p) percentages in Ti_A_B27(1-18)Cys and Ti_A_CysB27(1-18) respect to Ti_A 

and Ti samples, indicating stable binding of peptide molecules to titanium. 

5.2.2. Analysis of antimicrobial properties of titanium samples 

The antimicrobial efficacy was analysed as explained in chapter 3, testing first the 

inhibition of bacterial adhesion. Ti samples were immersed in a suspension of S. 

epidermidis for 2 h at 37°C, then planktonic cells were rinsed away and adherent 

bacteria recovered by vortexing and plating on solid medium. The colony forming units 

(CFU) of S. epidermidis on Ti_A_B27(1-18)Cys and Ti_A_CysB27(1-18) disks were 

remarkably less than those recovered from bare Ti, and also respect to Ti_A, without 

significant difference between N- or C-terminally immobilized peptides (Figure 5.3.). 

These results would suggest that bacteria have been killed upon contact with the bio-

functionalized titanium, regardless of peptide orientation. 

Figure 5.2. Average values of contact angles of the indicated Ti samples in duplicate. The experiment 

was performed two times. Asterisks denote statistically significant differences between the indicated 

samples (P < 0.05). 
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Figure 5.3. Adhesion of S. epidermidis to the indicated Ti samples. Following 2 h incubation at 37 °C, the 

CFUs of adherent microorganisms were recovered by a vortexing procedure, serial dilutions and plating 

on solid medium. Results are expressed as percent CFU respect to CFU recovered from bare titanium (Ti) 

and are the means ± SD of at least three independent experiments performed in triplicate. 

To better understand the events occurring during staphylococcal adhesion, in parallel 

to CFU determination, the morphology of adhered bacteria was studied by SEM. This 

analysis revealed remarkable differences in the morphology of S. epidermidis cells on 

the different substrata (Figures 5.4.1. – 5.4.2.). 

S. epidermidis cells on Ti and Ti_A samples had normal round shape, with smooth 

surface and evident division septa (Figure 5.4.1.F). Microorganisms in division phase 

were frequently observed, often forming multilayer agglomerates (Figure 5.4.1.A, B), 

covered by a dense and grey layer resembling a blanket (Figure 5.4.1.C – E). In these 

clusters bacteria were tightly connected by junctions (Figure 5.4.1.C, 5.4.1.E and 

5.4.1.F). At the contact interface between bacterial and Ti surface a halo (Figure 5.4.1.D) 

and fimbriae-like surface appendages were observed (Figure 5.4.1.E – F). These 

structures, likely representing extracellular matrix components, together with the 

formation of multilayers with tightly interconnected individual cells firmly attached to 

titanium surface by adhesion structures, indicate early biofilm formation12–14. Taking into 

consideration the well-known biofilm properties of S. epidermidis ATCC 35984, a 

recognized heavy matrix producer15,16, the morphological characteristics of titanium 

attached bacteria observed by SEM are in line with the literature. The morphological 

differences between S. epidermidis attached to bare Ti (Figure 5.4.1.A, 5.4.1.C and 
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5.4.1.E) and those attached to silanized Ti disks were not significant (Figure 5.4.1.B, 

5.4.1.D and 5.4.1.F). 

 
Figure 5.4.1. Morphology of S. epidermidis on Ti (Panels A, C, E) and Ti_A (Panels B, D, F) samples 

analysed by SEM. Upon 2 h incubation all samples were rinsed, fixed and processed for SEM analysis. 

Panel E is a higher magnification of the image presented in Panel C. Arrows indicate division septa ( ), 

halos ( ), contact junctions ( ), pseudopod-like structures ( ). Representative images from two 

experiments performed in duplicate are shown. 
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On the contrary, a lower number of intact S. epidermidis cells were attached to 

Ti_A_B27(1-18)Cys and Ti_A_CysB27(1-18) samples (Figure 5.4.2.). Instead of typical 

biofilm structures, remains of dead cells were observed on both types of peptide-

functionalized titanium samples (Figure 5.4.2.B – D). On Ti_A_CysB27(1-18) samples it 

was also possible to note structures with ragged surface, probably extruded cytoplasmic 

material from dead cells, near intact bacterial cells (Figure 5.4.2.E), and in other fields, 

dead S. epidermidis cells appeared collapsed, with dramatically affected morphology 

(Figure 5.4.2.F). 

Collectively, based on SEM analysis and CFU counts we can reasonably deduce that 

immobilized BMAP27(1-18), regardless of its orientation on metal surfaces, was able to 

kill S. epidermidis, although SEM images do not add a clear-cut information on possible 

different effects between the two analogues. Concerning contact killing, our 

observations are in line with previous findings reported in chapter 3, while concerning 

orientation-dependent activity, the lack of a significant difference between the N- and 

C-terminally immobilized peptides appears in contrast with the literature3,8,17–19. Some 

authors suggest that the antimicrobial efficacy of tethered peptides could be affected 

by the position of cationic and hydrophobic residues8,20,21. In particular, in a study 

involving the sheep cathelicidin SMAP-29, an alfa-helical peptide highly similar to BMAP-

27 22, Soares et al. registered remarkably better antimicrobial activity with the peptide 

immobilized via its C-terminus19. A comparative analysis of the amino acid sequences of 

BMAP27(1-18) and of the AMPs studied by others can help explain these apparent 

discrepancies. In comparison to SMAP-29, BMAP27(1-18) lacks the C-terminal 

hydrophobic tail23, and the 1-18 segment of BMAP-27, containing 10 cationic residues 

(3 Arg and 7 Lys), results in a highly cationic sequence. Moreover, the first amino acid of 

SMAP-29 is an Arginine, followed by a Glycine residue, whereas the same amino acids 

are present at inverted positions (GR instead of RG)22,23 in BMAP-27, as well as in 

BMAP27(1-18). This could at least partly explain why masking of the N-terminal Arg upon 

tethering of SMAP-29 via its N-terminus resulted in decreased activity, whereas killing 

ability of BMAP27(1-18) seemed not much affected by tethering orientation. An 

additional evidence that antimicrobial activity of BMAP-27 is relatively independent on 

anchoring position was provided by Rapsch et al.24. In that study the full length BMAP-
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27 was randomly immobilized on glass surface by utilizing various chemistries exploiting 

its amino groups, without any spacer, and the immobilized peptide was active against E. 

coli. In this respect it is important to note that in our hands, N-terminally biotinylated 

BMAP-27 and BMAP27(1-18), immobilized on streptavidin resin beads, proved 

bactericidal to a similar extent against two Staphylococcus spp9. In comparison with 

melittin3 or with Dhvar5 peptide17, the cationic groups of BMAP27(1-18) are evenly 

distributed along the peptide sequence, being cationic residues regularly interspersed 

with hydrophobic ones. Hence, its amphipathicity is conformation-dependent, at 

difference with melittin and Dhvar5, both characterized by sequence-dependent 

amphipathicity with hydrophobic and cationic residues segregated at the N-terminus 

and the C-terminus, respectively. In both cases tethering orientation affected the 

activity of the immobilized peptides, but with opposite results. C-terminally immobilized 

melittin was more active respect to the N-terminally anchored peptide3, whereas C-

terminally immobilized Dhvar5 was less effective than the N-terminally linked 

analogue17. This means that besides structural features such as amino acid sequence, 

conformation, and amphipaticity, there are other variables to be considered when 

analysing the peptide efficacy in the immobilized state. In this respect, researchers of 

the field agree on the necessity to elucidate the antimicrobial mode of action of surface 

immobilized AMPs. 
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Figure 5.4.2. Morphology of S. epidermidis on Ti_A_B27(1-18) Cys (Panels A-C) and Ti_A_CysB27(1-18) 

(Panels D-F) samples analysed by SEM. Upon 2 h incubation all samples were rinsed, fixed and processed 

for SEM analysis. Panel B is a higher magnification of the image presented in Panel A. Arrows indicate 

extruded cytoplasmic material ( ), dead bacteria residues ( ). Representative images from two 

experiments performed in duplicate are shown. 
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5.2.3. Mode of action studies of free and anchored B27(1-18) 

To address this issue we applied the fluorescence-based assay developed in Chapter 

4. We were interested in particular whether a membrane-active peptide such as 

BMAP27(1-18), when immobilized on solid support, retained its capacity to interact with 

the cytoplasmic membrane of target microorganisms. In order to compare the 

membrane-perturbing ability of free and anchored BMAP27(1-18), we needed to keep 

both peptide forms in solution and to know their respective concentrations. To meet 

both requirements we decided to use a streptavidin/biotin-based anchoring method 

applied to an agarose-based commercial resin. 

 
Figure 5.5. Coupling of B27(1-18)-C-Biot and Biot-N-B27(1-18) to Streptavidin resin beads. NB: the 

amino acid sequence of B27(1-18)Lys is written backwards and it does not represent a retro analogue. 

 

We synthesized two biotinylated derivatives of BMAP27(1-18) by following exactly 

the same scheme as for titanium bound cysteinylated peptides, with the only difference 

that the C- or N-terminal Cysteine was replaced by a Lysine residue for the subsequent 

biotinylation. These biotinylated peptides are referred to as B27(1-18)-C-Biot and Biot-

N-B27(1-18) (Figure 5.5.). Prior to coupling to streptavidin-resin beads, the antimicrobial 

properties of these new derivatives have been checked against S. aureus and S. 

epidermidis in a standard MIC assay (Table 5.2.). 
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B27(1-18)-C-Biot and Biot-N-B27(1-18) peptides maintained and slightly improved 

efficacy against S. epidermidis and S. aureus, respectively (Table 5.2.), but without 

differences in MIC values between them.  

The two derivatives were then coupled to streptavidin-resin beads to mimic an 

immobilized condition but in a fluid state, suitable for the microplate fluorescence assay. 

In order to make quantitative pairwise comparisons between the free and anchored 

peptides, and between the N-terminally and C-terminally resin-coupled peptides, it was 

mandatory to determine peptide concentration of all samples by using the same 

method. To this aim, the resin-bound peptides were eluted and their concentration 

determined by UV absorbance at 257 nm. This information was used to normalize the 

concentration of anchored and free peptides in the following assays by adjusting resin 

volumes accordingly. 

5.2.4. Interference of free and resin-bound peptides with the fluorescent dyes 

To test whether the two biotinylated peptides, both free and bound to streptavidin 

resin beads display any interference with diSC3(5) or with PI, the fluorescence of both 

probes, mixed together in the same wells, was monitored kinetically at their specific 

excitation and emission wavelengths before and after the addition of the AMPs or resins, 

without bacteria. The kinetics in Figure 5.6. show that there is no interference between 

dyes and peptides or resins. 

Table 5.2. Antimicrobial activity of soluble biotinylated 

peptides against two Gram-positive reference strains. 

BMAP27(1-18) B27(1-18)-C-Biot Biot-N-B27(1-18) 

MIC (µM)a,b 

S. epidermidis 

ATCC 35984 
2 2 2 

S. aureus 

ATCC 25923 
4 1 1 

a Determined in MH broth. 

b Data are means of at least 3 independent experiments. 



 115 

 

5.2.5. Correlation of membrane alterations with bactericidal activity of free 

peptides 

In this part of my thesis, I had the dual goal to verify the membrane-perturbing ability 

of soluble biotinylated peptides, and to compare it with possibly different effects of C- 

and N-terminally anchored AMPs on whole bacteria by using the combination of the 

fluorescent dyes diSC3(5) and PI. The experiments were first performed by incubating S. 

epidermidis ATCC 35984 with free peptides in PBS-glc containing 0.4 µM diSC3(5) and 5 

µg/mL PI at 37 ˚C in a low binding 96-well black microtiter plate. The fluorescence of 

both probes was monitored kinetically and at 30 min incubation, aliquots were taken to 

determine bacterial viability by CFU counts. The ion channel forming Gramicidin D was 

used as positive control (100% depolarization). 

As expected, Gramicidin D induced increase of diSC3(5), but not of PI fluorescence 

(Figure 5.7.), in line with the results reported in chapter 4.2.4.. On the contrary, both 

 
Figure 5.6. Interference of peptides with the fluorescent dyes. The kinetics of (A) diSC3(5) (λex = 652 nm, λem = 672 

nm) and (B) PI (λex = 535 nm, λem = 617 nm) are shown in separate graphs for clarity purposes. The time necessary 

for the addition (indicated by an *) of peptides and resins was about 7 minutes. 
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free peptides (B27(1-18)-C-Biot and Biot-N-B27(1-18)) showed a picture more similar to 

the effects of melittin (chapter 4.2.4.). In fact, both peptides caused a rapid increase of 

both, diSC3(5) and PI fluorescence, at their bactericidal concentrations (1 – 8 µM, i.e. 

those causing >90% killing), while at lower peptide concentrations (125 – 250 nM), that 

also produced lower killing, only PI showed an increment, whereas the fluorescence of 

diSC3(5) remained at baseline level (Figure 5.7.). This means that the increase of diSC3(5) 

fluorescence was rather a consequence of irreversible membrane permeabilization, 

which appears as the key event in the case of both peptides, and did not indicate a 

mechanism primarily based on membrane depolarization. 

These results are in line with previous findings, although obtained with a different 

experimental approach using as target E. coli ML3523, and in partial contrast with the 

 
Figure 5.7. Membrane depolarization (A, D), permeabilization (B, E) and killing (C, F) of S. epidermidis by 

B27(1-18)-C-Biot (A – C) and Biot-N-B27(1-18) (D – F). The experiments were performed with 108 CFU/mL 

in PBS-glc containing 0.4 µM diSC3 (5) (λex = 652 nm, λem = 672 nm) and 5 µg/mL PI (λex = 535 nm, λem = 617 

nm) at 37 ˚C. At 30 min incubation aliquots were taken to determine bacterial viability by CFU counts. The 

kinetics of diSC3(5) and PI are displayed in separate graphs, and error bars are not shown for clarity 

purposes. (*) peptide addition. 

 



 117 

findings by Lee et al25 which used the same potentiometric dye with S. aureus as target. 

According to their experiments, at difference with the full length BMAP-27, BMAP27(1-

18) would not cause calcein release from large unilamellar vesicles, whereas both 

peptides would be equally able to depolarize whole S. aureus25. Hence, the authors 

concluded that BMAP27(1-18) did not act by membrane permeabilization but by 

membrane depolarization. Based on the findings reported in this thesis we can conclude 

that the increase of diSC3(5) fluorescence observed by Lee et al was a consequence of 

bacterial membrane permeabilization induced by BMAP27(1-18). As the molecular 

weights of calcein (MW 622.53) and PI (MW 668.4) are very similar, it is not clear why 

this phenomenon could not be detected by calcein release, but we cannot exclude that 

for some reason BMAP27(1-18) was less able to interact with the LUVs that were used 

in the cited study25. 

Another interesting observation was the lack of proportionality between PI 

fluorescence and bactericidal peptide concentrations. At difference with melittin that 

caused a dose-dependent increase of PI uptake (see previous chapter), 1 µM BMAP27(1-

18) produced higher increment of PI fluorescence than 4 µM and 8 µM, while the 

increase of diSC3(5) fluorescence observed at these peptide concentrations was dose-

dependent. As all these concentrations were highly bactericidal, one can argue that 

when membrane damage is extensive, highly cationic peptide molecules bind to 

bacterial DNA thus displacing PI. 

Notably, by investigating the membrane-perturbing ability of BMAP-27-derived 

peptides we validated the fluorescence-based microplate assay, developed in chapter 

4, that allowed us to obtain some mechanistic insights concerning the interaction of 

these peptides with whole bacterial cells. 

5.2.6. Correlation of membrane alterations with bactericidal activity of resin-

bound peptides 

Due to relatively low peptide loading on resin, the fluorescence assay developed in 

the previous chapter was adapted to a lower bacterial concentration, i.e. 107 CFU/mL 

instead of 108 CFU/mL. As reported in chapter 4, this bacterial density, though not 

sufficient to detect PI uptake, is still sufficient to detect fluorescence of diSC3(5). 
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Knowing from the previous paragraph that the fluorescence of diSC3(5) increased in a 

dose-dependent manner at bactericidal peptide concentrations, we were confident that 

the assay was suitable for resin-bound peptides. To study the mode of action of 

immobilized B27(1-18)-C-Biot and Biot-N-B27(1-18), the assay was performed by adding 

free peptides or their corresponding resin equivalents to 107 CFU/mL S. epidermidis in 

PBS-glc containing 0.4 µM diSC3(5) in a black microtiter plate. Gramicidin D was the 

positive control (Figure 5.8). Aliquots were withdrawn at 30 min incubation to 

determine bacterial viability. 

 



 119 

 
Figure 5.8. Membrane depolarization (A, B) and Killing (C) of S. epidermidis caused by free and resin-bound 

B27(1-18)-C-Biot and Biot-N-B27(1-18). The experiments were performed with 107 CFU/mL in PBS-glc 

containing 0.4 µM diSC3 (5) (λex = 652 nm, λem = 672 nm) at 37 ˚C. At 30 min incubation aliquots were taken 

to determine bacterial viability by CFU counts. The membrane depolarization caused by each of the two 

peptides is displayed in separate graphs (A and B) for clarity purposes. (*) peptide or resin addition. 
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As expected, 4 µM free B27(1-18)-C-Biot and Biot-N-B27(1-18) showed the same 

behaviour by promoting a rapid increase of diSC3(5), correlated to 100% killing (Figure 

5.8.). On the contrary, at an equivalent peptide concentration the resin-bound peptides 

showed a distinct behaviour with the C-terminally immobilized peptide more active than 

the N-terminal counterpart. This difference was even more evident when the resin 

amounts were increased to 8µM peptide concentration equivalents. In fact, B27(1-18)-

C-resin, at concentrations equivalent to 4 and 8µM free peptide, promoted a dose-

related increase of diSC3(5) fluorescence, correlated to a killing activity higher than 99% 

(Figure 5.8.A, C). On the other hand, both resin-N-B27(1-18) concentrations 

(corresponding to the same 4 and 8µM free peptide), caused a remarkably lower 

diSC3(5) fluorescence, which was nevertheless associated with >90% killing (Figure 

5.8.B, C). 

Interestingly, both peptides coupled to resin beads showed kinetics of diSC3(5) 

release similar to those caused by melittin (chapter 4, Figure 4.9.), where at low 

concentrations the diSC3(5) increment reached approximately ≈20% of the maximum 

fluorescence. This type of kinetics was completely different from that observed with 

Gramicidin D where, at all concentrations, the diSC3(5) fluorescence always reached the 

maximum, although with less steep curves (chapter 4, Figure 4.8.). Hence, we can 

deduce that both peptides in the anchored state acted by permeabilization of the 

bacterial cell membrane, like the free B27(1-18)-C-Biot and Biot-N-B27(1-18) peptides. 

It remains to be established why the N-terminally bound peptide was less efficient than 

the C-terminal one. 

5.2.7. SEM analysis of membrane alterations induced by free and resin-bound 

peptides 

To shed light on the events that took place at the staphylococcal surface during mode 

of action studies, the bacteria morphology was analysed by SEM. We were curious to 

see possible differences in the morphology of S. epidermidis upon treatment with free 

and resin-bound peptides (Figures 5.9.1. – 5.9.6.). Biotinylated streptavidin-resin beads 

were used as negative controls (Figure 5.9.1.). 

Untreated S. epidermidis cells and those put in contact with the control resin had 

normal appearance. Bacteria were opaque, round in shape, with smooth surface and 
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with clearly evident division septa (Figure 5.9.1.B – C and F). Bacteria exhibited the 

expected size, with an average diameter value around 0.8 µm, clearly and easily 

distinguishable from resin beads. Bacteria formed clusters throughout the filter 

extension, also on the surface of biotinylated streptavidin resin beads (Figure 5.9.1.). As 

dividing bacteria were frequently observed, this means that bacteria were viable and 

growing (Figure 5.9.1.). Of course, as the assay was performed in solution, typical biofilm 

structures (as those visualized in chapter 3) were not observed. 

 
Figure 5.9.1. Morphology of untreated S. epidermidis on polycarbonate filters analysed by SEM in the 

absence (Panels A – C) and in the presence of biotinylated streptavidin resin beads (Panels D – F). Arrows 

indicate, respectively, resin beads ( ), division septa ( ), bacterial aggregates ( ). Representative images 

from two experiments performed in duplicate are shown. 
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In contrast, the filters containing S. epidermidis treated with free biotinylated 

peptides presented a lower number of bacteria with some agglomerates and many S. 

epidermidis cells were dramatically affected (Figure 5.9.2. and 5.9.3.). In some cases 

dead bacteria appeared swelled, without division septa, and in others were collapsed, 

deflated and appeared to merge into the filter (Figure 5.9.2.D – F and I). In numerous 

cases, a mix of live and dead bacteria in the same cluster were observed, appearing as a 

big amorphous mass deposited on filter (Figure 5.9.2.C). Moreover, some bacteria 

appeared collapsed with extrusion of cytoplasmic material out of the cell (Figure 5.9.2.G 

– H). 

On the filters presenting S. epidermidis treated with Biot-N-B27(1-18) peptide, 

bacteria with their division septa (Figure 5.9.3.D), and sometimes microorganisms with 

Figure 5.9.2. Morphology of S. epidermidis treated with B27(1-18)-C-Biot on polycarbonate filters 

analysed by SEM (Panels A – I). Panels F and H show a higher magnification of images presented in 

Panels E and G, respectively. Arrows indicate, respectively, division septa ( ), bacterial aggregates ( ), 

extruded cytoplasmic material ( ), collapsed bacteria ( ), deflated bag ( ). Representative images from 

two experiments performed in duplicate are shown. 
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a perfect appearance near a big mass of extruded cytoplasmic material were visualized 

(Figure 5.9.3.D). Moreover, a high number of agglomerates containing live bacteria and 

residues of bacterial cell membranes (Figure 5.9.3.C), and in many cases dead elongated 

bacteria (Figure 5.9.3.E – F) were observed, surrounded by an amorphous material 

(Figure 5.9.3.E), probably extruded cytoplasmic content. These modifications in 

morphology went in parallel with the reduction in CFUs and, together with the 

increment of PI fluorescence also at low peptide concentrations, demonstrate that 

BMAP27(1-18) in solution induces membrane permeabilization of bacteria in a similar 

way  to melittin. Moreover, there are some differences that may be important to 

emphasize: S. epidermidis treated with B27(1-18)-C-Biot showed many bacteria 

collapsed with extrusion of cytoplasmic material; bacteria treated with Biot-N-B27(1-18) 

displayed numerous dead elongated bacteria which in some cases were surrounded by 

an amorphous material. 
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On the other hand, when both peptides (B27(1-18)-C-Biot and Biot-N-B27(1-18)) 

were attached to streptavidin resin beads, a reduced number of S. epidermidis cells with 

some clusters and many morphologically modified bacteria were observed (Figure 5.9.4. 

and 5.9.5.). On the filters containing bacteria treated with B27(1-18)-C-Biot-Res, a 

Figure 5.9.3. Morphology of S. epidermidis treated with Biot-N-B27(1-18) on polycarbonate filters 

analysed by SEM (Panels A – F). Arrows indicate, respectively, division septa ( ), bacterial aggregates (

), extruded cytoplasmic material ( ), collapsed bacteria ( ). Representative images from two 

experiments performed in duplicate are shown. 
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cluster of big balls corresponding to resin were observed (Figure 5.9.4.A), some of them 

carried on surface a mix of live and dead bacterial aggregates (Figure 5.9.4.D) and 

collapsed bacteria (Figure 5.9.4.G). Near to these beads, accumulation of S. epidermidis 

residues and dead elongated bacteria surrounded by an amorphous material were 

observed (Figure 5.9.4.E – F) similar to the deflated bag observed by Biot-N-B27(1-18) 

peptide treatment (Figure 5.9.3.E – F). However, in most of the cases S. epidermidis 

appeared collapsed on resin surface (Figure 5.9.4.G) and on the filters (Figure 5.9.4.H – 

I), with extrusion of cytoplasmic material out of the cell (Figure 5.9.4.I). 

Figure 5.9.4. Morphology of S. epidermidis treated with B27(1-18)-C-Biot-Res on polycarbonate filters 

analysed by SEM (Panels A – I). Panels C, F and I show a higher magnification of images presented in 

Panels B, E and H, respectively. Arrows indicate, respectively, resin beads ( ), division septa ( ), bacterial 

aggregates ( ), collapsed bacteria ( ), extruded cytoplasmic material ( ), collapsed bacteria 2 ( ). 

Representative images from two experiments performed in duplicate are shown. 
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The filters containing bacteria treated with Res-N-Biot-B27(1-18) also presented 

many clusters of big balls corresponding to resin beads (Figure 5.9.5.A). Besides bacteria 

with normal morphology with well-defined division septa, some agglomerates of 

collapsed bacteria or with cytoplasmic material were visible (Figure 5.9.5.B). In addition, 

 

Figure 5.9.5. Morphology of S. epidermidis treated with Res-Biot-N-B27(1-18) on polycarbonate filters 

analysed by SEM (Panels A – F).  Panel F is a higher magnification of the image presented in Panel E. Arrows 

indicate, respectively, resin beads ( ), division septa ( ), bacterial aggregates ( ), extruded cytoplasmic 

material ( ), deflated bag ( ) and collapsed bacteria ( ). Representative images from two experiments 

performed in duplicate are shown. 
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the surface of many resin beads brought bacterial aggregates with blebs (Figure 5.9.5.C) 

and dead elongated bacteria (Figure 5.9.5.E – F). Close to these beads, accumulation of 

bacterial residues (Figure 5.9.5.B) and aggregates of live and dead bacteria were 

observed (Figure 5.9.5.D). 

These marked changes in bacterial morphology indicated that S. epidermidis viability 

was strongly affected. However, the "deflated bag" morphology, in the absence of 

visible surface damage as for example blebs or holes22, would suggests the digestion of 

S. epidermidis content occurred from inside, probably upon activation of autolytic 

enzymes26. 
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5.3. Conclusions 

- The antimicrobial assays showed that the adhesion of S. epidermidis to peptide-

functionalized titanium samples was remarkably inhibited respect to bare titanium, 

suggesting effective coupling of B27(1-18)Cys and CysB27(1-18) on to the metal surface. 

- The antimicrobial efficacy of titanium-immobilized B27(1-18)Cys or CysB27(1-18) was 

very similar. This is probably due to the uniform charge distribution along the peptide 

sequence, with cationic residues regularly interspersed with those hydrophobic. 

- Titanium attached peptides induced remarkable modifications in bacterial 

morphology, as observed by SEM, supporting a contact-killing action by the 

immobilized AMP and opening the question concerning its mode of action in the 

immobilized state. 

- To address the mode of action issue, biotinylated peptide derivatives were coupled 

to streptavidin resin beads as a model support. The biotin-streptavidin bond, though 

not covalent, is strong and stable for months if the resins are kept at 4 °C in sterile 

condition. 

- As assessed by the fluorescence measurements, the mode of action of free B27(1-

18)-C-Biot and Biot-N-B27(1-18) peptides is implemented by membrane 

permeabilization similar to what observed with melittin. 

- Both resin-immobilized peptides killed S. epidermidis by membrane permeabilization 

similar to what observed with their free counterparts, with the C-terminally 

immobilized peptide showing better efficacy respect to the N-terminal analogue. 

- SEM analysis revealed remarkable changes in morphology of bacteria treated with 

the biotinylated peptides free in solution and attached to streptavidin resin beads.  
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5.4. Experimental procedure 

5.4.1. Peptide synthesis and characterization 

The peptides (B27(1-18)Cys and CysB27(1-18)) used for coating of titanium were 

purchased from NovoPro (Shangai, China). The two biotinylated peptides were 

synthesized on a Biotage Initiator+ microwave-assisted automated peptide synthesizer 

using Fmoc-chemistry, essentially as described in Chapter 3. All the corresponding 

amino acid sequences are illustrated in Table 5.3. The sequence of BMAP27(1-18) was 

modified either at the C-terminus or at the N-terminus by addition of three units of 6-

aminohexanoic acid (Ahx), similar to what described in Chapter 3, and a Cysteine residue 

to introduce an –SH anchoring group, or a Lysine residue for biotinylation (Table 5.3.). 

 

 

 

 

 

Biotinylation was performed off-line by coupling 5 equivalents of D(+)-biotin to the 

fully protected resin-bound peptides in the presence of equimolar 2-(1H-benzotriazole-

1-yl)-1,1,3,3-tetramethylaminium tetrafluoroborate (TBTU) and 1H-

hydroxybenzotriazole (HOBt) in N,N-dimethylformamide (DMF) containing 0.6 N N-

methylmorpholine for 4h at room temperature. The reaction completion was monitored 

by the Kaiser test27. After cleavage and deprotection, the peptides have been purified 

by reverse phase high performance liquid chromatography (RP-HPLC) on a C18 Delta-

Pak column (Waters; USA) and confirmed by mass spectrometry using a Q-STAR hybrid 

quadrupole time-of-flight mass spectrometer (Applied Biosystems/MDS Sciex, Concord, 

ON, Canada) equipped with an electrospray ion source. The biotinylated peptides are 

referred to as B27(1-18)-C-Biot and Biot-N-B27(1-18). Peptide concentration was 

determined as described in Chapter 3. 

 

Table 5.3. Peptide sequences of the AMP derivatives used in this 

study. 

Peptide Sequence 

B27(1-18)Cys GRFKRFRKKFKKLFKKLS-(Ahx)3-Cys 

CysB27(1-18) Cys-(Ahx)3-GRFKRFRKKFKKLFKKLS-NH2 

B27(1-18)Lys GRFKRFRKKFKKLFKKLS-(Ahx)3-Lys 

LysB27(1-18) Lys-(Ahx)3-GRFKRFRKKFKKLFKKLS-NH2 
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5.4.2. Peptide Immobilization on titanium disks 

The cysteinylated B27(1-18) derivatives were coupled to titanium disks by applying 

exactly the same procedure used in Chapter 3. 

5.4.3. Physicochemical Characterization of the Biofunctionalized Titanium 

Surfaces 

This was done by Static Contact Angle Measurements and X-ray photoelectron 

spectroscopy as described in Chapter 3. 

5.4.4. Immobilization of peptide onto resin beads 

To this purpose, the high performance streptavidin-Sepharose® resin (GE Healthcare 

Life Sciences) was used. It is composed of highly cross-linked agarose beads with a mean 

diameter of about 30 µm, functionalized with streptavidin. It is designed for purification 

of biotinylated molecules and is supposed to have high binding capacity, as stated by 

the manufacturer. Prior to peptide immobilization, 400 µL resin aliquots were 

transferred in Eppendorf tubes and extensively washed three times with 1.6 mL sterile 

PBS by 5 min centrifugation at 300 g at room temperature, to remove the ethanol 

solution used for resin storage. Biotinylated peptides (Biot-N-B27(1-18) and B27(1-18)-

C-Biot) were dissolved in sterile PBS at 1 mM concentration. 400 µL of each peptide 

solution were added to the same volume of washed resin samples and allowed to react 

overnight at 4˚C under agitation. As a control, a resin sample was coupled in parallel 

with biotin. Samples were then allowed to re-equilibrate at room temperature, 

centrifuged, and rinsed 5 times with 1.6 mL of PBS. The UV absorbance at 257 nm of the 

resin supernatants was monitored throughout the coupling procedure. Washings 

stopped when the absorbance reached the baseline level. All the procedures were 

performed under sterile conditions. Derivatised resins were kept at 4 °C. 

5.4.5. Determination of resin loading 

To estimate the amount of resin-bound peptides, their concentration was 

determined by measuring the absorbance at 257 nm of resin supernatants containing 

eluted peptides. First, 400 µL aliquots of each resin, including that coupled with biotin 

used as reference, were washed three times with 1.6 mL of sterile water by 

centrifugation, to remove the salts present in PBS. Thereafter, peptides were eluted 
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from the resins by addition of 1.6 mL 0.05% TFA. The elution was repeated twice, the 

obtained supernatants were combined and freeze-dryed. After lyophilization, peptides 

were dissolved in 400 µL water and their concentration determined by UV absorbance. 

5.4.6. Bacteria and antimicrobial activity assays 

The reference strains Staphylococcus epidermidis ATCC 35984 and Staphylococcus 

aureus ATCC 25923 were cultured as described in Chapters 3 and 4. 

5.4.6.1. Determination of the Minimum Inhibitory Concentration (MIC) 

The MIC of B27(1-18)Cys, CysB27(1-18), B27(1-18)Lys and LysB27(1-18) peptides in 

solution was determined by the standard broth microdilution assay as described in 

Chapter 3. 

5.4.6.2. Evaluation of bacterial adhesion to titanium surface 

Adhesion of S. epidermidis ATCC 35984 to titanium samples was investigated as in 

chapter 3.4.4.2.. All experiments were performed in triplicate for each type of surface. 

5.4.6.3. Scanning Electron Microscopy (SEM) of S. epidermidis on Ti samples 

SEM of titanium samples was performed on duplicate samples by applying the same 

procedure used in Chapter 3.  

5.4.7. Kinetic fluorescence measurements to detect membrane depolarization 

and permeabilization 

The procedure developed in Chapter 4 was applied. Mid-log phase S. epidermidis, 

resuspended at 1·107 CFU/mL or 1·108 CFU/mL in PBS-glc were incubated in the orbital 

shaker at 37 ˚C for 15 min. Therefter, diSC3 (5) alone, or diSC3(5) and PI together were 

added at final concentrations of 0.4 µM and 5 µg/mL, respectively. The solution was 

mixed by short vortexing and 200 μL were added in duplicate to the wells of a black 96-

well plate (Optiplate, PerkinElmer). The plate was preincubated at 37 °C for 5 - 10 min 

until readings were stabilized. After this time, the plate was ejected for addition of free 

and resin-bound peptides. The plate was placed back into the reader and fluorescence 

monitored for additional 10 - 20 minutes. At the end of incubation (around 30 min), 

aliquots were withdrawn from each well, serially diluted and plated on MH agar to allow 

CFU determination. 
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5.4.7.1. Field Emission Scanning Electron Microscopy (SEM) of S. epidermidis on 

Polycarbonate membrane filters 

The morphology of S. epidermidis, treated with free and anchored peptides, and 

deposited on polycarbonate filters, was studied by Field Emission Scanning Electron 

Microscopy (FE-SEM) (JEOL model JSM-7610FPlus) as described in Chapter 4, on 

duplicate samples. 

5.4.8. Statistical analysis 

Data, presented as mean values ± standard deviations, have been analysed by a non-

parametric U Mann-Whitney test (IBM SPSS Statistics 20 software, Armonk, NY, USA). 

Statistical significance was set at P value <0.05. 
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6.1. Introduction 

As already mentioned, it is crucial to adopt strategies for the prevention of bacterial 

adhesion to and biofilm formation on the prosthetic surfaces, not only by enhancing the 

perioperative preventative measures but also by developing biomaterials resistant to 

bacterial infection and compatible with osteoblasts cells. A complex dynamics of events 

occurring during and after implantation, like the osteoblasts attachment, growth and 

differentiation, should be considered to reach a complete implant integration. In fact, 

the events that follow prostheses implantation can be regarded as a "race for the 

surface": if it is won by host tissue cells, the implant surface is covered by tissue and 

becomes less susceptible to bacterial colonization. However, if the race is won by 

bacteria, then biofilm formation on the implant surface reduces the likeliness of tissue 

integration1–3. 

In this chapter we investigated the compatibility of titanium samples functionalized 

with BMAP27(1-18) to osteoblast cells. Moreover, to address the “race for the surface” 

issue, peptide-grafted titanium samples were tested in bacteria-osteoblasts co-culture 

experiments. In addition, the influence of peptide orientation was also studied in these 

experiments. Titanium samples prepared and analysed for antimicrobial properties in 

Chapters 3 and 5 were used. 
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6.2. Results and Discussion 

6.2.1. Evaluation of compatibility of titanium samples to osteoblast cells 

The biocompatibility of our Ti samples to osteoblasts cells was addressed by 

incubating Ti samples with the osteosarcoma-derived MG-63 cells, used as a model, in 

a 48-well plate. After 4 h incubation, the metabolic activity of the attached cells was 

evaluated by a PrestoBlue® metabolic assay. The viability of cells attached to Ti_A and 

Ti_A_B27(1-18)SH samples was comparable to cell viability on bare titanium, which is 

known for its biocompatibility (Figure 6.1.A). Highly similar results were obtained with 

a different batch of samples, including Ti_A_B27(1-18)Cys and Ti_A_CysB27(1-18), and 

 
Figure 6.1. MG-63 osteoblast viability upon adhesion to functionalized Ti samples using the metabolic 

dye PrestoBlue®. Results are expressed as percent cell viability respect to cells seeded on bare titanium 

and are the means ± SD of at least three independent experiments performed in triplicate. Differences 

between samples did not reach statistical significance. Panels A and B refer to titanium samples 

described in Chapters 3 and 5, respectively. 
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their respective controls (Figure 6.1.B). These data indicate that cells were vital and able 

to adhere to different substrata without significant toxic effects neither by the peptide, 

regardless of its orientation, nor by the other organic molecules present on Ti (e.g. Ti_A). 

This observation adds to previous studies reporting absence of cytotoxic effects of 

BMAP27(1-18) against several host cell types both in solution4–6, and upon 

immobilization7. 

Taking into consideration the cytocompatibility of the functionalized Ti samples, we 

next investigated their antimicrobial efficacy in a more sophisticated context by 

addressing the issue of "race for the surface". This concept derives from the observation 

that the surface of an ideal prosthesis should be resistant to bacterial invasion and at 

the same time prone to colonization by host tissue cells1,3,8. 

In order to analyse if the colonizing capacity of osteoblast cells could be hampered 

by bacteria attached on Ti itself, a co-culture experiment of MG-63 cells and bacteria 

was performed. Prior to seeding osteoblasts on Ti samples, Ti samples were incubated 

with S. epidermidis for 2 h at 37 °C, similar to the antimicrobial assays described in 

chapter 3. After withdrawal of planktonic bacteria and washings, the bacteria-

contaminated Ti samples were seeded with freshly resuspended MG-63 cells in 

antibiotic-free DMEM medium supplemented with 2% MH, and incubated for additional 

6 h and 24 h. These time points were selected to follow cell adhesion (6 h) and early 

proliferation (24 h). Thereafter, Ti disks were processed and analysed by confocal 

fluorescence microscopy in order to evaluate MG-63 cell number, size and morphology. 
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Figure 6.2. Osteoblast adhesion to the indicated Ti samples in a cell-bacteria co-culture experiment. 

MG-63 cells were seeded on functionalized Ti disks, previously incubated with S. epidermidis, and co-

cultured in antibiotic-free medium for additional 6 h (A, C) and 24 h (B, D). At these time points, samples 

were fixed and stained with Alexa Fluor 488-phalloidin and Hoechst. Osteoblast cell number and 

morphology were evaluated by CLSM with a Leica TCS SP8 X microscope followed by quantification with 

the ImageJ software. Five optical fields were analysed for each condition on duplicate samples. A, B: 

percent cell surface coverage in the presence of bacteria respect to bacteria free controls. C, D: mean 

cell area values in the presence (Ti, Ti_A, Ti_A_B27(1-18)SH) and in the absence (Ti_cells) of bacteria. 

Asterisks denote statistically significant differences between the indicated samples (P < 0.05). 

Representative images for each condition are shown in the lower part of the figure. Scale bar = 100 µm. 

Results refer to titanium samples described in Chapter 3. 
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The results and their representative CSLM images are displayed in Figure 6.2.. Data 

refer to titanium samples described in Chapter 3 and were calculated as percent cell 

surface coverage respect to bacteria-free Ti controls (Figure 6.2.A, B), and mean cell 

area (Figure 6.2.C, D). It is obvious that the presence of S. epidermidis affected cell 

adhesion and spreading on distinct Ti samples to different extents. In Figure 6.2.A (6-h 

time point), osteoblast adhesion to Ti and Ti_A samples was 40% inhibited, but MG-63 

cell adhesion to Ti_A_B27(1-18)SH samples was not impaired but rather enhanced. 

Moreover, as at this time point osteoblast size (Figure 6.2.C) and morphology (Figure 

6.2., images in the upper row) were on average highly comparable, the increment of 

surface coverage on Ti_A_B27(1-18)SH samples could be reasonably attributed to a 

higher number of adhered MG-63 cells. This data would indicate that the bactericidal 

action exerted by peptide-functionalized Ti, as observed by SEM (Chapter 3, Figure 

3.6.3.) and confirmed by CFU counts (Chapter 3, Figure 3.5.), was effective to enable 

displacement of S. epidermidis by osteoblasts cells, which could thus predominate and 

spread onto the Ti surface. This idea seems further supported by the increase of surface 

coverage (Figure 6.2.B), and mean cell area (Figure 6.2.D) observed after 24 h co-

incubation on BMAP27(1-18)-functionalized samples. However, this explanation does 

not take into consideration possible specific effects of the Ti-anchored peptide on 

osteoblasts cells. This question was not addressed in these experiments because in a 

previous study7 BMAP27(1-18) proved neutral with respect to MG-63 cell growth and 

differentiation. Interpretation of results is additionally complicated by the intriguing 

observation that at 24-h time point a slight improvement of osteoblast adhesion and 

spreading compared to bacteria-free control was found in Ti and Ti_A samples, which 

were devoid of antimicrobial properties (Chapter 3, Figure 3.5. – 3.7.). This would 

suggest that bacterial killing may not be the only explanation and also other phenomena 

in the complex network of multiple interactions between bacteria, implant surfaces, and 

relevant tissue cells1,9,10, should be considered. 
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Figure 6.3. Representative images of osteoblast cells adhered to Ti, Ti_A, Ti_A_B27(1-18)Cys and 

Ti_A_CysB27(1-18) at 6 h and 24 h in the absence and in the presence of bacteria. At these time points, 

samples were fixed and stained with Alexa Fluor 546-phalloidin and Hoechst. Images were taken by 

CLSM with a Leica TCS SP8 X microscope. Only red stained cells (Alexa Fluor 546-phalloidin) are shown. 

Scale bar = 100 µm. Results refer to titanium samples described in Chapter 5. 
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To go deeper into these aspects, we performed a more detailed analysis of osteoblast 

cells on Ti samples by following essentially the same experimental protocol, with a lower 

initial cell number (1x104/mL instead of 4x104/mL), and the difference that each type of 

sample was incubated with cells in the presence and in the absence of bacteria. In this 

way we wanted to distinguish between results due to direct antimicrobial activity, and 

other possible effects of Ti-anchored peptides on cell adhesion and spreading. We also 

wanted to understand whether these variables could be affected by peptide orientation. 

Specifically, in these experiments Ti, Ti_A, Ti_A_B27(1-18)Cys and Ti_A_CysB27(1-18) 

samples (described in Chapter 5) were incubated in the absence and in the presence of 

S. epidermidis ATCC 35984, and after 2 h were washed and seeded with osteoblast cells 

in antibiotic-free DMEM medium supplemented with 2% MH. Samples were then fixed 

and processed for CLSM at 6 h and 24 h incubation as described previously. 

Representative images are shown in Figure 6.3.. Images were analysed by ImageJ 

software as in the previous experiments, but the pairwise combination of samples 

enabled us to improve data analysis. We first focused on the spreading ability of 

osteoblast cells on different substrata by analysing mean cell area values (Figure 6.4.). 

Figure 6.4. MG-63 mean cell area values on Ti, Ti_A, Ti_A_B27(1-18)Cys and Ti_A_CysB27(1-18) at 6 h (A, 

B) and 24 h (C, D) in the absence (A, C) and in the presence (B, D) of bacteria. Osteoblast cell number 

(Table 6.1.) and morphology were evaluated by CLSM with a Leica TCS SP8 X microscope followed by 

quantification with the ImageJ software. Nine optical fields were analysed for each condition on 

duplicate samples. Asterisks denote statistically significant differences between the indicated samples 

(P < 0.05). 
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On the other hand, at 24-h time point osteoblast spreading was highly comparable 

on diverse Ti substrates (Figure 6.4.C), with values between 750 - 1000 µm2, and with 

globally higher cell numbers respect to those detected at 6 h (Table 6.1.), suggesting 

that in the absence of bacteria cells were able to proliferate on all substrates. In general, 

this holds true also for cells on samples pre-incubated with S. epidermidis, but it is 

important to note that in this case, mean cell area values of cells on Ti_A_B27(1-18)Cys 

and Ti_A_CysB27(1-18) were significantly higher respect to Ti_A samples (Figure 6.4.D). 

However, total cell numbers on all bacteria pre-incubated samples at 24 h, though 

increased respect to their bacteria-free counterparts at the same time point, show a 

notable difference between samples, functionalized with peptides, and controls (Table 

6.1). In fact, comparing cell numbers registered on bacteria-preincubated samples at 6 

and 24 h, there was a higher increase of total cells in Ti and Ti_A than in each peptide-

grafted titanium (Table 6.1). This apparent discrepancy (respect to data reported in 

Figure 6.5. Representative images of MG-63 cell morphology in the absence and in the presence of S. 

epidermidis. Samples were fixed and stained with Alexa Fluor 546-phalloidin and Hoechst as above and 

observed by CLSM with a Leica TCS SP8 X microscope. Both colours (Alexa Fluor 546-phalloidin and 

Hoechst) are shown. The diffused blue layer in the lower right picture indicates bacterial biofilm on the 

sample. Scale bar = 10 µm. 
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Figure 6.4.D) could be explained by the observation that MG-63 cells on contaminated 

Ti samples were apparently smaller with obvious modifications in morphology as a 

consequence of biofilm formation, which was clearly evident in some areas (Figure 6.5.) 

and which was not observed on peptide-functionalized samples. Another possible 

explanation could be that cells simply reached a plateau at this time point. 

By analysing CLSM images, it was possible to calculate percent cell surface coverage 

on Ti_A, Ti_A_B27(1-18)Cys and Ti_A_CysB27(1-18) samples both in the absence and in 

the presence of S. epidermidis ATCC 35984, at 6 h and 24 h, by taking as 100% their 

corresponding Ti controls. As shown in Figure 6.6, at 6 h incubation this analysis revealed 

significant differences between silanized and peptide-functionalized samples in both 

conditions, i.e. in the absence and in the presence of bacteria (Figure 6.6.A – B), which 

were not unexpected given the number of cells observed on these samples (Table 6.1.). 

On the contrary, the differences between samples were not significant at the early 

proliferation point (24 h), regardless the presence of bacteria (Figure 6.6.C and Figure 

6.6.D), although the mean values appeared different between silanized and peptide-

functionalized samples. 

Figure 6.6. MG-63 surface coverage percentages on Ti_A, Ti_A_B27(1-18)Cys and Ti_A_CysB27(1-18) 

respect to Ti at 6 h (A, B) and 24 h (C, D) in the absence (A, C) and in the presence (B, D) of bacteria. 

Data were obtained by analysing CLSM images with the ImageJ software. Nine optical fields were 

analysed for each condition on duplicate samples. Asterisks denote statistically significant differences 

between the indicated samples (P < 0.05). 
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For a more proper understanding of the differences in surface coverage upon pre-

incubation of samples with bacteria, we calculated the osteoblasts surface coverage on 

each titanium sample, pre-incubated with S. epidermidis, taking as 100% the 

corresponding sample, incubated with cells only. These data, reported in Figure 6.7. for 

the 6-h time point, indicate that osteoblast surface coverage was in general incremented 

on all samples, with slightly higher values on peptide-functionalized titanium. 

Concerning bacteria, as mentioned before the presence of S. epidermidis on titanium 

surface could have some influence on cell adhesion. In this respect, it has been reported 

that dead S. aureus enhances osteoblast adhesion and differentiation to bone-

associated biomaterials11. 

Figure 6.7. MG-63 surface coverage percentages on Ti, Ti_A, Ti_A_B27(1-18)Cys and Ti_A_CysB27(1-18) 

samples in the presence of S. epidermidis respect to Ti, Ti_A, Ti_A_B27(1-18)Cys and Ti_A_CysB27(1-18) 

samples without bacteria. Data were obtained by analysing CLSM images with the ImageJ software. 

Nine optical fields were analysed for each condition on duplicate samples. Asterisks denote statistically 

significant differences between the indicated samples (P < 0.05). 

Concerning the peptide BMAP27(1-18), all the analyses presented in this chapter 

indicate improved osteoblast adhesion on peptide-grafted titanium. This could be 

explained by its antimicrobial activity when considering bacteria-contaminated samples. 

Moreover, increased osteoblast surface coverage on Ti_A_B27(1-18)Cys and 

Ti_A_CysB27(1-18) samples in the absence of bacteria would suggest possible effects of 

the anchored peptide on osteoblast adhesion and spreading. It is important to note in 
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this respect that antimicrobial peptides free in solution, e.g. LL-37 and -defensins, have 

been reported to promote various processes implicated in bone repair14–17. 

Finally, as already observed for the antimicrobial properties of the tethered peptides 

(see Chapter 5), none of the analyses reported in this chapter revealed significant 

differences between the two peptide analogues, immobilized via their N- or C-termini. 

A lack of influence of peptide orientation would mean that the protective effects 

towards osteoblasts cells are probably mediated by a direct antimicrobial effect (i.e. 

killing), rather than by a more sophisticated cell-mediated mechanism. This reasoning is 

based on several studies demonstrating equal if not better antibacterial efficacy of 

diastereomers, retroanalogs and all-D enantiomers of AMPs18–20, thus indicating that the 

effects of AMPs on bacteria do not require a stereospecific or sequence-dependent 

recognition by bacterial components. Nevertheless, many effects elicited by AMPs on 

host tissue cells are not canonical receptor-mediated phenomena21. 
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6.3. Conclusions 

- The immobilized peptide did not produce any cytotoxic effect on osteoblast-like 

cells regardless of its orientation. 

- MG-63 cells adhered and spread better on peptide-functionalized Ti than on bare 

and silanized titanium. This would mean that the immobilized peptide promotes 

cell adhesion in some way. 

- It seems that S. epidermidis promotes osteoblast cells adhesion with an unknown 

mechanism. 

- Osteoblast-like cells adhered and spread better on functionalized Ti when co-

cultured with bacteria compared to non-coated surfaces. This could be the 

combined result of peptide-mediated killing and of dead-bacteria mediated 

stimulation of cell adhesion. 
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6.4. Experimental procedure 

6.4.1. Cell culture 

The purpose of the cell culture is to determine if cells are able to adhere, remain 

viable and able to compete for the surface in a prosthetic device for bone applications. 

Usually, the cells implicated in bone formation are osteoblasts and mesenchymal stem 

cells. In this study, the human osteoblast-like MG-63 cell line was employed as a model. 

This bone osteosarcoma cell line could represent a realistic way to understand the 

events that take place when a prosthetic device is implanted in the body. MG-63 cell line 

was obtained from ATCC (Manassas, VA, USA). 

MG-63 cells were maintained in complete Dulbecco’s Modified Eagle Medium 

(DMEM) supplemented with 10 % (v/v) heat inactivated FBS, 2 mM L-glutamine, 100 

units/mL penicillin and 100 µg/mL streptomycin., in a humidified incubator at 37 °C and 

5 % CO2 atmosphere. Culture medium was changed every 2 days to conserve the 

appropriate levels of nutrients, growth factors and hormones for cell growth as well as 

for the pH and the osmotic pressure of the culture. MG-63 cells were maintained at 

optimal density for continued growth and to stimulate further proliferation. When cells 

decrease or stop their proliferation, they reach confluence, and were detached and 

seeded in a new flask. 

6.4.2. Cell adhesion and viability assay 

The biocompatibility of titanium samples was evaluated by measuring viability of the 

MG-63 cell line by using the metabolic dye PrestoBlue®. Cells were seeded onto titanium 

samples in a 48-well plate at a density of 4 x 104 cells/well in complete medium and 

allowed to adhere for 4 h at 37 °C. Next, the medium was aspirated, cells were washed 

with sterile PBS and incubated at 37 °C for 90 min in fresh complete medium containing 

10 % (v/v) PrestoBlue®. Cell metabolic activity was measured fluorometrically according 

to PrestoBlue® manufacturer’s instructions by using a Multimode Plate Reader 

(EnSpireTM 2300, PerkinElmer, Waltham, MA, USA). All experiments were performed in 

triplicate for each type of surface. 
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6.4.3. Cell-bacteria co-culture 

This assay was performed according to previously reported studies3,9. Titanium 

samples were incubated with 1 mL of S. epidermidis (6 x 104 CFU/mL) in a 48-well plate 

for 2 h at 37 °C as described above. The medium was then removed and the samples 

were rinsed three times in sterile PBS. Afterwards, MG-63 cells, freshly re-suspended in 

DMEM medium without Penicillin and Streptomycin, supplemented with 2% MH broth, 

were seeded on bacteria-covered surfaces at a density of 4 x 104 cells/well in the batch 

of Ti samples with B27(1-18)SH and at density of 1 x 104 cells/well in the batch of Ti 

samples with B27(1-18)Cys and CysB27(1-18) peptides. Bacteria and MG-63 cells were 

incubated at 37 °C in humidified 5% CO2 for 6 and 24 h. At these time points, samples 

were fixed in 3% Paraformaldehyde, stained with Alexa Fluor 488 or 546-phalloidin and 

Hoechst 33342 and examined by Confocal Laser Scanning Microscopy (CLSM) with a 

Leica TCS SP8 microscope (Leica Microsystems GmbH, Wetzlar, Germany). Images were 

analysed using ImageJ 1.51w software (NIH, Bethesda, MD, USA) to determine cell area 

and surface coverage. All experiments were performed in duplicate for each type of 

surface. 

6.4.4. Statistical analysis 

Data, presented as mean values ± standard deviations, have been analysed by a post-

hoc HSD tukey non-parametric U Mann-Whitney test (IBM SPSS Statistics 20 software, 

Armonk, NY, USA). Statistical significance was set at P value <0.05. 
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In order to obtain titanium with anti-infective surface, in the present thesis Ti samples 

were successfully functionalized with the cathelicidin α-helical peptide B27(1-18)SH, as 

assessed by contact angle, XPS, and QCM-D analyses. The attempt to rise the peptide 

concentration in the coupling solution did not increase surface coverage. To improve 

functionalization, I would need to modify the coupling strategy substantially. This could 

be done at various levels. One could for example modify the molecule to be immobilized, 

for instance by synthesizing more complex derivatives (i.e. dendrimers) carrying 

multiple copies of antimicrobial sequences, or by synthesizing constructs containing 

multiple (e.g. antimicrobial and cell-adhesive) functionalities. Another level where it 

would be possible to introduce modifications would be on titanium surface, for example 

by applying a chemistry producing polymer brushes, which would increase the number 

of anchoring points for the AMPs. 

Adhesion of S. epidermidis to peptide-functionalized titanium disks was remarkably 

inhibited respect to bare titanium, suggesting effective coupling of B27(1-18)SH, B27(1-

18)Cys and CysB27(1-18) to the metal surface in a form that preserves their activity. The 

antimicrobial efficacy of B27(1-18)Cys or CysB27(1-18) was comparable, probably as a 

consequence of a uniform charge distribution along the peptide sequence, with cationic 

residues regularly interspersed with those hydrophobic. The altered bacterial 

morphology on peptide-functionalized Ti samples, as assessed by SEM, indicate a 

contact killing effect of the attached peptide and suggests a diverse mode of action 

respect to that displayed in solution. 

Surface immobilized BMAP-27(1-18), regardless of its orientation, displayed good 

compatibility to osteoblast-like cells and favoured their adhesion and spreading in co-

culture with bacteria, presumably by virtue of a direct, microbicidal effect. In addition, 

MG-63 cells adhered and spread better on peptide-functionalized Ti than on Ti controls 
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also in the absence of bacteria. This could indicate that the immobilized BMAP27(1-18) 

promoted cell adhesion with an as yet unknown mechanism. Hence, further studies to 

analyse these findings more in depth are required. Another interesting aspect that arose 

from co-culture experiments, though not related to AMPs, was the unexplained effect 

of bacteria on osteoblast cells. It would be very interesting to understand whether live 

or dead bacteria, or their components, elicit specific effects on osteoblast cells, 

promoting their adhesion and spreading. 

By applying the developed microplate assay based on the combination of a potential-

sensitive dye with a nucleic acid stain, we were able to distinguish membrane 

depolarization and permeabilization on whole bacteria. The phenomena of membrane 

depolarization, due to ion movements across the membrane, and membrane 

permeabilization, due to pore formation, were monitored by using gramicidin D and 

melittin, two peptides with well-known mechanism of action, on Staphylococcus 

species. To increment the sensitivity of this microplate assay, in order to use it with 

lower concentrations of bacteria, one possibility could be the replacement of PI by 

another nucleic acid stain with higher fluorescence emission upon binding to DNA. 

By using the fluorescence assay we were able to demonstrate that B27(1-18)-C-Biot 

and Biot-N-B27(1-18) peptides in solution displayed a mode of action where membrane 

permeabilization was the key event. Furthermore, the assay was feasible also for the 

resin-anchored peptides. Both immobilised B27(1-18)-C-Biot and Biot-N-B27(1-18) 

peptides eliminated S. epidermidis via permeabilization of the bacterial membranes 

similar to both free peptides in solution. In addition, in the fluorescence assay the C-

terminal immobilized peptide showed better efficacy respect to the N-terminal 

analogue. The subsequent analysis by SEM highlighted significant alterations of bacterial 

morphology treated with free and immobilized peptides. These data suggest that 

membrane permeabilization is only one of the phenomena caused by these molecules 

while alternative/additional mechanisms could be implicated for the anchored peptide. 

These alternative mechanisms could be related to activation of autolytic enzymes. This 

hypothesis could be verified using a S. epidermidis mutant with a reduced content of 

WTA/LTA, and in turn a reduced capacity to activate autolysins. 
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For further development in perspective of orthopaedic applications, it would be 

valuable studying the stability/efficacy of Ti-attached peptide in the presence of human 

serum and/or other relevant biological components such as hyaluronic acid, or in the 

presence of proteases. Although these aspects have not been addressed yet, data 

collected in the present thesis are promising, highlighting the potential of BMAP27(1-

18) for the development of biomaterials refractory to microbial contamination. 
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Evaluation of free or anchored antimicrobial
peptides as candidates for the prevention of
orthopaedic device-related infections

Francesca D’Este,a†Debora Oro,a†Gerard Boix-Lemonche,aAlessandro Tossib

and Barbara Skerlavaja*

The prevention of implant-associated infection, one the most feared complications in orthopaedic surgery, remains a major
clinical challenge and urges development of effective methods to prevent bacterial colonization of implanted devices.
Alpha-helical antimicrobial peptides (AMPs) may be promising candidates in this respect due to their potent and broad-
spectrum antimicrobial activity, their low tendency to elicit resistance and possible retention of efficacy in the immobilized state.
The aim of this study was to evaluate the potential of five different helical AMPs, the cathelicidins BMAP-27 and BMAP-28, their

(1–18) fragments and the rationally designed, artificial P19(9/G7) peptide, for the prevention of orthopaedic implant infections.
Peptides were effective at micromolar concentrations against 22 Staphylococcus and Streptococcus isolates from orthopaedic
infections, while only BMAP-28 and to a lesser extent BMAP-27 were active against Enterococcus faecalis. Peptides in solution
showed activities comparable to those of cefazolin and linezolid, on a molar basis, and also a variable capacity to neutralize
bacterial lipopolysaccharide, while devoid of adverse effects on MG-63 osteoblast cells at concentrations corresponding to the
MIC. The (1–18) BMAP fragments and P19(9/G7) were selected for further examination, based on better selectivity indices, and
showed effectiveness in the presence of hyaluronic acid and in synovial fluid, while human serum affected their activity to variable
extents, with BMAP-27(1–18) best retaining activity. This peptide was immobilized on streptavidin–resin beads and retained
activity against reference Staphylococcus epidermidis and Staphylococcus aureus strains, with negligible toxicity towards
osteoblasts, underlining its potential for the development of infection-resistant biomaterials for orthopaedic application.
Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

Keywords: α-helical antimicrobial peptide; prosthetic joint pathogens; Staphylococcus; human serum; hyaluronic acid; peptide
immobilization

Introduction

Implant-associated infection is a major challenge in orthopaedic

surgery. Although it occurs in only a small proportion of cases,

infection of prosthetic joints is a feared and devastating complica-

tion of arthroplasty procedures and is associated with substantial

morbidity and a huge economic burden [1–3]. The incidence of

infection can be much higher following trauma surgery, such as

fracture fixation [4]. More than half of infections are caused by

Gramme-positive cocci, the most common being coagulase-

negative Staphylococcus spp. and Staphylococcus aureus, followed

by Streptococcus and Enterococcus spp. A relevant proportion of

these is polymicrobial, often involving methicillin-resistant S. aureus

(MRSA). Gramme-negative bacilli, anaerobes and fungi are less

frequent causative agents [1,3]. Treatment of infections associated

with orthopaedic devices is challenging as bacteria tend to grow

in biofilms, which reduces antibiotic efficacy, added to which is

the growing incidence of antibiotic resistance also in orthopaedic

settings [1,3,5]. The prevention of initial bacterial colonization of

the implant surface thus remains a priority.

In this respect, natural antimicrobial peptides (AMPs) may repre-

sent a valuable reservoir of lead compounds for the development

of novel anti-infective agents. AMPs comprise structurally diverse

molecules endowed with potent microbicidal properties, acting as

relevant components of the immune system in a wide range of

living organisms [6]. Unlike conventional antibiotics, which act on

specific bacterial targets, the mode of action of AMPs in most cases
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relies on their capacity to selectively perturb bacterial membranes,

owing to their cationic and amphipathic nature [6,7]. This mecha-

nism accounts for their broad spectrum of activity and efficacy also

against antibiotic-resistant strains, as well as for their low propensity

to promote bacterial resistance [7]. Additionally, in several in-

stances, AMPs have exhibited immunomodulatory properties due

to their ability to interact with host cells and modulate their func-

tions, without damaging them [8,9]. Several natural or artificial

AMPs are currently under preclinical or clinical development as

novel anti-infectives [6,9,10]. Moreover, an emerging approach fo-

cuses on exploiting these molecules for the fabrication of

infection-resistant biomaterials for medical use [10–12].

Among the diverse structural classes of AMPs, linear peptides

adopting an α-helical conformation appear to possess the most ro-

bust antimicrobial activities, with lower susceptibility to medium

conditions [13,14]. In addition to broad-spectrum activity, they

can bind and neutralize proinflammatory bacterial components

such as lipopolysaccharide (LPS) [9,15]. Given their abundance in

nature and their relatively easy chemical production with respect

to other structural classes, native peptide sequences have been

exploited as templates for numerous synthetic helical AMPs with

optimized structural parameters to enhance antimicrobial potency

and selectivity [16,17]. As their killing mechanism does not require

internalization by target bacteria, α-helical AMPs may retain activity

upon immobilization, which may render them suitable for the de-

velopment of antimicrobial surfaces [18–20].

In the present study, five cationic α-helical AMPs, i.e. two bovine

members of the cathelicidin AMP family [21], two shorter deriva-

tives [22] and a rationally designed artificial AMP [17], have been

evaluated for potential applications in the prevention of orthopae-

dic device-related infections. Antimicrobial efficacy of peptide can-

didates has been assayed against bacterial isolates from clinical

cases of orthopaedic infection, in comparison with two conven-

tional antibiotics. The peptides were also evaluated for LPS-

neutralizing capacity and for potential effects on osteoblast viability

and differentiation. Based on their more favourable selectivity indi-

ces, the study was then narrowed to the three shorter peptide can-

didates, which were examined for antimicrobial efficacy under

conditions more closely resembling those encountered in vivo in

arthroplasty settings. The peptide with the best activity overall

was then tethered to resin beads via streptavidin–biotin technol-

ogy to obtain a proof-of-concept demonstration of antimicrobial ef-

ficacy upon immobilization.

Materials and Methods

Media and Reagents

Derivatized polyethylene glycol–polystyrene (PEG-PS) resins, cou-

pling reagents for peptide synthesis and 9-fluorenylmethoxy car-

bonyl (Fmoc)-amino acids were purchased from Applied

Biosystems/Thermo Fisher Scientific (Waltham, MA, USA),

Novabiochem (Laufelfingel, Switzerland) and ChemImpex (Wood

Dale, IL, USA). Peptide synthesis-grade N,N-dimethylformamide

(DMF), dichloromethane, piperidine and HPLC-grade acetonitrile

were from Biosolve (Valkenswaard, The Netherlands).

Trifluoroacetic acid (TFA), trifluoroethanol andN-methylmorpholine

were from Acros Chimica (Beerse, Belgium). The biotinylating re-

agents D(+)-Biotin and O-(N-Biotinyl-3-aminopropyl)-O0-(N-gluta-

ryl-3-aminopropyl)-diethyleneglycol (N-Biotinyl-NH-PEG2-COOH)

were obtained from Calbiochem (La Jolla, CA, USA) and

Novabiochem, respectively. High-performance Streptavidin-

Sepharose™ resin was purchased from GE Healthcare Life Sciences

(Little Chalfont, Buckinghamshire, UK).

Dehydrated media for microbiological assays were obtained

from Difco laboratories (Detroit, MI, USA) and Oxoid/Thermo Fisher

Scientific. Cefazolin sodium salt, linezolid, LPS from E. coli O111:B4,

dexamethasone (DXM), hyaluronic acid sodium salt (HA) and nor-

mal human serum (HS) were from Sigma-Aldrich (St. Louis, MO,

USA). Media and supplements for cell culture were from Sigma-

Aldrich with the exception of foetal bovine serum (FBS) (Euroclone,

Pero, Italy). Unless otherwise specified, FBS and HSwere inactivated

at 56 °C for 30min prior to use. Synovial fluid (SF) samples were ob-

tained with informed consent at Udine University Hospital (Udine,

Italy); samples were centrifuged, aliquoted and stored at �80 °C.

The Griess and PrestoBlue® reagents were from Molecular

Probes/Thermo Fisher Scientific and Invitrogen/Thermo Fisher Sci-

entific, respectively. The CytoTox 96® Non-Radioactive Cytotoxicity

Assay kit was from Promega (Madison, WI, USA). All other reagents,

including p-Nitrophenyl Phosphate Liquid Substrate System, were

from Sigma-Aldrich. Buffers were prepared in double glass-distilled

water.

Peptide Synthesis and Characterization

Peptides (Table T11) were synthesized in the solid phase using the

Fmoc-chemistry. Difficult coupling steps were handled as described

previously [14,23]. BMAP-27 and BMAP-27(1–18) were biotinylated

by coupling 5 equivalents of D(+)-Biotin to the N-terminus of

resin-bound peptides in the presence of equimolar 2-(1H-benzotri-

azole-1-yl)-1,1,3,3-tetramethyluronium tetrafluoro-borate (TBTU)

and 1H-hydroxybenzotriazole (HOBt) in DMF containing 0.6 N N-

methylmorpholine for 4 h at room temperature. BMAP-27(1–18)

was alternatively biotinylated with N-Biotinyl-NH-PEG2-COOH using

the same procedure. The biotinylated peptides are referred to as

biot-B27, biot-B27(1–18) and biot-DEG-B27(1–18) in the following

sections. After cleavage and deprotection, the peptides were

HPLC-purified and confirmed bymass spectrometry using a Q-STAR

hybrid quadrupole time-of-flight mass spectrometer (Applied

Biosystems/MDS Sciex, Concord, ON, Canada) equipped with an

electrospray ion source. Peptide concentrations were determined

in aqueous solution by measuring the absorbance at 257 nm (Phe

residues) for BMAP-27 and BMAP-27(1–18), and at 280 nm (Tyr

and Trp residues) for BMAP-28, BMAP-28(1–18) and P19(9/G7)

[14,23].

Peptide Immobilization on Streptavidin-Sepharose Resin

Two-hundred fifty microlitres of 1 mM solutions of the biotinylated

peptides [i.e. biot-B17, biot-B27(1–18) and biot-DEG-B27(1–18)] in

Table 1. Peptide sequences and molecular characteristics

Peptide Sequencea MW Length qb %Hc

BMAP-27 GRFKRFRKKFKKLFKKLSPVIPLLHL 3225 26 +12 42

BMAP-28 GGLRSLGRKILRAWKKYGPIIVPIIRI 3074 27 +8 48

BMAP-27(1–18) GRFKRFRKKFKKLFKKLS 2342 18 +11 33

BMAP-28(1–18) GGLRSLGRKILRAWKKYG 2058 18 +7 39

P19(9/G7) GLLKKIGKKAKKALKKLGY 2085 19 +9 42

aThe C-terminus of all peptides is amidated.
bq, net charge.
c%H, percent hydrophobic residues (sum of A, F, I, L, Y and W residues

divided by number of residues).

F. D’ESTE ET AL.
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PBS were mixed with an equal volume of high performance

Streptavidin-Sepharose resin (previously washed free of the storage

buffer) resuspended in PBS, and allowed to react overnight at 4 °C

under gentle agitation. One resin sample was coupled in parallel

with D(+)-Biotin for use as a reference control. Samples were then

allowed to re-equilibrate at room temperature, centrifuged and

washed extensively with PBS until the absorbance at 257 nm of

the resin supernatants reached the baseline level. Resin samples

were then resuspended in PBS and either tested immediately, or

stored at 4 °C for up to 1 month before use.

The amount of immobilized peptide was estimated after peptide

elution from a resin aliquot by 15-min treatment with 0.05% (v/v)

TFA and lyophilization. The lyophilized eluates were redissolved in

water and assayed using the Bradford reagent with reference to

standard curves generated by serial dilutions of the corresponding

soluble peptides.

Bacteria and Culture Conditions

The reference strains were Staphylococcus epidermidis ATCC 12228

and ATCC 35984, S. aureus ATCC 25923, Escherichia coli ATCC

25922 and Pseudomonas aeruginosa ATCC 27853. Clinical bacterial

isolates were collected from hip revision and other orthopaedic sur-

gery at the Valdoltra Orthopaedic Hospital (Ankaran, Slovenia) and

the Udine University Hospital (Udine, Italy), and included eight

strains of S. epidermidis, eight strains of S. aureus, one strain each

of Staphylococcus capitis, Staphylococcus hominis and Staphylococ-

cus caprae, two strains of Streptococcus agalactiae, one group G

Streptococcus and two isolates of Enterococcus faecalis. Bacteria

were maintained on Mueller-Hinton (MH) agar plates. One isolate

of S. epidermidis from the Udine hospital was methicillin-resistant

as assessed according to the guidelines and interpretative tables

of the Clinical and Laboratory Standards Institute (CLSI). Bacteria

were cultured in either liquid Brain Hearth Infusion (BHI) (Staphylo-

coccus, Streptococcus and Enterococcus strains) or MH broth (E. coli

and P. aeruginosa) for 18 h, 1:50-diluted in fresh medium and

allowed to grow in an orbital shaker at 37 °C. Mid-log phase bacteria

were harvested after 10-min centrifugation at 1000 g and resus-

pended in MH broth to an optimal density before use in antimicro-

bial assays. Bacterial density was assessed by turbidity at 600 nm,

with reference to previously determined standards. For biofilm ex-

periments, the bacterial inoculum was prepared essentially accord-

ing to Pompilio et al. [24], by direct suspension of colonies grown

overnight on MH plates in liquid medium.

Antimicrobial Assays

The minimum inhibitory concentration (MIC) of the peptides in so-

lution was determined by a broth microdilution assay in 96-well mi-

crotiter plates, using MH broth with logarithmic-phase

microorganisms at 2.5 × 105 CFU/ml, as previously reported [14],

following CLSI guidelines. The clinically used antibiotics cefazolin

and linezolid were tested in parallel for comparison. The minimum

bactericidal concentration (MBC) was determined by plating ali-

quots from wells showing no visible growth on solid medium to al-

low colony counts.

Assays for Inhibition of Biofilm Formation

Fifty microlitres of a S. epidermidis ATCC 35984 suspension

(2 × 106 CFU/ml in MH broth), prepared as described above, was

dispensed into flat-bottomed 96-well microtiter plates containing

50 μl in MH of each test agent, at 2× the final dose. Plates were then

incubated for 24 h at 37 °C, followed by removal of non-adherent

bacteria by aspiration and rinsing with PBS. Fresh MH broth was

then added, and adherent cells were quantified using the

PrestoBlue cell viability reagent according to the manufacturer’s

specifications.

Bacterial Growth Kinetics Analysis

Serial dilutions of peptides, at 2× the final concentration, were pre-

pared in 50-μl PBS alone or in PBS supplemented either with 1 or

6 mg/ml hyaluronic acid (HA) (leading to 0.5 and 3 mg/ml final

HA concentrations, respectively), or with 50%HS (25% final concen-

tration), or with 40% synovial fluid (SF, 20% final concentration) in

U-bottom 96-well plates. Fifty microlitres of adjusted suspensions

of S. epidermidis ATCC 35984 or S. aureus ATCC 25923 in MH broth

was added to each well to achieve the final density of

1 × 107 CFU/ml. Plates were then sealed with optically clear plastic

films to avoid evaporation, and bacterial growth was monitored at

600 nm for 6 h at 37 °C, with 10-s shaking steps at 15-min intervals.

Bacteria grown in each medium in the absence of peptides served

as growth controls. In some experiments, peptide dilutions in the

selected media were pre-incubated for 3 h at 37 °C prior to the ad-

dition of bacteria. Data are reported either as growth curves, or as

the calculated percent growth inhibition at 6 h with respect to bac-

teria incubated in corresponding media in the absence of peptides.

Antibacterial Activity of Immobilized Peptides

Ten-microlitre aliquots of peptide-functionalized Streptavidin-

Sepharose resins (5% v/v final resin concentration), or the corre-

sponding supernatants, were diluted in PBS to a final volume of

100 μl in microcentrifuge tubes and supplemented with 100 μl of

a 2 × 107 CFU/ml suspension of S. epidermidis ATCC 35984 or S. au-

reus ATCC 25923 in MH broth. Bacterial viability was assessed after

1-h incubation at 37 °C on a rotating wheel by the PrestoBlue assay

and CFU counts.

Cell Culture and Stimulation

The murine macrophage-like RAW 264.7 and the human

osteoblast-like MG-63 cell lines were obtained from ATCC (Manas-

sas, VA, USA) andmaintained in RPMI-1640 and DMEMmedium, re-

spectively, in a humidified incubator at 37 °C and 5% CO2

atmosphere. Both media were supplemented with 10% (v/v) FBS,

2 mM L-glutamine, 100 units/ml penicillin and 100 μg/ml strepto-

mycin (complete media).

To analyse the effects on LPS-induced nitric oxide (NO) produc-

tion, RAW 264.7 cells were seeded in 24-well plates at a density of

9 × 105 cells/well, cultured overnight and treated for 24 h with

100 ng/ml LPS in the absence and presence of peptides at the indi-

cated concentrations, in complete RPMI.

MG-63 cells used for cell viability and cytotoxicity assays were

seeded in 96-well plates at a density of 7500/well and grown for

24 h in complete DMEM before being incubated with increasing

peptide concentrations in complete medium, or, alternatively, in

DMEM supplemented with 10% (v/v) HS, or in HBSS supplemented

with 10% HS in the absence and presence of 0.5 mg/ml HA.

Peptide-functionalized resins were tested at 5% (v/v) in complete

medium. Incubation times were 1 h and 24 h for lactate dehydroge-

nase (LDH) release and cell viability assays, respectively.

Α-HELICAL AMPS FOR THE PREVENTION OF ORTHOPAEDIC INFECTIONS
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For osteoblast differentiation experiments, MG-63 cells were

seeded in 24-well plates at a density of 3 × 105/well in complete

medium, grown to 80% confluence and incubated for 7 days in

serum-free DMEM supplemented with 10 mM β-glycerophosphate

and 50 μg/ml L-ascorbic acid (osteogenic medium, OM) in the ab-

sence or presence of 2-μM peptides, of 100-nM dexamethasone

(DXM, positive control) or a combination of peptides andDXM. Dur-

ing the incubation period, medium was replaced twice with fresh

OM supplemented with the stimuli.

Nitric Oxide (NO) Determination

The amount of NO released by LPS- and peptide-treated RAW 264.7

cells was estimated by spectrophotometric quantification of the

stable NO metabolite nitrite in the cell culture supernatants using

the Griess reagent. Data were expressed as percent of nitrite pro-

duced in response to LPS in the absence of peptides.

Cytotoxicity and Cell Viability Assays

Membrane damage to MG-63 cells was evaluated as leakage of the

cytosolic enzyme lactate dehydrogenase (LDH). LDH activity was

quantified in both cell-free supernatants and cell lysates using the

CytoTox 96 Non-Radioactive Cytotoxicity Assay kit. Data were calcu-

lated as percentage of total cellular LDH activity. Cell viability was

assessed using the resazurin-based PrestoBlue metabolic dye ac-

cording to the manufacturer’s instructions.

Measurement of Alkaline Phosphatase (ALP) Activity

MG-63 cells, incubated in OM with peptides and DXM as described

above, were harvested by trypsinization, resuspended in water and

sonicated. Lysate proteins were quantified by the Bradford assay.

ALP activity was assessed spectrophotometrically from the transfor-

mation of p-nitrophenyl phosphate to p-nitrophenol at 37 °C.

Briefly, 10-μg protein aliquots of cell lysates were diluted in water

in microtiter plates to a final volume of 50 μl, mixed with 150 μl

of p-Nitrophenyl Phosphate Liquid Substrate System and incubated

for 80 min at 37 °C. Absorbance was read at 405 nm and compared

to a p-nitrophenol standard curve. Data were calculated as

nmoles/mg/min and expressed as fold-increase with respect to

basal ALP activity, or as percent of ALP activity induced by DXM

alone.

Results

Design and Selection of Candidate Peptides

The peptides used in this study (Table 1) were selected on the basis

of their reported broad antimicrobial activity spectra that covered

Gramme-positive cocci [17,22,23,25]. BMAP-27 and BMAP-28 are

amphipathic α-helical bovine cathelicidins that were previously

shown to exert potent bactericidal activity based on rapid mem-

brane permeabilization [22,25]. The two shorter derivatives,

BMAP-27(1–18) and BMAP-28(1–18) (hereafter referred to as

B27(1–18) and B28(1–18)), were synthetically more accessible and

showed improved selectivity with respect to prokaryotic cells [22].

The peptide P19(9/G7) (hereafter P19) was rationally designed

based on a consensus sequence derived from a panel of over 100

of natural helical AMPs of invertebrate, anuran and mammalian or-

igin [17,23]. This peptide is based on an amidated, 18-residue

sequence, like the BMAP fragments, with an added C-terminal Tyr

residue to improve quantification accuracy.

Antimicrobial Activity against Orthopaedic Pathogens

The MIC and MBC values of the peptides towards representative

reference strains of Gramme-positive S. epidermidis and S. aureus

and Gramme-negative E. coli and P. aeruginosa are reported in

Table T22. Based on the frequent presence of Gramme-positivemicro-

organisms among the causative agents of orthopaedic device-

related infections [1,3], the peptides were assayed against a panel

of Gramme-positive clinical isolates from such infections, including

Staphylococcus, Streptococcus and Enterococcus species (Table T33). All

peptides proved effective at low micromolar concentrations

against most strains, with MBC values very close to the MICs, with

the exception of E. faecalis, which was susceptible only to BMAP-

28 and to a lesser extent to BMAP-27. On a molar basis, their po-

tency was comparable to cefazolin and linezolid, two conventional

antibiotics used in orthopaedic practice [26,27]. Considering S. au-

reus and S. epidermidis species, susceptibility of clinical isolates

and corresponding reference strains to the AMPs was similar.

Among the peptides, the rationally designed P19 was overall some-

what less effective against S. aureus, while its activity against the

other Staphylococcus strains was comparable to that of the BMAP

peptides. In general, peptides were highly active against S.

epidermidis, whereas somewhat higher MIC values were observed

against S. aureus isolates. In addition, all peptides prevented the for-

mation of S. epidermidis ATCC 35984 biofilm at their MIC values, as

shown in Figure F11a. Cefazolin and linezolid, tested in parallel, re-

sulted in complete biofilm inhibition at 16 μM (fourfold MIC) and

6 μM (MIC), respectively (Figure 1b and data not shown).

Neutralization of Bacterial Lipopolysaccharide

Peptides were next evaluated for their ability to neutralize the ef-

fects of bacterial LPS, an activity common to several amphipathic

helical AMPs [15] that could be advantageous in the context of

orthopaedic biomaterials [28–30]. This was tested by inhibition of

LPS-induced nitric oxide (NO) release from RAW 264.7

macrophage-like cells co-stimulated with peptides and LPS.

BMAP-27 and -28 completely abolished the NO response at con-

centrations as low as 0.5–1 μM (Figure F22), consistent with previous

reports on their direct LPS-binding properties [31–33]. Among the

three shorter peptides, B28(1–18) virtually abolished the LPS-

induced response at 2 μM, while B27(1–18) and P19, respectively,

caused 80% and 66% inhibition at 8 μM (Figure 2). These results

could not be ascribed to cytotoxic effects on the RAW cells, as cell

Table 2. Antimicrobial activities against reference strains

Organism BMAP-
27

BMAP-
28

B27
(1–18)

B28
(1–18)

P19

MIC (MBC) (μM)a
,b

S. epidermidis ATCC 12228 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)

S. epidermidis ATCC 35984 2 (2) 2 (2) 2 (2) 2 (2) 4 (4)

S. aureus ATCC 25923 2 (4) 2 (2) 4 (8) 2 (4) 16 (32)

E. coli ATCC 25922 1 (1) 2 (2) 2 (2) 1 (1) 2 (2)

P. aeruginosa ATCC 27853 2 (4) 4 (16) 2 (4) 2 (4) 2 (2)

aDetermined in MH broth.
bData are means of at least three independent experiments.
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viability was not impaired under the experimental conditions used

(resazurin-based metabolic assays, data not shown).

Effects on Osteoblast Viability and Differentiation

To assess their safety for orthopaedic applications, the effects of

peptides on osteoblast cells were investigated using the human

osteosarcoma-derived MG-63 cell line, as a well-established

in vitro osteoblast model [34,35]. Potential short- and long-term ef-

fects were assessed in terms of membrane damage, cell viability

and cell differentiation. Figure F33a shows the percentage of lactate

dehydrogenase (LDH) release by cells incubated with the peptides

for 1 h in standard cell culture medium, as an indicator of impaired

plasma membrane integrity. None of the peptides caused detect-

able LDH release at concentrations in each peptide’s MIC range (cf.

Table 3. Antimicrobial activities against bacterial isolates obtained from clinical cases of orthopaedic infections

Organism (no. of isolates) BMAP-27 BMAP-28 B27(1–18) B28(1–18) P19 Cefazolin Linezolid

MIC range (μM)a
,b

S. epidermidis (8) 0.5–2 (1c) 1–2 (2
c
) 0.5–4 (1c) 1–2 (1c) 0.5–32 (1c) 0.5–16 (>16c) <0.4 – >95 (3c)

S. aureus (8) 2–4 1–4 2–16 2–8 16 – >64 0.5–2 6

other Staphylococcus spp. (3) 0.5–1 1–2 0.5–1 0.5–1 0.5–1 0.5–4 3

E. faecalis (2) 8–32 4 >64 64 >128 >16 6

Streptococcus spp. (3) 1–2 0.5–4 1–2 1–2 0.5–2 0.25 1.5–3

Q3

— MBC range (μM)a
,b

S. epidermidis (8) 1–2 (1c) 1–2 (2
c
) 0.5–4 (1c) 0.5–4 (1c) 0.5–64 (0.5c) 0.5–16 (>16c) n.d.

S. aureus (8) 2–4 1–4 2–16 2–8 16 – >64 1–4 n.d.

other Staphylococcus spp. (3) 0.5–1 1–2 0.5–1 0.5–1 0.5–1 1 – >16 n.d.

E. faecalis (2) 8 – >32 4 >64 >64 >128 >16 n.d.

Streptococcus spp. (3) 1–2 2–4 1–2 1–2 0.5–2 1 n.d.

— MIC50 (MIC90) (μM)a
,b,c

S. epidermidis (8) 1 (1) 2 (2) 1 (1) 1 (1) 1 (2) 2 (8) 3 (6)

S. aureus (8) 2 (2) 2 (2) 4 (8) 4 (4) 16 (32) 1 (2) 6 (6)

n.d., not determinable.
aDetermined in MH broth.
bData are means of at least three independent experiments.
cMethicillin-resistant strain.
dMIC50 and MIC90: concentrations that inhibited 50% and 90%, respectively, of the strains.

Figure 1. Inhibition of S. epidermidis biofilm formation. S. epidermidis
ATCC 35984 (1 × 10

6
CFU/ml in MH broth) was seeded into flat-bottom

96-well polystyrene microtiter plates in the absence and presence of the
indicated concentrations of peptides (a) or antibiotics (b). Adherent
bacterial cells were quantified after 24-h incubation by the Prestoblue
metabolic assay. Results are expressed as percent viability compared to
untreated bacteria and are the means ± SD of three independent
experiments performed at least in triplicate.

Figure 2. Lipopolysaccharide (LPS) neutralization. RAW 264.7 cells were
stimulated with 100 ng/ml E. coli O111:B4 LPS in complete RPMI, in the
absence and presence of peptides at the indicated concentrations. Nitrite
values were determined in the culture supernatants after 24-h incubation
using the Griess reagent. Data were calculated as percent of nitrite
produced in response to LPS in the absence of peptides and are the
means ± SD of three independent experiments.
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affected, with the concentration required for complete inhibition of

S. aureus growth increasing to 64 μM (Figure 6f). With respect to S.

epidermidis growth inhibition under these conditions, B27(1–18)

clearly retained the best activity [complete inhibition at 2–4 μM

vs> 8 μM for B28(1–18) and P19] (Figure 6c). When B27(1–18) effi-

cacy against S. epidermidis was tested in the presence of heat-

inactivated HS (as in the experiments described thus far) or in the

presence of HS not subjected to heat inactivation, results were

overlapping (data not shown).

Antimicrobial Efficacy in the Immobilized State

Considering the overall results obtained thus far, the functional

analysis of peptide candidates narrowed the choice to B27(1–18)

for further evaluation of efficacy upon immobilization. Its parental

BMAP-27 was previously reported to retain activity when covalently

linked to a solid surface [19], so it was tested in parallel for compar-

ison. Peptides were N-terminally biotinylated and conjugated to a

commercial agarose resin functionalized with streptavidin.

B27(1–18) was also derivatized with a biotinylated diethylene glycol

(DEG) spacer to favour peptide mobility. In solution, the biotinyl-

ated derivatives showed comparableMIC values to the correspond-

ing non-biotinylated peptides against reference S. epidermidis and

S. aureus strains (data not shown), indicating that this modification

did not alter activity. Peptide-functionalized resin samples were in-

cubated with S. epidermidis ATCC 35984 and S. aureus ATCC 25923

suspensions for 1 h under agitation. Antibacterial effects were eval-

uated by the resazurin-based metabolic assay and colony counts.

As reported in FigureF7 7a and c, total bacterial inactivation was

achieved upon exposure to BMAP-27 and B27(1–18)-derivatized

resins, while with the DEG-B27(1–18)-functionalized sample, 65%

and 33% inhibition of S. epidermidis and S. aureuswas, respectively,

observed. Consistent with this, CFU counts revealed complete kill-

ing in the case of immobilized BMAP-27 and B27(1–18), and a par-

tial effect with DEG-B27(1–18) (Figure 7b, d). It is important to note

that the control resin, derivatized with biotin only, and the superna-

tants frompeptide-derivatized resin samples did not affect bacterial

viability (Figure 7a, c). To verify the stability of the functionalized

resins, their activity against S. epidermidis ATCC 35984 was also

measured after 1-month storage at 4 °C and, as shown in Figure 7

e and f, it was fully retained, indicating that the peptide–resin cou-

pling is quite stable. This was also supported by the lack of activity

of supernatants from 1-month-old resin samples (Figure 7e). Finally,

LDH release assays on MG-63 cells incubated for 1 h with 5% resin

suspensions did not reveal any impairment of cell membrane integ-

rity (Table T44) supporting compatibility of functionalized resins with

osteoblast cells.

Discussion

Surface modifications to render implants refractory to bacterial

colonization are among the main strategies currently pursued to

prevent orthopaedic implant-associated infection [42,43]. The

antimicrobial peptides of innate immunity are receiving increasing

attention as novel anti-infective agents also in the field of medical

devices [8–11]. The aim of the present study was to identify a

peptide candidate active against relevant orthopaedic implant

pathogens under conditions resembling in vivo settings and

suitable to be immobilized onto solid supports in view of future

development of peptide-based infection-resistant biomaterials for

orthopaedic applications.

Figure 6. Effects on bacterial growth in the presence of human serum (HS). S. epidermidis ATCC 35984 (a-c) and S. aureus ATCC 25923 (d-f) (1 × 10
7
CFU/

ml) were grown in 50% MH broth in the absence (a, d) and presence (b, c, e, f) of 25% human serum (HS) and of peptides at the indicated concentrations.
Bacteria were added immediately after the preparation of peptide dilutions in PBS (a, d) or HS-containing PBS (b, e) or, alternatively, were dispensed to
the wells after 3 h pre-incubation of the peptides at 37 °C in the presence of HS (c, f). Bacterial growth was monitored for 6 h by OD600 determinations at
30-min intervals. Data were calculated as percentage of growth inhibition at 6 h with respect to corresponding controls incubated in the absence of
peptides, and are the means ± SD of three independent experiments.
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Five α-helical peptide candidates were compared for their

in vitro efficacy against clinically relevant Gramme-positive bacte-

rial strains isolated from orthopaedic infections. In keeping with

previous reports, the BMAP peptides displayed similar low micro-

molar MIC values against most of the tested strains under stan-

dard conditions [14,25,44–46]. The comparable, or only slightly

decreased potency of the (1–18) BMAP fragments confirms that

antimicrobial activity is mainly mediated by the N-terminal seg-

ment predicted to adopt the amphipathic helical conformation

[22,25,33]. In this regard, peptide modifications on parental or

truncated BMAPs not subverting the overall helical fold

were shown to be irrelevant to peptide activity [33,39,47,48],

supporting a relatively non-specific mode of peptide interaction

with bacterial membranes that accounts for broad-spectrum

permeabilizing effects.

While showing comparable efficacy to the BMAPs on other

tested bacterial species, P19 displayed a clearly decreased activity

against S. aureus strains. This suggests a partially different mode

of action. Indeed, peptides of the P19 series have been proposed

to act on Staphylococcus strains by a mechanism dependent on in-

terference with functional processes at membrane level rather than

on direct permeabilization [49].

Figure 7. Antimicrobial efficacy of biotinylated peptides immobilized on Streptavidin-Sepharose resin. Streptavidin-Sepharose resin beads
functionalized with biotinylated derivatives of BMAP-27 and B27(1–18) as described in the method section were assayed for antimicrobial efficacy either
immediately after completion of the coupling procedure (a–d) or upon 1-month storage at 4 °C (e, f). S. epidermidis ATCC 35984 (a, b, e, f) and S. aureus
ATCC 25923 (c, d) (1 × 10

7
CFU/ml in 50% MH broth) were incubated for 1 h with 5% of the indicated resins (closed bars) or their respective supernatants

(open bars) under gentle agitation. a, c, e) Bacterial viability was determined by the Prestoblue metabolic assay and expressed as percent relative to
bacteria incubated with the control resin functionalized with biotin only, or the corresponding supernatant. b, d, f) Bacterial killing in resin-treated samples
was determined based on colony counts, and expressed relative to the control resin. The means ± SD of three independent experiments are reported.
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With the exception of BMAP-28, the peptides under investigation

showed lower efficacy against the clinical isolates of E. faecalis with

P19 being the least effective. Concerning the BMAPs and deriva-

tives, despite the limited number of strains tested, the observed

MICs and the differences in potency are on the whole in line with

a previous study assaying their activity against ten E. faecalis iso-

lates, including vancomycin-resistant strains [25].

In general, the peptides under study showed a comparable effi-

cacy to conventional antibiotics on a molar basis and moreover

proved effective against a methicillin-resistant clinical isolate of S.

epidermidis (MRSE). This adds to previous reports on the efficacy

of BMAPs and their derivatives, as well as of P19, on antibiotic-

resistant Gramme-positives, including MRSA [23,25,44,50].

Moreover, peptides prevented S. epidermidis biofilm formation

at microbicidal concentrations, with an all-or-nothing effect

overall, likely due to rapid killing of bacteria before their

deposition/attachment to the surface of microplate wells. At vari-

ance with the AMPs, both cefazolin and linezolid displayed a grad-

ual inhibition of biofilm formation, consistent with amode of action

not directly targeting the bacterial membrane [51,52]. Furthermore,

while linezolid was effective at preventing biofilm formation also at

sub-MIC concentrations, cefazolin showed complete inhibition only

at fourfold its MIC. Comparing the efficacy of the peptides to

cefazolin, the antibiotic of choice in perioperative orthopaedic pro-

phylaxis [26], the selected AMPs appear to be suitable candidates

for the prevention of bacterial colonization of implanted devices.

A distinctive feature of cationic AMPs is their capacity to neutral-

ize proinflammatory bacterial components such as LPS (endotoxin)

[15]. This property may be advantageous for applications in the

field of orthopaedic biomaterials because endotoxin contamination

may be responsible for adverse tissue reactions and can negatively

affect the osseointegration process [28–30,53]. Indeed, the murine

cathelicidin CRAMP, another α-helical cathelicidin that is

paralogous to BMAPs, has been shown to inhibit LPS- and

flagellin-induced osteoclastogenesis by direct neutralization of

these bacterial components and accordingly has been proposed

to act as a protector of bone resorption induced by bacterial infec-

tion in mice [54]. In the present study, in comparison to the com-

plete LPS-neutralizing activity of the full length BMAPs, the three

shorter peptides displayed a lower but appreciable effect. With re-

spect to (1–18) BMAP peptides, this residual but still appreciable

LPS-neutralizing effect, as already reported by Lee et al. [33], is in

line with that also reported for the rabbit paralog CAP18, and sheep

BMAP ortholog SMAP-29 [55]. These latter peptides have been pro-

posed to bear LPS-binding sites, located both at the N- and

C-terminal ends, that function cooperatively [55]. The lack of the

equivalent to one of these sites in the (1–18) BMAP fragments could

explain their somewhat lower LPS-binding capacity compared to

the parental molecules. Nevertheless, the residual activity might

still be relevant in an in-vivo setting, where LPS levels are

expected to be significantly lower than those normally used in

in-vitro assays [56].

One of the major drawbacks in the clinical development of AMPs

are cytotoxic effects on host cells [8,9], which offsets several bene-

ficial activities on host cell functions, in addition to their direct mi-

crobicidal properties [8,9]. In this respect, the human cathelicidin

LL-37, while exerting some toxic effects on osteoblasts [57], has

been shown to promote bone regeneration in vivo by distinct

mechanisms involving stimulation of other cell types [58–60]. In ad-

dition, LL-37 has been shown to inhibit osteoclastogenesis in vitro

[61]. Moreover, the toxic effects of this peptide may be

counteracted in vivo by endogenous factors [62,63]. Another class

of human AMPs, the beta-defensins, are reported to display stimu-

latory effects on osteoblast proliferation and differentiation [64]. In

the present study, all candidate peptides proved safe to osteoblast

cells in their MIC value range, with BMAP fragments and P19 clearly

displaying a wider selectivity index. This was observed both in stan-

dard media and in the presence of HS and hyaluronic acid as rele-

vant factors in view of an orthopaedic application. Our data

confirm the improved selectivity of BMAP truncated analogs

against prokaryotic versusmammalian cells with respect to the par-

ent peptides [22,33]. Moreover, these fragments as well as P19 did

not affect osteoblast differentiation per se, nor impaired the effect

of a recognized osteogenic stimulus [37], which bolsters their suit-

ability for applications on orthopaedic devices.

Although in contrast with several reports on AMP activity being

inhibited by anionic polysaccharides [65–68], in the present study,

the activity of B27(1–18), B28(1–18) and P19 against S. epidermidis

and S. aureuswas fully retained in the presence of HA at concentra-

tions representative of those found in periprosthetic and normal

synovial fluid [36,38]. The potential for peptide efficacy in the skel-

etal joint environment was further supported by potent activity in

the presence of a clinical synovial fluid sample, selected among a

limited number of available samples due to its compatibility with

S. aureus growth. Notably, expression of several AMPs was reported

in both healthy and inflamed synovial membranes and joint fluid

[69–71], and this may reasonably contribute to the inhibitory effects

of joint fluid onmicrobial growth [72]. In an applicative perspective,

the presence of endogenous AMPs could be advantageous

because they may synergize with exogenously introduced AMPs.

Influence of blood components, e.g. serum albumin and lipopro-

teins [41,73,74], on AMP activity represents a crucial issue to be ad-

dressed in view of potential therapeutic applications. In fact, both

BMAP-27 and BMAP-28 have been shown in previous studies to re-

tain antimicrobial properties in the presence of heat-inactivated bo-

vine serum, although at higher peptide concentrations [14,39]. In

our growth kinetics assays, the AMPs were effective against both

Staphylococcus species in serum coincubation experiments, at con-

centrations comparable or only slightly higher than those in serum-

free medium (see Figure 6b, e). Peptides showed a more evident

decrease in potency upon pre-incubation with serum (Figure 6c,

f), but it was interesting to note that while a decrease in activity

against S. aureus was observed for all the tested AMPs, B27(1–18)

was the least affected in the case of S. epidermidis. The inhibitory ef-

fect of serum on peptide activity likely depends on peptide seques-

tration by serum components, as supported by overlapping activity

of B27(1–18) against S. epidermidis in the presence of active and

heat-inactivated HS, suggesting a minimal contribution of enzy-

matic degradation. In this respect, the different behaviour of

Table 4. Effects of immobilized peptides on cell membrane integrity in
osteoblast cells

Treatmenta % LDH releaseb

Control 3.6 ± 0.8

Resin-biotin 1.7 ± 2.1

Resin-B27 4.9 ± 1.9

Resin-B27(1–18) 3.0 ± 0.3

Resin-DEG-B27(1–18) 2.7 ± 0.3

a1-h exposure of MG-63 cells to 5% resins in complete medium.
bData were calculated as percentage of total cellular LDH activity, and

are the means ± SD of three separate experiments.
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B27(1–18) towards two Staphylococcus species was rather unex-

pected, because peptide binding to serum proteins would be ex-

pected to comparably affect peptide activity regardless of the

target microorganism. It is widely accepted that membrane-active

AMPs exert their microbicidal action through both electrostatic

and hydrophobic interactions with bacterial membrane surfaces

[6,7], while binding to serum seems preponderantly of a hydropho-

bic nature [74–76]. As B27(1–18) is the least hydrophobic and most

cationic of the three shorter AMPs (see Table 1), hydrophobic inter-

actions with serum factors may be relatively weaker and electro-

static attractions with the bacterial surface play a more dominant

role. One could thus reasonably speculate that in the presence of

a sufficiently anionic bacterial surface, peptide–bacteria interaction

would be favoured even in the presence of serum.

According to published reports, S. epidermidis has a more anionic

surface than S. aureus [77,78], which might explain the generally

higher activity observed for the three short AMPs against S.

epidermidis strains as compared to S. aureus (Tables 2 and 3). More-

over, for the same reason, S. epidermidis could be less prone to

shielding by serum, and this is particularly evident for the less hy-

drophobic and more cationic B27(1–18). The competition of serum

and bacterial surface for this AMP is evidently finely balanced, as

the less anionic S. aureus has a more serum-sensitive susceptibility

to this peptide. A similar hypothesis has been proposed by Huang

et al. [73], to explain the different susceptibilities of selected bacte-

rial species to a cationic α-helical AMP in the presence of human se-

rum albumin (HSA). Notably, in this latter study, S. epidermidis was

the only microorganism whose susceptibility to the peptide was

not affected by HSA [73], again indicating competitive binding to

AMPs of this structural class.

Due to its better performance under in vivo-mimicking condi-

tions, B27(1–18) was the best candidate for further studies with

immobilized peptide. Like the parent BMAP-27, reported to main-

tain activity on surface tethering [19], B27(1–18) was bactericidal

to both S. epidermidis and S. aureus when bound to resin beads.

The streptavidin/biotin-based anchoring method, which ap-

proaches the strength of a covalent bond [79], was selected as be-

ing a facile and straightforward procedure, suitable for obtaining a

proof-of-concept demonstration of peptide efficacy on immobiliza-

tion [80]. In our study, peptides were tethered via the N-terminus as

this facilitated the biotinylation procedure, also given the reported

efficacy of several N-terminally immobilized α-helical AMPs

[11,18,20]. In our hands, immobilization of biotinylated peptides

on streptavidin-functionalized resin beads led to a highly stable

conjugate, as bactericidal activity from free peptide was not de-

tected in the resin supernatants, even after a month of storage.

Comparison between full length surface-linked BMAP-27,

surface-linked B27(1–18) and also a derivative of the latter with a

diethylene glycole spacer [DEG-B27(1–18)] indicated similar activity

of BMAP-27 and B27(1–18) on both tested strains, whereas DEG-

B27(1–18) showed a somewhat lower efficacy. This however may

be due to a lower peptide-loading on the resin, as assessed by pep-

tide quantification upon elution from resin samples. For the DEG-

modified peptide, resin loading was assessed to be only 25% that

of unmodified B27(1–18) (data not shown). In fact, a fivefold in-

crease in DEG-B27(1–18) resin (from 5 to 25%) led to complete inhi-

bition of S. epidermidis and an almost 80% reduction of S. aureus

viability (data not shown). The reason for including a flexible spacer

is that it could be relevant to the efficacy of surface-immobilized

AMPs [11,12], but in our system activity appeared to be retained

also in its absence, in keeping with the findings of Rapsch et al.

on directly immobilized α-helical AMPs, including BMAP-27 [19].

In that study, immobilized BMAP-27 was significantly less cytotoxic

than the soluble counterpart and was proposed to act via bacterial

membrane depolarization [19]. Notably, in our study also, none of

the anchored peptides induced appreciable membrane damage

to osteoblast cells. In view of a potential application of these pep-

tides in the prevention of orthopaedic device-related infections,

surface-immobilized full-length BMAP-27 and the synthetically

more accessible B27(1–18) fragment appear to have equivalent an-

timicrobial efficacy and host-cell compatibility, so that issues re-

lated to chemical synthesis procedures and production costs

would obviously play in favour of the shorter analog.

Conclusions

Collectively, the results of this study highlight the potential of the α-

helical peptide B27(1–18) for the prevention of orthopaedic

implant-related infections. It effectively killed bacterial species re-

sponsible for orthopaedic infections and prevented staphylococcal

biofilm formation. Moreover, it attenuated an LPS-induced inflam-

matory response and was devoid of adverse effects on osteoblast

cells. Its antimicrobial efficacy was comparable to that of cefazolin,

widely used in orthopaedic perioperative prophylaxis, and was

retained in the presence of relevant biological fluids and compo-

nents. The proof-of-concept demonstration of its efficacy upon im-

mobilization, obtained with B27(1–18)-functionalized resin beads,

encourages further efforts aimed at tethering this peptide onto

supports relevant for orthopaedic medical devices, such as titanium

or ceramic, in view of the development of peptide-based infection-

resistant biomaterials for prostheses.
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A B S T R A C T

Bacterial infection of orthopaedic implants, often caused by Staphylococcus species, may ultimately lead to im-
plant failure. The development of infection-resistant, osteoblast-compatible biomaterials could represent an ef-
fective strategy to prevent bacterial colonization of implants, reducing the need for antibiotics.

In this study, the widely used biomaterial titanium was functionalized with BMAP27(1–18), an α-helical
cathelicidin antimicrobial peptide that retains potent staphylocidal activity when immobilized on agarose beads.
A derivative bearing a short spacer with a free thiol at the N-terminus was coupled to silanized titanium disks
via thiol-maleimide chemistry. Tethering was successful, as assessed by Contact angle, Quartz Crystal Microbal-
ance with Dissipation monitoring (QCM-D), and X-ray Photoelectron Spectroscopy (XPS), with an average sur-
face mass density of 456ng/cm⁠2 and a layer thickness of 3nm. The functionalized titanium displayed antimi-
crobial properties against a reference strain of Staphylococcus epidermidis with well-known biofilm forming ca-
pability. Reduction of bacterial counts and morphological alterations of adhering bacteria, upon 2h incubation,
indicate a rapid contact-killing effect. The immobilized peptide was not toxic to osteoblasts, which adhered and
spread better on functionalized titanium when co-cultured with bacteria, compared to non-coated surfaces. Re-
sults suggest that functionalization of titanium with BMAP27(1–18) could be promising for prevention of bacte-
rial colonization in bone graft applications.

1. Introduction

Infection of implanted prostheses is the most serious complication in
arthroplasty procedures and it may lead to implant failure [1]. Treat-
ment is difficult, mainly due to formation of microbial biofilm on de-
vice surfaces [1–3]. When sessile, bacteria grow encased in a self-made
extracellular matrix that protects them from host defence and renders
them less accessible to antibiotics [1,2,4]. Bacteria in biofilms are re-
markably less susceptible to currently used antibiotics, when compared
to their planktonic counterparts, so that only a few of the available an-
tibiotics are effective against them [3,5,6]. Treatment can be addition-
ally challenging in the case of infections caused by pathogens with ac-
quired antibiotic-resistance [1,5]. Among the most frequent causative
agents of prosthetic joint infections and orthopaedic surgical site in-
fections are Gram-positive microorganisms [7], with

20–30 % of cases being ascribed to Staphylococcus aureus and about
20–40 % to coagulase-negative staphylococci [5]. In this respect,
Staphylococcus epidermidis, which is a harmless commensal in healthy
subjects, is emerging as an opportunistic pathogen in immunocompro-
mised patients, preterm newborns, and patients with indwelling medical
devices [8]. Its ability to adhere and form biofilm on device surfaces is
recognized as a true virulent factor [9].

Consequently, it is crucial to adopt strategies for the prevention of
bacterial adhesion to, and biofilm formation on, implant surfaces, not
only by improving the perioperative preventative measures but also
with the development of osteoblast-compatible biomaterials resistant to
bacterial infection. In fact, events following implantation have been de-
scribed as a “race for the surface”. If it is won by host tissue cells, the
implant surface is covered by tissue and becomes less susceptible to
bacterial colonization. If, however, it is won by bacteria, then biofilm
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Table 1
Antimicrobial activity of soluble peptides against reference strains.

BMAP27(1-18) B27(1-18) ⁠SH

MIC (µM)⁠a,b

S. epidermidis ATCC 35,984 2 1
S. aureus ATCC 25923 4 4
E. coli ATCC 25,922 2 4
P. aeruginosa ATCC 27,853 2 4

a Determined in MH broth.
b Data are means of at least 3 independent experiments.

Table 2
Contact angle values and calculation of surface free energy and of its polar and dispersive
components. Results are expressed as means±SD of five measurements for each condition
on duplicate samples.

CA⁠w (°)
POL (mJ/
m⁠2)

DISP (mJ/
m⁠2)

SFE (mJ/
m⁠2)

Ti 70.4±0.5 8.0±0.3 37.0±0.2 45.1±0.2
Ti_Pl 7.5±0.2 ⁠a 32.4±0.1 ⁠a 46.5±0.1 ⁠a 78.9±0.1 ⁠a

Ti_A 62.7±0.9
⁠a,b

12.0±0.5
⁠a,b

36.8±0.5 ⁠b 48.9±0.6
⁠a,b

Ti_A_B27(1-18) ⁠SH 68.3±0.9
⁠b,c

8.6±0.4 ⁠b,c 38.4±0.5
⁠a,b

47.0±0.6
⁠a,b

CA⁠w: contact angle water; POL: polar component; DISP: dispersive component and SFE:
surface free energy.

a Statistically significant differences versus control Ti (P < 0.05).
b Statistically significant differences vs. Ti_Pl (P < 0.05).
c Statistically significant differences vs. Ti_A (P < 0.05).

Fig. 1. Chemical composition (atomic percentage) obtained by XPS analysis of the indi-
cated titanium surfaces. Results are the average±SD of at least two samples for each con-
dition.

formation on the implant surface reduces the likeliness of tissue integra-
tion [10–12].

Among the several approaches that are currently being examined
for orthopaedic applications [13–15], the development of biomateri-
als coated with antimicrobial peptides (AMPs) could represent an ef-
fective strategy to prevent bacterial colonization of implants [16–18].
AMPs represent an untapped reservoir of natural antibacterial mol-
ecules [19,20]. Despite a remarkably high variation in size and se-
quence, most of these molecules are small, cationic and amphipathic,
and are membrane-active [21,22]. Their mode of action, based on
membrane permeabilization, has important consequences such as broad
spectrum activity including antibiotic-resistant clinical isolates, efficacy
also against biofilm-embedded microorganisms, and low tendency to
elicit resistance [4,22–24]. These are useful properties in the light of
the growing antibiotics resistance problem [25]. Furthermore, various
AMPs have been shown to modulate host cell functions in a manner
useful for host defence [19], and this includes the bone environment
[26–28]. In this respect, several recent studies report the successful
tethering of short cationic AMPs onto the surface of titanium (Ti) or
other metals by using various coupling procedures [29–37]. These dif

Fig. 2. Resonance frequency (A) and dissipation (B) of a Ti crystal sensor upon addition
of B27(1–18)⁠SH solution in a QCM-D assay. Prior to addition of 100 μM peptide solution in

PBS, the sensor has been treated as described in Materials and Methods. Data were fitted
in the Voigt viscoelastic model to obtain surface mass density and thickness values.

Fig. 3. Adhesion of S. epidermidis to the indicated Ti samples. Following 2h incubation at
37 °C, the CFUs of adherent microorganisms were recovered by a vortexing procedure, ser-
ial dilutions and plating on solid medium. Results are expressed as percent CFU respect to
CFU recovered from bare titanium (Ti) and are the means±SD of at least three indepen-
dent experiments performed in triplicate. * Statistically significant difference vs. Ti and vs.
Ti_A (P< 0.05).

fer mainly by the choice of tethering orientation (N- or C-terminal) and
the nature and length of a possible spacer between the peptide and an-
choring moiety [16,17,38]. However, there is a lively debate concern-
ing what antimicrobial efficacy is retained by AMPs upon surface an

2
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Fig. 4. Morphology of S. epidermidis on distinct titanium samples analysed by SEM. Upon 2h incubation all samples were rinsed, fixed and processed for SEM analysis. Panels A – E,

Ti; panels F – G, Ti_A; panels H – L, Ti_A_B27(1–18)⁠SH. Panel E is a higher magnification of the image represented in Panel A. Arrows indicate, respectively, division septa ( ), contact

junctions ( ), halos ( ), pseudopod-like structures ( ), empty circles ( ), extruded cytoplasmic material ( ). Representative images from two experiments performed in duplicate are
shown.

choring [39–42]. Depending on several parameters related to the struc-
tural characteristics of the peptide and to the coupling strategies used
for tethering, an immobilized peptide can display quite different antimi-
crobial properties with respect to its soluble counterpart [43–45]. With
respect to covalent surface immobilization, membrane-active peptides
could be suitable candidates as they would not need to penetrate into
the bacterial cell to reach intracellular targets. Furthermore, assembling
short, linear and therefore relatively simple peptide molecules onto a
surface should have a positive impact on the production costs.

In a previous study an AMP derived from the α-helical cathelicidin
BMAP27, namely the BMAP27(1–18) fragment, was selected for immo-
bilization onto solid support [46]. In solution this peptide displayed po-
tent bactericidal activity against Gram-positive clinical isolates includ-
ing methicillin resistant S. aureus (MRSA) [47,48] and methicillin re-
sistant S. epidermidis (MRSE) [46]. It was active also in the presence
of relevant biological components such as serum, hyaluronic acid and
synovial fluid, and was biocompatible to osteoblasts [46]. Moreover,

an N-biotinylated analogue tethered to streptavidin resin beads retained
a potent killing capacity against S. aureus and S. epidermidis [46].

Based on these properties, in the present study a derivative of
BMAP27(1–18) was covalently immobilized on the surface of titanium,
which is a widely and routinely used metal for orthopaedic implants
[49,50]. Functionalized Ti samples were characterized by contact angle
(CA), quartz crystal microbalance with dissipation monitoring (QCM-D)
and X-ray photoelectron spectroscopy (XPS). Their antimicrobial effi-
cacy was investigated against a biofilm-forming S. epidermidis refer-
ence strain by colony forming unit (CFU) counts, evaluation of meta-
bolic activity, and scanning electron microscopy (SEM). Biocompati-
bility was determined by measuring viability of MG-63 osteoblast-like
cells upon cell adhesion to Ti samples. Finally, the capacity to promote
cell adhesion also in the presence of contaminating bacteria was ad-
dressed in a cell-bacteria co-culture experiment by analysing cell num-
ber and morphology by confocal fluorescence microscopy. The aim was
to assess whether Ti-immobilized BMAP27(1–18) was able to inhibit

3
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Fig. 5. Growth kinetics of S. epidermidis on the indicated Ti samples (Ti, circles; Ti_A,
squares; Ti_A_B27(1–18)⁠SH, triangles). After 2h incubation and washing, fresh MH sup-

plemented with the metabolic dye PrestoBlue® was added and adherent bacteria were
allowed to grow overnight at 37 °C. Growth kinetics were monitored by measuring fluo-
rescence emission that is directly proportional to microorganism viability. Results are re-
ported as relative fluorescence units (RFU) and are the means±SD of at least three inde-
pendent experiments performed in triplicate.

Fig. 6. Osteoblast viability upon adhesion to functionalized Ti samples. MG-63 osteoblast
cells were seeded on Ti disks in a 48-well plate in complete medium. After 4h incubation
samples were gently washed and viability of adherent cells quantified by the metabolic
dye PrestoBlue®. Results are expressed as percent cell viability respect to cells seeded
on bare titanium and are the means±SD of at least three independent experiments per-
formed in triplicate. Differences between samples did not reach statistical significance.

bacterial colonization while being compatible with osteoblast cells, with
the final goal of exploiting this system for the production of infection-re-
sistant titanium surfaces.

2. Materials and methods

2.1. Media and reagents

Polyethylene glycol–polystyrene (PEG-PS) resin, coupling reagents
for peptide synthesis and 9-fluorenylmethoxy carbonyl (Fmoc)-amino
acids were purchased from Applied Biosystems/Thermo Fisher Scien-
tific (Waltham, MA, USA). Peptide synthesis-grade N,N-dimethylfor-
mamide (DMF), dichloromethane, piperidine and high performance liq-
uid chromatography (HPLC)-grade acetonitrile were from Biosolve
(Valkenswaard, The Netherlands). Trifluoroacetic acid (TFA) and
N-methylmorpholine were from Acros Chimica (Beerse, Belgium).
6-aminohexanoic acid (Ahx) and 3-mercaptopropionic acid (MPA) were
purchased from Fluorochem Ltd (Hadfield, Derbyshire, UK).

Commercially pure Ti grade II disks were obtained from Technal-
loy S.A. (Sant Cugat del Vallès, Spain). (3-aminopropyl)triethoxysilane
(APTES) and N-succinimidyl-3-maleimidopropionate (SMP) were pur-
chased from Sigma-Aldrich (St Louis, MO, USA). Alexa fluor 488-phal-
loidin, Hoechst 33,342, and PrestoBlue® reagent were from Invitro-
gen/Thermo Fisher Scientific. Dehydrated media for antimicrobial ac

tivity assays were from Difco laboratories (Detroit, MI, USA), and Ox-
oid/Thermo Fisher Scientific, cell culture media and supplements from
Sigma-Aldrich (St. Louis, MO, USA), and Fetal bovine serum (FBS) from
Euroclone (Pero, Italy).

2.2. Sample preparation

Ti disks of 10mm diameter and 2mm height were polished with
wet abrasive papers (800, 1200 and 2400 - European P-grade stan-
dard) and smoothed with a water suspension of alumina particles (1µm
and 0.05µm particle size) on cotton cloths. Before the activation and
silanization process, samples were ultrasonically rinsed with cyclo-
hexane, isopropanol, distilled water, ethanol and acetone and finally
stored dry under vacuum.

2.3. Activation and silanization of samples

Ti samples were activated by 10min oxygen plasma treatment at
100W power in a Standard Plasma System (FEMTO, Diener electronic
GmbH, Germany). Samples were silanized with 2% (v/v) APTES in an-
hydrous toluene for 1h at 70 °C under agitation and nitrogen atmos-
phere. Ti disks were then sonicated for 5min and washed with toluene,
isopropanol, distilled water, ethanol and acetone, and dried with nitro-
gen. Thereafter, aminosilanized samples were immersed in a 7.5mM so-
lution of the bifunctional crosslinker SMP in DMF for 1h under agita-
tion at room temperature. Finally, aminosilanized samples carrying the
SMP group (Ti_A) were rinsed with DMF, distilled water, ethanol and
acetone, and dried under nitrogen.

2.4. Peptide synthesis

The amino acid sequence of the α-helical cathelicidin derived pep-
tide BMAP27(1–18) (GRFKRFRKKFKKLFKKLS, amidated C-termi-
nus) [46] was modified at the N-terminus by addition of three amino-
hexanoic acid (Ahx) residues and one unit of 3-mercaptopropionic acid
(MPA) as spacer and anchoring group, respectively. The resulting
MPA-(Ahx)⁠3-BMAP27(1–18), hereafter referred to as B27(1–18)⁠SH, was
synthesized on a Biotage Initiator+microwave-assisted automated pep-
tide synthesizer in the solid phase using Fmoc-chemistry, according
to published procedures [46]. After cleavage and deprotection,
B27(1–18)⁠SH was HPLC-purified and confirmed by mass spectrome-
try using a Q-STAR hybrid quadrupole time-of-flight mass spectrome-
ter (Applied Biosystems/MDS Sciex, Concord, ON, Canada) equipped
with an electrospray ion source. Peptide concentration was determined
in aqueous solution by measuring the absorbance at 257nm taking
into account the molar extinction coefficient of 195.1 for each Phe
residue [46].

2.5. Immobilization of peptide onto titanium samples

B27(1–18)⁠SH, dissolved in phosphate buffered saline (PBS) at pH 6.5
to a 100 µM concentration, was deposited onto Ti_A samples (100µL/
disk) and incubated overnight at room temperature. Thereafter, the pep-
tide functionalized Ti samples were rinsed with PBS and dried with ni-
trogen. These samples are designated as Ti_A_B27(1–18)⁠SH.

2.6. Physicochemical characterization

2.6.1. Static contact angle measurements and surface energy calculations
The hydrophilicity of the Ti surfaces was determined by the ses-

sile drop method using the Contact Angle System OCA15 plus (Data-
physics, Filderstadt, Germany). All measurements were done at room
temperature using MilliQ ultrapure water (Merck Millipore Corpora-
tion, Bedford, MA, USA), and diiodomethane (Sigma-Aldrich, Spain) as
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Fig. 7. Osteoblast adhesion to the indicated Ti samples in a cell-bacteria co-culture experiment. MG-63 cells were seeded on functionalized Ti disks, previously incubated with S. epi-
dermidis, and co-cultured in antibiotic-free medium for additional 6h (A, C) and 24h (B, D). At these time points, samples were fixed and stained with Alexa Fluor 488-phalloidin and
Hoechst. Osteoblast cell number and morphology were evaluated by CLSM with a Leica TCS SP8 X microscope followed by quantification with the ImageJ software. Results are expressed
as means±SD of five optical fields for each condition on duplicate samples. A, B: percent cell surface coverage in the presence of bacteria respect to bacteria free controls. C, D: mean cell
area values in the presence (Ti, Ti_A, Ti_A_B27(1–18)⁠SH) and in the absence (Ti_cells) of bacteria. Asterisks denote statistically significant differences between the indicated samples (P<

0.05). Representative images for each condition are shown in the lower part of the figure. Scale bar = 100 μm.

wetting liquids (drop volume of 1µL and 1µL/min dosing rate). Sta-
tic contact angles were calculated using SCA 20 software (Dataphysics).
The surface energy and its dispersive and polar components were deter-
mined using the Owens, Wendt, Rabel, and Kaelble (OWRK) equation
applied to both water and diiodomethane measurements [32,51]. Data
are means of five measurements per disk for three sample replicates.

2.6.2. X-ray photoelectron spectroscopy (XPS)
The chemical composition of the surface of Ti samples was analysed

using XPS instrument (D8 advance, SPECS Surface Nano Analysis
GmbH, Germany) equipped with an XR50 Mg anode source operating
at 150W and a Phoibos 150 MCD-9 detector. High-resolution spectra

were registered with pass energy of 25eV at 0.1eV steps at a pres-
sure below 7.5×10⁠−9 mbar. Binding energies were referenced to the
C1s signal. Data were analysed using CasaXPS software (Version 2.3.16,
Casa Software Ltd., Teignmouth, UK). Two samples were analysed for
each studied condition.

2.6.3. Quartz crystal microbalance with dissipation monitoring (QCM-D)
To quantify and characterize the peptide layer attached to the sur-

faces, QCM-D measurements were performed on Ti crystal sensors (QSX
310, Q-Sense, Sweden) in a D-300 instrument (Q-sense, Sweden). Ti
sensors, cleaned as previously described [52], were activated with O⁠2

plasma and subsequently treated with APTES and SMP as described
above for Ti_A samples. Prior to monitoring the adsorption of

5
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B27(1–18)⁠SH, the baseline was stabilized with PBS for 30–60min. After-
wards, B27(1–18)⁠SH derivative was added (100 µM in PBS, pH 6.5) and
changes in resonance frequency and dissipation were monitored at 25 °C
for 100min, in real-time using a Qsoft software (Q-Sense, Sweden). Fre-
quency and dissipation curves were fitted to a Voigt viscoelastic model
[53] to yield the adsorbed mass and thickness of the peptide layer, as
well as kinetic information, by using the Q-tool data analysis software
(Q-Sense, Sweden).

2.7. Bacteria and antimicrobial activity assays

The reference strains Staphylococcus epidermidis ATCC 35,984,
Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25,922 and
Pseudomonas aeruginosa ATCC 27,853 were used in MIC assays with sol-
uble peptides. Bacteria were cultured either in liquid Brain Hearth In-
fusion (BHI) (both Staphylococcus species) or in Mueller-Hinton (MH)
(both Gram-negatives) overnight at 37 °C. Staphylococcus epidermidis
ATCC 35,984 was used in antimicrobial assays with Ti-bound peptide.
Stationary phase bacteria were harvested by 10min centrifugation at
1000 x g and resuspended in sterile PBS (pH 7.4). Bacterial density
was assessed by turbidity at 600nm, with reference to previously deter-
mined standards. For the experiments, bacterial suspensions were pre-
pared in MH broth at optimal density.

2.7.1. Determination of the minimum inhibitory concentration (MIC)
The minimum inhibitory concentration (MIC) of B27(1–18)⁠SH in so-

lution was determined by a broth microdilution assay in 96-well mi-
crotiter plates, using MH broth with logarithmic-phase microorganisms
at 5×10⁠5 CFU/mL, as previously reported [46], following Clinical and
Laboratory Standards Institute (CLSI) guidelines.

2.7.2. Evaluation of bacterial adhesion to titanium surface
Bacterial adhesion was studied adapting a previously described pro-

tocol [33]. Prior to use in antimicrobial assays Ti, Ti_A and
Ti_A_B27(1–18)⁠SH samples were sterilized by 30min treatment with
70% ethanol, and then thoroughly rinsed with sterile PBS in order to
remove any trace of ethanol. Ti samples were placed in a 24-well plate
and incubated with 1mL of S. epidermidis (1×10⁠5 CFU/mL) for 2h
at 37 °C. The medium containing planktonic bacteria was then aspi-
rated and the samples were rinsed three times with sterile PBS. After-
wards, disks were transferred in sterile tubes containing 1mL of 50%
Mueller-Hinton in sterile PBS (MH-PBS), and adherent bacteria were de-
tached by 10min vortexing. To make sure that dislodging of bacteria
from the surfaces was effective, after the first vortexing step the disks
were transferred in new sterile tubes containing 1mL of MH-PBS and
vortexed again for 5min. Bacterial suspensions from each vortexing step
were then serially diluted in MH-PBS and seeded on BHI agar plates.
The plates were incubated at 37 °C for 24h and the resulting colonies
counted. All experiments were performed in triplicate for each type of
surface.

2.7.3. Scanning Electron Microscopy (SEM)
The morphology of S. epidermidis adhered to Ti samples was stud-

ied by SEM (Quanta250 SEM, FEI, Oregon, USA) operated in secondary
electron detection mode. The working distance was adjusted in order
to obtain the suitable magnification; the accelerating voltage was set
to 30kV. SEM was performed in duplicate for each sample. Briefly,
upon 2h incubation as described above, all samples were rinsed three
times with filtered sterile PBS, fixed with 2.5% (v/v) glutaraldehyde for
30min at 4 °C, rinsed three times with filtered sterile PBS and MilliQ
ultrapure water, and dehydrated in graded series of ethanol solutions

(20min each). Immediately prior to SEM analysis, samples were sput-
ter-coated with gold (Sputter Coater K550X, Emitech, Quorum Tech-
nologies Ltd, UK).

2.7.4. Bacterial growth kinetics on titanium surfaces
Ti samples, placed in triplicate into 48-well plates, were immersed

in 1mL of S. epidermidis (6×10⁠4 CFU/mL) suspension in MH for 2h.
The medium containing planktonic bacteria was removed, Ti disks were
rinsed with sterile PBS, and adherent bacteria were allowed to grow
at 37 °C for 22h in fresh MH medium supplemented with 10% (v/
v) PrestoBlue® metabolic dye. Bacterial growth kinetics were moni-
tored fluorometrically according to PrestoBlue® manufacturer’s instruc-
tions by using a Multimode Plate Reader (EnSpire™ 2300, PerkinElmer,
Waltham, MA, USA).

2.8. Cell culture

The human osteoblast-like MG-63 cell line was obtained from ATCC
(Manassas, VA, USA) and maintained in Dulbecco’s Modified Eagle
Medium (DMEM), in a humidified incubator at 37 °C and 5% CO⁠2 at-
mosphere. DMEM medium was supplemented with 10% (v/v) heat in-
activated FBS, 2mM L-glutamine, 100 units/mL penicillin and 100µg/
mL streptomycin.

2.8.1. Cell adhesion and viability assay
The biocompatibility of Ti samples was evaluated by measuring vi-

ability of the MG-63 cell line by using the metabolic dye PrestoBlue®.
Cells were seeded onto Ti samples in a 48-well plate at a density of
4×10⁠4 cells/well in complete medium and allowed to adhere for 4h at
37 °C. Thereafter the medium was aspirated, cells were rinsed with ster-
ile PBS and incubated at 37 °C for 90min in fresh complete medium con-
taining 10% (v/v) PrestoBlue®. Cell metabolic activity was measured
fluorometrically according to PrestoBlue® manufacturer’s instructions
by using a Multimode Plate Reader (EnSpire™ 2300, PerkinElmer,
Waltham, MA, USA). All experiments were performed in triplicate for
each type of surface.

2.8.2. Cell-bacteria co-culture
This assay was performed according to previously reported stud-

ies [12,54]. Ti samples were incubated with 1mL of S. epidermidis
(6×10⁠4 CFU/mL) in a 48-well plate for 2h at 37 °C as described above.
The medium was then removed and the samples were washed three
times in sterile PBS. Next, MG-63 cells, freshly resuspended in DMEM
medium without penicillin and streptomycin, supplemented with 2%
MH broth, were seeded on bacteria-covered surfaces at a density of
4×10⁠4 cells/well. Bacteria and MG-63 cells were incubated at 37 °C
in humidified 5% CO⁠2 for 6 and 24h. At these time points, samples
were fixed in 3% Paraformaldehyde, stained with Alexa Fluor 488-phal-
loidin and Hoechst 33,342 and examined by Confocal Laser Scanning
Microscopy (CLSM) with a Leica TCS SP8 X microscope (Leica Microsys-
tems GmbH, Wetzlar, Germany). Images were analysed using ImageJ
1.51w software (NIH, Bethesda, MD, USA) to determine cell area and
surface coverage. All experiments were performed in duplicate for each
type of surface.

2.9. Statistical analysis

Data, presented as mean values±standard deviations, were
analysed by a non-parametric Mann-Whitney U test (IBM SPSS Statis-
tics 20 software, Armonk, NY, USA). Statistical significance was set at P
value <0.05.
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3. Results and discussion

3.1. Coupling strategy and physicochemical characterization of titanium
samples

The cathelicidin derived peptide BMAP27(1–18), previously shown
to possess potent bactericidal activity also upon immobilization on
solid support [46], was covalently linked to Ti disks by using the
maleimide-thiol chemistry. To this aim, the selected peptide sequence
was modified at the N-terminus by adding a spacer and an anchor-
ing moiety bearing a free thiol. The peptide derivative is hereafter re-
ferred to as B27(1–18)⁠SH. This modification did not significantly affect
the antimicrobial properties of the original peptide, as assessed by deter-
mining minimum inhibitory concentration (MIC) against representative
Gram-positive and Gram-negative bacterial species (Table 1).

The selected coupling strategy has been previously applied for func-
tionalization of titanium and tantalum with, respectively, the antimi-
crobial peptide hLF1-11, and the cell adhesive RGD peptide, both for
osseointegrative applications [32,33,55]. In the present study this sim-
ple and linear functionalization procedure, schematically illustrated in
Fig. S1 (see Supplementary material), was used for covalent anchor-
ing of B27(1–18)⁠SH to titanium via its N-terminus. Ti disks (Ti) were
first treated with oxygen plasma (Ti_Pl) to generate hydroxyl groups
required for the subsequent silanization of the metal surface with the
aminosilane APTES. The amino group of the organosilane was then
exploited to introduce the bifunctional crosslinker SMP, bearing the
maleimide function (Ti_A) which was subsequently used to react with
the thiol on the peptide N-terminus (Ti_A_B27(1–18)⁠SH) (see Fig. S1 in
Supplementary material).

To verify whether the functionalization procedure was successful,
Ti samples first underwent physicochemical characterization by sta-
tic contact angle (CA) measurements and XPS. As expected, CA analy-
sis (Table 2) showed a substantial change in wettability upon plasma
treatment (Ti_Pl vs. Ti samples) as well as upon silanization (Ti_A vs.
Ti_Pl), and subsequent peptide coupling (Ti_A_B27(1–18)⁠SH vs. Ti_Pl, and
Ti_A_B27(1–18)⁠SH vs. Ti_A).

High resolution XPS spectra were then recorded to obtain the chem-
ical composition of the modified Ti surfaces, reported in Fig. 1. Silaniza-
tion of samples was supported by the presence of silicon (Si 2p) and by
the increase in carbon (C 1s) and nitrogen (N 1s) content in Ti_A vs. Ti
disks. An additional increase of both carbon and nitrogen, and decrease
in percent oxygen (O 1s) and titanium (Ti 2p) in Ti_A_B27(1–18)⁠SH sam-
ples, with respect to Ti_A disks, indicated stable and strong attachment
of peptide molecules to the silanized metal surfaces, thus confirming
that the applied procedure for peptide tethering to titanium was both
sound and reliable.

The peptide layer formed on the Ti surface was quantified using
Quartz Crystal Microbalance with Dissipation monitoring (QCM-D),
which is a very sensitive tool to measure masses in the ng/cm⁠2 range
[56]. The technique is based on monitoring the resonance frequency of
an appropriate piezoelectric sensor crystal, which decreases proportion-
ally to the adsorbed mass (defined as “adlayer”) on the surface of the
crystal itself. The additional monitoring of the dissipation factor enables
a more accurate mass estimate by taking into account the contribution
of the adsorbed water to the adlayer mass [57].

In the present study, in order to record the formation of a pep-
tide layer covalently linked to titanium, Ti crystal sensors were used
and, prior to peptide addition, the surface of the Ti sensor was treated
with O⁠2 plasma, APTES and crosslinker, as described above for Ti disks,
and extensively rinsed with PBS. Upon addition of peptide solution,
changes in resonance frequency (ΔF, Fig. 2A) and dissipation (ΔD, Fig.
2B) indicated deposition of a stable layer with a rapid drop in ΔF, cor-
responding to a rapid increase in ΔD, during the first 5–6min. This

was followed by stabilization of both parameters during the next
15–20min. Replacement of the peptide solution by PBS after 80min
monitoring did not result in appreciable modifications of the registered
traces, consistent with the formation of a stable peptide monolayer over
the silanized surface. By fitting data to the Voigt model [53], an av-
erage surface mass density of 456.32±7.61ng/cm⁠2 and a layer thick-
ness of 3.08±0.06nm were determined. Although it is difficult to make
direct comparisons, these values are in the same order of magnitude
as the QCM-D data obtained by Castellanos et al. using cell-adhesive
peptides [52] and by Corrales Urena et al. using antimicrobial pep-
tides [58] adsorbed onto CoCr and Ti sensors, respectively. The peptide
layer thickness was comparable to that achieved by a basically similar
coupling scheme for the antimicrobial peptide Dhvar5 grafted on chi-
tosan [29], and for the covalently bound lactoferrin peptide [33], both
determined by ellipsometry. Regarding the surface peptide density on
titanium, it is interesting to note that our data are comparable to those
obtained by others with colorimetric methods [29,30]. Collectively the
physicochemical data support successful functionalization of Ti disks
with the cathelicidin peptide derivative B27(1–18)⁠SH.

3.2. Analysis of antimicrobial properties of titanium samples

The antimicrobial efficacy of Ti-anchored peptide was first tested in
terms of bacterial adhesion inhibition. Adhesion of microorganisms to
surfaces of implanted biomedical devices is the first and crucial step in
bacterial colonization of implants so its prevention should likely pre-
vent the development of infection. Ti samples were exposed to a suspen-
sion of Staphylococcus epidermidis ATCC 35,984, a reference strain with
a well-documented biofilm-forming ability [8]. Notably, this feature is
considered to be related to the pathogenicity of this otherwise harm-
less microorganism [2,8]. Bacteria were allowed to adhere to Ti sam-
ples for 2h at 37 °C, then planktonic cells were washed away and sur-
face attached bacteria recovered by a two-step vortexing procedure. As
shown in Fig. 3, the colony forming units (CFU) of S. epidermidis, recov-
ered from Ti_A_B27(1–18)⁠SH disks, were significantly less than those re-
covered from both controls, i.e. Ti and Ti_A samples. This would suggest
that bacteria were killed upon contact with the peptide-functionalized
Ti, and/or that their adhesion to Ti_A_B27(1–18)⁠SH disks was in some
way hindered.

To clarify events occurring at the metal surface during staphylococ-
cal adhesion, the morphology of the attached bacteria was determined
by SEM in parallel to CFU counting. As shown in Fig. 4, this analysis
revealed a remarkable difference in S. epidermidis cells adhered to the
different substrata. Bacterial cells on control Ti samples were opaque,
round in shape, with smooth surface and with division septa clearly ev-
ident (Fig. 4B, F). Individual bacteria were on average of the expected
size with diameter values ranging from 0.55 μm to 0.85 μm. Dividing
microorganisms were very frequent, indicating that bacteria on bare ti-
tanium were viable and growing (Fig. 4B, F–G). Often several dozens of
bacterial cells were clustered together (Fig. 4A, C). Such bacterial ag-
glomerates were covered by a dense and grey layer resembling a blan-
ket (Fig. 4A, C and G). Individual cells were tightly associated with each
other and connected by junctions (Fig. 4C, E). In addition, in most in-
stances there was a halo surrounding the bacteria at the contact inter-
face between bacterial cell and Ti surface (Fig. 4C, G). In some clus-
ters, fimbriae-like surface appendages, connecting bacteria to Ti, were
also visible (Fig. 4D,E). All these elements likely represent extracellu-
lar matrix components and/or adhesion structures, indicating biofilm
initiation [59–61], in line with the well-known biofilm forming proper-
ties of S. epidermidis ATCC 35,984, which is known to be a heavy ma-
trix producer [8,9]. Notably, we did not observe significant morpholog-
ical differences between bacteria adhered to bare Ti (Ti; Fig. 4A–E) and
those adhered to silanized Ti disks (Ti_A; Fig. 4F - G). In contrast to
controls, bacteria adhered to Ti_A_B27(1–18)⁠SH samples were not only
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fewer in number, but also showed dramatically different morphologies
(Fig. 4I). They showed increased size and elongated shapes, and divi-
sion septa were conspicuously missing (Fig. 4J). In addition, bacteria
had a knobbly appearance, many were collapsed and deflated and ap-
peared embedded in a layer of amorphous material deposited on the
Ti surface (Fig. 4H - J). In many cases, these ghost-like bacterial cells
were surrounded by an empty circle (Fig. 4K), and for some bacteria
what appeared to be the extrusion of cytoplasmic material out of the cell
was observed (Fig. 4L). Such dramatic changes in morphology pointed
to the impairment of microbial cell growth as well as of cell division,
which is normally accomplished through formation of the division sep-
tum. The observed structures could reasonably derive from dead bacte-
ria. However, the “deflated bag” appearance, in the absence of evident
surface lesions such as blebs or holes [62], would suggest that digestion
of bacterial content has occurred, possibly upon activation of autolytic
enzymes [63].

In Ti_A_B27(1–18)⁠SH samples, the observed changes in morphology
matched the reduction in CFUs, thus highlighting killing ability of Ti-im-
mobilized B27(1–18)⁠SH. This finding was not unexpected, considering
that BMAP27(1–18) proved able to kill staphylococci when N-terminally
anchored to a model support [46]. However, a question arises about its
mode of action in the immobilized state. The bactericidal activity of this
peptide in solution is based on its ability to perturb microbial mem-
branes, and is intimately related to its ability to adopt an amphipathic
conformation [47,64]. In our case however, it appears quite obvious
that, presuming their limited mobility, the anchored peptide molecules
may interact only with superficial components of the bacterial cell, and
thus, the killing action likely differs from that displayed by this type of
peptides in solution [47,62,64]. In this respect, it is worth noting that
the staphylococci adhered to peptide-functionalized Ti (this study, Fig.
4) were remarkably different from those observed in a previous study
after treatment with the sheep cathelicidin SMAP-29 in solution [62]. In
this latter case, surface roughening and blebbing of SMAP29-treated mi-
croorganisms was interpreted as morphological evidence of the potent
permeabilizing activity of this alpha-helical peptide in solution [62],
while the bactericidal mode of action of immobilized SMAP-29 [41], or
indeed BMAP-27 [65], has not as yet been elucidated.

It is very likely that the negatively charged bacteria were initially at-
tracted by the highly cationic B27(1–18)⁠SH (net charge +10 [46]), but
were killed upon their contact/adhesion to the metal, in keeping with
what suggested also by other authors [31,44]. The observed changes in
morphology could be the result of events triggered by a peptide-induced
perturbation at the bacterial surface, as reported for free peptides in so-
lution [63,66,67], and also suggested for immobilized AMPs [44,68].

It is interesting to note however, that in Ti_A_B27(1–18)⁠SH samples,
besides dead or heavily damaged bacteria, microcolonies with normal
appearance were also occasionally observed (Fig. 4H). This prompted
us to investigate whether the surviving bacteria could be able to re-
grow. To this end, Ti samples were exposed to a suspension of S. epi-
dermidis for 2h as above and, after removal of planktonic microorgan-
isms and washings, the incubation was extended for additional 22h in
fresh MH broth. Since the presence of metal disks in the wells would
not allow optical density measurements, growth was kinetically moni-
tored by the PrestoBlue® dye, which emits fluorescence upon conver-
sion by metabolically active microorganisms. As shown in Fig. 5, bac-
terial growth on control Ti disks (Ti and Ti_A) became detectable at
7–8h post-adhesion, with an exponential phase between 10–15h, and
a final plateau at 18–20h. The surviving bacteria on Ti_A_B27(1–18)⁠SH

samples showed an about 1.5-h delay both for the beginning of growth
and onset of the exponential growth phase, presumably related to their
decreased initial number, in keeping with the results of bacterial adhe

sion assays. Hence, inhibition of the initial bacterial adhesion remains
crucial for long lasting antimicrobial efficacy [14].

It is worth stressing in this respect that the experimental conditions
used in our in vitro assays, such as a relatively high initial inoculum, are
likely different from those occurring in clinical settings where a possi-
ble bacterial contamination would take origin from a very low bacterial
number, as also confirmed by animal model studies [69,70]. In agree-
ment with what has been suggested by other authors [30], one could
reasonably expect a more effective protection under medically relevant
conditions, with only few bacteria present at the implant surface thanks
to strictly antiseptic surgical procedures.

3.3. Evaluation of compatibility of titanium samples to osteoblast cells

In the general context of the prosthetic settings, one should take
into consideration the complex dynamics of events occurring during and
upon implantation, such as osteoblast attachment, growth and differ-
entiation, that collectively should lead to complete implant integration.
With this perspective, it was mandatory to assess the biocompatibility of
our Ti samples to osteoblast cells. To address this issue, Ti samples were
seeded with the osteosarcoma-derived MG-63 cells, used as a model, in
a 48-well plate. Adherent cells after 4h incubation were quantified by
a PrestoBlue® metabolic assay. As shown in Fig. 6, metabolic activity
of cells on Ti_A and Ti_A_B27(1–18)⁠SH samples was comparable to that
of MG-63 cells on bare Ti, which is known for its biocompatibility. This
means that cells were vital and able to adhere to various substrata with-
out appreciable toxic effects neither by the peptide nor by other organic
molecules present on Ti (e.g. Ti_A). This result adds to previous reports
concerning the virtual absence of cytotoxic effects of BMAP27(1–18)
against different host cell types, both in solution [47,48,64], and upon
immobilization [46].

Given the cytocompatibility of the functionalized Ti samples we next
investigated their antimicrobial efficacy in a more complex context by
addressing the issue of “race for the surface”. This concept stems from
the observation that, in order to achieve successful and long lasting tis-
sue integration of the implanted prosthesis, the surface of an ideal im-
plant should be resistant to bacterial colonization but at the same time
prone to colonization by host tissue cells [10,12,71].

To investigate to what extent the colonizing capacity of osteoblast
cells might be hampered by bacteria present on Ti itself, a co-cul-
ture experiment of MG-63 cells and bacteria was set up. S. epidermidis
was allowed to adhere to Ti samples as in the antimicrobial assays
described above. After withdrawal of planktonic bacteria and wash-
ings, Ti disks contaminated by adherent bacteria were seeded with
freshly resuspended MG-63 cells in antibiotic-free DMEM medium sup-
plemented with 2% MH, and incubated for additional 6h and 24h. At
these time points, Ti disks were processed and analysed by fluorescence
microscopy in order to evaluate MG-63 cell number and morphology.

Data and representative CSLM images are shown in Fig. 7. Data
were calculated as percent cell surface coverage respect to bacteria-free
Ti controls (Fig. 7A, B), and mean cell area (Fig. 7C, D). It is evi-
dent that the presence of bacteria affected cell adhesion and spread-
ing on distinct Ti samples to different extents. For example, at a 6h
time point, osteoblast adhesion to Ti and Ti_A samples was inhibited
by about 40% for bacterial adhered samples, whereas cell adhesion to
Ti_A_B27(1–18)⁠SH samples was not impaired but rather enhanced (Fig.
7A). Since at this time point cell size (Fig. 7C) and morphology (Fig.
7, images in the upper row) were on average highly comparable, the
increased surface coverage on Ti_A_B27(1–18)⁠SH samples could be rea-
sonably ascribed to a higher number of adhered MG-63 cells. This find-
ing would suggest that the bactericidal action exerted by peptide-func-
tionalized Ti, as observed by SEM (Fig. 5H-L) and confirmed by CFU
counts (Fig. 3), was effective enough to allow displacement of bacteria
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by MG-63 cells, which could thus predominate and spread onto the
surface. This hypothesis seems further supported by the increment in
both surface coverage (Fig. 7B) and mean cell area (Fig. 7D) observed
after 24h co-incubation on peptide-functionalized samples. However,
although BMAP27(1–18) proved neutral with respect to MG-63 cell
growth and differentiation in a previous study [46], we cannot exclude
specific effects on cells by the Ti-anchored peptide. It is interesting
to note that at 24-h time point a slight improvement of cell adhesion
and spreading compared to bacteria-free control was observed in Ti
and Ti_A samples, which were devoid of antimicrobial properties (Figs.
3–5). This would suggest that besides bacterial killing, one should take
into consideration other phenomena in the complex network of multi-
ple interactions between implant surfaces, bacteria, and relevant tissue
cells [10,54,72]. In the light of what has been reported for the oral en-
vironment [73,74], at present we cannot rule out possible stimulating
effects of bacteria on tissue cell expression of adhesion molecules that
would in turn improve cell adhesion and spreading.

4. Conclusions

In order to obtain titanium with anti-infective surface, in this study
Ti disks were successfully functionalized with the cathelicidin derived
α-helical peptide B27(1–18)⁠SH, as assessed by contact angle, XPS, and
QCM-D analyses. Adhesion of S. epidermidis to peptide-functionalized
samples was markedly reduced and alterations in bacterial morphol-
ogy revealed by SEM indicate a contact-killing effect of the anchored
peptide, suggesting a possibly different mode of action respect to that
displayed by this peptide in solution. In this respect, a more profound
knowledge of the bactericidal mechanism of surface-immobilized pep-
tide should help design improved peptide derivatives, spacers, and cou-
pling strategies, in order to increase the antimicrobial performance of
the functionalized Ti. Importantly, the immobilized peptide did not pro-
duce any cytotoxic effect on osteoblast-like cells, which adhered and
spread better on functionalized Ti when co-cultured with bacteria com-
pared to non-coated surfaces. For further improvement in view of or-
thopaedic applications, it would be worth investigating the stability/
efficacy of Ti-anchored peptide in the presence of human serum and/
or other relevant biological components such as hyaluronic acid, or in
the presence of proteases. Although these aspects have not yet been ad-
dressed, results obtained in the present study are promising, highlight-
ing the potential of BMAP27(1–18) for the development of biomaterials
refractory to microbial contamination.
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