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Abstract

The process of white adipose tissue (WAT) browning has become a key

focus topic in adipobiology research, due to its fat burning potential in obe-

sity treatment. The interest in brown adipose tissue (BAT) derives from

its unique ability to generate heat by adaptive thermogenesis. This pro-

cess mediates the catabolism of energy substrates without the generation

of ATP. Therefore, energy dissipation by BAT can control obesity by lead-

ing excess fat towards heat production. While brown adipocytes are rich in

mitochondria and small lipid droplets (multilocular adipocytes), white ad-

ipocytes have few mitochondria and a single large lipid droplet (unilocular

adipocytes). Moreover, uncoupling protein 1, the main driver of thermogen-

esis, is present only on the inner mitochondrial membrane of brown adipoc-

ytes, where it uncouples the oxidative phosphorylation from ATP synthesis.

The research presented in this doctoral thesis involves the administra-

tion of endogenous and nutritional compounds to in vitro adipocyte models

to evaluate their potential in inducing WAT browning. The chosen com-

pounds are two myokines (β-aminoisobutyric acid and brain-derived neur-

otrophic factor) and two nutritional molecules (capsaicin and cis-9 retinoic

acid). The effectiveness and the long-term effects of these biocompounds

were here investigated in terms of lipid droplets and mitochondria struc-

tural changes on different cellular models.

The results hereby discussed confirmed the potential of these bioac-

tive compounds in inducing WAT browning, in agreement with previous

knowledge and bringing new insights in this research field. Novel observa-

tions concerning doses and time-dependent effects of these browning fac-
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tors could direct future research towards a correct and effective implemen-

tation of anti-obesity therapies.
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Chapter 1

The adipose tissue

Adipose tissue (AT) is a connective tissue composed by different cell

types. The main cells constituting AT are the lipid-accumulating adipocy-

tes. Other cell types include preadipocytes, macrophages, endothelial cells,

stem cells and nerve endings. Taken together, these cell types represent

the stromal-vascular fraction (SVF) [1].

Conventionally, AT is divided into two different subtypes: white adipose

tissue (WAT) and brown adipose tissue (BAT).

1.1 White adipose tissue

In past decades, WAT was associated to the sole function of passive stor-

age of excess energy coming from food in form of triacylglycerols (TAGs).

Afterwards, researches described the endocrine function of white adipoc-

ytes, able to produce a great variety of adipose-derived hormones and cy-

tokines, named adipokines, and to participate in the metabolism of sex hor-

mones [1].

From a histological point of view, WAT is composed by large adipocytes

(around 100 µm diameter) whose cytoplasm is almost entirely filled with

a unilocular lipid droplet (LD) that pushes the nucleus against the plasma

membrane. WAT forms depots in different parts of the body and the dis-

tribution of mass in each depot depends on genetics, age and sensitivity to
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1.1. WHITE ADIPOSE TISSUE

glucocorticoids and other hormones [2]. According to the impact of WAT

depots on metabolic health, WAT can be divided into visceral WAT (vWAT)

and subcutaneous WAT (scWAT). Visceral WAT is associated to metabolic

disease, such as dyslipidemia, obesity, type 2 diabetes mellitus, cardiovas-

cular disease, hepatic steatosis and some forms of cancer; scWAT is associ-

ated with a decreased risk of developing metabolic syndrome [3].

Anatomically, WAT depots can be classified in mice as follows, according

to Waldén and colleagues [4] (Figure 1.1):

Figure 1.1: Localization of WAT and BAT depots in mouse, modified from Jung
et al. [5]

• anterior subcutaneous WAT (asWAT), which includes axillary and in-

terscapular fat;

• inguinal WAT (iWAT), dorsal to the pelvis;

• perigonadal WAT (pgWAT), which surroundes epididymis and testes

in male, ovaries and uterus in female;

• retroperitoneal WAT (rpWAT), which is in the abdominal cavity be-

hind kidneys;

• mesenteric WAT (mWAT), which surroundes visceral organs.

A similar classification is proposed for human WAT depots by Wronska et

al. [6] (Figure 1.2):
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CHAPTER 1. THE ADIPOSE TISSUE

Figure 1.2: Localization of WAT fat pads in human, modified from Wronska et

al. [6]

• scWAT depots: subcutaneous abdominal, gluteal and femoral;

• vWAT depots: epicardial, mesenteric, omental, retroperitoneal and

gonadal.

The cellularity of WAT is determined in early life and renewal of senes-

cent adipocytes occurs constantly during lifetime [7], although the rate of

adipocyte turnover is still matter of debate [8–10]. Albeit adipocyte age and

turnover are not affected by body mass index (BMI) [9], cellular growth

and expansion are depot-specific and respond differently to high-fat diet

[11]. AT expansion by hyperplasia (i.e. increase of cellular number) is a

feature of scWAT in femoral and gluteal depots, while vWAT is more prone

to hypertrophy (i.e. increase of cellular volume) [12].

The excessive expansion of WAT depots is a pathological state known

as obesity, whose deleterious effects on whole body health state are a con-

sequence of the changes in adipocyte number and size [13]. Abdominal

adipocytes can increase their volume until they reach a critical size [14]
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1.1. WHITE ADIPOSE TISSUE

before cell death occurs. When this happens, new preadipocytes are stim-

ulated to differentiate from SVF into mature adipocytes to increase the

storage capacity of the WAT depot. Adipocyte death recruits macrophages,

which remove the cellular debrits [15]. When multiple adipocytes reach

their critical size and face apoptosis, a high number of macrophages is re-

cruited and an inflammatory response is triggered in the depot [16]. This

causes the release of proinflammatory cytokines that alter the functional-

ity of living adipocytes and promote the synthesis of lipid mediators. These

molecules interfere with insulin signaling, eventually leading to the insur-

gence of insulin resistance and type 2 diabetes mellitus [16].

1.1.1 Origins of white adipocytes

Since mature adipocytes cannot divide by mitosis, the development of

new adipocytes involves progenitor cells located in SVF [2]. The presence

of different cell surface markers on SVF stem cells allows to distinguish

populations with the ability to give rise to functional adipocytes from those

which will not committ into fat cells; moreover, most of these markers are

depot-specific [11].

In past decades, it was rather spreaded the simplistic convintion that,

at embryonal level, adipocyte precursors were of exclusively mesodermic

origin [17]. Recent findings confirmed that adipocytes forming depots in

the cephalic area derive from at least two kinds of precursors in the neural

crest [18]. The neural crest Sox10+ adipogenic lineage is the main contrib-

utor to the cephalic depots [19]. Since they decrease with age, they are re-

placed by another lineage who shares similar metabolic profiles, hence the

derived differentiated adipocytes have the same characteristics [18]. More-

over, also bone marrow is a source of adipogenic precursors: experiments

of bone marrow transplants revealed that hematopoietic cells turned into

adipocytes in several depots in mice [20].

In adult AT, the main adipose progenitors are mesenchymal stem cells
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CHAPTER 1. THE ADIPOSE TISSUE

(MSCs) expressing platelet-derived growth factor receptor α (PDGFRα). Th-

ese cells can be either positive or negative for CD24. MSCs CD24+ appear

to be more committed to the adipogenic lineage, despite they are much less

frequent than CD24– ones [21, 22]. A subpopulation of perivascular MSCs

PDGFRα+ may give rise to both white and brown adipocytes. They express

Sca1 and CD34, but are negative for other pericyte markers [21].

Endothelial cells may become white or brown adipocytes as well: ZFP423+

cells can give rise to mature adipocytes [23]. Also VE-cadherin+ endothe-

lial cells may become adipogenic, but they are not evenly distributed [24].

An important study identified PDGFRβ+ mural cells in adipose SVF as adi-

pose progenitors, individuating the endothelium of adipose blood vessels as

a niche of future adipocytes [25]. These cells are committed to become fat

cells during embryonic life or in the perinatal period [25].

1.1.2 White adipogenesis

In many species, WAT formation begins before birth and then rapidly

increases in the post-natal life [26]. Adipose precursors are recruited from

stem cells and then differentiate into mature adipocytes through a process

named adipogenesis. The presence of different types of precursors in var-

ious WAT depots explains the depot-specific metabolic and growth differ-

ences [11]. The adipogenic machinery can be activated by different stimuli,

such as a number of extracellular factors including bone morphogenetic

proteins (BMPs), transforming growth factor β (TGFβ), insulin-like growth

factor 1 (IGF1) and different fibroblast growth factors (FGFs) [27]. The in-

hibition of anti-adipogenic Wnt [28] and hedgehog [29] signaling pathways

can also trigger adipogenesis (Figure 1.3). Moreover, intracellular path-

ways and regulators, such as glutathione, Janus kinase-signal transducer

and activator of transcription 3 (JAK-STAT3) and insulin transduction cas-

cade, have a role in favoring adipogenesis [27].

Pro-adipogenic stimuli upregulate the transcription of early adipogenic

12



1.1. WHITE ADIPOSE TISSUE

Figure 1.3: Transcriptional networks regulating adipogenesis in white fat cells.
IGF1: insulin-like growth factor; WNT10b: Wnt family member 10B;
SHH: sonic hedgehog signaling molecule; PTC: protein patched
homolog 1; SMO: smoothened; TGFβ: transforming growth factor β;
SMAD: mothers against decapentaplegic homolog; FGF: fibroblast
growth factor; FGFR: FGF receptor; BMPs: bone morphogenetic
proteins; IRS: insulin receptor substrate; MAPK: mitogen-activated
protein kinase; AR: androgen receptor; SHN2: schnurri-2; mTOR:
mammalian target of rapamycin; PI3K: phosphoinositide 3-kinase;
cAMP: cyclic adenosine monophosphate; AKT/PKB: protein kinase B;
CREB: cAMP-responsive element-binding protein; FOXO1: forkhead
box protein O1; FOXA2: forkhead box protein A2; TCF/LEF: T-cell
factor/lymphoid enhancer-binding factor; C/EBPα:
CAAT/enhancer-binding protein α; PPARγ: peroxisome
proliferator-activated receptor γ; GATA: globin transcription factor.
From Rosen & MacDougald [30].

factors CAAT/enhancer-binding protein β (C/EBPβ) and C/EBPδ. These

two proteins promote the synthesis of key adipogenic transcription fac-

tors C/EBPα, peroxisome proliferator-activated receptor γ (PPARγ), and

of sterol regulatory element binding protein 1 (SREBP1), which positively

regulate lipogenic genes. C/EBPα enhances PPARγ expression and vice

versa in a positive feedback loop (Figure 1.3). These elements are key reg-

ulators of adipogenesis because they affect the expression of a wide spec-

trum of genes involved in lipid metabolism and insulin sensitivity [27]. In

particular, PPARγ recruits different histone deacetylases (HDACs) and his-

tone acetyltransferases (HATs) that have multiple effects on adipogenesis-

related genes [31].
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CHAPTER 1. THE ADIPOSE TISSUE

The pro-adipogenic transcriptional network is tightly regulated by a

number of enhancing and inhibiting genes and factors, as reported in Fig-

ure 1.3, some of which have not been identified yet.

The epigenetic control of adipogenesis involves many histone-modificator

enzymes and a complex net of adipose-specific micro RNAs (miRNAs), in-

cluding both positive and negative regulators, as extensively reviewed by

Engin [32].

The transcriptional machinery that controls adipogenesis may slightly

vary between different depots: the ablation of certain adipogenic genes may

impair adipogenesis in some depots, while other ones are uneffected. The

only factor whose deletion is detrimental for all depots is PPARγ [7].

1.2 Brown adipose tissue

Numerous and important differences distinguish WAT from BAT. In-

deed, brown adipocytes have many unique morphological and phenotypic

characteristics. These cells are far smaller than white adipocytes (about 40

µm of diameter), with a circular central nucleus and lipids that are accu-

mulated in a high number of small LDs surrounded by a branched network

of mitochondria [33].

Among Mammals, BAT has a very different distribution, being mostly

displayed in rodents and hibernating animals. In humans, BAT was be-

lieved to be widespread in neonatal period and to disappear while going

through adult life. Only recently, active BAT has been observed in adult

humans following 18F-deoxyglucose positron emission tomography (18FDG

PET) combined with X-ray computerized tomography (CT) imaging [34–

36]. Unlike WAT depots, BAT is accumulated in few discrete regions in

adult human (Figure 1.4), which are richer in blood vessels and nerve end-

ings [37]. Subcutaneous BAT is present in the cervical area, flanking an-

terior neck muscles, in the anterior abdominal wall and in the inguinal re-

gion. A perivascular portion is also present around common carotid artery,
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1.2. BROWN ADIPOSE TISSUE

aorta, brachiocephalic artery and epicardial coronary artery. Moreover, vis-

ceral BAT depots are present in close proximity of pericardium, kidneys,

adrenal glands, pancreas and liver.

Figure 1.4: Distribution of BAT depots compared to WAT ones in adult humans.
From Jeremic et al. [37].

In mice, BAT depots are found in interscapular, subscapular and cervi-

cal regions and surround portions of aorta and kidneys [2], as displayed in

Figure 1.1.

The functional significance of BAT resides in its ability to perform ther-

mogenesis, a process by which the catabolism of high energy substrates,

like fatty acids (FAs) or carbohydrates, is uncoupled from the synthesis of

ATP in mitochondria, hence the energy of these molecules is released in

form of heat [33]. The main driver of this process is the uncoupling pro-

tein 1 (UCP1), expressed in the inner mitochondrial membrane of brown

adipocytes [38].

1.2.1 Development of brown adipocytes

The main precursor of brown adipocytes is the same that can differenti-

ate into myocytes, but not into white fat cells [2]. These precursors express
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CHAPTER 1. THE ADIPOSE TISSUE

a whole set of pro-myogenic factors, including the myogenic factor 5 (Myf5)

[39]. The paired box factors 3 and 7 (Pax3 and Pax7) also contribute nor-

mally to myogenesis, thus are expressed in the BAT-committed progenitors

as well [40]. According to these observations, the developmental routes that

contribute to the formation of WAT and BAT depots are completely differ-

ent and brown adipocytes appear to be closer to myocytes than to white

adipocytes (Figure 1.5).

Figure 1.5: Pathways to the development of white and brown adipocytes.
Modified from Cristancho et al. [41].

Novel findings have refuted this hypothesis [42] and led to the formu-

lation of two different models for Myf5+ cells contribution to the develop-

ment of adipocytes. According to the first model, proposed in [42], Myf5+

(and possibly Pax3+) cells are spatially mixed with Myf5– precursors in the

same depots. The relative abundance of the two cell types is a function of

the depot itself. For instance, in murine BAT depots will preveal Myf5+

progenitors and in inguinal WAT the Myf5– lineage will be the most abun-

dant. In other WAT depots, like subcutaneous one, the two populations
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1.2. BROWN ADIPOSE TISSUE

are more equally distributed. Despite this heterogeneity, the recruitment

of adipocyte progenitors is quite selective: while in BAT and subcutaneous

WAT the Myf5+ will differentiate into mature adipocytes, in inguinal WAT

the Myf5– is favored. The second model described in [42] proposes that the

expression of Myf5 and Pax3 might occur later in time, during recruitment

or differentiation, hence the majority of adipogenic precursors in different

depots should be Myf5– [2].

The recruited brown preadipocytes differentiate into mature fat cells

with a transduction cascade mostly similar to that previously described

for WAT. PPARγ remains the key transcription factor of adipogenesis, but

C/EBPα is not as fundamental as it is in white adipocytes [43]. Never-

theless, PPARγ function is supported by important brown-specific factors

during adipogenesis, which are PPARγcoactivator 1α (PGC-1α) and PRD1-

BF-1-RIZ1 homologous domain containing protein 16 (PRDM16). PGC-1α

has a crucial role in the development of mature brown adipocytes, as it

positively induces mitochondrial biogenesis and oxidative metabolism and

upregulates many thermogenic genes, including UCP1 [44]. Despite its

role in promoting thermogenesis, the ablation of PGC-1α has no effect on

total BAT mass [43]. PRDM16 is a key determinant of brown fat fate.

When expressed in preadipocytes and myoblasts, it can induce a complete

brown adipose phenotype [45]. Its effects are achieved by the physical in-

teraction with several DNA-binding factors (including PPARs, PGC-1α and

C/EBPs), rather than the direct interaction with DNA [45]. Its depletion

from brown preadipocytes induces the emergence of a muscular phenotype

[46]. The differentiation of novel brown adipocytes is timed by the induc-

tion of PRDM16: despite its regulatory pathway is mostly unknown, BMPs

have been recently found to be involved in this regulation. The most critical

member seems to be BMP7, which can induce PRDM16 enhancing brown,

but not white, adipogenesis [47].
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CHAPTER 1. THE ADIPOSE TISSUE

1.3 Thermogenesis

As mentioned above, thermogenesis is the physiological process that

enables brown adipocytes to produce heat instead of ATP following the

catabolism of high energy substrates. It is also called non-shivering ther-

mogenesis because the spastic contraction of subcutaneous muscles is not

involved in heat generation [33].

The so-called cold-induced thermogenesis is the response of the body to

a decrease in external temperature and is triggered by the hypothalamus

(Figure 1.6) to counterbalance the loss of energy induced by the variation

in the thermal condition [48]. The perception of a modification in external

temperature is sensed by thermal sensory receptors on skin, which trans-

mit a signal to primary sensory neurons in dorsal root ganglia, which in

turn transfer the information to the dorsal horn. A glutamatergic signal is

sent to subnuclei of the lateral parabrachial nucleus and then to the preop-

tic area of the hypothalamus. Here, a stimulatory response activates W-S

neurons in the dorsomedial hypothalamus which in turn stimulate BAT

sympathetic premotor neurons in rostral raphe pallidus. This signal prop-

agates to BAT sympathetic preganglionic neurons in the intermediolateral

nucleus, activating the peripheral release of norepinephrine (NE) in BAT

nerve ends [49].

The brown adipocyte expresses membrane β3-adrenoreceptors (β3-ARs)

activated by the NE surge caused by cold exposure. The entity of heat

production depends on the level of sympathetic activation, the quantity of

released NE and the amount of NE efficiently binding β3-ARs [50]. The ac-

tivated β3-ARs stimulate the production of cyclic adenosine monophosphate

(cAMP) by the enzyme adenylyl cyclase (AC) via the activity of associated

stimulatory G protein. The elevated cAMP intracellular level is important

for the activation of protein kinase A (PKA), a key enzyme with multi-

ple targets involved in the activation of thermogenesis [51]. PKA phos-

phorylates the cAMP response element-binding (CREB) transcription fac-
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1.3. THERMOGENESIS

Figure 1.6: Central pathway leading to sympathetic activation and NE release
in mice. POAH: preoptic chiasma/anterior hypothalamus; GABA:
γ-aminobutyric acid; VMN: ventromedial nucleus; c: unidentified
stimulus converter; aq; aquaduct; glu: glutamate; RR: retrorubral
field; IML: intermediolateral neurons; ACh: acetylcholine; NE:
norepinephrine; NPY: neuropepdite Y. From Cannon & Nedergaard
[33].

tor, which upregulates several genes, including UCP1 [52] and activates

the p38 mitogen-activated protein kinase (MAPK) signaling cascade. p38

MAPK has a key role in phosphorylating the activated transcription factor

2 (ATF2) and PGC-1α, which in turn positively regulate the expression of

UCP1 [53]. Moreover, ATF2 also upregulates PGC-1α expression. More-

over, PKA activation promotes lipolytic pathways in brown adipocytes.

1.3.1 The role of lipolysis in thermogenesis

Thermogenesis and lipolysis are two intimately related processes. In-

deed, thermogenesis cannot occur without the onset of lipolysis, besides

lipolysis itself represents a sufficient event to activate thermogenesis [33].

In brown adipocytes, lipolysis is mediated by adrenergic stimulation and

cAMP-mediated PKA activation. The central event is the phosphoryla-

tion of hormone-sensitive lipase (HSL) and of perilipins. Perilipin (PLIN)

is a family of proteins found in the phospholipid monolayer that envelops

LDs. Among different types, PLIN1 and PLIN5 are present in fat-storing,
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grown LDs and have the most prominent protective role, while others are

mostly expressed in growing LDs [54]. The PKA-mediated phosphoryla-

tion of Ser660 in HSL translocates the enzyme from the cytosol to the LD

[55]. Hyperphosphorylation of PLIN1, which is supported by optic atrophy

1 (OPA1) [56], inactivates its protective funtion and exposes TAGs to active

lipases, which release glycerol and FAs [54].

The products of lipolysis are then intercepted by fatty acid binding pro-

tein 4 (FABP4) and chaperoned towards mitochondria [57]. Like in any

other cell, FAs enter mitochondria via the carnithine palmitoyltransferase

(CPI) proteins and undergo canonical steps of β-oxidation and the result-

ing acetyl-CoA enters the citric acid cycle. Another possible fate for FAs in

mitochondria is the direct activation of UCP1 [33].

1.3.2 Regulation of UCP1 expression and thermogene-

sis

The activation of thermogenesis and, consequently, the expression of

UCP1 are NE-dependent. The transcriptional regulation of UCP1 is com-

mitted by the 5’ non-coding region of UCP1 gene, which shares sequence

homology in humans and rodents [58]. This portion of the gene contains a

proximal regulatory region, which is immediately before the transcription

initiation site, containing a number of transcription factor binding site. The

distal enhancer is another important regulatory site, as it promotes UCP1

expression when interacts with activated nuclear receptors.

Positive regulation

The proximal regulatory region contains the cAMP response element

(CRE), targeted by the active CREB, whose phosphorylation is under direct

control of cAMP [59]. The zinc finger protein 516 (Zfp516) has been recently

described as a cold-induced transcription factor which can directly bind to

the proximal regulatory region of UCP1 promoter to increase its expres-
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1.3. THERMOGENESIS

sion. The interaction involves the physical association with PRDM16 [60].

Other important regulatory sites present in this region are the elements

that interact with C/EBPα and β, previously described as pro-adipogenic

factors, which bind to the promoter following the physical interaction with

PRDM16 [45, 61].

The distal enhancer of UCP1 promoter contains another CRE and many

sites targeted by hormone- and nuclear receptors-mediated transcription

factors. PPARα and PPARγ directly interact with UCP1 enhancer to pro-

mote its expression while forming a heterodimer with retinoid X receptors

(RXRs) [62]. Unlike PPARγ, PPARα is selectively expressed in BAT and

promotes thermogenic activity, as many of its target genes are oxidative

enzymes [62].

Isomers of retinoic acid can promote UCP1 synthesis binding to differ-

ent nuclear receptors. Specifically, all-trans retinoic acid (atRA) binds to

retinoic acid receptors (RARs), while cis-9 retinoic acid (c9RA) binds to both

RAR and RXRs. Activated retinoid receptors directly promote UCP1: RXRs

forms heterodimers with RARs and PPARs that interact with the distal en-

hancer [63].

Also hormone-mediated regulation of UCP1 expression occurs through

the distal enhancer. Thyroid hormones triiodothyronine (T3) and thyrox-

ine (T4) are involved in the upregulation of UCP1 thanks to the interaction

of T3 with the nuclear thyroid receptor (TR), which directly binds to its

responsive element on the enhancer [64]. T4 indirectly promotes gene ex-

pression because it is converted to active T3 by the type II iodothyronine

5’-deiodinase (DIO2) prior to the bond with its receptor [65]. Estrogens

participate in UCP1 expression because activated estrogen-related recep-

tors (ERRs) α, β and γ can bind to an ERR responsive element in distal en-

hancer; moreover, a number of pro-thermogenic actions have been recently

described for estrogen in brown and white adipocytes [66].
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Negative regulation

Receptor interacting protein 140 (RIP140) is a repressor that alters

thermogenesis by inhibiting PGC-1α activity, inducing a downregulation of

downstream genes (i.e. PPARG, PPARA and ERRA) and decreasing UCP1

expression [67].

The liver X receptor α (LXRα) directly inhibits UCP1 transcription by

forming a complex with RIP140 that ablates PPARγ from the gene pro-

moter [68].

The activated receptor for vitamin D also acts as a repressor of UCP1

and thermogenesis, but its mechanism of action is still matter of debate

[69].

The retinoblastoma protein (pRb) is a tumor-suppressing protein with a

key role in differentiating preadipocytes into white adipocytes and acts as

a thermogenic repressor by inhibiting the expression of PGC1A gene [70]

and hindering PPARγ activity [71].

The twist basic helix-loop-helix transcription factor 1 (Twist1) is a neg-

ative regulator of thermogenesis induced by PPARδ which inhibits PGC-1α

at a transcriptional level [72].

The two members of steroid receptor coactivator (SRC) family SRC2 and

SRC3 negatively regulate thermogenesis by acting on PGC-1α through dif-

ferent mechanisms [68]. In particular, SRC2 blocks the interaction between

PPARγ and PGC-1α, thus the expression of UCP1 is reduced [73]. Con-

versely, SRC3 impairs the transcriptional activity of PGC-1α by recruiting

an acetyltransferase which inactivates PGC-1αby its acetylation [74].

The transient receptor potential cation channel subfamily V member

4 (TRPV4), also known as vanilloid-receptor related osmotically activated

channel, is a membrane ion channel. Its activation by endogenous or ex-

ogenous agonists triggers a Ca2+ influx that, via ERK 1/2 pathway, in-

hibits PGC-1α expression and its downstream thermogenic targets [75].

Moreover, TRPV4 activation promotes the production of proinflammatory
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chemokines that favor the onset of insulin resistance [75].

1.3.3 The function of UCP1

UCP1 is located in the inner mitochondrial membrane and belongs to

the SLC25 family of mitochondrial solute carriers [76]. Its role in thermo-

genesis is to uncouple the oxidative phosphorylation from the synthesis of

ATP. To do this, UCP1 breaks the proton gradient existing in mitochon-

dria inducing a leakage of H+ in the intermembrane space; in this way, the

electrochemical gradient is converted into heat and cannot fuel ATP syn-

thesis [77]. When brown adipocytes are inactive, UCP1 does not perform

thermogenesis because either exposed to the inhibitory action of purine

nucleotides or lacks of activating cofactors, i.e. FAs [33]. In fact, UCP1

activity is positively regulated by FAs and negatively regulated by purine

nucleotides. The way FAs activate UCP1 is still matter of debate [33, 77],

as high UCP1 activity has been observed also in absence of stimulatory

FAs [78]. The models proposed for FA-induced UCP1 activation have been

reviewed by Cannon and Nedergaard [33].

1.4 Recruitable thermogenic adipocytes

The canonical classification of AT into WAT and BAT became too sim-

plistic in recent years, as it has been observed that populations of thermo-

genic adipocytes may appear into WAT depots. They were first identified by

Lazar in 2008 [79] and extensively described in both mouse and human in

2012 by Wu and colleagues [80]. These inducible fat cells were named beige

or brite (brown-in-white) adipocytes. These cells are recruitable from white

adipocytes that may acquire the thermogenic ability after proper stimu-

lation. The conversion of white adipocytes into beige/brite cells is called

browning (Figure 1.7).

The most powerful browning stimulus is the sympathetic response to
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Figure 1.7: Conversion of white adipocytes to brown adipocytes. LV: lipid
vacuole; M: mitochondrion; N: nucleus. Modified from Ro et al. [81].

cold exposure which, as described for BAT, triggers a peripheral release of

NE also in WAT depots [82], despite their lower innervation in comparison

to BAT ones [83]. Also in white adipocytes, the surge of NE activates β3-ARs

which, through the signaling cascade already described for brown fat cells,

stimulate the expression of UCP1 and other thermogenic genes. Therefore,

PGC-1α synthesis is increased and mitochondrial biogenesis is enhanced.

These changes are flanked by a dynamic remodeling of lipid stores, as the

big LD that characterizes white adipocytes is fragmented into multiple,

smaller LDs and lipolysis is empowered.

WAT depots do not respond to cold exposure with the same extent,

as acute cold exposure induces a rapid response mainly in inguinal and

retroperitoneal depots. Visceral and perigonadal depots are less prone to

recruit brite adipocytes and they need a chronic exposure to induce brown-

ing [4]. The response of mature white adipocytes to cold exposure depends

also on the proximity to noradrenergic sympathetic nerve ends, depot vas-

cularization and the exposure to favorable micro-environmental conditions.

When the browning stimulation ceases, brite adipocytes acquire a typical

white phenotype; this does not occur in canonical brown adipocytes, as even

when they are inactive their phenotypic characteristics and molecular sig-

nature do not change.
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1.4.1 Origin of brite adipocytes

Browning of white adipocytes is not the only way to recruit brite cells in

WAT depots. Indeed, brite adipocytes may arise from precursors not shared

with white adipocytes. WAT browning and differentiation of de novo brite

adipocytes coexist with depot-specific differences [2]. Since brite adipocytes

are recruited in WAT depots, their precursors should be Myf5–. Actually,

they can be either Myf5+ or Myf5–, according to the anatomical fat pad from

which they originate.

A recent study showed that adipose progenitors PDGFRα+, Sca-1+ and

CD34+ in murine abdominal fat depots can differentiate into both white

and brite adipocytes following a moderate β3-adrenergic activation [21]. It

has also been demonstrated that brite cell precursors may lack a number

of surface markers present in the precursors of other adipocytes [2].

It is now ascertained that PDGFRα+ adipose progenitors can differenti-

ate into white or brite adipocytes regardless of Myf5 expression. The two

phenotypes are interchangeable according to the degree of sympathetic ac-

tivation without any impact on the expression of surface markers [2].

1.4.2 Molecular signature of brite adipocytes

The first studies on brite adipocytes demonstrated that these cells have

comparable expression profiles with both brown and white adipocytes. How-

ever, these cells also express a spectrum of brite-specific genes that can be

treated as distinctive markers. The first genes recognized as selective brite

markers were the developmental transcription factor TBX1, the transmem-

brane protein TMEM26 and the tumor necrosis factor receptor superfamily

member CD137 [80]. Their expression was elevated in inguinal subcuta-

neous WAT of mice [80], which is a notable source of recruitable thermo-

genic adipocytes. Nonetheless, in vivo β3-adrenergic activation of murine

inguinal white adipocytes did not evoke an increase of Tbx1 and Tmem26

expression, while other putative surface markers were selectively upregu-
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lated [84]. These genes, namely Pat2 and P2rx5, were selectively upregu-

lated in brown and brite adipocytes, with Pat2 being more close to brite

adipocyte markers [84]. Notably, the markers characterized in this re-

search partly or totally lost their discriminating ability when isolated prea-

dipocytes were immortalized and differentiated into mature fat cells. This

study also pointed neuregulin 4 (NRG4) as an adipose-specific potential

marker, despite no differences were found between white and brown adi-

pocytes [84]. Later research stated that actually the specificity for NRG4

expression exists for brite adipocytes and the gene has been proposed as a

brite marker both in mice [85] and in humans [86].

A massive up-regulation of Tbx1 was demonstrated in recruited murine

thermogenic cells, while Tmem26 was induced just in SVF [87].

Primary murine adipocytes treated with rosiglitazone, a PPARγ agonist,

became brite and exhibited an upregulation of canonical thermogenic genes

and putative brite markers, with the exception of Tmem26 [88]. Adrener-

gic stimulation of these brite adipocytes lowered the expression of some

markers, including Tbx1 and P2rx5, which lost their discriminating abil-

ity compared to control white adipocytes. The characterization of SVF

adipocyte precursors demonstrated the highest levels of specific markers

(TBX1 and TMEM26) compared to mature adipocytes [88]. Taken together,

these results show that the accuracy of putative brite markers depends on

many factors. For instance, in vivo and in vitro models differently express

TBX1 and CD137 [88]. In vivo, CD137 does not meet the marker criteria

because its levels are regulated by other physiological processes different

from browning [89]. Moreover, immortalized cell lines might lose the ex-

pression of some biomarkers [84, 88], and in vitro adrenergic stimulation

might downregulate the expression of a number of biomarkers [88]. In

light of these findings, unambiguous validated brite biomarkers are lim-

ited to fibroblast growth factor 21 (FGF21), carbonic anhydrase 4 (CAH4)

and Cbp/P300-interacting transactivator 1 (CITED1), even if the last one

is negatively affected by adrenergic activation [88].
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1.4.3 Dynamic of LD remodeling during browning

Lipid droplets are organelles with a dynamic nature, since they undergo

several important changes during cell life and in response to metabolic

variations. LDs are organelles generated via the endoplasmic reticulum

(ER) through a seipin-mediated complex machinery that allows intralumi-

nal lipid synthesis and budding from the ER membrane of the nascent LD

[90, 91]. Cytoplasmic LDs are packed within a phospholipid monolayer

that includes a mosaic of LD membrane-associated proteins [90].

The enlargement of LDs in differentiating adipocytes occurs via de novo

lipogenesis and LD fusion. This process takes place when two LDs begin

a mutual contact and the smaller droplet transfers its lipid content in the

larger one [91]. In the contact site between two fusing LDs, a trans homod-

imer between cell death-inducing DNA fragmentation factor alpha-like ef-

fector A (CIDEA) and CIDEC (also known as fat-specific protein 27, FSP27)

is formed. The protein complex forms a channel through which lipids are

slowly transferred to the large LD, driven by a pressure gradient [91].

LD-associated proteins are differentially expressed among different fat

depots. A study demonstrated that most LD-associated proteins are par-

ticularly enriched in murine interscapular BAT [92]. Interestingly, CIDEA

has been found overexpressed only in BAT, while different WAT depots ex-

press only CIDEC; this is true in mouse [93], since human WAT expresses

CIDEA as well [94]. This finding has led the use of CIDEA as a selec-

tive BAT marker in mouse experiments and pointed out a different role of

CIDEA and CIDEC in LD remodeling. CIDEA is a mediator of LD fusion,

as stated above, but CIDEA alone cannot achieve an unilocular phenotype,

typical of WAT [95]. To obtain large LDs as in white adipocytes, CIDEC’s

activity is compulsory. Its lipid transfer efficiency can be improved by the

interaction with PLIN1, despite this is not strictly necessary to achieve the

unilocular phenotype [96]. This explains why, at least in mouse, Cidea ex-

pression is limited to BAT and Fsp27 is conversely more expressed in WAT.
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Recently, a differential role for FSP27 in BAT and WAT has been de-

scribed in mouse. A new isoform of FSP27, alternatively transcribed by

the same gene, has been found in liver and BAT. This isoform, known as

FSP27β, is synthesized through the activation of a different promoter [97].

The native form, namely FSP27α, is expressed in white adipocytes and

dimerizes to promote LD fusion towards the unilocular phenotype. The

role of FSP27β is not clear. Nevertheless, a model for its function in LD dy-

namic has been proposed. The interaction of FSP27β with CIDEA should

prevent the formation of the heterodimer that promotes LD fusion. In this

way, fusion is prevented and LDs maintain a small size [94].

In human, both CIDEA and CIDEC are expressed in all types of AT and

their expression level is positively correlated with insulin sensitivity [98].

They are supposed to have a beneficial role, since they are overexpressed

to reduce ectopic accumulation of fat, storing it in adipocytes, and thus to

improve insulin sensitivity [94].

When browning occurs, a change in LD morphology can be appreciated

[92, 99]. A significant β3-adrenergic activation in white adipocytes switches

the unilocular phenotype to a multilocular one. Stimulated cells decrease

the dimensions of their LDs due to the NE-dependent activation of lipoly-

sis. Concurrently, de novo lipid synthesis is also stimulated: existing LDs

become surrounded by a multitude of micro LDs which are enlarged as

a consequence of lipogenesis and CIDE’s activity [92]. This physiological

response is achieved to improve the efficiency of lipolysis: smaller LDs in-

crease the total surface accessible to lipases, so a higher mass of TAGs

is oxidized to fuel mitochondrial thermogenesis [92, 99]. The adrenergic

stimulus can also trigger energy-consuming metabolic pathways, included

a lipolysis/lipogenesis futile cycle involved in LD remodeling and reducing

lipid content in a UCP1-independent way [100].
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1.4.4 Mitochondrial dynamics during browning

Mitochondria are also dynamic organelles in cells, as they undergo con-

tinuous episodes of fusion and fission. Fusion produces complex and highly

interconnected mitochondrial networks composed by elongated, tubular mi-

tochondria. These interconnected mitochondrial networks are important

for communication between organelles and transfer of mitochondrial DNA

gene products [101]. The elongated mitochondrial shape is associated with

highly energy demanding conditions, as tubular mitochondria are more ef-

ficient in ATP synthesis [102]. For instance, interconnected mitochondrial

networks have been observed in white pre-adipocytes at the beginning of

their differentiation into mature cells [99].

During mitochondrial fission, the elongated networks splinter into dis-

crete, circular mitochondria which eventually can show swelling. Fissed

mitochondria can be more easily distributed in the cytoplasm [101]. De-

spite fission has been frequently associated with apoptosis [103], it has a

precise physiological meaning in thermogenic adipocytes. Mitochondrial

fission has been proven to be associated with low energy demanding sit-

uations, like thermogenesis [103], in which the catabolism of high energy

substrates does not fuel the production of ATP.

The molecular machinery driving fusion and fission involves the activ-

ity of dynamin-related proteins (DRPs), which can remodel mitochondrial

membranes thanks to their GTPasic activity [101]. Fusion is mediated by

two sets of proteins: mitofusins (MFN) 1 and 2 join together the outer mem-

branes of mitochondria, while the fusion of inner membranes is achieved

by OPA1, which also maintains the architecture of cristae [104]. Little is

known about factors regulating mitochondrial fission. DRP1 is, thus far,

the only described protein involved in fission [104].

In brown adipocytes, fission is stimulated by β3-adrenergic activation,

thus it is narrowly coupled with thermogenesis. NE has a role in stim-

ulating fission by activating PKA, which in turn phosphorylates DRP1,
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turning it in an active form [103]. Fission produces small globular mito-

chondria. Once the thermogenic stimulus ceases, the mitochondrial archi-

tecture returns to an elongated, interconnected web of tubular mitochon-

dria [103]. NE favors mitochondrial fission by enhancing DRP1 activity

in a PKA-dependent way and prevents mitochondrial fusion by abrogating

mitochondria-bound OPA1 [105]. OPA1 inhibition also provokes mitochon-

drial swelling [106]. NE-induced fission is functional for energy expen-

diture, because fragmented mitochondria surrounding LDs become more

sensitive to FAs. As a consequence, UCP1 activation is improved and mito-

chondria oxidize FAs more efficiently [103].

This physiological model occurs also during browning, as the NE-driven

mitochondrial biogenesis is flanked by DRP1-mediated fission and remod-

eling of LDs. The difference in mitochondrial architecture between brown

and brite adipocytes lies in the behavior of the cells after the ending of

the thermogenic stimulus. Unstimulated brown adipocytes fuse their mi-

tochondria into native interconnected webs [103] and, moreover, maintain

a constitutively high level of mitochondrial biogenesis [107]. Unstimulated

brite adipocytes come back to a white phenotype in a process that involves

both the decline of mitochondrial biogenesis and the stimulation of mi-

tophagy, i.e. the controlled disruption of mitochondria [107]. Mitophagy is

activated when mitochondria lose their membrane potential and recruit the

parkin protein [108]. The proton leakage promoted by UCP1 prevents mi-

tophagy and parkin is strongly repressed by β3-adrenergic activation. The

NE withdrawal allows parkin expression, promoting mitophagy in brite ad-

ipocytes [107].
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Browning as a therapeutic

strategy

The physiological changes induced in WAT by browning opened new

perspectives in adipobiology and obesity research. In particular, there is

growing interest in the induction of WAT browning in obese patients as a

therapy for obesity and related co-morbidities.

2.1 An overview on obesity

Obesity is a complex disease in which excess energy is accumulated.

The BMI is the parameter of choice to discriminate between normal weight,

overweight and obese individuals: people with a BMI between 25 and 30 kg

m–2 are overweight, while individuals with a BMI that exceeds 30 kg m–2

are obese [109]. Nevertheless, this parameter does not take into account

the dishomogeneous distribution of fat mass across different depots. The

severity of obesity depends on the degree of fat accumulation in different

depots [110]. An excess of fat in the upper part of the body (i.e. abdomi-

nal obesity) is a typical feature of obese men and is highly correlated with

diabetes and cardiovascular disease. Conversely, when fat mostly accumu-

lates in the lower part of the body (mostly in the gluteo-femoral depot),

the correlation with severe morbidities is much lower. This phenotype is
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widespread among obese women.

Obesity has gained a worldwide epidemic distribution, with nearly one

billion of individuals being obese [109]. The treatment of obesity becomes

then a primary concern in global health, but the traditional approaches (i.e.

modification of dietary habits, physical exercise) are not always effective,

since the regain of fat mass is a likely feature [111]. Bariatric surgery is

an interesting alternative, but is not available in all cases [109]. In this

scenario, WAT browning is claimed as a promising alternative therapeutic

tool.

2.2 Therapeutic significance of browning

The interest of the scientific community about WAT browning derives

from the high metabolic capacity of BAT in dissipating energy as heat.

Being highly vascularized and innervated, BAT can respond promptly to

thermogenic stimuli and mobilize energy substrates to be oxidized. This

interest further grew after the discovery of functional BAT in adult hu-

mans and of brite adipocytes enclosed in WAT depots [112]. The activation

of thermogenesis in brown and brite fat cells should lead to the depletion

of cellular lipid stores. Consequently, a flow of glucose and FAs should be

mobilized towards these cells to fuel the thermogenic machinery, leading

to a decrease of ectopic fat depots and an increase in AT insulin sensitivity

[112].

Unlike rodents, BAT in adult humans represents only 2.7% of total body

weight (5.5% in women, 1.3% in men) and its content is inversely correlated

to BMI [113]. PET-CT measurements and mathematical models estimated

that mass and volume of functional BAT in adult humans are respectively

50 g and 137 cm3 [114]. In terms of metabolic contribution, adaptive ther-

mogenesis in thermoneutral conditions represents 5% of basal metabolic

rate (BMR) [114]. A 4% increase of BMR through adaptive thermogen-

esis, with the contribution of recruited brite adipocytes, could produce a

32



2.3. INDUCING WAT BROWNING

3% reduction of total body weight per year, assuming that the activation

is chronically sustained [115]. This can be true if functional tolerance is

avoided [116] and if thermogenesis is not impaired and compensated by an

increase in food assumption [117].

The administration of the β3-adrenergic agonist mirabegron caused a

13% increase in BMR [118]; if chronically sustained, this activation could

induce an 8% decrease in total body weight per year. It has to be stressed

that the chronic thermogenic activation induced by exogenous substances

has been only assumed in the cited researches and it deserves further elu-

cidation [112].

These results assume that brite adipocytes contribute to metabolic rate

to the same extent of brown fat cells, although a basal thermogenesis in

BAT in absence of thermal challenges may occur [119]. Moreover, there is

growing evidence that thermogenesis in brite adipocytes can occur through

alternative processes that do not involve UCP1 expression, like the futile

lipolysis and lipogenesis cycle [100, 120]. Taken together, all these state-

ments show a complex panorama that still needs deeper understanding to

translate the results of scientific research about adipobiology and physiol-

ogy of browning into routinary clinical practice.

2.3 Inducing WAT browning

The activation of BAT and the recruitment of brite adipocytes, in terms

of UCP1 expression and modifications of intracellular architecture as de-

scribed above, can occur through a number of different pathways involving

a number of signaling cascades and transcription factors. The main molec-

ular hallmark is β3-AR, which responds to NE surges following thermal

challenges. Cold exposure is the most effective way to activate thermogen-

esis in AT [121].

Other endogenous mechanisms can produce browning. These processes

can be driven by hormonal compounds or by other molecular mediators
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acting directly on UCP1 promoter or on upstream transcription factors.

Some of these molecules are centrally active and can activate sympathetic

nervous system to produce a peripheral release of NE. Among endogenous

factors, myokines produced by contracting skeletal muscles are gaining in-

terest because their browning activity could strengthen the existing link

between weight loss and physical exercise. For instance, studies on the

browning activity of β-aminoisobutyric acid [122] and brain-derived neuro-

trophic factor [123] have been performed with interesting results, but fur-

ther characterization is needed, since their molecular mechanisms and the

effect on LD and mitochondrial dynamics are mostly unknown. A plethora

of such endogenous browning factor have been reviewed in [109, 124].

Browning can be also induced by external molecules. Historically, a

number of anti-obesity drugs were present; many of them have been with-

drawn because of their deleterious side effects [112]. Nevertheless, studies

about different pharmacological molecules have shown interesting brown-

ing effects, despite their primary target is not AT, like selective serotonin

re-uptake inhibitors and tamoxifen [109]. Concerning exogenous molecu-

les, the attention is now focused on the study of bioactive compounds found

in nature (e.g. nutraceuticals from plants). Among these, capsaicin can

induce WAT browning by directly activating adipocyte transcriptional pro-

gram and by triggering a central stimulation that ends up in the periph-

eral release of NE. Despite the molecular pathway activated by capsaicin

has been characterized [125, 126], little is known about long term effects

of capsaicin administration and its effects on structural variations. The β-

carotene-derived retinoic acid is another bioactive compound with brown-

ing activity, but only the effect of the all-trans isomer has been extensively

described [63], as its cis-9 isomer has not been fully characterized yet. A

high number of bioactive molecules deserves deeper studies to better ex-

ploit the way they can induce browning and to which extent.
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Aim of the thesis

This thesis aims to gain new insight about the principal features of

WAT browning. The effects of chosen bioactive compounds on cells was

evidenced in terms of gene expression and modifications of the structure of

lipid droplets and mitochondria. The attention was focused on delineating

the browning effect of selected endogenous and nutraceutical molecules,

such as β-aminoisobutyric acid, capsaicin, brain-derived neurotrophic fac-

tor and cis-9 retinoic acid, on white and brite preadipocytes and differen-

tiated adipocytes. Simpson-Golabi-Behmel syndrome cell strain, a human

model of white preadipocytes, was also investigated in order to characterize

their transient unstimulated browning.
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Materials and methods
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Chapter 4

Chemicals and culture media

The chemicals and culture media used in the experiments presented

in this thesis, together with the buffers and solvents, have been listed in

Table 4.1. Kits and chemicals for RNA extraction, cDNA synthesis and

amplification were listed in Table 4.2, together with products and dyes used

in structural analyses, immunofluorescence and in-cell Western.
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Table 4.1: Reagents and media for cell cultures and for buffer preparation.
DMEM/F12: Dulbecco’s modified Eagle medium/Ham’s F12; HEPES:
4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid.

Cell culture media and reagents

Product Identifier Source

DMEM/F12 (1:1) 31330038 Thermo Fisher Scientific
High glucose DMEM, GlutaMAX™ sup-
plement

10566016 Thermo Fisher Scientific

Biotin B4639 Sigma-Aldrich
D-pantothenic acid hemicalcium salt P5155 Sigma Aldrich
Penicillin-streptomycin 15140122 Thermo Fisher Scientific
Amphotericin B 15290026 Thermo Fisher Scientific
Fetal bovine serum 10270106 Thermo Fisher Scientific
Human apo-Transferrin T2252 Sigma-Aldrich
Human insulin I1507 Sigma-Aldrich
Hydrocortisone H0888 Sigma-Aldrich
3,3’,5-Triiodo-L-thyronine sodium salt T6397 Sigma-Aldrich
Dexamethasone D1756 Sigma-Aldrich
3-Isobutyl-1-methylxanthine I5879 Sigma-Aldrich
Rosiglitazone 71740 Cayman Chemical
Indomethacin 70270 Cayman Chemical
3-Aminoisobutyric acid AG-CR1-3596 AdipoGen Life Sciences
Capsaicin 92350 Cayman Chemical
Brain-derived neurotrophic factor 4004 BioVision Inc.
9-cis-Retinoic acid 14587 Cayman Chemical
L-(–)-norepinephrine bitartrate hydrate 16673 Cayman Chemical
(–)-Isoproterenol hydrochloride I6504 Sigma-Aldrich
Thiazolyl blue tetrazolium bromide (MTT) M5655 Sigma-Aldrich
Oil red O solution O1391 Sigma-Aldrich

Salts, buffers and solvents

Sodium chloride S7653 Sigma-Aldrich
Potassium chloride P9333 Sigma-Aldrich
Sodium phosphate dibasic S7907 Sigma-Aldrich
Potassium phosphate monobasic P5655 Sigma-Aldrich
Hank’s balanced salt solution ECM0507L Euroclone S.p.A.
HEPES buffer ECM0180D Euroclone S.p.A.
TWEEN® 20 P7949 Sigma-Aldrich
Absolute ethanol 3086052 Carlo Erba Reagents S.r.l.
2-Propanol I9516 Sigma-Aldrich
Dimethyl sulphoxide D2650 Sigma-Aldrich
Buffered neutral 10% formalin 05-01004F Bio-Optica S.p.A.
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Table 4.2: Reagents and kits for molecular biology protocols, structural analyses,
immunofluorescence and in-cell Western. TBE: tris/borate/EDTA;
DAPI: 4’,6-diamidino-2-phenylindole.

Products for molecular biology

Product Identifier Source

TRIzol™ reagent 15596026 Thermo Fisher Scientific
Chloroform C2432 Sigma-Aldrich
PureLink™ RNA Mini Kit 12183018A Thermo Fisher Scientific
SuperScript™ III one-step RT-PCR system 12574026 Thermo Fisher Scientific
Agarose EMR010001 Euroclone S.p.A.
GelRed® 41003 Biotium
1 kb DNA ladder 31022 Biotium
TBE AM9863 Thermo Fisher Scientific
ImProm-II™ Reverse Transcription System A3800 Promega Corporation
Transcriptor High Fidelity cDNA Synthesis
Kit

5091284001 Roche Diagnostics

Platinum™ SYBR™ Green qPCR
SuperMix-UDG

11733046 Thermo Fisher Scientific

Fluorescent dyes

BODIPY™ 493/503 D3922 Thermo Fisher Scientific
MitoTracker™ Orange CMTMRos M7510 Thermo Fisher Scientific
Fluo-8 AM ab142773 Abcam

Protein expression reagents

Triton™ X-100 T9284 Sigma-Aldrich
Glycine G8898 Sigma-Aldrich
Ammonium chloride A9434 Sigma-Aldrich
Normal goat S-1000 Vector Laboratories
Bovine serum albumin fraction V 10738328103 Roche Diagnostics
Anti-rabbit AlexaFluor® 555 ab150078 Abcam
Anti-rabbit fluorescein IgG FI-1000 Vector Laboratories
Anti-mouse fluorescein IgM FI-2020 Vector Laboratories
Anti-rabbit IRDye® 800CW 925-32211 LI-COR Inc.
Fluoroshield mounting medium with DAPI ab104139 Abcam
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Chapter 5

Preliminary methodological

assessment

5.1 Establishing culture media formulation

The experiments presented in this doctoral thesis have been performed

on different adipose cell lines: Simpson-Golabi-Behmel syndrome (SGBS)

human preadipocytes, 3T3-L1 murine preadipocytes and X9 murine prea-

dipocytes. These cells need different formulations to achieve satisfactory

growth and differentiation rate, but they show common features in the cul-

ture protocol.

After thawing, cells are plated on culture dishes or microscopy slides

and are cultured in a growth medium to reach a confluence rate close to

or equal to 100%. The exact time each cell type requires for clonal expan-

sion varies according to: i) seeding density; ii) desired confluence rate; iii)

cell viability. In general, for all cell types used, clonal expansion from the

seeding day to reach 90% confluence requires 5-8 days, starting from 5,000

cells/cm2.

When cells reached a satisfactory confluence rate, differentiation has

been induced with differently formulated differentiation media according

to cell type. The differentiation medium formulation is critical for the
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successful achievement of cell differentiation, hence this aspect has been

carefully studied and different formulations have been tested to find the

optimal differentiation conditions.

The incubation with differentiation medium normally lasted from 2 to 4

days and was followed by the administration of the maintenance medium,

which is formulated in a way that keeps cells in their differentiated state,

allowing fat accumulation in their LDs until they become fully differen-

tiated adipocytes. The administration of the maintenance medium lasts

until cell sampling for analyses and its formulation depends on the differ-

entiation medium, so different formulation have been tested accordingly.

For all the experiments reported in this doctoral thesis, cells were grown

in a Forma™ Steri-Cycle™ i160 CO2 incubator (51030301 Thermo Fisher

Scientific) at 37°C, with 5% CO2 and 95% relative humidity.

5.1.1 SGBS cells

A stock of SGBS human preadipocytes has been kindly provided by prof.

Martin Wabitsch (University of Ulm). The culture media formulation for

SGBS cells has been described by Wabitsch and colleagues, who first iso-

lated this model and implemented their in vitro growth [127]. The sug-

gested media formulation has been reported in Table 5.1.

The media presented in Tabel 5.1 achieved satisfactory results in terms

of cell expansion and differentiation. Nevertheless, we observed a signif-

icant decline in LD formation in SGBS cultures at high passage number.

For this reason, being hydrocortisone recognized as a powerful lipogenic

and antilipolitic factor [128], the differentiation and maintenance media

have been reinforced with additional 150 nM hydrocortisone, to a final con-

centration of 250 nM. The duration of cell incubation with differentiation

and maintenance media did not change from how suggested by Wabitsch

and colleagues [127]: after two washes with phosphate buffer saline (PBS)

1X, 90% confluent cells were incubated with the differentiation medium for
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4 days. The incubation with maintenance medium, refreshed every 4 days,

lasted until cell sampling. This growth protocol has been adopted in the

results presented in Chapter 11.

Table 5.1: Formulation of SGBS cells culture media as reported by Wabitsch et

al. [127]. DMEM/F12: Dulbecco’s modified Eagle medium/Ham’s F12;
FBS: fetal bovine serum; P/S: penicillin/streptomycin; IBMX:
isobutylmethylxanthine.

Reagent Growth Differentiation Maintenance

medium medium medium

Basal medium DMEM/F12 DMEM/F12 DMEM/F12
FBS 10% – –
P/S 1% 1% 1%
Biotin 33 µM 33 µM 33 µM
Panthotenic acid 17 µM 17 µM 17 µM
Human transferrin – 10 µg/mL 10 µg/mL
Triiodothyronine – 0.2 nM 0.2 nM
Hydrocortisone – 100 nM 100 nM
Human insulin – 20 nM 20 nM
Dexamethasone – 25 nM –
IBMX – 250 µM –
Rosiglitazone – 2 µM –

5.1.2 3T3-L1 cells

Unlike SGBS cells, 3T3-L1 murine preadipocytes (SP-L1-F ZenBio Inc.)

are a worldwide commonly used cell model for adipobiology study, as they

represent an accurate model of WAT depots with visceral features. Differ-

ent laboratories adopted differentiation medium formulations that varied

in composition and reagent concentration, but the gold standard for 3T3-

L1 is the insulin-dexamethasone-IBMX (isobutylmethylxanthine) cocktail

[129].

The adopted media for culturing 3T3-L1 cells in our laboratory chan-

ged during the 3 years of doctoral studies. This was due to a decline in

differentiation outcome probably linked to cell aging during routinary cell

culture practice [130]. It has to be underlined that all 3T3-L1 cells used

in the studies reported in the present thesis derive from a single stock of

3T3-L1 cells purchased at the beginning of the first year of doctoral study.
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Hence, the variations of the culture media experienced during the research

period come from the time course-dependent need to implement cell differ-

entiation to counteract the unavoidable throwbacks caused by cell senes-

cence. While differentiation media underwent some changes throughout

time, clonal expansion was always performed in high glucose Dulbecco’s

modified Eagle medium (DMEM) with 10% fetal bovine serum (FBS), 1%

penicillin/streptomycin solution (P/S) and 1% amphotericin B. To inhibit fi-

broblast mitosis, 100% confluent cells were switched to the differentiation

cocktail only 48 hours after reaching full confluence.

The first differentiation cocktail adopted in our laboratory has been de-

scribed by Asano and colleagues [131] and has been slightly modified in

reagents’ concentration. The formulation of differentiation and mainte-

nance cocktails are reported in Table 5.2. This formulation has been used

in experiments reported in Chapter 12. The incubation with the differen-

tiation medium lasted three days and the replacement with maintenance

medium was performed until cell sampling.

Table 5.2: Formulation of 3T3-L1 cells culture media modified from Asano et al.

[131]. DMEM/F12: Dulbecco’s modified Eagle medium/Ham’s F12;
FBS: fetal bovine serum; P/S: penicillin/streptomycin; IBMX:
isobutylmethylxanthine.

Reagent Differentiation Maintenance

medium medium

Basal medium DMEM/F12 DMEM/F12
FBS 10% 10%
P/S 1% 1%
Amphotericin B 1% 1%
Triiodothyronine 1 nM 1 nM
Human insulin 0.5 µg/mL 0.5 µg/mL
Dexamethasone 5 µM –
IBMX 0.5 mM –
Rosiglitazone 1 µM –

This first differentiation cocktail has been switched to a formulation

closer to the gold standard proposed in late ’70s [132]. This formulation

has been used in experiments described in Chapters 13 and 15 and pro-

duced good differentiation outcomes. Also in this case, the differentiation
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medium was administered for three days and the maintenance lasted un-

til cell sampling. Used reagents and their concentrations are reported in

Table 5.3.

Table 5.3: Formulation of 3T3-L1 cells culture media modified from Rubin et al.

[132]. DMEM/F12: Dulbecco’s modified Eagle medium/Ham’s F12;
FBS: fetal bovine serum; P/S: penicillin/streptomycin; IBMX:
isobutylmethylxanthine.

Reagent Differentiation Maintenance

medium medium

Basal medium DMEM/F12 DMEM/F12
FBS 10% 10%
P/S 1% 1%
Amphotericin B 1% 1%
Human insulin 1 µg/mL 1 µg/mL
Dexamethasone 0.5 µM –
IBMX 0.5 mM –

The final differentiation cocktail tested for 3T3-L1 culture is currently

in use in our experiments and is achieving excellent differentiation rates.

The formulation has been derived from Zebisch and colleagues [133] with-

out modifications and it has been used for experiments described in Chap-

ter 14. The incubation with the differentiation cocktail lasted two days,

while maintenance was administered to cell cultures until cell sampling.

The list of reagents and their concentration are indicated in Table 5.4.

Table 5.4: Formulation of 3T3-L1 cells culture media modified from Zebisch et al.

[133]. HG DMEM: high glucose Dulbecco’s modified Eagle medium;
FBS: fetal bovine serum; P/S: penicillin/streptomycin; IBMX:
isobutylmethylxanthine.

Reagent Differentiation Maintenance

medium medium

Basal medium HG DMEM HG DMEM
FBS 10% 10%
P/S 1% 1%
Amphotericin B 1% 1%
Human insulin 1 µg/mL 1 µg/mL
Dexamethasone 0.25 µM –
IBMX 0.5 mM –
Rosiglitazone 2 µM –
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5.1.3 X9 cells

Experiments on 3T3-L1 cells and X9 cells (CRL-3282 ATCC) are re-

ported in Chapter 13. These two murine models are different in their

metabolic profile, as X9 cells have been isolated from the subcutaneous

inguinal white fat pad, which is more prone to browning than other de-

pots [80]. Researches using these cell line are lacking in literature, so the

choice of the most appropriate culture medium required a deep study and

comparison between various formulations.

When differentiated with the cocktail recommended by Wu and Xu [134],

the differentiation rate of X9 cells was very low, as about 85% cells pre-

served a fibroblast-like aspect after the incubation with both differentia-

tion and maintenance media. The formulation proposed for the media in

[134] has been reported in Table 5.5.

Table 5.5: Formulation of X9 cells culture media as reported by Wu & Xu [134].
DMEM/F12: Dulbecco’s modified Eagle medium/Ham’s F12; HG
DMEM: high glucose Dulbecco’s modified Eagle medium; FBS: fetal
bovine serum; P/S: penicillin/streptomycin; IBMX:
isobutylmethylxanthine.

Reagent Growth Differentiation Maintenance

medium medium medium

Basal medium DMEM/F12 DMEM/F12 DMEM/F12
FBS 15% 10% 10%
P/S 1% 1% 1%
Amphotericin B 1% 1% 1%
Triiodothyronine – 1 nM 1 nM
Human insulin – 0.5 µg/mL 0.5 µg/mL
Dexamethasone – 5 µM –
IBMX – 0.5 mM –
Rosiglitazone – 1 µM –

For X9 cells, four different media formulations have been tested. They

were taken from [133] and [135] and differed not only in the reagents’ na-

ture and concentration, but also in basal medium composition and FBS

level. Different media will be called to hereafter Formulation (F) 1, F2, F3

and F4 and their reagents’ concentrations are reported in Table 5.6.

To test the effectiveness of each formulation, cells were grown for 2 and
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Table 5.6: Formulation of X9 cells culture media F1, F2, F3 and F4. DMEM/F12:
Dulbecco’s modified Eagle medium/Ham’s F12; FBS: fetal bovine
serum; P/S: penicillin/streptomycin; IBMX: isobutylmethylxanthine.

Reagent F1 F2 F3 F4

Growth Basal medium DMEM/F12 HG DMEM DMEM/F12 HG DMEM
medium FBS 15% 10% 15% 10%

P/S 1% 1% 1% 1%
Amphotericin B 1% 1% 1% 1%

Differentiation Basal medium DMEM/F12 HG DMEM DMEM/F12 HG DMEM
medium FBS 10% 10% 10% 10%

P/S 1% 1% 1% 1%
Amphotericin B 1% 1% 1% 1%
IBMX 0.5 mM 0.5 mM 0.5 mM 0.5 mM
Human insulin 10 ng/mL 10 ng/mL 1 µg/mL 1 µg/mL
Dexamethasone 1 µM 1 µM 0.25 µM 0.25 µM
Triiodothyronine 1 nM 1 nM 1 nM 1 nM
Rosiglitazone 1 µM 1 µM 2 µM 2 µM
Indomethacin 125 µM 125 µM – –

Maintenance Basal medium DMEM/F12 HG DMEM DMEM/F12 HG DMEM
medium FBS 10% 10% 10% 10%

P/S 1% 1% 1% 1%
Amphotericin B 1% 1% 1% 1%
Human insulin 10 ng/mL 10 ng/mL 1 µg/mL 1 µg/mL
Triiodothyronine 1 nM 1 nM 1 nM 1 nM

Reference modified from [135] [135] [133] [133]
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6 days post-differentiation induction and lipid accumulation was evaluated

through oil red O (ORO) staining quantification, according to Mehlem’s pro-

tocol [136]. ORO staining is a protocol that allows the quantification of the

TAG accumulation in cultured cells through a colorimetric measurement of

absorbance.

ORO was filtered with 0.2 µm filters and mixed with H2O in a 6:4 ratio.

The mixture was incubated at room temperature (RT) for 20 minutes and

then filtered again with 0.2 µm filters. In the meantime, cells plated in

96-well plates were fixed with formalin 10% for 5 minutes at RT. Formalin

was then refreshed for a second incubation lasting 90 minutes at RT. Next,

cells were rinsed with 60% isopropanol and wells were let to completely air

dry. ORO:H2O working solution was then added to well and incubated for

10 minutes at RT. After ORO removal, cells were immediately washed 5

times with H2O; following the last cleansing, wells were let to completely

air dry. ORO accumulated in adipocytes was eluted with a 15 minutes

incubation with 100% isopropanol at RT, followed by absorbance detection

with a Spark multimode microplate reader (Tecan Trading AG). Prior to

ORO elution, cells were imaged with a DM4 B optical microscope (Leica

Microsystems GmbH).

ORO internalization by differentiating X9 cells is shown in Figure 5.1.

At 2d, most of X9 cells preserved a fibroblast morphology, but a certain level

of ORO internalization was displayed. At this time point, the formulation

which guaranteed the best lipid accumulation is F4 (Figure 5.1, a). The

presence of a high glucose level in the basal medium has probably been

useful for cell expansion and differentiation, as glucose was internalized

and accumulated in form of triglycerides. At 6d, cells were more differen-

tiated with all media formulations and a higher quantity of ORO was in-

ternalized in LDs (Figure 5.1). Nevertheless, F4 medium, which achieved

the best lipid accumulation at 2d, resulted the least efficient medium at 6d

(Figure 5.1, b), while the most effective media were found to be F1 and F3.
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Figure 5.1: ORO uptake by X9 cells at 2 (2d) and 6 (6d) days of differentiation
with differently formulated differentiation media and its
quantification at 2d (a) and 6d (b). Absorbance data are expressed
as means ± SEM from one-way ANOVA. Capital letters indicate p <
0.0001, small letters indicate p < 0.05.

5.1.4 IMBAT cells

A preliminary methodological study has been performed also on IM-

BAT cells, which are immortalized brown adipocytes isolated from the in-

trascapular fat pad of mice kindly gifted by prof. Mark Christian (Notting-

ham Trent University).

The culture of IMBAT cells presents some substantial differences with

other models, as the initial clonal expansion phase should occur at 33°C.

After the incubation in the differentiation cocktail recommended by prof.
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Christian, cell culture is continued at 37°C. The culture media have been

tested in our laboratory and they gave satisfactory growth and differentia-

tion performances; their formulation is reported in Table 5.7.

Table 5.7: Formulation of IMBAT cells culture media as reported by prof.
Christian. DMEM/F12: Dulbecco’s modified Eagle medium/Ham’s
F12; FBS: fetal bovine serum; P/S: penicillin/streptomycin; IBMX:
isobutylmethylxanthine.

Reagent Growth Differentiation Maintenance

medium medium medium

Basal medium DMEM/F12 DMEM/F12 DMEM/F12
FBS 10% 10% 10%
P/S 1% 1% 1%
Amphotericin B 1% 1% 1%
Triiodothyronine – 1 nM 1 nM
Human insulin – 1 µg/mL 1 µg/mL
Dexamethasone – 250 nM –
IBMX – 0.5 mM –
Rosiglitazone – 2.5 µM –
Indomethacin – 125 µM –

The use of this model will have interesting applications for the current

studies, as they both serve as a reliable positive control in comparison to

treated white and brite cells and can further strengthen data about the

induction of thermogenesis produced by tested bioactive compounds.
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Chapter 6

Structural analyses

6.1 Lipid droplets analysis

6.1.1 BODIPY staining

4,4-difluoro-1,3,5,7,8-pentamethyl-4-bora-3a,4a-diaza-s-indacene (BOD-

IPY) 493/503 is a fluorescent dye that stains neutral lipids in biological

samples. This has been chosen to perform ultrastructural studies on adip-

ocytes imaged at epifluorescence Axio Observer Z1 microscope (Carl Zeiss

GmbH) or SP8 confocal microscope (Leica Microsystems GmbH) equipped

with LAS X software, version 3.1.5.16308.

To perform BODIPY staining, cells grown on microscopy slides were

fixed with a 2% formalin solution diluted in PBS 1X at RT for 15 minutes.

Fixed cells were then rinsed in PBS 1X and incubated with 1 µg/µL BOD-

IPY for 45 minutes at RT in dark. Stained cells were rinsed three times

with PBS 1X and mounted with a Fluoroshield mounting medium with

4’,6-diamidino-2-phenylindole (DAPI).

6.1.2 LD dynamic analysis

A comprehensive and descriptive system to obtain reliable morphologi-

cal data about browning of white adipocytes is the analysis of LD dynamic

in cells. For this purpose, the colorimetric ORO assay cannot provide useful
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data, because it is used mainly to understand the differentiation level of ad-

ipocytes, as it gives a global quantitation of the concentration of TAGs with-

out distinguishing the contribution of each LD. For this reason, the mor-

phology of LDs in this thesis was measured with the MRI_Lipid Droplets

macro for ImageJ software (http://rsb.info.nih.org/ij/) [137], following the

acquisition of images of BODIPY-stained adipocytes. The macro applied a

bandpass filter to the input image by using a Gaussian filter and then scal-

ing the image down and up again with increasing scale. This procedure al-

lowed to apply an automatic threshold to the image, which produced a mask

that removed artefacts. Objects that appeared smaller than a given size

chosen by the user were considered artefacts and consequently removed

from the count. Contacting lipid droplets are separated by a binary water-

shed transformation. Finally, individual LDs in every field are enclosed in

single regions of interest (ROI) for which the software measures the area

surface (Figure 6.1).

Figure 6.1: MRI_Lipid Droplets macro for ImageJ measures simultaneously all
LDs present in the input micrography by enclosing them in discrete
ROIs.

As a raw output, the macro provided a number of data, including the

number of LDs in the input image, their area surface, maximum Feret di-

ameter (MFD) and integrate optical density (IOD). MFD estimated the di-

ameter of irregularly shaped objects [138], while IOD indicated the triglyc-

eride content, as a linear correlation between IOD and lipid content of LDs

has been described [139]. Total area surface occupied by LDs in each input

image has been calculated as the sum of single LD area surfaces. The cell

count allowed the calculation of area surface and number of LDs per cell.
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The average area surface of a single LD was calculated by dividing the area

surface of LDs/cells by the number of LDs/cell.

Morphological data were produced for at least 15 images per experimen-

tal condition and were analyzed as non-parametric data, since they did not

follow the normal Gaussian distribution. Thus, statistical analyses of LD

data were performed with Kruskal-Wallis or Mann-Whitney tests with post

hoc Bonferroni correction of significance, run on SPSS or XLSTAT statisti-

cal softwares. A non-parametric representation of the LD size probability

density function (kernel) was also applied to avoid making assumptions

about the distribution of the data; the kernel size distribution was pro-

duced by a routine written in Matlab 7.1.

6.2 Mitochondrial morphology analysis

6.2.1 MitoTracker staining

MitoTracker® Orange CMTMRos is a selective mitochondrial fluores-

cent dye whose accumulation depends upon membrane potential. The work-

ing solution of choice was prepared by diluting MitoTracker stock solution

in cell growth medium to a final concentration of 100 nM. The incubation

with the dye was performed on live cells prior fixation with formalin. Cells

treated with MitoTracker working solution were incubated in the CO2 in-

cubator for 30 minutes. After the incubation, fixation with 2% of forma-

lin, washing with PBS 1X and mounting with DAPI-Fluoroshield were per-

formed prior imaging at the epifluorescence Axio Observer Z1 microscope.

6.2.2 Analysis of mitochondrial dynamic

The analysis of mitochondrial morphology has been performed with the

ImageJ macro Mito-Morphology [140] for experiments in Chapter 11. 10

images per time point underwent mitochondrial morphology analysis: the

intensity of mitochondria-specific fluorescence produced by MitoTracker
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Orange staining was adjusted with contrast-limited adaptive histogram

equalization (CLAHE) to optimally resolve the pixel constituting each mi-

tochondrion. Measurements produced data about mitochondrial content (%

of cytosol occupied by mitochondria), the area/perimeter ratio (a parameter

that described the level of interconnectivity between mitochondria) and the

area/perimeter ratio normalized to the minor axis, which in turn described

the degree of swelling.

Later investigations unveiled some limitations of this tool. A more

comprehensive analysis was provided by the stand-alone software MicroP,

whose functionality has been described by Peng and colleagues [141]. Im-

ages of MitoTracker-stained cells used as input were semi-automatically

segmented to distinguish mitochondria from nuclei. Each mitochondria-

background image was subsequently segmented to extract mitochondria

with local normalization and Otsu’s thresholding. After this final seg-

mentation step, mitochondria appeared as binary objects which can be

extracted by standard object labeling. Postprocessing of these images re-

moved objects with low intensity and small area surface, which are likely

artefacts.

For each segmented mitochondrion, structural data were produced, in-

cluding area surface, solidity and ratio of skeleton. Solidity has been de-

scribed as the ratio of the mitochondrial area and the area of the virtual box

enclosing the mitochondria: the more this value is close to 1, the more com-

pact is the mitochondrion. Values close to 0 indicate a twisted structure.

The ratio of skeleton indicated the ratio between mitochondrial major and

minor axes and it can be interpreted as an elongation index. The whole set

of quantitative data per each mitochondrion allowed their clustering and

classification into six discrete morphological subtypes (Figure 6.2):

1. small globules: round-shaped mitochondria, that are likely a product

of mitochondrial fission;

2. large globules: swollen globules with a larger area;
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3. simple tubules: straight, elongated mitochondria with no branches;

4. twisted tubules: elongated tubules with a non-linear development in

the cytoplasm;

5. donuts: elongated tubules whose ends fused with each other;

6. branched tubules: complex interconnected mitochondrial structure

with a web-like organization.

Figure 6.2: From an image of MitoTracker Orange-stained cells (left), MicroP
software perform a segmentation with Otsu’s thresholding (middle)
and classifies detected mitochondria into morphological subtypes
(right) as follows: blue: small globules; yellow: large globules; green:
straight tubules; orange: twisted tubules; red: donuts; purple:
branched tubules. Scale bar: 10 µm.

This set of morphological data was more descriptive and has been adopted

in our experiments to quantify the impact of browning treatments on cell

cultures, as presented in Chapter 14. The quantitative data were elab-

orated to evaluate the frequency of each mitochondrial subtype in differ-

entially treated cells, their cumulative area surface and their cumulative

skeletal ratio to effectively present how mitochondrial dynamic was af-

fected by browning-inducing treatments.
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Chapter 7

Cell viability

Different treatments administered to cultured cells might affect their

viability. To pinpoint the best concentration of bioactive compounds to be

administerd to cells, the MTT colorimetric viability assay has been chosen.

After removal of culture medium from treated cells, an incubation with

5 mg/mL MTT solution in Hank’s balanced salt solution (HBSS) was per-

formed after a wash in PBS 1X. The incubation was carried out at 37°C

for 4 h. During this period, living cells convert water-soluble, yellow MTT

into a water-insoluble, purple metabolite named formazan; this conversion

is catalyzed by mitochondrial reductases [142]. Accumulated formazan is

dissolved in dimethyl sulfoxide (DMSO) and incubated overnight at 37°C.

The optical density at 550 nm is measured to calculate cell viability, which

is directly proportional to the quantity of formazan produced during incu-

bation with MTT. Statistical differences between differentially treated cells

are evaluated through one-way analysis of variance (ANOVA) with post hoc

Bonferroni correction.
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Chapter 8

Gene expression analysis

All gene expression experiments were performed on purified RNA iso-

lated from cell culture. RNA isolation was achieved by cell lysis with 1

mL/10 cm2 TRIzol reagent, which induced a severe breakdown of cellular

structures and preserved the integrity of nucleic acids for a long time, if

stored at –80°C. Cell lysates were then processed with the PureLink™ RNA

Mini Kit following the producer’s protocol to purify the isolated RNA. The

concentration and quality of isolated RNA were measured with a NanoDrop

1000 spectrophotometer (Thermo Fisher Scientific) or with the Spark mul-

tiplate reader.

Gene expression was analyzed either by RT-PCR amplification, followed

by agarose gel band quantification, or by retrotranscription of RNA into

cDNA which was subsequently amplified with real time PCR. The required

primers for PCR amplification were designed on Primer3 Input web tool

[143].

8.1 RT-PCR

RT-PCR was the technique of choice in gene expression analysis of the

experiment presented in Chapter 11, involving the use of human SGBS adi-

pocytes. β-actin was the housekeeping gene of choice and preliminary trials

displayed that its expression was more stable than other housekeeping ge-
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nes in human adipocytes. Moreover, the quantification of its amplicon band

in the agarose gel was more robust and accurate among replicates than flu-

orescence quantitation in real time PCR. RT-PCR was performed using the

SuperScript™ III one-step RT-PCR system. A list of primers designed on

human gene sequences is reported in Table 8.1.

Total RNA is reverse-transcribed and amplified in a PTC-100 thermal

cylcer (MJ Research) with the following reaction conditions:

• cDNA synthesis: 50°C, 30 minutes;

• reverse transcriptase inhibition: 94°C, 2 minutes;

• cDNA amplification: 40 cycles of:

1. cDNA denaturation, 94°C, 30 seconds;

2. primers annealing at different temperatures according to Table

8.1, 30 seconds;

3. primers elongation, 72°C, 30 seconds;

• termination: 72°C, 5 minutes.

Amplified cDNA was then quantified by 1% agarose gel electrophoresis

with GelRed and normalized against β-actin expression. Agarose bands

were measured with the Gel analysis method in ImageJ, which returned

absolute density values. Relative density was subsequently calculated by

dividing the absolute value of the gene of interest for the density of the

housekeeping.

The gene expression analysis was performed on three biological repli-

cates and at least three technical replicates. These expression data ac-

cepted the null hypothesis of Kolmogorov-Smirnov statistical test of nor-

mality, so they were treated as normal parametric values. For this reason,

the statistical significance of differences between genes in each experimen-

tal pipeline was analyzed through one-way ANOVA with post hoc Bonfer-

roni correction.
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Table 8.1: List of primers used in RT-PCR for human gene amplification. ACTB: β-actin; PPARG1: peroxisome proliferator-activated
receptor γ, variant 1; PPARG2: peroxisome proliferator-activated receptor γ, variant 2; PPARA: peroxisome
proliferator-activated receptor α; PRDM16: PR domain containing 16; PPARGC1A: PPARγ coactivator 1α; UCP1:
uncoupling protein 1; LEP: leptin; ADIPOQ: adiponectin; LIPE: lipase E.

Gene GenBank accession Sequence Amplicon length (bp) Tm (°C)

ACTB JN038572.1 Forward: 5’-CTCTTCCAGCCTTCCTTCCT-3’
Reverse: 5’-AGCACTGTGTTGGCGTACAG-3’

116 59.4

PPARG1 NM_138712.3 Forward: 5’-GCCGCCAGATTTGAAAGAAGC-3’
Reverse: 5’-TGGCATCTCTGTGTCAACCA-3’

110 57.3

PPARG2 NM_015869.4 Forward: 5’-TACAGCAAACCCCTATTCCA-3’
Reverse: 5’-GAGAAGTCAACAGTAGTGAAG-3’

240 55.6

PPARA NM_005036.4 Forward: 5-TCTGTCGGGATGTCACACAA-3’
Reverse: 5’-CGGGCTTTGACCTTGTTCAT-3’

191 57.3

PRDM16 AF294478.1 Forward: 5’-GAGGAGGACGATGAGGACAG-3’
Reverse: 5’-GCTCCTCATCCTCCTCATCC-3’

103 61.4

PPARGC1A NM_001330751 Forward: 5’-GCCCAGGTACAGTGAGTCTT-3’
Reverse: 5’-GTGAGGACTGAGGACTTGCT-3’

105 59.4

UCP1 NM_021833.4 Forward: 5’-GCGGATGAAACTCTACAGCG-3’
Reverse: 5’-GTTTCTTTCCCTGCGGTGAG-3’

117 59.4

LEP D63519.2 Forward: 5’-ACCAAGGTCTTCAGCCATCA-3’
Reverse: 5’-CCCTCTGCCCTCTCTGAAAT-3’

108 58.4

ADIPOQ EU420013.1 Forward: 5’-CCTAAGGGAGACATCGGTGA-3’
Reverse: 5’-GTAAAGCGAATGGGCATGTT-3’

173 57.4

LIPE NM_005357.3 Forward: 5’-CTCTGGTCTACTACGCCCAG-3’
Reverse: 5’-CATCCCTTATGCAGCGTGAC-3’

121 60.4
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8.2 Real time PCR

Real time PCR was chosen for murine samples following multiple house-

keeping genes analysis. TATA box-binding protein (Tbp), glyceraldehyde

3-phosphate dehydrogenase (Gapdh) and RPLP0 ribosomal protein (36b4)

were found to be excellent housekeeping genes for murine 3T3-L1 and X9

adipocytes. Their amplification with real time PCR was more effective and

raw expression data were constant and stable among replicates and be-

tween different days of differentiation.

To perform real time PCR, purified RNA was retrotranscribed with ei-

ther ImProm-II™ Reverse Transcription System or Transcriptor High Fi-

delity cDNA Synthesis Kit. Aliquots of the synthesized cDNA have been

pooled and diluted in serial dilutions to perform standard curves in order

to optimize PCR conditions, such as the concentration of both cDNA and

primers. A comprehensive list of primers used in all experiments involv-

ing murine genes is reported in Tables 8.2 and 8.3. Real time PCR was

performed with the Platinum™ SYBR™ Green qPCR SuperMix-UDG in a

96-well spectrofluorimetric CFX thermal cycler (Bio-Rad Laboratories, Inc.)

with the following reaction conditions:

• Platinum™ Taq polymerase activation: 50°C, 2 minutes;

• first cDNA denaturation: 95°C, 10 minutes;

• cDNA amplification: 45 cycles of:

1. cDNA denaturation, 95°C, 10 seconds;

2. primers annealing at different temperatures according to Tables

8.2 and 8.3, 30 seconds;

3. primers elongation, 72°C, 30 seconds;

• termination: 72°C, 5 minutes;

• melting curve construction: 0.5°C increments from 65 to 95°C, 5 sec-

onds per each increment.
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Table 8.2: List of primers used in real time PCR. Housekeeping genes: Tbp: TATA box-binding protein; Gapdh: glyceraldehyde
3-phosphate dehydrogenase; 36b4: RPLP0 ribosomal protein. Brown & brite fat markers: Ucp1: uncoupling protein 1;
Tbx1: T-box1; Prdm16: proline rich domain containing 16; Elovl3: elongase of very long chain fatty acids 3; Ppara:
peroxisome proliferator-activated receptor α; Ppargc1a: PPARγ coactivator 1α. Mitochondrial genes: Mfn2: mitofusin 2;
Drp1: dynamin-related protein 1; Cyc1: cytochrome C1.

Gene GenBank accession Sequence Amplicon length (bp) Tm (°C)

Tbp NM_013684.3 Forward: 5’-CCAATGACTCCTATGACCCCTA-3’
Reverse: 5’-CAGCCAAGATTCACGGTAGAT-3’

104 58.5

Gapdh NM_008084 Forward: 5’-AATGTGTCCGTCGTGGATCTGA-3’
Reverse: 5’-AGTGTAGCCCAAGATGCCCTTC-3’

117 60.0

36b4 BC099384.1 Forward: 5’-GAAACTGCTGCCTCACATCC-3’
Reverse: 5’-AGGTCTTCTCGGGTCCTAGA-3’

179 59.0

Ucp1 NM_009463.3 Forward: 5’-CTTTGCCTCACTCAGGATTGG-3’
Reverse: 5’-ACTGCCACACCTCCAGTCATT-3’

123 59.8

Tbx1 NM_011532.2 Forward: 5’-AGGCGGAAGGAAGTGGTATT-3’
Reverse: 5’-TACCAGTATCTACACCGCCC-3’

118 58.4

Prdm16 NM_027504.3 Forward: 5’-CCACCAGCGAGGACTTCAC-3’
Reverse: 5’-GGAGGACTCTCGTAGCTCGAA-3’

107 61.4

Elovl3 NM_007703.2 Forward: 5’-TTCTCACGCGGGTTAAAAATGG-3’
Reverse: 5’-GGCCAACAACGATGAGCAAC-3’

139 58.9

Ppara NM_011144.6 Forward: 5’-TCTGTCGGGATGTCACACAA-3’
Reverse: 5’-CGGGCTTTGACCTTGTTCAT-3’

191 57.3

Ppargc1a NM_008904.2 Forward: 5-TATGGAGTGACATAGAGTGTGCT-3’
Reverse: 5’-CTGGGCAAAGAGGCTGGTC-3’

191 60.0

Mfn2 AY123975.1 Forward: 5’-TGTAGCAGGAGGAATGGTGG-3’
Reverse: 5’-TTGTAGCAAGGCAGGGATGA-3’

139 58.4

Drp1 AB079133.1 Forward: 5’-TATGCCAGCAAGTCCACAGA-3’
Reverse: 5’-CACAATCTCGCTGTTCTCGG-3’

98 58.4

Cyc1 NM_025567.3 Forward: 5’-GGCATCAGAACCAGAGCATG-3’
Reverse: 5’-CTGACCACTTATGCCGCTTC-3’

110 59.4
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Table 8.3: List of primers used in real time PCR (continues). Lipid droplets-associated genes: Cidea: cell death-inducing
DFFA-like effector A; Cidec: cell death-inducing DFFA-like effector C; Plin1: perilipin 1. Receptors: Adrb3: β3
adrenoreceptor; Trpv1: transient receptor potential vanilloid 1; Rara: retinoic acid receptor α; Rarb: retinoic acid receptor
β; Rxra: retinoid X receptor α; Rxrb: retinoid X receptor β. Other genes: Adipoq: adiponectin; Bdnf : brain-derived
neurotrophic factor; Lipe: lipase E.

Gene GenBank accession Sequence Amplicon length (bp) Tm (°C)

Cidea NM_007702.2 Forward: 5’-ATCACAACTGGCCTGGTTACG-3’
Reverse: 5’-TACTACCCGGTGTCCATTTCT-3’

136 58.9

Cidec NM_178373.4 Forward: 5’-ACCTTCGACCTGTACAAGCT-3’
Reverse: 5’-GTGCAGGTCATAGGAAAGCG-3’

99 58.4

Plin1 NM_175640.2 Forward: 5’-TGGACCACCTGGAGGAAAAG-3’
Reverse: 5’-CTTCGAAGGCGGGTAGAGATG-3’

94 60.6

Adrb3 NM_013462.3 Forward: 5’-CCAATGACTCCTATGACC-3’
Reverse: 5’-TTCTGGAGCGTTGGAGAGTT-3’

89 57.3

Trpv1 AY445519.1 Forward: 5’-CGAGATAGGCATAGCACCCA-3’
Reverse: 5’-TGCTTCATGGTGTCCCTCAT-3’

130 58.4

Rara BC010216.1 Forward: 5’-CCGACTTGGTCTTTGCCTTC-3’
Reverse: 5’-TCTCAGCATCGTCCATCTCC-3’

60 59.4

Rarb BC076597.1 Forward: 5’-TTCCTGGATCAATGCCACCT-3’
Reverse: 5’-TTGGGGTCAAGGGTTCATGT-3’

72 57.3

Rxra M84817.1 Forward: 5-TCAGGCAAACACTATGGGGT-3’
Reverse: 5’-GCAGGTGTAGGTCAGGTCTT-3’

87 58.4

Rxrb M84818.1 Forward: 5’-AGACAGCTCCTCCCCAAATC-3’
Reverse: 5’-GTGCTGAAGGGGTAAGAGGT-3’

80 59.4

Adipoq BC028770.1 Forward: 5’-AGGGAGAGAAAGGAGATGCAG-3’
Reverse: 5’-AGTCCCGGAATGTTGCAGTA-3’

81 60.0

Bdnf NM_007540.4 Forward: 5’-ATTACCTGGATGCCGCAAAC-3’
Reverse: 5’-CCTTCCTTGGTGTAACCCAT-3’

241 58.5

Lipe NM_010719.5 Forward: 5’-GACAGAGGCAGAGGACCATT-3’
Reverse: 5’-TGAGGAACAGCGAAGTGTCT-3’

86 59.0
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CHAPTER 8. GENE EXPRESSION ANALYSIS

Gene expression was calculated with the ΔΔCt method [144]: the cy-

cle threshold (Ct) of amplified genes was normalized against the geometric

mean of Ct of selected housekeeping genes (ΔCt) and then the ΔCt of con-

trol samples was subtracted to theΔCt of treated samples (ΔΔCt). Relative

fold change of analyzed genes was obtained by calculating 2–ΔΔCt.

Expression data were generated from biological triplicates and repre-

sented similar results from at least three independent experiments. As for

gel band quantitation, the relative fold change data were analyzed as para-

metric data with one- or two-ways ANOVA, followed by post hoc Bonferroni

correction or Tukey’s range test.

In Chapter 13, gene expression data underwent enrichment analysis

through FunRich 3.1.3 tool [145]. This software clustered the input ex-

pression data into biological processes (BPs), calculating the percentage of

annotated protein and the p-value in each BP after Bonferroni correction.

The raw list of BPs was screened and most significant ones, with a rele-

vance for the browning study, were extracted and further analyzed with a

principal component analysis (PCA). The output of PCA was a distance bi-

plot that clustered significant BPs with relative fold change data per each

sample to show correlations among each others.
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Chapter 9

Protein expression

The detection of expressed proteins in cellular specimens was mainly

performed through immunofluorescence, which allowed to observe posi-

tive immunoreaction and the cellular localization of proteins. During the

last year of Ph.D, it has been studied and delineated a protocol for in-cell

Western (ICW), a protein detection technique that merged the immunoflu-

orescence protocol with the protein quantification that is made possible by

Western blot analysis.

9.1 Immunofluorescence

Cells grown on slides were rinsed in PBS 1X and fixed with 2% formalin.

After fixation, cells were washed twice with PBS 1X supplemented with

0.05% TWEEN 20 (PBST) and permeabilized for 10 minutes at RT with

0.1% Triton X-100. Autofluorescence induced by the aldehyde-based fixa-

tive has been quenched with 0.3 M glycine or 50 mM ammonium chloride

for 15 minutes at RT. Then, an incubation for 1 hour at RT with a blocking

solution containing 10% FBS and 5% normal goat (NG) serum was per-

formed to avoid the background labeling of secondary antibody. The slides

were then incubated with the primary antibody diluted in blocking solu-

tion overnight at 4°C in a moist chamber. A list of used primary antibodies

has been reported in Table 9.1. The following day, cells were washed in
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CHAPTER 9. PROTEIN EXPRESSION

PBST 1X and incubated for 45 minutes at RT in dark with a fluorescently-

labeled secondary antibody. These antibodies included anti-rabbit Alex-

aFluor® 555 and anti-rabbit fluorescein made in goat for the reaction with

primary antibodies, and anti-mouse fluorescein IgM against secondary an-

tibodies. Labeled cells were then washed in PBST 1X and mounted with

DAPI-Fluoroshield. The subsequent imaging was performed with the epi-

fluorescence Axio Observer Z1 microscope.

9.2 In-cell Western analysis

Quantification of proteins through ICW was performed on cells plated

on a 96-well plate. After culture medium removal, cells were rinsed once in

PBS 1X and fixed with 2% formalin for 15 minutes at RT. Cells were then

washed in PBST 1X for 5 minutes while shaking and subsequently per-

meabilized with 0.1% Triton X-100 for 5 minutes. Following four washes

in PBST 1X, cells were incubated with a blocking solution containing 1%

(bovine serum albumin) BSA and 5% NG. The incubation with primary an-

tibodies (reported in Table 9.1) lasted 2 hours at RT while shaking. A back-

ground control was established by incubating selected wells with blocking

solution. After four washes in PBST 1X, cells were incubated with the sec-

ondary antibody for 1 hour at RT in dark. The secondary antibody was an

anti-rabbit IRDye® 800CW labeled IgG made in goat and specific for near

infrared detection of protein positivity during ICW imaging.

The detection of fluorescence was performed on an Odyssey® CLx imag-

ing system (LI-COR Inc.) for Western blot equipped with Image Studio™

software. Data have been acquired and analyzed by running an automatic

routine specific for ICW.

The relative protein % produced by Image Studio™ was normalized

against the expression of a housekeeping protein (α-tubulin) and data were

analyzed through one-way ANOVA with post hoc Tukey’s range test.
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Table 9.1: List of primary antibodies used in immunofluorescence and ICW experiments. PPARγ: peroxisome proliferator-activated
receptor γ; PLIN1: perilipin 1; UCP1: uncoupling protein 1; TRPV1: transient receptor potential vanilloid 1; PGC-1α:
PPARγ coactivator 1 α.

Antibody Type Synthesis Code Purchased from

Anti-PPARγ Rabbit polyclonal Raised against C-terminal amino acids 311-500 of bovine
PPARγ.

PAA886Bo01 Cloud-Clone Corp.

Anti-PLIN1 Rabbit polyclonal Raised against N-terminal amino acids 1-300 of human
PLIN1.

sc-67164 Santa Cruz Biotechnology

Anti-UCP1 Rabbit polyclonal Raised against amino acids 145-159 of human UCP1. ab10983 Abcam

Anti-TRPV1 Mouse monoclonal Generated against N-terminal amino acids 1-130 of rat
TRPV1.

sc-398417 Santa Cruz Biotechnology

Anti-UCP1 Rabbit polyclonal Raised against amino acid sequence from 1 to 299 of human
UCP1

PA5-29575 Thermo Fisher Scientific

Anti-PGC-1α Rabbit polyclonal Raised against a 17 amino acid sequence close to the N-
terminus of human PGC-1α

GTX31921 GeneTex

Anti-α tubulin Rabbit polyclonal Generated from an amino acid sequence within residues 400
to the C-terminus of human α tubulin.

ab18251 Abcam
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Chapter 10

Intracellular calcium analysis

The measurement of intracellular Ca2+ in cells has been performed when

analyzing samples treated with capsaicin, because its membrane receptor

TRPV1, when activated, triggers a Ca2+ influx (see Chapter 13). To mea-

sure intracellular Ca2+, the calcium probe Fluo-8 AM has been chosen. Live

cells were incubated with the probe that, once uptaken by cells, was cleaved

of its amphipathic region and became active, emitting fluorescence when

associated to a Ca2+ ion [146]. It was excited at 490 nm and emitted at 520

nm.

After culture medium removal, the staining with a 4 µM Fluo-8 AM

working solution in HBSS supplemented with 15 mM HEPES was per-

formed for 1 h at 37°C. Stained cells were then rinsed with HEPES-HBSS

and immediately imaged.

The acquisition of Fluo-8-treated cells was performed as a time lapse

imaging at the epifluorescence Axio Observer Z1 microscope, which pro-

duced a movie that lasted 180 seconds. This experiment required a first

acquisition of untreated Fluo-8-stained cells to acquire the baseline fluo-

rescence, followed by the administration of the treatment during the acqui-

sition itself (12-14 seconds after the beginning of the acquisition) to appre-

ciate real time changes in cellular fluorescence induced by Ca2+ movements

across plasma membrane.

The analysis of fluorescence signals was performed with ImageJ soft-
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ware, which separated the single frames of the movie creating a stack. To

visualize the fluorescence signal, the brightness and contrast of the stack

were automatically corrected. By creating a Z-projection of the standard de-

viation of all the frames composing the stack, the user appreciated which

cells displayed a variation in fluorescence intensity. Those cells showing

a significant signal were manually added to the ROI manager tool for the

measurement. The standard deviation was the parameter of choice because

it displayed the intensity of the variation of fluorescence only in cells that

actually showed such variation. Cells that did not respond to either the

treatment or the staining with Fluo-8 did not display a difference in fluo-

rescence intensity, so their standard deviation equaled to 0.

The ratio between the maximum fluorescence intensity emitted after

the addition of the compound (F) and the average of baseline fluorescence

(F0) was plotted to visually describe the cell-specific variations in fluores-

cence signal, according to the protocol stated by Muto and colleagues [147].
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Chapter 11

SGBS cells as a browning model

The Simpson-Golabi-Behmel syndrome (SGBS) cell strain is an in vitro

model of human white preadipocytes. This strain has been established in

2001 by Wabitsch and colleagues, who isolated preadipocytes from the sub-

cutaneous adipose tissue of a SGBS-affected pediatric patient [127].

SGBS is caused by deletions or point mutations of the X-linked glypican

3 gene (GPC3), located in Xq26. The causative mutations may also involve

the gene glypican 4 (GPC4), which is 120 kb downstream from GPC3 [148].

The different levels of mutation that can affected these genes produce a

variable range of symptoms: while the mild form is associated with long-

term survival, more aggressive forms of this syndrome cause early death

[149]. These forms are characterized by pre- and post-natal macrosomia,

coarse facial features and different levels of skeletal, visceral and neurolog-

ical abnormalities. A number of cases of SGBS-associated gastrointestinal

anomalies, renal malformations, hepatocellular carcinoma, Wilms tumor

and mental retardation have been reported [149–151].

The singular behavior of SGBS cells relies on the GPC3 mutation: it has

been reported that cells mutated for this gene show enhanced hedgehog

signaling pathway [152], a positive regulator of body growth, and dipep-

tidyl peptidasic activity of CD26, which is positively correlated to cell pro-

liferation [153]. In fact, despite these cells are neither immortalized nor

transformed, they retain the ability to expand and differentiate into ma-
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CHAPTER 11. SGBS CELLS AS A BROWNING MODEL

ture adipocytes for a high number of generations. For this reason, SGBS

cells are an excellent model for the study of obesity and cancer and have

been extensively used in recent years [154].

More recently, another unique feature of SGBS cells has been described.

During differentiation, these adipocytes exploit a transient brown-like phe-

notype without any kind of stimulation [155, 156]. Around the 14th day of

differentiation, the expression of canonical BAT markers, such as UCP1,

sharply increases. The expression levels of these markers decreases around

the 28th day of differentiation, when the original white phenotype is re-

stored [155].

The aim of the present research is to gain further knowledge of the

phenotypic switch that characterizes these cells by analyzing the dynamic

changes in LD and mitochondrial morphology. This aspect, despite not be-

ing investigated in previous studies, is of outstanding importance because

one of the main features of WAT browning is a dynamic reorganization of

LDs and mitochondria. This investigation is corroborated with the expres-

sion analysis of selected browning markers.

SGBS cells were grown as described in Section 5.1.1 and cell sampling

occurred at 0, 7, 14 and 21 days following the induction of differentiation

(D0, D7, D14 and D21). The results of this research have been published

in Histochemistry and Cell Biology in 2018 as an original research article

[99]. Briefly, this study confirmed previous findings about the changeful

phenotype of SGBS cells [155, 156], corroborating them with a structural

analysis of changes in LD and mitochondrial morphology. Both organelles

display structural variations coherently with the onset of a brown fat-like

phenotype [92, 103]. In conclusion, this research work provided a new in-

sight of SGBS cells browning attitude, stressing the need to pay attention

in their use as a model when testing browning factors [99].
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Chapter 12

The browning factor BAIBA

Physical exercise has been shown to have many health benefits, as it

increases metabolic rate, improves glucose homeostasis and increases in-

sulin sensitivity. Recently, endocrine factors called myokines, produced

by skeletal muscles and released during their contraction, have been de-

scribed and actively participate in the loss of fat mass through thermogen-

esis[109, 157].

The β-aminoisobutyric acid (BAIBA) is a non-protein amino acid derived

by the catabolism of thymine and valine [158] and has the following struc-

ture:

H2N

O

OH

Recently, it has been demonstrated that BAIBA promotes browning of

white adipocytes, lipid oxidation in hepatocytes and has a protective role

against insulin resistance [122]. Moreover, it preserves osteocytes from re-

active oxygen species (ROS)-induced apoptosis [159]. The role of myokines

in enhancing lipid metabolism and promoting the recruitment of thermo-

genic adipocytes has been deeply studied and reviewed [109, 160]. Nev-

ertheless, the cellular pathways in adipocytes activated by the interaction
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CHAPTER 12. THE BROWNING FACTOR BAIBA

with circulating myokines is still mostly unknown. Roberts and colleagues

proposed a PPARα-dependent pathway through which BAIBA achieves its

positive effects on adipocytes and hepatocytes [122]. Despite this observa-

tion, the exact signaling pathway involving BAIBA needs further investi-

gation, as well as the role that BAIBA has on affecting LD dynamic in ad-

ipocytes. This research aims to elucidate the browning effect of BAIBA on

3T3-L1 preadipocytes during their differentiation into mature fat cells by

analyzing the modifications of cytomorphological parameters of LDs and

the expression of a selected panel of marker genes. The analyzed genes

included brown fat-specific markers (Ucp1, Cidea, Elovl3, Prdm16), the

brite marker Tbx1, genes related to mitochondrial biogenesis and func-

tionality (Ppargc1a, Cyc1), genes expressing LD-associated proteins (Cidec,

Plin1) and brain-derived neurotrophic factor (Bdnf ), a neurotrophin whose

browning activity has been investigated in vivo and displayed a role in

regulating energy balance and insulin signaling [123, 161]. For this ex-

periment, 3T3-L1 cells were cultured with the medium reported in Table

5.2. Concomitantly with the switch from differentiation to maintenance

medium, cells were treated with different concentrations of BAIBA in a

racemic mixture; selected concentrations were 1, 3 and 5 µM, as deduced

from the work by Roberts and colleagues [122]. Treated cells were ana-

lyzed at 4 (4d), 8 (8d) and 10 days (10d) after the induction of differenti-

ation, which correspond respectively to 2, 6 and 8 days of incubation with

the active molecule. A negative vehicle control was established by the sup-

plementation of H2O to the medium.

The results on 3T3-L1 cells treated with BAIBA were published in the

European Journal of Histochemistry in 2018 [162] and showed that dif-

ferent BAIBA doses administered to cultured cells for different times of

exposure produced a variety of outcomes. In terms of LD dynamic and ex-

pression of browning markers, the 5 µM dose was the most effective during

early differentiation of 3T3-L1 cells. The browning effect of the compound

decreased in following days of exposure and disappeared at 10 days after
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the induction of differentiation. This research highlighted the early effect

of BAIBA in inducing WAT browning and brought new evidence about it

lack of effectiveness after prolonged exposure.
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Chapter 13

Browning effect of capsaicin

Adipose tissue browning research is currently focused in the detection of

endogenous and exogenous substances that can recruit thermogenic adipo-

cytes in both BAT and WAT. Natural compounds are an interesting target

in this research, as they can be included in functional foods with therapeu-

tic properties [109].

Capsaicin is an alkaloid found in the fruit of Capsicum spp. (hot pep-

per), which is responsible for its spicy flavor [163].

O

N

H

O

OH

Its biological effects are due to its interaction with the transient receptor

potential vanilloid 1 (TRPV1). This receptor is mainly found in peripheral

sensory neurons involved in pain sensation [164] and it is also extensively

distributed in the gastrointestinal tract [165] and in AT [166]. After the in-

teraction with its ligands, adipose TRPV1 opens its ion channel, causing an

intracellular influx of Ca2+. The high intracellular Ca2+ concentration acti-

vate the Ca2+/calmodulin-activated protein kinase (CaMKII), which in turn

phosphorylates AMPK and, eventually, sirtuin 1 (SIRT1). Phosphorylated
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SIRT1 promotes the deacetylation of PRDM16 and PPARγ. When active,

these two transcription factors interact with each other and promote Ucp1

expression [125]. Capsaicin triggers an indirect browning stimulation also

when interacting with gastrointestinal TRPV1: the signal produced in the

guts is transmitted through CNS to WAT depots following the activation of

sympathetic adrenergic pathway [126].

The browning potential of capsaicin on white adipocytes has been re-

cently elucidated [125, 167], but long-term effects need further investiga-

tion. Moreover, the effect of capsaicin on LD remodeling and on the expres-

sion of LD-associated proteins have not been properly studied.

This research enriches previous results on the browning effect of cap-

saicin by studying it on two different cell models: 3T3-L1 and X9 murine

cells. These lines differ in their origin and could show different responses

to browning stimulation, being X9 cells responsive to browning stimuli,

as they were isolated from an inguinal depot [80]. Conversely, 3T3-L1 cells

display features of multiple adipocytes lineages following appropriate stim-

ulation [168]. The changes in LD dynamics and gene expression profile

after the administration of different doses of capsaicin have been analyzed

between two times of differentiation. Finally, long-term effects of capsaicin,

in combination with norepinephrine, were also tested.

Cell culture was achieved with conditions reported in Table 5.3 for 3T3-

L1 and in Table 5.5 for X9 cells. Treatment of both cell lines with cap-

saicin (CP) and norepinephrine (NE), alone or in combination, started at

day 3 of differentiation, concurrently with the switch from the differenti-

ation medium to the maintenance one and lasted until analysis either at

4 days of differentiation (4d), 1 day of treatment, or at 8 days of differen-

tiation (8d), 5 days of treatment. Experimental groups were identified by

adding to the maintenance medium different combinations of compounds.

A vehicle negative control (CTRL) was established by adding to the main-

tenance medium absolute ethanol (1:1000 dilution). The positive control

was represented by cells treated with 10 µM norepinephrine (NE). Cap-
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CHAPTER 13. BROWNING EFFECT OF CAPSAICIN

saicin concentrations were tested at 0.1 µM (0.1CP) and 1 µM (1CP). These

doses were found to be effective in triggering a brite phenotype on differ-

entiating 3T3-L1 cells [167], but have never been tested neither on mature

3T3-L1 adipocytes nor on X9 cells. The two compounds were also combined

into two additional treatments (0.1CPNE and 1CPNE) to understand if any

synergies or antagonisms between the two factors could occur and to mimic

the cold-independent adrenergic response that CP is able to trigger in vivo

[124] (Figure 13.1).

Figure 13.1: Cell culture treatment protocol. Cells were grown until 90% (X9) or
100% (3T3-L1) confluence. Differentiation lasted 3 days. From day
3, cells were incubated with maintenance medium supplemented
with different treatments lasting for one (4d) or 5 days (8d).

The results of this research have been published in Frontiers in Phys-

iology, section Lipid and Fatty Acid Research, in 2019 [169]. The study

highlighted important differences in the response of the two cell models to

different treatments. 3T3-L1 cells responded to 1CP treatment ad 8d with

a significant up-regulation of Ucp1 and other browning markers, while the

incubation with NE, alone or in association with capsaicin, did not signif-

icantly affect gene expression. Conversely, capsaicin treatments coupled

with NE significantly reduced LD area surface and size at 4d. Capsaicin

treatments on X9 cells poorly affected their gene expression; browning

markers were significantly over-expressed following NE exposure. Also LD

measurements were significantly affected by NE alone or in combination

with capsaicin doses.

The measurement of intracellular Ca2+ influx in 3T3-L1 cells confirmed
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the activation of TRPV1 receptor following capsaicin exposure, although

this result should be further stressed by treating cells with a TRPV1 in-

hibitor, i.e. capsazepine. Nevertheless, preliminary promising results of

TRPV1 inhibition in 3T3-L1 adipocytes have been already described by Ba-

boota and colleagues [167].

In conclusion, 3T3-L1 cells activated a brite phenotype following direct

capsaicin exposure, while X9 cells were insensitive to this treatment and

responded only to the incubation with NE.
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Chapter 14

The browning action of

myokine BDNF

14.1 Introduction

Brain-derived neurotrophic factor (BDNF) is a member of the neurotro-

phin family of growth factors, which have a role in nerve growth regulation

and synaptic plasticity [170]. BDNF and its receptor tropomyosin-related

kinase B (TrkB) are abundantly expressed in neuronal cells, including neu-

rons in energy homeostasis centers within the hypothalamus [171]. Re-

cently, it has been pointed out that BDNF is not only expressed in the

nervous system, but also in other tissues like skeletal muscles [172] and

adipose tissue [173]. Now it has been established the role of BDNF in me-

diating the whole body adaptive responses to variations in energy intake

and expenditure [174]. For instance, BDNF directly affects cells with a role

in glucose metabolism, such as β cells, hepatocytes and skeletal muscle,

towards a hypoglycaemic phenotype [174].

Concerning adipose metabolism, hypothalamic BDNF up-regulates UCP1

levels in BAT, promoting energy expenditure [175], and can promote WAT

browning through sympathetic neuron activation in response to environ-

mental stimuli [123]. In addition to neuronal-mediated metabolic effects,
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14.2. RESULTS

BDNF can regulate peripheral energy metabolism by directly affecting non-

neuronal cells, like adipocytes themselves.

Being synthesized also in skeletal muscles during their contraction,

BDNF has been classified as a myokine that acts as an autocrine factor

to improve mitochondrial fat metabolism [176].

Clearly, BDNF has a key role in regulating metabolism of non-neuronal

tissues, but the mechanisms of action and the involved pathways still de-

serve a deeper understanding.

3T3-L1 cells were cultured with the medium formulation reported in

Table 5.4. At the 6th day of supplementation of the maintenance medium,

3T3-L1 cells were fully differentiated into mature adipocytes. At this point,

cells were treated with 1 ng/mL BDNF for 3 (BDNF_3h) or 24 (BDNF_24h)

hours. The choice of BDNF dose was performed by analyzing freely accessi-

ble data of murine pro-B cells transfected with TkrB. The ED50 calculated

for these non-neuronal cells was 0.2–2 ng/mL. A negative vehicle control

was established by treating cells with PBS 1X and a positive control was

realized by incubating cells with 1 µM NE for 3 hours.

14.2 Results

14.2.1 mRNA and protein expression

Relative fold change of tested genes is reported in Figure 14.1. The

relative fold change of Adipoq was mostly uneffected by different treat-

ments. The browning markers Ucp1 (p < 0.0001 vs CTRL and NE), Tbx1 (p

< 0.0001 vs CTRL, p < 0.01 vs NE) and Prdm16 (p < 0.0001 vs CTRL and

NE) are up-regulated in BDNF_3h cells. Their expression is significantly

increased also in BDNF_24h cells (p < 0.0001 vs NE; p < 0.05 vs CTRL;

p < 0.05 vs CTRL, respectively) (Figure 14.1, a). The lower Ucp1 relative

fold change reported in BDNF_24h cells with respect to BDNF_3h corre-

sponded to a significantly higher protein content (p < 0.01 vs CTRL, p <
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0.0001 vs NE), as detected by ICW (Figure 14.2).

Ppargc1a expression was significantly lower vs NE in BDNF-treated

cells at both time points (p < 0.0001) (Figure 14.1, a). Conversely, the PGC-

1α content was significantly elevated in BDNF_24h samples (p < 0.01 vs

NE) (Figure 14.2).

Mfn2 was significantly down-regulated in BDNF_24h cells (p < 0.0001

vs CTRL and NE), while Drp1 expression did not report any significant

variation (Figure 14.1, a).

The expression of brown marker and LD-associated gene Cidea was sig-

nificantly elevated in BDNF_3h cells (p < 0.01 vs CTRL). Conversely, Cidec

expression did not significantly vary among treatments, despite Plin1 rel-

ative fold change showed the same trend, but significant differences were

displayed by BDNF_3h and BDNF_24h (p < 0.01 vs CTRL) (Figure 14.1,

b). The administration of BDNF up-regulated the adipocyte-specific Bdnf

expression in an autocrine fashion, with significant differences at both 3

hours (p < 0.01 vs CTRL) and 24 hours (p < 0.05 vs NE) (Figure 14.1, b).

14.2.2 Mitochondrial morphology

The output of MicroP software was processed in order to depict morpho-

logical differences among samples that underwent various treatments. Mi-

tochondrial area surface, mitochondrial number, elongation index and so-

lidity were analyzed to classify mitochondrial subtypes detected by the soft-

ware. These include small globules, large globules, simple tubules, twisted

tubules, donuts and branched tubules.

Mitochondrial subtypes

Figure 14.3 presents the % of mitochondrial subtypes in controls and in

BDNF-treated cells.

The relative % of total mitochondria ranged from 18.94% (CTRL) to

29.02% (BDNF_24h). Small globules significantly increased in NE (p <
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Figure 14.1: Differentially expressed genes in BDNF-treated cells and controls
(CTRL and NE). (a) Relative fold change of brown markers and
mitochondrial dynamic-related genes. (b) Relative fold change of
LD-associated genes, Adipoq and Bdnf. Data from one-way ANOVA
with post-hoc Tukey HSD correction are presented as LS means of
relative fold change ± SEM. *** p < 0.0001 vs CTRL; ** p < 0.01 vs

CTRL; * p < 0.05 vs CTRL; §§§ p < 0.0001 vs NE; §§ p < 0.01 vs NE;
§ p < 0.05 vs NE.
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Figure 14.2: Relative percentage of proteins detected by ICW. The percentage of
proteins has been normalized against the expression of α-tubulin as
an internal housekeeping. Data from one-way ANOVA with
post-hoc Tukey HSD correction are presented as LS means of
relative % of protein ± SEM. ** p < 0.01 vs CTRL; §§§ p < 0.0001 vs

NE; §§ p < 0.01 vs NE.

Figure 14.3: Presence of different mitochondrial subtypes in BDNF-treated and
in control cells. Data are presented as the ratio of mitochondrial
subtypes relative to the total number ± SEM. Statistical
significance was determined through two-tailed t-test vs positive
and negative controls. ** p < 0.01 vs CTRL; * p < 0.05 vs CTRL; § p

< 0.05 vs NE.
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0.05 vs CTRL) and in BDNF_24h cells (p < 0.01 vs CTRL and p < 0.05 vs

NE). This result might account for an increased mitochondrial fission in

these samples, since the presence of tubular structures was reduced. This

was particularly true for branched tubules, which were significantly less

present in BDNF_24h cells (p < 0.05 vs NE). Large globules decreased sig-

nificantly in NE (p < 0.05 vs CTRL) and BDNF_24h (p < 0.01 vs CTRL)

treatments, indicating reduced swelling phenomena. A sensitive, although

not always statistically significant, decrease relative to CTRL cells has

been observed for twisted tubules and donuts (p < 0.05 vs NE in BDNF-

treated samples). Taken together, these results outlined a distribution of

mitochondrial subtypes coherent with fission events in 3T3-L1 cells that

were incubated with NE and with BDNF for 24 hours.

Mitochondrial area surface

The analysis of mitochondrial area surface per each subtype can provide

useful information about the dynamic of each morphological type following

the administration of a browning compound.

The distribution of mitochondrial area surface is presented in Figure

14.4. The area surface of small globules in BDNF_24h cells was signifi-

cantly higher than in controls (p < 0.01 vs CTRL and p < 0.05 vs NE); by

contrast, the area surface of branched tubules was the significantly lowest

in the same sample (p < 0.01 vs both CTRL and NE). Simple tubules (p <

0.05 vs both CTRL and NE) and twisted tubules (p < 0.01 vs both CTRL

and NE) had a significantly larger area surface in BDNF_24h, although

the total area surface of twisted tubules was substantially lower compared

to other mitochondrial subtypes. In the same sample, donuts displayed

a significantly low area surface (p < 0.01 vs CTRL and p < 0.05 vs NE).

BDNF_3h sample displayed a similar trend in mitochondrial area surface

distribution, in particular in branched tubules (p < 0.05 vs CTRL), donuts

(p < 0.05 vs both CTRL and NE) and simple tubules (p < 0.05 vs CTRL),

while small globules were not significantly different from control cells. De-
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Figure 14.4: Distribution of total mitochondrial area surface among treatments
and different morphological subtypes. Data are presented as the
ratio of area relative to the total area ± SEM. Statistical
significance was determined through two-tailed t-test vs negative
and positive controls. ** p < 0.01 vs CTRL; * p < 0.05 vs CTRL; §§ p

< 0.01 vs NE; § p < 0.05 vs NE.
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spite this, the area surface of large globules in BDNF_3h was significantly

higher compared to controls (p < 0.05 vs NE).

Figure 14.5 reports the cumulative frequency of morphological subtypes’

area surface among different bins of area, flanked by boxplots showing the

differences of medians, first-to-third quartiles and the most extreme values

within the interquartile range among samples. Small globules in NE and

BDNF_24h samples displayed the lowest area surface compared to other

treatments (p < 0.0001), as their cumulative frequency was higher in low

bins of area surface. A similar pattern occurred also in large globules,

where their area in BDNF_24h was the significantly lowest (p < 0.0001).

The pattern of simple and twisted tubules was quite similar to each other:

the area surface of NE and BDNF_24h cells was significantly lower and

showed little or no statistical difference among them. Nevertheless, the

abundance of mitochondria with small area surface was higher in BDNF_24h

sample.

BDNF_24h had a substantially minor area surface (p < 0.0001) in donuts

compared to other treatments; this was also evident from the cumulative

frequency curve, as this sample reached the highest frequency in small bins

of area surface. A similar trend was observed also in branched tubules (p <

0.0001).

In summary, results about the area surface of mitochondrial subtypes

showed that NE and BDNF_24h cells had the lowest area for most of mor-

phological subtypes, especially in tubular-shaped mitochondria. This fea-

ture confirmed previous assumptions about the onset of mitochondrial fis-

sion.

Elongation index of mitochondria

The elongation index is a parameter that quantifies the degree of elon-

gation of a mitochondrion: higher values account for elongated mitochon-

dria. This index is calculated by MicroP as skeletal ratio, that is the ratio

between the major and the minor axes of the selected mitochondrion. Fig-
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Figure 14.5: Cumulative frequency of total area surface of mitochondrial
subtypes. In boxplots is showed the difference between medians,
first-to-third quartiles and the most extreme values within the
interquartile range among treatments. Statistical significance in
boxplots was determined through Kruskal-Wallis statistical test
with Bonferroni correction. *** p < 0.0001; ** p < 0.01; * p < 0.05.
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ure 14.6 presents the cumulative frequencies of the elongation index among

mitochondrial subtypes and treatments.

Figure 14.6: Cumulative frequency of elongation index of mitochondrial
subtypes. In boxplots is showed the difference between medians,
first-to-third quartiles and the most extreme values within the
interquartile range among treatments. Statistical significance in
boxplots was determined through Kruskal-Wallis statistical test
with Bonferroni correction. *** p < 0.0001; ** p < 0.01; * p < 0.05.

The elongation index of small globules was the lowest in BDNF_3h

sample (p < 0.0001), as the highest frequency of this morphological sub-

type was detected in low clusters of skeletal ratio. The differences of the

elongation index in large globules were not significant; in fact, the cu-

mulative frequency curves were overlapping. Simple tubules and twisted

tubules displayed a trend similar to that observed for small globules: also
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in this case, the lowest elongation index was displayed in BDNF_3h cells

(p < 0.0001). No significant differences were displayed among controls and

BDNF-treated cells in elongation index for donuts, even if the cumulative

frequency curve of BDNF_3h cells was clearly shifted to less elongated mi-

tochondria, indicating that the majority of donuts in this sample displayed

a small elongation index. In branched tubules, the elongation index was

higher in CTRL and BDNF_3h treatments and lower in BDNF_24h (p <

0.0001).

The results about mitochondrial elongation interestingly showed a time

point-dependent reduction of skeletal ratio in BDNF-treated cells, as those

incubated with BDNF for 3 hours displayed the lowest elongation.

Discriminant analysis

Key morphological features of mitochondria might significantly indicate

the way 3T3-L1 cells respond to different treatments. To determine the ex-

tent of treatment-specific variations in an unbiased manner, the percentage

of area surface, elongation index and solidity of each mitochondrial sub-

types were integrated into a single multivariate model through discrimi-

nant analysis (DA) (Figure 14.7).

The model captured 85.53% of the total variance in the dataset and

achieved a clear separation between different samples. Rank ordering of

the variable importance in projection (VIP) scores for each parameter iden-

tified the most important morphological features that discriminate each

sample. These data have been reported in Table 14.1.

The most impacting features were those relative to small globules and,

to a lesser extent, twisted or branched tubules: the parameters with the

lowest Wilk’s lambda display the strongest discriminant power (Table 14.1)

[177, 178].

This analysis suggested that the largest part of the variance among

treatments concerning mitochondrial dynamic relied on the architecture

of small globules and twisted or branched tubules.
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Figure 14.7: Sample clustering produced by discriminant analysis with
multivariate modeling of mitochondrial subtypes and their
morphological features. Centroids are reported as yellow dots.

Table 14.1: Significant VIP in discriminant analysis illustrating the contribution
of different morphological features to the separation of differentially
treated cells. The most discriminant parameters have a low Wilk’s
lambda and a high F.

Morphological variable Mitochondrial subtype Wilk’s lambda F p-value

Area Small globules 0.328 12.280 0.000
Area Large globules 0.494 6.156 0.005
Area Simple tubules 0.564 4.629 0.014
Area Twisted tubules 0.401 8.944 0.001
Area Branched tubules 0.395 9.188 0.001

Elongation Small globules 0.352 11.061 0.000
Elongation Large globules 0.552 4.868 0.012
Elongation Simple tubules 0.596 4.075 0.023
Elongation Twisted tubules 0.521 5.520 0.007

Solidity Small globules 0.382 9.716 0.000
Solidity Large globules 0.578 4.379 0.018
Solidity Donuts 0.508 5.813 0.006
Solidity Branched tubules 0.417 8.395 0.001
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14.3 Discussion

This study provided interesting preliminary results on the browning

effect of ectopic BDNF administration to cultured white adipocytes. In par-

ticular, the analysis of the expression profile of selected target genes is

supported by a thorough evaluation of changes in mitochondrial structure,

which showed morphological characteristics close to the typical brown ones.

The expression of adiponectin has been used as a marker of differentiation:

since its mRNA level has not been affected by the treatments, we can infer

that cells were completely differentiated.

Results produced by gene and protein expression analyses showed in-

teresting patterns in BDNF-treated 3T3-L1 cells. The rise of the mRNA of

canonical brown markers is significantly higher after 3 hours of incubation

with BDNF. Conversely, the UCP1 protein content after 3 hours of incuba-

tion is the lowest, while it increases after 24 hours of incubation. Possi-

bly, the protein traslation happens later than mRNA transcription [179].

This also occurred with PGC-1α: the lowest mRNA expression after the

24 hours treatment is flanked by the significantly highest protein level at

the same time point [180]. Hence, the high protein content of PGC-1α in

BDNF-treated 3T3-L1 cells could account for an increased mitochondrial

biogenesis, which is a typical feature of brite adipocytes recruitment [181].

This result is in agreement with the increased rate of mitochondrial con-

tent (29.02% in BDNF_24h and 18.94% in CTRL).

The alterations in the expression of mitochondria-related genes depict

a more fissed phenotype in BDNF-treated cells. Mfn2 expression is the sig-

nificantly lowest among treatments. Since this gene encodes for a protein

that participates in mitochondrial fusion [101], its down-regulation may be

directly linked to a decrease in fusion events. This phenotype has been

observed in thermogenic adipocytes [103], but in the present research, the

expression of Drp1, the regulator of mitochondrial fission, has not been sig-

nificantly impacted by the administration of BDNF. This is not coherent
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with the results of mitochondrial dynamic analysis, but this could be re-

lated to the different time-course expression between mRNA and protein.

Further investigation is needed to clarify the molecular biology of mito-

chondrial fission events.

CIDE proteins have a role in favoring LD fusion, but while CIDEC is

necessary to obtain one large LD, typical of white adipocytes, CIDEA alone

is not sufficient to induce an empowered LD fusion, hence it is associated to

a multilocular phenotype [95]. CIDE protein-coding genes Cidea and Cidec

show an expression pattern coherent with a multilocular phenotype, since

Cidea is significantly up-regulated in BDNF-treated cells after 3 hours of

incubation. Despite no significant differences have been recorded in Cidec

expression among samples, its mRNA levels decrease quite linearly from

CTRL to BDNF_24h. This pattern could be associated to a decline in LD

fusion. It has been in fact observed an increase in Cidea mRNA in cold-

exposed mice and NE-treated adipocytes [92]. The level of Plin1 clearly

reflects the pattern observed in Cidec expression. This may be because

CIDEC and PLIN1 narrowly cooperate in promoting the unilocular pheno-

type [96], so their simultaneous down-regulation could reflect a decrease

in LD fusion in favor of a multilocular phenotype. These results should be

implemented and supported by LD morphological studies as performed in

[99, 162].

The expression of Bdnf in BDNF-treated cells increased, especially after

three hours of incubation. This positive feedback loop has been described

to occur in microglia [182], hippocampal neurons and cortical neurons and

this feedback seems to be mediated by a TrkB-C/EBPβ signaling pathway

[183, 184]. This loop may occur in these cell types to prolong their acti-

vation under proper stimulation [182] and to improve their physiological

outcome, such as the consolidation of memory [183]. At the best of our

knowledge, this is the first time that this feedback loop has been detected

in adipose cells, but further research is needed to clarify the molecular biol-

ogy underneath this feedback, as the TrkB expression has not been inves-
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tigated in cultured adipocytes, although its presence has been confirmed in

adipocytes by Colitti et al. [185]. Likely, the effects of the loop detected in

the present research include the persistance of the brite phenotype.

The analysis of modifications in mitochondrial dynamic show a treatment-

dependent variation in their morphology: 3T3-L1 cells treated with BDNF

for 24 hours show the most significant change of mitochondrial structures,

being their profile quite similar to positive control cells. Indeed, the anal-

ysis of mitochondrial number, area surface and elongation confirmed the

onset of mitochondrial fission after BDNF incubation. This is particularly

evident after 24 hours-treatment, where cells displayed a reduction of the

number of branched tubular mitochondria flanked by an increase of small

globules. These features are in agreement with the onset of mitochondrial

fission, considering also the increase of simple tubules, that can derive from

the fragmentation of branched tubules [141]. Nevertheless, these results

are produced by a snapshot of a moment in cell life. Hence, they can be

corroborated by a time-lapse imaging of mitochondrial dynamic following

BDNF treatment to appreciate in real time the evolving structure of mito-

chondria.

Taken together, these results show that BDNF has a role in elevating

brown adipose markers and in significantly modulate mitochondrial mor-

phology in a time-dependent manner.
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Chapter 15

Retinoic acid as a browning

agent

15.1 Introduction

Carotenoids are a class of pigments present in many dietary sources.

They are precursors of retinoids, a set of bioactive molecules related to vi-

tamin A [186]. The most abundant carotenoid in human diet is β-carotene,

which can be metabolized by human tissues through the action of β-carotene-

15,15’-oxygenase 1 (BCO1). This enzyme cleaves β-carotene into two mol-

ecules of retinaldehyde (Rald), which can be ultimately oxidized to RA by

the action of aldehyde dehydrogenase [187].

In recent years, the involvement of carotenoids and, more importantly,

their metabolic products in regulating body fat mass and energy metabolism

has been confirmed [63]. The regulatory effects of retinoids in adipocytes

are primarily caused by their interaction with different kinds of nuclear re-

ceptors, namely canonical retinoic acid receptors (RARs) and retinoid X re-

ceptors (RXRs) [188], together with PPAR proteins. The most active agonist

ligands of these classes of receptors are the isomers of RA: all-trans retinoic

acid (atRA) and cis-9 retinoic acid (c9RA). atRA binds to RARs, while c9RA

binds to both RARs and RXRs. Activated RXRs form heterodimers with
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RARs, PPARs and other nuclear receptors to modulate gene expression in

adipocytes [189].

RA can induce Ucp1 expression, since the receptors heterodimers acti-

vated by RA isomers can bind to Ucp1 promoter [190]. Treatments with

atRA have been demonstrated to induce WAT browning and mitochondrial

biogenesis on animal models and in vitro cultures [191, 192]. Nevethe-

less, evidence of browning effect triggered by its isomer c9RA (see chemical

structure below) is still lacking.

OH

O

The present research aims to test the browning effect of c9RA on cul-

tured 3T3-L1 adipocytes by producing gene expression preliminary results

that will be implemented towards cytomorphological studies.

3T3-L1 culture was performed with conditions stated in Table 5.3. Con-

comitantly with the switch from differentiation to maintenance medium,

cells were treated with different concentrations of c9RA. A positive control

with 10 µM of isoproterenol, a selective β3-adrenergic agonist, has also been

established. A negative vehicle control was implemented by treating cells

with DMSO. All the treatments lasted 24 hours prior to sampling.
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15.2 Preliminary results

15.2.1 Cell viability

To select the optimal dosage of c9RA, a cell viability test has been per-

formed with growing concentrations of the chemical. The tested doses were

0.5, 2, 10 and 20 µM. The viability of 3T3-L1 significantly diminished in a

dose-dependent manner, from around 90% of viable cells in the 0.5 µM dose

to less than 60% in the 20 µM one (Figure 15.1). According to this result,

the chosen doses for the subsequent experiments were 0.5 µM and 1 µM,

because the viability of 2 µM c9RA-treated cells was not acceptable.

Figure 15.1: Cell viability of 3T3-L1 cells treated with 0.5 (0.5RA), 2 (2RA), 10
(10RA) and 20 (20RA) µM c9RA. Data are expressed as the mean of
% viability relatively to negative control (CTRL) ± SEM. One-way
ANOVA with Bonferroni correction was used to detect significant
differences. Small letters indicate p < 0.05.

15.2.2 Gene expression analysis

All retinoid receptors increased their expression after the treatment of

cells with both 0.5 and 1 µM doses of c9RA (Figure 15.2, a). In detail,

Rara, Rxra (p < 0.05) and Rxrb (p < 0.01) were significantly up-regulated

compared to the positive control, while Rxra and Rxrb expression was sig-
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nificantly higher (p < 0.05) than the negative control in 3T3-L1 cells treated

with 0.5 µM c9RA. Rarb was significantly up-regulated (p < 0.05) in cells

treated with 1 µM c9RA. As expected, the expression of RA receptors in

isoproterenol-treated cells was not significantly different compared to the

negative control.

Figure 15.2: Relative fold change of retinoid receptors (a), browning markers (b)

and LD-associated genes (c). Data are expressed as the mean of
relative fold change ± SEM. One-way ANOVA with Bonferroni
correction was used to detect significant differences. *** p < 0.0001
vs CTRL; ** p < 0.01 vs CTRL; * p < 0.05 vs CTRL; §§§ p < 0.0001
vs ISO; §§ p < 0.01 vs ISO; § p < 0.05 vs ISO.

The browning markers Ucp1 and Tbx1 were significantly up-regulated

with the 0.5 µM dose of c9RA (Figure 15.2, b). Also Plin1 was significantly

up-regulated in c9RA-treated cells (Figure 15.2, b), but other LD-associated

genes and Lipe did not show any significant variation (Figure 15.2, c).

Interestingly, cells treated with isoproterenol did not produce a signif-

icant upregulation of browning markers. This is probably due to the fact

that cells were over-incubated with this molecule, which is known to pro-

duce effects after few hours following the administration, so the expression

of the markers might have come back to a basal state.
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15.2.3 In-cell Western

To gain more information about the protein level of UCP1 and of PGC-

1α, a marker of mitochondrial biogenesis, ICW analysis was performed.

Since the administration of 0.5 µM c9RA produced the highest up-regulation

of browning markers, this analysis excluded the 1 µM dose. Figure 15.3

showed that the protein level of UCP1 was significantly low in ISO (p <

0.01) and in samples treated with 0.5 µM c9RA (p < 0.05). These data

could reflect on one side the lack of effectiveness of the treatment with iso-

proterenol, on the other side could mean that, in cells treated with c9RA,

the translation of mRNA into protein is not an immediate consequence of

the transcription of Ucp1 gene. Data about the PGC-1α show a clear up-

regulation of the protein in c9RA-treated cells with respect to both nega-

tive and positive controls (p < 0.05). This might lead to the assumption

that mitochondrial biogenesis is enhanced in c9RA-treated cells, but this

result needs to be corroborated by mitochondrial dynamic analysis and by

the analysis of Ppargc1a mRNA level.

Figure 15.3: Relative protein % from ICW analysis. Raw data were normalized
against the expression of α-tubulin, which served as housekeeping.
Data are expressed as the mean of relative fold change ± SEM.
One-way ANOVA with Tukey’s range test was used to detect
significant differences. ** p < 0.01 vs CTRL; * p < 0.05 vs CTRL; § p

< 0.05 vs ISO.
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15.3 Discussion

This preliminary study showed that the isomer of all-trans retinoic acid,

cis-9 retinoic acid, has a browning effect on 3T3-L1 adipocytes. RA has

been described as a factor promoting adipogenesis [193] and regulating

lipid metabolism [194], so it has been inferred its involvement in regulat-

ing WAT browning. The mechanism by which both isomers regulate Ucp1

expression involves their interaction with RAR and RXR nuclear receptors.

When activated, these receptors form heterodimers with each other and

also with other nuclear receptors, including PPARγ, to modulate the ex-

pression of Ucp1 and a number of other genes [195]. Nevertheless, recent

studies showed that atRA mediates mitochondrial biogenesis also through

an AMPK-dependent up-regulation of Ppargc1a gene [195]. This seems to

occur also with c9RA administration, as the protein level of PGC-1α in-

creased following the treatment. The administration of c9RA to 3T3-L1

up-regulates the expression of its nuclear receptor, in line with previous

results [196]. The up-regulation of Ucp1 and Tbx1 can indicate that a

brite phenotype has been established on treated cells, but further analy-

ses are needed to strengthen this observation. Recent findings highlighted

the involvement of lipocalin 2, a novel adipokine, in the regulation of atRA-

mediated browning [197], hence its role in mediating the cellular response

to c9RA deserves further elucidation.

Among genes associated in LD remodeling, those encoding for CIDE-

proteins did not show any significant variation, probably due to the high

level of individual variability. Nevertheless, Figure 15.2c showed that their

mRNA level is higher in cells treated with the two doses of c9RA, so this

might account for a dynamic remodeling of LDs. Morphological studies

on LDs are required to verify if c9RA triggers a LD remodeling towards

a multilocular phenotype, which has been observed as a typical feature of

browning white adipocytes [92]. The significant up-regulation of Plin1 has

a similar pattern to Lipe, so there might be a relation between these two
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proteins. Despite PLIN1 has a role in improving CIDEC’s functionality

during LD fusion, some findings indicate a role of phosphorylated PLIN1

in favoring a multilocular phenotype through its interaction with key LD-

remodeling proteins [198]. Moreover, it has been observed that PLIN1 can

promote Lipe expression [199] and that an up-regulation of Plin1 has a

protective effect against diet-induced obesity [200, 201].

Taken together, these preliminary data account for an involvement of

c9RA in browning of white adipocytes, but further research is necessary to

validate these assumptions.
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Concluding remarks

The results presented in this thesis demonstrated that analyzed bioac-

tive factors induced browning in different cellular models. This evaluation

has been performed through the analysis of the expression of browning

molecular markers and of structural modifications of lipid droplets and mi-

tochondria. The tested molecules displayed different degrees of browning

efficacy in function of their dose or the duration of the incubation period

through multiple pathways that should be deeper investigated. The knowl-

edge of the best combination of browning factor dose and time of exposure

will be of outstanding importance in transferring the results of this re-

search into clinical practice for the treatment of obesity and related co-

morbidities (i.e. type 2 diabetes mellitus), since prolonged exposure and

sub-optimal doses do not produce satisfactory outcomes in terms of thermo-

genic activation and reduction of adiposity. Research on bioactive molecules

can be translated in the realization of effective nutraceutical preparations

in support of traditional obesity treatments, while the study of endogenous

molecules may spread new light on the beneficial effect of physical exercise

and other positive behaviors on energy expenditure.

The results of this research improved our understanding of WAT brown-

ing, bringing novel knowledge about the expression of brown and brite

markers after prolonged treatments on fully differentiated adipocytes. For

the first time, new approaches to study browning induced by the selected
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compounds involved variations of LDs size and mitochondrial shape. Nev-

ertheless, trials with the selected or other compounds could deeper analyze

the molecular pathways that lead to the phenotypic conversion in treated

cells, i.e. with gene silencing experiments, inhibition of target receptors or

proteins involved in the signal transduction and transcriptomic analyses.

Moreover, morphological variations were highly descriptive and useful

to outline phenotypic changes and can be improved with time-lapse exper-

iments to exploit time-course modifications and with electron microscopy

to depict ultrastructural changes. Moreover, these experiments will be re-

peated on immortalized murine brown adipocytes (IMBAT cells) to streng-

then the results.

Most importantly, this thesis evidenced that browning of WAT is not

just an increase of UCP1 content, as many other factors participate to the

onset of a thermogenic response and this response varies among different

types of cell. Hence, to produce significant results that could be translated

into clinical practice to treat obesity, a further effort is required in multiple

research lines.
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Summary

Obesity is the result of energy intake chronically exceeding energy expenditure.

Classical treatments against obesity do not provide a satisfactory long-term out-

come for the majority of patients. After the demonstration of functional brown ad-

ipose tissue in human adults, great effort is being devoted to develop therapies

based on the adipose tissue itself, through the conversion of fat-accumulating white

adipose tissue into energy-dissipating brown adipose tissue. Anti-obesity treatments

that exploit endogenous, pharmacological and nutritional factors to drive such

conversion are especially in demand. In the present review, we summarize the cur-

rent knowledge about the various molecules that can be applied in promoting

white-to-brown adipose tissue conversion and energy expenditure and the cellular

mechanisms involved.

Keywords: Brown adipose tissue, browning, thermogenesis, white adipose tissue.

Abbreviations: 5-HT, serotonin; 5-HT1B, serotonin receptor 1B; 5-HT2C, seroto-
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Introduction

Adipose tissue (AT) is the main form of storage of excess en-

ergy intake derived from food. This feature guarantees the

survival of an organism even during long fasting periods.

Nowadays, food availability to mankind is far greater than

in past centuries; thus, dietary habits dramatically changed

all over the world. This has led to the epidemic diffusion

of obesity in last decades, with the highest number of cases

being recorded in western countries (i.e. Europe and USA).

Today, this problem has reached devastating proportions,

as obese patients are growing in number also in developing

countries. According to recent data published by the World

Health Organization (1), 1.9 billion adults (39%) are over-

weight (body mass index ≥25 kg m�2) and 600 million indi-

viduals (13%) are obese (body mass index ≥30 kg m�2).

This health issue is not gender-specific, as 38% of men

and 40% of women are overweight and 11% of men and

15% of women are obese. Moreover, great concern is grow-

ing from the diffusion of child obesity, as over 41 million

children are overweight before reaching puberty (1).

Obesity is a serious risk factor as it is associated with met-

abolic syndrome (2), a cluster of morbidities that includes

type 2 diabetes mellitus (3,4), cardiovascular disease, in-

cluding hypertension (5) and chronic kidney disease. More-

over, obese patients are more prone to contract several

forms of cancer with reduced chances of survival (6).

In light of these facts, it is of primary importance to find

more effective approaches to treat obesity. The traditional ap-

proachthat involves themodificationofdietaryhabitsandthe

increase of physical activity often is not effective, as often the

fatmass loss is only transient and the regainofbodyweight af-

ter a long period of diet and exercise is very common (7). On

the other hand, the bariatric surgery, which could be an effec-

tive alternative, is not viable in all cases. After the discovery of

functional brown adipose tissue (BAT) masses in human

adults through several combined imaging techniques (8,9),

there is a growing interest in finding therapies for obesity that

start from the AT itself, as the conversion of fat-accumulating

white adipose tissue (WAT) into energy-dissipating BATmay

be an effective and potentially harmless solution.

This review has the purpose to illustrate the current find-

ings about all factors and natural compounds that have

been studied in recent years, classifying them as endoge-

nous, pharmacological and nutritional factors. In order to

explain the potential efficiency of these agents in WAT to

BAT conversion, their biochemical and molecular mecha-

nisms are also elucidated.

Conversion of white adipocytes into brown-like

adipocytes

The biology and developmental origins of BAT and the dif-

ferences between WAT and BAT have been clearly and

deeply reviewed in the past years (10–13). BAT has become

central in research on obesity because of adaptive thermo-

genesis, i.e. the process of regulated heat production that

is in part mediated by the catabolism of energy substrates

without the release of chemical energy from the breakdown

of adenosine triphosphate. This process is led by uncoupling

protein 1 (UCP1), a transmembrane protein present in the

inner mitochondrial membrane of mitochondria in brown

adipocytes. UCP1 participates in adaptive thermogenesis

by uncoupling the production of adenosine triphosphate

from the catabolic pathways of lipids and carbohydrates.

The derived energy is released by the brown adipocytes in

form of heat that diffuses in the body, thanks to the rich vas-

cularization of BAT.

Uncoupling protein 1 is uniquely expressed in BAT; thus,

an increase in BAT mass in obese patients may improve en-

ergy dissipation. One of the possible ways to increase the

presence of functional UCP1-rich cells in AT is the conver-

sion of white (pre)adipocytes into brown-like fat cells,

known as WAT browning. The result is the appearance in

WAT of dispersed masses of brown-like adipocytes, named

beige or brite (brown-in-white) adipocytes. These cells share

a number of characteristics with brown adipocytes, as they

show a multilocularized accumulation of fat reserves, are

rich in mitochondria and express high levels of UCP1 and

factors that increase the transcription of key proteins of

thermogenesis, (e.g. members of the peroxisome

proliferator-activated receptor (PPAR) family, cell death-

inducing DFFA-like effector A, PR domain containing 16

(PRDM16) and others reviewed in (ref. (11)). Brite adi-

pocytes show, nevertheless, a unique gene expression

profile, which is different from both white and brown

adipocytes (14–16). Browning is not the only way to

obtain brite adipocytes: other developmental pathways,

e.g. differentiation from Myh11+ smooth muscle

precursor cells or from mesodermal stem cells-derived

preadipocytes are involved (17).

White adipose tissue browning is mainly driven by sym-

pathetic stimulation and by the interaction of norepineph-

rine (NE) with β3-adrenergic receptors (β3-ARs) present on

the plasma membrane of white adipocytes. Such an interac-

tion starts a signal transduction cascade that ends in the

overexpression of UCP1 and other thermogenic proteins.

A number of studies and observations confirmed the fact

that, endogenously, the mechanisms that drive classic BAT

recruitment and WAT browning are the same (18), while

the administration of exogenous molecules may selectively

activate BAT thermogenesis or recruit brite adipocytes.

Chronic cold exposure is the most effective sympathetic

activator (18), as it induces a massive thermogenic response

in WAT. Exposure to cold is quite unsuitable and uncom-

fortable for obese patients; hence, other so-called “brow-

ning agents” have been investigated in the last years. Here

follows a description of the most relevant and promising
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endogenous, pharmacological and nutritional browning

factors and their cellular pathways.

Endogenous browning factors

Norepinephrine and central sympathetic activators

As previously mentioned, the expression of UCP1 is under

adrenergic control: the activation of β3-ARs by NE triggers

a signal transduction cascade that involves a number of en-

zymes and transcription factors that, either directly or indi-

rectly, affect the expression level of UCP1 (19). The

interaction of NE with β3-ARs causes the activation of a

linked stimulatory G protein (Gs) that, in turn, activates

the membrane enzyme adenylyl cylcase (AC). AC stimulates

the production of cyclic adenosine monophosphate (cAMP),

which is the necessary activator of protein kinase A (PKA).

This is a key enzyme in NE stimulation; therefore, the

sympathetic-mediated adaptive thermogenesis is known as

a cAMP/PKA-dependent process. The PKA-dependent

transduction pathways that lead to the overexpression of

UCP1 are (i) p38 mitogen-activated protein kinase (MAPK),

which stimulates the expression of the PPARγ coactivator-

1α (PGC-1α) and the activating transcription factor 2, that

are directly involved in the overexpression of UCP1; (ii)

cAMP response element binding protein, which directly

binds on UCP1 promoter in a p38 MAPK-independent

manner (10,19); (iii) the Janus kinase/signal transducer

and activator of transcription pathway, which mediates

thermogenesis by transducing the signal of several

adipose-affecting substances (20); (iv) the silent information

regulator type 1 (SIRT1), which amplifies adrenergic re-

sponse and stimulates PGC-1α (21). These pathways are

also involved in the mitochondrial biogenesis, which is fun-

damental in reaching a brown-like phenotype.

The peripheral release of NE is centrally regulated by a

number of proteins produced either by the central nervous

system itself or by other peripheral tissues. Leptin is an

adipokine whose release is proportional to AT mass, and it

has a role in the regulation of food intake and regulation

of metabolism (22). Receptors for leptin are centrally lo-

cated mainly in the arcuate and in the ventromedial

(VMH) nuclei of hypothalamus. Recently, leptin receptors

involved in the stimulation of thermogenesis were also

found in dorsomedial hypothalamus (DMH) (23). Sympa-

thetic stimulation driven by leptin is mediated by the

melanocortin system via the release of the α-melanocyte-

stimulating hormone, which interacts with the

melanocortin-4 receptor. The activation of this receptor

causes a production of corticotropin-releasing hormone that

finally activates the peripheral release of NE (24). In the ad-

ipocyte, leptin positively regulates the expression of β3-ARs,

and in vitro studies demonstrated that leptin can stimulate

the expression of PGC-1α and the peroxisome proliferator-

activated receptor α (PPARα) (25–27). PPARα is another

key transcription factor involved in the expression of

UCP1 and other genes linked to thermogenesis (28).

The neuropeptide VGF nerve growth factor inducible is

engaged in energy homeostasis, and its proteolytic cleavage

produces a number of bioactive polypeptides. Among these,

TLQP-21 was shown to centrally activate the release of NE,

and, consequently, its effects include the overexpression of

UCP1 in WAT and the reduction of fat mass following a

high fat diet (HFD) in rats (29). Similarly, the brain-derived

neurotrophic factor modulates the sympathetic activity

leading to WAT browning in response to environmental

cues, such as cold exposure and enriched environments

(30). Afterwards, it has been demonstrated that the central

activity of brain-derived neurotrophic factor is peripherally

mediated by the fat depot-specific expression of the vascular

endothelial growth factor (31), which has also a role in

angiogenesis of BAT and brown-like AT (32).

Myokines

Myokines are endocrine mediators produced by skeletal

muscles. They are usually released during the contraction

of muscle fibers and link the physical exercise to the loss

of fat mass (33).

Irisin is a PGC-1α-dependent myokine that derives from a

specific proteolytic cleavage of the fibronectin type III

domain-containing protein 5 (FNDC5). Its anti-obesity ef-

fect is mediated through the expression of genes linked to

lipid catabolism and uncoupling process (including UCP1)

selectively in WAT depots, mainly subcutaneous ones (33).

AT FNDC5 mRNA and irisin levels in circulation are nega-

tively associated to type 2 diabetes mellitus, leptin and

myostatin and positively related to the muscle mass (34).

Irisin is recognized as a powerful myokine inducing WAT

browning in many animal models. A recent study on human

adipocytes showed that irisin acts via the stimulation of p38

MAPK pathway and positively autoregulates adipocyte

FNDC5 expression (35).

The β-aminoisobutyric acid (BAIBA) is again a PGC-1α-

mediated and exercise-triggered, non-adrenergic activator

of WAT browning. This myokine, a metabolite of valine

and thymine metabolism, is released during muscle contrac-

tion. In animal models, it was demonstrated that BAIBA is a

strong stimulator of the mitochondrial activity and en-

hances the expression of BAT-related genes in white adipo-

cytes, via a PPARα-dependent mechanism. Through the

same mechanism, BAIBA improves the lipolytic catabolism

in liver, by increasing the expression of specific enzymes in-

volved in β-oxidation (36–38).

Meteorin-like protein is a myokine having an indirect ac-

tion on WAT browning. Circulating meteorin-like protein

can activate eosinophils in WAT to produce interleukin-4

(IL4) and IL13 with a browning effect (39).
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Interleukin-6 can be also considered as a myokine be-

cause it is markedly released by skeletal muscle during exer-

cise. Daily intramuscular injections of IL6 in mice showed

to raise UCP1 expression levels in WAT (40).

Thyroid hormones

The regulation of UCP1 synthesis, mediated by thyroid hor-

mones, is independent of adrenergic stimulation, and these

two pathways cooperate in a synergistic way (41). Triiodo-

thyronine (T3) is the hormone that actively and directly reg-

ulates UCP1 expression. It is mainly released by the thyroid

gland, but the adipocyte itself is able to catalyze the conver-

sion of thyroxine (T4) to T3 by the enzyme type II

iodothyronine 50-deiodinase (DIO2). The enzyme DIO2 is

activated by adrenergic stimulation and is strongly inhibited

by its own substrate, T4 (42).

The adipocyte has two nuclear receptors for T3, the thy-

roid hormone receptor α (TRα) and TRβ. The latter stimu-

lates UCP1 expression (13) that is proportional to T3

concentration in AT. The distal enhancer of UCP1 contains

the thyroid response element with the binding site for the

T3/thyroid hormone receptor β complex. T3, as a sympa-

thetic activator, induces UCP1 expression at central level,

too (43).

Fibroblast growth factor 21

The fibroblast growth factor 21 (FGF21) is an endocrine

factor involved in the regulation of hepatic lipid metabo-

lism, glycaemia and the functionality of pancreatic β-cells,

and it is mainly produced by liver (44). In adipose cells

FGF21 interacts with the FGF receptor and its co-receptor

β-Klotho. The activated receptor triggers the p38 MAPK

pathway that in turn stimulates UCP1 expression inducing

both BAT activity and WAT browning (45). Notably, ther-

mogenic activation induces FGF21 release by brown adipo-

cytes (but not by white ones), thus exerting an autocrine

effect on the brown fat cell (46). Thus while hepatic

FGF21 triggers thermogenesis in BAT and induces WAT

browning with an endocrine mechanism, adipose FGF21

sustains the progression of the thermogenesis itself in brown

and brite adipocytes with an autocrine mechanism.

It is important to notice that in obese patients, FGF21 sig-

nalling is impaired by the pro-inflammatory environment

established inWATmasses, because increased tumour necro-

sis factor α develops an FGF21-resistant phenotype by inter-

fering with the expression of β-Klotho co-receptor (47,48).

Bone morphogenetic proteins

Proteins belonging to this family are involved in normal

BAT development and in WAT browning. The bone mor-

phogenetic protein 7 (BMP7) is a key factor in brown

adipocyte differentiation as it participates in programming

of Myf5+ precursor cells towards a BAT phenotype (49).

BMP7 stimulates the expression of early BAT regulator

PRDM16 and PGC-1α, thus the synthesis of UCP1. Accord-

ing to a recent study, BMP7 is able to recruit UCP1-rich and

mitochondria-rich brite adipocytes from both human

adipose-derived stem cells and white adipocytes (50).

Another member of the number 7 morphogenetic pro-

teins family, BMP8B, is not a browning agent at a peripheral

level but is crucial in maintaining the thermogenic process in

BAT. It is able to improve NE response in brown adipocytes

enhancing the p38 MAPK/cAMP response element binding

protein pathway for UCP1 expression (51). At a central

level, the thermogenic effect of BMP8B in both BAT and

WAT is sexually dimorphic: it is observed only in females

as it is dependent on ovarian estradiol levels (52). The

thermogenic effect of BMP8B is achieved by the regulation

of hypothalamic cAMP-activated protein kinase (AMPK)

in VMH, with peripheral consequences on BAT activation

and WAT browning (53). Moreover, central BMP8B in-

creases orexin (OX) release in the lateral hypothalamic area

through a glutamatergic signalling (53). The key role of OX

in BAT activity will be discussed in the next sections.

BMP4 was believed to uniquely induce lipid accumula-

tion and differentiation of white adipocytes (54). Several re-

cent studies suggest a possible role of BMP4 in WAT

browning, even though such role is still controversial. Xue

et al. (55) assume that BMP4 induces PGC-1α expression

in white preadipocytes and cultured stem cells, leading to

the development of brite adipocytes with a strong increase

of brite markers expression and biogenesis of mitochondria.

This mechanism is supported by further research (56,57). A

more recent study demonstrates an opposite role for BMP4

as an inducer of the switch from a brown phenotype to a

white-like one (58).

Cardiac natriuretic peptides

Recently, cardiac natriuretic peptides have been recognized

as metabolic hormones with a role in regulation of fat mobi-

lization during physical exercise, in fat oxidation by skeletal

muscles and browning of white adipocytes. Three peptides

belong to this family: atrial natriuretic peptide, brain natri-

uretic peptide (BNP) and C-type natriuretic peptide (59).

They are produced by the heart and target a number of or-

gans, including WAT and BAT. Atrial natriuretic peptide

and BNP achieve their biological effects through the natri-

uretic peptide receptor A, while C-type natriuretic peptide

preferentially binds to NPRB. They are both guanylyl

ciclase receptors. In WAT, natriuretic peptide (NP) signalling

stimulates lipolytic pathways via activation of a cyclic

guanosine monophosphate-regulated protein kinase, which

in turn phosphorylates hormone-sensitive lipase and

perilipin (60).
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Cold exposure promotes the secretion of BNP and the

synthesis of natriuretic peptide receptor A: activated cyclic

guanosine monophosphate-regulated protein kinase in adi-

pocytes stimulates the p38 MAPK pathway, increasing the

synthesis of UCP1 and thus triggering the browning pro-

cess. The NP-mediated browning pathway is independent

from NE stimulation, and the effects are more likely addi-

tive (61).

Adipokines

Besides leptin – discussed previously – some other

adipokines can participate into the browning process of

WAT. Cold exposure strongly raises the production of

adiponectin in subcutaneous WAT. A study on mice shows

that the increased circulating adiponectin recruits beige adi-

pocyte through the increase of resident M2 macrophages in

the stromal vascular fraction of subcutaneous WAT,

strongly highlighting a link between immunity and WAT

browning (62).

Apelin concentration in plasma increases with obesity

and hyperinsulinaemia (63). In the adipocyte, apelin

triggers a brite phenotype by increasing the expression

of UCP1 gene and its transcription factors affecting

phosphoinositide 3-kinase/protein kinase B and AMPK

pathways (64). However, it has been demonstrated that

chronic intracerebroventricular infusion of apelin in mice

depresses energy expenditure and BAT functionality,

contributing to the development of obesity and related

morbidities (65).

Lipid mediators

The role of WAT in the production of both pro-

inflammatory and anti-inflammatory lipid mediators, i.e.

prostaglandins, thromboxanes, and leukotrienes, was

investigated by Garcia-Alonso et al. (66). According to

the current understanding, arachidonic acid is oxygenated

by the isoforms of the enzyme cyclooxygenase (COX) to

release prostaglandins and thromboxanes and by

lipooxygenase to synthesize leukotrienes. The coordinated

activity of enzymes COX-2 and microsomal PGE

synthase-1 leads to the synthesis of PGE2, which stimulates

the differentiation, towards a brown-like phenotype, of

white preadipocytes. This is possibly achieved through a

cAMP-dependent and PPARγ-dependent mechanism,

because PGE2 and some related compounds are agonist

ligands of PPARγ isoforms (67). The evidence of a link

between WAT browning and COX-2 overexpression is pro-

vided in a previous study (68). A more recent research, on

the other hand, shows that an excess of PGE2 and PGF2α,

accumulated by a marked increase in dietary arachidonic

acid, inhibits the white-to-brown conversion pathway by

decreasing UCP1 expression in a Ca2+-regulated and

extracellular signal-regulated kinase pathway-dependent

fashion, but without negative consequences on

mitochondriogenesis (69). PGE2 affects brown thermogene-

sis also by mediating the activity of CC chemokine ligand

22, a pyrogenic cytokine that binds to the CC chemokine

receptor 4 in the anterior hypothalamus/pre-optic area.

This area of the nervous system is functionally linked to

thermogenic tissues, including BAT; hence, the hyperther-

mic effect of CC chemokine ligand 22 is carried out by a

change in the metabolic rate of BAT (70).

A recent study highlights the browning potential of

another metabolite of arachidonic acid, i.e. prostacyclin.

In vitro treatment of human multipotent adipose-derived

stem cell cultures with prostacyclin’s analogue

carbaprostacyclin induces the development of functional

brite adipocytes through the functional coupling between

membrane receptor IP-R and Gs protein, thus using the

cAMP-dependent pathway in activating AC (71). This lipid

mediator produces an amplified effect thanks to its ability to

agonistically bind to PPARγ isoforms that are promoters of

both, adipogenesis and UCP1 synthesis (66,71).

Serotonin

Serotonin (5-HT) is a monoamine with a number of func-

tions both, at central and at peripheral level, including reg-

ulation of appetite and energy homeostasis. Central 5-HT

has an anorexigenic effect because 5-HT modulates the hy-

pothalamic feeding circuit (which involves some of the

hypothalamic nuclei already mentioned) through the activa-

tion of receptors 5-HT1B and 5-HT2C (72). 5-HT can also

affect BAT metabolism in the hypothalamus, because

neurons of DMH are synaptically linked to the raphe

pallidus, which modulates sympathetic activation through

a serotoninergic circuit. In mice, this circuit promotes ther-

mogenesis when cholinergic muscarinic receptors linking

DMH to raphe pallidus are antagonized (73). Moreover,

the depletion of serotoninergic neurons in mice produces

severe impairments in glucose and lipid metabolisms and

in brown and brite adipocyte’s thermogenic capacities

(74). Hence, central serotoninergic regulation is funda-

mental in the control of both, appetite and energy

homeostasis.

At a peripheral level, the major source of 5-HT is gut, and

AT represents a target, as 5-HT regulates many functions

related to adipogenesis and energy metabolism. In AT

itself, 5-HT was found to be an obesogenic factor that

promotes lipid accumulation in WAT and inhibits WAT

browning and BAT thermogenesis. A study performed on

mice demonstrated that the inhibition of tryptophan

hydroxylase 1, the enzyme responsible for peripheral 5-

HT synthesis, induced lean phenotypes with activated

BAT and recruited brite adipocytes (75).
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Other endogenous factors

Adenosine plays a dual role in AT: in WAT, it inhibits lipol-

ysis, while in BAT, it increases it. It is likely that the different

adenosine receptors present in the two cell types trigger dif-

ferent effects. In white adipocytes, there is a high abundance

of A1 receptor, while in brown adipocytes, the Gs-coupled

A2a type (adenosine receptor 2a) is the most present.

Adenosine released from sympathetic nerves and from

the adipocyte itself, following adrenergic stimulation, in-

creases the synthesis of UCP1 through a cAMP-dependent

pathway (76,77). A proper pharmacological stimulation of

adenosine receptor 2a with agonists can induce browning

in WAT.

The appetite-inducing neuropeptide OX is produced in

lateral hypothalamic area and has a fundamental role in me-

diating the differentiation of mature brown adipocytes and

in promoting thermogenesis and uncoupled metabolism.

OX-null mice displayed a lack of mature, thermogenically

active brown adipocytes and an abundance of

preadipocytes unable to accumulate lipid droplets and to

perform thermogenesis (78). As previously mentioned, the

presence of a sustained OX signalling is also fundamental

for the mediation of BMP8B effects on BAT functionality

(53). Effects of OX on BAT are achieved through its interac-

tion with OX receptor-1 (79).

Melatonin is a hormone acting as an autocrine/paracrine

factor. It is secreted by many tissues and organs, but the

main melatonin source is the pineal gland. The synthesis

of melatonin by the pineal gland is regulated by the hypo-

thalamic paraventricular nucleus and is triggered by the re-

lease of NE in specific ganglia. This activation is further

regulated by the suprachiasmatic nucleus of the hypothala-

mus (80). Physiological effects of melatonin are driven by

melatonin receptors MT1, MT2 and MT3, even if

receptor-independent actions of melatonin are possible,

and they concern the scavenging of free radicals (80).

Melatonin regulation of energy metabolism involves the

circadian distribution of different metabolic processes

(81), the control of insulin synthesis and effectiveness

(82,83) and the regulation of AT energy metabolism. In

this respect, recent findings evidence that long-term

pinealectomized rats are overweight, diabetic and with

impaired AT physiology, but normal conditions are re-

stored by daily melatonin supplementation (80). In nor-

mal animals, the supplementation with melatonin is

shown to reduce body weight and abdominal fat mass

through activation of BAT and browning of WAT (84).

Moreover, chronic administration of melatonin also re-

duces ageing-related loss of insulin sensitivity in rats

(85). Taken together, these findings highlight the thera-

peutic potential of melatonin against obesity and insulin

resistance.

All endogenous browning factors are summarized in

Fig. 1 and Table 1.

Figure 1 Endogenous factors (orange squares) involved in white adipose tissue browning and their cellular targets (blue circles). Receptors are reported

in red boxes. The pathways that directly participate to upregulation of UCP1 (yellow circle) are reported along the brown arrow. All orange arrows indicate a

stimulatory effect. 5-HT, serotonin; A2aR, adenosine receptor 2a; AMPK, cAMP-activated protein kinase; APJ, apelin receptor; BAIBA, β-aminoisobutyric

acid; BDNF, brain-derived neurotrophic factor; BMP, bone morphogenetic protein; BNP, brain natriuretic peptide; DIO2, type II iodothyronine 50-

deiodinase; FGF21, fibroblast growth factor 21; IL, interleukin; NPRA, natriuretic peptide receptor A; OX, orexin; p38 MAPK, p38 mitogen-activated pro-

tein kinase; PGC-1α, PPARγ coactivator-1α; PKA, protein kinase A; PPAR, peroxisome proliferator-activated receptor; T3, triiodothyronine; T4, thyroxine;

TRβ, thyroid hormone receptor β; UCP1, uncoupling protein 1; VEGF, vascular endothelial growth factor. [Colour figure can be viewed at

wileyonlinelibrary.com]
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Table 1 Endogenous factors involved in BAT development and recruitment, WAT browning and UCP1 upregulation

Browning factors Cellular

target

Mechanisms of action Effect Ref.

Norepinephrine β3-AR Activation of cAMP/PKA-dependent signalling pathways Upregulation of UCP1 10

Leptin ObR Inhibition of orexigenic NPY/AgRP neurons and stimulation of anorexigenic POMC/CART

neurons

Suppression of appetite 22,23,25–27

Stimulation of melanocortin/corticotropin system Increase of noradrenergic stimulation of BAT and WAT

Upregulation of β3-AR, p38 MAPK and PGC-1α

? Activation of JAK/STAT signalling pathway Stimulation of WAT lipolysis.

Upregulation of ACO, CPT1 and PPARα

TLQP-21 ? Central, prostaglandin-dependent stimulation of adrenal medulla Increase of epinephrine and upregulation of β2-AR in BAT 29

Upregulation of β3-AR, PPARδ and UCP1 in WAT

BDNF TrkB Early regulation of hypothalamic activity Increase of sympathetic output 30,31

Upregulation of adipose VEGF

Irisin ? Stimulation of p38 MAPK signalling pathway and positive autoregulation of FNDC5

expression

Upregulation of UCP1 33,35

Stimulation of lipid catabolism

BAIBA PPARα Regulation of gene expression Upregulation of PPARα and UCP1 37

Increase of FA oxidation

Meteorin-like ? Recruitment of eosinophils and alternative activation of macrophages Indirect WAT browning through IL4 and IL13 signalling 39

Interleukin 6 IL6R PGC-1α-dependent modulation of gene expression Upregulation of UCP1 40

Triiodothyronine TRβ Bond of activated TRβ to UCP1 distal enhancer Upregulation of UCP1 41

Thyroxine DIO2 Intracellular conversion to triiodothyronine Upregulation of UCP1 42

FGF21 FGFR, Stimulation of p38-MAPK. Autocrine effect on brown adipocytes Upregulation of UCP1 45,46

β-Klotho

BMP7 BMPR1 Early brown adipocyte programming of Myf5
+
progenitor cells Differentiation of brown adipocytes 49

BMPR2 Promotion of the expression of brown and brite fat gene markers Differentiation of brite adipocytes from not fully differentiated white

fat cells

50

BMP8B BMPR1A Stimulation of p38 MAPK/CREB signalling pathway in brown adipocytes Maintenance of the thermogenic machinery, upregulation of

orexin synthesis

51,53

Central, estradiol-dependent stimulation of hypothalamic nuclei, in opposition to AMPK and

increase of sympathetic tone

BMP4 BMPR1 Stimulation of p38 MAPK/PGC-1α/ATF2 signalling pathway Upregulation of glucose and lipid metabolism, expression of brite

phenotype in differentiating adipocytes

56,57

BMPR2

ANP and BNP NPRA cGMP/PKG-dependent stimulation of p38 MAPK/PGC-1α signalling pathway Upregulation of UCP1 and increase of lipolysis 59,60

Adiponectin adipoR1 Promotion of polarization and maintenance of resident M2 macrophages after cold-exposure scWAT browning 62

adipoR2

Apelin APJ Activation of PI3K/Akt and AMPK signalling pathways in brown adipocytes. Autocrine

positive feedback

Brown adipogenesis, upregulation of UCP1 64

Stimulation of AMPK signalling pathway and upregulation of PRDM16 in white adipocytes WAT browning, inhibition of adipogenesis

Prostaglandin E2 EP4 Modulation of cAMP level in the adipocyte Increased lipolysis 66

Stabilization of white-to-brown transcriptional regulators Promotion of WAT browning

PPARγ Interaction with PPARγ Upregulation of UCP1

Carbaprostacyclin IP-R Activation of cAMP/PKA-dependent signalling pathway Upregulation of UCP1 and WAT browning 71

PPARγ Interaction with PPARγ

Serotonin 5-HT1B Activation of POMC neurons and inhibition of NPY/AgRP neurons Suppression of appetite 72

(Continues)
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Pharmacological browning factors

β3-selective adrenergic agonists

The β3-AR is an atypical adrenoreceptor found in AT (10).

Hence, the selective stimulation of this receptor may drive

BAT activation and WAT browning with light or absent car-

diovascular side effects, which are reported for non-selective

sympathomimetic drugs. A number of molecules underwent

clinical trials, but the majority was rejected at the clinical

phase II because of lack of efficacy in human β3-AR (86).

L-796568 was among the first β3 agonists with docu-

mented increased energy expenditure in humans (87). Tests

on humans accounted for acute increase (8%) of energy

expenditure in obese patients (88), but chronic effects

were not observed (89). This drug produced no cardiovas-

cular side effects, as the bond with β1-AR and β2-AR did

not occur.

Mirabegron is a recently discovered β3 agonist which pro-

duces a marked increase in resting metabolic rate (13%) in

young male, suggesting a powerful activation of BAT ther-

mogenesis (90,91). This is a promising anti-obesity drug,

despite cardiovascular side effects due to its weak affinity

to other β-ARs.

Drugs affecting the serotoninergic system

As previously discussed, central 5-HT is an important factor

in stimulating thermogenesis and recruiting brite adipo-

cytes; hence, drugs affecting the central serotoninergic cir-

cuit may increase the 5-HT-mediated actions on AT.

Selective serotonin re-uptake inhibitors are classically

used as antidepressant drugs, but they can also find inter-

esting applications in obesity treatment. Sibutramine is a

drug that inhibits the re-uptake of both 5-HT and NE in

central synapses; it is converted in two active metabolites

that achieve the anti-obesity effect by reducing appetite

and increasing thermogenesis (92). Chronic treatment

with sibutramine also improves biochemical blood param-

eters associated with obesity and diabetes: glycaemia,

insulinaemia, triglycerides, total cholesterol, low-density

lipoprotein cholesterol, high-density lipoprotein choles-

terol and glycosylated haemoglobin (92,93). Side effects

include severe cardiovascular outcomes, like increase in

heart rate and blood pressure and in the likelihood of

non-fatal myocardial infarction or stroke. For this reason,

the drug was not eligible for patients with a history of

cardiovascular disease, and it has been withdrawn from

the market (94).

Fluoxetine is another member of selective serotonin re-

uptake inhibitor class of pharmaceuticals. A recent study

performed on rats shows that chronic fluoxetine adminis-

tration reduces body mass and WAT mass without affecting

food intake of the animals. Rats displayed also an increaseT
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in BAT mass, UCP1 expression and mitochondria metabolic

rate, measured as O2 consumption (95).

Fenfluramine and its d-isomer, dexfenfluramine, are sero-

toninergic drugs that suppress appetite by increasing the

synaptic release of 5-HT. Like sibutramine, these molecules

produce serious side effects, including heart valve damages

and pulmonary arterial hypertension (96). The association

with other drugs, like phentermine (a centrally active, nor-

adrenergic drug) attenuates the side effects (97). Neverthe-

less, both fenfluramine and dexfenfluramine were

withdrawn from the market (94).

Tamoxifen

The modulator of oestrogen receptor tamoxifen is currently

used in the oestrogen-dependent breast cancer therapy. It

has been recently tested on mice for its effect on AT metab-

olism and WAT browning (98). The study shows no acute

effects on body weight and food intake, but chronic tamox-

ifen administration affected the histology of subcutaneous

AT, by reducing the size of white adipocytes and increasing

the presence of brite adipocytes. Also lipid and glucose me-

tabolisms are affected (98).

Thiazolidinediones

The class of thiazolidinediones includes anti-hyperglicemic

drugs (i.e. rosiglitazone and pioglitazone) that participate

in BAT activation and WAT browning, acting as agonist li-

gands of PPARγ. Several in vitro studies show the ability

of rosiglitazone to promote the synthesis of UCP1 and other

mitochondrial proteins involved in electron transport chain

in both preadipocytes and mature adipocytes (99,100).

Nevertheless, the synthesis of UCP1 induced by

thiazolidinediones is not sufficient to trigger thermogenesis

in recruited cells, because a proper noradrenergic activation

is needed (18). In vivo rosiglitazone treatment on mice in-

creased UCP1 expression and lipid accumulation in brown

adipocytes, but failed in triggering thermogenesis, maybe

because of the downregulation of β3-ARs and DIO2

(101,102).

Pioglitazone treatment in cultured human subcutaneous

adipocytes led to a modest increase in UCP1 transcription

(103).

All pharmacological browning factors are summarized in

Table 2 and Fig. 2a.

Nutritional browning factors

Nutritional factors and nutraceuticals are gaining high in-

terest in obesity research, because many natural compounds

have been tested in a number of studies and show marked

lipolytic and/or anti-adipogenic activity (104,105).

Moreover, many molecules also have a positive effect on

thermogenesis and WAT browning.

Capsaicin and capsinoids

Capsaicin is an alkaloid present in plant species belonging

to the genus Capsicum, which includes the hot pepper. This

chemical compound is responsible for the burning sensation

of hot pepper, and its ability to induce WAT browning has

been known for many years. The exact mechanism of capsa-

icin action has been recently elucidated by Baskaran et al.

(106). The authors showed that in mice fed with a HFD,

capsaicin suppressed weight gain without affecting food

Table 2 Pharmacological factors involved in BAT development and recruitment, WAT browning and UCP1 upregulation. Side effects of drugs are

reported in italic

Browning

factors

Cellular

target

Mechanisms of action Effect Ref.

L-796568 β3-AR Selective β3-sympathomimetic Acute increase of thermogenesis 87–89

Mirabegron β3-AR Selective β3-sympathomimetic,

weak affinity to other β-

adrenoreceptors

Upregulation of UCP1. Cardiovascular side effects. 90,91

Sibutramine 5-HT and

NE

synapses

Inhibition of the reuptake of

serotonin and norepinephrine

Appetite reduction, increase of thermogenesis, improvement of blood

parameters. Increased heart rate, increased blood pressure, myocardial

infarction, stroke.

92–94

Fluoxetine 5-HT

synapses

Inhibition of the reuptake of

serotonin

Upregulation of UCP1, increase in BAT mass 95

Fenfluramine 5-HT

synapses

Increase of the synaptic release of

serotonin

Appetite suppression. Heart valve damage, pulmonary arterial

hypertension

94,96

Dexfenfluramine

Tamoxifen ER Agonist of oestrogen receptor Chronic scWAT browning. 98

Modification of lipid and glucose metabolism

Rosiglitazone PPARγ Agonist ligand of PPARγ Upregulation of UCP1 in preadipocytes and mature adipocytes 99,100

Downregulation of β3-AR and DIO2 101,102

Pioglitazone PPARγ Agonist ligand of PPARγ Modest upregulation of UCP1 103

5-HT, serotonin; β3-ARs, β3-adrenergic receptors; BAT, brown adipose tissue; DIO2, type II iodothyronine 50-deiodinase; ER, oestrogen receptor; NE, nor-

epinephrine; PPARγ, peroxisome proliferator-activated γ; scWAT, subcutaneous WAT; UCP1, uncoupling protein 1; WAT, white adipose tissue.
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intake, by overexpressing the transient receptor potential

cation channel, subfamily V, member 1 (TRPV1), which is

usually downregulated by HFD (106,107). The in vitro

analyses showed that capsaicin stimulates Ca2+ influx in

subcutaneous cultured adipocytes that express TRPV1.

The Ca2+ influx activates the Ca2+/calmodulin-dependent

protein kinase II, which in turn activates AMPK. This en-

zyme phosphorylates SIRT1, which deacetylates both

PPARγ and PRDM16. The interaction of these two tran-

scription factors increases their own stability. The final step

is the stimulation of the synthesis of UCP1 and BMP8B in

white adipocytes, with the consequent stimulation of

browning and thermogenesis. Capsaicin is also active at a

transcriptional level, because it increases the expression of

PPARα, PPARγ, SIRT1 and PGC-1α. The increased expres-

sion of PPARα is associated with an increased lipolytic

activity of the adipocyte (106).

Capsinoids, i.e. capsiate, dihydrocapsiate and

nordihydrocapsiate, are non-pungent analogues of capsai-

cin found in some Capsicum species (108,109). Despite

their structural affinity with capsaicin, these molecules show

some different behaviours in the organism. They are unsta-

ble in aqueous environment and rapidly hydrolyzed in the

gastrointestinal tract (110). Capsinoids are not detectable

in plasma after oral administration of a capsinoid-

supplemented diet to mice (111). The capsinoids binding

affinity to TRPV1 is similar to that of capsaicin, but the in-

flux of Ca2+ is almost 10 times lower (112). According to

these findings, Ohyama et al. (111) proposed a capsinoid’s

central-mediated signalling. This pathway involves the in-

teraction of capsinoids to gastrointestinal TRPV1 receptors

which in turn activate the vagal afferent nerves, which are

able to stimulate VMH. This stimulation triggers a

β2-adrenergical sympathetic response in WAT depots that

increase the stability and half-life of PRDM16 and that is

independent from cold-induced, β3-adrenergic stimulation.

So the two adrenergic pathways act on WAT browning in

a synergistic way.

Protoalkaloids of bitter orange

Synephrine alkaloids (SAs) are molecules that can be found

in fruits of bitter orange (Citrus aurantium L.). These mole-

cules are p-synephrine, often referred to as synephrine or

oxedrine, and m-synephrine, i.e. phenylephrine. The pres-

ence of both SAs in bitter orange fruit is subject to varia-

tions, i.e. m-synephrine is not always detected (113).

Synephrine alkaloids are sympathomimetics with non-

specific affinity for AR, as their structure is very similar to

that of NE and ephedrine. In detail, p-synephrine with α-

AR, β1-AR and β2-AR presents little binding affinity, being

Figure 2 (a) Pharmacological factors (light blue squares) involved in white adipose tissue browning and their cellular targets (blue circles). Receptors are

reported in cyan boxes. All blue arrows indicate a stimulatory effect. *The drug has been withdrawn from the market. (b) Nutritional factors (light green

squares) involved in white adipose tissue browning and their cellular targets (blue circles). Receptors are reported in green boxes. The pathways that di-

rectly participate to upregulation of UCP1 (yellow circle) are reported along the brown arrow. All green arrows indicate a stimulatory effect. β3-ARs, β3-ad-

renergic receptors; AMPK, cAMP-activated protein kinase; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; FX, fucoxanthin; PKA, protein

kinase A; PPAR, peroxisome proliferator-activated receptor; TRPM8, transient receptor potential cation channel subfamily M, member 8; TRPV1, transient

receptor potential cation channel, subfamily V, member 1; Rald, retinaldehyde; SIRT1, silent information regulator type 1; UCP1, uncoupling protein 1.

[Colour figure can be viewed at wileyonlinelibrary.com]
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the β3-ARs the most likely preferential target (114). On the

contrary, m-synephrine evidences affinity with the α-AR,

β1-AR and β2-AR. However, m-synephrine and

p-synephrine are, respectively, 100-fold and 40,000-fold

less potent than NE in binding β1-AR and β2-AR (114).

Studies report the lipolytic effect of p-synephrine in both

rat and human adipocytes, with stronger outcome in rat

cells (115). Moreover, this alkaloid is also active on rat

hepatic carbohydrate metabolism, as shown by liver perfu-

sion with bitter orange extract (116) and with pure p-

synephrine (115). SAs stimulate glycogenolysis, glycolysis,

gluconeogenesis and oxygen uptake in hepatocytes through

α-adrenergic and β-adrenergic stimulation, with higher

extent of α-ARs stimulation.

The fluctuating binding capacity of SAs to different iso-

forms of ARs raised high concern about the safety of these

molecules from a cardiovascular point of view. In this re-

gard, Haaz et al. (117) extensively reviewed clinical studies

and case reports showing a lack of significant data due to

suboptimal planning of administrations and trials.

The alkaloid p-octopamine is also present in bitter or-

ange fruit in lower concentration than p-synephrine. It is

preferentially a β3-adrenergic agonist, and it induces lipol-

ysis and browning in white rat adipocytes but not in hu-

man cells (118). A comparative study between rat and

human adipocytes highlights the lipolytic effect of several

C. aurantium alkaloids, the most active being p-synephrine

thanks to its higher concentration in the bitter orange

extract (119).

A synthetic derivative of SAs, isopropylnorsynephrine,

has a more powerful lipolytic effect compared to natural-

occurring compounds. The study conducted by Mercader

et al. (119) infers a specific β3-adrenergic agonism for this

molecule; hence theoretically, cardiovascular side effects

should be negligible compared to non-selective sympatho-

mimetic alkaloids. Therefore, isopropylnorsynephrine could

be an interesting anti-obesity molecule candidate, pending

further testing (119).

Fucoxanthin

Fucoxanthin (FX) is an isoprenoid molecule found in many

edible seaweeds, with the highest levels found in the diatom

Phaeodactylum tricornutum (120). It has a manifold benefi-

cial role in the control of adiposity and carbohydrate metab-

olism; hence, it is used as a protective functional ingredient

against weight gain and metabolic disorders.

Administration of FX significantly downregulates the ex-

pression and activity of lipogenic enzymes, while

upregulates oxidative pathways of fatty acids (FAs) and

the expression of β3-ARs in adipocytes (120). This induces

an increase of UCP1 expression in both, WAT and BAT

(121,122).

Fucoxanthin effects may be potentiated through the com-

bination with other lipophilic substances such as medium-

chain triglycerides (123), conjugated linoleic acid (124),

fucoxanthinol (which is a deacetylated FX-derivative)

(125) and fish oil (126). Xanthigen is a dietary product that

includes fucoxanthin and pomegranate seed oil, which is

rich in ω5 punicic acid (127). A recent pilot study, using
18F-fluorodeoxyglucose positron emission tomography,

demonstrates that chronic administration of Xanthigen in

a premenopausal, obese woman activates BAT in cervical,

supraclavicular and paravertebral areas (128).

Fucoxanthin is accumulated in form of different metabo-

lites: in heart and liver as fucoxanthinol and in AT as

amarouciaxanthin A. These metabolites are very effective

in inhibiting the differentiation of white preadipocytes into

mature white adipocytes (129,130).

Fucoxanthin also improves blood parameters and hepatic

accumulation of lipids (131,132).

Carotenoids and related compounds and

metabolites

Carotenoids include a broad spectrum of C40 isoprenoid

compounds which affect AT biology either directly or

through their metabolic products, i.e. retinoids. The most

important carotenoid is pro-vitamin A β-carotene (BC),

which can be metabolized in adipocytes by the enzymes

β-carotene-15,150-oxygenase (BCO1) and β-carotene-

90,100-oxygenase (BCO2) (which are differentially

expressed in subcutaneous and visceral AT) (133) to gener-

ate several cleavage products, including retinoic acid (RA)

and relative isomers, retinaldehyde (Rald) and several β-

apocarotenals and β-apocarotenones (134). The effects of

carotenoids and retinoids on AT mostly rely on their ability

to bind to specific nuclear receptors, namely RA receptors

(RARs) and retinoid X receptors (RXRs), in order to mod-

ulate gene expression in the adipocyte. All-trans RA (atRA)

is a ligand of RARs, while 9-cis RA binds both RARs and

RXRs. Activated RARs achieve their effect on gene expres-

sion by forming a heterocomplex with RXRs. In turn,

RXRs may interact also with other nuclear receptors, in-

cluding TRs and PPARs (134). Besides retinoid receptors,

other receptors represent potential targets for retinoids

and carotenoids: atRA, Rald, several apocarotenoids and

astaxanthin act as enhancers or inhibitors of PPAR

isoforms (134). Also extranuclear, non-genomic effects

are achieved by these compounds through Janus kinase 2

signalling pathway (135).

Effects of carotenoids and retinoids in counteracting lipid

accumulation and preadipocyte differentiation have been

studied in both, in vitro and in vivo models and have been

extensively reviewed by Bonet et al. (134). A number of

studies report also an effect of carotenoid-related com-

pounds in increasing energy expenditure and thermogenesis
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in both WAT and BAT. The participation of BC in the mod-

ulation of UCP1 expression was early established by in vitro

studies (136), and it is due to the conversion of BC and

other pro-vitamin A carotenoids into atRA, whose interac-

tion with RARs strongly triggers UCP1 synthesis. The

non-metabolized form of BC is not active on UCP1 expres-

sion and WAT browning (19).

All-trans RA treatment of murine white fat cells induced

the overexpression of thermogenic and catabolic proteins

and the increase in mitochondrial biogenesis. These effects

seem to be promoted by lipocalin 2, a recently discovered

adipokine which is involved in the regulation of the cellular

uptake and metabolism of retinoids (137). The same mole-

cule was tested on human SGBS cell line, multipotent

adipose-derived stem cells and primary preadipocyte cell

culture; the experiment shows no effect of atRA in inducing

UCP1 synthesis and WAT browning in any of these cell cul-

ture models (138).

A role in WAT browning has been attributed also to Rald,

independently of its conversion to atRA (134).

Long chain (poly)unsaturated fatty acids

As previously highlighted in this review, an excess in dietary

arachidonic acid leads to an increased WAT adipogenesis,

flanked by a reduction in BAT functionality andWAT brow-

ning (69). This is true for other ω6 polyunsaturated fatty

acids (PUFAs) as well. Nowadays, food habits privilege the

intake of ω6 PUFAs rather than ω3 ones, and the prevalence

of dietary ω6 PUFAs has been proposed to be detrimental

because of its adverse effects on lipid metabolism and obe-

sity development. Several studies have investigated the role

of PUFAs on AT from metabolic and genomic point of view,

and these findings have been comprehensively reviewed by

Simopoulos (139).

Eicosapentaenoic acid and docosahexaenoic acid are ω3

PUFAs abundantly present in fish oil. They are known to

reduce and prevent weight gain through their positive ac-

tion on PPAR members expression in BAT, which leads to

an increase in metabolism of glucose and FAs (140). A

study on mice reveals that ω3 PUFAs activate thermogene-

sis, as the reduction of body weight is not accompanied by

a diminished food intake (141). Dietary eicosapentaenoic

acid and docosahexaenoic acid (administered in daily doses

ranging from 119 to 238 g kg�1) increase the expression of

UCP1, PPARs and β3-AR genes, which are directly in-

volved in thermogenesis, and of other genes involved in

the uptake and metabolism of glucose and FAs (i.e.

GLUT4, CD36 and CPT1) (141). These observations were

confirmed by in vitro studies on human adipose-derived

stem cells (142).

Conjugated linoleic acid (CLA) is a mixture of linoleic

acid isomers which are naturally present in cow milk. CLA

effects on lipid metabolism, AT inflammation and

thermogenesis are reviewed in detail by Shen and McIntosh

(143). A number of studies reveal that CLA has a great po-

tential to reduce adiposity and trigger browning especially

in visceral WAT, through G protein-coupled receptors and

noradrenergic stimulation of AT. However, the long-term

effects of CLA-induced WAT browning may harm the de-

fence of body temperature (143).

Chemical modification of dietary FAs has shown benefi-

cial effects on health in several cases (144,145). 2-

hydroxyoleic acid is formed by addition of hydroxylic

group in α position of oleic acid and possesses an ability

to induce thermogenesis by upregulating UCP1 expression.

Normal oleic acid also causes body weight reduction in rats

but does not affect UCP1 expression (146).

Polyphenolic and non-aromatic alcoholic

compounds

Polyphenols are aromatic molecules found in plants charac-

terized by the presence of multiples of phenol structural

units. Thymol, although having a single aromatic group, is

included in this category. Thymol, found in thyme species

(Thymus spp.) has recently been tested as an anti-obesity

compound (147) and as activator of thermogenesis (148).

A recent study on 3T3-L1 murine adipocytes shows that

thymol, acting as a β3-adrenergic agonist, promotes lipoly-

sis, FA oxidation, expression of UCP1 and mitochondrial

biogenesis (148). Interestingly, its isomer carvacrol, also

found in thyme, has anti-obesity properties as well but

cannot stimulate thermogenesis (149).

Resveratrol is a polyphenol present in the skin of grapes

(Vitis vinifera L.) and in other fruit species with known ben-

eficial effects on adiposity and metabolic disorders

(150,151). The effect of resveratrol in AT biology is due

to its ability to activate AMPK (152). In murine primary

stromal vascular cells separated from inguinal WAT, res-

veratrol induces browning of WAT through AMPK-

dependent pathway that leads to the increase of UCP1

mRNA and protein content in white adipocytes and en-

hances the expression of a number of brite-specific gene

markers (153).

Oleuropein is a polyphenolic glycoside present in extra

virgin olive oil. It is present also as an aglycone and gives

a pungent taste to olive oil. It has been recognized as a pow-

erful antioxidant compound and also has anti-obesity prop-

erties, like many other molecules detected in olive oil,

including hydroxytyrosol (154–156). Studies on rats con-

firmed that anti-obesity effect of oleuropein and oleuropein

aglycone is achieved through the activation of thermogene-

sis in BAT and an increased release of both epinephrine

and NE, which in turn activates lipolytic pathways in AT.

Interestingly, these molecules, and in particular oleuropein

aglycone, are agonists of the capsaicin receptor TRPV1;
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hence, their anti-obesity effect could be comparable to that

of capsaicin (157).

Curcumin is a polyphenolic compound extracted from

Curcuma longa L. with well documented beneficial effects

for a wide spectrum of diseases (158–160). In 3T3-L1 cells

and rat primary inguinal white adipocytes, curcumin stimu-

lates lipolysis and induces a brite phenotype through an

AMPK-dependent mechanism that influences the expression

of UCP1 and brite gene markers (161). The role of curcumin

in WAT browning was previously reported by Wang et al.

(162) in mice. They inferred an NE-dependent pathway be-

cause, after curcumin administration, plasma NE levels and

the expression of β3-ARs in WAT increase in mice.

Other polyphenolic compounds can be found in tea

(Camellia sinensis (L.) Kuntze). The positive effect of tea on

energy expenditure and thermogenesis has been known,

Table 3 Nutritional factors involved in BAT development and recruitment, WAT browning and UCP1 upregulation. Side effects of natural compounds are

reported in italic

Browning factors Source Cellular

target

Mechanisms of action Effect Ref

Capsaicin Capsicum spp. TRPV1 CaMKII/AMPK/SIRT1-dependent

deacetylation of PPARγ and PRDM16

Upregulation of UCP1 and BMP8B 106

Capsiate Capsicum

annuum

TRPV1 TRPV1/VMH-mediated increase of β2-

adrenergic stimulation

Increase of stability and half-life of

PRDM16

111

Dihydricapsiatee

Nordihydrocapsiat

p-synephrine Citrus aurantium α-ARs Non-selective sympathomimetics Activation of adipose tissue lipolysis.

Cardiovascular side effects

114–117

m-synephrine β-ARs

p-octopamine β3-AR Selective β3-sympathomimetic, weak

affinity to other β-adrenoreceptors

Induction of lipolysis and browning in

non-human WAT

118,119

Isopropylnorsynephrine Synthetic Selective β3-sympathomimetic High lipolytic power 119

Fucoxanthin Several edible

seaweeds

Genomic

DNA

Downregulation of lipogenic enzymes Inhibition of adipogenesis 120–122

Upregulation of β3-AR and oxidative

enzymes

Upregulation of UCP1

β-carotene Red-coloured

fruits and

vegetables

BCO1 Conversion into retinoids and

apocarotenoids

Indirect WAT browning 134,136–

138Astaxanthin BCO2

All-trans retinoic acid Carotenoid

metabolism

RAR Lipocalin 2-driven regulation of gene

transcription

Upregulation of UCP1

9-cis retinoic acid RXR

Retinaldehyde RAR

Aldh1a1 Conversion into all-trans retinoic acid

Eicosapentaenoic acid Fish oil PPARα Agonists of PPARα and PPARγ Increase in glucose and lipid

metabolism. Upregulation of UCP1,

PPARs and β3-AR

140,141

Docosahexaenoic acid PPARγ

Conjugated linoleic

acid

Cow milk GPCR NE-dependent activation of adipocyte Selective browning of omWAT 143

2-hydroxyoleic acid Synthetic ? Upregulation of UCP1 Induction of WAT browning 146

Thymol Thymus spp. β3-AR Selective β3-sympathomimetic Promotion of lipolysis and lipid oxidation 147,148

Upregulation of UCP1

Mitochondrial biogenesis

Resveratrol Vitis vinifera AMPK Activation of AMPK-dependent signal

pathways

Upregulation of UCP1 and of brite-

specific markers

152,153

Oleuropein Olea europaea TRPV1 Not described Upregulation of UCP1 157

Oleuropein aglycone Increase of epinephrine and NE release

Curcumin Curcuma longa AMPK Activation of AMPK-dependent signal

pathways

Upregulation of UCP1 and of brite-

specific markers

161

Catechins Camellia

sinensis

AMPK Activation of AMPK-dependent signal

pathways

Upregulation of UCP1 and of brite-

specific markers

163–168

Theaflavins

L-menthol Mentha spp. TRPM8 Ca
2+
-dependent phosphorylation of

PKA and activation of downstream

pathways

Upregulation of UCP1 169,171

TRPA1 Mitochondrial biogenesis

Ginsenoside Rb1 Panax spp. PPARγ Agonist of PPARγ Upregulation of UCP1 172

α-ARs, α-adrenergic receptors; β3-adrenergic receptors; Aldh1a1, aldehyde dehydrogenase 1A1; AMPK, cAMP-activated protein kinase; BAT, brown ad-

ipose tissue; BCO1, β-carotene-15,150-oxygenase; BCO2, β-carotene-90,100-oxygenase; BMP, bone morphogenetic protein; GPRC, G protein–coupled re-

ceptors; NE, norepinephrine; omWAT, omental WAT; PPARγ, peroxisome proliferator-activated γ; PKA, protein kinase A; PRDM16, PR/SET domain 16;

RAR, retinoic acid receptor; RXR, retinoid X receptor; SIRT1, silent information regulator type 1; TRPM8, transient receptor potential cation channel subfam-

ily M, member 8;TPRV1, transient receptor potential cation channel, subfamily V, member 1; UCP1, uncoupling protein 1; VMH, ventromedial hypothala-

mus; WAT, white adipose tissue.
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and it has been attributed to its caffeine content. In 2000,

Dulloo et al. (163) showed that the thermogenic potential of

green tea extract cannot be explained by the sole presence

of caffeine, as also catechins participate in BAT activation.

Among these, epigallocatechin 3-gallate is themost abundant

in green tea leaves (163,164). The oral administration of

encapsulated green tea and Guaraná extracts to humans

showed a synergistic role of caffeine and epigallocatechin 3-

gallate in acutely activating thermogenesis and energy

expenditure (165).

A recent study conducted on mice demonstrated that

decaffeinated green tea has also anti-obesity properties, so

the presence of caffeine would not be mandatory to achieve

thermogenic activation (166). However, in this study, the

administration of decaffeinated green tea was combined

also with physical exercise; therefore, the observed thermo-

genic activation could be due to the effect of myokines se-

creted by muscle rather than to the only decaffeinated

green tea.

Depending on the level of oxidation and fermentation,

teas contain caffeine and different amounts of polyphenolic

molecules, as catechins and theaflavins. While green tea is

rich in catechins, black tea has a higher content of

theaflavins that were responsible to the AMPK activation

in obese mice fed with black tea (167). Phytochemicals of

teas exert their anti-obesity effect through the activation of

AMPK, which in turn triggers the overexpression of differ-

ent anti-adipogenic genes, including those promoting the

development of a brown-like phenotype in white adipo-

cytes, especially UCP1 and the other uncoupling proteins

(168).

L-menthol is an alcoholic cooling chemical present in

mint oils (Mentha spp.), which is an agonist of the transient

receptor potential cation channel subfamily M, member 8

(TRPM8). This is a cold receptor recently found on plasma

membrane of both brown and white adipocytes (169,170).

Preliminary in vitro and in vivo studies showed that the

stimulation of adipose TRPM8 with L-menthol triggers an

overexpression of UCP1 and an increase in mitochondrial

biogenesis and electrochemical potential, which results in

an increase of thermogenesis and WAT browning (171).

The cellular mechanism is NE-independent, as the activa-

tion of TRPM8 induces the phosphorylation of PKA via a

Ca2+ influx (169). L-menthol can bind also to another

plasma membrane receptor, the transient receptor potential

cation channel subfamily A, member 1, but its role in the

thermogenic response is still controversial (171). Hence,

L-menthol is a potential candidate for the anti-obesity

therapy, but further research is needed.

Ginsenoside Rb1 is a sterol-like-structured molecule

extracted from plants belonging to the genus Panax that

includes several ginseng species. In 3T3-L1 adipocytes,

ginsenoside Rb1 induces WAT browning through an in-

creased PPARγ-mediated UCP1 expression (172).

All nutritional browning factors are summarized in

Table 3 and Fig. 2b.

Conclusions

The activation of BAT and the recruitment of brite adipo-

cytes in adult humans have gained outstanding interest in

obesity research, as nowadays the role of BAT in

counteracting the accumulation of excess energy and pro-

moting energy expenditure is well established (173) Indeed,

in the last years, the involvement of brown and brite adipo-

cytes in stimulating energy expenditure through the activa-

tion of both cold-induced and diet-induced thermogenesis

has been confirmed (173–176). Using positron emission to-

mography, it was demonstrated that in adult humans, the

acute cold exposure effectively triggers BAT oxidative me-

tabolism with an increase in total energy expenditure

(177). Nevertheless, as highlighted in the present review,

also many endogenous and exogenous factors could effec-

tively trigger WAT browning, through the activation of dif-

ferent cellular pathways, producing a significant outcome in

BAT activation and brite cell recruitment. However, as re-

ported by Chechi et al. (175), it should be considered that

BAT activation could activate important metabolic adapta-

tions that counteract the weight loss. Moreover, in mice

subjected to chronic cold exposure and adrenergic stimula-

tion, inguinal WAT depot shows a lower increase of oxida-

tive metabolism and energy expenditure than iBAT (178).

These features open questions about the significance of the

increase in energy expenditure and thermogenesis generated

by brite adipocytes or by BAT activation.
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