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Abstract: In inflammatory bowel diseases (IBD), the therapeutic benefit and mucosal healing from
specific probiotics may relate to the modulation of dendritic cells (DCs). Herein, we assessed the
immunomodulatory effects of four probiotic strains including Lactobacillus salivarius, Bifidobacterium bifidum,
Bacillus coagulans and Bacillus subtilis natto on the expression of co-stimulatory molecules,
cytokine production and gene expression of signal-transducing receptors in DCs from IBD patients.
Human monocyte-derived DCs from IBD patients and healthy controls were exposed to four probiotic
strains. The expression of co-stimulatory molecules was assessed and supernatants were analyzed for
anti-inflammatory cytokines. The gene expression of toll-like receptors (TLRs), IL-12p40 and integrin
αvβ8 were also analyzed. CD80 and CD86 were induced by most probiotic strains in ulcerative colitis (UC)
patients whereas only B. bifidum induced CD80 and CD86 expression in Crohn’s disease (CD) patients.
IL-10 and TGF-β production was increased in a dose-independent manner while TLR expression was
decreased by all probiotic bacteria except B. bifidum in DCs from UC patients. TLR-4 and TLR-9 expression
was significantly downregulated while integrin ß8 was significantly increased in the DCs from CD patients.
IL-12p40 expression was only significantly downregulated in DCs from CD patients. Our findings point
to the general beneficial effects of probiotics in DC immunomodulation and indicate that probiotic bacteria
favorably modulate the expression of co-stimulatory molecules, proinflammatory cytokines and TLRs in
DCs from IBD patients.
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1. Introduction

Inflammatory bowel diseases (IBD), including Crohn’s disease (CD) and ulcerative colitis (UC),
are chronic, relapsing disorders thought to be multifactorial in origin and involve host immunity,
genetic, microbial and environmental factors [1,2]. Ultimately, the interaction of all these factors
results in an expansion of the autoreactive T cells and altered cytokine production, which then lead to
severe inflammation and injury to gut epithelial cells [3,4]. Dendritic cells (DCs) are the most potent
antigen-presenting cells (APCs), which can effectively induce antigen-specific immune responses by
modulating both tolerance and immunity against microbial antigens [5]. Currently, several clinical
trials are ongoing to explore the effectiveness of tolerogenic DCs (tol-DCs) as an alternative therapeutic
option in immune-mediated diseases such CD [6]. These clinical-grade tol-DCs have a semimature
phenotype that exhibits low levels of T-cell costimulatory properties, and have a reduced capacity to
produce proinflammatory cytokines compared to anti-inflammatory molecules, particularly through
the expansion and/or induction of regulatory T cells (Treg) [7].

Probiotics are live nonpathogenic microorganisms that, when administered in adequate amounts,
confer a health benefit on the host [8]. Probiotic bacteria most frequently belong to the Lactobacillus
and Bifidobacterium species which are well known to exert beneficial effects in human and animal
health [9,10]. Moreover, the regular intake of other probiotic species, such as Bacillus subtilis and
Bacillus coagulans, contributes to immune modulation by restoring the microbial balance [11,12].
These probiotics are currently being used to prevent or treat various clinical conditions, most commonly
gastrointestinal disorders [13]. Although the overall remission rates in patients and/or significant
clinical benefits in IBD patients have not been systematically proven, probiotics do provide a benefit in
terms of the reduction in disease activity in mild to moderate UC [14].

The exact mechanisms by which probiotics modulate the immune system are not completely
understood. Current evidence suggests that probiotics might modulate the immune system by
downregulating the pathogen recognition receptors (PRR) expressed on macrophages, such as
the families of toll-like receptors (TLRs) and the C-type lectins which mediate the recognition
of pathogen-associated molecular patterns (PAMPs) on bacterial cells [15–17]. Previous studies have
demonstrated that probiotics can modulate the DC-mediated cytokine secretion in a strain-specific
manner [15,18,19]. However, a number of aspects related to the impact of the strain-specific induction
of cytokine secretion on DC differentiation and maturation remain unclear. Therefore, we intended
to compare the direct immunomodulatory effects of the listed probiotic strains on DC function and
induction of a semimature phenotype or tol-DCs. We assessed the immunomodulatory efficacy of
four probiotic strains, including Lactobacillus salivarius, Bifidobacterium bifidum, Bacillus coagulans and
Bacillus subtilis natto, in increasing the multiplicity of infection (MOI) by 10 (107 CFU/mL) and 100
(108 CFU/mL) for each strain on the induction of pro- and anti-inflammatory cytokines (IL-12, IL-10 and
TGF-β); co-stimulatory molecules (CD80 and CD86); signal-transducing receptors (TLR-2, TLR-4,
TLR-9 and integrin αvβ8) in human monocyte-derived DCs from six IBD patients (three UC, three CD)
and three healthy controls.

2. Results

2.1. DC Characterization, Induction of CD80 and CD86 and Cytokine Production

Morphological and phenotypic differences of monocytes and immature DCs (iDCs) derived from
one of the healthy controls in six days of culture are shown in Figure 1 (microscopic and flow cytometric
analysis). At day 6 of culture, the iDCs were analyzed for CD11b, CD11c, CD80 and CD86 markers.

The upregulation of DCs surface markers (CD80 and CD86) upon stimulation with probiotic
bacteria are presented in Figure 2A–C and Figure 3. In the DCs from healthy controls, L. salivarius
and B. coagulans induced the expression of co-stimulatory surface molecules at MOI 10 (52.1% and
48.8%, respectively), while B. bifidum and B. subtilis natto induced these markers at both MOI 10
(42.5% and 54.3%, respectively) and 100 (54.7% and 56.5%, respectively). In the DCs from UC patients,
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L. salivarius, B. bifidum and B. subtilis natto induced these markers at both MOI 10 (50.3%, 50.9% and
48.4%, respectively) and 100 (58.7%, 47.8% and 54.8%, respectively). In the DCs from CD patients,
only B. bifidum at both MOI 10 (76%) and 100 (77.6%) could induce them.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 3 of 16 

 

 
Figure 1. Microscopic and flow cytometric analysis of dendritic cells on the day 6 of culture (A,B) 
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Figure 2. Effects of probiotics on dendritic cells’ (DCs) surface marker expression in maturation 
pathway after treatment for 24 h. (A) (HC); (B) (UC); (C) (CD). HC: healthy controls, UC: ulcerative 
colitis, CD: Crohn’s disease. 

 
Figure 3. Bar graph chart representing the expression of CD80/CD86 in enriched DC population with 
the respective probiotic strains. HC: healthy controls, UC: ulcerative colitis, CD: Crohn’s disease. * p 
< 0.05, ** p < 0.01, and *** p < 0.001. 
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Figure 2. Effects of probiotics on dendritic cells’ (DCs) surface marker expression in maturation pathway
after treatment for 24 h. (A) (HC); (B) (UC); (C) (CD). HC: healthy controls, UC: ulcerative colitis,
CD: Crohn’s disease.
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Figure 3. Bar graph chart representing the expression of CD80/CD86 in enriched DC population with
the respective probiotic strains. HC: healthy controls, UC: ulcerative colitis, CD: Crohn’s disease.
* p < 0.05, ** p < 0.01, and *** p < 0.001.

Figure 4 (left panel) presents the IL-10 secretion induced by the various probiotic bacteria used in
this study. As shown, all four bacteria significantly induced the IL-10 production in DCs from healthy
controls, and UC patients at both MOIs (p < 0.05), as compared to the untreated and lipopolysaccharide
(LPS)-treated DCs. In the DCs from CD patients, B. bifidum significantly induced the IL-10 production
in DCs at both MOIs and B. coagulans significantly induced IL-10 production at MOI 10 (p < 0.05).
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Figure 4 (right panel) also presents the TGF-β production stimulated by the four probiotic bacteria
used in this study. In general, higher levels of TGF-β were induced in UC compared to CD patients.
All four probiotic bacteria induced higher levels of TGF-β than those from untreated DCs or LPS
stimulated DCs in UC. In UC patients, L. salivarius significantly induced TGF-β production in a
dose-independent manner (p < 0.05). B. coagulans induced higher levels of TGF-β in DCs from UC
patients at MOI 10 (p < 0.05). B. subtilis at MOI 10 increased levels of TGF-β only in DCs from UC
patients (p < 0.05). For CD patients, significantly higher levels of TGF-β were present in DCs treated
with B. coagulans (p < 0.05) at MOI 100. In both UC and CD patients, the highest levels of induction
were present in DCs treated with B. bifidum at both MOIs compared with untreated or LPS-treated
DCs (p < 0.05).

2.2. Expression of TLRs, Integrin ß8 (ITG ß8) and IL-12p40

Figure 5 shows that the expression level of all analyzed TLRs was higher in DCs isolated from
both UC and CD patients compared to healthy controls (p < 0.05). The TLR-2 expression in UC and CD
patients was slightly higher compared to healthy controls. In UC patients, the TLR-4 expression was
significantly higher (p < 0.05) in comparison with healthy controls whereas in CD patients, both the
TLR-4 and TLR-9 expression were significantly higher compared to healthy controls (p < 0.05).
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Figure 5 shows the relative expression of TLR-2, TLR-4 and TLR-9 after stimulation of DCs with
probiotic bacteria. Overall, TLR-2 expression was decreased by all probiotic bacteria, except for UC
patients after stimulation by B. bifidum at both MOI 10 and 100 (p < 0.05). TLR-4 expression was
significantly downregulated (p < 0.05) in DCs isolated from CD patients following stimulation by
most probiotic bacteria. TLR-4 expression was also downregulated by most probiotic bacteria in DCs
isolated from UC patients—however the difference was not statistically significant (p >0.05). Finally,
the expression of TLR-9 was significantly downregulated in the DCs isolated from CD and UC patients
as compared to LPS-stimulated DCs. This down regulation was significant in CD patients (p < 0.05) by
L. salivarius at MOI 10, B. bifidum at MOI 10 and 100, and B. coagulans at MOI 10, and B. subtilis natto at
MOI 100.

Figure 6 shows that the expression of integrin ß8 (ITG ß8) was significantly increased by B. bifidum
(MOI 10 and 100), B. coagulans (MOI 10) and B. subtilis natto (MOI 10) in DCs isolated from CD patients
(p < 0.05). L. salivarius was unable to induce the significant expression of integrin ß8 in all DCs isolated
from IBD patients and healthy controls.
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Figure 7 shows the relative expression of IL-12p40 after stimulation with probiotic bacteria.
The expression of IL-12p40 was significantly downregulated by most probiotic bacteria in CD more
than in UC patients compared to LPS-stimulated DCs. In the DCs isolated from CD patients,
IL-12p40 expression was significantly decreased in a dose-independent manner (p < 0.05).Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 9 of 16 
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3. Discussion

Interaction between the gut microbiota and the host immune system likely plays a significant role
in the pathogenesis of intestinal inflammation in IBD. A thorough understanding of these interactions
is of foremost significance not only to better understand disease etiology and pathogenesis, but also for
the development of targeted therapies.

Our data show increased expression of co-stimulatory molecules (CD80 and CD86) from DCs
after probiotic treatment. It is well known that these markers can either inhibit or stimulate T cell
responses through their interactions with cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) or
CD 28, respectively [20]. Although the exact mechanism remains largely unknown, it is possible that
probiotic bacteria promotes CD80/86 interactions with CTLA-4, leading to the downregulation of the
T cell response. This is supported by the study by Wang et al. who found that the administration of
L. reuteri inhibits the development and progression of immune checkpoint blocker (ICB)-induced colitis
(which enhances antitumor immunity by blocking CTLA-4), and that the depletion of Lactobacillus by
antibiotic therapy worsens ICB colitis [21]. Our findings are also consistent with the observations of
Luongo et al. who found that pre-incubation of murine DCs with lactobacilli increases the expression
of the maturation markers and induces an anti-inflammatory effect [22]. However, these authors also
found that bifidobacteria decreases the costimulatory surface molecule expression, which is in contrast
to our results. It has been suggested that some probiotic species such as L. reuteri and L. casei influence
monocyte-derived DCs through the upregulation of surface major histocompatibility complex (MHC)
class II and CD86 to drive the development of Tregs leading to an elevated secretion of IL-10 [23,24].
Therefore, the induction of Tregs by probiotics, particularly through the expression of costimulatory
molecules on DCs, could in theory be applied as a therapeutic approach to control inflammation in a
number of immune-mediated conditions.

In our study, IL-10 and TGF-β production from stimulated DCs was significantly induced by
most of the probiotic species, especially in UC patients and healthy controls (HCs). In CD patients,
B. bifidum and B. coagulans showed a significant ability to induce IL-10 and TGF-β. Previous studies
have shown that probiotic bacteria (Bifidobacterium longum and Lactobacillus rhamnosus) induce the
release of key anti-inflammatory cytokines, including IL-10 and TGF-β, in DC culture supernatants
and our results are in accordance with those studies [19,25,26]. TGF-β is a well-known negative
regulator of the adaptive immune system and has been implicated in the development and function
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of Tregs [27]. There seems to be a noticeable variability regarding the capability of probiotic strains
to stimulate the production of pro- and anti-inflammatory cytokines from DCs. Recently, data from
two different studies showed that an oral/rectal administration of Lactobacillus casei DG and rectal
infusion of Lactobacillus reuteris ATCC 55730 increases the expression of IL-10 in patients with mild to
moderate UC [28,29]. Di Giacinto et al. also reported that administration of VSL#3 probiotic bacteria
during remission can induce an immunoregulatory response through TGF-β-bearing regulatory cells
and can ameliorate the severity of recurrent murine colitis [30]. Braat et al. have shown that an oral
supplementation of Lactobacillus rhamnosus can induce in vivo peripheral T cell hyporesponsiveness,
suggesting a modulation through enhanced DC-T cell interaction in cohorts of both healthy volunteers
and patients with CD [31]. Thus, the induction of anti-inflammatory cytokines from DCs by probiotic
bacteria likely plays a crucial role in their immunomodulatory function.

Our results showed decreased TLR-2, TLR-4 and TLR-9 expression from DCs after stimulation
with probiotic bacteria. Several studies have proposed that a high expression of TLR-2 and TLR-4
may be associated with IBD pathogenesis, and ultimately can modulate the host’s susceptibility to
colitis [32–34]. Sánchez-Muñoz et al. demonstrated that TLR-2, TLR-4 and TLR-9 expression was
increased in patients with active UC, and also showed that their levels positively correlated with
the inflammatory cytokines and the degree of intestinal inflammation [35]. Thus it appears that the
regulation of TLR-2, TLR-4 and TLR-9 expression by probiotic bacteria likely plays a significant role in
immunomodulation. TLR-2 and TLR-4 are expressed in the outer cellular membrane and primarily
respond to bacterial surface-associated PAMPs, whereas TLR-9 is expressed intracellularly on the
surface of endosomes and responds primarily to nucleic acid-based PAMPs from viral and bacterial
agents [36]. Hoarau et al. reported that a fermentation product from Bifidobacterium breve C50 can
induce maturation, high IL-10 production and a prolonged survival of DCs via the TLR-2 pathway [37].
Giahi et al. noted that heat-inactivated Lactobacillus rhamnosus GG (LGG) and Lactobacillus delbrueckii
subsp. bulgaricus can downregulate TLR-4 expression [38]. Kim et al. reported that Lactobacillus
plantarum genomic DNA (gDNA) mediates the inhibition of LPS-induced TNF-α production by
suppressing TLR-2, TLR-4 and TLR-9 expression, as well as by inducing IL-1 receptor-associated kinase
M (IRAK-M), which is a negative regulator of TLRs [39]. The effects and related mechanisms that
involve intestinal DCs through TLR activation are not fully understood. However, it has been proposed
that specific probiotic bacteria can induce Tol-DCs in a TLR-mediated pathway, and TLR activation by
such microorganisms can stimulate DCs to induce the differentiation of naive T helper (Th) cells to
Treg, which have an inhibitory effect on inflammatory responses produced by Th cell subsets [19,32].

Our study shows that ITG ß8 expression was significantly increased by most probiotic bacteria
(except L. salivarius), especially in CD patients. It is well known that the β8 subunit plays a critical role
alongside the αv subunit in the activation of TGF-β by DCs [40]. The expression of αv-β8 integrin
is tightly regulated in DCs, and it is expressed predominantly in DCs from mesenteric lymph nodes
(MLN) and intestinal lamina propria [41]. Païdassi et al. found that αv-β8 integrin expression is
required for the activation of latent TGF-β and Treg generation [42]. It has also been shown that DCs
lacking αv-β8 fail to induce Tregs in vitro, and mice in which myeloid cells do not express αv or their
DCs do not express αv-β8 tend to develop colitis [41,43]. Hence, the expression of ITG ß8 from the
specifically positioned intestinal DCs likely plays an important role in intestinal immune tolerance.

Our data also show that IL-12p40 (an important subunit of the biologically active form IL-12p70
which plays a key role in the regulation of T-cell response) was significantly downregulated by
most probiotic bacteria both in CD and UC patients (in CD more than in UC). Previous studies in
CD patients and animal models of colitis also suggest that intestinal inflammation is driven by the
production of IL-12p40 through the TLR-mediated recognition of microbial components by DCs [44,45].
In agreement with our findings, Ng et al. demonstrated that DCs isolated from patients treated with
VSL#3 probiotic mixture have a decreased TLR-2 and IL-12p40 expression (in addition to an increased
IL-10 production) [17]. This mechanism is at the basis of the therapeutic effect of anti-IL-12 antibodies
(ustekinumab) in CD [46].
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4. Materials and Methods

4.1. Sample Collection and Probiotic Strains

In this study, 6 IBD patients (3 UC and 3 CD) with a mean age ± SD of 44 ± 2.3 and 42 ± 2.6 years
respectively, and 3 healthy subjects with a mean age of 36± 0.57 years were enrolled. The demographics
and clinical characteristics of the subjects enrolled in this study are presented in Table 1. In each
case, IBD was diagnosed based on a combination of signs and symptoms, imaging, colonoscopy
and pathology reports [47,48]. Clinical and demographic features were recorded for all subjects.
Human peripheral blood mononuclear cells (PBMCs) were obtained from the heparinised blood of
patients and healthy controls. Exclusion criteria included the recent use of biological medications
(anti-TNF agents), any immune-mediated diseases (such as allergic diseases, rheumatoid arthritis,
multiple sclerosis), malignancy, symptoms of acute or recent infection, and use of antibiotics within the
last 4 weeks. None of the subjects were on any probiotic, prebiotic, synbiotic, hormonal, vitamin D
or herbal supplements. Informed written consent was obtained from all the study participants.
The study protocol was approved in November 2018 by the Ethical Review Committee of the
Research Institute for Gastroenterology and Liver Diseases at Shahid Beheshti University of Medical
Sciences (Project No. IR.SBMU.RIGLD.REC.1396.168).

Table 1. Demographics and clinical characteristics of study subjects.

Clinical Features UC CD HC

Gender
Females 2 2
Males 3 1 1

Age (years) 44 ± 2.3 42 ± 2.6 36 ± 0.57

BMI (kg/m2) 25 ± 2.4 19 ± 2.2 25 ± 0.86

Disease duration (years) 6.4 ± 4.3 7.8 ± 5.2 -
Family history No No -

Intestinal surgery history No No -
Smoking history No No -

Phase of diseases Flare up
(Severe)

Flare up
(Severe)

Medication use
Aminosalicylate Yes Yes -

Immunomodulators Yes Yes -
Anti-TNF agents No No -

UC: ulcerative colitis; CD: Crohn’s disease; HC: healthy controls; BMI: body mass index.

Frozen stock strains of probiotic bacteria including L. salivarius ATCC 11741 (IBRC-M 10865)
and B. bifidum PTCC 1644 were supplied from the Iranian Biological Resource Center (IBRC, Tehran,
Iran), and the Iranian Research Organization for Science and Technology (IROST, Tehran, Iran),
respectively. B. coagulans and B. subtilis natto were also supplied from Natures Only (Villa Park, Inc.,
Villa Park, CA, USA) and World Intellectual Resource Co. (Taiwan), respectively. After defrosting,
L. salivarius and B. bifidum were cultured on Man–Rogosa–Sharpe (MRS) agar (Merck, Darmstadt,
Germany) under anaerobic conditions (10% CO2, 5% H2, and 85% N2) generated by an Anoxomat®

Gas Exchange System (Mart Microbiology BV, Drachten, Holland) and incubated at 37 ◦C for 48–72 h.
For B. bifidum, 0.05% l-cysteine hydrochloride (Sigma, Darmstadt, Germany) was added to the MRS
medium. Bacillus strains were grown on brain heart infusion (BHI) agar (Merck, Darmstadt, Germany)
at 37 ◦C under aerobic conditions for 24 h. All bacterial species were harvested in the exponential
phase by centrifugation (5000× g, 5 min) and transferred to centrifuge tubes. After washing twice at
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400× g for 10 min, the bacteria were resuspended in 1 mL phosphate buffered saline (PBS) (Gibco,
Gaithersburg, MD, USA) prior to use in coinfection assay.

4.2. Generation and Stimulation of DCs

Each blood sample was diluted into an equal volume of PBS. PBMCs were isolated by density
gradient centrifugation using Histopaque solution (Sigma-Aldrich, Darmstadt, Germany), and then
DCs were derived as previously described by Bie Y et al. [49]. Briefly, the PBMCs were seeded into
a T175 culture flask containing RPMI-1640 (Roswel Park Memorial Institute-1640) medium and 10%
fetal bovine serum (FBS). After 2 h incubation at 37 ◦C in a humidified atmosphere containing 5%
CO2, the nonadherent cells were gently removed. The adherence-isolated monocytes were further
cultured for 6 days in RPMI-1640 medium containing 10% FBS, penicillin (100 U/mL), streptomycin
(100µg/mL), l-glutamine (2 mM) and supplemented with recombinant human granulocyte–macrophage
colony-stimulating factor (GM-CSF) (1000 U/mL) and IL-4 (500 U/mL) (Peprotech, London, UK) as
differentiation factors. We used the Trypan Blue viability test after six days of culture. We isolated
DCs from the flask and mixed them with the dye and then visually examined the cells for dye uptake.
Following 6 days of culture, the immature DCs were harvested and used for characterization assays
and coinfection experiments.

Immature DCs were resuspended at a density of 5 × 105 cells/mL in fresh RPMI-1640 medium and
seeded in 24-well tissue culture plates at a final volume of 500 µL/well. Prior to coinfection, the media
were replaced with antibiotic-free medium. The DCs were infected with each probiotic bacteria at
MOI 1:10 and 1:100 (DCs: bacteria), and incubated for 24 h at 37 ◦C in a humidified 5% CO2 incubator.
Lipopolysaccharide (LPS) (from Escherichia coli serotype O111:B4, Sigma-Aldrich, Darmstadt, Germany)
was used as positive control at a final concentration of 2 µg/mL.

4.3. Cytokine Measurement, Quantitative RT-PCR and Statistical Analysis

In order to characterize and compare the phenotype of DC populations, flow cytometry was
performed on immature and coinfected DCs. Isotype-matched controls were used for all treatments.
For CD86 we used mouse IgG2b and for CD80 we used mouse IgG1 from Biolegend as the Isotype
control (Figure 8). The following antibodies were used for staining: phycoerythrin (PE)- or fluorescein
isothiocyanate (FITC)-conjugated antibodies (BioLegend, San Diego, CA, USA) against CD11b, CD11c,
CD80 and CD86. Nonspecific binding was evaluated by matched isotype controls. The DCs were
analyzed using a BD FACS (Becton-Dickinson fluorescence-activated cell sorting) array flow cytometer
based on counting 10,000 cells by using BD FACSDiva, Version 6. The shown graphics were performed
with FlowJo Software, Version 7 (Ashland, OR, USA).
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After exposure of immature DCs to various stimuli for 24 h, culture supernatants were harvested
for the removal of cells and debris and stored at −70 ◦C until use. The production of IL-10 (Peprotech,
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London, UK) and TGF-β (Biolegend, San Diego, CA, USA) was quantified using ELISA kits according
to the manufacturer’s guidelines. Total RNA was extracted from DCs using RNeasy Mini Kit (Qiagen,
Hilden, Germany) according to the manufacturer’s protocol. The purified RNAs were quantified by
using a NanoDrop® ND-1000 spectrophotometer (Thermo Scientific, Waltham, MA, USA), and the
RNA integrity was verified by electrophoresis on 1% (weight/volume) agarose gel.

The mRNA expression level of TLR-2, TLR-4, TLR-9, integrin αvβ8 and IL-12 were examined
by quantitative RT-PCR using SYBR Green chemistry. Briefly, the extracted RNAs were transcribed
into cDNA using a RevertAid RT Kit (Thermo Fisher Scientific, Inc., Waltham, MA, USA) according
to the manufacturer’s protocols. Polymerase chain reaction (PCR) amplifications were carried out
in a Rotor-Gene® Q (Qiagen, Germany) real-time PCR system by RealQ Plus 2x Master Mix Green
(Ampliqon, Odense, Denmark) using specific primers presented in Supplementary Table S1. The 10-µL
PCR reactions included 0.5 µL cDNA, 5 µL SYBR® Green Master Mix, 10 nM of each primer plus
nuclease-free H2O. The PCR program was as follows: 95 ◦C for 15 min, followed by 40 cycles at 95 ◦C
for 20 s and 60 ◦C for 60 s. A melting curve was run at the end to ensure that there was only one peak
and only one product for each primer pair. All reactions were run in duplicate. The RNA input was
normalized against the beta-2 microglobulin housekeeping gene. The relative gene expression levels
were calculated using the delta-delta-Ct (∆∆Ct) method and presented as fold change relative to the
control samples.

4.4. Statistical Analysis

The statistical analysis was performed using GraphPad Prism software version 5.04
(GraphPad software, San Diego, CA, USA). A Student’s t test was applied to analyze the differences
between groups. The error bars represent standard deviations (SD). p < 0.05 was considered
statistically significant.

5. Conclusions

We have presented the immunomodulatory effects of specific probiotic strains on DC function,
providing evidence that probiotic bacteria can influence the expression of co-stimulatory molecules
and anti-inflammatory cytokines in this important subset of immune regulatory cells. One of the major
limitations of our study is the small number of IBD patients involved. Furthermore, survival and
maintenance of the tolerogenic status of DCs would best be evaluated in the natural intestinal
microenvironment. Additionally, based on our results, the clinical effectiveness of different probiotics
is likely to differ among different patients and further studies are needed to evaluate the individual
patient response. Taken together, our findings underscore the potential clinical applications of probiotic
bacteria in the development of new DC-based therapeutic approaches in IBD.

Supplementary Materials: The following are available online at http://www.mdpi.com/1422-0067/21/17/6266/s1,
Table S1. Oligonucleotide primers used in the study.
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