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Abstract

The electron-phonon coupling strength in the spin-split valence band maximum of single-layer

MoS2 is studied using angle-resolved photoemission spectroscopy and density functional theory-

based calculations. Values of the electron-phonon coupling parameter λ are obtained by measuring

the linewidth of the spin-split bands as a function of temperature and fitting the data points using

a Debye model. The experimental values of λ for the upper and lower spin-split bands at K are

found to be 0.05 and 0.32, respectively, in excellent agreement with the calculated values for a

free-standing single-layer MoS2. The results are discussed in the context of spin and phase-space

restricted scattering channels, as reported earlier for single-layer WS2 on Au(111). The fact that

the absolute valence band maximum in single-layer MoS2 at K is almost degenerate with the local

valence band maximum at Γ can potentially be used to tune the strength of the electron-phonon

interaction in this material.

∗Electronic address: sanjoymahatha@gmail.com
†Electronic address: philip@phys.au.dk
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I. INTRODUCTION

Two-dimensional semiconducting materials, in particular single-layer (SL) transition

metal dichalcogenoides (TMDCs) have attracted tremendous interest due to their resem-

blance to graphene, but possessing a sizeable band gap and unique optical properties [1–3].

For example, SL MoS2 [2–6], which is one of the most studied TMDCs, has a direct band

gap, in contrast to its bulk counterpart, and correspondingly different optical properties

[2, 3]. Moreover, the lack of inversion symmetry in its trigonal prismatic structure lifts the

spin degeneracy at the K and K′ valleys and gives the opportunity to exploit coupled spin

and valley degrees of freedom [7–9].

High quality SL TMDCs can be grown on different substrates instead of isolation by

micro-mechanical exfoliation. It has recently become possible to grow large area [10, 11],

single orientation epitaxial SL MoS2 [12] and WS2 [13] on Au(111). The very high quality

of these samples offers the opportunity to study the spin texture [14] and electron-phonon

coupling strength [15] near the valence band (VB) maximum at the K and K′ points experi-

mentally and thus allowing access to parameters relevant for transport in hole-doped devices

[16] or low-dimensional superconductivity [17]. Of particular interest is the spin-splitting

near the VB top, as this entails the possibility to have a different electron-phonon coupling

strengths for two states that mainly differ by their spin polarization.

Recently, a dramatically different electron-phonon coupling strength was demonstrated

for the strongly spin-split VB of WS2 on Au(111) [15] and explained in terms of phase space

restriction and spin-selective scattering. In particular, a very weak electron-phonon coupling

was found for the “upper” spin-split VB (the one forming the absolute VB maximum). This

can be understood by the large energy separation of the VB maximum from other states,

implying that the holes in the VB maximum at K cannot decay by electron-phonon coupling

because either the available states for scattering are well outside a phonon energy window

or the transitions (to the equivalent band at K′) are spin forbidden.

In this paper, we present experimental and theoretical results on the electron-phonon

coupling strengths on the spin-split VB of SL MoS2 at K and along the K-Γ direction.

SL MoS2 is structurally and electronically quite similar to WS2 but with two significant

differences: The first is the much smaller spin-orbit splitting of the VB near K and the

second is the fact that that the local VB maximum at Γ is almost degenerate with the
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absolute VB maximum at K. These differences can affect the available scattering channels

for electron-phonon coupling and could thus lead to appreciable differences between MoS2

and WS2. We find experimentally that the electron-phonon coupling for the VB maximum

at K is still very weak and that the experimental values for the coupling strength in the

spin-split branches are in excellent agreement with the ones calculated for free standing SL

MoS2. However, the weak coupling is predicted to hold only for a small region of k-space

around the K point. We show that this is related to the position of the local VB maximum

at Γ and we discuss how the position of this band can be changed in order to tune the

electron-phonon coupling in a wider window around K.

II. METHODS

A. Sample Preparation and Characterization

Single-layer MoS2 was synthesized at the SuperESCA beamline at Elettra [18] using a

well-established procedure of Mo evaporation onto the clean Au(111) surface in a background

pressure of H2S [10, 19, 20]. Very high crystalline quality and a single orientation of the

MoS2 layer with respect to the substrate was achieved by a careful optimisation of the

growth parameters [12]. Angle-resolved photoemission (ARPES) spectra were acquired at

the SGM-3 beamline of ASTRID2 [21] using a photon energy of 30 eV. The total energy

and angular resolutions were better than 30 meV and 0.2◦, respectively.

B. Theoretical Methods

The electronic structure of single-layer free standing MoS2 was calculated using density

functional theory as implemented in a modified QuantumEspresso suite [22]. The vibra-

tional properties were obtained within density functional perturbation theory using the same

package. Relativistic effects, i. e. spin-orbit coupling, were treated self-consistently and are

accounted for in all calculations. The optimized norm-conserving pseudo-potentials were

generated with the ONCVPSP [23] code and a kinetic energy cutoff for the wavefunction

expansion of 68 Ry was used for all calculations1. Exchange and correlation effects were

1 Sulphure atomic configuration: [Ne] 3s2 3p4 3d−2, Molybdenum atomic configuration: [Kr] 4d5 5s1 5p0
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accurately accounted for by the PBE flavour of the general gradient approximation [24],

while long-range dispersion corrections were semi-empirically considered [25] to specifically

account for a proper description of the inter-layer atomic relaxations.

For the self-consistent computations Monkhorst-Pack meshes for the electronic Brillouin

zone (BZ) integration (k) and for the phononic BZ integration (q) have been set to 18 ×

18 × 1 k as well as 18 × 18 × 1 k and 9 × 9 × 1 q, for the electron and (electron-)phonon

calculations, respectively. The self-consistent calculations were reiterated until the root

mean square change of the total energy became smaller than 10−10 Hartree.2.

The optimized lattice constant for freestanding SL MoS2 was found to be aMoS2
= 3.19 Å

with a vertical spacing of dS-S = 1.57 Å between the two sulphur layers in the material. This

corresponds to an enlargement of the in-plane lattice constant of almost 1% compared to the

bulk value, with no noticeable change of dS-S. The atomic relaxation can have a significant

effect on the energy difference of the VB maximum at Γ with respect to the upper VB

maximum at K, as sketched in Figure 3. Values of a few up to almost 100 meV have been

stated in previous calculations and a possible impact on the electron-phonon coupling will

be discussed later [26–28].

The electron-phonon induced broadening of the electronic states was obtained within a

modified version of the EPW code [29]. An improved tetrahedron Fermi-surface-adaptive

integration scheme based on the Wannier-interpolated electron-phonon matrix elements was

applied [30–32]. Wannier interpolated electronic bands had an error of less than 5 meV

compared to the ab initio derived eigenvalues. The a priori state-dependent, temperature-

dependent phonon-induced electronic linewidth Γnk is closely related to the imaginary part

of the lowest order electron-phonon self-energy Σ′′nk for the Bloch state of energy εnk at band

n and momentum k and given by

Γnk(T ) = 2Σ′′nk(T ) = 2π
∑
mν

∫
BZ

dq

ΩBZ

|gmn,ν(k,q)|2

×
{

[nqν(T ) + fmk+q(T )]δ(εnk − εmk+q + ωqν)

+[nqν(T ) + 1− fmk+q(T )]δ(εnk − εmk+q − ωqν)
}
, (1)

where gmn,ν(k,q) is the electron-phonon scattering matrix element; n and f are Bose and

2 Note that for a proper description of a non-imaginary ZA phonon mode a rather small threshold for

self-consistency of 10−15 was needed at an electronic smearing of 0.01Ry.

5



Fermi functions, respectively; ε and ω are non-interacting electron and phonon energies,

respectively. The electron-phonon coupling parameter λnk is essentially counting the possible

scattering processes for a chosen initial state (k, n) into possible final states, weighted by a

squared matrix element:

λnk =
∑
mν

∫
BZ

dq

ΩBZωqν

|gmn,ν(k,q)|2

×δ(εnk − εmk+q ± ωqν). (2)

For a chosen initial state (k, n) a sum over at least 250,000 final states m, participating

phonon modes (k + qν), and their corresponding Fourier-interpolated ωqν and Wannier-

interpolated electron-phonon matrix elements gmn,ν(k,q) was performed to assure conver-

gence.

III. RESULTS AND DISCUSSION

Figure 1(a) shows the photoemission intensity of SL MoS2 grown on Au(111) near the K

point, showing the two well-separated spin-split branches of the VB which are labelled as

upper VB and lower VB. It should be noted that both bands are very narrow, indicating a

high degree of structural order. Moreover, the two bands lie in the projected band gap of

Au(111) [33], and one can thus rule out the direct hybridization with the substrate.

In ARPES, the electron-phonon coupling strength for any state in the band structure

can be extracted by measuring the temperature-dependent linewith at the desired k-point

[34] and this procedure is applied here for the upper and lower VB maximum, similar to

the previously reported results for SL WS2 on Au(111)[15]. Figure 1(b) and (c) show a

comparison of two energy distribution curves (EDCs) through the K point, taken at 30 K

and 530 K, together with a fit to the data using two Lorentzian peaks with a polynomial

background in order to extract the temperature-dependent linewidths Γexp. The much higher

temperature in Fig. 1(c) leads to an electron-phonon scattering-induced broadening of the

two peaks but the broadening is clearly much more pronounced for the lower VB.

The temperature-dependence of Γexp for upper and lower VB is given by the black filled

circles in Figure 2(a). Note that to acquire the data for this study, a total of two ascending

and one descending temperature series was performed. The solid lines show a fit to the

data using a 3D Debye model with a Debye temperature of 262.3 K [35]. The fit includes
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FIG. 1: (a) Photoemission intensity of SL MoS2/Au(111) along the Γ-K-M direction acquired

at 30 K. (b, c) Energy distribution curves through the K point at low (30 K) and high (530 K)

temperature, respectively, with a fit using two Lorentzian peaks and a polynomial background.

a temperature-independent offset in order to account for the effects of electron-electron and

electron-defect scattering. The resulting values for the electron-phonon coupling strength

λ are 0.05(1) and 0.32(1) for the upper and lower band, respectively. Note that the choice

of the model (Debye or Einstein) and its dimensionality (2D or 3D) does not have a major
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FIG. 2: (a) Temperature-dependent Lorentzian linewidth of the upper and lower VB at K (filled

black circles). The electron-phonon contributions to the linewidth calculated using 3D Debye

model are shown by the blue lines. A constant offset has been added to allow for the contributions

from electron-electron and electron-defect scattering. (b) Calculated electron-phonon scattering

contribution to the temperature-dependent linewidths of the spin-split VB branches at K for free-

standing SL MoS2.

effect of the resulting λ values because λ is essentially equivalent to the slope of the curves

above the Debye temperature for all models [34]. Note also that the quoted uncertainties

refer only to the particular fit and do not represent the uncertainties that could arise from

the choice of model or Debye temperature.

Figure 2(b) shows the corresponding calculated temperature-dependent linewidths for the

spin-split upper VB and lower VB at K for free-standing SL MoS2. The calculation does

not include effects of electron-electron and electron-defect scattering and it is therefore not

meaningful to compare the absolute linewidth values to the experiment. However, since the

electron-phonon is the only linewidth contribution with a significant temperature depen-

dence, the temperature-induced changes in the linewidth can be compared. In particular,

the electron-phonon coupling strength λ can be extracted from the high-temperature part of

the calculated curves, via a linear fit above T=450 K. The λ values of 0.05 and 0.31 obtained
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for the upper and lower VB, respectively, fit extremely well with the experimental results.
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FIG. 3: Sketch of the VB for (a) SL MoS2 and (b) SL WS2 with a colour coding indicating the spin

directions at K and K′, and a spin degenerate local maximum at Γ. A hole in the upper VB at K

can only be filled using an electron at higher binding energy from the same band, and from states

near Γ if the phonon energy exceeds 30 meV. Contrary, a hole near the top of the lower VB can

be filled involving electrons from the VB near Γ or from the upper branch of the VB at K′. Other

possible phonon emission and absorption processes are omitted for clarity. The black dashed band

in (a) indicates the approximate position of the VB at Γ for MoS2 on Au(111).

The pronounced difference in the electron-phonon coupling strength for the two VB

branches is comparable to what has been observed on SL WS2 [15] and can be qualita-

tively understood by the sketch of the band structure of SL MoS2 in Figure 3(a). Consider a

hole at the maximum of the upper VB at K. Using a phonon to provide energy and momen-

tum, the hole can only be filled by an electron from the same band at higher binding energy

by annihilating a thermally excited phonon. The hole cannot be filled using an electron from

the corresponding band at K′ because such a transition would be spin-forbidden, or from the

lower spin-split band at K because these states are well outside the phonon energy window.

It can be filled by an electron from the band at Γ if the phonon energy exceeds 30 meV.

However the latter contributions are small and obviously unavailable at low temperatures.
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This greatly restricts the phase space for electron-phonon scattering and also explains why

the calculated linewidth goes to zero for low temperatures: In the absence of thermally

excited phonons the lifetime of the hole diverges.

The situation is entirely different for a hole in the lower VB at K. This can be filled

by processes involving electrons from either the VB at Γ, or from the upper band at K′,

where the spin-polarization is retained. Scattering to the upper spin-split VB at K is also

possible (the spin-polarization decreases for states not exactly at K and K′), but it is very

inefficient as the scattering process involves an almost full spin-flip. A key-difference to the

upper VB is that the transitions can involve an electron at lower binding energy and phonon

excitation rather than annihilation. The result is a much stronger electron-phonon coupling

and a finite linewidth at zero temperature.

A complete picture of the electron-phonon coupling of SL MoS2 is given in Figure 4(a),

showing the electron-phonon scattering-induced linewidth at 300 K for the upper VB along

high-symmetry lines in the Brillouin zone. The linewidth is encoded in the colour of the

band structure plot. A quantitative plot of the data along ΓK is given in Figure 4(b). The

weak coupling strength for the upper band is clearly confined to a small k and energy region

around K. As soon as the energy drops below that of the band maximum at Γ, the linewidth

increases significantly. Interestingly, coupling at the band maximum near Γ is also markedly

weaker than at higher binding energies, suggesting that scattering within the band must

play an important role, similar to the situation in graphene [36, 37].

When comparing these results to the case of SL WS2 [15], we find some interesting

similarities and differences arising from the different band alignment in the two systems. A

sketch of the band structure for SL WS2 is given in Fig. 3(b). The most important difference

to SL MoS2 is the greatly increased spin-splitting due to the heavier W atoms. This leads

to a very large separation of the bands at K of 419 meV [20] such that electron-phonon

scattering from the upper into the lower band is forbidden for a wide k range around K. The

separation from the band at Γ is also large and the combination of these two effects results

in a very weak electron-phonon coupling for the upper VB in a wide range around K. For SL

MoS2 we also find this weak coupling, albeit in a smaller k-range. Here, the VB at Γ is much

closer to the the upper band at K and allows scattering by phonons with energies above

30 meV. This delicate detail of the band alignment allows for an additional scattering channel

for states in the upper VB and thus explains a larger electron-phonon coupling compared

10



-1

-0.8

-0.6

-0.4

-0.2

 0

E-
E V

BM
 (e

V)

 50

 100

 150

 200

 250

 300

M Γ K M
 0

 0

 50

 100

 150

 200

 250

-1 -0.8 -0.6 -0.4 -0.2  0

FW
HM

 (m
eV

)

E-EVBM (eV)

lower VB
upper VB

(a)

(b)

FIG. 4: (a) Band structure with colour-scale encoded linewidths of SL MoS2 VB at a temperature

of 300 K. (b) Quantitative representation of the same data for the spin-split upper and lower VB

along Γ-K.

to SL WS2. There are several factors that can influence this band alignment towards both

stronger and weaker overlap. The first is the choice of substrate that determines the degree

of hybridization and the direction of the hybridization-induced band shifts [6]. This includes

the option to reduce the substrate - TMDC interaction by intercalation [38]. The second

option is the application of biaxial mechanical strain that can be used to seamlessly tune the

energy difference of the valence bands at K and Γ within the given stability of the material

[39–41]. Compressive strain shifts the band at Γ downwards while tensile strain shifts it

upwards. Shifts in the order of several hundred meV can be easily realized [41]. Finally, the

band alignment can be influenced by external fields [42–45].

For the particular case of MoS2 on Au(111), the interaction with the substrate moves the
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FIG. 5: (a) Calculated and (b) experimental electron-phonon coupling constant λ as a function of

crystal momentum along the K-Γ direction. Note that the K point here has been set to zero. The

experimental values of λ have been determined by a fit to a Debye model corresponding to that in

Fig. 2(a).

(hybridized) VB at Γ to a significantly higher binding energy, such that the energy difference

between the band maxima at K and Γ is about 310 meV [6, 10] (for a sketch of this situation,

see the dashed band at Γ in Fig. 3(a)). For such a relative band shift, the electron-phonon

coupling between the upper VB at K and the band at Γ should only start to matter at

a higher binding energy and one would thus expect an increased k-range of weak electron-

phonon coupling around K. Figure 5 shows a direct test of this idea, based on comparing the

calculated electron-phonon coupling constant for free standing SL MoS2 (with the Γ band

corresponding to the solid line in Fig. 3(a)) and the experimentally determined λ values

for SL MoS2 on Au(111) (with the Γ band corresponding to the dashed line in Fig. 3(a)).

An inspection of λ for the upper band appears to confirm the expected trend: While the

agreement between experiment and calculations is excellent near K, the calculated λ quickly

increases when moving away from K, whereas the experimentally determined λ remains very

low for a wider range of k. For the lower band, on the other hand, λ increases much more

rapidly in the experimental data than expected for the free-standing layer. The origin of

this is not clear but it could be related to an increased coupling to the broad spectrum of

hybridized Au-MoS2 states near Γ [6].
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IV. CONCLUSIONS

In summary, we have investigated the electron-phonon coupling strength in the spin-split

VB near K in SL MoS2 using experimental data from SL MoS2 on Au(111) and calculations

for a free-standing layer. Calculation and experiment show excellent agreement at the K

point and the findings can be explained using simple phase space arguments. The electron-

phonon coupling is very weak for the upper VB at K, i.e. for the states that are mainly

responsible for hole transport in the material. This weak coupling results from reduced phase

space for scattering, similar to the situation for SL WS2. However, the energy difference

between the band maxima at K and Γ responsible for preventing the inter-band scattering

is small for SL MoS2 and can be tuned by several parameters. This potentially permits

to tailor the electron-phonon interaction strength in order to either favour strong coupling

(for superconductivity) or weak coupling (for transport in conventional devices). We have

demonstrated this by showing that a weak coupling for the upper VB can be found for a

wider k range around K for SL MoS2 on Au(111) than expected for the free standing layer,

consistent with the change of band alignment due to hybridization.

V. ACKNOWLEDGEMENT

This work was supported by the Danish Council for Independent Research, Natural Sci-

ences under the Sapere Aude program (Grants No. DFF-4002-00029 and DFF-6108-00409)

and by VILLUM FONDEN via the Centre of Excellence for Dirac Materials (Grant No.

11744) and the Aarhus University Research Foundation. Affiliation with the Center for

Integrated Materials Research (iMAT) at Aarhus University is gratefully acknowledged.

NFH received funding within the H.C. Ørsted Programme from the European Union’s Sev-

enth Framework Programme and Horizon 2020 Research and Innovation Programme under

Marie Sklodowska-Curie Actions grant no. 609405 (FP7) and 713683 (H2020). The Center

for Nanostructured Graphene (CNG) is sponsored by the Danish National Research Foun-

13



dation, Project No. DNRF103.

[1] M. V. Bollinger, J. V. Lauritsen, K. W. Jacobsen, J. K. Nørskov, S. Helveg, and F. Besen-

bacher, Physical Review Letters 87, 196803 (2001).

[2] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 105, 136805 (2010),

URL http://link.aps.org/doi/10.1103/PhysRevLett.105.136805.

[3] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, Nano

Letters 10, 1271 (2010), URL http://dx.doi.org/10.1021/nl903868w.

[4] T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, et al.,

Nature Communications 3, 887 (2012), URL http://dx.doi.org/10.1038/ncomms1882.

[5] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nature Nanotechnology

6, 147 (2011), URL http://dx.doi.org/10.1038/nnano.2010.279.

[6] A. Bruix, J. A. Miwa, N. Hauptmann, D. Wegner, S. Ulstrup, S. S. Grønborg, C. E. Sanders,
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