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1 Introduction

The notion of topological entropy h¢,p for continuous endomorphisms of locally compact groups is obtained
by specializing the general notion of topological entropy given by Hood [29] for uniformly continuous self-
maps of uniform spaces, which was inspired by the classical topological entropy of Bowen [4] and Dinaburg
[19] (see [18, 27] for the details). For compact groups h;p coincides with the first notion of topological entropy
by Adler, Konheim and McAndrew [1].

Recently, Virili [39] (see also [12]) gave a notion of algebraic entropy h . for continuous endomorphisms
of locally compact groups, extending and appropriately modifying the existing notions by Weiss [43] and by
Peters [35, 36] (see also [15, 17]).

Since its origin, the algebraic entropy was introduced in connection to the topological entropy by means
of Pontryagin duality. For a locally compact abelian group G we denote its Pontryagm dual group by G, and
for a continuous endomorphism ¢ : G — G its dual endomorphism is d) G—G.

In case G is a totally disconnected compact abelian group, and so G is a torsion discrete abelian group,
it is known from [43] that

heop(®) = Raig(®)- (11)

The equality in (1.1), namely, a so-called Bridge Theorem, holds also when G is a metrizable locally compact
abelian group and ¢ is an automorphism [36], and in case G is a compact abelian group [13].

In this paper we are interested in generalizing the following Bridge Theorem.

Theorem 1.1 (See [14]). Let G be a totally disconnected locally compact abelian group and ¢ : G — G a
continuous endomorphism. Then heop () = hgie(eh).

The Pontryagin dual groups of the totally disconnected locally compact abelian groups are precisely the com-
pactly covered locally compact abelian groups. Recall that a topological group G is compactly covered if each
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element of G is contained in some compact subgroup of G. Examples of such groups are the p-adic numbers
Qp, for p a prime number.

Let S be a semigroup that acts on the left on a locally compact abelian group G by continuous endomor-
phisms and denote this left action by

SAG.

In case G is abelian, v induces the right action
GAS,

defined by ~(s) = y(As) : G — G for every s € S. We call 4 the dual action of v; see §4 for more details on the
dual action and the relation of an action with its dual.

Roughly speaking, the aim of this paper is to extend Theorem 1.1 to this general setting of semigroup
actions, for which there are several extensions of the previously recalled notions of topological entropy and
algebraic entropy.

First of all, the topological entropy is widely studied for amenable group actions and even in more general
settings (e.g., see [5, 9, 33, 34, 37, 42]). On the other hand, a notion of algebraic entropy for amenable group
actions on modules is developed by Virili [41], and an algebraic entropy for sofic group actions by Liang [30]
who proves also an instance of the Bridge Theorem in that setting.

Recently, the topological entropy of amenable semigroup actions on compact spaces was introduced by
Ceccherini-Silberstein, Coornaert and Krieger [6], extending the classical notion from [1]. Analogously, in
[10] the algebraic entropy of amenable semigroup actions on discrete abelian groups was defined and in-
vestigated, generalizing classical notions and results from [15, 35, 43]. The definition of these entropies of
amenable semigroup actions is based on nets of non-empty finite subsets of the acting semigroup, namely,
on Fglner sent. The extension given by Ceccherini-Silberstein, Coornaert and Krieger [6] (see Theorem 2.1 be-
low) of the celebrated Ornstein-Weiss Lemma [34] shows that the definition does not depend on the choice of
the Fglner net.

The same approach based on nets was used by Virili [40] to introduce topological entropy and algebraic
entropy for actions on locally compact abelian groups. We consider these entropies in the case of semigroup
actions on locally compact (abelian) groups by continuous endomorphisms; in this case they depend on the
choice of the net s of non-empty finite subsets of the acting semigroup S, so we denote them respectively by
h%op and hy 1g- They extend in a natural way the topological entropy h¢,p and the algebraic entropy h,, of a
single continuous endomorphism recalled above, by taking S = Nand s = ({0, ..., n})nen. In § we give the
definitions, some useful properties and we connect these entropies with the ones for amenable semigroup

actions from [6, 10].

The main result in [40] is the Bridge Theorem hi,,(y) = j’,lg(ﬁ) under the assumption that v(s) is an
automorphism for every s € S. This covers the result announced in [36] in the case S = N.

We do not require the strong assumption on the action to be by automorphisms, but we assume the locally
compact abelian group to be totally disconnected, and we see that the Bridge Theorem holds, obtaining the
announced extension of Theorem 1.1:

Theorem 1.2. Let S be an infinite monoid, s = (F;);c; a net of non-empty finite subsets of S such that |F;| — oo
and 1 € F; foreveryi € I, G a totally disconnected locally compact abelian group, and consider the left action
S A G. Then hy,(y) = hi,3).

See Corollary 4.3 for an application to the classical setting of amenable monoid actions.

Another kind of entropy, called receptive entropy, for semigroup actions was considered in [2, 3, 16, 20,
28]. In §3 we introduce the receptive topological entropy and the receptive algebraic entropy of actions of
finitely generated monoids S on locally compact (abelian) groups. These entropies depend on the choice of
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aregular system I" of S, which is a special sequence of non-empty finite subsets of S, so we denote them re-

spectively by E{O p and Hg g Also the receptive topological entropy and the receptive algebraic entropy extend

precisely the topological entropy h¢,p and the algebraic entropy hge of a single continuous endomorphism
by taking S=Nand I' = ({0, ..., n})uen-

We find a Bridge Theorem also for the receptive entropies generalizing Theorem 1.1:

Theorem 1.3. Let S be a finitely generated monoid, I" a regular system of S, Ga totally disconnected locally
compact abelian group, and consider the left action S A G. Then hfop (y) = h‘;lg(?).

We end the paper with some examples from [11, 16].
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Notation and terminology

For a semigroup S, denote by P(S) the power set of S and by P4,(S) the family of all non-empty finite subsets
of S. In case S is a monoid, we denote by 1 the neutral element of S.

For alocally compact group G, we denote by e its neutral element. Moreover, we denote by C(G) the family
of all compact neighborhoods of e in G and by B(G) the family of all compact open subgroups of G; clearly,
B(G) C C(G).

When we consider an action ~ of a semigroup S on a group G we mean that this action is by continuous
endomorphisms, that is, y(s) : G — G is a continuous endomorphism for every s ¢ S.

For every F € Pp,(S) and U € C(G), the F-cotrajectory of U € C(G) with respect to ~ is
Cr(y, U) = [ J () (U)s

SeF

if U € B(G), then Cr(v, U) € B(G).
If G is abelian, we define also the F-trajectory of U with respect to ~ to be

Tr(y, U) = Y A(s)(U);

scF

analogously, if U € B(G), then Tr(y, U) € B(G).

2 Entropy relative to a net

In this section we consider the topological entropy and the algebraic entropy from [40]. First we recall some
basic definitions related to amenability.

Let S be a semigroup. For every s € S denote by Ls : S — S the left multiplication x — sx and by R;s :
S — S the right multiplication x — xs. The semigroup S is left cancellative (respectively, right cancellative) if
Ls (respectively, R;) is injective for every s € S.

A semigroup S is left amenable if there exists a map y : P(S) — [0, 1] such that:
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(L1) u(S)=1;
(L2) u(FUE) = u(F) + u(E) forevery F, E € P(S)with FN E = ;
(L3) u(Ls'(F)) = u(F) for every s € S and every F € P(S).

The semigroup S is right amenable if S°P is left amenable. The semigroup S is amenable if it is both left
amenable and right amenable. Every commutative semigroup is amenable (see [7, 8]).

A left Folner net of a semigroup S is a net (F;);cs in P,(S) such that for every s € S
. Fi\ F;|
AL
il IR
Analogously, a right Falner net of S is a left Fglner net of S°P. By [32, Corollary 4.3], a left cancellative semigroup
S is left amenable if and only if S admits a left Fglner net.

Let S be a semigroup. A function f : Pf,,(S) — R is:

(1) subadditive if f(F1 U F) < f(F1) + f(F») for every F1, F; € P4n(S);

(2) right subinvariant (respectively, left subinvariant) if f(Fs) < f(F) (respectively, if f(sF) < f(F)) for every
s € Sand every F € P3,(S);

(3) uniformly bounded on singletons if there exists a real number M = 0 with f({s}) < M for every s € S.

The following is the counterpart of Ornstein-Weiss Lemma for cancellative left amenable semigroups.

Theorem 2.1 ([6, Theorem 1.1]). Let S be a cancellative left amenable semigroup and let f : P4,(S) — R be a
subadditive right subinvariant map uniformly bounded on singletons. Then there exists A € R,q such that, for
every left Folner net (F;);c; of S, lim;c; f(F;)/|F;| exists and equals A.

2.1 Topological entropy

Definition 2.2 (See [40]). Let S be a semigroup, s = (F;);c; a net in P4,(S), G a locally compact group, y a
Haar measure on G and S A G a left action. For U C(G), let

5 . -lo Cr.(v, U
HFop(’% U) =11msupM
iel |F1|

The topological entropy relative to s of v is h¢,, () = sup{Hz,,(v, U) | U € C(G)}.
The map Hj,, (7, -) is antimonotone, that is, if U, V € €(G) and U C V, then Hz, (v, V) < H{,, (v, U). There-
fore, in order to compute hj,,, it suffices to consider a local base at 1 of G contained in C(G). When the locally

compact group G is totally disconnected, B(G) is a local base at 1 of G by van Dantzig Theorem [38], so we
have the following useful property.

Proposition 2.3. Let S be a semigroup, G a totally disconnected locally compact group, p a Haar measure on
GandS A Ga left action. Consider a net s = (F;);cy in Pfn(S). Then

hfop('?’) = Sup{H?op(% U)| U e B(G)}.

The following result was given in [18] for the case S = N. It shows that for U € B(G) one can avoid the use of
Haar measure to compute the topological entropy.

Proposition 2.4. Let S be an infinite monoid, s = (F;);cr a net in Pz, (S) such that |F;| — oo and 1 € F; for
everyi € I, G alocally compact group, u a Haar measure on G and S AGa left action. If U € B(G), then

log[U : Cr.(~,
Hiyp(, U) = lim sup 28102 Cri( U)]
i€l |Fil
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Proof. Foreveryi € I, since Cr,(v, U) € B(G), we have that [U : Cr,(y, U)] is finite and

H(U) = [U : CF,('Y, U)]H(CFI(’Y; U)).
Hence,
s ; -log u(Cr,(v, U
?op(% U) = limsup M
iel ‘Fl|
=lim sup log[U : CF;(’Y! U)] - 10g}1(U)
iel |F;]
= limsup log[U : Cr,(y, U)]
i€l |Fil

If in addition the group G is compact, we obtain the following result.

Corollary 2.5. Let S be an infinite monoid, s = (F;);c; a net in P4, (S) such that |F;| — oo and 1 € F; for every
i eI, Kacompactgroup and S AKa left action. If U € B(K), then

H?Op(’Y’ U) = lim sup M
i€l |Fil

Proof. This follows from Proposition 2.4 and the fact that, since K is compact, [K : U] is finite. O
This result implies that, when a cancellative left amenable monoid acts on a compact group, this topological

entropy coincides with the one introduced in [6], that in this paper we call hcoy (see Proposition 2.8).

We start recalling the definition of h¢ov. Let S be a cancellative left amenable semigroup, let C be a com-
pact topological space, and consider a left action S A C by continuous maps, that is, v(s) : C — Cis a
continuous selfmap for every s € S.

Let U = {Uj}jecy and V = {V} }4cx be two open covers of C. One says that V refines U, denoted by U < V,
if for every k € K there exists j € J such that V; C U;. Moreover,
U\/V={UjﬂVk|(]',k) G]XK}.
Iff : X — X is a continuous selfmap, then f~*(U) = {f *(Uj)};¢;. Let

N(U) = min{n € N, | U admits a subcover of size n}.

We use that
if U <V then N(U) < N(V). (2.1)

For an open cover U of C and for every F € Pg,(S), let U r = \/p ~(s)"1(U). So, fixed an open cover U
of C, consider the function
Pan(S) = Rso, F — log N(U,,, ).

For every U, this function is non-decreasing, subadditive, right subinvariant and uniformly bounded on sin-
gletons (see [6, Proposition 5.2]). So by applying Theorem 2.1, we have that the following definition is well
posed.

Definition 2.6 (See [6, Theorem 5.3]). Let S be a cancellative left amenable semigroup, C a compact space
and S A C a left action. For an open cover U of C, the topological entropy of v with respect to U is

log N(U,,F,)

H , W =11 s
cov(y, W) ilél} IF|

for any left Fglner net (F;);c; of S. The topological entropy of v is hcov(y) = sup{Hcov(7y, W) | U open cover of C}.
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When C = K is a totally disconnected compact group, for every U € B(K) we can consider the open cover
¢{(U) = {kU | k € K} of K; then
N((U)) =K : U]. 2.2

Lemma 2.7. Let S be a semigroup, K a totally disconnected compact group and S A Ka left action. If F €
Pfin(S) and U € B(K), then {(U),,r \ {0} = {(Cr(v, U)).

Proof. We have to prove that

(W), r \ {0} = \/ 1) W)\ {0} = {ﬂ () ks U) | ks € K} \ {0}

SEF seF
coincides with
¢(Crlr, U)) = {z BREEWIEL: K} :
seF
Note that, for s € Fand k € K, if K’ € ~(s) 1 (kU) then ~(s) 1 (kU) = k’~(s)"1 (D).
Consider z(\scp(s) ™ (U) € {(Cr(y, U)). Then there exists ;. 7(s) ' (ksU) € {(U),,F such that z €
Nser 7(8) (ks U). It follows that z (e v(s) ™ (U) = Nyep7(s) ™ (ksU), and so that {(C(y, U)) C ¢(U),, .
Assume now that (), p A HksU) e ¢ (U),,r is non-empty. It is straightforward to verify that
Nser 1) HksU) = zNsep () H(U) for every z € (;op(s) (ksU). This proves that {(U), r \ {0} <
{(Cg(v, 1)), and so concludes the proof. O

In the following results we consider an infinite cancellative left amenable monoid S. So every left Fglner net
s = (Fy);eg of S necessarily satisfies |F;| — oo, and then we can assume without loss of generality that 1 € F;
foreveryi e I.

Proposition 2.8. Let S be an infinite cancellative left amenable monoid, K a totally disconnected compact
group and S A Ka left action. If s = (Fy);icg is a left Folner net of S such that 1 € F; for every i € I, then for
U € B(K),

Hcov(’Ys ((U)) = H?op('}’: U),

and so hcov('Y) = h?op('V)-

Proof. By definition, by Lemma 2.7, by (2.2) and by Corollary 2.5, we have

logN({(U),,r,) .. 1ogN({(Cr(y,U)) .. loglK: Cp,(y,U)]
212 = lim o =lim 12 "2 = Hipp(y, U).
IF;] el A el IF;| top(7> U)
To prove the second assertion, let U be an open cover of K. Since B(K) is a local base at 1 of K by van
Dantzig Theorem [38], there exists U € B(K) such that U < {(U). Therefore, in view of (2.1), we have the

required equality. O

Hcov(’Y’ ((U)) = ljm
iel

Corollary 2.9. Let S be an infinite cancellative left amenable monoid, K a totally disconnected compact group
andS A Ka left action. For every left Folner net s = (F;);c; of Swith 1 € F; foreveryi € I,

heov(y) = Sup{H?op(’Y, U)| U e B(K)}.

2.2 Algebraic entropy

Definition 2.10 (See [40]). Let S be a semigroup, s = (F;)icr a net in P4,(S), G a locally compact abelian
group, 4 a Haar measure on G and G ASa right action. For U € C(G), let
I Tr.(a, U
Zlg(a, U) = lim sup —ogy( r;(@, U)
icl |Fil

The algebraic entropy relative to s of a is h;lg(a) = sup{Hfﬂg(a, U) | U € €(G)}.
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The map H;lg(’y, -) is monotone, thatis, if U, V € €(G) and U C V, then H;,g(a, U) < Hglg(a, V). Therefore,

in order to compute hg,,, it suffices to consider a cofinal subfamily of C(G). When the locally compact abelian
group G is compactly covered, B(G) is a cofinal in €(G) by [14, Proposition 2.2], so we have the following

result.

Proposition 2.11. Let S be a semigroup, s = (F;)ics a net in P4,(S), G a compactly covered locally compact
abelian group, u a Haar measure on G and G ASa right action. Then

haie(@) = sup{Hz(a, U) | U € B(G)}.

The following result was proved for the case S = N in [22]. It shows that for U € B(G) one can avoid the
use of Haar Haar measure to compute the algebraic entropy. As above, we note that, since S is an infinite
cancellative left amenable monoid, every left Fglner net s = (F;);c; of S necessarily satisfies |F;| — oo, and so
we can assume without loss of generality that 1 € F; foreveryi € I.

Proposition 2.12. Let S be an infinite monoid, s = (F;)icr a net in P, (S) such that |F;| — oo and 1 € F; for

every i € i, G a locally compact abelian group, u a Haar measure on G and G ASa right action. If U € B(G),

then loglT i
alg(@, U) = limsup —og[ r,(a, U) : Ul
iel |Fil

Proof. Foreveryi € I, since Tg,(a, U) € B(G), we have that [Tr,(a, U) : U] is finite and
u(Tr,(a, U)) = [TE,(a, U) : Ulu(U).
Hence,

1 Tr.(a, U
alg(@, U) = limsup log u(Tr,(a, U))
iel |Fil
 Jim sup log[Tr,(a, U) : U] +log u(U)
iel |Fil
log[ T :
_ hm Sup Og[ F; (a’ U) U]
iel |Fil
In the discrete case we compare this algebraic entropy with the algebraic entropy ent introduced in [10] for a
right action a of a cancelletive left amenable semigroup on a discrete abelian group A. For U € B(4) (i.e., U
is a finite subgroup of A), the function

O

?ﬁn(S) — REO, F— log |TF(0(, U)‘

is non-decreasing, subadditive, right subinvariant and uniformly bounded on singletons (see [10, Lemma
4.1]). So, by applying Theorem 2.1, we have that the following definition is well posed.

Definition 2.13 (See [10, Definition 4.2]). Let S be a cancellative left amenable semigroup, A a discrete
abelian group and A ASa right action. For U € B(A), the algebraic entropy of a with respect to U is
log |TF,(a, U)]
|Fil ’
for any left Folner net s =(F;);c; in P,(S). The algebraic entropy of a is ent(a) =sup{ent(a, U) | U € B(A)}.

ent(a, U) = lim
iel

The next result follows immediately from the definitions and Proposition 2.11.

Proposition 2.14. Let S be a cancellative left amenable semigroup, A a discrete abelian group and A ASa
right action. If s = (F;);c; is a left Falner net of S, then for U € B(A),
ent(a, U) = Hyy4(a, U),

and so ent(a) = ;,g(a).
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3 Receptive entropy

Here we are in the setting of [2, 3, 16, 20, 28].

Definition 3.1. For a finitely generated monoid S, a regular system of S is a sequence I' = (Nn) e Of elements
of P4, (S) such that
No={1}, and N;-N;C N;,;foreveryi,jeN. (3.1

In particular, for a regular system I" = (Np) ¢ of a finitely generated monoid S, we have that
Nn C Np4q foreveryn e N.

Clearly, if S is a finitely generated monoid and Nj; is a finite set of generators of S with 1 € Nj, then
(NMpen of S, with N? = {1}, is a regular system such that S = Unen Nn. This is the inspiring fundamental
example of a regular system of a finitely generated monoid.

3.1 Topological receptive entropy

We start introducing the following notion of receptive topological entropy, imitating the topological entropy
in Definition 2.2.

Definition 3.2. Let S be a finitely generated monoid, I' = (Nn),cn a regular system of S, G a locally compact
group, 4 a Haar measure on G and S A G aleft action. For U € C(G), let

ﬁ{op(a, U) = lim sup _IOgF(CNn(% U)) .

n—oo n

The receptive topological entropy with respect to I of - is ﬁ{op y) = sup{flﬂ,p (v, U) | U € C(G)}.

Proceeding as above we obtain the following results, we omit their proofs since they are the same of the proofs
of Proposition 2.3, Proposition 2.4, Corollary 2.5 and Proposition 2.8, respectively.

Proposition 3.3. Let S be a finitely generated monoid, I' = (Nn),en a regular system of S, G a totally discon-
nected locally compact group, u a Haar measure on G and S AGa left action. Then

hiop(7) = sup{Hp(y, U) | U € B(G)}.

In the following result we see that, for U € B(G), we can compute H{(,p (v, U) avoiding the use of Haar mea-
sure.

Proposition 3.4. Let S be a finitely generated monoid, I = (Nn),cn a regular system of S, G a locally compact
group, u a Haar measure on G and S A Ga left action. If U € B(G), then

ﬁ{()p('y, U) = limsup log[U : CN,.(’Y, U)].

n—oo n

If in addition the group is compact, we obtain the following result.

Corollary 3.5. Let S be a finitely generated monoid, I' = (Nn)ncn a regular system of S, K a compact group and
S A K a left action. If U € B(K), then

ng(v, U) _ hm Sup IOg[I< . CNn(’79 U))] .

n—oo n
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We recall now the definition of receptive topological entropy from [3], which naturally extends the classical
topological entropy hcoy from [1].

Definition 3.6. Let S be a finitely generated monoid, I' = (Nn),cn a regular system of S, C a compact space
and S A C aleft action. For an open cover U of C, let

H log N(U
Hgov(W, U) = lim sup w.

n—oo

The receptive topological entropy with respect to I' of v is H{ov(y) = sup{ﬁ{ov(y, W) | U open cover of C}.

As a consequence of Corollary 3.5, the two notions of receptive topological entropy recalled in this section
coincide when they are both available:

Proposition 3.7. Let S be a finitely generated monoid, I' = (Nyn),cn a regular system of S, K a totally discon-
nected compact group and S A K a left action. If U € B(K), then
Htop(’yy U) HCOV(’Y’ C(U))'

Therefore, htop(’y) = hloy ().

3.2 Algebraic receptive entropy
We give a notion of receptive algebraic entropy, imitating the algebraic entropy in Definition 2.10.

Definition 3.8. Let S be a finitely generated monoid, I' = (Nn),cn a regular system of S, G a locally compact
abelian group, 4 a Haar measure on G and G ASa right action. For U € C(G), let

AL (e, U) = limsup 108 H 00 U)

n—soo n

The receptive algebraic entropy with respect to I of a is h alg(a) sup{H alg(a, U) | U € C(G)}.

Proceeding as above we obtain the following results. We omit their proofs since they are the same of the proofs
of Proposition 2.11 and Proposition 2.12.

Proposition 3.9. Let S be a finitely generated monoid, I' = (Nn)nen a regular system of S, G a compactly
covered locally compact abelian group, p a Haar measure on G and G ASa right action. Then

alg(a) = sup{Ha,g(a, U)| U € B(G)}.

In the following result we see that, for U € B(G), we can compute HE (a, U) avoiding the use of Haar mea-

sure.

alg

Proposition 3.10. Let S be a finitely generated monoid, I' = (Nn) e a regular system of S, G a locally compact
abelian group, u a Haar measure on G and G ASa right action. If U € B(G), then

ﬁglg(a, U) = limsup log(Ty, (@, U) : U].

n—oo n

4 The entropy of the dual action

Let G be a locally compact abelian group and denote by Gits Pontryagin dual group. For a continuous ho-
momorphlsm ¢ : G — H, where H is another locally compact abelian group, let d) H — G be the dual of ¢,
defined by ¢(x) = x o ¢ for every y € H.
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If G is a locally compact abelian group and U is a closed subgroup of G, the annihilator of U in G is the
closed subgroup
U ={xeGlx(W)=0}

of G. Moreover, G is topologically isomorphic to G, so in the sequel we shall simply identify G with G; under
this identification we have that
wht=u (4.1

for every closed subgroup U of G.
We give a proof of the following basic fact for reader’s convenience.

Lemma 4.1. Let G be a locally compact abelian group. If U € B(G), then U+ ¢ B(G).

Proof. Since U is open in G, the quotient G/U is discrete, therefore U L C?/\U is compact. Moreover, U is
compact, so G/ U+t ~ Uis discrete and hence U~ is openin G. O

Let S be a semigroup and G a locally compact abelian group and consider the left action S A G. Then ~y
induces the right action GAS , defined by

fy(s)=7/(\s):(A}—>§ forevery s € S.

In fact, fixed s, t € S, since v(st) = ~(s)y(t), we have that 7(st) = 7/(\51‘) = 'y(/s)’y\(t) = ;(?);(?) = F(t)A(s).
Analogously, let S be a semigroup and G a locally compact abelian group and consider the right action G AS.
Then a induces the left action S A E;, defined by

a(s) = a/(s\) :G— G, foreverysesS.

In fact, fixed s, t € S, since a(st) = a(t)a(s), we have that a(st) = a/(s\t) = a@o?(s) = (x/(s\)OT(B = a(s)a(t). By
Pontryagin duality, 7 = yand a = a.

The following technical lemma is a key step in the proof of the Bridge Theorem, see [14] for more details
in the case S = N.

Lemma 4.2. Let S be a semigroup, G a locally compact abelian group and S A Ga left action. If F € CPﬁn(S)
and U € B(G), then
[U: Cr(y, U)] = [Tr(, US) : U]

Proof. Let U € B(G). By Pontryagin duality theory,
1
Crly, U)* = (ﬂ v(S)_l(U)> =S GE )T =Y AW = S AU = THE, UL
seF seF seF seF
Since U/Cg(v, U) is finite, U/Cg(y, U) = U/E(w\, U), and so
U/Cr(y, U) = U/Crly, U) = Crly, U)-/U* = Tr(3, UM/ U™
This gives the required equality. O
We are in position to prove the two versions of the Bridge Theorem stated in the introduction.

Proof of Theorem 1.2. Let U € B(G). For the net s = (F;);c; in P,(S), Proposition 2.4, Proposition 2.12 and
Lemma 4.2 give

1 : Y, 1 Ts A’ 1 . 1
H?op(% U) = limsupw = lim sup og[ (3, U7): U ]
iel |Fil iel |F;|
By (4.1) and Lemma 4.1, the map

5 (D 1
= alg(’Y,U )'

B(G) — B(G), U U*"

is a bijection, so we conclude that hg,,(v) = hfllg(ﬁ) in view of Proposition 2.3 and Proposition 2.11. O
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As an application of Theorem 1.2, together with Proposition 2.8 and Proposition 2.14, we obtain the following
counterpart of Weiss’ Bridge Theorem for amenable semigroup actions.

Corollary 4.3. Let S be an infinite cancellative left amenable monoid, K a totally disconnected compact abelian
group and S A K a left action. Then heov(v) = ent(7).

The proof of Theorem 1.3 is analogous to that of Theorem 1.2, one applies Proposition 3.4, Proposition 3.10,
Proposition 3.3 and Proposition 3.9.

We end with two important examples for the computation of the values of the entropies considered in
this paper.

Example 4.4. Consider p a positive prime number, d > 0 and denote by Z(p) the finite group with p-many
d

elements and by Z(p)™") the direct sum of N%-copies of Z(p), defined by the family of all functions N¢ — Z(p)

with finite support.

(a) Consider the forward Bernoulli shift N 2 7Z(p)™), defined for every s,y € N? and f € Z(p)™" by

_ if d
oSPW) - {f o8 ity s+,
0 ify ¢ s+ N4,

Then hg;g(0) = log p (see [11]).

The dual action 0 is conjugated to the backward Bernoulli shift N% /ﬁ\v Z(p)Nd, thatis, B(s)(f)(y) = f(y +s)

d
for every f € Z(p)" andy, s € N Since it is known that htop(B) = log p, from Theorem 1.2 we immediately
get that h,;4(0) = log p without any direct computation. Note that in this case, when d > 1 and for example

we take the regular system I' = ({0, . .., n}%),cn of N9, we get Eg,g(o) = oo = hL,, (B).

(b) Consider now the forward Bernoulli shift o : Z(p)(N) — Z(p)(N), which has h,,(0) = log p. It is known
that 0 is conjugated to the backward Bernoulli shift 8 : Z(p)" — Z(p)" (e.g., see [21]), which indeed has
ox0

Rtop(B) = log p. Define the action N2 7~ Z(p)™ x Z(p)™ =~ Z(p)™) by letting (o x 0)(n, m) = o(n) x o(m)
for every (n, m) € N%. Then haig(o x 0) = 0 (see [10]). The dual action of ¢ x ¢ is conjugated to the action

N2 8 Z()N x Z(p)N = Z(p)™), which therefore has htop(B x B) = 0 by Theorem 1.2. On the other hand, for

the regular system I' = ({0, ... , n}*)yen of N?, we have hl;, (0 x 0) = 2log p and so also L, (Bxp) =2logp
by Theorem 1.3.
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