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TOPOLOGICAL ENTROPY, UPPER CARATHÉODORY CAPACITY
AND FRACTAL DIMENSIONS OF SEMIGROUP ACTIONS

BY

ANDRZEJ BIŚ (Łódź), DIKRAN DIKRANJAN (Udine),
ANNA GIORDANO BRUNO (Udine) and LUCHEZAR STOYANOV (Perth)

Abstract. We study dynamical systems given by the action T : G × X → X of a
finitely generated semigroup G with identity 1 on a compact metric space X by continuous
selfmaps and with T (1,−) = idX .

For any finite generating set G1 of G containing 1, the receptive topological entropy
of G1 (in the sense of Ghys et al. (1988) and Hofmann and Stoyanov (1995)) is shown to
coincide with the limit of upper capacities of dynamically defined Carathéodory structures
on X depending on G1, and a similar result holds true for the classical topological entropy
when G is amenable. Moreover, the receptive topological entropy and the topological en-
tropy of G1 are lower bounded by respective generalizations of Katok’s δ-measure entropy,
for δ ∈ (0, 1).

In the case when T (g,−) is a locally expanding selfmap of X for every g ∈ G \ {1},
we show that the receptive topological entropy of G1 dominates the Hausdorff dimension
of X modulo a factor log λ determined by the expanding coefficients of the elements of
{T (g,−) : g ∈ G1 \ {1}}.

1. Introduction. Themeasure entropy hµ of ameasure-preserving trans-
formation of a probability space (X,µ) was introduced by Kolmogorov and
Sinai. The topological entropy htop was first defined by Adler, Konheim and
McAndrew [1] for continuous selfmaps of compact spaces, while for uniformly
continuous selfmaps of metric spaces a different notion of topological entropy
was given by Bowen [6] and Dinaburg [10]. The two notions of topological
entropy coincide for compact metric spaces, which are the spaces we are
interested in.

The Krylov–Bogolyubov Theorem implies that for a continuous selfmap
f : X → X of a compact metric space X, the set M(X, f) of f -invariant
Borel probability measures on X is not empty. The relation between the
topological entropy and the measure entropy of f is stated in the famous
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Variational Principle (see [15, 16, 35]):

htop(f) = sup{hµ(f) : µ ∈M(X, f)}.

Lind, Schmidt andWard [23] generalized toZd-actions on compact metriz-
able groups both the definition of topological entropy by Bowen, and the one
by Adler, Konheim and McAndrew, showing that they coincide. The measure
entropy for amenable group actions was introduced by Kieffer [21], while the
topological entropy for amenable group actions on compact metric spaces by
Stepin and Tagi-Zade [31], and Ollagnier [25] defined the topological entropy
for amenable group actions on compact spaces using open covers as in [1].
A cornerstone of the theory of entropy of amenable group actions is the work
by Ornstein and Weiss [26], where in particular the celebrated Ornstein–
Weiss Lemma is proved. Recent relevant papers in this area are those by
Chung and Thom [9] and by Li [22]. Recently, Ceccherini-Silberstein, Coor-
naert and Krieger [8] extended the Ornstein–Weiss Lemma to cancellative
amenable semigroups. Using this result, they introduced the measure entropy
and the topological entropy for actions of cancellative amenable semigroups.
For further extensions of these classical entropies to the case of actions of
sofic groups see the survey paper [36] by Weiss.

In a different direction, Bowen’s topological entropy was generalized by
Ghys, Langevin and Walczak [14] to finitely generated pseudogroups of lo-
cal homeomorphisms of a compact metric space in the setting of foliations.
Independently, a more general notion for locally compact semigroup actions
on a compact metric space was introduced by Hofmann and Stoyanov [18]
(see also [4] where the term “receptive” was coined for this kind of entropy).

The main difference between the two approaches is that in many cases
when the “classical” topological entropy is zero (and this occurs very often),
the receptive topological entropy is strictly positive. We follow here both
lines, extending further the approach from [14] to finitely generated semi-
groups, by considering a particular case of the general receptive topological
entropy from [18] (see also Remark 2.1).

Notation. Given a compact metric space X, we denote by Con(X) the
semigroup of all continuous selfmaps of X, with identity idX : X → X, and
by

(1.1) (G,G1) ⊆ Con(X)

an infinite finitely generated semigroup G contained in Con(X), generated
by a finite set G1 containing idX .

For a subset Z of a compact metric spaceX and a finitely generated semi-
group (G,G1) ⊆ Con(X), we denote by h̃top(G1, Z) the receptive topological
entropy of (G,G1) with respect to Z and by h∗top(G1, Z) the topological en-
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tropy of (G,G1) with respect to Z. Moreover, we let h̃top(G1) = h̃top(G1, X)
and h∗top(G1) = h∗top(G1, X) (see Definition 2.2).

The definitions of Hausdorff dimension and of topological entropy by
Bowen share common features. Indeed, Bowen [7] defined the topological en-
tropy of a selfmap of a compact metric space very similarly to the definition of
the Hausdorff dimension. Pesin [27] presented this interrelation between di-
mension theory and the theory of classical dynamical systems by introducing
the so-called Carathéodory structures in axiomatic way; each Carathéodory
structure determines dimension characteristics called Carathéodory dimen-
sion and lower and upper Carathéodory capacities.

Following the lines of [27, §10 and §11], we introduce special Carathéodory
structures τ , which we call PC-structures (see Definition 3.1), and the upper
PC-capacity Capτ with respect to τ . Then, for a closed subset Y of a com-
pact metric space X and a finitely generated semigroup (G,G1) ⊆ Con(X)
as above, we find natural PC-structures τγ and τ∗γ on Y , depending on a
real number γ > 0. We show that h̃top(G1) and h∗top(G1) coincide respec-
tively with the limits CPG1 and CP

∗
G1

(see Definition 3.10) of the upper
PC-capacities Capτγ and Cap

∗
τγ :

Theorem 1.1. For a compact metric space X, a finitely generated semi-
group (G,G1) ⊆ Con(X) and every closed subset Y of X,

(1.2) h̃top(G1, Y ) = CPG1(Y ) and h∗top(G1, Y ) = CP
∗
G1

(Y ).

In particular, h̃top(G1) = CPG1 and h∗top(G1) = CP
∗
G1

.

In order to obtain this result, we appropriately modify the set of ax-
ioms from [27, §10] and develop an analogous abstract theory in §3.1. More
precisely, we relax one of the axioms, otherwise the PC-structures τγ and
τ∗γ do not satisfy it. Since these τγ and τ∗γ are those considered in [27, §11,
Remark (1)] for G = N, our work in particular fixes the gap in [27, §11,
Remark (1)] (see Remark 3.5 for the details).

Katok [19] introduced the δ-measure entropy hδµ(f), with δ ∈ (0, 1), for a
continuous selfmap f : X → X of a compact metric space X with respect to
an f -invariant Borel probability measure µ, and proved that hδµ(f) = hµ(f)
for every δ ∈ (0, 1) (see [19, Theorem 1.1]). We extend the definition of
δ-measure entropy to finitely generated semigroups (G,G1) ⊆ Con(X), with
respect to a Borel probability measure µ on X, in two ways, analogously to
what we do for the topological entropy; we denote these two new notions by
h̃δµ(G1) and hδ,∗µ (G1) (see Definition 2.7). Since the maps δ 7→ h̃δµ(G1) and
δ 7→ hδ,∗µ (G1) are decreasing, the limits

hµ(G1) = lim
δ→0

h̃δµ(G1) and h
∗
µ(G1) = lim

δ→0
hδ,∗µ (G1)
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exist (see §2.2). It is worth mentioning that the measure µ is not supposed
to be invariant under the action of G, so hµ(G1) and h

∗
µ(G1) obtained in

this way are good substitutes for the measure entropy in the absence of
invariance.

As a direct consequence of the definitions (see Proposition 2.9) and as a
corollary of Theorem 1.1, we find the following partial Variational Principle.

Corollary 1.2. Let X be a compact metric space, (G,G1) ⊆ Con(X)
an infinite finitely generated semigroup and µ a Borel probability measure
on X. Then

hµ(G1) ≤ h̃top(G1) = CPG1 and h
∗
µ(G1) ≤ h∗top(G1) = CP

∗
G1
.

In the second part of the paper we restrict ourselves to the subsemigroup
Le(X) of Con(X) of locally expanding selfmaps of a compact metric space X
(see Definition 4.2). Locally expanding maps were studied in different con-
texts by Ruelle [29], Shub [30] and Mayer [24]. According to Gromov [17],
the existence of a locally expanding map on a Riemannian manifold implies
very strong restrictions on its geometry.

For a compact metric space X and λ > 1, let Leλ(X) be the sub-
semigroup of Le(X) of all locally λ-expanding selfmaps of X (note that
idX 6∈ Leλ(X)). Moreover, denote by dimH(X) the Hausdorff dimension of
X and by dimB(X) the upper box dimension of X (see (4.1)). We obtain
the following lower bound of the receptive topological entropy by means of
the upper box dimension and the Hausdorff dimension:

Theorem 1.3. Let X be a compact metric space, µ a Borel probability
measure on X, λ > 1 and (G,G1) ⊆ Con(X) an infinite finitely generated
semigroup such that G1 \ {idX} ⊆ Leλ(X). Then

(1.3) h̃top(G1) ≥ (log λ) dimB(X) ≥ (log λ) dimH(X).

It is tempting to conjecture that in the hypotheses of Theorem 1.3 one
can prove the sharper inequality h∗top(G1) ≥ (log λ) dimB(X) (which would
obviously imply (1.3), as h̃top(G1) ≥ h∗top(G1), see Remark 2.3). We show
below that this conjecture fails (see Example 4.5).

2. Entropies of semigroup actions. In this section we introduce the
entropy functions that we consider in this paper.

As in (1.1), for a compact metric space X we denote by Con(X) the
semigroup of all continuous selfmaps of X and we let (G,G1) ⊆ Con(X) be
an infinite semigroup generated by a finite set G1 with idX ∈ G1.
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For every n ∈ N+, let

Gn = G1 · . . . ·G1︸ ︷︷ ︸
n

;

moreover, let G0 = {idX}. Then

G0 ⊆ G1 ⊆ G2 ⊆ · · · ⊆
⋃
n∈N

Gn = G.

Remark 2.1. The setting (1.1), where X is a compact metric space and
G is a subsemigroup of Con(X) containing idX , defines an obvious action
T : G×X → X with T (g, x) = g(x) for g ∈ G, x ∈ X.

In general, if G is a semigroup with identity 1, to every action T :
G × X → X with T (1,−) = idX one can associate the subsemigroup
T (G,−) = {T (g,−) : g ∈ G} of Con(X) containing idX . It is finitely
generated whenever G is finitely generated. If the surjective semigroup ho-
momorphism G → T (G,−) defined by g 7→ T (g,−) is injective (i.e., the
action T is faithful), it is an isomorphism and one can simply replace G by
T (G,−) ⊆ Con(X), that is, we get the setting (1.1).

In this paper we impose the setting (1.1), that is, we only consider faithful
actions. This is motivated by the fact that even if the entropy h̃top we define
later for actions (1.1) can be defined in an obvious way for arbitrary actions
T : G×X → X, it coincides with the entropy of the associated faithful action
of T . Hence, we can adopt the setting (1.1) without any loss of generality as
far as h̃top is concerned.

2.1. Topological entropy and receptive topological entropy. First,
we extend to finitely generated semigroups acting on compact metric spaces
the receptive topological entropy introduced by Ghys, Langevin and Walczak
[14] for actions of finitely generated groups (a notably more general approach
covering the present one was adopted by Hofmann and Stoyanov [18]).

The action of the finitely generated semigroup (G,G1) ⊆ Con(X) on the
compact metric space (X, d) determines a sequence of dynamical n-balls (for
n ∈ N) centered at x ∈ X and of radius γ > 0 defined by

BG1
n (x, γ) =

⋂
g∈Gn

g−1(B(g(x), γ)),

where B(x, γ) = {y ∈ X : d(x, y) < γ} is the standard ball in (X, d). Clearly,
BG1
n+1(x, γ) ⊆ BG1

n (x, γ) for every n ∈ N, and BG1
0 (x, γ) = B(x, γ). For

Y ⊆ X, n ∈ N and γ > 0, let

BG1
n (Y, γ) = {BG1

n (y, γ) ∩ Y : y ∈ Y }.
Note that BG1

0 (Y, γ) = {B(y, γ) ∩ Y : y ∈ Y } and that BG1
n (Y, γ) is an open

cover of Y for every n ∈ N.
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For n ∈ N and γ > 0, a subset E of a compact metric space X is (n, γ)-
separated if for any distinct points a1, a2 ∈ E one has a2 6∈ BG1

n (a1, γ) (or
equivalently a1 6∈ BG1

n (a2, γ)). Since X is compact, every (n, γ)-separated
subset E of X is finite. For any subset Y of X, let

s(n, γ, Y ) = max{|E| : E ⊆ Y, E is (n, γ)-separated}.

Definition 2.2. LetX be a compact metric space and (G,G1)⊆Con(X)
a finitely generated semigroup.

(i) The receptive topological entropy of (G,G1) with respect to a subset Y
of X is

h̃top(G1, Y ) = lim
γ→0

lim sup
n→∞

1

n
log s(n, γ, Y ).

If Y = X, let h̃top(G1) = h̃top(G1, X).
(ii) The topological entropy of (G,G1) with respect to a subset Y of X is

h∗top(G1, Y ) = lim
γ→0

lim sup
n→∞

1

|Gn|
log s(n, γ, Y ).

If Y = X, let h∗top(G1) = h∗top(G1, X).

Remark 2.3. We shall assume that the finitely generated semigroup
(G,G1) ⊆ Con(X) is infinite, which implies that the sequence (an)n∈N, where
an = |Gn| for every n ∈ N, is strictly increasing, so

(2.1) an ≥ n for every n ∈ N.

One obviously has h∗top(G1, Y ) ≤ h̃top(G1, Y ) for any subset Y of X, and so
h∗top(G1) ≤ h̃top(G1), due to (2.1).

(a) In case G is a group, and G1 = G−11 is a symmetric finite generating set
containing idX , h̃top(G1) is the receptive topological entropy from [14].

(b) In case G is a finitely generated amenable group, and (Gn)n∈N is a right
Følner sequence for G (this is the case when G is of subexponential
growth), the limit superior in the above definition of topological entropy
is a limit, and it does not depend on the right Følner sequence. In par-
ticular it does not depend on the finite set of generators G1 of G. Hence,
h∗top(G1) does not depend on G1 and coincides with the “classical” topo-
logical entropy htop(G) defined for actions of amenable groups G.

Remark 2.4. Consider the case of a single continuous selfmap f : X → X
of a compact metric space X; let G be the semigroup generated by the itera-
tions of f and G1 = {idX , f}. Note that either the semigroup G is isomorphic
to N (when all powers fn are distinct), or G = Gn = {idX , f, . . . , fn} for
some n ∈ N. In case G is infinite, h̃top(G,G1) = h∗top(G,G1) = htop(G) =
htop(f) is Bowen’s classical topological entropy.
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For n ∈ N and γ > 0, a subset Z of a compact metric space X is (n, γ)-
spanning for another subset Y of X if Y ⊆

⋃
z∈Z B

G1
n (y, γ). If Y is closed,

then Y is compact, so there exist finite (n, γ)-spanning subsets Z for Y . Let

(2.2) r(n, γ, Y ) = min{|Z| : Z is an (n, γ)-spanning subset for Y }.
Using the family BG1

n (X, γ) of dynamical n-balls one can rewrite (2.2) as

(2.3) r(n, γ, Y ) = min
{
|U| : U ⊆ BG1

n (X, γ), Y ⊆
⋃
U
}
.

Slightly modifying the standard arguments for the topological entropy of
a single continuous selfmap of a compact metric space (see for example [35,
§7.2]), we obtain an equivalent definition of the receptive topological entropy
and the topological entropy of a finitely generated semigroup with respect
to a closed subset:

Lemma 2.5. For a compact metric space X, an infinite finitely generated
semigroup (G,G1) ⊆ Con(X) and a closed subset Y of X,

h̃top(G1, Y ) = lim
γ→0

lim sup
n→∞

1

n
log r(n, γ, Y ),

h∗top(G1, Y ) = lim
γ→0

lim sup
n→∞

1

|Gn|
log r(n, γ, Y ).

Proof. As in [35, Remarks (5)], it suffices to note that for γ > 0 and for
every n ∈ N,

r(n, γ, Y ) ≤ s(n, γ, Y ) ≤ r(n, γ/2, Y ).

Now our assertions follow directly from the definitions.

Remark 2.6. It is known that the receptive topological entropy of a
finitely generated semigroup (G,G1) ⊆ Con(X), where X is a compact
metric space, depends on the generating set G1. For example, take an N-
action generated by a continuous selfmap f : X → X, so G is isomorphic
to N; let G1 = {idX , f} and G′1 = {idX , f, f2}. Then h̃top(G1) = htop(f),
while h̃top(G′1) = htop(f

2) = 2htop(f). Thus, h̃top(G1) 6= h̃top(G
′
1) when-

ever 0 < htop(f) < ∞. On the other hand, since N is commutative, and so
amenable, htop(G1) = htop(G

′
1) = htop(f).

Moreover, for two distinct finite generating sets G1 and G′1 of a group
G ⊆ Con(X), the equivalence

h̃top(G1) > 0 ⇐⇒ h̃top(G
′
1) > 0

was proved in [14]. This shows that the vanishing of the receptive topological
entropy does not depend on the finite set of generators of the group G.

2.2. Measure entropies. Here, using an approach similar to that for
extending Bowen’s topological entropy recalled above, we extend the defi-
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nition of δ-measure entropy given by Katok [19] to finitely generated semi-
groups (G,G1) ⊆ X for a compact metric space X.

Definition 2.7. Let X be a compact metric space, (G,G1) ⊆ Con(X)
an infinite finitely generated semigroup, δ ∈ (0, 1) and µ a Borel probability
measure on X. For γ > 0 and n ∈ N, let

N δ
G1

(n, γ) = min
{
|U| : U ⊆ BG1

n (X, γ), µ
(⋃

U
)
> 1− δ

}
.

(i) The receptive δ-measure entropy of (G,G1) is

h̃δµ(G1) = lim
γ→0

lim sup
n→∞

1

n
logN δ

G1
(n, γ).

(ii) The δ-measure entropy of (G,G1) is

hδ,∗µ (G1) = lim
γ→0

lim sup
n→∞

1

|Gn|
logN δ

G1
(n, γ).

Since the map δ 7→ N δ
G1

(n, γ) is decreasing, so too are the maps δ 7→
h̃δµ(G1) and δ 7→ hδ,∗µ (G1), and hence the following limits exist:

hµ(G1) = lim
δ→0

h̃δµ(G1) and h
∗
µ(G1) = lim

δ→0
hδ,∗µ (G1).

Remark 2.8. Katok [19] defined the δ-measure entropy hδµ(f) of f , where
δ ∈ (0, 1), X is a compact metric space and f : X → X is a continuous
selfmap, and µ is an f -invariant Borel probability measure on X. We re-
trieve Katok’s measure entropy by taking in the above definition G to be
the semigroup generated by f and G1 = {idX , f}, that is, hδµ(f) = h̃δµ(G1) =

hδ,∗µ (G1).
Katok proved that

(2.4) hδµ(f) = hµ(f) for every δ ∈ (0, 1),

and so in particular h̃δµ(G1) = hµ(G1) = h
∗
µ(G1) = hδ,∗µ (G1).

We have the following relations of the receptive δ-measure entropy to the
receptive topological entropy and of the δ-measure entropy to the topological
entropy, which give the inequalities in Corollary 1.2.

Proposition 2.9. Let X be a compact metric space, (G,G1) ⊆ Con(X)
a finitely generated semigroup, δ ∈ (0, 1) and µ a Borel probability measure
on X. Then, for all n ∈ N and γ > 0, we have N δ

G1
(n, γ) ≤ r(n, γ,X), and

so

(2.5) h̃δµ(G1) ≤ h̃top(G1) and hδ,∗µ (G1) ≤ h∗top(G1).

Consequently,

(2.6) hµ(G1) ≤ h̃top(G1) and h
∗
µ(G1) ≤ h∗top(G1).
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Proof. The inequality N δ
G1

(n, γ) ≤ r(n, γ,X) is a consequence of the
definitions and (2.3). It immediately implies (2.5), while (2.6) follows from
(2.5) by the definitions.

We now discuss the situation in the presence of invariant measures. In
general, a finitely generated semigroup (G,G1) of continuous selfmaps of
a compact metric space X need not admit a G-invariant Borel probabil-
ity measure (e.g., see [33, Example 4.1.1]). Nevertheless, it is known (see
[33, pp. 97–98]) that for two commuting homeomorphisms f, g : X → X
there exists a Borel probability measure on X which is both f -invariant
and g-invariant. The argument can be easily extended to the case of two,
and so finitely many, pairwise commuting continuous selfmaps (see [34]).
Therefore, any finitely generated commutative semigroup (G,G1) of contin-
uous selfmaps of X admits a G-invariant Borel probability measure. The
existence of a G-invariant Borel probability measure on X is also ensured
when G is an amenable (not necessarily finitely generated) group (see [11,
Theorem 8.10]).

If µ is a G-invariant Borel probability measure on X, then one can
also consider the receptive measure entropy h̃µ(G1) from [5, 32], which is
an extension of the classical measure entropy of Kolmogorov and Sinai: if
A = {A1, . . . , Ak} is a finite measurable partition of X, then the (Shannon)
entropy of A is defined by

Hµ(A) = −
k∑
i=1

µ(Ai) log µ(Ai),

with the usual agreement that 0 log 0 = 0 (see [35, Chapter 4]); then let

(2.7) h̃µ(G1,A) = lim sup
n→∞

1

n
Hµ

( ∨
g∈Gn

g−1A
)
,

and the receptive measure entropy of G1 is

h̃µ(G1) = sup{h̃µ(G1,A) : A a finite measurable partition of X}.

In [5] we study the relation between h̃µ(G1) and h̃top(G1) in the spirit
of the classical Variational Principle; the problem turns out to be highly
non-trivial. Moreover, Katok’s above mentioned result (2.4) for a single con-
tinuous selfmap suggests the following problem, which we leave open and
which could be of some help in the study of the Variational Principle in view
of Proposition 2.9.

Problem 2.10. Let X be a compact metric space, (G,G1) ⊆ Con(X) a
finitely generated semigroup and µ a G-invariant Borel probability measure
on X. What is the relation between hµ(G1) and h̃µ(G1)? Do they coincide?
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3. Topological entropy and Carathéodory structures. In this sec-
tion, first we propose a modification of the construction of Carathéodory
structures introduced and elaborated by Pesin [27, §10]. Then we apply it to
the case of the topological entropy (receptive or not) of a finitely generated
semigroup of continuous selfmaps, following [27, §11, Remark (1)]. We com-
pare the Carathéodory structure introduced by Pesin with its modification
introduced below and called Pesin–Carathéodory structure. See Remark 3.5
for the details on the motivation of our construction and the comparison
with that in [27, §10 and §11].

3.1. Pesin–Carathéodory structures and upper PC-capacity

Definition 3.1. Let Y and S be non-empty sets and F = {Us : s ∈ S}
a cover of Y with Us = ∅ for some s ∈ S. Assume that the functions
ψ, η : S → R+ are such that:

(P1) if Us = ∅ then ψ(s) = η(s) = 0; if ∅ 6= Us ∈ F then ψ(s)η(s) > 0;
(P2) for every δ > 0 there exists ε > 0 such that ψ(s) < ε implies η(s) < δ

for every s ∈ S;
(P3) for every ε > 0 there exists δ ∈ (0, ε) such that there exists G ⊆ S

finite with
⋃
s∈G Us = Y and ψ(s) = δ for every s ∈ G.

The system τ = (S,F , ψ, η) is called a Pesin–Carathéodory structure (briefly,
PC-structure) on Y .

The auxiliary set S is needed, since we do not require the map S → F ,
s 7→ Us, to be injective; indeed, when we apply this construction in §3.2, the
injectivity may not be available.

For G ⊆ S, denote
UG = {Us : s ∈ G},

and let

ψ(G) = sup{ψ(s) : s ∈ G} and η(G) = sup{η(s) : s ∈ G}.
Adopting standard notation from set theory, for a set S let [S]≤ℵ0 denote
the family of all non-empty (at most) countable subsets of S. For ε > 0 and
∅ 6= Z ⊆ Y , let

Cε(Z) =
{
G ∈ [S]≤ℵ0 : Z ⊆

⋃
UG , ψ(s) = ε for every s ∈ G

}
;

note that for every ε > 0 there exists δ ∈ (0, ε) such that Cδ(Z) is not
empty by (P3); hence, there exists a sequence (εn)n∈N such that εn → 0 and
Cεn(Z) 6= ∅ for every n ∈ N.

For α ∈ R and G ⊆ S, let

H(G, α) =
∑
s∈G

η(s)α.
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Remark 3.2. Let Y be a non-empty set, τ = (S,F , ψ, η) a PC-structure
on Y and Z ⊆ Y . Let δ ∈ (0, 1) and ε > 0 be such that η(G) ≤ δ if G ∈ Cε(Z)
(this is possible in view of (P2)). Hence, G ∈ Cε(Z) implies η(s) < 1 for all
s ∈ G. Therefore, β < α implies H(G, α) ≤ H(G, β) for G ∈ Cε(Z).

Take α ∈ R and ε > 0. For ∅ 6= Z ⊆ Y , let Rα(Z, ε) = 0 if Cε(Z) = ∅,
otherwise, when Cε(Z) 6= ∅, let
(3.1) Rα(Z, ε) = inf {H(G, α) : G ∈ Cε(Z)}.
Now let

rα(Z) = lim sup
ε→0

Rα(Z, ε).

Proposition 3.3. Let Y be a non-empty set, τ = (S,F , ψ, η) a PC-
structure on Y and ∅ 6= Z ⊆ Y . There exists βC ∈ [−∞,∞] such that:

(1) rβ(Z) =∞ for every β < βC ;
(2) rβ(Z) = 0 for every β > βC .

Proof. (1) Assume that rδ(Z) = ∞ for some δ ∈ R and that β < δ.
Fix ε > 0 and G ∈ Cε(Z). Then H(G, δ) < H(G, β) by Remark 3.2, assum-
ing without loss of generality that η(G) < 1. By definition it follows that
Rδ(Z, ε) ≤ Rβ(Z, ε) and so also rδ(Z) ≤ rβ(Z). Therefore, rβ(Z) =∞.

(2) Assume that rδ(Z) ≤ B for some δ ∈ R and some constant B ∈ R+.
Let β > δ and fix γ > 0. By (P2) and (P3) there exists ε > 0 such that
Cε(Z) 6= ∅, and if G ∈ Cε(Z), then η(G)β−δ < γ; therefore,

H(G, β) =
∑
U∈G

η(U)δη(U)β−δ < γ
∑
U∈G

η(U)δ = γH(G, α).

Hence, Rβ(Z, ε) < γRδ(Z, ε), and so

rβ(Z) ≤ γrδ(Z) ≤ γB.
We conclude that rβ(Z) = 0.

Definition 3.4. Let Y be a non-empty set, τ = (S,F , ψ, η) a PC-
structure on Y and ∅ 6= Z ⊆ Y . The upper PC-capacity of Z with respect to
τ is the critical value

Capτ (Z) = βC ∈ [−∞,∞]

of the map α 7→ rα(Z) from Proposition 3.3.

Remark 3.5. In [27, §10] one can find an abstract general construction
that permits one to define the upper PC-capacity as above. It is based on
the axioms called there (A1), (A2) and (A3′). While (A1) is our (P1) and
(A2) is our (P2), the axiom (A3′) differs from our (P3):

(A3′) there exists ε > 0 such that for every δ ∈ (0, ε) there exists G ⊆ S
finite with

⋃
s∈G Us = Y and ψ(s) = δ for every s ∈ G.
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Clearly, (A3′) is strictly stronger than (P3), although the difference is quite
subtle. Anyway (P3) is sufficient to get rα(Z) and so the upper PC-capacity,
since the value 0 that we assign to Rα(Z, ε) corresponding to empty Cε(Z)
does not play any role in the lim sup defining rα(Z). So, the quantity rα(Z)
coincides with that defined in [27, §10] under the stronger axiom (A3′), and
for this reason we keep the same notation.

In §3.2 we apply the above abstract construction to the specific cases
of the receptive topological entropy and the topological entropy of finitely
generated semigroup actions on compact metric spaces, following what is
done in [27, §11, Remark (1)] for the topological pressure in the case of
continuous selfmaps of compact metric spaces, that is, the case of N-actions.

First of all, since the topological entropy is a particular case of the topo-
logical pressure, we need only two auxiliary functions η and ψ, while for the
topological pressure a third function ξ was needed (in our modification of
PC-structure we can set ξ ≡ 1).

Moreover, the function ψ defined in (3.8) for our applications to the re-
ceptive topological entropy and to the topological entropy does not satisfy
(A3′) while it satisfies (P3); so τγ and τ∗γ , defined in (3.7) and (3.9) respec-
tively, are PC-structures in our sense (see Lemma 3.8) but not in the sense
of [27, §10]. On the other hand, τγ and τ∗γ are practically the same as the
structure considered in [27, §11, Remark (1)], where it is wrongly claimed
that it also satisfies (A3′). Starting from this problem, we introduced (P3)
in place of (A3′) and verified that all still works properly in the abstract
construction. In particular, this also fixes the gap in [27, §11, Remark (1)].

Definition 3.6. A PC-structure τ = (S,F , ψ, η) on a non-empty set Y
is a strong PC-structure if τ also satisfies

(P4) if s, t ∈ S and ψ(s) = ψ(t) then η(s) = η(t).

For a strong PC-structure τ = (S,F , ψ, η) on a non-empty set Y , and
for ∅ 6= Z ⊆ Y and ε > 0, let

(3.2) Λτ (Z, ε) =

{
inf{|G| : G ∈ Cε(Z)} if Cε(Z) 6= ∅,
1 if Cε(Z) = ∅.

Observe that (P4) implies that, for every G ∈ Cε(Z), the restriction η�G is
constant as ψ�G is constant, that is, denoting this constant value by ηε we
have

η(s) = ηε for every G ∈ Cε(Z) and every s ∈ G.

In particular, this implies that, for α ∈ R+,

(3.3) H(G, α) = |G|ηαε .
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The following is the main result of this section on upper PC-capacity
that we apply in the proof of Theorem 1.1; we give the proof for the reader’s
convenience although it is similar to that of [27, Theorem 2.2].

Theorem 3.7. For a strong PC-structure τ = (S,F , ψ, η) on a non-
empty set Y and for ∅ 6= Z ⊆ Y ,

Capτ (Z) = lim sup
ε→0

logΛτ (Z, ε)

log(1/ηε)
.

Proof. Let

α = Capτ (Z) and β = lim sup
ε→0

logΛτ (Z, ε)

log(1/ηε)
.

Since τ is a strong PC-structure, it satisfies (P4). Hence, for ε > 0 such
that Cε(Z) 6= ∅, the function η is constant on each G ∈ Cε(Z) with value ηε.
Therefore, for θ > 0,

(3.4) Rθ(Z, ε) = Λτ (Z, ε)(ηε)
θ,

in view of (3.1)–(3.3). Fix an arbitrary γ > 0. As α − γ < α, there exists a
sequence (εn)n∈N with εn → 0, and with ηεn < 1 for all n ∈ N by (P2), such
that Cεn(Z) 6= ∅ for all n ∈ N by (P3), and

∞ = rα−γ(Z) = lim
n→∞

Rα−γ(Z, εn).

In particular, there exists n0 ∈ N such that, for every n ≥ n0, we have
Rα−γ(Z, εn) ≥ 1, and (3.4) gives

Λτ (Z, εn)(ηεn)
α−γ ≥ 1.

Taking log and using the inequality ηεn < 1, we obtain

α− γ ≤ logΛτ (Z, εn)

log(1/ηεn)
.

Therefore,

(3.5) α− γ ≤ lim sup
n→∞

logΛτ (Z, εn)

log(1/ηεn)
≤ β.

There exists a sequence (ε′n)n∈N with ε′n → 0, and with ηε′n < 1 for all
n ∈ N by (P2), such that Cε′n(Z) 6= ∅ for all n ∈ N by (P3), and

β = lim
n→∞

logΛτ (Z, ε
′
n)

log(1/ηε′n)
.

As α+ γ > α, we have rα+γ(Z) = 0, so

lim sup
n→∞

Rα+γ(Z, ε
′
n) ≤ rα+γ(Z) = 0.
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Thus, there exists n1 ∈ N such that, for every n ≥ n1, Rα+γ(Z, ε′n) ≤ 1, and
so (3.4) gives

Λτ (Z, ε
′
n)(ηε′n)

α+γ ≤ 1.

Taking log and using the inequality ηε′n < 1, we obtain

α+ γ ≥ logΛτ (Z, ε
′
n)

log(1/ηε′n)
.

Therefore,

(3.6) α+ γ ≥ lim sup
n→∞

logΛτ (Z, ε
′
n)

log(1/ηε′n)
= β.

From (3.5) and (3.6), we deduce that

β − γ ≤ α ≤ β + γ.

Since γ > 0 is arbitrary, we conclude that α = β, as required.

3.2. Topological entropy and receptive topological entropy as
limits of upper PC-capacities. We now define an appropriate strong
PC-structure determined by the action of a finitely generated semigroup
(G,G1) on a compact metric space X with respect to some closed subset Y
of X and γ > 0. To this end, consider

Fγ(Y ) = {∅} ∪
∞⋃
n=0

Bn(Y, γ) = {∅} ∪ {BG1
n (y, γ) ∩ Y : y ∈ Y, n ∈ N}.

Let
Sγ(Y ) = (Y × N) ∪ {s∅} and Fγ(Y ) = {Us : s ∈ Sγ(Y )},

with U(y,n) = BG1
n (y, γ) ∩ Y for every s = (y, n) ∈ Y × N and Us∅ = ∅.

The utility of the auxiliary set Sγ(Y ) of indices for the definition of the
following functions, which would not be well posed if considered directly
on the set Fγ(Y ), is explained by the following observation. Indeed, the
map Sγ(Y ) → Fγ(Y ) defined by s 7→ Us need not be injective. For ex-
ample, for X = Y , it may happen that BG1

m (x, γ) = BG1
n (x, γ) whenever

Gm = Gn; this may occur with m 6= n, in such a case G is finite. On the
other hand, injectivity may also fail when x 6= y while BG1

n (x, γ) = BG1
n (y, γ)

for some n ∈ N (e.g., in the Cantor set C take two distinct points x, y with
B(x, γ) = B(y, γ)).

Let

(3.7) τγ(Y ) = (Sγ(Y ),Fγ(Y ), ψ, η)

with ψ, η : Sγ(Y )→ R+ defined by

(3.8) ψ(y, n) = 1/n and η(y, n) = e−n for (y, n) ∈ Y × N+,

ψ(y, 0) = η(y, 0) = 1 for every y ∈ Y and ψ(s∅) = η(s∅) = 0.
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An alternative choice is

(3.9) τ∗γ (Y ) = (Sγ(Y ),Fγ(Y ), ψ, η∗)

with
η∗(y, n) = e−|Gn| for (y, n) ∈ Y × N+,

η∗(y, 0) = 1 for every y ∈ Y and η∗(s∅) = 0.
Note that τγ(Y ) and τ∗γ (Y ) share the same Sγ(Y ) and Fγ(Y ), as well as

the same ψ. They differ only in the fourth component η∗ 6= η. Consequently,
they also share the same families Cε(−) and so the same Λτ∗γ = Λτγ .

Now, we are able to show that any infinite finitely generated semigroup
acting on a compact metric space by continuous selfmaps dynamically de-
termines two special PC-structures, which reflects the complexity of this
action.

Lemma 3.8. For a compact metric space X, an infinite finitely generated
semigroup (G,G1) ⊆ Con(X), a closed subset Y of X and γ > 0, the systems

τγ(Y ) = (Sγ(Y ),Fγ(Y ), ψ, η) and τ∗γ (Y ) = (Sγ(Y ),Fγ(Y ), ψ, η∗)

are strong PC-structures on Y .

Proof. Clearly, (P1), (P2) and (P4) are satisfied by τγ(Y ) and by τ∗γ (Y ).
To see that also (P3) is satisfied for both τγ(Y ) and τ∗γ (Y ), note that for every
γ > 0 there exists n ∈ N+ with 1/n < γ, and since Y is compact, there exists
a finite subcover {Bn(y1, γ), . . . , Bn(yk, γ)} ⊆ Bn(Y, γ) of Y , i.e., a finite
G = {(y1, n), . . . , (yk, n)} ⊆ S such that UG = {Bn(y1, γ), . . . , Bn(yk, γ)} is
a cover of Y . Therefore, G ∈ C1/n(Y ), as ψ(s) = 1/n for every s ∈ G.

To simplify notation, in the rest of the section we put

Λγ = Λτγ = Λτ∗γ , Capγ = Capτγ and Cap
∗
γ = Capτγ∗ .

Lemma 3.9. For a compact metric space X, an infinite finitely generated
semigroup (G,G1) ⊆ Con(X), a closed subset Y of X and γ > 0, we have
Λγ(Y, 1/n) = r(n, γ, Y ) for every n ∈ N. Therefore,

Capγ(Y ) = lim sup
n→∞

1

n
logΛγ

(
Y,

1

n

)
,

Cap
∗
γ(Y ) = lim sup

n→∞

1

|Gn|
logΛγ

(
Y,

1

n

)
and hence

(3.10)
Capγ(Y ) = lim sup

n→∞

1

n
log r(n, γ, Y ),

Cap
∗
γ(Y ) = lim sup

n→∞

1

|Gn|
log r(n, γ, Y ).

In particular, the maps γ 7→ Capγ(Y ) and γ 7→ Cap
∗
γ(Y ) are monotone.
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Proof. By the definition of Λγ(Y, 1/n), we have, for every n ∈ N+,

Λγ(Y, 1/n) = inf {|G| : G ∈ C1/n(Y )}

= min
{
|G| : G ⊆ Y × {n}, G finite, Y ⊆

⋃
UG
}

= min
{
|U| : U ⊆ BG1

n (Y, γ), U finite, Y ⊆
⋃
U
}

= r(n, γ, Y ),

where we apply (2.3) in the last equality.
By Theorem 3.7 and the definition of Λγ(Y, ε), we get

Capγ(Y ) = lim sup
ε→0

logΛγ(Y, ε)

log(1/ηε)
= lim sup

n→∞

1

n
logΛγ(Y, 1/n),

Cap
∗
γ(Y ) = lim sup

ε→0

logΛγ(Y, ε)

log(1/η∗ε)
= lim sup

n→∞

1

|Gn|
logΛγ(Y, 1/n).

This proves (3.10).
To prove the last assertion note that for every n ∈ N the map γ 7→

r(n, γ, Y ) is monotone. Hence, the maps γ 7→ 1
n log r(n, γ, Y ) and γ 7→

1
|Gn| log r(n, γ, Y ) are monotone as well (see also Remark 2.3). Now (3.10)
applies.

By the conclusion of Lemma 3.9 and following the idea in [27, §11], we
get the existence of a limit upper PC-capacity:

Definition 3.10. For a compact metric space X, an infinite finitely
generated semigroup (G,G1) ⊆ Con(X) and a closed subset Y of X, let

CPG1(Y ) = lim
γ→0

Capγ(Y ) and CP
∗
G1

(Y ) = lim
γ→0

Cap
∗
γ(Y ).

Let CPG1 = CPG1(X) and CP
∗
G1

= CP
∗
G1

(X).

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. By (3.10), we have

Capγ(Y ) = lim sup
n→∞

1

n
log r(n, γ, Y ).

Hence, by Lemma 2.5, we conclude that

CPG1(Y ) = lim
γ→0

Capγ(Y ) = lim
γ→0

lim sup
n→∞

1

n
log r(n, γ, Y ) = h̃top(G1, Y ).

Analogously, by Lemma 2.5,

CP
∗
G1

(Y ) = lim
γ→0

Cap
∗
γ(Y ) = lim

γ→0
lim sup
n→∞

1

|Gn|
log r(n, γ, Y ) = h̃∗top(G1, Y ).

The second statement of the theorem is an immediate consequence of the
first.
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4. Receptive topological entropy of locally expanding maps and
Hausdorff dimension. In this section, we study a particular class of semi-
groups called locally λ-expanding. The properties of a locally λ-expanding
semigroup (G,G1) acting on a compact metric space X show the interrela-
tions between dynamical systems and fractal dimension theory. In particular,
the receptive topological entropy of (G,G1) is related to the upper box di-
mension of X.

First, following [28] (see also [12, Chapter 2]), recall that the upper box
dimension of a closed subset Z of a compact metric space X is

(4.1) dimB(Z) = lim sup
γ→0

logN(Z, γ)

− log γ

where N(Z, γ) denotes the least number of balls B(x, γ) of radius γ > 0
needed to cover Z (hence, N(Z, γ) = r(0, γ, Z)).

We apply the following inequality (see [12, p. 24]), where dimH(X) de-
notes the Hausdorff dimension of a compact metric space X.

Fact 4.1. Let X be a compact metric space. Then dimH(X) ≤ dimB(X).

The following notion of locally expanding map is inspired by Ruelle [29].

Definition 4.2. Let (X, d) be a compact metric space and f : X → X a
continuous selfmap. For λ > 1, f is locally λ-expanding if there exists ε > 0
such that for every pair of distinct points x, y ∈ X,

d(x, y) < ε =⇒ d(f(x), f(y)) ≥ λ · d(x, y).

In that case we say that λ is an expanding coefficient of f .
Moreover, f is locally expanding if it is λ-locally expanding for some

λ > 1.

For λ > 1, compositions of locally λ-expanding selfmaps are locally λ-
expanding as well, so compositions of locally expanding selfmaps are locally
expanding. Consider the semigroup Le(X) ⊆ Con(X) of all locally expanding
selfmaps of X and note that idX 6∈ Le(X). Moreover, for λ > 1, let Leλ(X)
be the subsemigroup of Le(X) of all locally λ-expanding selfmaps of X;
therefore, for γ ≥ λ > 1,

Leγ(X) ⊆ Leλ(X) ⊆ Le(X).

Lemma 4.3. Let X be a compact metric space and (G,G1) ⊆ Con(X)
an infinite finitely generated semigroup. Let G1 = {idX , f1, . . . , fk} with fi ∈
Leλi(X) for λi > 1 and every i ∈ {1, . . . , k}, and let λ = min{λi : i ∈
{1, . . . , k}}. Let ε > 0 be such that, for every pair of distinct points x, y ∈ X,

d(x, y) < ε =⇒ d(fi(x), fi(y)) ≥ λi · d(x, y)
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for every i ∈ {1, . . . , k}. Then (G,G1) ⊆ Leλ(X) ∪ {idX}, and for every
x ∈ X, n ∈ N and γ ∈ (0, ε),

(4.2) BG1
n (x, γ) ⊆ B(x, γ/λn).

Consequently,

(4.3) N(X, γ/λn) ≤ r(n, γ,X).

Proof. Let y ∈ BG1
n (x, γ); then d(h(x), h(y)) < γ for every h ∈ Gn, so

in particular also d(x, y) < γ < ε. If y = x, then clearly x ∈ B(x, γ/λn).
So assume that y 6= x and take h ∈ Gn. Then there exist fi1 , . . . , fin in
G1 \ {idX} such that h = fi1 . . . fin . Since d(x, y) < r < ε, we have

γ > d(h(x), h(y)) = d(fi1 . . . fin(x), fi1 . . . fin(y))

≥ λi1d(fi2 . . . fin(x), fi2 . . . fin(y)) ≥ · · · ≥
≥ λi1 . . . λind(x, y) ≥ λnd(x, y).

Therefore, d(x, y) < γ/λn. This gives (4.2).
Now (4.3) follows from (4.2) and (2.3).

In the proof of Theorem 1.3 we need the following result.

Lemma 4.4 ([13, Lemma 6.2]). Let φ : R+ → R+ be an unbounded de-
creasing function, δ ∈ (0, 1) and γ > 0. Then

(4.4) lim sup
r→0

log φ(r)

log r
= lim sup

n→∞

log φ(δnγ)

log(δnγ)
.

Obviously, unboundedness of φ is equivalent to limr→0 φ(r) =∞. Clearly,
(4.4) remains true also when φ is bounded, since in that case both limits
superior are limits with common value 0.

Proof of Theorem 1.3. We have to prove that if X is a compact metric
space, λ > 1 and (G,G1) ⊆ Con(X) an infinite finitely generated semigroup
with G1 \ {idX} ⊆ Leλ(X), then

(4.5) h̃top(G1) ≥ (log λ)dimB(X) ≥ (log λ) dimH(X).

Let G1 = {idX , f1, . . . , fk} and let ε ∈ (0, 1) be such that, for every pair of
distinct points x, y ∈ X and for every i ∈ {1, . . . , k},

d(x, y) < ε =⇒ d(fi(x), fi(y)) ≥ λ · d(x, y).
Applying Lemma 4.4 for the first equality and (4.3) for the subsequent in-
equality, we get

dimB(Z) = lim sup
n→∞

logN(X, (γ/λn))

− log(γ/λn)

≤ lim sup
n→∞

log r(n, γ,X)

− log(γ/λn)
=

1

log λ
· lim sup

n→∞

log r(n, γ,X)

n
.
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Therefore,

h̃top(G1) = lim
γ→0

lim sup
n→∞

log r(n, γ,X)

n
≥ (log λ) dimB(X).

This proves the first inequality in (4.5); the second is given by Fact 4.1.

The next example shows that in Theorem 1.3 one cannot replace h̃top(G1)
by h∗top(G1).

Example 4.5. Let X = T be the unit circle in the complex plane. It is
known that dimH(T) = 1. It is also known that the topological entropy of
the map f : T → T given by f(z) = z2 is htop(f) = log 2 (e.g., see [35]). It
is easy to see that f is locally λ-expanding for every λ ∈ (1, 2).

Consider the additive semigroup G = N2
+ = {(m, k) : m, k ≥ 0} with

G1 = {(1, 0), (0, 1)} as a generating set. Then, for every n ∈ N, Gn =
{(m, k) : m, k ≥ 0, m+ k ≤ n}, and so

(4.6) |Gn| ≥ n+ (n− 1) + · · ·+ 1 = n(n+ 1)/2 > n2/2.

Consider the action T : G× T→ T of G on T defined by T ((m, k), z) =
z2(m+k) = fm+k(z) for all (m, k) ∈ G and z ∈ T (that is, T ((0, 1),−) = f =
T ((1, 0),−)). Clearly, for every λ ∈ (1, 2), this action is locally λ-expanding,
that is, T ((m, k),−) is locally λ-expanding for every (m, k) ∈ G.

Given γ > 0 and n ∈ N, it is easy to see that every (n, γ)-spanning
set for T with respect to f is an (n, γ)-spanning set for T with respect to
the action T of G and its set of generators G1, and vice versa. This implies
that htop(G) = htop(G1) = log 2. A similar argument using (4.6) shows that
h∗top(G1) = 0. Thus, for any λ ∈ (1, 2),

h∗top(G1) = 0 < (log λ) dimH(T) = log λ ≤ log 2 = htop(G1).
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