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Abstract

The main purpose of this thesis is to analyse the state-of-art in the fields of quantum
programming languages and model checking of quantum algorithms, and to propose
improvements involving a possible integration of the two aforementioned areas, which
has not previously been provided in the existing literature.

Using as a starting point the quantum programming language Quipper and the
quantum model checking system QPMC, we developed a tool, called Entangλe, for the
translation of Quipper programs, whose semantics is given in terms of quantum circuits,
into QPMC models, whose semantics is given in terms of superoperator weighted quan-
tum Markov chains. Entangλe provides an ad–hoc verification tool for Quipper code,
which we used in order to simulate and formally analyze quantum protocols.

In order to have a more complete framework, we then investigated recursive quantum
programs and we implemented a module allowing to translate tail-recursive Quipper
code as well. In order to perform such a translation, we developed an extended version
of Entangλe, from a fragment of Quipper, called Quip–E, to the QPMC model checker.
This framework allows the verification of both recursive and non-recursive quantum
programs.

We tested the improved version of Entangλe on several different quantum algorithms,
including an implementation of the quantum–switch based on the Grover’s diffusion
operator, and the BB84 protocol for quantum key distribution. We also explored possible
uses of Entangλe in order to verify quantum properties such as entanglement.

As a future work we consider a possible improvement of Entangλe, that we called
Quipks, and which is currently under development. We suggest that this method will
allow an abstract, more efficient approach in the properties evaluation of a quantum
protocol.

The experience in designing a quantum model checker led us to the investigation
of new data structures for the representation of multipartite entanglement, which we
introduce the final part of the thesis. Such data structures has been proposed in terms
of evolving hypergraphs, called Evolving Entangled Hypergraphs (EEHs), which we
suggest can represent quantum protocols where entanglement is an emergent behaviour
by encoding the information of both its spatial and the temporal (evolution) parts. As
a future work, we plan to define an operational semantics in terms of EEHs, and to use
them as models to perform quantum spatio–temporal model checking.
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1
Introduction and Motivation

Classical computation, in its infancies, was mainly involved with hardware, and any at-
tempt to specify an early–computer algorithm was an intriguing sequence of hardware–
related steps, e.g., by means of punching cards and/or writing low level machine code.
During this period, computation was quite context–dependent, since the same program
was not guaranteed to be portable on different machines. Moreover, the specification
languages were difficult to manage and a prior knowledge of the physical details of the
machine would be needed to write programs correctly. Later, the theory of computa-
tion allowed to abstract from the underlying physical model, by focusing more on the
common characteristics that each machine had and providing a way to write programs
and algorithms in a more intuitive way.

The specification of algorithms in human–readable form and their translation into
machine executable code is one of the main goals of high–level programming languages.
Nowadays we are able to develop and test computer programs without any knowledge of
the underlying physical hardware, which becomes completely transparent. Programming
languages, which are endowed with a set mathematical and logical rules, allow to design
and implement algorithms which are completely independent from the computer where
they run on; compilers are now responsible of the translation of the source code into a
lower level, more performing version for any specific hardware architecture.

In the late 80’s a new model of computation was proposed by Feynman [38], which
investigated how to simulate a quantum system by means of a classical computer. In
principle, any quantum system can, at the cost of an exponential complexity growing
with the size of the quantum system, be simulated by a classical computer. Later, Feyn-
man on the one hand and Deutsch [30] on the other, proposed, in different ways, the
idea of a quantum computer. The first model of quantum computer was the quantum
Turing machine, a direct generalisation of the classical one: the head states and the tape
symbols are represented by orthogonal quantum states, the head position corresponds
to a quantum observable with integer spectrum, and the transition function is a unitary
transformation [93]. Later, it was introduced the quantum circuit model, i.e., a gen-
eralisation of the classical circuit model which has become a widely used notation for
describing quantum algorithms. Similar to the classical case, even if quantum circuits
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have a simple mathematical description, they could be very difficult to realise in prac-
tice without a deep knowledge of the essential features of the physical phenomena under
consideration. The applications of quantum computers and the difficulty to separate the
underlying architecture from the logical behaviour of the algorithms, justify the need
for tools providing an abstraction from a low–level description of quantum “programs”
and protocols, by allowing programmers to use a quantum computer without knowing
the laws of quantum physics. A similar tool might be regarded as a quantum program-
ming language. There have been many attempts to develop a quantum programming
language, usually relying on the quantum circuit model: we can cite, [94], Quipper [44]
and QCL [65], among other examples of quantum programming languages.

Classically, the introduction of high–level formalisms allows to define and automati-
cally verify formal properties of algorithms by abstracting away from low–level physical
details. In order to assess the correctness of a given algorithm, formal verification
techniques have been introduced; they are an important tool for the validation and
verification of programs in classical computer science. Experimental verification (i.e.,
testing) is not as precise as formal methods, since an algorithm might be tested on
several cases, but there is no assurance that each possible error is avoided –in particu-
lar if the tests are not well developed. By using formal verification techniques such as
Hoare logics and model checking, among others, it is possible to test the properties of an
algorithm by evaluating all possible cases, since we unfold all its possible computation
paths. In the context of quantum computation, which is based on the counter–intuitive
laws of quantum physics, the possibility of testing quantum algorithms becomes very
important, since in their specification might be present errors difficult to find without a
thorough knowledge of the restrictions imposed by the underlying model. In particular,
protocols for quantum cryptography, which are deeply investigated at the moment due
to their applications on the secure transmission of information, require certifications of
correctness in order to be used.

The main aim of this thesis is to provide a tool allowing to specify and test quantum
algorithms and protocols. Indeed, at present quantum algorithms specification and their
formal verification are two deeply investigated fields which provide on the one hand a
class of programming languages and, on the other hand some verification tools, but
there is a lack of an integrated framework allowing to perform both the tasks. Due to
this lack, we isolated two suitable tools: the functional programming language Quipper
[84] and the quantum model checking system QPMC [35], and we decided to use them
as a starting point for the development of a framework providing both a high–level
programming style and a formal verification tool. In details, Quipper is a quantum
programming language based on the Haskell functional programming language, that
allows to build quantum circuits by describing them in a simple programming style
and provides the possibility to simulate the circuit. QPMC is a model checker for
quantum protocols that uses an extension of PCTL, a probabilistic temporal logic, to
verify properties of quantum protocols. Quipper has been used to program a set of non–
trivial quantum algorithms, it is supported by a community and provides a high–level
programming environment based on Haskell. Unfortunately, Quipper lacks of a built–in
formal verification tool. On the other hand, QPMC supports formal verification but it
is based on a low–level specification language. Hence, we decided to build a tool, i.e.,
Entangλe, which acts as a bridge between them by isolating a subclass of Quipper, that
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we called Quip–E, and translating it into the QPMC formalism, providing an ad–hoc
verification framework to Quip-E programmers. The development of the aforementioned
translation framework has been a first step in the direction of providing a complete
programming and verification framework for quantum computing. For this reason we
are currently working on improvements from both the quantum programming language
and the quantum model–checker perspective.

1.1 Structure of the Thesis

The thesis is structured into three parts; the first one is devoted to introduce the quan-
tum formalism and the model checking one. Since this thesis is the output of an inter-
disciplinary work between computer science and physics, we will provide the suitable
instruments for understanding what follows, both from a computer science and a physics
perspective. The second part is devoted to the analysis of the state of the art in the
fields of quantum programming and quantum model checking, and provides a thorough
description of Quipper and QPMC. The third part is devoted to the presentation of
my contributions in the aforementioned fields, together with a parallel work on the
representation of tripartite entanglement, which is still in its infancies.
The Chapters are organised as follows:

Chapter 2 provides a short introduction to the quantum formalism used throughout
the thesis, by presenting an essential mathematical description of some of the concepts
of quantum mechanics. First, we recall some basic linear algebra, which will be used in
the formulation of the postulates of quantum mechanics. Then, we will briefly introduce
the notion of quantum information theory, quantum information and entanglement. The
Chapter ends with a description of the main quantum algorithms and protocols used in
the thesis.

Chapter 3 presents at an high–level the concept of model checking, a formal verifica-
tion technique used to assess the correctness of algorithms. We will define all the three
steps involved in the model checking process and the concept of temporal logic will be
introduced.

Chapter 4 analyses the state–of–art in the fields of quantum programming languages,
by briefly presenting some of the milestones. Then it focuses on Quipper, whose main
features are presented, together with some examples. The second part of the Chapter
is devoted to the analysis of the milestones in the field of quantum program verification
techniques. The Chapter ends with an in depth presentation of QPMC, and of its
semantics given in terms of quantum Markov chains.

Chapter 5 shows the framework, called Entangλe, that we implemented in order to
translate Quipper–like programs into QPMC structures. The first part is devoted to the
formalisation of the main structures used, showing how to translate quantum circuits
into quantum Markov chains. The second part of the Chapter extends the presented
tool, by allowing the translation of tail–recursive quantum programs. In this section
we isolated a Quipper recursive fragment, and we defined its syntax and operational
semantics. In the third part we present some examples of how to use Entangλe in order
to implement and translate some known quantum algorithms and protocols in their
recursive (when necessary) and non–recursive version: e.g., Deutsch–Jozsa, instances of
Grover’s search, teleportation and quantum key distribution. Some improvements, e.g.,
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a faster algorithm for computing the matrix element of a permutation operator, and an
optimised version of the framework (currently still in its infancies), are discussed at the
end of the Chapter.

Chapter 6 proposes a new structure to represent entanglement in multipartite sys-
tems, namely the evolving entangled hypergraphs. This technique, which by now has
been proposed only in the two and tripartite case, is based on the classification pro-
posed in [42] and it investigates an alternative to QMCs when dealing with entangled
systems. Nevertheless, we emphasise that this approach is still under investigation.
First, a classification of tripartite entangled states is given in terms of entangled hyper-
graphs, which later in the Chapter will be used to evaluate whether entanglement arises
or decays during a computation.

Chapter 7 ends the thesis.



2
Quantum Computation and

Information

The subjects of quantum computation and quantum information are related to the study
of information processing tasks achieved through quantum mechanical systems. For
this reason, the laws of quantum mechanics are at the basis of quantum computation
and quantum information. Born in the first years of 1900, quantum mechanics is a
fundamental theory in physics aiming at the the description of nature at its smallest
scales. Quantum mechanics has been formulated due to the difficulty to deal with
observations which could not be explained by the laws of classical physics, and then it
evolved into a mathematical formalism. Quantum mechanics is, at present, the most
accurate and complete description of nature.

In this Chapter we explore the basic notions which are needed in order to understand
in a satisfactory way the research contribution of the thesis, for this reason we won’t delve
into a more in–depth description of quantum mechanics, but we provide an introduction
about quantum system and list the notation and formalisms used to describe it.

Section 2.1 begins with an high level description of the basic formalisms of quantum
mechanics. Then, we can find a review of linear algebra and the Dirac notation. The
final part of this Section describes the basic postulates of quantum mechanics. Section
2.2.1 explores the notion of Quantum Computation, quantum bits (herein qubits) and
quantum gates and circuits. Section 2.2.3 briefly describes what Quantum Information
is, together with the notion of entanglement and some applications, i.e., quantum cryp-
tography and teleportation. The Chapter ends with a short presentation of the main
quantum algorithms used in the following part of this work.

Similar to the classical case, in quantum mechanics we should provide a notion of
state of a quantum system, which will evolve according to certain rules, of observable and
of measurement. We will describe two formalisms of quantum mechanics that provide a
description for the aforementioned notions, namely the state vector formalism and the
density operator one. The second one enriches the first by allowing to treat also a larger
class of quantum states and operations.
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2.1 General formalisms of Quantum Mechanics

Before we deal with formalisms and rules governing the quantum world we shall give a
light review of basic linear algebra that will be used in the context of quantum computa-
tion and information; in this way even with no prior knowledge of quantum mechanics,
the reader can understand what follows.

The following definitions are presented using the Dirac (or bra-ket) notation, widely
used in physics to describe quantum systems.

We used [52, 64, 60] as references, which we suggest also for a more in–depth study.

2.1.1 The space Cn

The aim of this Section is to describe the properties of Cn, i.e., the set n–tuples of
complex numbers. It will represent the prototypical finite–dimensional Hilbert space
associated to the quantum systems that we will consider in the following.

Cn ::=

{⎛⎜⎝ψ1

...
ψn

⎞⎟⎠⏐⏐⏐ψi ∈ C, i = 1, . . . , n

}
(2.1)

Each element of such space can be represented by means of a more compact notation,
known as Dirac notation, e.g.:

|ψ⟩ ::=

⎛⎜⎝ψ1

...
ψn

⎞⎟⎠
where |ψ⟩ is called ket.

To each ket |ψ⟩ it is uniquely associated an object ⟨ψ|, called bra, represented by an
one–row matrix as follows:

⟨ψ| ::=
(
ψ∗
1 , . . . , ψ

∗
n

)
where ψ∗

i are the complex conjugates of the numbers ψi.
1

Cn is proved to be a complex linear space with respect to the two following compo-
sition laws, a vector sum and a scalar multiplication with a complex number α, which
are defined as follows:

|ψ⟩+ |φ⟩ =

⎛⎜⎝ψ1

...
ψn

⎞⎟⎠+

⎛⎜⎝φ1

...
φn

⎞⎟⎠ ::=

⎛⎜⎝ψ1 + φ1

...
ψn + φn

⎞⎟⎠
α|ψ⟩ = α

⎛⎜⎝ψ1

...
ψn

⎞⎟⎠ ::=

⎛⎜⎝αψ1

...
αψn

⎞⎟⎠ (2.2)

1Given a complex number z = x+ iy, its complex conjugate is z∗ = x− iy
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Definition 2.1.1 (Inner product space). Given the complex linear space Cn, we can
define an inner product as a function, denoted as ⟨·|·⟩ : Cn × Cn → C, mapping two
vectors |ψ⟩ and |φ⟩ ∈ Cn, to a complex number, as follows:

⟨ψ|φ⟩ =
(
ψ∗
1 , . . . , ψ

∗
n

)⎛⎜⎝φ1

...
φn

⎞⎟⎠ ::=
∑
j

ψ∗
jφj

Such inner product can be proven to satisfy the following properties:

1. Linearity on the second argument:

⟨ψ|(α|ϕ⟩+ β|χ⟩) = α⟨ψ|ϕ⟩+ β⟨ψ|χ⟩

where α, β ∈ C and |ϕ⟩, |χ⟩ ∈ Cn;

2. ⟨ψ|φ⟩ = ⟨φ|ψ⟩∗

3. ⟨ψ|ψ⟩ ≥ 0 with equality iff |ψ⟩ = 0⃗
where 0⃗ is the null vector in Cn, i.e., the vector whose entries are all zeroes.

Two vectors |ψ⟩ and |ϕ⟩ ∈ Cn such that ⟨ψ|ϕ⟩ = 0 are said to be orthogonal.
A complex linear space Cn endowed with an inner product is know as a inner product

space.
The inner product space Cn can be equipped with a norm induced by the inner

product as follows:

∥|ψ⟩∥ ::=
√
⟨ψ|ψ⟩ (2.3)

It is a map ∥·∥ : Cn → R, which satisfies the following properties:

1. ∥|ψ⟩∥ = 0 ⇔ |ψ⟩ = 0⃗

2. ∥α|ψ⟩∥ = |α| ∥|ψ⟩∥ ∀α ∈ C,∀|ψ⟩ ∈ Cn

3. ∥|ψ⟩+ |φ⟩∥ ≤ ∥|ψ⟩∥+ ∥|φ⟩∥ ∀|ψ⟩, |φ⟩ ∈ Cn

A vector whose norm equals 1, i.e., ∥|ψ⟩∥ = 1, is said to be normalised. Moreover, a
set of vectors {|ϕ1⟩, . . . , |ϕk⟩} is an orthonormal set if ⟨ϕi|ϕj⟩ = δij for i, j = 1, . . . , k.2

A central notion in the formalism of quantum mechanics is the one of Hilbert space.
In the case of finite–dimensional linear vector spaces an Hilbert space is exactly the
same thing as an inner product space and the two terms will be interchangeable. On
the contrary, in the infinite–dimensional case an Hilbert space is an inner product space
which satisfies two additional contraints, namely completeness and separability. How-
ever, since in quantum computation and quantum information only finite–dimensional
inner products spaces are considered, we won’t define such constraints.

2 δij , also known as Kronecker delta, is defined as follows:

δij

{
1 if i = j

0 if i ̸= j
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The dimension of an inner product space can be increased by means of an operation,
called tensor product, which can be intuitively be regarded as a composition of two inner
product spaces and it is described in the following.

It is possible to combine two Hilbert spaces Cn and Cm in order to obtain a larger
Hilbert space Cn ⊗ Cm by means of the operation ⊗ called tensor product. The full
definition of the tensor product operation is quite complex but for our purposes we will
limit to say that, given the vectors |ψ⟩ ∈ Cn and |φ⟩ ∈ Cm their tensor product |ψ⟩⊗|φ⟩
is a vector of the space Cn ⊗Cm. The tensor product satisfies the following properties:

1. |ψ⟩ ⊗
(
α|φ⟩+ β|χ⟩

)
= α

(
|ψ⟩ ⊗ |φ⟩

)
+ β

(
|ψ⟩ ⊗ |χ⟩

)
2.

(
α|φ⟩+ β|χ⟩

)
⊗ |ψ⟩ = α

(
|φ⟩ ⊗ |ψ⟩

)
+ β

(
|χ⟩ ⊗ |ψ⟩

)
Moreover, in the tensor product Hilbert space Cn⊗Cm an inner product can be defined,
by resorting to the inner products in Cn and Cm respectively, as:

⟨ψ1| ⊗ ⟨ψ2| |φ1⟩ ⊗ |φ2⟩Cn⊗Cm ::= ⟨ψ1|φ1⟩Cn · ⟨ψ2|φ2⟩Cm (2.4)

The tensor product Hilber space Cn⊗Cm can be proven to be isomorphic to the Hilbert
space Cnm.

2.1.2 Operators in Cn

Definition 2.1.2 (Linear Operator). Let Cn be a Hilbert space. A map L̂ : Cn → Cn
is a linear operator if it acts linearly on the input, i.e.:

L̂(α|ψ⟩+ β|φ⟩) ::= αL̂|ψ⟩+ βL̂|φ⟩ (2.5)

∀α, β ∈ C and ∀|ψ⟩, |φ⟩ ∈ Cn

An example of a trivial linear operator is the identity operator, denoted by I and defined
as :

I|ψ⟩ = |ψ⟩ ∀|ψ⟩ ∈ H (2.6)

Linear operators L̂1 and L̂2 can be summed, multiplied by a scalar and composed in
order to obtain other linear operators such as L̂1 + L̂1, αL̂1 and L̂1L̂2 as follows:

(L̂1 + L̂2)|ψ⟩ ::= L̂1|ψ⟩+ L̂2|ψ⟩ ∀|ψ⟩ ∈ Cn (2.7)

αL̂1|ψ⟩ ::= α(L̂1|ψ⟩) ∀|ψ⟩ ∈ Cn ∀α ∈ C (2.8)

(L̂2L̂1)|ψ⟩ ::= L̂2(L̂1|ψ⟩) ∀|ψ⟩ ∈ Cn (2.9)
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Definition 2.1.3 (Eigenvalue equation). Given a linear operator L̂, any nonzero vector
|ℓ⟩ ∈ Cn is an eigenstate of L̂ with eigenvalue λ ∈ C if the following equation is satisfied:

L̂|ℓ⟩ = λ|ℓ⟩ (2.10)

An eigenvalue λ is said to be n–degenerate if there exist n linearly independent eigen-
vectors {|ℓ1⟩, . . . , |ℓn⟩} associated to it. It can be proven that any linear combination
with complex coefficients ci of the eigenvectors |ℓi⟩ is an eigenvector of L̂ with the same
eigenvalue λ. In fact, due to the linearity of L̂:

L̂
( n∑
i=1

ci|ℓi⟩
)
=

n∑
i=1

ciL̂|ℓi⟩ =
n∑
i=1

ciλ|ℓi⟩ = λ
( n∑
i=1

ci|ℓi⟩
)

(2.11)

Therefore, the eigenvectors associated to a given eigenvalue λ form a linear subspace
called eigenspace associated to λ.

Matrix representation of a linear operator: Linear operators in L̂ on Cn can
be represented in terms of square matrices. There exists a one-to-one correspondence
between linear operators in Cn and the set of n× n complex matrices Mn(C).

A linear operator L̂ has a matrix representation L which depends on the choice of
basis set for the space Cn. In fact, given an orthonormal basis {|ϕi⟩} ∈ Cn, the matrix
associated to the operator L̂ is:

L =

⎛⎜⎝L11 . . . L1,n

...
. . .

...
Ln1 . . . Lnn

⎞⎟⎠ such that Lij ::= ⟨ϕi|L̂|ϕj⟩ (2.12)

The action of a linear operator L̂ onto an arbitrary |ψ⟩ ∈ Cn turns out to be equiv-
alent to the usual multiplication of a matrix by a column vector:

L|ψ⟩ =

⎛⎜⎝L11 . . . L1n

...
. . .

...
Ln1 . . . Lnn

⎞⎟⎠
⎛⎜⎝ψ1

...
ψn

⎞⎟⎠ ::=

⎛⎜⎝
∑
j L1jψj
...∑

j Lnjϕj

⎞⎟⎠ (2.13)

Any operator is uniquely determined by its matrix elements.

Tensor product of linear operators: If Â and B̂ are linear operators acting on the
Hilbert spaces Cn and Cm respectively, the tensor product linear operator Â⊗B̂, acting
on Cn ⊗ Cm, is first defined on product vectors by:

(Â⊗ B̂)|ψ⟩ ⊗ |φ⟩ ::= Â|ψ⟩ ⊗ B̂|φ⟩ ∀ |ψ⟩ ∈ Cn,∀ |φ⟩ ∈ Cm (2.14)

and then extended to sum of tensor product vectors in a linear way. The matrix repre-
sentation of Â ⊗ B̂ can also be obtained by using the matrix representations of Â and
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B̂; in fact:

A⊗B =

⎛⎜⎜⎜⎝
A11B A12B . . . A1nB
A21B A22B . . . A2nB

...
. . .

...

An1B̂ An2B̂ . . . AnnB̂

⎞⎟⎟⎟⎠ (2.15)

where AijB is the matrix obtained by multiplying each entry of the matrix B by the
complex number Aij .

Adjoint operators: Given a linear operator L̂ : Cn → Cn, the adjoint (or Hermitian
conjugate) of L̂ is the operator L̂† : Cn → Cn defined by the following condition on its
matrix elements:

⟨ψ|L̂†|ϕ⟩ = ⟨ϕ|L̂|ψ⟩∗ (2.16)

for all |ψ⟩, |ϕ⟩ ∈ Cn. The adjoint operator L̂† has matrix elements (L†)ij = L∗
ji. In fact,

given an orthonormal basis set {|ϕi}:

(L†)ij = ⟨ϕi|L̂†|ϕj⟩ = ⟨ϕj |L̂|ϕi⟩∗ = L∗
ji (2.17)

The operation of taking the adjoint of an operator satisfyies the following properties:

• (L̂1 + L̂2)
† = L̂†

1 + L̂†
2;

• (L̂†)† = L̂;

• (αL̂†) = α∗L̂†;

• (L̂1L̂2)
† = L̂†

2L̂
†
1.

Hermitian operators A linear operator L̂ : Cn → Cn, is Hermitian, or self adjoint,
if it coincides with its adjoint, i.e.:

L̂ = L̂† (2.18)

as a consequence, the matrix elements of an Hermitian operator L̂ possess the following
property:

L∗
ij = Lji (2.19)

⟨ψ|L̂|ϕ⟩ = ⟨ϕ|L̂|ψ⟩∗ (2.20)

for all |ψ⟩, |ϕ⟩ ∈ Cn.

Unitary operators
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Definition 2.1.4 (Inverse operator). Let L̂ be an operator in Cn, we denote with
R = {L̂|ψ⟩ : |ψ⟩ ∈ Cn} the range of L̂. The operator L̂−1 on R is an inverse operator
if the following holds:

L̂L̂−1|ψ⟩ = |ψ⟩ ∀|ψ⟩ ∈ R (2.21)

L̂−1L̂|ψ⟩ = |ψ⟩ ∀|ψ⟩ ∈ H (2.22)

from which follows that L̂L̂−1 = L̂−1L̂ = I.

Definition 2.1.5 (Unitary operator). An operator Û on H is a unitary operator if its
inverse is equal to its adjoint, i.e, Û−1 = Û†:

Û†Û = Û†Û = I (2.23)

Projectors In order to introduce the projection operators we need to define two pre-
liminary objects, i.e., orthogonal complement and orthogonal projection.

Definition 2.1.6 (Orthogonal complement). Let S be a subspace of an Hilbert space
Cn. A vector |ψ⟩ ∈ Cn is orthogonal to S if, for all |ω⟩ ∈ S, ⟨ψ|ω⟩ = 0. The space
S⊥ = {|ψ⟩ ∈ Cn|⟨ψ|ω⟩ ∀|ω⟩ ∈ S} is called orthogonal complement of S.

Two linear subspaces S1 and S2 are orthogonal, i.e., S1⊥S2 if the following condition
holds:

⟨ψ|ω⟩ = 0 ∀|ψ⟩ ∈ S1 ∀|ω⟩ ∈ S2 (2.24)

Theorem 2.1.1 (Orthogonal projection). Let S be a linear subspace of H, then each
vector |χ⟩ ∈ H can be uniquely decomposed into |χ⟩ = |ψ⟩ + |ω⟩, with |ψ⟩ ∈ S and
|ω⟩ ∈ S⊥.

Definition 2.1.7 (Projection operators). Let S be a linear subspace of Cn, and |χ⟩ ∈
Cn, |ψ⟩ ∈ S and |ω⟩ ∈ S⊥ respectively. Given |χ⟩ = |ψ⟩ + |ω⟩, a linear operator
P̂S : Cn → Cn is a projection operator on S, and it is defined as follows:

P̂S |χ⟩ ::= |ψ⟩ (2.25)

Given a complete orthonormal basis set {|ψi⟩} for S, the projection operator on S
is defined as:

P̂S |χ⟩ :: =
dim(S)∑
i=1

⟨ψi|χ⟩|ψi⟩

=

dim(S)∑
i=1

|ψi⟩⟨ψi| |χ⟩ (2.26)

From Eq.2.26 follows that P̂S =
dim(S)∑
i=1

|ψi⟩⟨ψi|.

The projection operator onto the subspace S⊥ is P̂S⊥ ::= I− P̂S .
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Theorem 2.1.2. An operator P̂ is a projection operator if and only if the following
conditions hold:

• P̂ 2 = P̂ idempotent;

• P̂ † = P̂ hermitian.

The only eigenvalues of a projection operator are 0 and 1.

Outer Product: a useful way to represent linear operators is known as the outer
product representation. Given two vectors |ψ⟩, |φ⟩ ∈ Cn, we define |ψ⟩⟨φ| to be the
linear operator whose action on a generic vector |χ⟩ ∈ Cn is defined as follows:

(|ψ⟩⟨φ|)|χ⟩ ::= |ψ⟩⟨φ|χ⟩ = ⟨φ|χ⟩|ψ⟩ (2.27)

i.e., the result of the operator |ψ⟩⟨φ| acting on |χ⟩ is equal the multiplication of the
vector |ψ⟩ by the complex number ⟨φ|χ⟩.

The linear combinations of outer product operators is given in the usual way, such
that Eq.2.27 becomes: ∑

i

αi(|ψi⟩⟨φi|)|χ⟩ ::=
∑
i

αi|ψi⟩⟨φi|χ⟩ (2.28)

Given an orthonormal basis set {|i⟩} ∈ Cn, such that an arbitrary vector |ψ⟩ ∈ Cn
can be written as |ψ⟩ = ∑

i αi|i⟩ with αi ∈ C and ⟨i|ψ⟩ = αi:(∑
i

|i⟩⟨i|
)
|ψ⟩ =

∑
i

|i⟩⟨i|ψ⟩ =
∑
i

αi|i⟩ = |ψ⟩ (2.29)

As a consequence, we can state the completeness relation as follows:∑
i

|i⟩⟨i| = I (2.30)

Given two vectors |ψ⟩, |φ⟩ ∈ Cn, the matrix representation of the outer product can
be given as follows:

|ψ⟩⟨φ| =

⎛⎜⎝ψ1

...
ψn

⎞⎟⎠(
ϕ∗1, . . . , φ

∗
n

)
=

⎛⎜⎜⎜⎝
ψ1φ

∗
1 ψ1φ

∗
2 . . . ψ1φ

∗
n

ψ2φ
∗
1 ψ2φ

∗
2 . . . ψ2φ

∗
n

...
. . .

...
ψnφ

∗
1 ψ2φ

∗
2 . . . ψnφ

∗
n

⎞⎟⎟⎟⎠ (2.31)

Spectral decomposition for hermitian operators In this paragraph we recall two
theorems about hermitian operators which will be used in the following.

Theorem 2.1.3. The eigenvalues of an hermitian operator L̂ are real numbers. Eigen-
states corresponding to two different eigenvalues are orthogonal.

Theorem 2.1.4 (Spectral decomposition). Let L̂ be an hermitian operator over Cn sat-
isfying the eigenvalue equation L̂|ℓi⟩ = λi|ℓi⟩. The set of all the eigenstates of L̂ forms
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an orthonormal basis set for Cn. Thus any vector |ψ⟩ ∈ Cn can be expanded as follows:

|ψ⟩ =
∑
i

⟨ℓi|ψ⟩|ℓi⟩

(2.32)

It can also be proved that the hermitian operator L̂ possesses a spectral representa-
tion in terms of the projectors P̂i = |ℓi⟩⟨ℓi|:

L̂ =
∑
i

λiP̂i (2.33)

2.1.3 Postulates of quantum mechanics

In this Section we will provide the mathematical laws by which the following questions,
by now considered just in an intuitive way, find an answer:

• How is described the state of a quantum system?

• Given this state, how can we predict the results of the measurement of a physical
quantity?

• How does the state of the system evolve in time?

Such laws, called postulates of quantum mechanics will be summarised in the follow-
ing, giving a definition for the state space, observables, evolution and measurement of
a quantum system.

Postulates in the State Vector Formalism

Postulate 1 (States). Each physical system S is associated to an Hilbert space H, and
each state of a physical system is completely described by a normalised vector |ψ⟩ ∈ H,
i.e., ∥|ψ⟩∥ = 1.

Comment. A physical system is the part of nature we want to investigate and a state
represents the most complete mathematical description of its properties.

The normalisation condition we impose to the state vectors is related, as we will
see, to the peculiar statistical interpretation of the results of measurement processes in
quantum mechanics.

Postulate 2 (Observables). Each physical observable O is associated to an hermitian
operator Ô on the Hilbert space H, and the only possible outcomes of a measurement
of the observable are the (real) eigenvalues ωi of the corresponding hermitian operator.
If the state of the system is described by the vector |ψ⟩, then the probability that a
measurement of O gives the result ωi is:

P|ψ⟩(O = ωi) = |⟨oi|ψ⟩|2 (2.34)

where |oi⟩ is the normalised eigenstate of Ô with respect to the eigenvalue ωi.
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Comment. An observable is any property of a physical system that can be measured,
such as position, momentum, energy, and spin. The measurement of an observable is a
physical process yielding in output a real number, which represents the value possessed
by that observable after the measurement has been performed. On the contrary of what
happens in classical mechanics, the result of a measurement process of an observable in
quantum mechanics is generally unpredictable, and we can only determine the probabil-
ity of one of its possible outcomes. The only situation in which the prediction is certain
is the one in which the physical system is described by an eigenstate of the observable,
i.e.:

P|ψ⟩(O = ωi) = 1 ⇔ |ψ⟩ ≡ |oi⟩ (2.35)

We note that in stating the Postulate we have limited ourselves, for simplicity, to
considering a nondegenerate observable, where there is only one eigevector associated
to each of its eigenvalues and the probability in Eq. 2.34 can be rewritten as:

P|ψ⟩(O = ωi) = |⟨oi|ψ⟩|2 = ⟨oi|ψ⟩∗⟨oi|ψ⟩ = ⟨ψ|oi⟩⟨oi|ψ⟩ = ⟨ψ|P̂ωi
|ψ⟩ (2.36)

where P̂ωi is the projector operator onto the one–dimensional manifold spanned by |oi⟩.
Hence, quantum mechanical probabilities of the measurement outcomes of an observable
can always be expressed as mean values of projection operators.

Postulate 3 (Evolution equation). The evolution of a closed quantum system is de-
scribed by a unitary transformation, that is, if |ψ(t0)⟩ ∈ H is the state of a physical
system at time t0, then the state vector at any later time t > t0 is:

|ψ(t)⟩ = Û |ψ(t0)⟩ (2.37)

where Û is a unitary operator which depends on t0 and t.

Comment. The quantum mechanical evolution of a state is linear, deterministic and
reversible. It is linear because it has to preserve the linear structure of H, so that linear
combinations of states evolves to linear combinations of the evoluted states:

Û(α|ψ1(t0)⟩+ β|ψ2(t0)⟩) = αÛ |ψ1(t0)⟩+ βÛ |ψ2(t0)⟩ = α|ψ1(t)⟩+ β|ψ2(t)⟩ (2.38)

It is deterministic because, given the initial state |ψ(t0)⟩ and a unitary operator Û
there exist a unique state vector |ψ(t)⟩ of Eq. 2.37, which describes the system at each
time t > t0.

Finally, it is reversible because, given the state |ψ(t)⟩, one can always retrieve the
initial state |ψ(t0)⟩ before the evolution induced by Û occurred; in fact, |ψ(t0)⟩ =
Û−1|ψ(t)⟩.

Postulate 4 (State reduction). Suppose that |ψ(t)⟩ is the state vector associated to
the physical system at a certain time t, when a measurement of the observable O is
performed and the outcome ωi is obtained. Then, the state vector immediately after the
measurement occurred is the eigenstate |oi⟩ associated to the eigenvalue ωi.
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|ψ(t)⟩ O=ωi−−−−→ |oi⟩ (2.39)

Comment. The state reduction represents another kind of physical evolution besides the
unitary evolution described in the Postulate 3, which takes place when a measurement
of an observable is performed onto a physical system. Such an evolution is nonlinear,
nondeterministic and irreversible.

It is nonlinear because a linear combination of state vectors is mapped into a state
which is not, in general, the linear combination of the evolved initial states.

It is nondeterministic because the resulting state, after the measurement has taken
place, could be any of the eigenstates of the observable. The only situation in which
such evolution is deterministic is in the case in which the state of the system is already
an eigenstate of the measured observable. In this case no modification of the state takes
place.

Finally, it is irreversible since, through state reduction, all states non–orthogonal to
|oi⟩ could have produced the resulting eigenstate |oi⟩.

The state reduction of Eq. 2.39 could be equivalently described by using the following
mapping, using the projection operator P̂ωi = |oi⟩⟨oi|:

|ψ(t)⟩ O=ωi−−−−→ P̂ωi
|ψ(t)⟩

∥P̂ωi |ψ(t)⟩∥
(2.40)

In fact:

P̂ωi
|ψ(t)⟩

∥P̂ωi
|ψ(t)⟩∥

=
|oi⟩⟨oi|ψ(t)⟩√
|⟨oi|ψ(t)⟩|2

=
|oi⟩⟨oi|ψ(t)⟩
|⟨oi|ψ(t)⟩|

= eiα(t)|oi⟩ (2.41)

which is completely equivalent to the state |oi⟩ given by Eq. 2.39, apart from the
physically irrelevant phase factor eiα(t).

Postulates in the Density Matrix Formalism

In this Section we will discuss another possible formalism, which is mathematically
equivalent to the state vector approach and that is more convenient when dealing with
quantum systems whose state is not completely known.

Let us consider a quantum system which, due to a classical lack of information, can
be in one of m, not necessarily orthogonal, possible states |ψ1⟩, . . . , |ψm⟩ with respective
classical statistical weights p1, . . . , pm that quantify our ignorance about the real state of
the system, which can be one out of m states. In this situation, the state of the quantum
system is not described by a state vector but by an operator, known as density operator
which is defined as follows:

ρ ::=

m∑
i=1

pi|ψi⟩⟨ψi| (2.42)
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where the |ψi⟩ are normalised states, and
∑∞
i=1 pi = 1. ρ can be diagonalised, hence

Eq. 2.42 becomes:

ρ ::=

m∑
i=1

ri|ri⟩⟨ri| (2.43)

where the ri and |ri⟩ are, respectively, the eigenvalues and eigenstates of ρ.

Given an orthonormal basis {|i⟩}, the matrix representation of ρ, also known as
density matrix, is given by:

ρij = ⟨i|ρ|j⟩ (2.44)

A quantum system whose state is exactly known, because it is described by a unique
state vector |ψ⟩ is said to be a pure state. In this situation, the density operator of Eq.
2.42 reduces to:

ρ = |ψ⟩⟨ψ| (2.45)

and ρ turns out to be the projection operator associated to the one–dimensional manifold
spanned by |ψ⟩. Otherwise, when the density operator contains more than one state,
the state is said to be a mixed state.

A density operator ρ, as defined by Eq. 2.42 can be proven to satisfy the following
properties:

1. ρ is an hermitian, i.e., ρ = ρ†;

2. ρ has trace equal to 1, i.e., tr(ρ) =
∑n
i=1 ρii = 1;

3. ρ is a positive operator, i.e., ∀|ψ⟩ ∈ H ⟨ψ|ρ|ψ⟩ ≥ 0.

Properties 2) and 3) completely characterise the class of density operators; in fact, we
can, equivalently to Eq. 2.42, define a density operator to be a positive operator whose
trace is equal to 1.

Now, having introduced the notion of density operator with the aim of describing
systems whose state is not completely known, we can reformulate the postulates of
quantum mechanics.

Postulate 1 (States). Each physical system S is associated to an Hilbert space H, and
each state of a physical system is completely described by a density operator.

The set D of all the density operators over H is a convex set, i.e., given ρ1, ρ2 ∈ D
it is possible to build another density operator ρλ ∈ D by means of a convex sum
ρλ = λρ1 + (1 − λ)ρ2. It can be proven that a pure state cannot be represented as a
convex sum of density operators. Let us suppose that a pure state ρ = |ψ⟩⟨ψ| can be
decomposed as a convex sum:

ρ = λρ1 + (1− λ)ρ2
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For each vector |ψ⊥⟩ such that ⟨ψ|ψ⊥⟩ = 0, we have that the convex sum can be lifted
to the mean value of ρ as follows:

⟨ψ⊥|ρ|ψ⊥⟩ = λ⟨ψ⊥|ρ1|ψ⊥⟩+ (1− λ)⟨ψ⊥|ρ2|ψ⊥⟩ (2.46)

Since ρ is pure, ⟨ψ⊥|ρ|ψ⊥⟩ = 0, but the right part of the equation λ⟨ψ⊥|ρ1|ψ⊥⟩ + (1 −
λ)⟨ψ⊥|ρ2|ψ⊥⟩ = 0 if and only if ρ = ρ1 = ρ2.

Pure states are called extremal elements of the set D, since they belong to its bound-
ary, and each element inside D can be decomposed (not uniquely) as convex sum of
extremal points. In the centre of the set D over a n–dimensional Hilbert space, there is
the totally mixed state ρmix = 1

n I.

Postulate 2 (Observables). Quantum measurements are described by a collection {Mk}
of measurement operators satisfying the completeness equation:∑

k

M†
kMk = I (2.47)

The index k refers to the possible measurement outcomes. If the state of the system is
described by the density operator ρ, then the probability that the outcome associated to
the index k occurs in a measurement is:

Pk = tr(M†
kMkρ) (2.48)

Comment. A collection of measurement operators satisfying the completeness equation
2.48 represents a generalisation of the measurement process which has been described
in the Postulate 2 of the previous Section. When the measurement operators {Mk}
are the projection operators P̂ωk

onto the one–dimensional manifolds associated to the
eigenvalues ωk of an hermitian operator O, Eq. 2.48 takes a simpler form:

tr(M†
kMkρ) = tr(P †

ωk
Pωk

ρ) = tr(Pωk
ρ) = tr(Pωk

∑
i

pi|ψi⟩⟨ψi|) =
∑
i

pi|⟨ωk|ψi⟩|2

(2.49)

When the state is described by the density operator ρ, there are two kind of uncertainties
related to a measurement outcome: a classical one, associated to the probabilities pi
and due to our epistemic ignorance about the state vector associated to the system, and
a quantum mechanical one, related to the probabilities |⟨ωk|ψi⟩|2 which are intrinsic to
the quantum description of nature.

Postulate 3 (Evolution). The evolution of a closed quantum system is described by
unitary transformation, that is, if ρ(t0) is the density operator associated to a physical
system at time t0, then the density operator at any later time t > t0 is:

ρ(t) = Uρ(t0)U
† (2.50)

where Û is a unitary operator which depends on t0 and t.

Postulate 4 (State reduction). Suppose that ρ(t) is the density operator associated to
the physical system at a certain time t, when a quantum measurement of a collection
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of measurement operators is performed, and the outcome associated to the index k is
obtained. Then, the density operator immediately after the measurement occurred is

MkρM
†
k

tr(M†
kMkρ)

(2.51)

Superoperators

There is a general way for describing the evolution of a quantum system under various
circumstances, including stochastic changes to quantum states. When dealing with
open quantum systems –which can be informally be regarded at as systems interacting
with an external quantum system (i.e., the environment)– unitary transformations and
measurements are not sufficient to describe the behaviour of the system, and we should
allow a broader class of evolutions.

Therefore, the most general evolution operator mapping a quantum state, repre-
sented by the density operator ρ(t0) at time t0, to the evolved one ρ(t) at time t > t0
can be described as follows:

ρ(t) = E(ρ(t0)) (2.52)

Since E is an operator acting on operators, it is called a superoperator. In Eq. 2.50
we have already shown an example of superoperator, i.e., the unitary transformation
E(ρ) = UρU†.

A superoperator is a function E mapping a density matrix ρ(t0) at time t0 to a
density matrix ρ(t) at time t1 > t0 and it is defined by the following properties:

(1) 0 ≤ tr(E(ρ)) ≤ 1 for any state ρ;

(2) E
(∑

i piρi

)
=

∑
i piE(ρi), where

∑
i pi = 1;

(3) E is completely positive.

Property (1) tells us that a superoperator should always preserve the trace of the density
operator in the case in which the evolution is deterministic, otherwise, when dealing with
measurements, it should not increase it.
Property (2) expresses the preservation of the convex structure of the state space.
Property (3), i.e., complete positivity, states that the if the ρ is a density operator, then
its evoluted E(ρ) must be a density operator as well, which is not in general guaranteed
by E being positive. Indeed, positivity turns out to be a sufficient condition only in the
case in which we are considering a quantum system not coupled with any other ancillary
system (or in the case in which ρ is separable 3); otherwise, let us consider a Hilbert
space H coupled with an m–dimensional ancillary system (denoted by HA) such that
the resulting composite space is described by H ⊗ HA. Let now ρTOT = ρ ⊗ ρA be a
state of this composite system. We denote with I the superoperator associated to the
indentity operator. If E is a positive superoperator, the superoperator E ⊗ Im acting

3The notion of separability will be explored in the following Sections.
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on the state of the composite system may result in a nonpositive operator, while if E
is completely positive, the positivity of the operator (E ⊗ Im)(ρTOT ) is guaranteed to
hold, for all m ≥ 0.

Example 2.1.1 (Partial Transpose). Given a basis set |i⟩ over a n–dimensional Hilbert
space H, a generic state ρ on H has the following matrix representation: ρij = ⟨i|ρ|j⟩).
We now consider the transposition superoperator T which acts as follows: T (ρ) = ρT ,
where ρT is the transpose of ρ and has the following matrix representation: ρji = ⟨j|ρ|i⟩.
ρT is still a density operator (since the total transpose does not change the spectrum).
Hence, the transposition superoperator T is positive, since is maps positive operators
into positive operators.

ρ ≥ 0 −→ ρT ≥ 0

Let us now introduce a m–dimensional ancillary system HA, with orthonormal basis
|a⟩, which is coupled with the previously considered system such that H ⊗ HA. The
matrix representation of an arbitrary state over the composite system is hence ρTOT →
ρia,jb = ⟨i, a|ρ|j, b⟩. If we lift the operator T to T ⊗ Im, then we obtain a partial
transposition (on the first subsystem):(

T ⊗ Im
)
ρTOT = ρTOT

T
1 → ⟨j, a|ρTOT |i, b⟩

which is not guaranteed to be positive.

As an example, let us now take H = C2 and HA = C2, and a generic state |ψ⟩ =
1√
2
|00⟩+ |11⟩ over the composite space H⊗HA, where |00⟩ and |11⟩ represent the tensor

product of two basis vectors: 4 in both of them the first element belongs to H and the
second one belongs to the ancillary system HA.

The density operator associated to |ψ⟩ is ρ = |ψ⟩⟨ψ| which can be rewritten as:

ρ =
1

2

(
|00⟩⟨00|+ |00⟩⟨11|+ |11⟩⟨00|+ |11⟩⟨11|

)
whose matrix representation is given explicitly as follows:

ρia,jb =
1

2

⎛⎜⎜⎝
1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

⎞⎟⎟⎠
The application of the partial transpose map results in the following operator:(

T ⊗ I
)
ρ = ρT1 =

1

2

(
|00⟩⟨00|+ |10⟩⟨01|+ |01⟩⟨10|+ |11⟩⟨11|

)

4We will provide a more detailed explanation about the notation in Section 2.2.1.
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whose matrix representation is given explicitly as follows:

ρja,ib =
1

2

⎛⎜⎜⎝
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞⎟⎟⎠
Since ρ is a density operator, its spectrum is nonnegative, while the spectrum of ρT1

has at least one negative eigenvalue (e.g., in this case it has three eigenvalues equal to
1/2 and one equal to −1/2), hence ρT1 is not a density operator.

There is an alternative form to represent superoperators, known as operator-sum
representation which, given a density operator ρ and a superoperator E , is described as
follows:

E(ρ) =
∑
i

EiρE
†
i (2.53)

where {Ek} are known as operation elements and they must satisfy the following com-
pleteness relation, arising from the property (1) of superoperators.∑

i

E†
iEi ≤ I (2.54)

It can be proven that map E is a superoperator, i.e., E satisfies properties (1),(2)
and (3), if and only if it can be written using the operator–sum representation as in Eq.
2.53.

In the following the will summarise some kinds of superoperators that will be used
in this thesis:

Unitary Superoperators: Given a unitary operator U , a state ρ(t0) at time t0 and
its evolved ρ(t) at time t > t0; the corresponding superoperator U can be written as
follows:

U(ρ(t)) = Uρ(t0)U
† (2.55)

Measurement Superoperators: As seen in Postulate 2, quantum measurement is
described by a collection {Mi} of measurement operators. Given a state ρ, the super-
operatorM associated to a measurement operator can be written as follows:

M(ρ) =
∑
i

Mi =
∑
i

MiρM
†
i (2.56)

Positive operator valued measure

Different kind of measurement exist in quantum mechanics; we have described projective
measurement and a larger class of measurement operators, giving the description of the
state of the system after the measurement occurred.
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The description of the post-measurement state of the system can sometimes be ig-
nored, since we might be most interested in the probabilities of the measurement out-
comes. In this case a mathematical tool, i.e., the positive operator valued measurement
(a.k.a., POVM), is more suitable to describe it. In the following we will neglect the dis-
cussion about the most general kind of POVM since it considers a continuous family of
measurement outcomes and we will only focus on a finite number of possible outcomes,
over a finite–dimensional space. Before we define such objects, we introduce the concept
of measure in the sense of mathematical probability and measure theory; a measure is
an additive set function, i.e., a function E(·) whose argument is a set Ω (rather than
a number, or a point in space) and for any two disjoint subsets of Ω Ai and Aj , with
i ̸= j, the following holds:

E(
⋃
i

Ai) =
∑
i

E(Ai) (2.57)

In particular, if E is a probability measure, given A ⊂ Ω:

0 ≤ E(A) ≤ 1 (2.58)

with E(Ω) = 1.

A POVM is a measure Ê(Ω); it is a positive operator over a Hilbert space H,
hermitian and normalised in the sense that:

Ê(Ω) = I (2.59)

where I is the identity operator. We can informally regard at POVMs as maps from
the state–space to the space of solutions. POVMs are a special case of the measure-
ment formalism, which provide a way to study the measurement statistics, ignoring the
description of the post-measurement state.

2.2 Quantum information theory

Quantum information theory investigates all the possible ways to transmit and manipu-
late information by using quantum mechanics. Abbreviated in QIT, it includes quantum
computation which is a theoretical field of research that aims to use the laws of quantum
theory to perform computational tasks.

2.2.1 Quantum computation

This Section is devoted to the summarisation of the main aspects of quantum computa-
tion. It is based on both quantum physics and classical computer science, and its goal
is to use the laws of quantum mechanics to develop powerful algorithms and protocols
[61]. As classical computation could be described by using different models such as
circuits, Turing machines, Random access machine and Lambda calculus, also quan-
tum computation, and the broader field of quantum information, could be described by
different models including the quantum circuit (or network) model, adiabatic quantum
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computation, the quantum Turing machines and measurement-based models such as
teleportation-based approaches as well as the one-way quantum computer [20]. Since
the features of these models differ significantly, some computational schemes may lend
themselves more than others to understand certain aspects of quantum computation
and to overcome challenges in their experimental realisation. One of the most used
paradigm for quantum computation is the quantum circuit model which is a universal
language developed to describe quantum computations [64].

2.2.2 Quantum circuit model

Classical circuits

A (deterministic) classical computer evaluates a function f : given n-bits of input it
produces m-bits of output that are uniquely determined by the input; that is, it finds
the value of the function

f : {0, 1}n −→ {0, 1}m (2.60)

for a particular specified n-bit argument x. A function with an m-bit output is equivalent
to m functions, each with a one-bit output, so we may just as well say that the basic
task performed by a computer is the evaluation of

f : {0, 1}n −→ {0, 1} (2.61)

A function that takes an n-bit input to a one-bit output is called Boolean. We may
think of such a function as a binary string of length 2n , where each bit of the string
is the output f (x ) for one of the 2n possible values of the input x [76]. In this way
we deal with 22

n

bit strings. Boolean functions are usually implemented by means of
logic gates. A partial list of such gates includes the AND, OR, NOT, NAND ones, but
there are many others useful to build circuits in order to perform computations. The
basic operations of these gates could be described with the aid of truth tables. In the
following table we will see some examples for the AND, OR and NAND gates.

Each one of these gates inputs two bits and produces a single bit as output, hence,
with the exception of the NOT gate which takes one bit in input (and produces in
output the negation of the input bit), they are not invertible. All these gates could be
simulated by reduced sets of other gates, known as universal gates, e.g. the NAND and
NOR gates among others, by means of which the behaviour of all the other logic gates
can be re–created.

Quantum bits

In devising a model of a quantum computer we will generalize the circuit model of classi-
cal computation. In the classical theory of computation the simplest unit of information
is the bit, a two-state system encoding information by taking value 0 or 1. In quantum
computation the most fundamental system is the quantum bit, or qubit.

Let us consider the Hilbert space C2, and we denote as:

|0⟩ =
(
1
0

)
|1⟩ =

(
0
1

)
(2.62)
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AND A ∧ B = O
A B O
0 0 0
0 1 0
1 0 0
1 1 1

OR A ∨ B = O
A B O
0 0 0
0 1 1
1 0 1
1 1 1

NAND A ∧ B = O
A B O
0 0 1
0 1 1
1 0 1
1 1 0

an orthonormal basis set of vectors for it, i.e., ⟨0|1⟩ = 0 and ∥|0⟩∥ = ∥|1⟩∥ = 1.

Such states, which constitute the so–called standard computational basis for C2 rep-
resent the quantum analogue of the classical bits 0 and 1. They are the eigenstates with
respect to the eigenvalues +1 and −1 respectively, of the hermitian operator σz:

σz|0⟩ = +1|0⟩ σz|1⟩ = −1|1⟩ (2.63)

A qubit is an arbitrary unit state vector |ψ⟩ of the two dimensional Hilbert space
C2:

|ψ⟩ = α|0⟩+ β|1⟩ (2.64)

where the complex coefficients α, β ∈ C are constrained to satisfy the normalisation
condition:

|α|2 + |β|2 = 1 (2.65)

They are related to the probabilities of obtaining the outcomes of σz. More precisely,
|α|2 is the probability of obtaining outcome +1, after a measurement of σz, when the
system is described by the state |ψ⟩ of Eq. 2.64. Equivalently, |β|2 is the probability of
obtaining outcome −1, after a measurement of σz.

There are three remarkable differences between quantum and classical bits.

The first one follows directly from the definition of qubit; indeed, while a classical
bit can take one value at a time, i.e., it can be 0 or 1 only, a qubit can exist in a
linear superposition of |0⟩ and |1⟩. The physical meaning of such superposition of states
is that we can acquire knowledge about the value of a qubit only by measuring the
observable σz, which will yield the outcome associated to the bit 0 (eigenvalue +1 of
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σz) or 1 (eigenvalue −1), with a specified probability, only after the measurement has
been performed.

The second difference is that, classical bits can be observed and accessed without
disturbing them as many times as we wish, while the information content of a qubit
is destroyed by the state reduction evolution after the measurement. A qubit is not
disturbed by a measurement of σz only when either α or β is equal to 0.

Finally, the third difference is that while a classical bit can be copied, in general an
arbitrary qubit cannot be cloned.

The quantum counterpart of the classical strings of bits are the quantum registers,
i.e., multiple qubits. They are vectors belonging to the Hilbert space C2⊗· · ·⊗C2, which
is isomorphic to the 2n–dimensional Hilbert space C2n . A generic multiple qubit state
is

|ψ1⟩|ψ2⟩ . . . |ψn⟩ ::= |ψ1⟩ ⊗ |ψ2⟩ ⊗ · · · ⊗ |ψn⟩ (2.66)

where |ψi⟩ with i = 1, . . . , n is an arbitrary qubit.

The Hilbert space associated is the tensor product of n single qubit spaces, thus
H = C2 ⊗ · · · ⊗C2 = C⊗2n , with 2n basis states and complex amplitudes. Even though
this might seem a natural mathematical description, it has an enormous potential in
term of computational power since, even for small n a quantum computer might operate
in parallel on 2n states at the same time. The drawback is that it also has to store the
same number of complex amplitudes, which is severely limited by the available classical
technlologies.

Quantum Circuits

Quantum computation uses qubits as basic units of information and performes state
changes on them. A quantum computer is abstracted by a quantum circuit, similar to
a classical one, with the quantum counterpart of the classical logic gates manipulating
the qubits. In the following there are summarised some of the main quantum gates that
will be used troughout the thesis. The first thing that we should understand is how to
use classical functions in the quantum circuit model; we should model them into oracles.
The quantum logic gates will be unitary transformations, and hence will be invertible
making the computation reversible.

A reversible computer evaluates an invertible function taking n bits to n bits

f : {0, 1}n −→ {0, 1}n (2.67)

[76] and has a unique input for each output so we can run the computation backwards to
recover the input from the output. An invertible function is a permutation of the 2n n-
bit strings and the important fact that permits us to move from a classical (irreversible)
computation to a quantum (reversible) one is that [76] any irreversible computation can
be packaged as an evaluation of an invertible function. As an example, for any:

f : {0, 1}n −→ {0, 1} (2.68)
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we can build a function such that:

f̂ : {0, 1}n+1 −→ {0, 1}n+1 (2.69)

such that
f̂ (x , y) = (x , y ⊕ f (x )) (2.70)

.

In general, quantum gates are represented by square matrices, i.e., the matrix rep-
resentation of the unitary operators corresponding to the state transformation. In the
quantum circuit model qubits are represented by wires, as well as in the classical circuit
case. In a quantum computation, a finite number n of qubits (a quantum register) are
initialised, then a finite number of unitary gates is is applied to one, or more, of them.
Finally, a measurement on all the qubits (or on a subset of them) is performed. The
most common and the most used single-qubit gates are the Pauli operators σx,σy and
σz, the Hadamard gate H, the phase shift gate S and the T gate (also known as π/8
gate), whose matrix representation in the orthonormal basis set {|0⟩, |1⟩} is given as
follows.

σ0 =

(
1 0
0 1

)
σx =

(
0 1
1 0

)
σy =

(
0 − i
i 0

)
σz =

(
1 0
0 − 1

)
(2.71)

H =
1√
2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)
, T =

(
1 0
0 ei

π
4

)
(2.72)

Gates are usually represented in the circuit by a square box labelled with the letter
associated to the gate. In Fig. 2.1 we can see an example for the Hadamard gate.

Figure 2.1: Circuit representation of the Hadamard gate

The effect of the gates in Eq. 2.71 and 2.72 applied to the computational basis
vectors {|0⟩, |1⟩} are summarized as follows:
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σx|0⟩ = |1⟩ σx|1⟩ = ∥0⟩
σy|0⟩ = i|1⟩ σy|1⟩ = −i|0⟩
σz|0⟩ = |0⟩ σz|1⟩ = −|1⟩

H|0⟩ = |0⟩+ |1⟩√
2

H|1⟩ = |0⟩ − |1⟩√
2

(2.73)

Single qubit gates can be composed and applied to more than a qubit by taking the
tensor product of the gates. If for example, during a computation we want to apply the
unitary gate U to a state of two qubits we have to take the product U ⊗ U . This can
be generalised to a state of n qubits as follows:

U⊗n (2.74)

Controlled operations The most basic two qubits quantum transformations are the
controlled ones. By acting on two qubits at the same time, these gates give rise to
interesting physical phenomena which will be investigated later in the Section.

The prototypical controlled-operation is the controlled–not gate (also referred as
CNOT). Given in input two computational basis vectors |ψ⟩ and |φ⟩, which are known as
the control and the target qubit respectively, the controlled–not gate acts as in Eq.(2.75).⎛⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎠ =

(
σ0 0
0 σx

)
(2.75)

CN(|ψ⟩|φ⟩) = |ψ⟩|φ⊕ ψ⟩ (2.76)

where ⊕ represents the addition modulo 2, making the controlled–not gate the quantum
counterpart of the classical XOR gate. The action can be summarized as follows: if
the control qubit is set to 1, the target qubit is flipped, otherwise the state remains the
same as before. A representation of this gate can be seen in Fig. 2.2.

Figure 2.2: Circuit Representation of the Controlled–not Gate.

Any arbitrary unitary operator U can be controlled. A controlled–U operation is
applied on two (or more) qubits with some of them acting as controls and (one or more)
other as targets. If all the controls are set to |0⟩ , then U is applied to the target. This
can be represented as in Fig. 2.3, where we focused on a two qubit case:

Following from the definition of quantum logic gate, we might ask whether there is a
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Figure 2.3: Circuit Representation of a Generic Controlled Gate U .

quantum counterpart of the classical notion of universal set of gates, i.e., a set of unitary
operators acting on a set of qubits which can mimic the behaviour of any other quantum
gate. In our case it is sufficient to state that the set composed by the controlled not
gate, together with a generic single–qubit gate is sufficient to build any other unitary
transformation on an n–qubits register.

2.2.3 Quantum information

Quantum information is a discipline which investigates all the possible ways to transmit
and manipulate information by using quantum mechanics. Like classical information
theory, it is really specialised in topics involving the field of quantum information pro-
cessing tasks, rather than quantum algorithm design; thus it is interested in the must
fundamental and physical description of what quantum information is and by which laws
it is governed. According to Refs.([64, 76]), quantum information is mainly concerned
with the following topics:

1. Quantum channels and transmission of quantum and classical information along
them, with applications spanning from teleportation to quantum cryptography;

2. Identification of the static and dynamical properties of physical systems, which
can be viewed as resources for outperforming classes of tasks;

3. Quantification and classification of entanglement.

All the mathematical details of the aforementioned tasks are not to be discussed in
this thesis, but we will define the basic concepts that are used in following Chapters.

Definition 2.2.1 (Quantum channel). A quantum channel is a communication channel
allowing to transmit quantum and classical information. It is realised by a completely
positive trace-nonincreasing map, i.e., a superoperator.

In the realm of information theory one of the most important concepts is that of
entropy, which is used to quantify the quantum and classical information content. In
QIT , the quantum counterpart of the classical Shannon entropy is the von Neumann
entropy, defined as follows:

Definition 2.2.2 (von Neumann entropy). The von Neumann entropy S(ρ) of a given
density matrix ρ is defined as follows:

S(ρ) = −tr(ρ log ρ) = −
∑
i

ri log ri
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where ri are the (strictly) positive eigenvalues of ρ as in Eq. 2.43.

As a consequence, if ρ is a pure state all its eigenvalues are 0 but one, thus S(ρ) = 0;
otherwise, in the case of a generic mixed state, the von Neumann entropy is larger than
0 and corresponds to the Shannon entropy of its spectrum.

Some of the main properties of S(ρ) are listed in the following, while for a more in–depth
description we address to [64, 76, 10]:

1. If ρ =
∑
i λi|ψi⟩⟨ψi| with non–orthogonal |ψi⟩ (i.e. ⟨ψi|ψj⟩ ≠ δij) then it holds

S(
∑n
i λiρi) ≥

∑n
i λiS(ρi) for all λi ≥ 0 such that

∑n
i λi = 1. Thus, a larger

entropy S quantifies a larger ignorance about the state of the system.

2. Given a state ρ with n non–vanishing eigenvalues, it is always true that S(ρ) is
bounded as follows:

S(ρ) ≤ log n (2.77)

with equality holding when the eigenvalues are equal. Thus a maximally mixed
state has the maximum value of S. A consequence of this is that we can use
entropy to discriminate whether a state is pure or not, since a pure state ρpure has
vanishing entropy S(ρpure) = 0.

3. Given a state in a composite system ρ ∈ H = H1 ⊗ H2, in general the following
equation holds:

S(ρ) ≤ S(ρ1) + S(ρ2) (2.78)

where ρ1 and ρ2 are the reduced density operators, obtained by using the partial
trace, defined in Eq.(2.79).

Given a generic state of a bipartite system ρ1,2 ∈ H1⊗H2, it is possible to introduce
the notion of reduced density operators ρ1 and ρ2, which are obtained by tracing
away the subsystem we are not interest in with the partial trace operation:

ρi = trj(ρij) =
∑
n

⟨ψ(j)
n |ρij |ψ(j)

n ⟩

with {|ψ(j)
n } ∈ Hj . Hence:

ρ1 = tr2(ρ1,2)

ρ2 = tr1(ρ1,2) (2.79)

Equality in Eq.2.78 holds if ρ = ρ1 ⊗ ρ2 is a product state, i.e., when the two sub-
systems are uncorrelated. We will explore the meaning of product state and correlation
in the next paragraph.

Other properties for the von–Neumann entropy can be found in the literature; in
this Section we will restrict to the ones which are more relevant for the work presented
in this thesis.
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2.2.4 Entanglement in Bipartite Systems

In this Section we introduce the concept of entanglement, which is related to the ex-
istence of quantum states belonging to composite quantum systems that cannot be
represented in terms of product states. A composite system H is represented by the
tensor product of n component subsystems:

H = H1 ⊗ · · · ⊗ Hn

The simplest composite system is the bipartite one, whose Hilbert space is the tensor
product H = Cn ⊗ Cm.

Pure States: A bipartite pure state |ψ⟩ ∈ H, is said to be non–entangled (or
separable) if it can be expressed as a product state, i.e., it is always possible to factorise
it as follows:

|ψ⟩ = |ξ⟩ ⊗ |χ⟩ (2.80)

with |ξ⟩ ∈ Cn and |χ⟩ ∈ Cm. Let us fix a basis {|ψ1i} for Cn and {|ψ2j} for Cm, the
general form of a bipartite pure state is |ψ⟩ = ∑

i,j aij |ψ1i⟩ ⊗ |ψ2j⟩, for which it is not
immediate to ascertain whether it can be factorised in the sense of Eq. (2.80), or not.
If such product form does not exists, then the state is said to be entangled.

Example 2.2.1. Let us consider, as an example, the following states in the standard
basis {|0⟩, |1⟩}:

|ψ⟩ = 1√
2
(|01⟩+ |00⟩)

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩)

The first one can be factorized as |ψ⟩ = |0⟩ ⊗ 1√
2
|1⟩+ |0⟩. On the contrary, the second

one is a genuine entangled state, since it does not exist complex coefficients α, β, γ, δ
such that:

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩) = (α|0⟩+ β|1⟩)⊗ (γ|0⟩+ δ|1⟩)

= αγ|00⟩+ βδ|11⟩+ αδ|01⟩+ βγ|10⟩

In fact, in order to satisfy the previous equality αγ = βδ = 1√
2
and αδ = βγ = 0

which are conditions which cannot be fulfilled simultaneously. Thus, |Φ+⟩ cannot be
factorized, i.e., it is an entangled state.

Separability for Pure States: For pure states in bipartite quantum systems there
are many methods to assess if a state |ψ⟩ is entangled or not. One of them is given by
using the Schmidt decomposition of pure states.

Lemma 2.2.1 (Schmidt decomposition). Given a state |ψ⟩ ∈ H = Cn ⊗Cm, it is always
possible to find orthonormal states |ψi⟩ ∈ Cn and |φj⟩ ∈ Cm yielding the following
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decomposition:

|ψ⟩ =
min(n,m)∑
k=1

√
λk |ψk⟩ ⊗ |φk⟩ (2.81)

where λk ≥ 0 and
∑
k λk = 1.

The number of nonzero values
√
λk is called the Schmidt number for the state |ψ⟩.

It can be used to determine whether an arbitrary, bipartite pure state is entangled or
not; in fact, it can be proven that a state |ψ⟩ is non–entangled if and only if its Schmidt
number is equal to 1. In this case, this amounts to say that the Schmidt decomposition
of the state |ψ⟩ reduces to a single tensor product of states.

Another method to detect entanglement of pure states uses the von–Neumann en-
tropy. Given a state |ψ⟩ ∈ Cn ×Cm, and its corresponding density operator ρ = |ψ⟩⟨ψ|
it can be proved that ρ is separable if and only if both its entropy S(ρ) and the entropy
of its reduced density operators S(ρ1) and S(ρ2) is 0.

ρ separable ⇔ S(ρ) = S(ρ1) = S(ρ2) = 0 (2.82)

Instances of entangled pure states that are worth mentioning are the Bell states,
whose description in the standard computational basis {|0⟩, |1⟩} is given as follows:

|Φ+⟩ = 1√
2
(|0⟩|0⟩+ |1⟩|1⟩)

|Φ−⟩ = 1√
2
(|0⟩|0⟩ − |1⟩|1⟩)

|Ψ+⟩ = 1√
2
(|0⟩|1⟩+ |1⟩|0⟩)

|Ψ−⟩ = 1√
2
(|0⟩|1⟩ − |1⟩|0⟩) (2.83)

Mixed States: A density operator ρ in a bipartite system is called separable if and
only if it can be written as convex sum of pure states, as follows:

ρ =
∑
i,j

pijρ1i ⊗ ρ2j

which, through spectralisation, can be reduced to a convex combination of projectors:

=
∑
k,l

p̃kℓ|ξk⟩⟨ξk| ⊗ |χℓ⟩⟨χℓ| (2.84)

where pij ≥ 0 and
∑
i,j pij = 1. States that cannot be written in such form as Eq. 2.84

are called non–separable, or equivalently, entangled.

Separability for Mixed States: Checking for separability in the case of a mixed
state turns out to be much more difficult than for pure case. In fact, at present do not
exist necessary and sufficient conditions to determine whether an arbitrary mixed state
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ρ acting on Cn ⊗ Cm, with arbitrary values of n and m, is separable or not. On the
contrary, such conditions exist in the case of a two qubit mixed state, i.e., when the
Hilbert space is C2⊗C2. One of such conditions exploits the concurrence C(ρ) which is
defined as follows.

C(ρ) ::= max(0, λ1 − λ2 − λ3 − λ4) (2.85)

where λ1 ≥ λ2 ≥ λ3 ≥ λ4 are the eigenvalues of the hermitian operator R, defined in
terms of the mixed state ρ:

R =
√√

ρρ̃
√
ρ (2.86)

with ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy). It can be proven that concurrence C(ρ) for an arbi-
trary two–qubits mixed state ρ is strictly positive if and only if ρ is non–separable.
Consequently, C(ρ) is null if and only if ρ is separable.

2.3 Quantum algorithms and protocols

In this Section we will summarise the main quantum algorithms and protocols that will
be used in the following. We have already introduced the main ingredients of quantum
computation and the concept of quantum circuit, which is the standard notation to
model quantum computations by means of qubits and quantum logic gates. Now, we
can define the concept of quantum algorithm, which is a sequence of unitary operators
applied to a number n of quantum registers, i.e., arrays of qubits. The output will be
produced by a measurement process onto the states of the standard computational basis;
for this reason, quantum algorithms are probabilistic and the main purpose becomes the
extraction of the desired result from a statistical distribution of possible outcomes.

The existing quantum algorithms are much more efficient than their classical coun-
terpart, due to the following features of quantum mechanics:

• Parallelism: due to the linearity of both state space and operators, it is possible
to compute all the possible values of a given function f using a single application
of the corresponding unitary operator Uf :

Uf

( 1√
2n

2n−1∑
x=0

|x⟩|0⟩
)
=

1√
2n

2n−1∑
x=0

|x⟩|f(x)⟩ (2.87)

where the final state encodes all the possible values of the function f(x).

• Interference: it is possible, after a suitable preparation of the initial state, to
make the states interfere to delete the “wrong” ones, while increasing the proba-
bility that the states carrying the desired result are obtained when a measurement
is performed.

• Correlations: the final states of a quantum computation can be entangled, thus
they can exhibit non–local correlations between the outcomes of measurements
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performed on different quantum registers.

2.3.1 Deutsch’s algorithm

The Deutsch’s algorithm is the simplest quantum algorithm, and it is used to highlight
the aforementioned features of quantum computation. It tackles the following problem:
given a black box Uf , also known as oracle, implementing an unknown one–bit Boolean
function f : {0, 1} −→ {0, 1}, determine whether f is constant or balanced by querying
the oracle. A function is constant if it always produces the same bit in output, i.e.,
f(0) = f(1), and it is balanced if, on different inputs, it provides different outputs,
i.e., f(0) ̸= f(1). There are four possible one–bit Boolean functions, two of them are
constant and the other two are balanced, as we will see in the Table 2.1 below.

Constant 1 Constant 2 Balanced 1 Balanced 2
Zero One Not Identity

f(0) = 0 f(0) = 1 f(0) = 1 f(0) = 0
f(1) = 0 f(1) = 1 f(1) = 0 f(1) = 1

Table 2.1: One–bit Boolean Functions.

The problem could classically be solved by querying the oracle twice, and then
evaluating f(0) ⊕ f(1), where ⊕ represents the addition modulo 2. If the function is
constant, then f(0) ⊕ f(1) = 0, while if f is balanced, then f(0) ⊕ f(1) = 1. On the
contrary, we will show that a single query of the quantum oracle Uf is sufficient in order
to determine with certainty whether the function is constant or balanced.

Since the function f is not always invertible, in order to implement it by a quantum
unitary operator, we should use a method to make f invertible. The quantum oracle
Uf , which computes the values of f should use an ancillary qubit. In this way, Uf acts
on a four–dimensional space C2 ⊗ C2 as follows:

Uf |x⟩|y⟩ ≡ |x⟩|y ⊕ f(x)⟩ (2.88)

for all x, y ∈ {0, 1}.
The quantum circuit implementing the Deutsch’s algorithm is the one in Fig. 2.4,

and it shows the compositions, in successive steps of the quantum gates used to solve
the problem.

|0⟩ H
U f

H

|1⟩ H

Figure 2.4: Quantum Circuit for the Deutsch’s Algorithm.

In the following we summarise the computational steps of the algorithm:
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1. preparation of the initial state: |ψ0⟩ = |0⟩|1⟩;

2. application of the Hadamard gate on both registers; this gate puts the state in a
linear superposition of the four basis states:

|ψ0⟩ H⊗H−−−−→ |ψ1⟩ =
1√
2

(
(|0⟩+ |1⟩)(|0⟩ − |1⟩)

)
(2.89)

3. application of the unitary operator Uf which, exploiting the quantum parallelism,
computes at the same time all the values of f(x):

|ψ1⟩
Uf (x)−−−−→ |ψ2⟩ =

1∑
x=0

(−1)f(x)|x⟩ 1√
2
(|0⟩ − |1⟩) (2.90)

4. application of the Hadamard gate on the first register (we recall that the function
f(x) is guaranteed to be one of the functions from Table 2.1):

|ψ2⟩ H⊗ I−−−→ |ψ3⟩ =
[ (−1)f(0) + (−1)f(1)

2
|0⟩+ (−1)f(0) + (−1)f(1)

2
|1⟩

]
= ±|f(0)⊕ f(1)⟩ 1

2
√
2
(|0⟩ − |1⟩) (2.91)

In this way we use the interference between quantum states in order to determine
with certainty whether the function is constant or balanced.

5. A measurement of σz is performed onto the first register: f is constant if and only
if the eigenvalue corresponding to the eigenstate |0⟩ is obtained; as a consequence,
if the eigenvalue corresponding to the eigenstate |1⟩ is obtained, then the function
is balanced.

Hence, Deutsch’s quantum algorithm has been able to determine with certainty, by
querying the oracle only once, whether the function f is constant or balanced. This
turns out to be a more efficient method, compared to its classical counterpart which
needs two queries to determine the same result.

2.3.2 Deutsch-Jozsa algorithm

In the previous paragraph we presented the Deutsch’s algorithm, which shows an exam-
ple of how quantum algorithms can give some advantages over classical ones by using
quantum effects such as parallelism and interference. In this part we will present the
Deutsch-Jozsa algorithm, which generalizes the previous one to n–bits Boolean func-
tions.

The problem is the following: suppose we are given a Boolean function f : {0, 1}n →
{0, 1}, which is promised to be one of two kinds: either f(x) is constant, forall values of
x ∈ {0, 1} or else f(x) is balanced, i.e., equal to 1 for exactly half of the possible inputs
x, and 0 for the other half. We want to determine whether f is constant or balanced
using the minimun number of queries to an oracle which computes the values of such
function.
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Classically this problem requires at least 2n−1 +1 queries of the oracle to determine
with certainty whether the function is constant or balanced; in fact, in the worst case,
we might have observed 2n−1 times the same bit, and we need one more value, which
can be either equal or different from the previous ones, to assess the difference between
the two kind of functions.

On the contrary, we will show that a single query to a quantum oracle Uf is sufficient
in order to determine with certainty that the function is constant or balanced. As before,
in order to make the function f invertible we should use a unitary operator Uf acting
on two registers,

Uf |x⟩|y⟩ ≡ |x⟩|y ⊕ f(x)⟩ (2.92)

where x ∈ {0, 1}n are the entries of the query register and y ∈ {0, 1} anre those of the
ancilla.

The steps of the algorithm are depicted in Fig. 2.5 and the execution steps are
summarised as follows:

1. preparation of the initial state: |ψ0⟩ = |0⟩⊗n|1⟩;

2. application of n+1 Hadamard gates on the qubits of the query and the the ancilla
registers;

|ψ0⟩ H⊗n+1

−−−−−→ |ψ1⟩ =
1√
2n
|x⟩ 1√

2

(
|0⟩ − |1⟩

)
(2.93)

3. application of the unitary operator Uf which, exploiting the quantum parallelism,
computes at the same time all the values of f(x):

|ψ1⟩
Uf (x)−−−−→ |ψ2⟩ =

1√
2n

∑
x∈{0,1}n

(−1)f(x)|x⟩ 1√
2
(|0⟩ − |1⟩) (2.94)

4. application of n Hadamard gates on the query register:

|ψ2⟩ H⊗n⊗ I−−−−−→ |ψ3⟩ =
∑

z∈{0,1}n

∑
x∈{0,1}n

(−1)⟨x|z⟩+f(x)
2n

|z⟩ 1√
2
(|0⟩ − |1⟩) (2.95)

where x, z ∈ {0, 1} and ⟨x|z⟩ = ⨁n
i=0 xizi.

5. as a last step, we perform a measurement onto the states of the query register
only. The amplitude associated to the state |z⟩ = |0⟩⊗n, is:

1

2n

∑
x∈{0,1}n

(−1)f(x) (2.96)

Now, if the function is constant, then such an amplitude is equal to ±1 while,
if the function is balanced, it will be equal to 0, since the positive and negative
contributions cancel. This amounts to say that the function is constant if and only
if a measurement of σz performed on each qubit in the query register yields the
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eigenvalue 0 for all qubits. As a consequence, the function is balanced if and only
if at least one qubit in the query register yields a 1.

|0⟩ /n H
⊗n

U f

H
⊗n

|1⟩ H

Figure 2.5: Quantum circuit for the Deutsch–Jozsa algorithm.

Hence, once again Deutsch–Jozsa quantum algorithm has been able to determine
with certainty, by querying the oracle only once, the kind of a n–bit Boolean function
f which was known to be only either constant or balanced. This turns out to be an
exponentially faster method, compared to its classical counterpart which needs at worst
2n−1 + 1 queries to determine the same result.

2.3.3 Grover’s search algorithm

The Grover’s search quantum algorithm is used to solve in a more efficient way the un-
structured datatbase search problem. The problem is the following: given an unstruc-
tured search space of size N , we have to find an object of that search space possessing a
known property by querying an oracle, which is a black box with the ability to recognise
whether an object has the desired property or not.

If there are M solutions, with 1 ≤ M ≤ N , any classical algorithm requires O(NM )
(on average) oracle queries before determining at least one solution. On the contrary,

we will exhibit a quantum algorithm which needs O(
√

N
M ) queries of a quantum oracle

to get the same result.
In order to simplify the notation, rather than searching the objects directly we focus

on their index, i.e., a number x = 0, . . . , N − 1 labelling each object. For convenience
we assume N = 2n, so that the index referring to the objects possesses exactly n
bits. Consequently, the search space is mathematically represented by the set of n–bit
strings and the oracle, which recognises the objects, is associated to a Boolean function
f : {0, 1}n → {0, 1}:

f(x) ::=

{
0 x /∈ S
1 x ∈ S (2.97)

where S is the set of the M indices labelling the objects our search algorithm wants to
determine.

In Fig.2.6 it is possible to see the quantum circuit associated to the Grover’s search
quantum algorithm, while Fig.2.7 shows in detail the Grover operator G, which is com-
posed by the quantum oracle Uf followed by a phase–shift operator, and will be analised
in depth in the following.
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|0⟩ /n H⊗n

G G
· · ·

G
|1⟩ H · · ·

R times

  
Figure 2.6: Quantum Circuit for the Grover’s Algorithm.

Phase–shift

G Uf

H⊗n 2 |0⟩ ⟨0| − I H⊗n

≡

  

Figure 2.7: Detail of the Grover Operator G.

The quantum oracle implementing the function f is represented by a unitary operator
Uf such that:

Uf |x⟩|y⟩ = |x⟩|y ⊕ f(x)⟩ (2.98)

where x ∈ {0, 1}n is the index register, and y ∈ {0, 1} is an ancilla bit, which is needed
to make the function invertible. Given a state |x⟩ 1√

2
(|0⟩ − |1⟩), we can prove that the

operator Uf has the following behaviour:

Uf |x⟩
1√
2
(|0⟩ − |1⟩) = (−1)f(x)|x⟩ 1√

2
(|0⟩ − |1⟩) (2.99)

The second register is left untouched by the oracle, hence from now on it can be
omitted; by using this simplification the action of the oracle can be rewritten as follows:

Uf |x⟩ = (−1)f(x)|x⟩ (2.100)

i.e., the quantum oracle marks the solutions of the search problem by changing their
phase.

Since the states, both the ones which are solutions and those which are not, after
the application of the oracle have the same amplitude, we should reduce the probability
that one of the undesired states may occur after a measurement. We define a phase–shift
operator Uphase as follows:

Uphase ::= 2|0⟩⟨0| − I (2.101)
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whose action on the state |x⟩, for all x ∈ {0, 1}n is the following:

Uphase|x⟩ = −(−1)δx0 |x⟩ (2.102)

since:

Uphase|x⟩ = (2|0⟩⟨0| − I)|x⟩ = 2|0⟩⟨0|x⟩ − |x⟩ = 2|0⟩δx0 − |x⟩ =
{
|0⟩ if x = 0

|1⟩ if x ̸= 0

The operator Uphase adds in this way a phase (−1) to each vector of the computational
basis but |0⟩.

Given a uniform linear superposition of basis states, each one representing an element
of the search space:

|ψ⟩ = 1√
N

N−1∑
x=0

|x⟩ (2.103)

the following holds:

H⊗nUphaseH
⊗n = 2|ψ⟩⟨ψ| − I (2.104)

which can be proven as follows:

H⊗n(2|0⟩⟨0| − I)H⊗n = H⊗n2|0⟩⟨0|H⊗n −H⊗nH⊗n = 2|ψ⟩⟨ψ| − I (2.105)

and for H⊗n|0⟩ = 1√
N

N−1∑
x=0
|x⟩ = |ψ⟩.

The unitary Grover operator G defined as in Fig. 2.6 is therefore equal to:

G = (2|ψ⟩⟨ψ| − I)Uf (2.106)

where |ψ⟩ = 1√
N

N−1∑
x=0
|x⟩.

Hence, the quantum search algorithm can be summarised as follows:

1. The first register is prepared in a linear superposition of basis states |ψ⟩.

2. The state |ψ⟩ is given in input to the Grover operator G, consisting of the following
steps:

i. application of Uf ;

ii. application of the Hadamard gate H⊗n;

iii. application of a conditional phase shift gate which outputs every state, except
|0⟩, with a phase shift of (−1);

iv. application of of the Hadamard gate H⊗n.

The Grover operator, in order to provide with a probability close to 1 one of the
desired solutions, must be iterated R = π

√
2n/4 times.
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3. Measurement of the final state.

By taking in input the state |ψ0⟩ = |0⟩⊗n|1⟩ the steps presented are implemented as
follows:

|ψ0⟩ H⊗n+1

−−−−−→ |s⟩ = 1√
2n

2n−1∑
x=0

|x⟩ 1√
2
(|0⟩ − |1⟩)

|s⟩ G−→ GR|s⟩ = |xi⟩
1√
2
(|0⟩ − |1⟩) where R = π

√
2n/4

Measure−−−−−−→ xi (2.107)

where f(xi) = 1 is one of the desired results.

Geometric Interpretation: Let’s now analyse the Grover’s algorithm by means of
a geometrical visualisation. The Grover iteration can be visualised geometrically as a
rotation in a two dimensional space spanned by |ψ⟩ and the vector consisting of a linear
superposition of all states belonging to S, which we recall is the set of solutions to the
search problem, with |S| =M . We define two states as follows:

|s⟩ ::= 1√
M

∑
x∈S
|x⟩ (2.108)

|s⊥⟩ ::=
1√

N −M
∑
x∈S⊥

|x⟩ (2.109)

which are orthonormal, since |S| =M , |S⊥| = N −M and N ∩M = ∅. The initial state
|ψ⟩, which lays in the space spanned by |s⟩ and |s⊥⟩, can be rewritten as follows:

|ψ⟩ =
√
N −M
N

|s⊥⟩+
√
M

N
|s⟩ (2.110)

The effect of the operator G is a rotation, i.e., a reflection about |s⊥⟩, performed by Uf :

Uf (α|s⊥⟩+ β|s⟩) = α|s⊥⟩ − β|s⟩ (2.111)

which is followed by a reflection about the state |ψ⟩ performed by 2|ψ⟩⟨ψ| − I:

(2|ψ⟩⟨ψ| − I)(α|ψ⟩+ β|ψ⊥⟩) = 2|ψ⟩⟨ψ|(α|ψ⟩+ β|ψ⊥⟩ − α|ψ⟩+ β|ψ⊥⟩ = α|ψ⟩ − β|ψ⊥⟩
(2.112)

since ⟨ψ|ψ⊥⟩ = 0.

Let’s now introduce the angle θ such that cos θ2 =
√

N−M
M , then:

|ψ⟩ = cos
θ

2
|s⊥⟩+ sin

θ

2
|s⟩ (2.113)

It is possible to see in Fig.2.8, the operator G turns the state |ψ⟩ to the following
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|s⟩

|s⊥⟩

|ψ⟩

θ/2

−|ψ⟩

θ/2

(a) Uf

|s⟩

|s⊥⟩

|ψ⟩

|ψ⊥⟩

α|ψ⟩ − β|ψ⊥

α|ψ⟩+ β|ψ⊥

(b) 2|ψ⟩⟨ψ| − I

|s⟩

|s⊥⟩

|ψ⟩

θ/2

Uf |ψ⟩

θ/2

G|ψ⟩

θ

(c) G = (2|ψ⟩⟨ψ| − I)Uf

Figure 2.8: Geometric Interpretation of Grover’s Oracle and Phase Shift Gates.
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one:

G|ψ⟩ = cos
3θ

2
|s⊥⟩+ sin

3θ

2
|s⟩ (2.114)

from which follows that, after R applications of the Grover iteration:

GR|ψ⟩ = cos
(2R+ 1)θ

2
|s⊥⟩+ sin

(2R+ 1)θ

2
|s⟩ (2.115)

for all R ∈ N. Repeated applications of the Grover iteration bring the state |ψ⟩ closer
to |s⟩, i.e, π2 . If the number of iterations has been properly choosen, a measure produces
with an high probability one of the desired outcomes.

In order to determine the optimal number R of iterations of the Grover operator,
bringing the initial state |ψ⟩, to the desired state |s⟩, we should rotate the initial state
at most by Rθ ≤ π

2 , from which it follows:

Rθ ≤ π

2

R ≤ π

2θ
(2.116)

Now, since we know that sinx ≤ x for 0 ≤ x ≤ π
2 , we can determine the lower bound of

the angle θ as follows:

θ

2
≥ sin

(θ
2

)
=

√
M

N
−→ θ

2
≥

√
M

N
−→ θ ≥ 2

√
M

N
(2.117)

Then, we can use it and Eq. 2.110 to retrieve the upper bound for R.

R ≤ π

2θ
=

π

2
(
2
√

M
N

) =
π

4

√
N

M
(2.118)

Hence, the optimal number of iterations of G is R ≤ π
4

√
N
M .

2.3.4 Teleportation protocol

Quantum teleportation is a protocol which allows to make a copy of an arbitrary, un-
known quantum state at a distant location in absence of a quantum communication
channel between the sender and the receiver. The protocol works succesfully by exploit-
ing entanglement. As an example, suppose that two parties, namely Alice and Bob,
shared long ago an entangled state of two qubits. The first qubit belongs to Alice and
the second to Bob, which are located spatially far away. Alice wants to deliver the qubit
|ψ⟩ to Bob but she does not know the state of the qubit, and she can only send classical
information. Moreover, the laws of quantum mechanics do not allow Alice to observe
the state without changing it. The technique used by Alice to send |ψ⟩ to Bob can,
intuitively, be summarised as follows:

1. Alice makes |ψ⟩ interact with her half of the entangled pair; then she measures
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both the two qubits in her possession obtaining a random classical outcome, i.e.,
a two–bit string k ∈ {00, 01, 10, 11};

2. Alice communicates k to Bob which, according to the message received, applies
a unitary operator on his part of the entangled pair; in this way the state |ψ⟩ is
completely reconstructed.

The quantum circuit implementing the teleportation protocol is depicted in Fig.2.9.

|ψ⟩ • H •

|0⟩A H • •

|0⟩B • |ψ⟩

Figure 2.9: Quantum Circuit for the Teleportation Protocol.

|0⟩A H •

|0⟩B

Figure 2.10: Quantum Circuit for |Φ+⟩.

Given the state to be teleported |ψ⟩ = α|0⟩+β|1⟩, the computational steps by which
the protocol is performed are the following:

1. from an initial state of three qubits |ψs⟩ = |ψ⟩|0⟩A|0⟩B , we create the Bell state
|Φ+⟩ by using the circuit in Fig.2.10:

|ψs⟩ Bell circuit−−−−−−−→ |ψ0⟩ = |ψ⟩|Ψ+⟩ = |ψ⟩ 1√
2
(|0⟩A|0⟩B + |1⟩|A|1⟩B)

=
1√
2

(
α|0⟩(|0⟩A|0⟩B + |1⟩A|1⟩B) + β|1⟩(|0⟩A|0⟩B + |1⟩A|1⟩B)

)
(2.119)

In this way, Alice’s second qubit and Bob’s one start in an entangled state.

2. Alice’s qubits are sent through a CN gate:

|ψ0⟩ CN−−→ |ψ1⟩ =
1√
2

(
α|0⟩(|0⟩A|0⟩B + |1⟩A|1⟩B) + β|1⟩(|1⟩A|0⟩B + |0⟩A|1⟩B)

)
(2.120)
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3. Alice applies an Hadamard transformation to the first qubit of the resulting state:

|ψ1⟩ H−→ |ψ2⟩ =
1

2

(
α(|0⟩+ |1⟩)(|0⟩A|0⟩B + |1⟩A|1⟩B)+

+ β(|0⟩ − |1⟩)(|1⟩A|0⟩B + |0⟩A|1⟩B)
)

(2.121)

which results to be equal, by regrouping terms, to the following state:

|ψ2⟩ =
1

2

(
|0⟩A|0⟩B(α|0⟩+ β|1⟩) + |0⟩A|1⟩B(α|1⟩+ β|0⟩)+

+ |1⟩A|0⟩B(α|0⟩ − β|1⟩) + |1⟩A|1⟩B(α|1⟩ − β|0⟩)
)

(2.122)

4. Alice performs a measurement on the first and second qubits obtaining one of the
following output bits:

00→ |ψ3⟩ = α|0⟩+ β|1⟩
01→ |ψ3⟩ = α|1⟩+ β|0⟩
10→ |ψ3⟩ = α|0⟩ − β|1⟩
11→ |ψ3⟩ = α|1⟩ − β|0⟩

where |ψ3⟩ is the state of the third qubit, i.e., the Bob’s part of the former entangled
pair.

5. Alice communicates the classical output to Bob, which according to the bit string
received applies a unitary operator on his state, retrieving in this way the original
|ψ⟩ state as follows:

00→ I |ψ3⟩ = |ψ⟩
01→ σx|ψ3⟩ = |ψ⟩
10→ σz|ψ3⟩ = |ψ⟩
11→ σy|ψ3⟩ = |ψ⟩

2.3.5 Quantum Key Distribution

A remarkable application of quantum information theory is now known as quantum
cryptography: it exploits the features of quantum physics to encrypt private information
by using techniques such as quantum key distribution. Quantum key distribution (herein
QKD) consist in a set of protocols which rely on private key distribution, i.e., private
key bits are shared between two parties over a public channel, in a provably secure way.
The security of the shared key is guaranteed by the properties of quantum systems,
since an eavesdropper cannot gain any information from the qubits transmitted from a
party to another one without disturbing their state, and thus being detected.

In the following we will present a QKD protocol, which will be used later in this
thesis. The first version of the protocol has been presented in [12].
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BB84 protocol

The BB84 protocol between two parties, namely Alice and Bob, works as follows:

1. In order to provide a secure communication, Alice can choose between four non–
orthogonal states. She can choose between the standard computational basis
{|0⟩, |1⟩} and the {|+⟩, |−⟩} one 5.

2. Alice randomly generates two classical n-bit strings a = [a1, . . . , an] and b =
[b1, . . . , bn];

3. Alice encodes the classical bit strings in a quantum state |Ψ⟩ =
n⨂
i=1

|ψaibi⟩, where
the symbol

⨂
denotes the tensor product of the arguments, and ai = a[i], bi =

b[i], i.e., the string b is used to determine in which basis each state will be encoded,
hemce:

|ψ00⟩ = |0 ⟩ |ψ10⟩ = |1⟩
|ψ01⟩ = |+⟩ |ψ11⟩ = |−⟩

4. The state ρ = |Ψ⟩⟨Ψ| is transmitted along a quantum channel E and it is re-
ceived by Bob. Now, the state E(ρ) encodes also the effects of possible noise, or
eavesdropping. Since no basis has yet been revealed by Alice, neither Bob nor an
eavesdropper know how to measure the state in order to retrieve the message;

5. Bob generates randomly a classical n-bit string b′ = [b′1, . . . , b
′
n] and uses it to

determine the basis in which he measures |Ψ⟩, obtaining the classical string a′ =
[a′1, . . . , a

′
n];

6. Alice and Bob compare on a public classical channel the strings b and b′ by
considering the elements in i-th position of both the strings, and if there is any
difference between them, then the element of the strings a and a′ in the same
i-th position (i.e., ai and a′i) are considered not reliable, thus discarded. There
remain k ≤ n bits resulting from measuring in the same basis; Alice and Bob both
chose k/2 elements from a and a′ respectively, and they publicly compare them.
If they match (above a certain threshold), then the check is passed, otherwise the
protocol fails because of the disturbance or eavesdropping occurred during the
transmission.

This protocol relies on a property of quantum systems which states that any attempt
to distinguish between two different and non–orthogonal quantum states |ψ⟩ and |φ⟩,
i.e., ⟨ψ|φ⟩ ≠ 0, will result in the disturbance of at least one of the states. Let’s assume
that we want to produce a copy of either |ψ⟩ or |φ⟩, by means of a unitary transformation
U and an ancilla qubit |χ⟩, as follows:

U(|ψ⟩|χ⟩) = |ψ⟩|ξ⟩
U(|φ⟩|χ⟩) = |ψ⟩|ω⟩

5Using the standard computational basis we have: |0⟩ ≡
(
1
0

)
,|1⟩ ≡

(
0
1

)
, |+⟩ ≡ 1/√2(|0⟩+ |1⟩) and

|−⟩ ≡ 1/√2(|0⟩ − |1⟩)



46 2. Quantum Computation and Information

Then, since |ψ⟩ ̸= |φ⟩, in order to gain information from them also |χ⟩ ̸= |ω⟩, but since
inner products are preserved by U the following statement holds:

⟨χ|χ⟩⟨ψ|φ⟩ = ⟨ξ|ω⟩⟨ψ|φ⟩

from which it follows that:

⟨χ|χ⟩ = ⟨ξ|ω⟩

which implies that |ξ⟩ = |ω⟩. The protocol relies on this feature of quantum states
and transmits non-orthogonal qubit states between two parties. In order to establish
a threshold on any noise or eavesdropping occurring in their communication channel,
they check for disturbance in their transmitted states.



3
Model Checking

In this Chapter we will summarise the main concepts about model checking, providing
the basic terminology which is required to understand the following Part of the thesis.
The following paragraphs are largely inspired by [32] and [7].

Model checking is an automatic technique allowing an exhaustive exploration of the
state space of a concurrent system, and it is used in order to investigate whether an error
state is reachable or not. It works by producing counterexamples. It has been designed
to verify the design of sequential circuits and communication protocols. Nowadays,
it shows many advantages on the classical verification techniques such as testing and
simulation; the application of model checking it is not only concerned with hardware, but
it also investigates whether software design may result in failures during the execution
of a program. The process of model checking can be summarised in three phases, as
follows:

1. Creation of the model. In this phase the program, or hardware design, is
converted into an abstract model. The modelling phase relies on suitable data
structures such as Kripke structures or labelled transition systems;

2. Properties specification. A list of the properties that the program/hardware
is required to possess is given. Their specification is tipically given in terms of
temporal logics;

3. Verification of the model. The last phase is the verification one, which is
performed in a completely automatic way by a model checking tool. In the case
in which a failure occurs, an error record (called error trace) is provided.

Anyway, model checking shows some important drawbacks, for which a solution is
currently under investigation. One of the main problems is the state explosion one;
i.e., the fact that a finite–state system with many components, or with many relations
between them, when modelled may result in a data structure with a huge number
of states which can be difficult to be automatically verified, due to its complexity.
Indeed, model checking explores the state space of the system to determine whether the
properties specified are possessed or not, and if the state space is too large, this task
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Figure 3.1: Outline of Model Checking Process.

might become really difficult to be performed in reasonable time. Another significative
drawback is related to both an incorrect modelling of the system, or of its specification.
These errors may result in false negatives in the error trace, and to a wrong identification
of failures.

In the following Sections we will briefly explore how the three phases of modelling,
specification and verification are realised and which methods are used to tackle the
aforementioned drawbacks.

3.1 Creation of the model

The first step we mentioned in the introduction of the Chapter is the construction of
the abstract model of the system we want to verify. In order to keep the verification
process the least faulty and computationally complex as possible, the main challenge is
to build a model allowing a suitable representation of the properties needed to assess
the correctness of the system, by abstracting away all the non–relevant details. For
example, as presented in [32], in the modelling of a Boolean circuit we might be more
interested in logic gates and Boolean values instead of the actual voltage levels of the
component of the circuit.

A model is composed by states; each state refers to an instantaneous description of
the variables of the system at a given time. The causal change from a state to another
one, in the model, is represented by a transition, i.e., the couple (si, sj) of states in which
si is the state before an action occurs and sj is the resulting state. Within this setting, a
computation is a sequence of transitions from a state to a new one. According to [78] two
of the most used types of models are Kripke structures and labeled transition systems
(herein KS and LTS respectively). KS are state-based, i.e., the states are labeled with
a name, and LTS are event-based, thus in their case transitions are labeled, instead
of states. Nevertheless, an equivalence between them has been given in [29], thus KS
and LTS are interchangeable in many tasks. Moreover, since the work presented in this
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thesis is mainly focused on KS–like structures, we will not give a formal definition of
LTS, providing in the following the one of KS instead. We will use some first order logic
concepts in their usual meaning, thus a basic knowledge of connectives (and ∧, or ∨,
not ¬), and existential and universal quantification (∃, ∀) is assumed.

Definition 3.1.1 (Kripke structure). A Kripke structure K over a set of atomic propo-
sitions AP is a tuple (S, S0, R, L), where:

1. S is a set of states;

2. S0 ⊆ S is the set of initial states;

3. R ⊆ S × S is a total transition relation, i.e., ∀s ∈ S, ∃t ∈ S such that R(s, t).
R(s, s) holds, in the case s has no successor;

4. L : S → 2|AP | is the labelling function.

A path in K from a state s ∈ S is a sequence π = s0, s1 . . . such that s = s0 and ∀i ≥ 0,
R(si, si+1) holds. The size |K| of a Kripke structure is defined to be the number of its
states, i.e., |K| = |S|.

Due to the diversity of the systems to be modelled, we use a unifying formalism
which allows to represent systems of any type, i.e., first order formulae.

By using this interpretation, a state in a KS is a valuation s : V → D, where V is
the set of variables of the system and D is the finite set of values that a variable in V
can assume, also called domain of the interpretation. We describe the initial states of
the system by using a first order formula S0 over the set V .

Transitions are specified by a transition relation from a set of present state variables
V to a set of next state variables V ′. Each variable v ∈ V corresponds to a variable
v′ ∈ V ′. A valuation on v and v′ can be treated as a transition and, given R a transition
relation, then R(V, V ′) is a formula representing it. Finally, we define a set of atomic
propositions AP , whose elements have the form v = d, where v ∈ V and d ∈ D. Such
proposition is true in a state s if s(v) = d If v is a variable over the Boolean domain, v
indicates s(v) = true and ¬v corresponds to s(v) = false.

Definition 3.1.2 (First order representation). Given the formulae S0 and R represent-
ing the system, it is possible to extract the associated Kripke structure.

1. S is the set of all valuations for V ;

2. S0 is the set of valuation s0 for V satisfying the formula S0;

3. let s and s′ be two states, R(s, s′) holds if R evaluates to true when to each v ∈ V
is assigned the value s(v) and to each v′ ∈ V ′ the value s′(v′);

4. the labelling function is defined such that L(s) is the set of all atomic propositions
true in s. If v ∈ {true, false}, then v /∈ L(s) ⇒ s(v) = false and v ∈ L(s) ⇒
s(v) = true.

Since the transition relation of a KS is total, the relation R is extended to the case of
states with no successors. Hence, also R(s, s) holds.
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It is important to recall that transitions must be atomic, in order to avoid failures
in finding important errors, or to check for errors that will never happen in practice,
which are respectively due to excessively coarse or fine grained transitions. In order to
avoid the aforementioned errors, in the model no observable state can result from the
execution of just a part of a transition.

Another kind of structure used to model system which may exhibit probabilistic
behaviours are the Discrete Time Markov chains.

Definition 3.1.3 (Discrete Time Markov Chain). A Discrete Time Markov chain
(DTMC) K over a set of atomic propositions AP is a tuple (S, S0, P, L), where:

1. S is a countable set of states;

2. S0 ⊆ S is the initial state;

3. P : S×S → [0, 1] is a transition probability function, i.e., ∀s ∈ S, ∑s′∈S P (s, s
′) =

1;

4. L : S → 2|AP | is the labelling function.

It is important to note that every state has at least one outgoing transition, and we add
self loops to represent final states. A finite, or infinite, path in K is a sequence of states
π = s0, s1, . . . such that P (si, si+i) > 0 and it represent a possible computation of the
system modelled by K.

Example 3.1.1. In this example we present a DTMC for a very simple toy protocol,
which can be seen in the following:

s0

s1

succ

s2

fail

0.7

0.5

0.3

1.0

0.5

The DTMC K = (S, S0, P, L) has the following form: S = s0, s1, s2, L(s0) = ∅,
L(s2) = {succ}, L(s2) = {fail}, and the transition matrix P is:

P =

⎛⎝ 0 0.7 0.3
0 1.0 0
0.5 0 0.5

⎞⎠
where each entry of pij ∈ P represents P (si, sj).

Probability Spaces over Paths: in order to reason about the probability space over
paths, it is useful to introduce the following notions.

Let Ω be a non–empty set; a σ–algebra on Ω is a family Σ = {Ai}, Ai ⊆ Ω closed
under complementation, i.e., A ∈ Σ ⇒ Ω \ A ∈ Σ and countable union, i.e., Ai ∈ Σ ⇒⋃
iAi ∈ Σ, for i ∈ N.
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Definition 3.1.4 (Probability Space). A probability space is a tuple (Ω,Σ,P) where:

1. Ω is the sample space;

2. Σ is the set of events;

3. P : Σ→ {0, 1} is the probability measure.

Definition 3.1.5 (Probability Space over Paths). A probability space over paths in a
DTMC K is a tuple (Ω,Σ,P) where:

1. Ω = Path(s), where Path(s) is the set of all infinite paths over K, starting from
the state s;

2. ΣPaths(s) is the set of events. Given the set C(π̂) = {π ∈ Paths|π̂ is prefix of π},
ΣPaths(s) is a σ–algebra on the set Paths, i.e., ΣPath(s) = {Cπ̂|π̂ finite path ∈ K}∪
{∅};

3. Ps : ΣPaths(s) → {0, 1} is the probability measure. Given a finite path π̂ of length
n, its behaviour is the following:

Ps(π̂) ::=

{
1 π̂ = s

P (s, s1)P (s1, s2) . . . P (sn−1, sn) otherwise
(3.1)

3.2 Properties specification

Before a proper verification process is carried on, the properties of the system, which
is now abstracted in a model, should be given in a formal way. In model checking,
for both hardware and software, modal logics such as temporal and spatial logics are
used to assert how the properties of the system evolve in time/space. We remark that
an important issue in property specification is their completeness, since we may forget
to specify relevant features of the system, making the verification only partial. In the
following sections we will provide a description of two logics used to specify properties.
Among these, we will focus in particular on temporal logics, since are the most widely
used in both model checking and in the following parts of this thesis.

3.2.1 Temporal logics

Temporal logics, first introduced by Prior in his seminal work [77], can describe the
behaviour of a system in terms of events ordered in time. Usually, logics relies on
atomic propositions, connectives, and quantification operators to describe properties
of a given state. When dealing with systems in which states evolve according to some
measure of time (which can also be an external cause, as in reactive systems), we are not
only interested in the specification of state properties, but also in the transition ones.
For this reason, approaches similiar to the Floyd–Hoare ones, concerned with the input–
output semantic of a program, are not enough. We are now interested in the internal
details of computation, thus in sequences of trasitions between states, instead of focusing
on a static description of the start and conclusion of execution of a system/program.
Together with the usual propositional logic operators, temporal logics allow the use of
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another class of operators, aiming to make valuations time-dependent, by associating a
separate valuation with each point of a given flow of time T .

Definition 3.2.1 (Time frame). A time frame T = (T,<) is a structure in which T
is the set of time points, and < a binary precedence relation such that, given two time
points s, t ∈ T , if s < t then s temporally precedes t.

It is worth mentioning that one can model temporal sequences in many ways; for
example, in Fig. 3.2 we depicted a linear time model and a branching time model.

(a) Linear Time (b) Branching Time

Figure 3.2: Time Models.

In linear time, every state has an unique successor and the computation is expressed
by infinite sequences; the logic used as a specification language for this kind of time
model is called linear–time temporal logic, also known as LTL, [75]. On the contrary,
in the branching time setting every state can have several successors, generating an
infinite computation tree; in this case the logic used is called Computation Tree Logic,
abbreviated in CTL. Thus, in LTL, operators are provided for describing events along
a single computation path, while in the branching-time logic CTL they quantify over
the paths that are possible from a given state. It is worth mentioning a very expressive
logic, CTL∗, which combines both branching-time and linear-time operators [25]. Since
we won’t focus on linear time logics, we will limit to the definition of the formalism of
CTL.

A CTL formula formalises the properties of the computation tree obtained by choos-
ing an initial state in S0 of a structure K and unwinding the structure in an infinite
tree according to its transition relation R and the labelling function L. CTL formulae
are composed by the path quantifiers A (i.e., for all computation paths) and E (i.e.,
eventually, for some computation path), which roughly correspond to the universal and
existential quantifiers ∀ and ∃, and by the following temporal operators:

• X (i.e., next time), which requires that a property holds in the next state of the
path;

• F (i.e., in the future), which requires that the property holds at some point along
the path;

• G (i.e., globally) specifies a property that holds at every state in the path;
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(a) f (b) ¬f (c) AXf (d) AFf (e) AGf

(f) EXf (g) EFf (h) EGf (i) A(¬fUf) (j) E(¬fUf)

Figure 3.3: CTL Example Trees.

• U (i.e., until) is a binary operator, and it is used to combine two properties.
It holds if there is a state in K where the second property holds, and at every
preceeding state along the path, the first property holds;

• R (i.e., release) is a binary operator which holds when the second property holds
along the path, up to the first state, where the first property holds;

Some of the aforementioned formulae can be depicted as in Fig. 3.3, where f = red and
¬f = gray, and we are supposed to start from the root of the structure.

The syntax of CTL is given in terms of state and path formulae; the former specify
properties in a specific state while the latter along a specific path. Nevertheless, since
it always starts with a path quantifier, a CTL formula is a state formula.

Definition 3.2.2 (CTL syntax). Given a set AP of atomic propositions and a ∈ AP ,
the following grammar holds:

State formula f ::= a | ¬f | f1 ∨ f2 | f1 ∧ f2 | Eg | Ag
Path formula g ::= f | Xf | Ff | Gf | f1Uf2 | f1Rf2

The operators ∨, ¬, X, U and E are the minimal set to express any other CTL
formula. Thus, given a KS K, a state s, a path π = s0, s1, . . . and a suffix πi = si, . . . ,
the semantics of CTL is given in Definition 3.2.3.

Definition 3.2.3 (CTL semantics). Given state formulae f1 and f2 and path formulae
g1 and g2 respectively, the relation (K, τ) |= ϕ (which is read “ the state/path formula
ϕ holds at state/along a path τ in K”) is defined as follows:

• s |= a ⇔ a ∈ L(s);
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• s |= ¬f1 ⇔ s ⊭ f1;

• s |= f1 ∨ f2 ⇔ s |= f1 or s |= f2;

• s |= Eg1 ⇔ ∃π = s, . . . such that π |= g1;

• π |= f1 ⇔ s is the first state of π and s |= f1;

• π |= Xg1 ⇔ π1 |= f1;

• π |= g1Ug2 ⇔ ∃k ≥ 0 such that πk |= f2 and for 0 ≤ j < k πj |= f1.

All the temporal logics presented in this thesis will be extensions of CTL.
In the following we will briefly introduce a probabilistic temporal logic which will be

used in this work.

PCTL In [47] the authors presented a probabilistic real time CTL (herein PCTL).
Formulae in this logic allow us to express real–time and probability in systems and
are built using atomic propositions, propositional connectives, and time and probability
operators. The syntax of PCTL is given as follows:

Definition 3.2.4 (PCTL syntax). Given a set AP of atomic propositions, a ∈ AP , an
integer t = 0, . . . ,∞ , and a real number p, satisfying 0 ≤ p ≤ 1, a PCTL formula can
take the following forms:

State formula f ::= a | ¬f | f1 ∨ f2 | f1 ∧ f2 | P∼p(g)

Path formula g ::= Xf | f1Uf2 | f1U≤tf2

where ∼∈ {<,≤, >,≥}, P∼p(g) expresses that g holds for a path from a given state s
with probability bounded by p, and the bounded until operator f1U

≤tf2 means that
after the formula f1 holded for t time steps, the formula f2 holds. From the syntax
definition we note that a PCTL formula is always a state formula and path formulae
only occur inside the probabilistic operator P .

PCTL formulae are interpreted over discrete time Markov chains and their semantic
is given as follows.

Definition 3.2.5 (PCTL semantics). Given a DTMC K, state formulae f1 and f2 and
a path formula g respectively, the relation (K, τ) |= ϕ (which is read “ the state/path
formula ϕ holds at state/along a path τ in K”) is defined as follows:

• π |= f1U
≤tf2 ⇔ ∃i ≤ t such that πi |= f2 and ∀k ≤ i πk |= f1;

• s |= P∼p(g) ⇔ P(s,g) ∼ p where P(s,g)

is the probability that, from a state s the formula g is true for an outgoing path.

Non–probabilistic PCTL formulae obey to the same semantics as CTL.

An example of operator P can be seen in Fig. 3.4 in which we ask if the probability,
starting from the state s, that g is true for an outgoing path is constrained by 0.5.

Two examples of satisfying paths, related to the DTMC of Example 3.1.1, can be
seen in Fig. 3.5.

In these paragraphs we briefly introduced the concept of temporal logics and their
role in modelling properties of a system, which will later be verified.
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Figure 3.4: Example of PCTL P operator for the formula P≤0.5[F(g)].
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Figure 3.5: Examples of satisfying paths.

3.3 Model checking

The model checking problem can be described as follows: given a structure K, e.g., a
KS or a DTMC, representing a finite state system, and a temporal formula f expressing
the property that such system is supposed to match, we must find the set of all states
s ∈ S satisfying f , i.e.:

Sf = {s ∈ S|(K, s) |= f} (3.2)

with the initial states of the structure belonging to Sf . Some model checking algorithms
use an explicit representation of the structure K as a labelled, directed graph while
others use symbolic techniques.

A brief summary of the main CTL model checking techniques is given in the follow-
ing, using Kripke structures as models (this can be easily extended to other structures,
e.g., LTSs or DTMCs). Since a more in–depth description of these approaches is out of
the scope of this thesis, we refer to [32, 7] to a more complete explanation.

3.3.1 CTL Model Checking

Given a Kripke structure K = (S, S0, R, L), we aim at determining the set Sf of states
satisfying a CTL formula f . This can be achieved by an algorithm which labels each
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state s with the set sat(s) of subformulae of f which are true in s. At first sat(s) = L,
then the algorithm procedes recursively as follows: at each i−th step, the subformulas
of f with i−1 CTL nested operators are processed, by putting each of them into the set
of labels of each state in which the subformula is true. At the end of the computation
we obtain that s |= f ⇐⇒ f ∈ sat(s).

Now, we will show how the intermediate steps of the model checking algorithm work
for the CTL formulae g; since it can be proven that every CTL formula can be expressed
in terms of ¬, ∨, EX, EU and EG , then g can be in one of the following configurations:

g = ¬f : the algorithm labels the states which are not labelled by f ;

g = f1 ∨ f2: the algorithm labels any state which is labelled by f1, by f2 or by both;

g = EXf: the algorithm labels each state having one or more successors labelled by f ;

g = E[f1Uf2]: first the algorithm retrieves all the states labelled with f2, then it works
backwards to find all the states reachable by a path with all the states labelled by f1;
this can be achieved by using the inverse of the transition relation R. The pseudocode
describing a procedure to add g to sats for the until case is described in the following:

Algorithm 1 Model Checking CTL Until

1: procedure EU(f1, f2)
2: T ← {s|f2 ∈ sat(s)}
3: for all s ∈ T do
4: sat(s)← sat(s) ∪ {E[f1Uf2]}
5: while T ̸= ∅ do
6: choose s ∈ T
7: T ← T \ {s}
8: for all t|R(t, s) do
9: if E[f1Uf2] /∈ sat(t) and f1 ∈ sat(t) then

10: sat(t)← sat(t) ∪ {E[f1Uf2]}
11: T ← T ∪ {t}
12: end if
13: end for
14: end while
15: end for
16: end procedure

By using this backward search, we add E[f1Uf2] to sat(s) for each s |= E[f1Uf2],
provided that s |= f1 ⇐⇒ f1 ∈ sat(s) and s |= f2 ⇐⇒ f2 ∈ sat(s). The whole
procedure’s cost is O(|S|+ |R|).

g = EX: the algorithm first decomposes K into nontrivial strongly connected com-
ponents, i.e., a subgraph C in which each node is reachable from every other node
along a directed path. C is nontrivial if and only if it has more than one node or the
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only node has a self loop. Then, given K ′ = (S′, S′
0, R

′, L′) obtained from K, where
S′ = S \ {s|s ⊭ f}, R′ ∈ S′ × S′ and L changes accordingly, the algorithm relies on
Lemma 3.3.1:

Lemma 3.3.1. s |= EGf if and only if the following holds:

1. s ∈ S′

2. ∃π ∈ K ′|R′(s, t) ∈ C

The proof of Lemma 3.3.1 can be seen in [32]. In the following we show the procedure
to compute the set sat(s) for EGf .

Algorithm 2 Model Checking CTL Globally

1: procedure EG(f)
2: S′ ← {s|f1 ∈ sat(s)}
3: SCC ← {C|Cnontrivial SCC of S′}
4: T ← ⋃

C∈SCC{s|s ∈ C}(s|f1 ∈ sat(s)}
5: for all s ∈ T do
6: sat(s)← sat(s) ∪ {EGf}
7: while T ̸= ∅ do
8: choose s ∈ T
9: T ← T \ {s}

10: for all t ∈ S′ and R(t, s) do
11: if EGf /∈ sat(t) then
12: sat(t)← sat(t) ∪ {EGf}
13: T ← T ∪ {t}
14: end if
15: end for
16: end while
17: end for
18: end procedure

The first part of the algorithm, which computes the strongly connected components,
takes O(|S′| + |R′|). Then, as in the until case, we use the converse of R′ to find all
the states that can be reached by a path in which every state is labelled by f , which
takes O(|S| + |R|). Since we should run the algorithm for every subformula of f , the
algorithm requires O(|f |) ·O(|S|+ |R|).

We recall that a remarkable feature of model checking is the one of finding counterex-
amples and witnesses, i.e., the model checker, to prove Af = false, finds a computation
path satisfying ¬Af = true. Likewise, to check Ef = true, it will find a path in which
the formula holds.

3.3.2 Symbolic CTL Model Checking

The CTL model checking procedure described assumes that the Kripke structure K has
an explicit representation in which, for each state we can always know its predecessor
and successor lists. This enumerative representation turns out to be not adequate for
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very large KS, causing an explosion in the size of the model. To deal with this scenario,
symbolic model checking algorithms for CTL have been presented. These algorithms
rely on a binary encoding of the states, identifying both the subsets of the state space
and the transition relation R with Boolean functions. Operations on Boolean functions
can be implemented as graph algorithms operating on a particular data struture called
Ordered Binary Decision Diagrams (herein OBDDs), in this way we don’t need to build
a full enumeration of the problem space (e.g., a Kripke structure). OBDDs represent
Boolean functions as directed acyclic graphs; they are binary decision diagrams (BDDs)
in which we impose a total ordering< over the set of variables var and we require that for
any node u in the graph, and either each nonterminal child v, their respective variables
must be ordered as var(u) < var(v), moreover there shouldn’t be any redundancy in
the nodes of the diagram. In this way, we can build an OBDD from a BDD by means
of a repeated application the following transformation rules, depicted as an example for
the Boolean function f = (x2 ∧ x3) ∨ (x1 ∧ x3), in Fig. 3.6.

x1

x2

x3x3x3 x3

x2

00 0 1 10 10
(a) BDD

x1

x2

x3x3x3 x3

x2

0 1

(b)

x2

x1

x3x3

x2

0 1

(c)

x2

x1

x3

0 1

(d)

Figure 3.6: Example of OBDD Transformation Steps.

• Elimination of duplicate terminal nodes: all but one terminal node (for each label)
are removed and the remaining edges are redirected into the remaining nodes.

• Elimination of duplicate internal nodes: if two nodes have the same variable set
var(u) = var(v), and are directed towards the same children, i.e., low(u) = low(v)
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and high(u) = high(v), then one of the two parent nodes is removed and the edges
are redirected to the remaining one.

• Elimination of redundant tests: if an internal node v has the same children, i.e.,
low(v) = high(v), then v is removed and its edges redirected toward low(v).

We won’t delve more into the theoretical details of OBDDs, which can be found in Refs.
[21, 32]. OBDDs are useful to represent in a compact way relations over finite domains,
thus also Kripke structures can be modelled in such way; in the following we briefly
show how to build an OBDD from a KS.

OBDD Representation of KS: OBDDs are useful to represent in a compact way
relations over finite domains, thus also Kripke structures can be modelled in such way;
we briefly show how to build an OBDD from a KS. Let K = (S, S0, R, L) be a KS, in
order to translate it in an OBDD we must describe S and R as follows:

• States s ∈ S are described by means of vectors of Boolean values; each Boolean
vector can be represented by a Boolean formula fS(s) which holds if the system
is in the state s. The characteristic function fS(S) =

⋁
s∈S fS(s) representing S

is an OBDD.

• In order to represent the transition relation R(s, s′) we need two Boolean vec-
tors ŝ and ŝ′ representing the initial and final state of the transition, respec-
tively. We define the Boolean relation associated as R̂(ŝ, ŝ′) ::= fS(s) ∧ fSs′ and
the transition relation can be represented by means of its characteristic function⋁
s,s′∈R R̂(ŝ, ŝ

′) =
⋁
s,s′∈R fS(s) ∧ fS(s′).

Symbolic Model Checking Algorithm for CTL: The symbolic model checking
algorithm relies on a procedureCheck which takes in input a CTL formula g and returns
in output an OBDD representing the states satisfying the formula. The algorithm can
be defined recursively over the structure of CTL formulas. Since it relies on different
methods, which are out of the scope of this thesis, we refrain from a more in–depth
exaplanation, by addressing [32] as detailed reference.

3.3.3 Probabilistic CTL Model Checking

This section considers the automated verification of probabilistic systems. The structure
used to model this kind of systems is a discrete time Markov chain, i.e., a Kripke
structure in which each nondeterministic choice between successor states is replaced by
probabilities. Given a state s, its successor s′ is chosen from a probability distribution
depending from the current state only, and not from any state belonging to the path
previous to s. The temporal logic used is PCTL. We can briefly describe the PCTL
model checking for DTMCs [47] in which the procedure takes in input a DTMC and a
formula g, and gives in output the set sat(g) of states satisfying g in a way similar to the
CTL model checking algorithm presented above. Initially sat(s) = L(s) for each s ∈ S.
Then, a labelling procedure is performed, from the smallest subformula of g that has
not yet been labelled, and ending to g itself. Composite formulae are labelled according
to the labelling of their parts.
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3.3.4 PRISM

PRISM (PRobabilistIc Symbolic Model checker) is a symbolic model–checker for prob-
abilistic systems [58], which allows model checking of formulae of the probabilistic tem-
poral logic PCTL. PRISM takes in input a model written in a probabilistic variant of
Reactive Modules [4], then it computes the set of reachable states. The model can be,
among others, a DTMC which is used to test specifications in the logic PCTL. The tool
then performs model checking to determine which states of the system satisfy each spec-
ification. For PCTL properties and DTMC models, PRISM implements the algorithms
of [47, 18, 8]. It is also possible to export the transition matrix of the model, enabling
analysis in other applications and visualisation of the model. Snapshots of the PRISM
model checker, for both the model creation and model checking steps, can be seen in
Figures. 3.7 and 3.8.

Figure 3.7: PRISM Model Creation.
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Figure 3.8: PRISM Model Checking.
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4
Quantum Programming and
Quantum Model Checking

This Chapter is devoted to briefly summarise the state–of–the–art in the fields of quan-
tum programmig and the verification of quantum programs. The main aim of computer
science is the study of computational models and algorithms, and their translation into
computer programs, topics that have been applied to the quantum information theory
setting as well. Nevertheless, quantum phenomena such as superposition, interference
and entanglement do not always have a straightforward classical counterpart and exhibit
completely new behaviours that do not arise in classical computation. For this reason,
different quantum abstract languages and verification techniques have been proposed,
aiminig at modelling in the most accurate way the effects of quantum physics. After a
brief summary of the state–of–the–art, we will focus in particular on a quantum pro-
gramming language, i.e., Quipper, and on a quantum model checker, i.e., QPMC, since
they have been used as a starting point in the oresented work. For a more in–depth
presentation of the models listed in this Chapter, we recommend [90, 80, 44, 66, 65, 40].

4.1 Quantum programming languages

One of the main purposes of programming languages is to abstract the computation from
the physical low–level point of view, i.e., from a computation given in terms of Boolean
circuits, logic gates, voltage levels and really long strings of bits, to a more abstract, high
level description, which is more human readable and allows a more abstract problem
solving process, rather than a context oriented one. The study of quantum algorithms,
from a computational point of view, is mainly given in terms of quantum circuits,
which are similar to the low–level circuit description of classical computation already
mentioned. According to [44] each algorithm, or protocol, relies on an ad–hoc set of
transformations to achieve its goal. The goal of quantum programming is to abstract
from its low–level description, providing a more general way to treat quantum programs.
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Quantum models of computation: Many different abstract computational models
have been proposed. Among them, the most popular one is the quantum circuit model,
which has been presented in Section 2.2.1 and consists of qubits, unitary gates acting on
them, and final measurements. Throughout the years, different authors in [11, 16, 30]
proposed the concept of Quantum Turing Machines, which as in the classical case consist
of a tape, a finite control and a head. All the state transformation are unitary and
measurements are not performed. The two models presented can be regarded as the
quantum counterpart of their classical analogue, with the difference that states, in a
Quantum Turing Machine, cannot be observed nor copied.

A third model, equivalent to the first two mentioned, is the QRAM one presented in
[57], in which a quantum device is controlled by a classical one, and allows an interleaving
of both unitary transformation and measurements. The quantum device in the QRAM
contains n qubits, and it manipulates then according to the instructions sent by the
classical device; in the end, the quantum device provides the output of the computation
to the classical one which, according to the results, end the computation or re–initialises
it.

Other models are the measurement based quantum computation, presented in [20] or
the teleport based one, proposed in [63]; both of them rely on quantum measurement
not only to extract information from a quantum state, but also to perform the compu-
tation itself on a particular entangled state called cluster state. Recently, adiabatic or
topological quantum computation models have been proposed, in [34, 56] respectively,
which are more phisically rooted.

Imperative quantum programming languages: The quantum programming lan-
guages relying on the imperative paradigm are probably the earlier presented; this class
of languages considers a program as a sequence of instructions which, step by step, up-
dates a global state. The main imperative quantum programming languages are listed
in the following:

• Quantum pseudocode: proposed by Knill in [57]. This approach is the first
formalised language for the description of quantum algorithms. It is connected
with the aforementioned QRAM model.

• QCL: the Quantum Computer Language has been proposed in [65] and it is an
high–level language for the implementation and simulation of quantum programs,
derived from classical procedural languages such as C, with classical data types
similar to the ones found in C. The basic built-in quantum data type in QCL is
qreg (i.e., quantum register), which can be interpreted as a an array of qubits and
the QCL standard library provides the main quantum operators used in quantum
algorithms, plus the possibility to have user–defined functions.

• Q Language: developed in [17] is an extension of the C++ programming lan-
guage. It provides classes for the basic quantum operations like QHadamard,
QFourier, QNot, and QSwap, which are derived from the base class Qop. New
operators can be defined using the C++ class mechanism. Q Language provides
a simulator.
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• qGCL: the Quantum Guarded Command Language (qGCL) has been presented
in [93] and it is based on Guarded Command Language created by Dijkstra. It
is more similar to a specification language, since it is endowed with a formally
defined operational semantics.

It can be described as a language for quantum programs specification.

Functional quantum programming languages: The quantum programming lan-
guages relying on the functional paradigm do not perform computation by updating a
global state, but by the definition of a function which maps inputs to outputs. Func-
tional programming languages for quantum computation have seen the light with an
attempt to define a quantum extension of the lambda–calculus, which has been devel-
oped by van Tonder, and refined by Selinger and Valiron. The main functional quantum
programming languages are listed in the following:

• Quantum Lambda Calculus: the first definition of quantum lambda calculus
can be found in [59]. Then, in [86] the author provided an extension of lambda
calculus suitable to prove correctness of quantum programs based on the Scheme
programming language. This version does not incorporate any classical data type.

• QPL: the Quantum Programming Language was defined in [82]. Its extension
cQPL incorporates elements for modelling quantum communication protocols. At
the moment cQPL compiler generates C ++ code for linking with the simulation
library from QCL.

• QFC: in [82], the authors developed QFC which aims at representing quantum
programs using the functional version of flow charts. The language offers also
a text–based syntax and it is endowed with a safe type–system, and it can be
compiled in the QRAM model.

• QML: in [3] the authors proposed a quantum programming language based on
Haskell, endowed with an equational theory and with a quantum control.

• Quipper: [44], a functional programming languages embedded in Haskell. We will
describe Quipper in details in Section 4.2, since it will be widely used throughout
the thesis.

• LIQUi|⟩ and Q♯: both developed by Microsoft; [87] is a functional programming
language embedded in F♯, while Q♯ is a domain–specific language initially released
to the public as part of the Quantum Development Kit https://docs.microsoft.
com/en-us/quantum/?view=qsharp-preview.

The latter three languages, i.e., Quipper, LIQUi|⟩ and Q♯ are also the most recent ones.

Quantum compilers From a practical point of view, we witnessed many different
examples of design and implementation of quantum languages and compilers. In [85]
a layered quantum software architecture has been proposed, which maps a quantum
program specified in an high–level language to a quantum device by means of an in-
termediate quantum assembly language. In [62] the authors proposed the Sequential

https://docs.microsoft.com/en-us/quantum/?view=qsharp-preview
https://docs.microsoft.com/en-us/quantum/?view=qsharp-preview
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Quantum Random Access Memory machine (abbreviated in SQRAM), a semi–classical
architecture based on Knill’s QRAM, allowing to use quantum assembly code. Nagara-
jan and its team also developed a compiler for a subset of Selinger’s QPL. Zuliani in [94]
designed a compiler for qGCL in which the compilation step is realized by manipulating
algebraically a qGCL program into a canonical form that can be executed by a target
machine. A translation between the quantum extension of the while-language defined
in [90] and a quantum extension of classical flowchart language was given in [92]. All of
these studies are based on the popular circuit model of quantum computation. In [27]
the authors presented a low–level language based on the measurement-based one-way
quantum computer. Recently, quantum compilation has been intensively researched
and series of compilation techniques has been developed through the recent projects of
languages Quipper , LIQUi|⟩, among others. Recently, QA Prolog and QMASM have
been proposed in [69].

Categorical and concurrent approaches For the sake of completeness, here we
summarise approaches which are different to the ones mentioned in the previous para-
graphs. In particular, in [1] the authors proposed a categorical semantics for quantum
programs, based on a categorical axiomatisation of quantum mechanics. This method is
effective when addressing high–level description and verification of quantum communi-
cation protocols. In [1, 48] the authors proposed two examples of categorigal quantum
logics. In order to deal with concurrent quantum programs, quantum process algebras,
e.g., the ones presented in [28, 71, 72, 91], have been proposed.

4.2 Quipper

In the context of this Thesis we will provide an in–depth description of the Quipper
programming language, which will be used in the following Chapters.

Quipper is an embedded functional programming language for quantum computation
[44]. Quipper is based on the Knill’s QRAM model [57] of quantum computation. This
model uses both a classical and a quantum device to perform a quantum computation.
The classical device performs purely classical computations (control flow, test, loops).
The quantum computer is a specialised device that is able to perform only two kinds of
instruction: unitary operations and measurements; we can think about it as a sort of
quantum co–processor.

As defined in [84], there is no control flow on the quantum co-processor, i.e., any
loop or conditional branching has to come from the classical device controlling the co-
processor. As a result, a quantum computation can be pictured as a linear circuit,
representing the flow of elementary instructions sent to the co-processor.

However, in some algorithms the circuit is conditioned on the result of intermediate
measurements and part of the circuit can depend on a measurement done at a previous
stage. For this reason, there is the need for a scalable programming language, to ac-
commodate such a dynamic representation of circuits [84]. In order to accomplish this
requirement, Quipper’s developers decided to write the language as a library for Haskell;
a strongly typed functional classical programming language. Quipper has a collection
of data types, combinators, and a library of functions within Haskell, together with an
idiom, i.e., a preferred style of writing embedded programs [44]. Quipper provides many
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higher order and overloaded operators, even though Haskell does not have linear type
and dependent type features; in fact, to overcome this problem, Quipper checks linear
and dependent types at run time rather than at compile time [83].

Quipper provides an extended circuit model of quantum computation. Usually, the
quantum circuit model is concened with qubits and unitary gates, while quipper provides
a larger class of circuits allowing both quantum and classical wires and gates within a
circuit.

Naturally, we assume that quantum instructions could be controlled by a classical
wire whilst the vice versa is not possible.

In Quipper measurement is a gate that, probabilistically, turns a qubit in a classical
bit, e.g., the qubit associated to the standard computational basis state |0⟩ is trans-
formed into the bit 0, and the qubit |1⟩ is transformed into the bit 1.

4.2.1 Execution steps

Quipper programs have three different phases of execution [44]:

• Compile-time: the compile phase of a Quipper function is the same as an Haskell
one. The input to this phase are source code and compile-time parameters. The
output is executable object code.

• Circuit-generation-time: This takes place on a classical computer. The input
to this phase are the executable object code generated by the previous phase, and
the circuit parameters (for example, the size of registers, problem sizes, the size of
time steps, error thresholds, etc.). The output is a representation of a quantum
circuit.

• Circuit-execution-time: This takes place on a physical quantum computer.
The input to this phase is a quantum circuit, and possibly some circuit inputs.
The output consists of circuit outputs (for example, classical bits representing
measurement results).

4.2.2 Parameter/input distinction

Parameters are values known at circuit generation time (for example the size of a
circuit) and inputs are values known at circuit-execution time (i.e. the state of a qubit
represented as a wire in the circuit). Quipper introduces three data types for qubits and
bits:

1. Bool is a Boolean parameter,

2. Bit is a Boolean input,

3. Qubit is a qubit input.

4.2.3 Circuit description language

Quipper is above all a circuit description language. For this reason it uses the state
vector formalism and its main purpose is to make circuit implementation easier even
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when we are dealing with difficult and large–scale circuits. It provides operation for
circuit manipulation; these operations include inversion, iteration, ancilla management
and circuit transformations. The philosophy of the Quipper paradigm is that qubits are
held in variables and gates are applied to them one at a time. Subroutines can be used
to group gate-level operations together where the programmer finds it useful.
Quipper provides block-structure operation as:
with controls :: Qubit -> Circ a -> Circ a

that lets a qubit control an entire block of gates, and
with ancilla :: (Qubit -> Circ a) -> Circ a

that provides an ancilla qubit to a group of gates. It provides also other circuit operators
that can be found in the Quipper Online Documantation at http://www.mathstat.dal.
ca/~selinger/quipper/doc/frames.html.

A Quipper program is a function that receives as input some quantum data, performs
state changes on it, and then outputs the changed quantum data. This is encapsulated
in a Haskell monad called Circ.

The Circ monad is a ReadWrite monad, wrapped with an additional state. It
encapsulates the type of quantum operations. For example, a quantum operation that
inputs two Qubits and outputs a Qubit and a Bit has the following type:

(Qubit,Qubit) -> Circ (Qubit,Bit).

Usually functions are written in a do block. A do block starts with the do keyword
which is followed by a series of expressions or operations. The starting point of a Quipper
program is the main function. As we have mentioned before, the circuit generation time
phase sends a circuit defined in the source code to the physical quantum device to execute
it. The print simple and print generic functions are used to print the circuit in an
available output format [83]. Another important remark about Quipper is that its host
language Haskell provides many data structures like Map, Set etc, but Quipper mainly
uses list and tuple.

Among others, Quipper provides two important features that are the automated
generation of quantum oracles and extensible quantum data type.

4.2.4 Simulation

Quipper provides three different simulators for the execution of quantum algorithms on
a classical computer (with an exponential slowdown):

• a classical simulator;

• a stabilizer simulator;

• a quantum simulator.

The quantum simulator takes in input a Quipper circuit producing function and uses
a transformer to lazily simulate the resulting circuit (see Quipper.Transformer library
for more details). The implementation of the quantum simulator makes use of a State

monad, that is used to hold the quantum state. The simulator uses complex num-
bers as probability amplitudes, and a random number generator to simulate quantum
randomness. Basis states are stored as a map.

http://www.mathstat.dal.ca/~selinger/quipper/doc/frames.html
http://www.mathstat.dal.ca/~selinger/quipper/doc/frames.html
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As an example, let us now consider a simple instance of the Deutsch algorithm, in
which we use a controlled–not gate as oracle. In Quipper, the steps of the algorithm
can be written as follows:

deutschCirc :: (Qubit , Qubit) -> Circ Bit
deutschCirc (q0, q1) = do

q0 <- qinit False
q1 <- qinit True
label (q0, q1) ("|0⟩", "|1⟩")
map_hadamard_at (q0, q1)
qnot_at q1 ‘controlled ‘ q0
c0 <- measure q0
return c0

Quipper provides the main quantum gates used in the circuit model, e.g, Hadamard
(hadamard), Pauli and phase–shift gates (gate X, gate Y, gate Z, gate S ) among oth-
ers, which can be written in both functional and imperative style. Quipper provides also
controlled operators which, given two quantum registers, i.e., two lists of qubits q0 (tar-
get) and q1 (control), are written according to the following syntax: q0 ‘controlled‘

q1.
In addition, Quipper provides the opportunity to apply custom unitary matrices by im-
porting some additional libraries, i.e., Libraries.Synthesis.Matrix, QuipperLib.Synthesis
and Libraries.Synthesis.Ring. In the following, we show an example of a re–defined
controlled–not gate.

customCN :: Matrix Four Four DOmega
customCN = matrix4x4 (1,0,0,0)

(0,1,0,0)
(0,0,0,1)
(0,0,1,0)

which allows to rewrite the code for the aforementioned instance of the Deutsch algo-
rithm as follows:

deutschCirc :: (Qubit , Qubit) -> Circ Bit
deutschCirc (q0, q1) = do

q0 <- qinit False
q1 <- qinit True
label (q0 , q1) ("|0⟩", "|1⟩")
map_hadamard_at (q0, q1)
(q0 ,q1) <- customCN (q0,q1)
c0 <- measure q0
return c0

Quipper syntax is not restricted only to the application of unitary and measurement
gates to a list of qubits, but provides a larger class of operations, thus we refer to the
Quipper Online Documentation in http://www.mathstat.dal.ca/~selinger/quipper/
doc/frames.html for a thorough description of the language.

4.3 Quantum programs verification

Analysis and verification of quantum programs has been recently explored from many
points of view. In [89, 24] the authors investigated the possibility to apply Floyd-Hoare–
style logics for the verification of quantum programs. Another possibility is to apply
model checking techniques to the verification of quantum algorithms and protocols.
The main obstacle arising from these approaches is that the set of all quantum states,
traditionally regarded as the underlying state space of the model to be checked, is a

http://www.mathstat.dal.ca/~selinger/quipper/doc/frames.html
http://www.mathstat.dal.ca/~selinger/quipper/doc/frames.html
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continuum so the techniques of classical model checking, since they require a finite state
space cannot be applied directly to the quantum case [35]. Quantum model checking
must find a solution for the two following problems:

1. the problem of defining a formal framework to suitably model both the program
and the properties;

2. the problem of defining techniques allowing to perform the checks on a finite
number of representative states only.

The structures proposed in literature to model a quantum program are either Quantum
Automata or Quantum Markov Chains. The main difference between the two formalisms
is that the first one represents actions in terms of unitary operators, while the second
uses the more general formalism of superoperators, allowing to capture a wider set of
dynamics. Since some classical key problems in model checking can be restricted to
the problem of reachability of states on a structure, reachability analysis of quantum
Markov chains provides a suitable basis for quantum model checking. Many definitions
of quantum Markov chains have been investigated in literature, in particular by [46]. At
present, some model checking techniques have been developed both for quantum pro-
grams and for quantum systems. In [39] the authors provided a model–checker to verify
quantum communication protocols exploiting the probabilistic model checker PRISM
[58]. This work tried to solve the aforementioned state problem by restricting the state
space to a set of finitely describable states called stabiliser states, and the set of op-
erations applied on them to the class of Clifford group (Hadamard, controlled-not and
phase gate). In a later work, presented in [41], the authors presented theorised QMC,
an automatic tool which verifies quantum protocols expressible in stabiliser formalism
so that the state space can be encoded in a classical way. QMC uses the quantum com-
putation tree logic developed by [68] to express the properties to be checked. Anyways,
this approach, according to [35], does not work for general protocols since it is focused
on the stabilizer formalism. Other model checking techniques, based on both quantum
Markov chains and QCTL have been investigated in [36], in which the authors provided
an automatic tool, QPMC, which will be described in the following section.

4.4 QPMC

In [35] the authors proposed the novel notion of superoperator weighted Markov chain
in which the state space is taken classical (and usually can be finite), while all quantum
effects are encoded in the superoperators labelling the transitions. This approach is
suited for verification of classical properties for which only the measurement outcomes
as well as the probabilities of obtaining them are relevant. Quantum effects caused
by superposition, entanglement, etc., are merely employed to increase the efficiency or
security of the protocol [35].

There are many advantages in the use of superoperator weighted Markov chains for
model checking purpose:

1. they provide a way to check, once for all, that a property is verified and it holds
for all input quantum states (so no input preparation is needed, we can consider
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a generic state). For example, for the reachability problem we calculate the accu-
mulated super-operator E along all valid paths. The reachability probability when
the program is executed on the input quantum state ρ is simply the trace tr(E(ρ))
of E(ρ)

2. As the state space is usually finite, techniques from classical model checking can
be adapted to verification of quantum systems [35].

Before we formally define quantum Markov chains, we introduce the following objects.
Let S(H) be the set of superoperators over a Hilbert space H. SI(H) is the set of

trace-nonincreasing superoperators over H, i.e.:

SI(H) = {E ∈ S(H)|0H ≲ E ≲ IH} (4.1)

with 0H and IH identify the null and identity superoperators respectively. Since E ∈
SI(H) ⇔ tr(E(ρ)) ∈ [0, 1] ∀ρ it is natural to regard the set SI(H) as the quantum
counterpart the domain of traditional probabilities [35].

Let E , F ∈ S(H), we say that the relation E≲F holds if, for any quantum state ρ
over H, tr(E(ρ)) ≤ tr(F(ρ)), the probability of performing E is always less or equal to
the probability of performing F . The relation ≂::=≲ ∩ ≳ is the equivalence one.

Since we are interested in computing the accumulated superoperators along the paths
in the QMC, we define a superoperator–valued–measure (herein SVM), i.e., an instance
of POVM in which positive operators are replaced by superoperators. Given a non–
empy set Ω and a partition {Ai} over it, an SVM F (Ω) is a map which satisfies the
following conditions:

F (Ω) ≂ IH
F (

⋃
i

Ai) ≂
∑
i

F (Ai) (4.2)

Definition 4.4.1. (Quantum Markov Chain [35]) A superoperator weighted Markov
chain K, also referred to as quantum Markov chain (herein QMC), over a Hilbert space
H is a tuple K = (S ,Q ,AP ,L), where:

1. S is a countable (finite) set of classical states;

2. Q: S × S → SI(H); is the transition matrix, where for each s ∈ S , the superop-
erator

∑
t∈S Q(s, t) is trace-preserving;

3. AP is a finite set of atomic propositions

4. L : S → 2|AP| is a labelling function.

A QMC could be seen as a discrete time Markov chain where classical probabilities
are replaced with quantum probabilities, i.e., the entries of the transition matrix are
replaced by superoperators. We denote with π(i) the i–th state of a path π, and with
PathK(s) the set of all paths in K starting from the state s. Conversely, we denote with
π̂(i) the i–th state of a finite path π̂, and with PathKfin(s) the set of all finte paths in K
starting from s. In order to perform model checking on QMC K, we have to determine
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the accumulated superoperators along its paths by means of a SVM Qs built in the
following way:

1. We define a superoperator Q(π̂) :

Q(π̂) ::=

{
IH n = 0

Q(sn−1, sn), . . . ,Q(sn−1, sn) otherwise
(4.3)

for all π̂ ∈ PathKfin(s).
2. We define the cylinder set of all infinite paths with prefix π̂ as:

C(π̂) ::= {π ∈ PathK(s) : π̂ is a prefix for π} (4.4)

3. We define SK(s) ::= {C(π̂) : π̂ ∈ PathKfin(s)} ∪ {∅}.

4. From the above definition we build an SVM Qs : SK(s)→ SI(H) where:

Qs(∅) = 0H

Qs(C(π̂)) = Q(π̂) (4.5)

Example 4.4.1. As an example, in order to show the behaviour of the objects presented
above, let us consider a simple pseudocode implementing the most basic instance of
quantum coin tossing: given a quantum state initialised to |0⟩, as a first step it is put in
an uniform superposition 1√

2
(|0⟩+ |1⟩) by the application of an Hadamard gate. Then, a

projective measurement is performed onto the uniform superposition, holding an equal
probability of ending in the state |0⟩ or |1⟩.

We can rewrite the states, the unitary operators and the projection ones by using
the density matrix formalism as follows:

|0⟩ → |0⟩⟨0| = q0

H|0⟩ → EH(q0)

M0 H|0⟩ →M0(EH(q0)) = |0⟩⟨0|
M1 H|0⟩ →M1(EH(q0)) = |1⟩⟨1|

with
∑1
i=0Mi = I and EH , M0 and M1 are the superoperators associated to H, M0

and M1 respectively.
In the pseudocode we add a loop; according to the instructions, if the final state is

|1⟩ the algorithm starts again from the initial state otherwise it terminates.

s0 : q0 = EH(q0)

s1 : if M0(q0)

s2 : then end else

s3 : restart

(4.6)
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The QMC associated is shown in Fig. 4.1

s0 s1

s2

s3

EH

I

M0

M1

I

Figure 4.1: QMC associated to the Quantum Coin Tossing.

The resulting quantum Markov chain K = (S,Q, AP, L) is described by:

1. S = {si : 0 ≤ i ≤ 3};

2. AP = S ;

3. L(si) = {si};

4. Q(si, sj) is the following:

Q(s0, s1) = EH , Q(s1, s2) =M0, Q(s1, s3) =M1, Q(s2, s2) = I, Q(s3, s0) = I.
Given a finite path π̂ = s0s1s3s0s1s2, the accumulated superoperator along π̂ is:

Q(π̂) = Q(s1, s2)Q(s0, s1)Q(s3, s0)Q(s1, s3)Q(s0, s1) =M0EHIM1EH

4.4.1 The QPMC model checker

QPMC is a model checker for quantum programs and protocols based on the density
matrix formalism available in both web-based and off-line version1. It is an extension to
QMCs of the ISCASMCmodel checker, which has been enriched with the data structures
for matrices and superoperators. Since QMCs show a different behaviour than classical
discrete time Markov chains, some aspects must be taken into consideration; e.g., non–
commutativity of superoperator multiplication.

The specification language is an extension of the guarded command language PRISM
[58] allowing, in addition to the usual constants definable in PRISM, the specification of
types vector, matrix, and superoperator. QPMC supports the bra-ket notation and
inner, outer and tensor product can be written using it. For example |v> n denotes a
vector in Hn.

QPMC provides the following predefined functions and commands:

Computational-basis states: |0> n,...,|n-1> n ∈ Hn

i.e., n–dimensional vectors with all the entries being 0s but one, which is the
number 1 appearing in the i + 1-th position as follows:

1At the time of writing, the web version is accessible at the address http://iscasmc.ios.ac.cn/

too/qmc.

http://iscasmc.ios.ac.cn/too/qmc
http://iscasmc.ios.ac.cn/too/qmc
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|i> n =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0
1
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
← i+ 1− th

Inner-product: <0|1> 2 stands for ⟨0|1⟩

Outer-product: |0> 2 <1| 2 stands for |0⟩⟨1|

Tensor-product: |0> 2|1> 2 stands for |0⟩ ⊗ |1⟩

Amplitude-damping-operators: E0 E1

Unitary-matrices: PX, PY, PZ (Pauli matrices), HD (Hadamard), PS (phase-shift),
measurement operators with respect to the standard computational basis,M0 andM1,
controlled-not matrix CN, swap matrix SW, Toffoli matrix TF and identity ID(n)
with n ∈ N.

Matrices can be defined directly in a Matlab–like syntax, e.g., const matrix mymatrix

= [1,2;3,4] whose corresponding matrix is:(
1 2
3 4

)
Superoperators can either be defined as their combination of matrices e.g.,
<<[1,0; 0,0], [0.5,0.5; 0,0]>> or directly as a single matrix, using the command
mf2so .

Other commands:

• conj(...): conjugation of an imaginary number;

• ctran(...) = conj(tran(...)): conjugation of a transposed matrix;

• kron: Kronecker operator;

• log: logarithm;

• matrix: for const definitions (const matrix ...);

• trans(...): transpose a matrix;

• vector: for const definitions;

• *: not currently used, but would be used for entrywise multiplication if needed;

• mf2so: matrix to superoperator;
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• superoperator: for const << · · · >>;

• i, j: imaginary numbers, e.g. 2+4i, 2+4j;

• identity(...): identity matrix of a given dimension;

• ID(...): identity matrix of a given dimension.

4.4.2 QPMC module

The model is specified in the module environment. It allows the initialisation of a state
variable s, and of several guarded commands representing the system transitions. As
in PRISM, each guarded command has a precondition, followed by the possible state
updates. The only difference is that each update is associated with a superoperator
instead of a probability. We always omit the identity superoperators along the updates
[35].

Example 4.4.2. Let’s consider the quantum coin flipping pseudocode in Example 4.4.1.
To translate it into a QPMC model the following steps are needed:

1. declaration of the model type, i.e., QMC;

2. definition of the constants, i.e., in our case we define a vector q0 = |0⟩⟨0|;

3. definition of the module in which, for each step we have the following syntax:
guard → superoperator : next state.

Thus, the resulting code would be:

qmc

const matrix q0= |0>_2 <0|_2;

module coinflipping

s : [0..3] init 0;

[] (s=0) -> <<H>> : (s’=1);

[] (s=1) -> <<M0>> : (s’=2) + <<M1>> : (s’=3);

[] (s=2) -> (s’=2);

[] (s=3) -> (s’=0);

endmodule

where the operator + corresponds to a nondeterministic choice.

We should note that the quantum state q0 has not been used inside the module,
which only shows the application of the desired superoperator given the classical state
si of the QMC. The quantum state will be used in the following, in the properties
specification phase.
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4.4.3 QCTL

The aim of QPMC is to provide a formal framework where to define and analyse proper-
ties of quantum protocols. The properties to be verified over QMC are expressed using
the quantum computation tree logic (QCTL), a temporal logic for reasoning about evo-
lution of quantum systems introduced in [36] that is a natural extension of PCTL.

Definition 4.4.2 (QCTL syntax [36, 35]). Given a state formula f and a path formula
g, a QCTL formula is defined over the following grammar:

f ::= a | ¬ f | f1 ∧ f2 | Q∼ϵ[g]

g ::= X f | f1 U≤k f2 | f1 U f2

where a ∈ AP , ∼ ∈ {≲,≳,≂}, E ∈ SI(H), k ∈ N.

The quantum operator formula Q∼ϵ[g] is a more general case of the PCTL proba-
bilistic operator P∼p[g] and it expresses a constraint on the probability that the paths
from a certain state satisfy the formula g. Besides the logical operators presented in
QCTL, QPMC supports an extended operator Q =?[g] to calculate the matrix repre-
sentation of the superoperator satisfying g. We recall that the matrix representation of
a superoperator is given as in the following equation:

ME =
∑
i

Ei ⊗ E∗
i (4.7)

where Ei are the operation elements of E .
In addition, QPMC provides a function qeval((Q =?)[g], ρ) to compute the density

operator obtained from applying the resultant superoperator on a given density operator
ρ, and qprob((Q =?)[g], ρ) = tr(qeval((Q =?)[g], ρ))) to calculate the probability of
satisfying g, starting from the quantum state ρ [35].

QCTL formulae are interpreted over QMCs. The semantics of QCTL is given as
follows:

Definition 4.4.3 (QCTL semantics). Given a QMC K, two state formulae f1 and f2
and a path formula g, the relation K, τ |= ϕ (which is read “ the state/path formula ϕ
holds at state/along a path τ”), for all states s ∈ S and for all paths π ∈ K is interpreted
as follows:

• s |= Q∼ε(g) ⇔ QK(s, g) ∼ E
where QK(s, g) = Qs({π ∈ PathK(s)|π |= g}).

Definition 4.4.4 (QCTL satisfaction set). Given a state formula f and a path formula
g, the satisfaction set Sat(f) = {s ∈ S : s |= f} is defined as follows:

Sat(Q∼ϵ[g]) = {s ∈ S : QK(s, g) ∼ E} (4.8)

All the other operators and satisfiability relations are the same as CTL and PCTL.

An example of property specification, related to the model presented in Example
4.4.2 is given in Table 4.1.
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Example 4.4.3. The first property holds if s0 |= Q≳ 1
2I

, i.e., if starting from the state

s0, the probability of reaching the state s2 is greater or equal to 1/2, while the others
return the matrix representation of the density operator associated to the states si,
with i = 0, 1, 2, 3, given the initial quantum state q0 as declared in the module. We
note that the final states, after the measurement operators have been applied, are not
automatically normalised.

QCTL Formula Output Trace

Q>=(1/2) [F (s=2)]; true

qeval(Q=? [F (s=0)], q0);
(
1 0
0 0

)
1

qeval(Q=? [F (s=1)], q0); 1
2

(
1 1
1 1

)
1

qeval(Q=? [F (s=2)], q0); 1
2

(
1 0
0 0

)
1
2

qeval(Q=? [F (s=3)], q0); 1
2

(
0 0
0 1

)
1
2

Table 4.1: Example of Property Specification in QCTL.
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5
Entangλe

During the first part of my Ph.D, we have analysed the state–of–art in the fields of
quantum programming languages and model checking of quantum algorithms and we
developed a tool for the verification of Quipper programs into the model checking system
QPMC. In this way, we provided an ad–hoc verification tool for Quipper based on
QPMC, which allowed us to simulate and make formal analysis on quantum protocols
using a high–level language. Due to the different representation of both states and
dynamics used by the two systems (i.e., Quipper and QPMC) we faced different issues
in programming this unifying framework. A first output to this implementation has
been used to verify non–recursive instances of quantum algorithms. Then, due to the
expressive power of the languages used in the framework, we decided to extend our
framework in order to deal with tail–recursive quantum circuits, providing in this way
a more complete tool.

The Chapter is organised as follows: first, we present an abstract algorithm for
translating Quipper circuits into quantum Markov chains, i.e., QPMC models. Then, we
provide a description of our first implementation of the translation algorithm, together
with some examples we developed and tested. The final Sections are devoted to describe
Entangλe, i.e., the extension of our framework. Entangλe allows to translate also tail–
recursive Quipper programs, which have been tested using tail–recursive versions of
quantum algorithms and protocols.

5.1 From Circuits to Quantum Markov Chains

In order to be able to define a mapping from Quipper to QPMC programs, in this
Section we work at the semantic level. This means that we consider a quantum circuit
generated by Quipper in order to define a correspondent QMC having an equivalent
behavior.
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5.1.1 Circuits

First, we need a formal definition of quantum circuits generated from Quipper. Even
though Quipper supports also classical wires, here we focus on circuits over quantum
ones. As in Quipper, we consider only measurements of one qubit at a time with
respect to the standard computational basis. We assume the reader to be familiar with
the classical notions of graphs and Boolean circuits. Given a node v of a directed graph
we use the notations In(v), and Out(v) to denote the number of edges incoming and
outcoming in v. A quantum circuit is an extension of a Boolean circuit, where operation
gates are labeled with unitary operators. When a unitary operator is applied to k qubits
it is necessary to know in which order the qubits are used; for this reason each edge of
a quantum circuit has two integer labels associated.

Definition 5.1.1 (Quantum Circuit). A Quantum Circuit is a directed acyclic graph
(herein DAG) C = (V,E) whose nodes, also called gates, are of types Qubit (Q), Unitary
(U), Measurement (M) and Termination (T) and satisfy the following conditions:

1. Q gates: each node v of typeQubit is an input node, i.e. In(v) = 0 and Out(v) = 1;

2. U gates: each node v of type Unitary is labelled with an integer dim(v) and a
square unitary matrix U(v) of complex numbers of dimension 2dim(v). Moreover,
it holds that In(v) = Out(v) = dim(v);

3. M gates: each node v of type Measurement is an output node, i.e. In(v) = 1 and
Out(v) = 0;

4. T gates: each node v of type Termination is an output node, i.e. In(v) = 1 and
Out(v) = 0.

5. Edges: each edge e ∈ E is labelled with two integers S(e) and T (e) such that:

• for each node u, the set of labels T (·) of the edges ingoing in u is {1, . . . , In(u)};
• for each node u, the set of labels S(·) of the edges outgoing from u is
{1, . . . , Out(u)}.

A Quantum Circuit with k nodes of type Qubit is said to have size k.

Example 5.1.1. Let us consider the following Quipper function implementing Deutsch’s
algorithm.

deutsch :: (Qubit , Qubit) -> Circ Bit
deutsch (q1, q2) = do

hadamard q1
hadamard q2
qnot_at q2 ‘controlled ‘ q1
hadamard q1
measure q1

Quipper graphically represents the circuit as shown in Figure 5.1.
Our definition enriches the above representation with labels denoting the order in

which the qubits are used, as depicted in Figure 5.2.

Definition 5.1.2 (Circuit Normal Form). A Quantum Circuit of size k is said to be in
Normal Form if each Unitary node v in the circuit has dim(v) = k.
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Figure 5.1: Deutsch circuit in Quipper

Figure 5.2: Deutsch circuit with labels

Definition 5.1.3 (Strong Normal Form). A Quantum Circuit C of size k is said to
be in Strong Normal Form (herein SNF) if C is in Normal Form, for each edge e ∈ E
between two Unitary nodes S(e) = T (e) holds and the first h ≤ k edges outgoing the
last Unitary node enter into Measurement nodes.

A circuit C in SNF is completely specified by the tuple ⟨k, [Ui, . . . , Un], h⟩ where k
is the size of C, U1, . . . , Un are the Unitary operators in the order they occur in C, and
h is the number of Measurement nodes.

In Figure 5.3 we can see that in a circuit in Normal Form the order of the labels
on the edges is not preserved. This is due to the fact that many gates are applied
to a permutation of the input qubits. On the contrary, a circuit in SNF requires a
precise ordering of the input and output edges. We will see that in order to match this
requirement, SWAP operators have to be added.

We now need a notion of equivalence between quantum circuits. This will allow us to
move from a generic quantum circuit to a SNF circuit. Intuitively, two quantum circuits
are equivalent if, for any k-tuple of initial values of the qubits, the values of the qubits
before measurements/terminations are the same. Moreover, in order to be equivalent,
two circuits need to give the same outputs with the same probabilities. Formally, let C be
a Quantum Circuit of size k, we denote by Sem(C) the pair of functions (F (C),M(C))
where:

• F (C) : Hk −→ Hk is the function which maps k qubits to the value they have just
before the Measurement and Termination nodes;

• M(C) : Hk × {0, 1}h −→ [0, 1] is the function such that M(C)(|ψ⟩, (b1, . . . , bh)) is
the probability of getting output (b1, . . . , bh) ∈ {0, 1}h on input |ψ⟩.

Notice that if C = ⟨k, [Ui, . . . , Un], h⟩ is a SNF circuit, then F (C)(|τ⟩) = Un . . . U1|τ⟩.
Definition 5.1.4 (Quantum Circuit Equivalence). Given two Quantum Circuits C1

and C2 of size k, then C1 and C2 are equivalent, denoted by C1 ≈ C2 if and only if
Sem(C1) = Sem(C2).
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Figure 5.3: Example of a circuit in Normal Form

Figure 5.4: Example of a circuit in Strong Normal Form

Lemma 5.1.1. Every Quantum Circuit is equivalent to a circuit in Normal Form.

Proof. Let C be a Quantum Circuit of size k. C is a DAG so it admits a topological
ordering of its nodes. Qubit nodes do not have any incoming edge so we choose an
ordering in which the first nodes are all the ones of type Qubit. Measurement and
Termination nodes do not have any outgoing edge so we choose them as final nodes
in the ordering. The nodes in between initial and final nodes are only the one of type
Unitary. We will proceed by induction on the number n of Unitary nodes {U1, . . . , Un}.

Base case: For n = 1 our circuit has only one Unitary gate. If dim(U1) = k then
the circuit is in Normal Form.
If dim(U1) = h < k we replace U1 with the node Ũ1 = U1 ⊗ I where dim(I) = k − h
and then we append the remaining k − h edges.

Induction step: If n > 1 by induction we know that we can normalise the first
n− 1 Unitary gates and we proceed as in the base case on the last one.

Lemma 5.1.2. Every Quantum Circuit in Normal Form is equivalent to a circuit in
Strong Normal Form.
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Proof. In order to prove our thesis we need a notion of generalised SWAP gate. The
SWAP gate takes in input two qubits and swaps them, i.e., SWAP|x, y⟩ = |y, x⟩ A
generalised SWAP gate is an operator acting on k qubits that returns in output a
permutation pi of them. It is possible to build such operators by combining sequentially
two-dimensional SWAP gates. Using the definition of generalised SWAP gates the proof
is strightforward. Given a quantum circuit in Normal Form of size k, we obtain a circuit
in SNC by opportunely swapping the Qubit indexes after the application of a unitary
gate.

5.1.2 From Strong Normal Form Circuits to QMC’s

We are now ready to define the QMC associated to a circuit in SNF. Intuitively, the
states of the QMC correspond to the edges of the circuit, while the edges of the QMC
connect subsequent states. Moreover, states without outgoing edges are added in the
QMC to represent all the possible outputs of the circuit.

Definition 5.1.5 (QMC associated to a Circuit). Let C be a Quantum Circuit in SNF
of size k with n Unitary nodes {U1, . . . , Un} and h Measurement nodes, the QMC QC
associated to C is defined as follows:

• the k-tuple of edges of C entering the Unitary node Ui is associated to the state
si in QC ;

• the k-tuple of edges outgoing from the last Unitary node Un is associated to the
state sn+1;

• in QC there are 2h states t0, t1, . . . , t2h−1;

• for each i ∈ {1, . . . , n} there is an edge from si to si+1 labelled with the superop-
erator SO(Ui) associated to the Unitary gate Ui;

• for each i ∈ {0, . . . , 2h − 1} there is an edge from sn+1 to ti labelled with the

superoperator M̃i = Mh
i ⊗ Ik−h, where Ik−h is the identity matrix of size 2k−h

and Mh
i is a matrix of size 2h having 1 in the i + 1-th position and all 0’s in the

remaining.

In Figure 5.5 we can see the QMC associated to the example circuit shown in Figure
5.4.

Lemma 5.1.3. Given a quantum circuit C in SNF we can always build the QMC QC
associated to C and it holds that:

1. ∀|τ⟩ ∈ H, ∀i ∈ {1, . . . , n},

Ui|τ⟩ = |ψ⟩ iff SO(Ui)|τ⟩⟨τ |SO(Ui)
† = |ψ⟩⟨ψ|

2. ∀|τ⟩ ∈ H if F (C)(|τ⟩) = |ψ⟩ andM(C)(|τ⟩, {b1, . . . , bh}) = p, withm = bin(b1 . . . bh)
(i.e., the natural with binary expansion b1 . . . bh) then:

p = tr(M̃m|ψ⟩⟨ψ|M̃†
m)
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Figure 5.5: QMC associated to the circuit of Figure 5.4.

and
M̃m|ψ⟩⟨ψ|M̃†

m = |b1, . . . , bh . . . ⟩⟨b1, . . . , bh . . . |

Proof. It immediately follows from our definitions.

The above lemma states an equivalence between the semantics of a circuit C in
SNF and its associated QMC. Thus, any Temporal Logic coherently defined on both
formalisms can be equivalently model checked either on the circuit or on its associated
QMC.

5.1.3 Translation Algorithm

The results described in the previous sections allow us to define an algorithm that maps
a quantum circuit into an equivalent QMC. In particular, Algorithm Translate performs
the following steps:

• it transforms a quantum circuit into a normal form circuit (see Lemma 5.1.1);

• it transforms a normal form circuit into a SNF circuit (see Lemma 5.1.2);

• it transforms a SNF circuit into its corresponding QMC (see Definition 5.1.5).

Hence, given a quantum circuit C the output of Translate(C) is a QMC equivalent to C
in the sense of Lemma 5.1.3.

The computational complexity of Translate(C) depends on the number n of Unitary
nodes occurring in C and on its size k. For each Unitary we need to perform a number
of binary swaps which depends on k. Without any efficient strategy in the worst case
we could perform Θ(k2) binary swaps. Hence, Translate(C) generates a QMC having
O(n ∗ k2) internal nodes. Each of this step requires the computation of a matrix of size
2k. However, we can lower the complexity of the algorithm by directly implementing
generalized swaps without relying on binary ones. Such optimization would generate
a QMC having at most O(n) internal nodes, requiring the computation of O(n) swap
matrices.
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5.2 Implementation

In Section 5.1 we presented an abstract algorithm that translates a quantum circuit into
a QMC. We now describe an implementation of the Translation Algorithm in which the
input quantum circuit is a Quipper function in the Circ monad and the output QMC
is a QPMC model.

Our implementation exploits the Transformer module of Quipper. Transformer

is a library which provides functions for defining general purpose transformations on
low-level circuits, and it works at data structure level. By using the Transformer

module we can re–use Quipper’s code, avoiding to implement the instructions again in
an intermediate language.

The actual translation can be summarised in three steps. As a first step the circuit is
decomposed; the gates in the quantum circuit are grouped together with their associated
qubits, taking care that the execution order is preserved. The function implementing
this decomposition return a tuple (integer-list) where the integer represents the index of
the current time–step and the list contains the name of the gates acting in that interval,
together with their associated qubits. Those indexes will become the values associated
to the state variable s in the QMC. In this way we have an abstract representation of
both the states and the transitions of the QMC.

Since the gates are represented by labels, i.e., without a proper numerical represen-
tation as required by QPMC, as a second step we calculate the matrix representation
of the quantum gates. We implemented a set of user–defined functions useful to per-
form operations on matrices (e.g., the tensor product). It is important to note that,
since we need a circuit in SNF, our code provides a set of functions that generate the
required swaps using compositions of binary swaps realising a permutation by transpo-
sition. Then our algorithm takes the resulting matrix and associates it to the gate input
qubits, while the identity matrix is associated the remaining ones. Finally, the qubits
are moved back in their original positions. All the matrices are computed in MATLAB
notation.

The last step is the conversion of the list of transitions into QPMC code. All these
functions have been written in order to be kept as polymorphic as possible.

The following is a toy example of Quipper code given in input to our tool:

oneq :: Qubit -> Circ Qubit
oneq q = do

hadamard_at q
return q

In Figure 5.6 we show the intermediate result of our translation. In this example the
time–step is the transition from |ψ0⟩ to |ψ1⟩

Figure 5.6: Quantum circuit with intermediate states.
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We can see the resulting QMC in Figure 5.7, in which the |ψi⟩ become state variables
si and the operators in the stratum will label the transitions between states.

S0 S1

ID(2)

H

ID(2)

Figure 5.7: Quantum Markov Chain for the Quipper circuit

The resulting QPMC code is:

qmc
module oneq
const matrix A0 = [1/( sqrt(2), 1/( sqrt (2);
1/( sqrt(2), -(1)/( sqrt (2)];
s: [0..1] init 0;
[] (s = 0) -> <<A0 >> : (s’ = 1)
[] (s = 1) -> (s’ = 1)
endmodule

Example 5.2.1. In order to show a more realistic example, let us consider again the
Quipper’s function for the Deutsch’s Algorithm presented in Example 5.1.1. It can be
compiled in Quipper generating the circuit represented in Figure 5.1. The intermediate
step of the translation produces the following code:

1: Gate "H" [] [2], Gate "H" [] [1]
2: Gate "not" [1] [2]
3: Gate "H" [] [1]
4: Measure 1

which allows to our implementation to convert the Deutsch’s Quipper code into the
QPMC model below.

qmc
const matrix A1 = [(1 / 2) ,(1 / 2) ,(1 / 2) ,(1 / 2);(1 / 2) ,(-1 / 2) ,(1 / 2) ,(-1 / 2)

;(1 / 2) ,(1 / 2) ,(-1 / 2) ,(-1 / 2);(1 / 2) ,(-1 / 2) ,(-1 / 2) ,(1 / 2)];
const matrix A2 = [1,0,0,0;0,1,0,0;0,0,0,1;0,0,1,0];
const matrix A3 = [(sqrt (2) / 2) ,0,(sqrt (2) / 2) ,0;0,(sqrt (2) / 2) ,0,(sqrt (2) / 2);(

sqrt (2) / 2) ,0,((-1 * sqrt (2)) / 2) ,0;0,(sqrt (2) / 2) ,0,((-1 * sqrt (2)) / 2)];
const matrix A4 = [1,0,0,0;0,1,0,0;0,0,0,0;0,0,0,0];
const matrix A5 = [0,0,0,0;0,0,0,0;0,0,1,0;0,0,0,1];
module test

s: [0..5] init 0;
[] (s = 0) -> <<A1 >> : (s’ = 1);
[] (s = 1) -> <<A2 >> : (s’ = 2);
[] (s = 2) -> <<A3 >> : (s’ = 3);
[] (s = 3) -> <<A4 >> : (s’ = 4) + <<A5>> : (s’ = 5);
[] (s = 4) -> (s’ = 4);
[] (s = 5) -> (s’ = 5);

endmodule

Notice that, differently from what we wrote in our definition of QMC associated to
a circuit, in the implementation we do not distinguish states si’s from states ti’s in the
generated QPMC model.
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5.2.1 Scalability of the swap algorithm

We performed some scalability tests on an artificial example which requires a high
number of swaps. Recall that, since we need the circuit to be translated in SNF, for
each Unitary gate we need to perform a number of binary swaps depending on the
number k of qubits used in the circuit. In this part of the experiment we focused on
the execution time of our implementation, i.e., the time required to produce the QPMC
model. The circuits given in input have been choosen to maximize the number of binary
swaps required by our implementation. An example of such circuits of size 7 can be
seen in Figure 5.8.

Figure 5.8: Test circuit of size 7

We decided to test circuits built using from 3 to 7 qubits. In the first version of
Entangλe, times were recorded using the time utility of the Bash shell on an early 2014
MacBook Air with a 1.4 GHz Intel Core i5 processor. For each size of the input, the
program has been executed five times and the mean time has been computed. The
results are shown in Figure 5.9. We can see that also for a circuit of size 8, when we
have to generate swap matrices of size 27 × 27 our algorithm works in reasonable times.
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Figure 5.9: Scalability test.
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5.3 Extension to Tail–recursive Quantum Programs

The first version of our tool provides a translation from a quantum circuit to a QMC.
This translation is limited to circuits, where only quantum controls are used. On the one
hand, since Quipper is an expressive language, it allows to write both classical and quan-
tum programs, instead of simple circuits, by using control structures e.g., conditional
branches and recursion. In this direction, our aim has been to extend the framework
in order to allow the translation of quantum programs as well. On the other hand,
QPMC allows to build QMCs where loops are present, while our tool only permits lin-
ear circuits in which no loops occur. To overcome the limitations of the first version
of our translator we decided to extend it by allowing the translation of code in which
both classical controls and loops are present. In particular, we want to write quantum
programs in which the circuit is conditioned on the result of intermediary measurements
[84]. In this way, we allowed the translation of programs in which there are loops, with
the conditional branches depending on the measurements outcomes, i.e., tail–recursive
quantum programs. In order to extend our framework to a larger class of programs,
we restricted Quipper to an ad hoc sublanguage, called Quip-E, which allows the use of
reset operators, unitary and measurement gates, and tail–recursion.

5.3.1 Quip-E : a Quipper recursive fragment

We briefly recall that in Quipper classical controls can be applied both outside and inside
the Circ monad. In the extension of the work presented in [5] we were interested in
classical operations and controls inside the Circ monad allowing to define also recursive
functions. In Example 5.3.1 we show part of the code of a Quipper recursive version of
the quantum Fourier transform in the Circ monad (see [43]).

Example 5.3.1. The function qft’ computes the quantum Fourier transform of a list
of qubits. If the list is empty, the circuit itself is empty. If the input is a list of one
qubit, then the Hadamard gate is applied. The circuit for a list of n+ 1 qubits applies
the circuit for n qubits to the last n elements of the list, followed by a set of rotations
over all n+ 1 qubits.

qft ’ :: [Qubit] -> Circ [Qubit]
qft ’ [] = return []
qft ’ [x] = do

hadamard x
return [x]

qft ’ (x:xs) = do
xs’ <- qft ’ xs
xs’’ <- rotations x xs’ (length xs ’)
x’ <- hadamard x
return (x’:xs ’’)
w h e r e ...

Quipper allows the use of Boolean operators and if-then-else statements with
tests performed on Boolean parameters. The dynamic lift operator converts a bit to
a Boolean parameter. Hence, the result of a measurement over a qubit can be stored in
a bit, and then converted to a Boolean and used as guard in a test. Moreover, Boolean
parameters can be used to initialize qubits through the qinit operator. In Example
5.3.2 we show how these can be combined inside a simple recursive Quipper circuit.
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Example 5.3.2. In the following example we show a recursive instance of the quantum
coin flipping: a qubit is initialized to |0⟩, then the Hadamard gate is applied to it and
it is measured. If the outcome is 0, i.e. the value associated to the state |0⟩, then the
circuit is re–initialized, otherwise it terminates. This is repeated until the result of the
measurement is 1. Hence, the circuit halts after an unpredictable number of iterations,
returning the qubit |1⟩.
coinFlipCirc :: (Qubit) -> Circ (Qubit)
coinFlipCirc (q) = do

q <- qinit[False]
hadamard_at q
m <- measure q
bool <- dynamic_lift m
if bool

then
return (q)

else
coinFlipCirc (q)

In the above example the circuit is tail–recursive. In classical computation tail re-
cursion corresponds to while-loops which together with concatenation of instructions,
assignments, increments, and comparisons give rise to a Turing-complete formalism. In
the case of quantum circuits tail–recursion is the most natural form of recursion that we
can imagine. A sequence of unitary gates is applied, the result is measured over some
qubits and such result is used to decide whether to stop or repeat the circuit.

Example 5.3.3. Let us consider a circuit Black Box that on input |0⟩ returns the
desired output bit with probability p > 0.5. We could construct the following tail-
recursive circuit.

double_Black_Box :: (Qubit) -> Circ Bit
double_Black_Box(q) = do

q <- qinit[False]
b1 <- black_Box(q)
q<- qinit[False]
b2 <- black_Box(q)
bool1 <- dynamic_lift(b1)
bool2 <- dynamic_lift(b2)
if (bool1=bool2)

then
return(b1)

else
double_Black_Box(q)

The probability that the new circuit terminates with a wrong answer is (1− p)2 which
is smaller than the probability that the original circuit terminates with a wrong answer.

The fragment of Quipper we are interested in is basically the Circ monad where
we allow tail–recursion. In particular, we allow the use of the initialization operator
reset, of unitary operators, and of measurements, and we call this sublanguage Quip-
E. The results of measurements can be lifted to Boolean values and used inside a guard
condition to decide whether to terminate the circuit or to restart it. Quip-E uses the
following syntax to specify the tail–recursive programs. The body Body C of a tail–
recursive program trc C is defined by the following grammar:
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Body C ::= reset at q | U at [qi1,...,qij] | m <- measure q |

bool <- dynamic lift m | if (bool) Body C1 else Body C2 |

Body C1 Body C2

where q, qi1,...,qij are qubits that occur as formal parameters of the program, U at

is a unitary operator of dimension j, m is a bit variable name, b is a Boolean parameter.

Remark. By nesting if-then-else constructors it is possible to mimic conditions that
depend on any possible Boolean combination of sets of Boolean parameters. Hence,
in the formal definition of the language we omit Boolean combinations without los-
ing expressive power, while our our compiler of Quip-E allows their use to ease the
programming task.

Hence, the Quip-E syntax can be informally summarised as a sequence consisting of
a finite list of instructions taken from the following set:

reset A sequence of unitary operators is used to initialize a qubit as |0⟩;

unitary A unitary operator is applied to a list of qubits;

measure A list of qubits is measured in the standard basis through the measure
Quipper operator resulting in a list of bits;

dynamic lift A bit is lifted to a Boolean throught the dynamic lift Quipper oper-
ator;

if-then-else Depending on the evaluation of a Boolean expression either a body
Body C 1 or a body Body C 2 are used;

exit On we introduced this instruction inQuip-E in order to guarantee the trans-
lation of tail–recursive programs only, without other syntactical checks.
It can only be used as last instruction and its effect is the evaluation of
a Boolean expression: if it is true, the program terminates, otherwise a
loop to the first instruction occurs.

A general tail-recursive program trc C has the form

trc_C :: (Qubit , Qubit ,...) -> Circ RecAction
trc_C (q1 , q2, ...) = do

-- beginning of body
Body_C
-- end of body
exitOn bool

where q1, q2, ... are the qubits occurring in Body C and bool is a Boolean parameter
occurring in Body C. In this case we say that trc C is the Quip-E program defined by
the body Body C and the exit condition exitOn bool.

We impose that whenever a Boolean parameter bool is used as a guard of if-then-else
and exitOn constructors, its value has been previously defined in the body (e.g., through
a measure instruction followed by a dynamic lift).
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Intuitively, the execution of Body C is repeated until bool becomes true. It is possible
to define programs which are not recursive by simply defining bool as True.

Remark. Non recursive programs can be defined as recursive ones using exit conditions
that are always true. Hence, we omit them in the formal definition of Quip-E even if
our compiler allows their explicit use.

Example 5.3.4. The following is a small example of a Quip E program. In the program
two qubits are initialized to |0⟩ and |1⟩, respectively, then Hadamard is applied to the
second one, after the second qubit is measured and the result of the measurement is
used both to decide which gate has to be applied to the first qubit and whether the
program has to loop or terminate.

exampleCirc :: (Qubit , Qubit) -> Circ RecAction
exampleCirc (q1, q2) = do

reset_at q1
reset_at q2
gate_X_at q2
hadamard_at q1
m <- measure q2
bool <- dynamic_lift m
if bool

then gate_X_at q1
else gate_Z_at q1

m1 <- measure q1
exitOn bool

The same program can be written in Quipper native formalism as follows:

exampleCirc :: (Qubit , Qubit) -> Circ ()
exampleCirc (q1, q2) = do

[q1 , q2] <- qinit [True , False]
hadamard_at q1
m <- measure q2
bool <- dynamic_lift m
if bool

then gate_X_at q1
else gate_Z_at q1

exampleCirc(q1 ,q2)
m1 <- measure q1

Notice that the reset function is a way to provide a unitary operator for the qinit
instruction. In particular, instruction reset at q in Quip-E is equivalent to the Quip-
per instruction q <- qinit False, which initializes the qubit to |0⟩. If reset at q is
followed by the application of a not gate on q (e.g., gate X at q), then the sequence
of two instructions of Quip E is equivalent in Quipper to q <- qinit True, which
initializes the qubit to |1⟩.

5.4 Structural Operational Semantics for Quip-E

In this section we show how the translation of each component of Body C is formalized.
In particular, for each instruction we provide a structural operational semantics (S.O.S)
of Quip-E programs in terms of QMCs. Intuitively, a transition system through S.O.S
defines the operational rules for all the programs in a given language. The nodes of
such transition system represent the states during the computation and the transitions
mimic the state changes. In the general case, the transition system associated to a
program could have an infinite number of nodes. Even when it is finite, its size could
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depend on the input of the program, i.e., the transition system cannot be constructed
on a generic input. In this Section we will see that the restrictions imposed on Quip-E
ensure that we can associate to any Quip-E program a finite transition system. Such
transition system turns out to be a QMC, which would not be the case for a general
Quipper program. In detail, in Quipper the use of lists of qubits together with recursion
allows to represent an infinite family of circuits using a single program. The semantics
we define in this section cannot be easily generalized to such Quipper programs.

As a matter of fact, Quip-E denotes a fragment of Quipper programs which generate
only finite state, possibly circular, graphs of computations. Moreover, the dimension of
such state spaces can be determined at compiling time. This is not the case if we consider
generic Quipper programs having, for example, lists of qubits as formal parameters. In
such cases, even if the state spaces are finite, their sizes depend on the length of the
input qubits lists.

It is not restrictive to fix an a-priori finite set Q of qubits together with a finite set B
of bits and Booleans. In this section we consider Quip-E programs whose variables and
parameters are included in such sets. We could avoid this assumption, but this would
make the description of the semantics more complex without increasing its expressibility.

Let trc C be a Quip-E program having body Body C. Let L be the set of functions
from B to {0, 1}. Intuitively, a function L ∈ L is an assignement of values for the bits
and Booleans occurring in the program. The rules in Table 5.1 define by induction on
the structural complexity of Body C its operational semantics in terms of QMCs. The
states of such QMCs are pairs, whose first element is either the body of a program or
the empty body, denoted by . The second element of a pair is a function belonging
to L, which stores the current values of the bits and Booleans. All the operators that
label the edges of the chain have dimension 2|Q|. Intuitively, if Body C is reset at qk,
then the qubit qk is measured along the standard basis, applying the operators Mk

0

and Mk
1 . When Mk

0 is applied the empty body is reached, when Mk
1 is applied the

body X at qk is reached, and X at is the not operator. In both cases there are no
effects on the function L. In the case of U at [qi1,...,qij] the superoperator Ui1,...,ij
corresponding to U is applied and the empty body is reached, without affecting the
function L. Such superoperator is computed by applying the identity operator to the
qubits in Q\{qi1,...,qij} and by swapping the qubits to preserve their order (see also
Section 5.1.1). In the case of m ← measure qk the measure operatorsMk

0 andMk
1 are

applied and the result of the measurement is stored by modifying L(m) accordingly. In
particular, L[L(m) = i] denotes the function L′ which behaves as L on B \ {m}, while
L′(m) has value i. In the case of bool <- dynamic lift m the identity superoperator
I is applied, i.e., the qubits are unchanged, and the value stored in L(m) is copied in
L(bool). In the case of an if-then-else instruction on the guard bool either the first
or the second branch is chosen depending on the value of L(bool), without modifying
the values of the qubits. In the case of a sequence Body C1 Body C2 the first instruction
of Body C1, is executed applying the corresponding rule and the computation proceeds.
Finally, the last rule is added only to ensure that also the empty body satisfies the
second condition in the definition of QMC.

Remark. Notice that the values of the qubits are not stored in the state of the Markov
chain. Their final values can be computed considering the composition of the operators
which label the edges of the chain and by applying the resulting superoperator to their
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(reset at qk, L)
Mk

0−−→ ( , L) (reset at q, L)
Mk

1−−→ ((X at qk, L)

(U at [qi1,...,qij], L)
Ui1,...,ij−−−−−→ ( , L)

(m ← measure qk, L)
Mk

i−−→ ( , L[L(m) = i]})
for i ∈ {0, 1}

(bool <- dynamic lift m, L)
I−→ ( , L[L(bool) = L(m)])

L(bool) = i

(if (bool) Body C1 else Body C0, L)
I−→ (Body Ci, L)

for i ∈ {0, 1}

(Body C1, L)
S−→ (Body C1’, L

′)

(Body C1 Body C2, L)
S−→ (Body C1’ Body C2, L

′)

(Body C1, L)
S−→ ( , L′)

(Body C1 Body C2, L)
S−→ (Body C2, L

′)

( , L)
I−→ ( , L)

Table 5.1: Operational Semantics of Quip-E

initial values (see [35]). In fact, all the operators that label the edges of the chain have
dimension 2|Q| and it is fundamental that the order of the qubits is the same along all the
chain. As a matter of facts, Quipper and Quip-E aim to provide a flexible programming
framework and allow us to specify at each step which are the qubits of interest and the
order in which they enter a quantum gate. On the other hand, QMCs are a low level
description language for quantum processes and as such they prefer minimality rather
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than flexibility. Hence, in a QMC all the gates are applied to all the qubits and these are
always considered in the same order. This does not restrict the expressibility of QMC,
since by exploiting swapping and identitiy operators it is always possible to extend a
gate to all the qubits in the desired order.

Having now defined the S.O.S. of a Quip-E program, we are now almost ready to
define the QMC associated to the body of a Quip-E program.

Definition 5.4.1 (QC(s)). Let s = (Body C, L) we define the structure

QC(s) = (S(s), Q(s), AP (s), Lab(s))

as follows:

• S(s) is the set of pairs reachable from s by applying the rules of Table 5.1;

• Q(s) : S(s)× S(s)→ SI(C2|Q|
) is defined by the rules of Table 5.1;

• AP (s) = B;
• Lab(s)((B′, L′)) = {b ∈ B | L′(b) = 1}.

QC(s) is said to be the quantum chain of s.

Lemma 5.4.1. Given a state s = (Body C, L), the quantum chain QC(s) is a QMC.

Proof. In order to prove that the quantum chain QC(s) is a QMC we have to verify that
the sum of the superoperators labelling the edges outgoing from each state is a trace
preserving superoperator. We proceed by cases as follows:

(1) s = (U at [qi1, . . . ,qij], L) ⇒(s, L)
Ui1,...,ij−−−−−→ ( ,L) is the only outgoing edge

from s and, since Ui1,...,ij is the superoperator associated to the unitary operator
U , it is trivially trace preserving.

(2) s = (m←measure [qk], L) ⇒ Q(s) =Mk
i , i ∈ {0, 1}. In this case there are two

outgoing edges from s, labelled Mk
0 and Mk

1 , i.e., the superoperators associated
to the projection operators Mk

0 and Mk
1 respectively. The property

∑
iM

k
i = I

which follows from the definition of projection operator, can be lifted to the case
of superoperators, hence

∑
iMk

i = I which verifies the requirement of the sum
being trace preserving.

(3) s = (reset at qk], L). This is as case (2).

(4) s = (bool←dynamic lift [m], L). In this case there is only one outgoing edge
with label I.

(5) s = (if (bool) Body C1 else Body C2, L). As in case (4), since L satisfies either
L(bool)= true or L(bool)= false but not both.

(6) s = (Body C1 Body C2, L). This follows by induction on Body C2

Since Body C1 and Body C2 are compositions of states as in (1)–(5), the superop-
erator S is, with certainty, among the kinds already presented, hence it is trace
preserving.
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(7) s = ( , L) ⇒ Q(s) = I. As in case (4).

Definition 5.4.2 (QMC associated to a body). Let Body C be a Quip-E body. The
QMC associated to Body C, denoted by QC(Body C), is

QC((Body C, O))

where O is the function that assigns value 0 to all the variables in B.

Notice that QC(s), apart from the self-loops on the “empty body states”, is acyclic.
In order to define the semantics of Quip-E programs, it is convenient to define an acyclic
version of QC(s) in which self-loops are removed.

Definition 5.4.3 (Quasi QMC associated to a body). Let Body C be a Quip-E body.
We define the Quasi QMC associated to Body C, denoted by QC−(Body C), as the struc-
ture obtained by removing the self-loops in QC(Body C).

The structure QC−(Body C) is not a QMC, since for the terminal states, i.e., the
pairs whose first element is the empty body, the second condition of the definition of
QMC is not satisfied. In the following definition we associate a QMC to a Quip E
program by introducing two rules that fix the violation.

Definition 5.4.4 (QMC associated to a program). Let trc C be a tail recursive Quip E
program defined by a body Body C and an exit condition exitOn bool. The QMC
associated to trc C, denoted by QC(trc C), is the QMC obtained from QC−(Body C)
by adding the edges defined by the following rules:

L(bool) = 1

( , L)
I−→ ( , L)

L(bool) = 0

( , L)
I−→ (Body C, O)

The following theorem states that our definition is correct, i.e., that the structure
we associate to a program is a QMC.

Theorem 5.4.2. Let trc C be a tail recursive Quip E program. QC(trc C) is a QMC.

Proof. In order to prove that QC(s) is a QMC we have to verify that the sum of
the superoperators labelling the edges outgoing from each state is a trace preserving
superoperator. The first part follows from cases (1)–(6) of the proof of Lemma 5.4.1,
while case (7) is replaced by two possibilities. Since either L(bool)=1 or L(bool)=0 are
satisfied and they do not hold at the same time, there is always one outgoing edge with
label I, which is trace preserving.

5.5 Translation of trc C Programs

In the following we will show the translation of (the most significative) instructions
of a trc C programs into QMCs, according to their underlying operational semantics.
For each of them we will provide a graphical representation of the resulting QMC as a
directed graph, in which the nodes are the states of the chain, and the edges are labeled
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by the unitary or measurement superoperators, according to the order of the Quip-E
instructions. The states are labelled according to the S.O.S defined.

The first four examples show the QMCs for single instructions, such as reset, unitary
transformations, measurements and if–then–else respectively.

Example 5.5.1. In this example we show a single–qubit trc C program in which a reset
gate is applied. The Quip-E reset instruction together with its corresponding QMC, can
be represented as follows:

1 reset_at q

with B = ∅.

(reset at q, O) ( ,O)

(X at q, O)

M0

M1 X

I

Example 5.5.2. In this example we show a two–qubit program, in which an Hadamard
gate is applied on the second qubit, then a measurement instruction is performed on
the first one. The Quip-E instructions, together with the corresponding QMC, can be
represented as follows:

1 hadamard_at q2
2 m <- measure q1

with B = {m}. For space reason, we will group the two instructions under the name
body, and we recall that O’=O[O(m)=1].

(body, O) (m<- measure q1, O)

( ,O)

( ,O’)

I ⊗H

M0 ⊗ I

I

M1 ⊗ I

I

Example 5.5.3. In this example we show a two–qubit program, in which two measure-
ment are applied on the first and second qubit, respectively. The Quip-E instructions,
together with the corresponding QMC, can be represented as follows:

1 m1 <- measure q1
2 m2 <- measure q2

with B = {m1,m2}. For space reason, we will refer to the two instructions by the
line–number, i.e., m1 <- measure q1 = 1 and m2 <- measure q2 = 2.
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(1,O)

(2,O)

(2,O’)

( ,O)

( ,O’)

( ,O’)

( ,O”)

M0 ⊗ I

M1 ⊗ I

I ⊗M0

I

I ⊗M1

I

I ⊗M0

I

I ⊗M1

I

Example 5.5.4. In this example we show a single–qubit program, in which a measure-
ment is performed and it is followed by a dynamic lifting, which transforms the resulting
bit into a Boolean value, and by a conditional branch in which, according to the result
an Hadamard or a Pauli X gate are applied. The Quip-E instructions, together with
the corresponding QMC, can be represented as follows:

1 m <- measure q
2 b <- dynamic_lift m
3 if b
4 then hadamard_at q
5 else X_at q

with B = {m, b}. For space reason, we will refer to the two instructions by the
line–number, i.e., m <- measure q = 1, b <- dynamic lift m = 2, if bool = 3,
hadamard at q = 4 and X at q = 5.

(1,O)

(2,O)

(2,O’)

(3,O)

(3,O’)

(5,O) ( ,O)

(4,O’) ( ,O’)

M0

M1

I I X
I

I I H
I

In the following we present two examples of trc C programs in order to show the be-
haviour of the QUIP-E tail–recursive instruction exitOn. As in the previous examples,
for space reasons we will refer to the single instruction by its line number.

Example 5.5.5. In this example we show a single–qubit program, in which a mea-
surement is performed and it is followed by a dynamic lifting, and by a conditional
branch in which, according to the result an Hadamard or a Pauli X gate are applied. As
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last instruction, we have a recursive instruction which allows the program to terminate
only when the Boolean value b = true. The Quip-E instructions, together with the
corresponding QMC, can be represented as follows:

1 m <- measure q
2 b <- dynamic_lift m
3 if b
4 then hadamard_at q
5 else X_at q
6 exitOn b

with B = {m, b}. It is guaranteed to always terminate.

(1,O)

(2,O)

(2,O’)

(3,O)

(3,O”)

(5,O) ( ,O)

(4,O”) ( ,O”)

M0

M1

I I X

I

I I H
I

Example 5.5.6. In this example we show a two–qubit program, in which a measurement
is performed and it is followed by a dynamic lifting, and by a conditional branch in which,
according to the result an Hadamard or a Pauli X gate are applied. As last instruction,
we have a recursive instruction which allows the program to terminate only when the
Boolean value b = true. The Quip-E instructions, together with the corresponding
QMC, can be represented as follows:

1 m1 <- measure q1
2 b1<- dynamic_lift m1
3 if b1
4 then hadamard_at q2
5 else X_at q2
6 exitOn b1

with B = {m1, b1}.

(1,O)

(2,O)

(2,O’)

(3,O)

(3,O”)

(5,O) ( ,O)

(4,O”) ( ,O”)

M0

M1

I I X

I

I I H
I
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5.6 The tool Entangλe

We developed an extension of our framework, called Entangλe, which has been im-
plemented in Haskell, allowing to import and re–use the libraries already developed
for both its previous version and Quipper. We implemented several functions to map
a Quip-E program into the correspondig QMC. In order to provide a more intuitive
layout, Entangλe has been provided with a web based graphical interface written in
Elm 1, together with a preferred style for writing the quantum programs. A snapshot
of Entangλe’s interface is shown in Fig. 5.10. It is divided into three main blocks:
Quipper, Tree and QPMC, which will be analised in the following.

Figure 5.10: Entangλe GUI.

5.6.1 Quipper

This block is devoted to the writing of programs that should be translated; it takes in
input only Quip-E and Quipper code, and consists of eight sections:

Function name: the name of the Quipper program that we want to write;

Input qubits: the number of qubits in input to the Quipper program;

Recursive: if checked it automatically changes the type signature of the pro-
gram;

Output qubits: the number of output qubits, provided that the program is non-
recursive;

1http://elm-lang.org.

http://elm-lang.org
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Type: switches the matrix representation from symbolic, which uses em-
bedded QPMC instructions, to numeric, which provides a numeric,
MATLAB-style, representation of matrices, and vice versa;

Swap: allows the selection of a different algorithm to build the swap ma-
trices: multiply generates the swaps using an algorithm based on
permutation by transposition, while single uses an algorithm which
outputs the matrix representation of the swaps;

Function body: the body (i.e., the set of instructions in the right order) of the
quantum program to be translated. In this box it is not required to
provide the method signature since the complete Quip-E program
will be generated automatically by Entangλe in the Code section;

Additional code: auxiliary Quipper/Haskell code that cannot be translated from the
function body;

Code: the final Quipper program, generated by Entangλe by using all the
information provided above. A .hs file containing the source code
can be downloaded by clicking the Download button.

In the Function body we constrained the programmer to a preferred coding style,
i.e., we restrict the Quip-E syntax to certain choices: the name of the variables of type
Qubit, if more than one, are denoted by qi, with i = 1, . . . , n, with n number of input
qubits, otherwise, if there is only one input qubit it should be labeled q. Moreover,
measured qubits cannot be re-initialized in the last part of the body. The instruction
order to be preserved is: unitary and reset instructions, measurements, dynamic lifting,
and control flow. Entangλe translates tail recursive programs, thus the recursive call
must be (when present) the last instruction. A zoomed–in snapshot of the Quipper
block can be seen in Figure 5.11.

5.6.2 Tree Block

The Tree block displays an abstract representation of the instructions in the program.
It represents the intermediate translation steps. In this block, each quantum gate is
associated to the qubits on which it is acting. Measurements produce a binary branch
terminating with two leaves which can be of different type, according to the type of
program that we want to translate. If the user does not want to see this intermediate
repesentation, (s)he can choose to hide this block.

5.6.3 QPMC Block

The QPMC block displays the translation of the Quipper program into the corresponding
QPMC model. It provides both matrices and module to be checked using QCTL. This
final code can be downloaded as a PRISM file and used as an input for the QPMC
model checker. A snapshot of the QPMC block can be seen in Figure 5.12. For further
references about the intermediate translation steps see [6], [5].
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Figure 5.11: Quipper Block

Figure 5.12: QPMC Block
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5.7 Experimental Results

We have tested Entangλe with our implementation of different algorithms and proto-
cols, i.e., Deutsch–Jozsa, Grover’s Search, our (novel) Grover–based implementation of
a quantum switch function, Teleportation and the BB84 quantum key distribution pro-
tocol. As a last example, we explored the possibilities of our tool in the evaluation of
quantum properties, i.e., entanglement. For the algorithms in which noise can occur
or for the probabilistic ones, we provided both the recursive and non–recursive version.
In the following, for each algorithm we briefly recall their behaviour, we provide the
Quip-E implementation and, for the ones having a size which allows it, we provide their
representation in terms of QMCs. The proper translation into QPMC code, due to space
reason, can be found in Appendix A. We must address a difference in our representation
of reset operator: in detail, while the semantics is given as in Table 5.1, the represen-
tation that we generate uses an intermediate node, which doesn’t change the semantics
of the QMC, and it has been used in order to simplify the design of the tool only.

5.7.1 Deutsch–Jozsa

Let’s consider a function f from n bits to 1 bit, f : {0, 1}n −→ {0, 1}. Deutsch–
Jozsa algorithm allows to distinguish between two different classes of functions, i.e., the
constant and balanced ones. The function is constant if it evaluates the same on all
inputs, i.e., the function is either f(x) = 0 or f(x) = 1 for every x, while it is balanced
if the function is 0 on one half of the possible inputs and 1 on the other half. By using
a quantum device, one single oracle query is needed to deterministically know whether
the function is constant (the circuit output is a register |0⟩⊗n) or not (the circuit output
contains at least one state set to |1⟩). Classically, the problem is solved by using 1

2n +1
queries, in the worst case since we have to apply the function on half the inputs instead
of using a linear superposition of them.

In the following we show an implementation of the algorithm using 3–qubits oracles,
plus an ancilla to implement it in a reversible way; the first oracle is constant and returns
0 on all the inputs, while the second one is balanced.

Implementation and Translation In the following we present the Quip-E imple-
mentation for an instance of constant oracle, on the left, and a balanced one, on the
right. The translation into QPMC code is avalable in Appendix A.

Constant

dJozsaConst :: (Qubit , Qubit , Qubit ,
Qubit) -> Circ ()

dJozsaConst (q1, q2, q3 , q4) = do
map_reset_at (q1,q2 ,q3,q4)
gate_X_at q4

map_hadamard_at (q1,q2 ,q3, q4)

map_hadamard_at (q1,q2 ,q3)
measure (q1 ,q2,q3)
return ()

Balanced

dJozsaBal :: (Qubit , Qubit , Qubit ,
Qubit) -> Circ ()

dJozsaBal (q1 , q2, q3, q4) = do
map_reset_at (q1,q2 ,q3,q4)
gate_X_at q4

map_hadamard_at (q1,q2 ,q3, q4)
qnot_at q4 ‘controlled ‘ [q1]
qnot_at q4 ‘controlled ‘ [q2]
qnot_at q4 ‘controlled ‘ [q3]
map_hadamard_at (q1,q2 ,q3)
measure (q1 ,q2,q3)
return ()



5.7. Experimental Results 107

Test: Some examples of QCTL formulae that we tested are presented in the following.
In the case in which the output is a matrix, instead of displaying it, we put its represen-
tation in the Appendix, for space reasons. In order to show the probability associated,
we provide the traces of the matrices.

QCTL Fomula Output Trace

qeval(Q=? [F (s = 19 & !b0 & !b1 & !b2)], r); (A) 1

qeval(Q=? [F (s = 19 & b0 & !b1 & !b2)], r); (A) 0

Q=1[F(s=19 & !b0 & !b1 & !b2)]; true

Q=1[F(s=19 & b0 & !b1 & !b2)]; false

Table 5.2: Deutsch–Jozsa Constant Verification.

The first formula computes the probability that, given an initial state r= |0001⟩⟨0001|
we reach the final state |0⟩. Such probability is equal to 1, while the probability of reach-
ing a final state in which at least a state |1⟩ occurs is equal to 0, as expected. In the
following we consider the same queries in the case of the balanced oracle; the results
change accordingly, since at least one state |1⟩ should occur for the algorithm to success.

The last formula, in both cases, investigates whether the probability of reaching the
attended final state is equal to 1, which is true since the two instances are deterministic.

QCTL Fomula Output Trace

qeval(Q=? [F (s = 22 & !b0 & !b1 & !b2)], r); (A) 0

qeval(Q=? [F (s = 22 & b0 & b1 & !b2)], r); (A) 1

Q>0.5[F(s=21 & b0 & b1 & !b2)]; true

Q<0.5[F(s=21 & !b0 & !b1 & !b2)]; true

Table 5.3: Deutsch–Jozsa Balanced Verification.

5.7.2 Grover’s Quantum Search

The aim of Grover’s algorithm is searching for the index x of an element in a N–
dimensional space with no structure. We assume N = 2n, so that the indexes are
represented by n-bit strings. The algorithm solves the problem by considering a function
f : {0, 1}n → {0, 1} such that f(x) = 1 if and only if the string x is a solution.
Classically, this problem can be solved in O(N) steps, while using a quantum oracle
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it can be probabilistically solved in O(
√
N) steps. Then the oracle marks the strings

corresponding to possible solutions. At this point, the algorithm performs some steps
of amplitude amplification in order to maximize the probability of getting the desired
result after the measurement. The result is the index of the searched element. The
algorithm is probabilistic, because of the amplitude amplification step. Anyway, for
N = 4, after one iteration it behaves in a deterministic way, giving the right result with
probability equal to 1. Instances of the Grover’s algorithm can be used as a starting
point to solve different problems, such as graph–coloring. Grover’s algorithm exploits
quantum parallelism by giving to the quantum oracle all the possible input strings at
the same time.

For the experiment we decided to use a search space of size N = 4. The oracle
returns the string x = 3, so the state after the measurement will collapse to |11⟩|1⟩.
The algorithm needs an ancilla qubit that can be easily discarded at the end of the
computation.

Implementation and Translation In Figure 5.13 is depicted the Quipper circuit
for the three qubit Grover’s algorithm. The Quip-E implementation can be seen in the

Figure 5.13: Grover’s algorithm in Quipper

following:

Grover Deterministic

grover :: (Qubit , Qubit , Qubit) -> Circ ()
grover (q1,q2,q3) = do

map_reset_at (q1,q2 ,q3)
gate_X_at q3
map_hadamard_at (q1,q2 ,q3)
qnot_at q3 ‘controlled ‘ [q1, q2]
map_hadamard_at (q1,q2)
gate_X_at q1
gate_X_at q2
hadamard_at q2
qnot_at q2 ‘controlled ‘ q1
hadamard_at q2
gate_X_at q1
gate_X_at q2
map_hadamard_at (q1,q2 ,q3)
measure (q1 ,q2)
return ()

The first three applications of the Hadamard gate are needed in order to obtain a
linear superposition of the input qubits. The qnot at q3 ‘controlled‘ [q1,q2] is
the oracle and corresponds to a controlled–not gate. The last gates implement both
the amplitude amplification and the interference steps. Finally, the last two qubits
are measured. The oracle and the amplitude amplification are repeated a single time,
according to the size of the search space.
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For space reasons we omit the automatically generated QPMC code, which can be
found in the Appendix A. A representation of the QMC for the deterministic version
can be seen in Figure 5.14.

s0 s1 s2 s3 s4 s5 s6 s7 s8

s9f

s9t

s10ff

s10ft

s10tf

s10tt

H qnot H X H qnot X H

M0

M1

M0

M1

M0

M1

Figure 5.14: QMC associated to Grover’s Algorithm

Since, in the general case, the Grover’s search algorithm is probabilistic, we also
provided a recursive version with 4 qubits (plus the an ancilla). The larger instance of
the algorithm halts if the terminal state is the expected one otherwise it reinitialises the
circuit.

Grover Recursive

groverRec :: (Qubit , Qubit , Qubit , Qubit) -> Circ RecAction
groverRec (q1 ,q2,q3, q4) = do

map_reset_at (q1 ,q2,q3,q4)
gate_X_at q4

map_hadamard_at (q1, q2, q3)
qnot_at q4 ‘controlled ‘ [q1, q2, q3]
map_hadamard_at (q1, q2, q3)
map_X_at (q1 , q2 , q3)
hadamard_at q3
qnot_at q4 ‘controlled ‘ [q1, q2, q3]
hadamard_at q3
map_X_at (q1 , q2 , q3)
map_hadamard_at (q1, q2, q3)
hadamard_at q4

m1 <- measure q1
m2 <- measure q2
m3 <- measure q3
b1 <- dynamic_lift m1
b2 <- dynamic_lift m2
b3 <- dynamic_lift m3

exitOn $ b1 && b2 && b3

Test: In the deterministic version, according to the calculations, we should reach the
terminal state s14 with probability equal to 1, while the other terminal states must have
an associated probability equal to 0. We tested QCTL the formulae to evaluate the
density matrix associated to each terminal state with input state r= |001⟩⟨001| and the
results are presented in Table 5.4.
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QCTL Formula Output Trace

qeval(Q=? [F (s = 10 & !b0 & !b1 )], r);

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
0

qeval(Q=? [F (s = 10 & b0 & !b1)], r);

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
0

qeval(Q=? [F (s = 10 & !b0 & b1)], r);

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
0

qeval(Q=? [F (s = 10 & b0 & b1)], r);

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
1

Table 5.4: Grover’s Algorithm Verification.

The trace of the first three matrices is equal to 0, thus the probability of reaching
those states is null. The last matrix has trace equal to 1, thus the computation will
reach that state. We also tested formulas to calculate the accumulated superoperators
for each state, but since the resulting matrices have size 26× 26 for space reasons we do
not report them here.

In the probabilistic tail–recursive version we we should reach the terminal states
s48 in which at least one Boolean is equal to true with probability higher than other
states, since they encode the desired result. We tested some QCTL the formulae to
evaluate the density matrix associated to each terminal state with input state r= |1⟩⟨1|
of appropriate dimension; the results are reported in Table 5.5.

QCTL Formula Output Trace

qeval(Q=? [F (s = 48 & !b0 & !b1 & !b2)], r); (A) 0.25

qeval(Q=? [F (s = 48 & !b0 & b1 & !b2)], r); (A) 0.25

qeval(Q=? [F (s = 48 & b0 & b1 & b2)], r); (A) 0.75

Table 5.5: Grover’s Algorithm Verification.
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5.7.3 Quantum Switch

Classically, a Boolean switch function (or switch statement) checks for equality a discrete
variable (or a Boolean expression) against a list of values, called cases. The variable to be
switched is checked for each case. Just as the classical version, a quantum switch returns,
according to the value of the input qubits, the index of the correct gate (function) to be
applied on them. In this way, we are sure that a given set of functions works properly
on each possible combination of variables in input.

The idea behind the quantum switch is to use Grover’s algorithm on a superposition
of Boolean functions, represented by quantum oracles, rather than on a superposition
of basis states. A linear superposition of oracles is an operator which has the following
matrix representation:

Ô =

⎛⎜⎜⎜⎝
U0

U1

. . .

Un

⎞⎟⎟⎟⎠ ≡ U0 ⊕ · · · ⊕ Un (5.1)

While the aim of Grover’s algorithm is searching for the index i (represented by
an n-bit string) of an element in an unstructured N -dimensional space, the aim of our
Quantum Switch is to search for the index of the i-th Boolean function according to
the index of the input qubits. In particular, the quantum switch relies on the diffusion
operator of Grover’s algorithm in order to amplify the probability that the right answer
occurs. In order to do so, we have to extend the search space in order to provide in
input both the variables to be switched and the linear superposition of oracles. Thus
the search space will have size N = 22n + 1, with 2n control qubits, i.e. the variables,
2n qubits on which Grover’s diffusion operator is applied plus one ancillary qubit. Let
us consider a non-trivial circuit with N = 16, in Figure 5.15 where, according to the

Figure 5.15: Quantum Switch without superposition of variables.

values of |c1⟩ and |c2⟩, the circuit applies the correspondent oracle function and return
in output the state |c1, c2⟩Ui|a, b⟩. In this particular case, the algorithm is deterministic
and requires only one iteration of the diffusion operator. This is due to the fact that
the Grover’s diffusion operator is applied to a subspace of size Nsub = 4.

A more interesting example can be found in Figure 5.16 where as input we provide
a linear superposition of variables, thus we are considering all the possible inputs at
the same time, and we want to check whether the output matches our expectations



112 5. Entangλe

Figure 5.16: Quantum Switch with Superposition of Variables.

or not. The quantum switch exploits quantum parallelism to give to the superposi-
tion of quantum oracles all the possible input strings at the same time. In the end we
obtain in output a quantum state of the form 1

2

∑
i,j |ci, cj⟩Ui,j |a, b⟩ which is an uni-

form distribution of oracles. In general, our quantum switch takes a linear superposition
1√
N
|c1, . . . , cn, a1, . . . , an⟩, applies a linear superposition of oracles U0⊕· · ·⊕U2n and re-

turns a uniform distribution of states, in the form 1√
N

∑
i1,...,in

|ci1 , . . . , cin⟩Ui1,...,in |ai1 , . . . , ain⟩.

Translation and Validation

We translated an instance of the quantum switch algorithm, i.e., the deterministic one,
with two variables and a search space of N = 32, due to the ancillary qubit. Instances
with more variables are still to be verified due to the high complexity of generating
and performing verification of larger operators. In the following we show the Quip-
E program, while the QPMC automatically generated by Entangλe can be found in
Appendix A.

Switch (1)

qswitchCirc :: (Qubit , Qubit , Qubit ,
Qubit , Qubit) -> Circ ()

qswitchCirc (q1, q2, q3 , q4 , q5) = do
map_reset_at (q1,q2 ,q3,q4,q5)
gate_X_at q5
map_hadamard_at (q1,q2 ,q3,q4,q5)
map_X_at (q1 ,q2,q3,q4)
qnot_at q5 ‘controlled ‘ [q3,q4 , q1 ,

q2]
map_X_at (q1 ,q2,q3,q4)
map_X_at (q1 ,q3)
qnot_at q5 ‘controlled ‘ [q3,q4 , q1 ,

q2]
map_X_at (q1 ,q3)

Switch (2)

map_X_at (q2 ,q4)
qnot_at q5 ‘controlled ‘ [q3,q4 ,

q1, q2]
map_X_at (q2 ,q4)
qnot_at q5 ‘controlled ‘ [q3,q4 ,

q1, q2]
map_hadamard_at (q3,q4)
map_X_at (q3 ,q4)
hadamard_at q4
qnot_at q4 ‘controlled ‘ q3
hadamard_at q4
map_X_at (q3 ,q4)

Test: We simulated the Quantum Switch code and provided a Matlab plot of the
probability of success, which can be seen in Figure 5.17, noting that the eight peaks
growing up to 0.25, represent the desired output states, while the ones with a lower
probability are those which are not solutions. From this simulation it is also possible to
see the cyclic behaviour of the Grover operators.

We tested some QCTL formulae:
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Figure 5.17: Quantum Switch Simulation.

QCTL Formula Output

Q>=0.25[F(s=39 & !b0 & !b1 & !b2 & !b3)]; true

Q>=0.25[F(s=39 & !b0 & !b1 & !b2 & b3)]; false

Q>=0.25[F(s=39 & b0 & b1 & b2 & b3)]; true

Q>=0.25[F(s=39 & b0 & b1 & b2 & !b3)]; false

Table 5.6: Quantum Switch Verification.

the formulae verify that, in the future, a desired state (we restricted the example to
two solutions for space reasons) is reached with probability bounded by 0.25, while the
probability to reach other, undesired states, is less than 0.25, validating our expectations.

A larger version of the circuit, with a search space of N = 512 can be found at
https://github.com/miniBill/entangle (path res/Entangle Tests).

https://github.com/miniBill/entangle
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5.7.4 Teleportation

The aim of quantum teleportation is to move a qubit from one location to another,
without physically transporting or copying it, with the aid of a classical channel and
a shared quantum entanglement pair between the sender and the receiver. The steps
of the teleportation protocol have been explained in Section 2 and, given an unknown
qubit that is to be teleported between two parties, namely Alice and Bob, it can be
summarised as follows: first, an entangled pair is generated between Alice and Bob, then
Alice performs a Bell measurement (a specific sequence of unitary operators followed by
a measurement) of her part of the entangled pair qubit and the qubit to be teleported.
The measurement yelds one of four measurement outcomes, which are then encoded
using two classical bits. By using the classical communication channel, Alice sends the
two bits to Bob. As a last step, according to the two received bits, Bob applies a
pre–determined sequence of unitary gates on its part of the entangled pair, obtaining
always the qubit that was chosen for teleportation. In the following, since the protocol
always succeeds in absence of noise, we provide both the non–recursive and the recursive
versions.

Implementation and Translation The Quip-E implementation of the teleportation
algorithm presented in the previous sections can be seen in the following:

Teleportation

teleport :: (Qubit , Qubit , Qubit) -> Circ ()
teleport (q1 , q2 , q3) :: do

reset_at q2
reset_at q3
hadamard_at q2
qnot_at q3 ‘controlled ‘ q2
qnot_at q2 ‘controlled ‘ q1
hadamard_at q1
c1 <- measure q1
c2 <- measure q2
if c1==1 && c2==1

then do
gate_Y_at q3

else if c1==1 && c2==0
then do

gate_Z_at q3
else if c1==0 && c2==1

then do
gate_X_at q3

else return ()

The first hadamard gate, followed by a controlled–not is used to create a maximally
entangled state between the second and the third qubit. The automatically generated
QPMC code, which can be found in the Appendix A. A representation of the QMC for
the teleportation version can be seen in Figure 5.18.

Since noise and decoherence may occur, making the correlations vanish and the
protocol not reliable as required, we also provided a recursive version.
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Figure 5.18: QMC for the Teleportation Protocol.

Teleportation Recursive

teleportRec :: (Qubit , Qubit , Qubit) -> Circ RecAction
teleportRec (q1, q2 , q3) = do

reset_at q2
reset_at q3
hadamard_at q2
qnot_at q3 ‘controlled ‘ q2
qnot_at q2 ‘controlled ‘ q1
hadamard_at q1
c1 <- measure q1
c2 <- measure q2
b1 <- dynamic_lift c1
b2 <- dynamic_lift c2
if b1 && b2

then do
gate_Y_at q3

else if b1 && (not b2)
then do

gate_Z_at q3
else if (not b1) && b2

then do
gate_X_at q3

else do
gate_X_at q3
gate_X_at q3

c3 <- measure q3
b3 <- dynamic_lift c3
exitOn $ b1==b3

QCTL Formula Output

Q>=0.25[F(s=11 & !b0 & !b1)]; true

Q=0[F(s=12 & !b0 & !b1 & !b2)]; false

Table 5.7: Teleportation Protocol Verification.

The formulae bounds the probability to reach a desired state (after the first condi-
tional branch) to a value greater or equal to 0.25, and ascertain that the probability to
reach a final, desired state (after the second conditional branch), never goes to 0.
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5.7.5 BB84 Protocol

In this example we focus on protocols that use quantum effects such as entanglement to
guarantee secure communication between two parties (Alice and Bob) communicating
on classical channels. Errors of different type can occur during the communication, in
particular due to noise and decoherence effects. Moreover, in QKD protocols such as
BB84, we want not only to guarantee that the channel is free of noise effects that could
change the output, but also that no eavesdropper can obtain the key the two parties are
exchanging. In particular, the BB84 protocol enables two parties to share a random and
secure key, which could be used for classical encryption schemes such as the one–time
pad. The protocol has been analised step–by–step in Section 2.2.1. In the following
experiments, we have implemented two versions of the BB84 protocol where only one-
bit strings are transmitted. The first assumes that the channel is free of noise, while
the second is recursive and halts only if certain conditions are verified. Using a sigle bit
string is the simplest setting possible, but it can be generalized to strings of arbitrary
length. Since quantum measurement outcomes are random, we decided to generate the
classical strings using this kind of technique, i.e., we measure two qubits previously put
in a uniform superposition by the application of an Hadamard gate and then we get the
classical outcome.

Non–recursive BB84 Implementation and Translation: The Quip-E implemen-
tation for the non–recursive version can be seen in the following:

BB84 (1)

bb84Circ :: (Qubit , Qubit , Qubit ,
Qubit) -> Circ ()

bb84Circ (q1 , q2 , q3, q4) = do
bb84defCirc (q1,q2,q3 ,q4)
ma1 <- measure q4
a1<-dynamic_lift ma1
return ()

--AUX --
bb84defCirc :: (Qubit , Qubit , Qubit ,

Qubit) -> Circ Qubit
bb84defCirc (q1, q2, q3 , q4) = do

map_reset_at (q1,q2 ,q3)
map_hadamard_at (q1,q2 ,q3)
ma <- measure q1
mb <- measure q2
mb1 <- measure q3
a <- dynamic_lift ma
b <- dynamic_lift mb
b1 <- dynamic_lift mb1
if (not a) && (not b) && (b==b1)

then do
reset_at q4

BB84 (2)

reset_at q4
return q4

else if a && (not b) &&
(b==b1)

then do
reset_at q4
gate_X_at q4
return q4

else if (not a) && b
&& (b==b1)

then do
reset_at q4
hadamard_at q4
return q4

else if (b==b1)
then do

reset_at q4
gate_X_at q4
hadamard_at q4
return q4

else do
return q4

The corresponding QPMC translation, i.e., module bb84Circ, without the definition
of constants, can be found in Appendix A. The graph representation of the QMC, can
be seen in Figure 5.19 and in the details below:

In the first three blocks the random strings a, b and b′ are generated by means of
quantum measurement on an equal superposition of basis states, holding 1/2 of proba-
bility to get |0⟩ and 1/2 to get |1⟩ for each qubit. Then, the BB84 protocol is performed
according to the generated strings. In the end, checks are performed: some states are
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Figure 5.19: High level representation of BB84 steps.

accepted as solutions, thus the protocol terminates succesfully, while other states are
denied, meaning that something occurred during the trasmission of the key. In this case
we have to manually discard the results and run again the whole protocol. The portion
of QMC associated to the generation of the random bit strings a, b and b′ is represented
in Figure 5.20.
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Figure 5.20: Random string generation.

The portion related to the encoding and check part of the protocol is represented in
Figure 5.21. The blue states are those accepted at the end of the protocol, while the
red ones are the denied ones.

Recursive BB84 translation:

In the following we provide, as an example, ourQuip-E implementation of a tail recursive
BB84 protocol.
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Figure 5.21: BB84 Body.

BB84 rec (1)

bb84RecCirc :: (Qubit , Qubit , Qubit ,
Qubit) -> Circ RecAction

bb84RecCirc (q1, q2, q3 , q4) = do

map_reset_at (q1,q2 ,q3)
map_hadamard_at (q1, q2,q3)
ma <- measure q1
mb <- measure q2
mb1 <- measure q3
a <-dynamic_lift ma
b <- dynamic_lift mb
b1 <- dynamic_lift mb1
if (False) && (not b)

then do
reset_at q4

else if True && (not b
)

BB84 rec (2)

then do
reset_at q4
gate_X_at q4

else if (False) && b
then do

reset_at q4
hadamard_at q4

else do
reset_at q4
gate_X_at q4
hadamard_at q4

ma1 <- measure q4
a1 <- dynamic_lift ma1
exitOn $ b==b1 && a==a1
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The idea is the same as the non–recursive BB84 protocol, but in this version, instead
of manually performing the checks to assess whether the state is accepted or denied and
then restart the protocol, this is done automatically by the algorithm. In this case, the
QMC in Figure 5.22 shows the portion related to the encoding and check part of the
recursive protocol, since the initialization part in which the random strings are generated
is the same as the non-recursive case.
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Figure 5.22: Recursive BB84 Body.

The corresponding QPMC translation, can be found in Appendix A and the abstract
model of the quantum Markov chain can be seen in Figure 5.23.

5.7.6 BB84 Tests:

We show in Table 5.8 some tests performed by using QCTL formulae [35] on both the
implementations of the BB84 protocol. The first two formulae refer to the probability
that a success state never occurs before a failure state. The third and fourth formulae
consider the probability that a failure state cannot occur before a success state. The
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Figure 5.23: High level representation of recursive BB84 steps.

QCTL Formula Output

Q=0[!F (succ)| (!fail) U (succ)]; true

Q>0[!F (succ)| (!fail) U (succ)]; false

Q=0[!F (fail)| (!succ) U (fail)]; true

Q>0[!F (fail)| (!succ) U (fail)]; false

Q>0.3[true U (succ)]; true

Q>0.3[true U (fail)]; true

Q>0.5[true U (succ)]; false

Q>0.5[true U (fail)]; true

Table 5.8: QCTL example tests for recursive and non–recursive BB84 protocol.

fifth and sixth formulae show that both success and failure states can be reached with
probability > 0.3. The last set of formulae bounds the probability that a state success
is reached with a value < 0.5. By generating the density matrices, and by computing
the trace, these results are consistent, since trace(SUCC)= 0.37500 and trace(FAIL)

= 0.62500. Note that the two traces sum to 1.
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5.7.7 Entanglement Detection:

In this section we show how to use our framework for detecting entanglement in a
Quipper program. Before we proceed, we recall that by computing the von Neumann
entropy it is possible to assess if a pure state is entangled or not. This can be useful
not only to evaluate the loss of coherence throughout the execution of a (more complex)
quantum protocol due to the presence of noise or of an eavesdropper, but also to check if
new correlations are created due to the presence of the environment, with consequences
on the information carried by the protocol.

In the following we briefly recall the notions of entanglement and the von Neumann
entropy seen in Section 2. Recall that von Neumann entropy is a measure of information,
and it is useful for deciding whether a state is mixed or pure, and it is also used as
a measure of entanglement for pure states. In this work we will only consider the
entanglement of a bipartite system, since a more in depth analysis of the subject is out
of the scope of this paper.

Let H = H(1) ⊗H(2) be a composite (bipartite) quantum system. A state |ψ(1, 2)⟩
on H is entangled if and only if it does not exist any state vector |ϕ(1)⟩ ∈ H(1) and
|ω(2)⟩ ∈ H(2) such that:

|ψ(1, 2)⟩ = |ϕ(1)⟩ ⊗ |ω(2)⟩
.

The von Neumann entropy S(ρ) of a given density matrix ρ is defined as follows:

S(ρ) = −tr(ρ log ρ) = −
∑
i

λi log λi

where λi are the (strictly) positive eigenvalues of ρ.

It is possible to determine whether a pure state, i.e., a state such that ρ2 = ρ, is
entangled or not by resorting to the von Neumann entropy. Let ρ = |ψ(1, 2)⟩⟨ψ(1, 2)|
be the state under consideration, the following statement holds:

S(ρ) = 0 ∧ S(ρ(1)) > 0, S(ρ(2)) > 0⇔ ρ entangled

where ρ(1) = tr(2)[ρ] and ρ(2) = tr(1)[ρ] are the reduced density matrices of the composite
pure state ρ. Given a pure state ρ = |ψ⟩⟨ψ| it is possible to determine whether it is
entangled or not by simply calculating first its reduced density matrices, and then by
calculating the entropy associated to its (non-zero) eigenvalues. The state is entangled
if and only if such entropy turns out to be greater than zero, i.e., S(ρ(1)) > 0 and
S(ρ(1)) > 0.

We translated a simple circuit that entangles two qubits. This is represented by the
following Quip-E code:

entCirc :: (Qubit , Qubit) -> Circ (Qubit , Qubit)
entCirc (q1, q2) = do

reset_at q1
reset_at q2
hadamard_at q1
qnot_at q2 ‘controlled ‘ q1
return (q1 ,q2)

which can be automatically translated into the following QMC:
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module entCirc
s: [0..6] init 0;
b0: bool init false;

[] (s = 0) -> <<A1_T >> : (s’ = 1) & (b0’ = true) + <<A1_F >> : (s’ = 1) & (b0’ =
false);

[] (s = 1) & b0 -> (s’ = 2);
[] (s = 1) & !b0 -> <<A2 >> : (s’ = 2);
[] (s = 2) -> <<A3_T >> : (s’ = 3) & (b0’ = true) + <<A3_F >> : (s’ = 3) & (b0’ =

false);
[] (s = 3) & b0 -> (s’ = 4);
[] (s = 3) & !b0 -> <<A4 >> : (s’ = 4);
[] (s = 4) -> <<A5 >> : (s’ = 5);
[] (s = 5) -> <<A6 >> : (s’ = 6);
[] (s = 6) -> true;

endmodule

Figure 5.24: QCTL formulas and results.

In our example, the first qeval(Q=? [F(s=1)],|0⟩⟨0|)= ρI returns the density
operator for the initial state, while qeval(Q=? [F(s=6)],|0⟩⟨0|)= ρF computes the
density operator for the final state of the algorithm.

We used the functions PartialTrace and Entropy of the Matlab library QETLAB to
compute the partial trace and the entropy of the density operator and its reduced. Since

S(ρI) = S(ρ
(1)
I ) = S(ρ

(2)
I ) = 0 the initial state ρI is not entangled. On the contrary, the

final state ρF is fully entangled, since it has entropy equal to zero, and both its reduced

operators have maximal entropy (i.e., S(ρF ) = 0, S(ρ
(1)
F ) = S(ρ

(2)
F ) = 1/2).

5.7.8 Multiple SWAP Optimisation

We implemented an optimisation for our previous swap algorithm (herein multiply),
in which we directly generate the swap matrices without the composition of binary
swaps. We will refer to the optimised method as single. Remember that, as we have
introduced in the previous section, in the Quipper block it is possible to change the two
methods in order to perform scalability tests.

Given the permutation of qubits in Fig. 5.25, by using the multiply method, the
permutation is obtained by transposition, i.e., by the composition of two binary-SWAP
operators S1 and S2; the first performs a swap between the second and the third qubits,
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while the second acts on the first and second qubits, respectively. The composition of
the two operators is a swap operator S:

S = S2(S1)

Figure 5.25: Composition of SWAP.

It can be proved that the multiply method works on any number of swaps.
When S acts on a linear superposition of basis states we obtain the following state

in output:
S|q0, q1, q2⟩ = |q2, q0, q1⟩

Which, once applied to the vectors of the standard computational basis behaves as
follows:

S|0, 0, 0⟩ = |0, 0, 0⟩ ; S|0, 0, 1⟩ = |1, 0, 0⟩ ;
S|0, 1, 0⟩ = |0, 0, 1⟩ ; S|0, 1, 1⟩ = |1, 0, 1⟩
S|1, 0, 0⟩ = |0, 1, 0⟩ ; S|1, 0, 1⟩ = |1, 1, 0⟩ ;
S|1, 1, 0⟩ = |0, 1, 1⟩ ; S|1, 1, 1⟩ = |1, 1, 1⟩ (5.2)

The single method allows to build the operator S without composing n binary
swaps; this is obtained by taking into consideration the index of the elements inside the
state |·⟩. In this way, we are able to rewrite the permutation of Eq. 5.2 as follows:

(i, j, k)→ (i, k, j)→ (k, i, j)

We build a swap matrix S by computing its matrix elements, i.e., given an initial
configuration |i⟩ and a final configuration |j⟩ we compute Sij = ⟨j|S|i⟩. In order to
perform this efficiently, we have to compute the positions which the elements equal to
1 will occupy in the permutation matrix, by indexing the qubits.

The single method can be implemented with the following MATLAB function:

function S = swap(T) %T target positions in base 0

S = zeros (2^ length(T))
for i = 1:(2^ length(T))

origin = dec2bin(i-1,length(T)); % original position of the 1
target = dec2bin(0,length(T)); % target position of the 1

% fill the target array doing the actual swap
for j = 1: length(T)

target(j) = origin(T(j)+1);
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end
% put the 1 in the swap matrix in the target -th row

S(bin2dec(target )+1,i) = 1;
end
end

Our swap algorithm –the multiply method– has computational cost O(2n), where n
is the number of qubits. If we let m = 2n be the size of the m×m square swap matrix,
our algorithm has cost O(m), i.e. is linear with the size of the swap matrix. In fact, the
outer for loop has complexity Θ(m), and each operation inside the loops costs at most
n.

On the other hand, the näıve swap algorithm for n qubits used before costs O(m3).
In details, we can build a swap matrix for a binary swap operation in time O(m2),
by performing n − 1 tensor product operations. For example, let I2 the 2 × 2 identity
matrix and S the 4 × 4 binary swap matrix. If we need to swap the second and third
qubit of a four qubit system, we need to perform I2 ⊗ SWAP , which results in a 8× 8
matrix. Then, we have to perform the tensor product of such matrix with I2, resulting
in a 16 × 16 matrix. If we consider the computational cost of the last tensor product
(i.e. the most expensive one), it requires exactly 2 × 2 × 8 × 8 = 28 steps, i.e. its

computational cost is Θ(2n
2

) = Θ(m2).
However, we have to build a swap matrix for each qubit couple we want to swap, and

then multiply them, i.e., if we want to swap n qubit (the worst case), we need to perform
n matrix multiplication operations, each of cost O(m3).2 This means that, overall, the
näıve swap algorithm requires at least to build a m×m binary swap matrix, i.e. it has
cost Ω(m2), and at worst it has to multiply n m ×m binary swap matrices, i.e. it has
cost O(m3).

We tested the circuits, built as in the previous case, using from 3 to 7 qubits, where
the number of swap has been maximised. Times are recorded using an Elm function.
In this case as well, for each size of the input the program has been executed five times
and the mean time has been computed. The results are shown in Figure 5.26.

Now, it is possible to estimate the translation time by looking at the parameter
elapsed time in the QPMC block. We made a comparison between the multiply and
the single methods. Please note that the results we present here are slower than the
one presented in [5] due to a different implementation (i.e. using the web interface to
run the code and assess the performance). However, the reader should not focus on their
absolute value, but just on the higher speed of our new swap algorithm when compared
to the classical one.

5.8 Summary

In this chapter we presented Entangλe, a framework providing an integrated enviroment
to translate quantum programs written using a recursive fragment of Quipper, into
QMCs, which are structures that can be given in input to the QPMC model checker.
Other model checking techniques for quantum protocols have been considered, e.g., in
[39][41][9] and [68], but, even if the techniques proposed are interesting, they were either

2We are aware of the existance of algorithms for matrix multiplication that slightly lower the ex-
ponent; however, for the sake of simplicity, and since we don’t have discovered a quadratic square
multiplication algorithm yet, we will treat this operation as computationally cubic.
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Figure 5.26: Comparison between multiply (naive method) and single.

not publicly available or mainly restricted to a particular class of quantum circuit, while
Quipper and QPMC provided a more flexible paradigm.

We first developed a simpified version of the tool for the translation of Quipper
circuits, written inside the Circ monad, into QMCs. This allowed us to simulate and
make formal analysis on quantum protocols using a high–level language, but still was
restricted to circuits, not allowing to translate proper programs, in which conditional
branches and loops might occur.

In order to provide the verification of a Turing–complete fragment, we then extended
the previous tool by considering also tail–recursive quantum programs. The extended
version of our tool, called Entangλe, plus a unification framework from a fragment
of Quipper, called Quip-E, has been presented. We described both the syntax and
the operational semantics of the language, and we showed how a Quip-E program is
translated into a QMCs, ready to be verified by QPMC.

Entangλe allows to both write and verify quantum protocols, using an high-level pro-
gramming language. It is able to translate also trc C programs, i.e., programs in which
measurement results may control termination of quantum protocols and algorithms.

Entangλe is endowed with a graphic interface, which has been described and where
the programmer can write Quip-E programs which are automatically translated into
QPMC code. We showed many tests of Entangλe, which has been used to translate and
verify several quantum algorithms, from the simpler Deutsch–Jozsa algorithm to the
BB84 quantum key distribution protocol in both recursive and non–recursive versions,
among others. The final results validated our expectations. Moreover, we found a way
to include the validation of quantum properties in the verification process as well –by
now as a post-processing operation, using the results of the tested formulae.

We are still working on the optimization of our framework in order to match the
requirement of validating complex algorithms and protocols, e.g., the ones involving a
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wider number of qubits which are actually difficult to translate due to the huge cost
to generate the matrices. Anyways, some steps in this direction has been done, i.e., by
implementing a multiple swap optimisation algorithm to build generalised permutation
matrix by the computation of its matrix elements instead than using the composition of
binary swaps. Moreover, we intend to investigate the specification of properties involving
typical quantum effects, in particular automatic entanglement detection. This would be
useful in particular for the quantum key distribution protocols.

Optimisations should be done from the model–checker point of view, involving the
automatic verification of more complex properties, i.e., entanglement and other quan-
tum effects. A possible solution to this problem has been investigated and brought to
the development of an early version of a custom model–checker. which will be briefly
presented in Sectionsec:conclusion. The tool is currently under specification and de-
velopment; it will allow us to explicitly generate the graph structure of a discrete time
Markov chain representing the quantum program, whose edges are labelled with the ma-
trix representation of the unitary and measurement operators. We aim at substituting
QPMC, by relying more on the standard version of PRISM. Nevertheless, since the tool
is still in its infancies, by now we regard it as an interesting research direction for the
future.



6
Entangled Evolving Hypergraphs

In this part of the thesis we show an extension of the idea presented in [42] which was
in turn based on the concept of entangled graphs, which can be found in [73].

Quantum systems show behaviors that are different from the classical ones, i.e., su-
perposition, interference, and entanglement [51]. Some of the aforementioned behaviors
can be considered as one-particle effects, since there is no need for the system to be
composed by more than one particle to show them. Other effects, such as entanglement,
can be observed only in composite quantum systems, i.e., systems composed by two
(or more) subsystems. These subsystems can exhibit both classical and non–classical
correlations. Entanglement is a kind of non–classical correlation, displayed by certain
classes of quantum states called entangled states, and it is an important notion in QIC. It
constitutes a fundamental resource for many quantum protocols –ranging, e.g., from the
simplest case of quantum teleportation[14] to more complex scenarios such as quantum
key distribution (herein QKD) and quantum cryptography[13]– which rely on entan-
glement to be properly performed. In order to perform formal reasoning on quantum
protocols, entanglement as a resource needs to be classified, since each entanglement
class is associated with a different set of tasks in quantum information processing. How-
ever, this classification is not trivial, since the notion of entanglement differs according
to the number of entangled particles of the quantum system under consideration.

In bipartite entanglement, we deal with quantum systems which are composed by
two subsystems. Thus, a bipartite quantum system is associated to the Hilbert space
H = H(1) ⊗ H(2)1 and, given two states |ψ1⟩ ∈ H(1) and |ψ2⟩ ∈ H(2), we can always
build a state |Ψsep⟩ = |ψ1⟩ ⊗ |ψ2⟩, |Ψsep⟩ ∈ H. Quantum states that can be written
in this form are called separable (or product states). It is important to recall that not
every state in H is separable; there are, indeed, bipartite quantum states that cannot
be decomposed in the latter form. In this case the state is called entangled.

Quantum entanglement in bipartite systems of pure states –i.e., states corresponding
to vectors in a Hilbert space– is (almost) completely understood, since it can be char-
acterized using the Schmidt decomposition [81]. This decomposition allows to write, by
means of local unitary transformation only, any pure state |Ψ⟩ of a bipartite system in

1H(i) are the Hilbert spaces associated to a single particle.
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the canonical form displayed in Eq.(6.1):

|Ψ⟩ =
√
λi

∑
i

|ψi⟩ ⊗ |φi⟩ (6.1)

where λi are called Schmidt coefficients and the local bases {|ψi⟩} and {|φi⟩} are guar-
anteed to always exist. The sum is limited by the dimension of the smaller Hilbert
space, i.e., H(1) or H(2). The non–local properties of the state are encoded in the posi-
tive Schmidt coefficients, which tell us whether the state is separable or not: in fact, if
at least two Schmidt coefficients

√
λi,

√
λj are different from zero, it is not possible to

express the state in a separable form, meaning that it is entangled.

Quantum entanglement in multipartite systems of pure states is not easy to classify
as in the bipartite case. Indeed, when addressing multipartite entanglement, which refers
to correlations between more than two subsystems, it is not enough to know whether the
subsystems are entangled or not, but also how they are entangled. There are different
ways in which a pure state |Ψ⟩ ∈ H(1) ⊗ · · · ⊗ H(N) of an N -partite system can be
entangled. In particular, in tripartite systems of qubits –i.e., systems represented by
the Hilbert space C2⊗C2⊗C2– we can have separable states, biseparable states and two
kinds of tripartite entangled states, i.e., Greenberger-Horn-Zeilinger (herein GHZ) states
[45] which have the form |GHZ⟩ = 1√

2
(|000⟩+ |111⟩) andW -states, which are entangled

states of three qubits having the form |W ⟩ = 1√
3
(|001⟩ + |010⟩ + |100⟩). GHZ and W

states are locally inequivalent, i.e., they cannot be transformed in each other by means
of stochastic local operations assisted by classical communication (herein SLOCC) [31].

In the case of multipartite entanglement, as in the bipartite one, there exists a gener-
alized Schmidt decomposition (herein GSD) [2, 23] which will be used by the classification
approach considered in this work. GSD allows us to put any state in a canonical form,
which is then used as a starting point for other algorithmic steps, involving entanglement
measures. We use concurrence [88] as the measure to quantify bipartite entanglement in
multipartite systems, as defined in Eq.(2.85), C(ρ) = max(0, λ1−λ2−λ3−λ4) where the
λi are the non-negative eigenvalues, in decreasing order, of the non-hermitian matrix
ρρ̃. Here ρ̃ is the matrix given by ρ̃ = (σy ⊗ σy) ρ∗ (σy ⊗ σy) where ρ∗ is the complex
conjugate of ρ 2 when it is expressed in a standard basis such as {|00⟩, |01⟩, |10⟩, |11⟩}
and σy represents the Pauli Y operator. In this paper, since we focus on the case of
three-qubit systems, we use tangle [26] to assess tripartite entanglement. In fact, in
tripartite systems, tangle allows the quantification of entanglement between states that
are not pairwise entangled. However, tangle cannot properly quantify the tripartite
entanglement of W state since τ(|W ⟩) = 0) but it still remains a well-known quantity
allowing to distinguish GHZ-type (which have non-vanishing tangle) andW -type states.
Given H = C2

A ⊗ C2
B ⊗ C2

C , tangle is defined as in Eq.(6.2):

τ = C2A(BC) − C2AB − C2AC , (6.2)

where CA(BC) ::=
√
2 (1− Tr(ρ2A)) is called purity (and can be regarded intuitively as a

bipartite concurrence), and Tr represents the trace function in its usual definition.

2i.e., the density operator associated to the quantum state under consideration, according to its
usual definition
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Understanding how multipartite systems are entangled is a formal problem that, if
solved efficiently, has positive effects in many applications. In order to do that, we aim
at building a finite classification of entangled systems of three qubits, by now restricted
to the tripartite case, using methods that can be further investigated from a logical and
computational point of view as well (e.g., graphs and hypergraphs). Since entanglement
is an important resource in QIC, its classification can be useful to verify properties
of quantum protocols, in particular in the context of quantum cryptography. Formal
techniques, such as model checking, can be used to test the reliability of a quantum
protocol in a realistic scenario, thus an approach allowing us to have a finite classification
of quantum entanglement in the multipartite case can be a further step in the direction
of building, and then testing, realistic protocols.

The chapter is structured in the following way: Section 6.1 explores a method to clas-
sify three-qubit entanglement by means of the concept of entangled hypergraphs, with
details to algorithmically build the classification; we aim at extending this approach to
the multipartite case, but this problem is currently still under investigation. Section 6.2
uses the proposed classification to build a new data structure, called evolving entangled
hypergraph, suitable to represent evolving quantum systems in which entanglement is
an emergent behaviour. Section 6.3 shows an example of the proposed method, applied
to a QKD protocol which uses entanglement. In the end we explore future ideas and
implementation proposals.

6.1 Classification of three-qubit Entanglement

In this section we provide a classication of three-qubit pure states inspired by the ap-
proach presented in [42]. The classification proposed in this work uses the notion of GSD
of three-qubit pure states, together with the concept of entangled hypergraps which can
be considered as a generalization of entangled graphs. In fact, we can define the latter
as follows:

Definition 6.1.1 (Entangled Graph). An entangled graph is a graph G = (V,E)
in which each vertex vi ∈ V represents a qubit in multi-qubit system, and an edge
e(vi, vj) ∈ E between two different vertices denotes bipartite entanglement between the
corresponding qubits [73].

However, by using the concept of entangled graph we can only assess bipartite entan-
glement in multi-qubit systems [74]. To overcome this problem, in [42], the authors used
a circle including the graph indicating global entanglement in order to avoid ambiguity
between corresponding GHZ and separable states in the same entangled graph. It is
important to note that, when we consider systems composed by four (or more) qubits,
it is not enough to investigate just bipartite and global entanglement, thus it would be
more beneficial to use another data structure; for this reason we exploited the concept
of entangled hypergraph. According to the latter consideration, we decided to associate
an entangled hypergraph to each possible entangled state (see Fig. 6.1).

Definition 6.1.2 (Entangled Hypergraph). An entangled hypergraph G = (V,HG) is a
graph in which each vertex vi ∈ V represents a qubit of a multi-qubit system and each
hyperedge hk(vi, vj , . . . , vm) ∈ HG (also called k-edge) links k ≥ 2 vertices, indicating
k-partite entanglement between the corresponding qubits.
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Table 6.1: Three-qubit GSD’s coefficients that make nonzero concurrences and tangle

C1,2 C1,3 C2,3 τ

(λ0 , λ3) (λ0 , λ2) (λ1 , λ4) (λ0 , λ4)

(λ2 , λ3)

In [2], it has been shown a GSD decomposition such that, for any three-qubit pure
state, there exist a local base allowing to rewrite the state in a unique canonical form,
by using a set of five orthogonal tensor product states. This can be expressed as in Eq.
(6.3):

|Ψ⟩3 = λ0|000⟩+ λ1e
iθ|100⟩+ λ2|101⟩+ λ3|110⟩+ λ4|111⟩,

λi ≥ 0, 0 ≤ θ ≤ π,
∑
i

λ2i = 1. (6.3)

The first step of our approach is thus to compute the GSD of the state under con-
sideration. Now, let us consider all the possible bipartite factorizations with nonzero
concurrence of this state, i.e., Ci,j ̸= 0 ∀i, j with i, j referring to the i-th and j-th
qubits. This allows us to find coefficients of the GSD which make nonzero concurrences
and which guarantee a weighted edge (i.e., 2-edge) between two vertices. Then, in ad-
dition, we also need to consider tripartite entanglement, which corresponds to global
entanglement in the case of tripartite systems. Hence, we use the tangle and find coeffi-
cients of the GSD which make nonzero tangle, i.e., τ ̸= 0, providing a weighted 3-edge.
These steps are summarized in Table 6.1.

Permutations of entangled hypergraphs can be considered by labeling the vertices.
For instance, in Figure 6.2 we labeled the vertices of entangled hypergraphs in the
biseparable case. In this way, we can have a relation between this classification and
the SLOCC classification, since we know there are three different SLOCC classes of
biseparable states, but all of them belong to the same family. Since the entangled hy-
pergraphs corresponding to separable and W states are symmetric, i.e., permutationally
invariant, and the ones corresponding to GHZ-type states contain an hyperedge, we
have not labeled their vertices, while we labelled the biseparable ones.

It is important to notice that, if we draw all the possible hypergraphs, there are
some of them not corresponding to any entangled pure state (i.e., starting from the
hypergraphs, it is not possible to retrieve the associated state). We call this kind
of structures forbidden entangled hypergraphs. In the three-qubit case, the forbidden
entangled hypergraph is the one with two edges but no hyperedge, i.e., with no global
entanglement. Indeed, for every possible choice of the coefficients to have two edges, we
always end up having either the third edge or the hyperedge (see Fig. 6.2).

6.2 Evolving Entangled Hypergraphs

The core part of this work is devoted to use the classification introduced in Section 6.1
as a starting point to model quantum protocols which use entanglement as a resource.
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Figure 6.1: Classification of three-qubit entanglement in terms of entangled hypergraphs

Figure 6.2: Forbidden entangled hypergraph of 3-qubit entanglement

We propose the concept of evolving entangled hypergraph (herein EEH), a data structure
inspired by both concepts of entangled hypergraphs and hypergraph states[79], taking
into account not only correlations (i.e., entanglement) but also interactions and the time
evolution of the system under consideration. Interactions in this case are considered in
the context of a dynamical process, i.e., the evolution of the quantum system in succes-
sive, discrete time steps. Since we wanted to keep track of patterns in the underlying
hypergraphs, we decided to create a structure that merged the notion of entangled hy-
pergraphs together with the one of multilayer graphs. This approach turns out to be
useful, in particular, when we try to model quantum protocols in which entanglement
is an important resource to be preserved, e.g., QKD and teleportation.

Multilayer graphs belong to the family of evolving graphs, also known as temporal
graphs [50]. Evolving graphs highlight the change in time of a graph. According to [67],
if in an evolving graph G = (V,E) the time is taken discrete and only the relationships
(i.e., edges) between entities (i.e., nodes) may change leaving the graph topologically
unchanged, then G is a sequence G1, . . . , Gn of static graphs over the same set of nodes.
Evolving graphs [37] have also been proposed as a theoretic model in order to capture
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the changes in time of a dynamic network topology. According to [22], they are suitable
to analyze the quality of a communication protocol, since its history is made explicit as
a sequence of graph topologies. A multilayer graph [15] is an evolving graph made of
layers which are distinct copies of the main spatial graph, i.e., a graph in which nodes or
edges are spatially located according to a certain metric. Each layer is then connected
to its neighbour according to some measure of time (e.g., causality, probability, etc)
which encodes the evolution of the network.

The multilayer graphs approach is thus suitable to describe the behavior of a dynamic
system taking into account both spatial and temporal dimension. For this reason, we
decided to use EEHs as a method to represent quantum dynamics in which entanglement
is an emergent behavior.

Definition 6.2.1 (Evolving Entangled Hypergraph). Let G = (V,HG) be an entangled
hypergraph. An evolving entangled hypergraph EEH = (L,H) is a evolving multilayer
graph in which:

1. L = {L0, . . . , Lt−1}, with the variable t representing the timesteps, is a set of
layers. Each layer Li ∈ L represents an instance of G at time ti;

2. H = {H1, . . . ,Ht−1} is the set of hyperedges from a layer to the following one.
Each hyperedge hi ∈ H is labeled with a CPTP (i.e., completely positive and trace
preserving) linear map acting on the states of G.

In other words, H contains edges from a layer to the following one, which are called inter-
layer hyperedges, while edges within a single layer Li are called intra-layer hyperedges.

Each Li corresponds to one of the allowed entangled hypergraphs, belonging to the clas-
sification presented in Section 6.1 (i.e., one of the allowed equivalence classes). Figures
(6.3, 6.4) show two examples of hypothetical EEHs in a tripartite system. It is impor-
tant to note that the representation of states is given in the density matrix formalism,
since it allows a broader set of unitary and non-unitary evolution operators. In Fig.6.3,
an initial state ρ (i.e., a given state of three qubits) at time t0 is biseparable and, after
the evolution through two given CPTP maps –E1 and E2– ends in a completely separable
state at time t2. The information extracted by this (hypothetical) model allows us to
know that, during the execution of the quantum protocol under consideration, in the
quantum channel E2 something occurred, causing decoherence.

In the example in Fig. 6.4, we show an EEH in which the state ρ is in a com-
pletely separable configuration at time t0. Then, after the evolution through the maps
E1, . . . , En, at time tn it becomes totally entangled, allowing us to witness a process of
entanglement creation along the channel.
Intra-layer edges ei ∈ E are not labelled; a weight can eventually be added, referring
to the amount of entanglement between two qubits, quantified by concurrence, or by
von–Neumann entropy. Nodes vi ∈ V in the EH (i.e., within a layer) are labeled and
should be interpreted as spatial locations of qubits (i.e., qubit positions) instead of qubit
“names”. We suggest that this subtle difference, even if not used in this early stage
of the work, might become more important when dealing with identical particles, thus
the notion of indistinguishability will be enforced by using locations of qubits instead of
labeling them.
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Figure 6.3: Example of an EEH in which decoherence occurs.

The EEH model proposed in this work is an abstract structure taking in input a
class Li from a finite set L of equivalence classes, evolving according some CPTP map

E and producing as output another class from the same set; i.e., {Li} E−→ {Lj}. The
main purpose of EEHs is to create a structure that models properties emerging from
quantum dynamics like, in this case, entanglement. Such properties must be suitable to
be verified using formal methods such as model checking and logic, thus it is important
to keep EEHs as abstract as possible. This is useful since by abstracting the domain,
we “forget” some details, making the model computer representable.

We do not aim at computing the numerical representation of the operators which are
labelling the inter-layer hyperedges. In this way, the formal verification tool should rely
not on an explicit –and computationally expensive– representation of the CPTP maps,
but insted it focuses on the abstract representation of their action on the graph. Using
this approach, which can intuitively be regarded as an abstract interpretation one, a
formal verification tool gains information about the semantics and the properties of the
quantum protocol under consideration, without performing calculations.

In the EEHs, each layer representation (i.e., sub-hypergraph G) encodes an action
induced by the CPTP map entering it. In this way a quantum channel (i.e., CPTP map)
has a representation at the hypergraph level and its behavior in time removes (or adds)
intra-layer edges. The rules determining how many edges are allowed to be removed (or
added) refer to the classification presented in the first part of this work.

6.3 Example: Modeling Quantum Protocols

In this section we show an application for EEHs by using them to model two quantum
protocols, i.e., teleportation and QKD with W states. We suggest that EEHs are suit-
able to model quantum dynamics in which entanglement is a property to be preserved or
detected, because their structure allows to track the structural and morphological evo-
lution encoding both spatial and temporal behaviors of an evolving quantum system.
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Figure 6.4: Example of an EEH in which entanglement creation occurs.

EEHs are abstract structures, thus they allow us to remove unwanted, and computation-
ally expensive, information by focusing on the structure of the hypergraph. Moreover,
they can be constructed by using an algorithmic approach.

In the following we will provide two instances of “real world” quantum teleportation
protocols in which tri-partite entanglement is used as a resource and for which EEHs
provide a good model. We represent the protocols by using both a Quipper-like [44]
pseudocode and a graphical representation of the associated EEH.

It is also important to stress that, since this is just a preliminary work, we do not
consider measurements in detail, which will be further investigated in a future extension.
Instead, in this work we will focus our attention just on the channel.

6.3.1 Teleportation Protocol

Quantum teleportation is a protocol allowing to transmit quantum information (e.g. a
quantum state) from one location to another, using both classical communication and
quantum entanglement between the sender and the receiver. In this context we abstract
from the underlying physical and mathematical details, since they are out of the scope
of this preliminary work; further references can be found in [14].

In Fig. 6.5 we provided a pseudocode implementation for the teleportation protocol
together with its circuit representation, where the EPR gate creates an entangled (e.g.,
Bell) state of the form 1√

2
|00⟩+ |11⟩ and CN represent the standard controlled-not gate.

In the case in which no noise along the channel occurs, this protocol –without consid-
ering measurement and post measure corrections– can be summarized as follows (note
that normalization factors are omitted for simplicity):
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teleport :: (Qubit , Qubit , Qubit) ->
Qubit

teleport (q1 , q2 , q3) :: do
reset_at (q2 ,q3)
EPR_at (q2 ,q3)
CN_at q2 controlled q1
hadamard_at q1
c1 <- measure q1
c2 <- measure q2
if c1==1 && c2==1

then do
gate_Y_at q3

else if c1==1 && c2==0
then do

gate_Z_at q3
else if c1==0 && c2==1

then do
gate_X_at q3

else do
identity_at q3

return q3

|q1〉 • H
LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

•

|q2〉 = |0〉
EPR

⊕
LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

•

|q3〉 = |0〉 X Z

Figure 6.5: Teleportation Pseudocode and Circuit

|q1 0 0⟩ separable

EPR−−−→ |q1⟩(|00⟩+ |11⟩) biseparable

CN−−−→ |0⟩(|00⟩+ |11⟩) + |1⟩(|10⟩+ |01⟩) fully entangled

H−−−→ |+⟩(|00⟩+ |11⟩) + |−⟩(|10⟩+ |01⟩) fully entangled (6.4)

where |±⟩ represent the state |0⟩ ± |1⟩. It is important to note that the application of a
controlled-not gate allows to “extend” the entanglement to the first subsystem creating a
fully entangled state which can be then reduced to a GHZ-like state with both bipartite
and tripartite entanglement, according to the underlying classification. 3 This process
results in the EEH in Fig. 6.6, in which the quantum gates are represented by Egate-name,
i.e., the quantum operations associated to the circuit gate. This choice allows to deal
with more realistic scenarios, in which noise and decoherence (i.e., processes that are
not unitary) may occur.

Let us now consider the same teleportation protocol in which we add a phase flip
channel instead of an ideal, not noisy one. This simulates a situation in which a loss
of coherence may occur and can be realized by the pseudocode in Fig. 6.7, in which
PhaseFlip at represents a phase flip channel.

Given a generic state ρ, the phase flip channel is represented by the quantum op-
eration ρ′ =

∑2
i=1EiρE

†
i , with E1 =

√
pσz, E2 =

√
1− pI and 0 ≤ p ≤ 1. 4 After

the application of the channel, the sum of the entries of the off-diagonal of the density
matrix ρ′ is lower than in the initial state; by iterating the process k times, the state

3The calculations have been performed by using the QETLAB[53] toolkit for MATLAB, computing
both von-Neumann entropy –function Entropy– and concurrence –function Concurrence of the subsys-
tems.

4σz is the Pauli Z operator, applied to the whole system and I the identity matrix.
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Figure 6.6: EEH for an ideal teleportation protocol.

loses all the information about coherences (i.e., decoherence), becoming less entangled
with the rest of the system at each iteration. In this case we suppose that the probability
p is high enough to guarantee a complete decoherence with just one application of the
channel. Thus, the EEH associated is the one in Fig.6.8. The hypergraph is different
from the previous one in two layers, namely t2 and t3, and since the entanglement is not
modelled in the same way as before, it is not possible to guarantee the effectiveness of
the protocol, which could fail to teleport the correct state.

Different teleportation methods, i.e., through quantum channels containing more
than two entangled qubits, have been investigated. In [55, 70] tripartite GHZ and
W states can also be used as quantum channels for teleportation, which can be an
interesting case study, since they deal with more than three qubits.

6.3.2 QKD using W states

In this example we consider a quantum key distribution protocol using W states, as
presented in [54, 49]. W states, due to their pairwise entanglement, have been considered
suitable and robust configurations for QKD protocols. Indeed, after tracing out one
subsystem, there is still the possibility of bipartite entanglement, while the GHZ state,
once that a subsystem have been traced away, becomes completely separable. The QKD
protocol via W states between three parties can be summarized as follows:

1. The three parties share respectively one qubit each, which belongs from a previ-
ously entangled tripartite W state;

2. They randomly choose a basis to locally measure their qubit (e.g., x or z-basis);

3. Each part announces a bit of information on the basis of the local measurement
(not the outcome);
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teleport :: (Qubit , Qubit , Qubit) ->
Qubit

teleport (q1 , q2 , q3) :: do
reset_at (q2 , q3)
EPR_at (q2 ,q3)
PhaseFlip_at (q1 ,q2 ,q3)
qnot_at q2 controlled q1
hadamard_at q1
c1 <- measure q1
c2 <- measure q2
if c1==1 && c2==1

then do
gate_Y_at q3

else if c1==1 && c2==0
then do

gate_Z_at q3
else if c1==0 && c2==1

then do
gate_X_at q3

else do

P
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e
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p

Figure 6.7: Teleportation Pseudocode and Circuit with Noise

4. For security reasons there might be a requests to announce the outcomes at ran-
dom, to discover if previously eavesdropping has occurred;

5. If the three measurement basis are not (z, x, x), (x, z, x) or (x, x, z), then the
protocol is restarted;

6. If the outcome of the part who measured in the z-basis is |0⟩ then the protocol
ends and the other two parties know for sure that they have the same outcome,
otherwise the protocol is restarted.

This protocol heavily relies on the preservation of the entanglement of the W -states.
If the entanglement is preserved, then the protocol ends in a success, otherwise, if noise
along the channel or eavesdropping occur before the measurement, the protocols ends
in a failure and should be restarted. For this reason we will focus only on the part
of the protocol in which the entangled state is generated and transmitted along the
channel, i.e., the first point of the above list. In Fig. 6.9 we provide the pseudocode
implementation for the QKD protocol via W states, together with the portion of EEH
relative to the pre-measurement part, where the identity operator EI refers to a channel
without noise.

In Fig. 6.10 we can see how the EEH associated might change if eavesdropping,
denoted by EV E, or any other source of noise occurs. The two EEHs are different, and
just by comparing their structure we can note that something happened and the second
protocol will result in a possible failure. Moreover, if an hypergraph is represented
by one of the forbidden configurations, we might also infer that something within our
specification, or the underlying language/hardware, is faulty.

6.3.3 Technical improvements and implementations

In this Section we presented two examples of EEHs relative to the teleportation protocol
and a simplified version of a QKD protocol with W states. We are currently developing
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Figure 6.8: EEHs for a teleportation protocol with noise.

qkdW :: (Qubit , Qubit , Qubit) -> (Qubit , Qubit , Qubit)
qkdW (q1, q2, q3) = do

W_at (q1, q2, q3)
A <- measure_x -z q1
B <- measure_x -z q2
C <- measure_x -z q3
if (axis(A,B,C)==(z,x,x) || axis(A,B,C)==(x,z,x) ||

axis(A,B,C)==(x,x,z)) && C == |z+>
then do
return (m1,m2,m3)
else qkdW(q1, q2, q3)

an automatic tool that allows to build the EEH from its specification in a quantum
programming language, e.g., Quipper. The tool, which is still in its infancies and by
now requires a numerical representation of the states, is structured as follows: first,
given a pure state in the standard computational basis, it returns its entangled graph
by means of GSD and pairwise concurrence quantification/tangle. Since a quantum
protocol can be thought as a sequence state −→ state, the complete EEH is built after
the computation of all the intermediate states. Since its behavior in time is represented
as a causal process, we are investigating whether to use a guarded command language
such as PRISM to model the abstract EEH (before the generation of its explicit visual
representation) and its transition from a state to the following one.

We are working on a visualization of the graph, which at each step will be represented
as a lattice, or a grid of pixels. At present, we use as incidence matrix of the hypergraph
an instance of Table 6.1, where, in order to render graphically the most explicit visual
representation of the EEH topology, the columns represent concurrence and tangle and
the rows represent the qubits. The changing in time of the shapes within the grid might
be useful to investigate possible patterns associated to certain protocols and entangle-
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Figure 6.9: QKD with W states pseudocode and EEH.
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Figure 6.10: QKD with W states EEH noisy channel.

ment classes and the color can be related to the “amount” of entanglement measured
by concurrence and tangle. As an example, let us consider a W state, whose entangled
graph is taken unweighted for simplicity; by computing both pairwise concurrencies and
tangle we obtain its incidence matrix:

M =

⎛⎝1 1 0 0
1 0 1 0
0 1 1 0

⎞⎠
where Mi,j = 1 means that the qubit i has the property j. In our example, the qubit
couples (v1, v2), (v1, v3), and (v2, v3) are pairwise entangled, but there is no tangle
between them. This can be translated in the visual representation of Fig. 6.11.

More optimized structures, e.g., triangular graphs, could be proposed in an extended
work.

We are also planning to provide the possibility to perform formal verification on the
model obtained. Such verification can be done both temporally, i.e., by using model
checking and a suitable temporal logic, e.g., QCTL, and spatially, by using a quan-
tum extension of the SSTL spatial-temporal logic, presented in [19]. The last one in
particular is currently used to analyze emergent behaviors in dynamic systems (e.g.,
morphogenesis and pattern formation). A possible example of property to be verified
on the grid can be the following (proper syntax and semantics are still to be investi-
gated): Q=?[F(S[w(vi,vj)>0])].

where:
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v1

v2 v3

Figure 6.11: Graphical representation of a W state EH via incidence matrix

• w(v1, . . . , vn) represents the weight (i.e., in this case the entanglement property)
on a list of vertices;

• Fϕ is the temporal in the future operator (as in the usual model checking theory)
stating that, at a certain point during the execution of the protocol, the formula
ϕ must be true;

• Sϕ is the spatial somewhere operator, which requires the formula ϕ to hold in a
location reachable from the current one;

• Q ∼E [ϕ], with ∼∈ {≥,=,≤} is the QCTL quantum probability operator, which
states that the probability that the formula ϕ is verified is bounded by a probability
expressed by the quantum operation E .

Roughly speaking, the formula investigates which is the probability that, starting at
time t0, in the future there will be an entangled couple in the graph. Again, we stress
that this can be a direction in which this work can be extended.

The hypergraph structure is also suitable be used in machine learning tasks, both
from the classification and the verification point of views, thus further investigations
on a mixed approach (ML and MC techniques) should be carried on. Moreover, proofs
about the mapping from the concrete domain (the quantum system) and the abstract
one (the EEH) will be provided in the extended version of this work.

6.4 Summary and Future Work

In this chapter we proposed a new data structure, allowing to represent protocols in
which entanglement is an important property, called Evolving Entangled Hypergraph
(EEH). The data structure is based on a classification of tripartite entanglement which,
in turn, uses entangled hypergraphs (EHs).

The EEH model is an abstract structure taking in input a class Li from a finite set
L of equivalence classes, evolving according some CPTP E and giving in output another
class from the same set. This model allows us to track interactions between qubits of a
multipartite system and the evolution of the quantum system under consideration. We
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suggest that it will allow to verify whether the entanglement properties are preserved
by the time evolution or not. Since we want to model real world quantum systems,
we assume that the evolution may not be unitary, and that some coupling with the
environment may cause noise and decoherence, thus destroying the entanglement which
is supposed to be preserved for the success of the quantum protocol under consideration.

The advantages in using the entanglement classification with EHs is that it is a
finitary method and that it is not required to compute the mathematical representation
of operators. The hypergraph is computed by an algorithmic procedure, for which we are
planning to build a tool to automate the process. In order to extract information about
the entanglement from the system, modeled as an EEH, we can work on an high level
structure. Then, by having an explicit classification declaring which are the allowed and
forbidden configurations, we can verify whether the structure matches the requirements.

This method, which is still in its infancy, needs further investigation in different
directions in order to provide both a reliable classification of multipartite entanglement
for systems with more than three particles and a formal model, suitable to represent
and formally verify quantum protocols. Moreover, it is required to understand whether
the evolution of an EH does map it into a single class or into a set of classes. We also
may need to deal with protocols which do not use tripartite entanglement only but also
the multipartite one, which now has been proposed as a resource for QKD protocols,
for example in [33].

Finally, we suggest that EEHs can be used to perform formal verification of quantum
protocols. In particular, in the context of model-checking EEHs provide a good model
of the protocol execution, on which automatic and logical verification can be performed.
Since they encode also a spatial dimension, we will be able to both define spatial locations
of qubits (i.e., the vertices of the EH can be interpreted as qubit positions) and the
temporal behavior of the system. We suggest that a spatial-temporal logic such as
SSTL [19] can be used to verify a protocol modelled by an EEH. In this way we will
be able to query the model whether a property of the system (e.g., entanglement) is
preserved at a certain time in a specific location.

An important improvement that should also be investigated is whether EEHs can be
used to model quantum systems of identical particles, by exploiting the spatial locations
of qubits instead of labeling them.

We are planning to extend the work proposed here with further formal details and
proofs from both the classification (i.e., whether it is possible to use the presented
method to classify also ≥ 4-partite entanglement or not) and the abstract interpreta-
tion point of view. A tool which, given a state, provides the corresponding entangled
hypergraph is currently under development.
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Conclusion and Future Work

7.1 Future Work

7.1.1 Quipks: improving Entangλe

Entangλe heavily relies on the QPMC IscasMC–based model checker. QPMC is designed
to be used as a web–based tool, and it displays some drawbacks which are difficult to
fix. For instance, there is not direct access to the source code, hence it is not possible
to extend the set of formulae with those allowing to test directly some classical and
quantum properties, e.g., the von–Neuman entropy or concurrence among others.

For this reason, together with a group of supervised M.Sc. students (thank you
Francesco Saverio Comisso and Luca Foschiani for your valuable work) we have started
developing a prototype model checker for quantum circuits. The tool, called Quipks, has
been built upon the existing code of Entangλe and it is a framework for debugging Quip-
E code, with the main aim to replace the current model checker, i.e., the aforementioned
QPMC, with a custom version, always based on PRISM.

The general idea of the model checker is to build a discrete time Markov chain
representing all the possible behaviours of a given quantum circuit and then passing the
model to PRISM, in order to check LTL properties. Entangλe already had an internal
representation of the Quip-E circuit (i.e., CircTree). Our code generates a labelled
graph from the tree, where each node is a state (possibly in a superposition of classical
states) and each edge represents the application of a unitary gate over a given set of
qubits. Quipks performs a visit of the generated graph and assesses the probability of
a state to evolve into another one. We keep track of the entangled states by using the
classical state vector representation. For every visited edge we generate the unitary and
measurement gates by computing the matrix representation of unitary and measurement
operators (which label the edges) and an explicit vector representation for the states;
then we perform a matrix-vector multiplication in order to update the state. We do not
store any information about the quantum state into the Markov chain, keeping track
only of the measured bits, one for each qubit. If a qubit has not been measured yet,
then its associated bit is set to zero. Even if this approach is very straightforward, it
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revealed to be effective due to the laziness of the product operator and the sparsity of
the matrices. The Markov chain is then stored in a format suitable for PRISM, and we
also generate a .dot file readable by Graphviz (a tool that builds a visual representation
of a graph) containing the visited labelled graph.

Since, by now, the size of the representation of the DTMC is exponential in the
number of qubits, we aim to optimise the model by investigating a formalism allowing
to use polynomial space. In this way it would not be necessary to store in memory all
the possible paths, which will be “clustered”, using an approach similar to the one using
the OBDD.

The tool, even if still requires a thorough investigation and testing, is available as a
work–in–progress preview at https://github.com/SaverioFrancesco/quipks.

7.1.2 Applying the Evolving Entangled Hypergraphs

A second perspective work is to use the notion of evolving entangled hypergraphs as
models for the formal verification of quantum protocols and aims at the development
of a quantum version of the Spatial-Temporal logics in [19], since in the EEHs we will
be able to both define spatial locations of qubits (i.e., the vertices of each EH can be
interpreted as qubit positions) and the temporal behavior of the system. In this way, we
suppose that we could perform spatio-temporal model checking using EEHs as models,
in order to assess the emergent behaviour of quantum properties (e.g., entanglement)
and pattern formation related to the evolution of a quantum system. An important
improvement that should also be investigated is whether EEHs can be used to model
quantum systems of identical particles, by exploiting the spatial locations of qubits
instead of simply labeling them.

Further investigations should be done in different directions, in order to provide a
reliable classification of multipartite entanglement for systems with more than three
particles, to understand whether the evolution of a EH does map it into a single class
or into a set of classes and to assess if our proposal can be modelled as an abstract
intepretation.

7.2 Conclusion

In this thesis we aimed at the presentation of a high–level unification framework for
quantum programming and quantum model checking. The main motivation leading to-
wards this goal lies in the substantial lack of a formalism allowing this kind of integration
when dealing with quantum computation.

We have developed a framework allowing on the one hand the description of quantum
algorithms in an high–level programming language, and on the other hand their formal
verification through model checking. In order to achieve this goal we had to perform
a translation from the semantics of the programming language, to the semantics of the
model checking guarded command language.

The aforementioned framework, that we called Entangλe, allows to define –by using
a sublanguage of the quantum programming language Quipper, that we defined and
called Quip-E– and automatically verify –by using the quantum model checker QPMC–

https://github.com/SaverioFrancesco/quipks
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formal properties of quantum algorithms and protocols by abstracting away from low–
level features.

Quip-E ’s syntax and operational semantics have been formalised and defined, allow-
ing to provide a notion of Body of a tail–recursive quantum program, i.e., programs in
which the results of a measurement are used as guard conditions for recursive calls.

Entangλe has been implemented using Haskell, which allowed to re–use libraries
already developed for Quipper, and has been provided with a web based GUI, allowing
a more intuitive approach.

Different tests have been performed by using Entangλe. In particular, in this thesis
we presented two different versions of the Deutsch–Jozsa algorithm, and instances of the
Grover’s search, which allowed also to define a quantum switch program, recursive and
non–recursive versions of the teleportation and the BB84 quantum key distribution pro-
tocols. In the end, since one of the claim behind QPMC was that the tool allowed to ver-
ify only classical properties, we provided an example in which also a quantum property
was assessed, i.e., entanglement, with some custom post–processing. The translations
and the tests behaved as expected, validating in this way our expectations.

We worked on the enrichment and the optimisation of Entangλe, in order to match
the requirements of validating more complex algorithms and protocols. Some steps have
been moved in this direction, by implementing a more efficient version of the algorithms
computing the swap matrices. Indeed, the version that we proposed computes the matrix
elements of a given swap operator, allowing to automatically build the swap matrix
without composing binary swaps (i.e., an instance of permutation by transposition),
which is a method computationally less efficient than ours. Nevertheless, more tests
should be performed in order assess its correctness and to generalise it also to other
operators.

A preliminary version of Entangλe, which was limited to the translation of quantum
circuits has been presented in [5]; this one was later enriched in order to deal with
tail–recursive quantum programs. The updated version is freely available at https:

//github.com/miniBill.entangle.

The main perspective work on which we are already working aims at extending
Entangλe by providing a framework for debugging Quip-E programs, with the main
aim to replace the current model checker, i.e., QPMC, with a custom version, based on
PRISM. This framework, called Quipks, builds a DTMC representing all the possible
behaviours of an input quantum program. Quipks generates a labelled graph from the
tree–representation of the programs, where each node is a state (possibly in a super-
position of classical states) and each edge represents the application of a unitary gate
over a given set of qubits. The tool is already available to be tested, but is still under
development, hence errors may occur.

Another contribution that we presented in this thesis is relative to the notion of
entangled hypergraphs (EHs), a generalization of entangled graphs suitable to be applied
in the context of multipartite entanglement; in an EH each vertex vi represents a qubit,
and each hyperedge ei connecting a set of vertices represents multipartite entanglement.
We proposed an algorithmic framework, based on the generalised Schmidt decomposition
and entanglement measures such as concurrence and tangle, to build a classification
of tripartite entanglement of pure states using EHs. Moreover, by starting from the
equivalence classes modeled with EH, we can use an algebraic framework to write the

https://github.com/miniBill.entangle
https://github.com/miniBill.entangle
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pure state associated to each class. We have found that some EHs configurations are
forbidden, hence we cannot write a pure state describing them, e.g., the star shape
hypergraph without a 3-edge is the example we considered in this work.

The method proposed works as expected in the tripartite case; nevertheless it is not
general since some problems arise in this classification when deal with ≥ 4-partite cases.
Anyways, we argue that this method can be a good starting point for the investigation
of other multipartite classification techniques, since it has a finitary approach, which is
suitable for further modeling and verification tasks.

A proposal has been made in order to use the classification introduced as a starting
point to model quantum protocols as Evolving Entangled Hypergraph (EEH), a structure
inspired by both EH and hypergraph states, taking into account not only correlations
(entanglement) but also the evolutions of the qubits under consideration. We assume
that this approach can be used to model quantum protocols in which entanglement is
an important resource to be preserved, e.g., QKD protocols and teleportation.

We give the definition of a EEH as a causal multilayer hypergraph in which each layer
Li represents the EH at time ti and the hyperedges from a layer to the following one are
labeled with the CPTP (completely positive and trace preserving) linear map acting on
the states of EH. The EEH model allows us to track the interactions between qubits of a
multipartite system, and thus to verify if the entanglement properties are preserved by
the time evolution. Since we want to model real quantum systems, we assume that the
evolution may not be unitary, and that some coupling with the environment may cause
noise and decoherence, while entanglement is supposed to be preserved for the success
of the quantum protocol under consideration. Moreover, we can also use forbidden EHs
to identify whether the protocol is valid or not from a merely computational point of
view. In the last part we also provided two examples of possible uses of EEHs.

Finally, we concluded this Thesis by proposing two different directions for our re-
search, i.e. Quipks, a tool that extends Entangλe by offering a graphical, more efficient
representation of QMCs, with the final goal of building a new PRISM-based quantum
model checker, and to better formalize Evolving Entangled Hypergraphs in order to
apply them on quantum model checking as well.
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In the following we show the examples of translated quantum algorithms, together with
some results that have been omitted for space reason from the previous Chapters.

Exploiting our implementation of Entangλe the following code has been automati-
cally generated.

Deutsch–Jozsa Constant Oracle QMC

qmc

const matrix A1_T = kron(M0 , ID(8));

const matrix A1_F = kron(M1 , ID(8));

const matrix A2 = kron(PauliX , ID(8));

const matrix A3_T = kron(kron(ID(2), M0), ID(4));

const matrix A3_F = kron(kron(ID(2), M1), ID(4));

const matrix A4 = kron(kron(ID(2), PauliX), ID(4));

const matrix A5_T = kron(kron(ID(4), M0), ID(2));

const matrix A5_F = kron(kron(ID(4), M1), ID(2));

const matrix A6 = kron(kron(ID(4), PauliX), ID(2));

const matrix A7_T = kron(ID(8), M0);

const matrix A7_F = kron(ID(8), M1);

const matrix A8 = kron(ID(8), PauliX);

const matrix A9 = kron(ID(8), PauliX);

const matrix A10 = kron(Hadamard , ID(8));

const matrix A11 = kron(kron(ID(2), Hadamard), ID(4));

const matrix A12 = kron(kron(ID(4), Hadamard), ID(2));

const matrix A13 = kron(ID(8), Hadamard);

const matrix A14 = kron(Hadamard , ID(8));

const matrix A15 = kron(kron(ID(2), Hadamard), ID(4));

const matrix A16 = kron(kron(ID(4), Hadamard), ID(2));

const matrix A17_F = kron(M0, ID(8));

const matrix A17_T = kron(M1, ID(8));

const matrix A18_FF = kron(kron(ID(2), M0), ID(4));

const matrix A18_TF = kron(kron(ID(2), M1), ID(4));

const matrix A19_FFF = kron(kron(ID(4), M0), ID(2));

const matrix A19_TFF = kron(kron(ID(4), M1), ID(2));

const matrix A19_FTF = kron(kron(ID(4), M0), ID(2));

const matrix A19_TTF = kron(kron(ID(4), M1), ID(2));

const matrix A18_FT = kron(kron(ID(2), M0), ID(4));

const matrix A18_TT = kron(kron(ID(2), M1), ID(4));

const matrix A19_FFT = kron(kron(ID(4), M0), ID(2));

const matrix A19_TFT = kron(kron(ID(4), M1), ID(2));

const matrix A19_FTT = kron(kron(ID(4), M0), ID(2));

const matrix A19_TTT = kron(kron(ID(4), M1), ID(2));

module dJozsaConst

s: [0..19] init 0;

b0: bool init false;

b1: bool init false;

b2: bool init false;

[] (s = 0) -> <<A1_T >> : (s’ = 1) & (b0’ = true) + <<A1_F >> : (s’ = 1) & (b0’ = false);

[] (s = 1) & b0 -> (s’ = 2);
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[] (s = 1) & !b0 -> <<A2 >> : (s’ = 2);

[] (s = 2) -> <<A3_T >> : (s’ = 3) & (b0’ = true) + <<A3_F >> : (s’ = 3) & (b0’ = false);

[] (s = 3) & b0 -> (s’ = 4);

[] (s = 3) & !b0 -> <<A4 >> : (s’ = 4);

[] (s = 4) -> <<A5_T >> : (s’ = 5) & (b0’ = true) + <<A5_F >> : (s’ = 5) & (b0’ = false);

[] (s = 5) & b0 -> (s’ = 6);

[] (s = 5) & !b0 -> <<A6 >> : (s’ = 6);

[] (s = 6) -> <<A7_T >> : (s’ = 7) & (b0’ = true) + <<A7_F >> : (s’ = 7) & (b0’ = false);

[] (s = 7) & b0 -> (s’ = 8);

[] (s = 7) & !b0 -> <<A8 >> : (s’ = 8);

[] (s = 8) -> <<A9 >> : (s’ = 9);

[] (s = 9) -> <<A10 >> : (s’ = 10);

[] (s = 10) -> <<A11 >> : (s’ = 11);

[] (s = 11) -> <<A12 >> : (s’ = 12);

[] (s = 12) -> <<A13 >> : (s’ = 13);

[] (s = 13) -> <<A14 >> : (s’ = 14);

[] (s = 14) -> <<A15 >> : (s’ = 15);

[] (s = 15) -> <<A16 >> : (s’ = 16);

[] (s = 16) -> <<A17_F >> : (s’ = 17) & (b0 ’ = false) + <<A17_T >> : (s’ = 17) & (b0 ’ = true);

[] (s = 17) & b0 -> <<A18_FT >> : (s’ = 18) & (b1 ’ = false) + <<A18_TT >> : (s’ = 18) & (b1 ’ = true);

[] (s = 17) & !b0 -> <<A18_FF >> : (s’ = 18) & (b1’ = false) + <<A18_TF >> : (s’ = 18) & (b1’ = true);

[] (s = 18) & b0 & b1 -> <<A19_FTT >> : (s’ = 19) & (b2 ’ = false) + <<A19_TTT >> : (s’ = 19) & (b2 ’ = true);

[] (s = 18) & b0 & !b1 -> <<A19_FFT >> : (s’ = 19) & (b2 ’ = false) + <<A19_TFT >> : (s’ = 19) & (b2’ = true);

[] (s = 18) & !b0 & b1 -> <<A19_FTF >> : (s’ = 19) & (b2 ’ = false) + <<A19_TTF >> : (s’ = 19) & (b2’ = true);

[] (s = 18) & !b0 & !b1 -> <<A19_FFF >> : (s’ = 19) & (b2’ = false) + <<A19_TFF >> : (s’ = 19) & (b2’ = true);

[] (s = 19) & !b0 & !b1 & !b2 -> true;

[] (s = 19) & !b0 & !b1 & b2 -> true;

[] (s = 19) & !b0 & b1 & !b2 -> true;

[] (s = 19) & !b0 & b1 & b2 -> true;

[] (s = 19) & b0 & !b1 & !b2 -> true;

[] (s = 19) & b0 & !b1 & b2 -> true;

[] (s = 19) & b0 & b1 & !b2 -> true;

[] (s = 19) & b0 & b1 & b2 -> true;

endmodule

Deutsch–Jozsa Balanced Oracle QMC

qmc

const matrix A1_T = kron(M0 , ID(8));

const matrix A1_F = kron(M1 , ID(8));

const matrix A2 = kron(PauliX , ID(8));

const matrix A3_T = kron(kron(ID(2), M0), ID(4));

const matrix A3_F = kron(kron(ID(2), M1), ID(4));

const matrix A4 = kron(kron(ID(2), PauliX), ID(4));

const matrix A5_T = kron(kron(ID(4), M0), ID(2));

const matrix A5_F = kron(kron(ID(4), M1), ID(2));

const matrix A6 = kron(kron(ID(4), PauliX), ID(2));

const matrix A7_T = kron(ID(8), M0);

const matrix A7_F = kron(ID(8), M1);

const matrix A8 = kron(ID(8), PauliX);

const matrix A9 = kron(ID(8), PauliX);

const matrix A10 = kron(Hadamard , ID(8));

const matrix A11 = kron(kron(ID(2), Hadamard), ID(4));

const matrix A12 = kron(kron(ID(4), Hadamard), ID(2));

const matrix A13 = kron(ID(8), Hadamard);

const matrix A14 = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0,

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 1, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0; 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 1, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 1; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0];

const matrix A15 = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0,

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 1, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,

0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0; 0, 0,

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 1, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,

0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0];

const matrix A16 = kron(ID(4), [1, 0, 0, 0; 0, 1, 0, 0; 0, 0, 0, 1; 0, 0, 1, 0]);

const matrix A17 = kron(Hadamard , ID(8));

const matrix A18 = kron(kron(ID(2), Hadamard), ID(4));

const matrix A19 = kron(kron(ID(4), Hadamard), ID(2));

const matrix A20_F = kron(kron(ID(4), M0), ID(2));

const matrix A20_T = kron(kron(ID(4), M1), ID(2));

const matrix A21_FF = kron(kron(ID(2), M0), ID(4));

const matrix A21_TF = kron(kron(ID(2), M1), ID(4));

const matrix A22_FFF = kron(M0, ID(8));

const matrix A22_TFF = kron(M1, ID(8));

const matrix A22_FTF = kron(M0, ID(8));

const matrix A22_TTF = kron(M1, ID(8));

const matrix A21_FT = kron(kron(ID(2), M0), ID(4));

const matrix A21_TT = kron(kron(ID(2), M1), ID(4));

const matrix A22_FFT = kron(M0, ID(8));

const matrix A22_TFT = kron(M1, ID(8));

const matrix A22_FTT = kron(M0, ID(8));
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const matrix A22_TTT = kron(M1, ID(8));

module dJozsaBal

s: [0..22] init 0;

b0: bool init false;

b1: bool init false;

b2: bool init false;

[] (s = 0) -> <<A1_T >> : (s’ = 1) & (b0’ = true) + <<A1_F >> : (s’ = 1) & (b0’ = false);

[] (s = 1) & b0 -> (s’ = 2);

[] (s = 1) & !b0 -> <<A2 >> : (s’ = 2);

[] (s = 2) -> <<A3_T >> : (s’ = 3) & (b0’ = true) + <<A3_F >> : (s’ = 3) & (b0’ = false);

[] (s = 3) & b0 -> (s’ = 4);

[] (s = 3) & !b0 -> <<A4 >> : (s’ = 4);

[] (s = 4) -> <<A5_T >> : (s’ = 5) & (b0’ = true) + <<A5_F >> : (s’ = 5) & (b0’ = false);

[] (s = 5) & b0 -> (s’ = 6);

[] (s = 5) & !b0 -> <<A6 >> : (s’ = 6);

[] (s = 6) -> <<A7_T >> : (s’ = 7) & (b0’ = true) + <<A7_F >> : (s’ = 7) & (b0’ = false);

[] (s = 7) & b0 -> (s’ = 8);

[] (s = 7) & !b0 -> <<A8 >> : (s’ = 8);

[] (s = 8) -> <<A9 >> : (s’ = 9);

[] (s = 9) -> <<A10 >> : (s’ = 10);

[] (s = 10) -> <<A11 >> : (s’ = 11);

[] (s = 11) -> <<A12 >> : (s’ = 12);

[] (s = 12) -> <<A13 >> : (s’ = 13);

[] (s = 13) -> <<A14 >> : (s’ = 14);

[] (s = 14) -> <<A15 >> : (s’ = 15);

[] (s = 15) -> <<A16 >> : (s’ = 16);

[] (s = 16) -> <<A17 >> : (s’ = 17);

[] (s = 17) -> <<A18 >> : (s’ = 18);

[] (s = 18) -> <<A19 >> : (s’ = 19);

[] (s = 19) -> <<A20_F >> : (s’ = 20) & (b0 ’ = false) + <<A20_T >> : (s’ = 20) & (b0 ’ = true);

[] (s = 20) & b0 -> <<A21_FT >> : (s’ = 21) & (b1 ’ = false) + <<A21_TT >> : (s’ = 21) & (b1 ’ = true);

[] (s = 20) & !b0 -> <<A21_FF >> : (s’ = 21) & (b1’ = false) + <<A21_TF >> : (s’ = 21) & (b1’ = true);

[] (s = 21) & b0 & b1 -> <<A22_FTT >> : (s’ = 22) & (b2 ’ = false) + <<A22_TTT >> : (s’ = 22) & (b2’ = true);

[] (s = 21) & b0 & !b1 -> <<A22_FFT >> : (s’ = 22) & (b2’ = false) + <<A22_TFT >> : (s’ = 22) & (b2’ = true);

[] (s = 21) & !b0 & b1 -> <<A22_FTF >> : (s’ = 22) & (b2’ = false) + <<A22_TTF >> : (s’ = 22) & (b2’ = true);

[] (s = 21) & !b0 & !b1 -> <<A22_FFF >> : (s’ = 22) & (b2’ = false) + <<A22_TFF >> : (s’ = 22) & (b2’ = true);

[] (s = 22) & !b0 & !b1 & !b2 -> true;

[] (s = 22) & !b0 & !b1 & b2 -> true;

[] (s = 22) & !b0 & b1 & !b2 -> true;

[] (s = 22) & !b0 & b1 & b2 -> true;

[] (s = 22) & b0 & !b1 & !b2 -> true;

[] (s = 22) & b0 & !b1 & b2 -> true;

[] (s = 22) & b0 & b1 & !b2 -> true;

[] (s = 22) & b0 & b1 & b2 -> true;

endmodule

Recursive BB84 QMC

qmc

const matrix A1_T = kron(M0 , ID(8));

const matrix A1_F = kron(M1 , ID(8));

const matrix A2 = kron(PauliX , ID(8));

const matrix A3_T = kron(kron(ID(2), M0), ID(4));

const matrix A3_F = kron(kron(ID(2), M1), ID(4));

const matrix A4 = kron(kron(ID(2), PauliX), ID(4));

const matrix A5_T = kron(kron(ID(4), M0), ID(2));

const matrix A5_F = kron(kron(ID(4), M1), ID(2));

const matrix A6 = kron(kron(ID(4), PauliX), ID(2));

const matrix A7 = kron(Hadamard , ID(8));

const matrix A8 = kron(kron(ID(2), Hadamard), ID(4));

const matrix A9 = kron(kron(ID(4), Hadamard), ID(2));

const matrix A10_F = kron(M0, ID(8));

const matrix A10_T = kron(M1, ID(8));

const matrix A11_FF = kron(kron(ID(2), M0), ID(4));

const matrix A11_TF = kron(kron(ID(2), M1), ID(4));

const matrix A12_FFF = kron(kron(ID(4), M0), ID(2));

const matrix A12_TFF = kron(kron(ID(4), M1), ID(2));

const matrix A13_TFFF = kron(ID(8), M0);

const matrix A13_FFFF = kron(ID(8), M1);

const matrix A14_FFF = kron(ID(8), PauliX);

const matrix A15_FFF = kron(ID(8), PauliX);

const matrix A16_FFFF = kron(ID(8), M0);

const matrix A16_TFFF = kron(ID(8), M1);

const matrix A13_TTFF = kron(ID(8), M0);

const matrix A13_FTFF = kron(ID(8), M1);

const matrix A14_TFF = kron(ID(8), PauliX);

const matrix A15_TFF = kron(ID(8), PauliX);

const matrix A16_FTFF = kron(ID(8), M0);

const matrix A16_TTFF = kron(ID(8), M1);

const matrix A12_FTF = kron(kron(ID(4), M0), ID(2));

const matrix A12_TTF = kron(kron(ID(4), M1), ID(2));

const matrix A13_TFTF = kron(ID(8), M0);

const matrix A13_FFTF = kron(ID(8), M1);

const matrix A14_FTF = kron(ID(8), PauliX);
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const matrix A15_FTF = kron(ID(8), PauliX);

const matrix A16_FTF = kron(ID(8), Hadamard);

const matrix A17_FFTF = kron(ID(8), M0);

const matrix A17_TFTF = kron(ID(8), M1);

const matrix A13_TTTF = kron(ID(8), M0);

const matrix A13_FTTF = kron(ID(8), M1);

const matrix A14_TTF = kron(ID(8), PauliX);

const matrix A15_TTF = kron(ID(8), PauliX);

const matrix A16_TTF = kron(ID(8), Hadamard);

const matrix A17_FTTF = kron(ID(8), M0);

const matrix A17_TTTF = kron(ID(8), M1);

const matrix A11_FT = kron(kron(ID(2), M0), ID(4));

const matrix A11_TT = kron(kron(ID(2), M1), ID(4));

const matrix A12_FFT = kron(kron(ID(4), M0), ID(2));

const matrix A12_TFT = kron(kron(ID(4), M1), ID(2));

const matrix A13_TFFT = kron(ID(8), M0);

const matrix A13_FFFT = kron(ID(8), M1);

const matrix A14_FFT = kron(ID(8), PauliX);

const matrix A15_FFT = kron(ID(8), PauliX);

const matrix A16_FFFT = kron(ID(8), M0);

const matrix A16_TFFT = kron(ID(8), M1);

const matrix A13_TTFT = kron(ID(8), M0);

const matrix A13_FTFT = kron(ID(8), M1);

const matrix A14_TFT = kron(ID(8), PauliX);

const matrix A15_TFT = kron(ID(8), PauliX);

const matrix A16_FTFT = kron(ID(8), M0);

const matrix A16_TTFT = kron(ID(8), M1);

const matrix A12_FTT = kron(kron(ID(4), M0), ID(2));

const matrix A12_TTT = kron(kron(ID(4), M1), ID(2));

const matrix A13_TFTT = kron(ID(8), M0);

const matrix A13_FFTT = kron(ID(8), M1);

const matrix A14_FTT = kron(ID(8), PauliX);

const matrix A15_FTT = kron(ID(8), PauliX);

const matrix A16_FTT = kron(ID(8), Hadamard);

const matrix A17_FFTT = kron(ID(8), M0);

const matrix A17_TFTT = kron(ID(8), M1);

const matrix A13_TTTT = kron(ID(8), M0);

const matrix A13_FTTT = kron(ID(8), M1);

const matrix A14_TTT = kron(ID(8), PauliX);

const matrix A15_TTT = kron(ID(8), PauliX);

const matrix A16_TTT = kron(ID(8), Hadamard);

const matrix A17_FTTT = kron(ID(8), M0);

const matrix A17_TTTT = kron(ID(8), M1);

module bb84RecCirc

s: [0..17] init 0;

b0: bool init false;

b1: bool init false;

b2: bool init false;

b3: bool init false;

[] (s = 0) -> <<A1_T >> : (s’ = 1) & (b0’ = true) + <<A1_F >> : (s’ = 1) & (b0’ = false);

[] (s = 1) & b0 -> (s’ = 2);

[] (s = 1) & !b0 -> <<A2 >> : (s’ = 2);

[] (s = 2) -> <<A3_T >> : (s’ = 3) & (b0’ = true) + <<A3_F >> : (s’ = 3) & (b0’ = false);

[] (s = 3) & b0 -> (s’ = 4);

[] (s = 3) & !b0 -> <<A4 >> : (s’ = 4);

[] (s = 4) -> <<A5_T >> : (s’ = 5) & (b0’ = true) + <<A5_F >> : (s’ = 5) & (b0’ = false);

[] (s = 5) & b0 -> (s’ = 6);

[] (s = 5) & !b0 -> <<A6 >> : (s’ = 6);

[] (s = 6) -> <<A7 >> : (s’ = 7);

[] (s = 7) -> <<A8 >> : (s’ = 8);

[] (s = 8) -> <<A9 >> : (s’ = 9);

[] (s = 9) -> <<A10_F >> : (s’ = 10) & (b0 ’ = false) + <<A10_T >> : (s’ = 10) & (b0’ = true);

[] (s = 10) & b0 -> <<A11_FT >> : (s’ = 11) & (b1 ’ = false) + <<A11_TT >> : (s’ = 11) & (b1 ’ = true);

[] (s = 10) & !b0 -> <<A11_FF >> : (s’ = 11) & (b1’ = false) + <<A11_TF >> : (s’ = 11) & (b1’ = true);

[] (s = 11) & b0 & b1 -> <<A12_FTT >> : (s’ = 12) & (b2 ’ = false) + <<A12_TTT >> : (s’ = 12) & (b2 ’ = true);

[] (s = 11) & b0 & !b1 -> <<A12_FFT >> : (s’ = 12) & (b2 ’ = false) + <<A12_TFT >> : (s’ = 12) & (b2’ = true);

[] (s = 11) & !b0 & b1 -> <<A12_FTF >> : (s’ = 12) & (b2 ’ = false) + <<A12_TTF >> : (s’ = 12) & (b2’ = true);

[] (s = 11) & !b0 & !b1 -> <<A12_FFF >> : (s’ = 12) & (b2’ = false) + <<A12_TFF >> : (s’ = 12) & (b2’ = true);

[] (s = 12) & b0 & b1 & b2 -> <<A13_TTTT >> : (s’ = 13) & (b3’ = true) + <<A13_FTTT >> : (s’ = 13) & (b3 ’ = false);

[] (s = 12) & b0 & b1 & !b2 -> <<A13_TFTT >> : (s’ = 13) & (b3 ’ = true) + <<A13_FFTT >> : (s’ = 13) & (b3’ = false);

[] (s = 12) & b0 & !b1 & b2 -> <<A13_TTFT >> : (s’ = 13) & (b3 ’ = true) + <<A13_FTFT >> : (s’ = 13) & (b3’ = false);

[] (s = 12) & b0 & !b1 & !b2 -> <<A13_TFFT >> : (s’ = 13) & (b3’ = true) + <<A13_FFFT >> : (s’ = 13) & (b3’ = false);

[] (s = 12) & !b0 & b1 & b2 -> <<A13_TTTF >> : (s’ = 13) & (b3 ’ = true) + <<A13_FTTF >> : (s’ = 13) & (b3’ = false);

[] (s = 12) & !b0 & b1 & !b2 -> <<A13_TFTF >> : (s’ = 13) & (b3’ = true) + <<A13_FFTF >> : (s’ = 13) & (b3’ = false);

[] (s = 12) & !b0 & !b1 & b2 -> <<A13_TTFF >> : (s’ = 13) & (b3’ = true) + <<A13_FTFF >> : (s’ = 13) & (b3’ = false);

[] (s = 12) & !b0 & !b1 & !b2 -> <<A13_TFFF >> : (s’ = 13) & (b3’ = true) + <<A13_FFFF >> : (s’ = 13) & (b3’ = false);

[] (s = 13) & b0 & b1 & b2 & b3 -> (s’ = 14);

[] (s = 13) & b0 & b1 & b2 & !b3 -> <<A14_TTT >> : (s’ = 14);

[] (s = 13) & b0 & b1 & !b2 & b3 -> (s’ = 14);

[] (s = 13) & b0 & b1 & !b2 & !b3 -> <<A14_FTT >> : (s’ = 14);

[] (s = 13) & b0 & !b1 & b2 & b3 -> (s’ = 14);

[] (s = 13) & b0 & !b1 & b2 & !b3 -> <<A14_TFT >> : (s’ = 14);

[] (s = 13) & b0 & !b1 & !b2 & b3 -> (s’ = 14);

[] (s = 13) & b0 & !b1 & !b2 & !b3 -> <<A14_FFT >> : (s’ = 14);

[] (s = 13) & !b0 & b1 & b2 & b3 -> (s’ = 14);

[] (s = 13) & !b0 & b1 & b2 & !b3 -> <<A14_TTF >> : (s’ = 14);

[] (s = 13) & !b0 & b1 & !b2 & b3 -> (s’ = 14);

[] (s = 13) & !b0 & b1 & !b2 & !b3 -> <<A14_FTF >> : (s’ = 14);

[] (s = 13) & !b0 & !b1 & b2 & b3 -> (s’ = 14);

[] (s = 13) & !b0 & !b1 & b2 & !b3 -> <<A14_TFF >> : (s’ = 14);
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[] (s = 13) & !b0 & !b1 & !b2 & b3 -> (s’ = 14);

[] (s = 13) & !b0 & !b1 & !b2 & !b3 -> <<A14_FFF >> : (s’ = 14);

[] (s = 14) & b0 & b1 & b2 -> <<A15_TTT >> : (s’ = 15);

[] (s = 14) & b0 & b1 & !b2 -> <<A15_FTT >> : (s’ = 15);

[] (s = 14) & b0 & !b1 & b2 -> <<A15_TFT >> : (s’ = 15);

[] (s = 14) & b0 & !b1 & !b2 -> <<A15_FFT >> : (s’ = 15);

[] (s = 14) & !b0 & b1 & b2 -> <<A15_TTF >> : (s’ = 15);

[] (s = 14) & !b0 & b1 & !b2 -> <<A15_FTF >> : (s’ = 15);

[] (s = 14) & !b0 & !b1 & b2 -> <<A15_TFF >> : (s’ = 15);

[] (s = 14) & !b0 & !b1 & !b2 -> <<A15_FFF >> : (s’ = 15);

[] (s = 15) & b0 & b1 & b2 -> <<A16_TTT >> : (s’ = 16);

[] (s = 15) & b0 & b1 & !b2 -> <<A16_FTT >> : (s’ = 16);

[] (s = 15) & b0 & !b1 & b2 -> <<A16_FTFT >> : (s’ = 16) & (b3 ’ = false) + <<A16_TTFT >> : (s’ = 16) & (b3’ = true);

[] (s = 15) & b0 & !b1 & !b2 -> <<A16_FFFT >> : (s’ = 16) & (b3’ = false) + <<A16_TFFT >> : (s’ = 16) & (b3’ = true);

[] (s = 15) & !b0 & b1 & b2 -> <<A16_TTF >> : (s’ = 16);

[] (s = 15) & !b0 & b1 & !b2 -> <<A16_FTF >> : (s’ = 16);

[] (s = 15) & !b0 & !b1 & b2 -> <<A16_FTFF >> : (s’ = 16) & (b3’ = false) + <<A16_TTFF >> : (s’ = 16) & (b3’ = true);

[] (s = 15) & !b0 & !b1 & !b2 -> <<A16_FFFF >> : (s’ = 16) & (b3’ = false) + <<A16_TFFF >> : (s’ = 16) & (b3 ’ = true);

[] (s = 16) & b0 & b1 & b2 -> <<A17_FTTT >> : (s’ = 17) & (b3 ’ = false) + <<A17_TTTT >> : (s’ = 17) & (b3’ = true);

[] (s = 16) & b0 & b1 & !b2 -> <<A17_FFTT >> : (s’ = 17) & (b3 ’ = false) + <<A17_TFTT >> : (s’ = 17) & (b3’ = true);

[] (s = 16) & b0 & !b1 & b2 & b3 -> (s’ = 0);

[] (s = 16) & b0 & !b1 & b2 & !b3 -> (s’ = 0);

[] (s = 16) & b0 & !b1 & !b2 & !b3 -> (s’ = 0);

[] (s = 16) & !b0 & b1 & b2 -> <<A17_FTTF >> : (s’ = 17) & (b3 ’ = false) + <<A17_TTTF >> : (s’ = 17) & (b3’ = true);

[] (s = 16) & !b0 & b1 & !b2 -> <<A17_FFTF >> : (s’ = 17) & (b3’ = false) + <<A17_TFTF >> : (s’ = 17) & (b3’ = true);

[] (s = 16) & !b0 & !b1 & b2 & b3 -> (s’ = 0);

[] (s = 16) & !b0 & !b1 & b2 & !b3 -> (s’ = 0);

[] (s = 16) & !b0 & !b1 & !b2 & b3 -> (s’ = 0);

[] (s = 17) & b0 & b1 & b2 & !b3 -> (s’ = 0);

[] (s = 17) & b0 & b1 & !b2 & b3 -> (s’ = 0);

[] (s = 17) & b0 & b1 & !b2 & !b3 -> (s’ = 0);

[] (s = 17) & !b0 & b1 & b2 & b3 -> (s’ = 0);

[] (s = 17) & !b0 & b1 & !b2 & b3 -> (s’ = 0);

[] (s = 17) & !b0 & b1 & !b2 & !b3 -> (s’ = 0);

[] (s = 16) & !b0 & !b1 & !b2 & !b3 -> true;

[] (s = 17) & !b0 & b1 & b2 & !b3 -> true;

[] (s = 16) & b0 & !b1 & !b2 & b3 -> true;

[] (s = 17) & b0 & b1 & b2 & b3 -> true;

endmodule

Deutsch–Jozsa Density Matrices

r=[0;1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0]

Constant
qeval(Q=? [F (s = 19 & !b0 & !b1 & !b2)], r)=

.5 .5 0 0 0 0 0 0 0 0 0 0 0 0 0 0

.5 .5 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

qeval(Q=? [F (s = 19 & b0 & b1 & !b2)], r)=

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Balanced
qeval(Q=? [F (s = 22 & !b0 & !b1 & !b2)], r)=
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 .5 .5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 .5 .5

qeval(Q=? [F (s = 22 & b0 & b1 & !b2)], r)=

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Grover’s Density Matrices

r=[0;1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0]

qeval(Q=? [F (s = 48 & !b0 & !b1 & !b2)], r)=

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 .125 0 0 0 .125 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 .125 0 0 0 .125 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

qeval(Q=? [F (s = 48 & b0 & !b1 & b2)], r)=

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 .125 0 0 0 .125 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 .125 0 0 0 .125 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

qeval(Q=? [F (s = 48 & b0 & b1 & b2)], r)=

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 .125 0 0 0 .125 0 0 0 0 0 0 0 .25

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 .125 0 0 0 .125 0 0 0 0 0 0 0 .25

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 .25 0 0 0 .25 0 0 0 0 0 0 0 .5

Quantum Switch

module switchCirc

s: [0..39] init 0;

b0: bool init false;

b1: bool init false;

b2: bool init false;

b3: bool init false;

[] (s = 0) -> <<A1 >> : (s’ = 1);

[] (s = 1) -> <<A2 >> : (s’ = 2);

[] (s = 2) -> <<A3 >> : (s’ = 3);

[] (s = 3) -> <<A4 >> : (s’ = 4);

[] (s = 4) -> <<A5 >> : (s’ = 5);

[] (s = 5) -> <<A6 >> : (s’ = 6);

[] (s = 6) -> <<A7 >> : (s’ = 7);

[] (s = 7) -> <<A8 >> : (s’ = 8);

[] (s = 8) -> <<A9 >> : (s’ = 9);

[] (s = 9) -> <<A10 >> : (s’ = 10);

[] (s = 10) -> <<A11 >> : (s’ = 11);

[] (s = 11) -> <<A12 >> : (s’ = 12);

[] (s = 12) -> <<A13 >> : (s’ = 13);

[] (s = 13) -> <<A14 >> : (s’ = 14);

[] (s = 14) -> <<A15 >> : (s’ = 15);

[] (s = 15) -> <<A16 >> : (s’ = 16);

[] (s = 16) -> <<A17 >> : (s’ = 17);

[] (s = 17) -> <<A18 >> : (s’ = 18);

[] (s = 18) -> <<A19 >> : (s’ = 19);

[] (s = 19) -> <<A20 >> : (s’ = 20);

[] (s = 20) -> <<A21 >> : (s’ = 21);

[] (s = 21) -> <<A22 >> : (s’ = 22);

[] (s = 22) -> <<A23 >> : (s’ = 23);

[] (s = 23) -> <<A24 >> : (s’ = 24);

[] (s = 24) -> <<A25 >> : (s’ = 25);

[] (s = 25) -> <<A26 >> : (s’ = 26);

[] (s = 26) -> <<A27 >> : (s’ = 27);

[] (s = 27) -> <<A28 >> : (s’ = 28);

[] (s = 28) -> <<A29 >> : (s’ = 29);

[] (s = 29) -> <<A30 >> : (s’ = 30);

[] (s = 30) -> <<A31 >> : (s’ = 31);

[] (s = 31) -> <<A32 >> : (s’ = 32);

[] (s = 32) -> <<A33 >> : (s’ = 33);

[] (s = 33) -> <<A34 >> : (s’ = 34);

[] (s = 34) -> <<A35 >> : (s’ = 35);

[] (s = 35) -> <<A36_F >> : (s’ = 36) & (b0 ’ = false) + <<A36_T >> : (s’ = 36) & (b0 ’ = true);

[] (s = 36) & b0 -> <<A37_FT >> : (s’ = 37) & (b1 ’ = false) + <<A37_TT >> : (s’ = 37) & (b1 ’ = true);

[] (s = 36) & !b0 -> <<A37_FF >> : (s’ = 37) & (b1’ = false) + <<A37_TF >> : (s’ = 37) & (b1’ = true);

[] (s = 37) & b0 & b1 -> <<A38_FTT >> : (s’ = 38) & (b2 ’ = false) + <<A38_TTT >> : (s’ = 38) & (b2’ = true);

[] (s = 37) & b0 & !b1 -> <<A38_FFT >> : (s’ = 38) & (b2’ = false) + <<A38_TFT >> : (s’ = 38) & (b2’ = true);

[] (s = 37) & !b0 & b1 -> <<A38_FTF >> : (s’ = 38) & (b2’ = false) + <<A38_TTF >> : (s’ = 38) & (b2’ = true);

[] (s = 37) & !b0 & !b1 -> <<A38_FFF >> : (s’ = 38) & (b2’ = false) + <<A38_TFF >> : (s’ = 38) & (b2’ = true);

[] (s = 38) & b0 & b1 & b2 -> <<A39_FTTT >> : (s’ = 39) & (b3 ’ = false) + <<A39_TTTT >> : (s’ = 39) & (b3’ = true);

[] (s = 38) & b0 & b1 & !b2 -> <<A39_FFTT >> : (s’ = 39) & (b3 ’ = false) + <<A39_TFTT >> : (s’ = 39) & (b3’ = true);

[] (s = 38) & b0 & !b1 & b2 -> <<A39_FTFT >> : (s’ = 39) & (b3 ’ = false) + <<A39_TTFT >> : (s’ = 39) & (b3’ = true);

[] (s = 38) & b0 & !b1 & !b2 -> <<A39_FFFT >> : (s’ = 39) & (b3’ = false) + <<A39_TFFT >> : (s’ = 39) & (b3’ = true);

[] (s = 38) & !b0 & b1 & b2 -> <<A39_FTTF >> : (s’ = 39) & (b3 ’ = false) + <<A39_TTTF >> : (s’ = 39) & (b3’ = true);

[] (s = 38) & !b0 & b1 & !b2 -> <<A39_FFTF >> : (s’ = 39) & (b3’ = false) + <<A39_TFTF >> : (s’ = 39) & (b3’ = true);

[] (s = 38) & !b0 & !b1 & b2 -> <<A39_FTFF >> : (s’ = 39) & (b3’ = false) + <<A39_TTFF >> : (s’ = 39) & (b3’ = true);

[] (s = 38) & !b0 & !b1 & !b2 -> <<A39_FFFF >> : (s’ = 39) & (b3’ = false) + <<A39_TFFF >> : (s’ = 39) & (b3 ’ = true);

[] (s = 39) & !b0 & !b1 & !b2 & !b3 -> true;

[] (s = 39) & !b0 & !b1 & !b2 & b3 -> true;

[] (s = 39) & !b0 & !b1 & b2 & !b3 -> true;

[] (s = 39) & !b0 & !b1 & b2 & b3 -> true;

[] (s = 39) & !b0 & b1 & !b2 & !b3 -> true;

[] (s = 39) & !b0 & b1 & !b2 & b3 -> true;

[] (s = 39) & !b0 & b1 & b2 & !b3 -> true;

[] (s = 39) & !b0 & b1 & b2 & b3 -> true;

[] (s = 39) & b0 & !b1 & !b2 & !b3 -> true;

[] (s = 39) & b0 & !b1 & !b2 & b3 -> true;

[] (s = 39) & b0 & !b1 & b2 & !b3 -> true;

[] (s = 39) & b0 & !b1 & b2 & b3 -> true;

[] (s = 39) & b0 & b1 & !b2 & !b3 -> true;

[] (s = 39) & b0 & b1 & !b2 & b3 -> true;

[] (s = 39) & b0 & b1 & b2 & !b3 -> true;

[] (s = 39) & b0 & b1 & b2 & b3 -> true;

endmodule
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