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Abstract. Although a number of studies report about novices’ diffi-
culties with basic flow-control constructs, concerning both the under-
standing of the underlying notional machine and the logical connections
with the application domain, this issues have not yet been extensively
explored in the context of high-school education. As part of a project
whose long-run goal is identifying methodological tools to improve the
learning of iteration, we analyzed how a sample of 164 high-school stu-
dents’ approached three small programming tasks involving basic looping
constructs, as well as two questions on their subjective perception of dif-
ficulty. If, on the one hand, most students seem to have developed a
viable mental model of the basic workings of the underlying machine,
on the other, dealing at a more abstract level with loop conditions and
nested flow-control structures appears to be challenging. As to the impli-
cations for teachers, the results of the analysis suggest that more efforts
should be addressed to develop a method for testing the conjectures
about program behavior, as well as to the treatment of loop conditions
in connection with the problem statement.

Keywords: Informatics education · Programming learning · High school ·
Iteration constructs · Novice programmers

1 Introduction

Students’ difficulties to learn programming are well known to computer science
educators, e.g. [6,25,19]. The reasons may be manifold, ranging from lack of
problem solving skills to the need for accuracy and intensive practice. Program-
ming is indeed problem-solving intensive: according to Gomes and Mendes [10]
it requires “not a single, but a set of skills”, and students may fail to develop a
viable model of the underlying notional machine [27] or to be able to connect
code execution with its functional purpose [16]. Part of the difficulties may also
be related to the habits and expectations of both teachers and learners [13,24].

Significant problems and misconceptions are reported even for such basic
flow-control constructs as conditionals and loops. Kaczmarczyk et al. [14], for
instance, identified “a number of misconceptions all related to an inability to
properly understand the process of while loop functioning”, and Cherenkova
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et al. [4] found that “students have significant trouble with conditionals and
loops, with loops being particularly challenging”. Although most related studies
focus on tertiary CS1 courses, it is conceivable to expect that similar issues are
especially significant at the high-school (i.e. upper secondary) level of instruction.

On this basis, we engaged on a project to investigate the teaching and learn-
ing of iteration, in the high school, as well as to identify methodological tools to
improve code comprehension. The first steps of this project, discussed in [26], ex-
plored and contrasted teachers’ vs. students’ perceptions of the major difficulties
related to programming, in general, and more specifically to iteration.

Now, the objective of the present analysis is to gain some preliminary in-
sights into high-school students’ mastery of basic iteration constructs. Here by
mastery we mean conceptual mastery of code structures, focusing on program
comprehension rather than construction [12]. We used as instrument a survey
including three tiny problems, referred to as tasklets here, to address each of the
learning dimensions introduced in [22], namely the understanding of the compu-
tation model underlying iteration, the ability to establish relations between the
components of a loop and the statement of a problem, the ability to interpret the
program structures based on iteration. In addition, in light of the presumed role
of metacognitive skills in effective learning [3], we asked students two questions
about their subjective perceptions of difficulty.

We can re-state the goals of our exploratory investigation as research ques-
tions as follows: To what extent are students proficient with the programming
learning dimensions mentioned above? And do their subjective perceptions of
difficulty correlate with their actual performance? Although it would have been
more insightful to cover a larger and more varied set of programming tasks, we
decided to assign only three small tasklets in order to limit the risk that teenage
students lose their concentration and provide scarcely meaningful answers.

Having set the general objectives and background of this work, the rest of the
paper is organized as follows. Section 2 presents the tasklets and the questions
asked to students. Section 3 summarizes the results of the analysis. Finally, in
Section 4 we discuss the findings and outline some future perspectives.

2 Tasklets and questions

2.1 Tasklet 1: identifying the correct loop condition

Tasklet 1 was aimed to explore the ability to draw connections between a simple
loop condition and the statement of a problem by reasoning on a flow chart.

Problem statement: The algorithm represented by the flow chart in Figure 1
(left) computes the number of bits of the binary representation of a positive
integer n, i.e. the smallest exponent k such that 2k is greater than n. Choose the
appropriate condition among the four listed below.

The four available options were: 2k = n, 2k ≤ n, 2k < n and 2k > n.
To achieve this — supposedly easy — task, students were expected to read
carefully the statement above and, for each of the listed conditions, figure out
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Fig. 1: Flow chart of tasklet 1 and code of tasklet 2.

the relationship between k and n after exiting the loop. The specific focus of this
tasklet is suggested by the frequency of condition-related issues, see e.g. [4].

2.2 Tasklet 2: ascertaining the number of iterations

Tasklet 2 addressed students’ mastery of the “mechanics” of the execution of a
loop controlled by a non-trivial condition and including a nested if.

Problem statement: The program shown in Figure 1 (right) checks if two
positive integer m and n are co-prime. If the input values are m=15 and n=44,
how many times the while loop will repeat?

The above question could be answered by choosing among six options, namely:
0, 1, 2, 3, 4 or more, and the loop never ends. As we can see in
Figure 1, the loop is characterized by a composite condition (using two ands)
and a nested if-else. In order to identify the right option students were essen-
tially required to trace the code execution carefully. Thus, this tasklet addresses
tracing skills, which have been in the scope of several investigations, e.g. [18].

2.3 Tasklet 3: recognizing functionally equivalent programs

Tasklet 3, the most challenging one, asked to recognize equivalence between
different programs in order to investigate the ability to grasp comprehensively
nested combinations of conditionals and iteration constructs.

Problem statement: Consider the five programs in Figure 2 and assume that
the input values of m and n are always positive integers. Two such programs are
equivalent if they compute and print the same output whenever they are run for
the same input data. Identify the equivalent programs in Figure 2.

To approach this problem on functional equivalence, students had to reason
at a more abstract level. Each program involves nested constructs whose behavior
must be grasped and dealt with comprehensively. The last tasklet is similar in
structure as well as in spirit to that discussed in [11].
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Fig. 2: The five programs to be compared in tasklet 3.

2.4 Subjective perception questions

Besides engaging in the three tasklets above, the students were asked two short
questions about their subjective perception of difficulties. The first one was a
multiple choice question: “What do you find most difficult when you use loops?”
The five available options reported the difficulties that emerged as most signifi-
cant from the teachers’ interviews [26]:

i. To find the condition of a while or do-while loop;
ii. To define a complex condition including logical operators (AND, OR, NOT);

iii. To deal with nested loops;
iv. To understand, in general, when the loop should end;
v. To deal with the loop control variable.

The second question: “What kind of mistakes affected your performance most
significantly?” was instead open, so the students could choose to indicate any
source of error, either conceptual or of a different nature.

3 Data collection and results

The (anonymous) survey was administered to 164 students, most of whom at-
tending the second or third year (age 15–17) of scientific and technical high
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Table 1: Rates of chosen options for tasklet 1.

Condition Percentage

2k = n 3.7%

2k ≤ n 38.4% correct option

2k < n 20.1%

2k > n 37.8%

schools, i.e. when the basic flow-control constructs are introduced. As we have
seen in the section 2, all three tasklets are numerical in nature, but this choice
is due to the fact that so are most of the examples students are exposed to in
class. Anyway, they are just based on simple arithmetic, familiar to students.

We now present the main results of our investigation relative to the three
tasklets and the two questions included in the survey. Overall, only about 8% of
the students solved all the three problems correctly, 27% provided two correct
answers, 39% one correct answer, and 26% were wrong on all tasklets.

3.1 Tasklet 1: identifying the correct loop condition

Table 1 summarizes the results concerning tasklet 1. A little less than 40% of
the students provided the correct answer, namely 2k ≤ n, whereas about as
many selected one of the two seriously wrong options, either 2k = n or 2k > n.
Although the flow chart is rather simple, consisting of a very standard loop
structure, and the problem specification is accurate, it turns out that students
can easily be misled about the role or the interpretation of the loop condition.

3.2 Tasklet 2: ascertaining the number of iterations

As shown in Table 2, about 60% of the students chose the right option for
tasklet 2, i.e. three iterations. It hence appears that a large majority of them is
at ease with the functioning of iteration combined with a nested conditional, as
well as with the interpretation of a composite (loop) condition including logical
operators. It is conceivable that they identified the right option by tracing the
code execution — what they probably did not try to do, on the other hand, to
check their answer for tasklet 1.

3.3 Tasklet 3: recognizing functionally equivalent programs

The rates of recurrent answers relative to tasklet 3 are listed in Table 3. It
was clearly the hardest challenge and, as we can see, less than one fifth of the
students were able to recognize that program 1 and program 4 are the equivalent
ones. In addition, most of the answers grouped in the last row of Table 3 are
meaningless in that only one program was selected (about 30% of the whole
sample), conceivably indicating that they just decided to skip this tasklet.
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Table 2: Rates of chosen options for tasklet 2.

Number of iterations Percentage

0 3.7%
1 9.1%
2 15.2%
3 60.4% correct option
4 or more 6.1%
the loop never ends 5.5%

Table 3: Rates of recurrent answers for tasklet 3.

Equivalent programs Percentage

Programs 1 and 4 18.9% correct answer
Programs 4 and 5 13.4%
Programs 2 and 4 11.0%
Programs 1 and 3 7.3%
Programs 1, 4, 5 3.7%
Meaningless or isolated answers 45.7%

While such pairings as 1–3 or 4–5 (see Fig. 2) are likely to signal serious
misconceptions, it is worth noting that regarding program 2 and program 4
as equivalent may be more simply ascribable to carelessness, i.e. not paying
attention to the fact that the roles of x and y are swapped, but those of m and n

are not. Here again, however, the frequency of incorrect answers indicates that
students are not used to test their conjectures by tracing code execution.

3.4 Subjective perception questions

The pie chart in Fig. 3 summarizes students’ answers to the question: “What do
you find most difficult when you use loops?” As we can see, nested loops are the
source of issues reported most frequently (41.5%), followed by the definition of
composite conditions (23.2%), the latter possibly due to insufficient familiarity
with Boolean logic. Then the rates of the other options are, in decreasing order:
figuring out a suitable loop condition (15.20%), understanding when an iteration
should end (12.8%), and dealing with loop control variables (7.3%).

What emerges by comparing the subjective perception of difficulty (when
dealing with iteration) to the actual performance in the three tasklets is that
students may underestimate their lack of mastery of loop conditions. If, on the
one hand, more than 60% of them failed to choose the right option for tasklet 1
(in fact a straightforward condition), on the other only about 15% indicated the
implied feature, i.e. identifying the loop condition, as a major source of difficulty.

Although the rate of choice of this feature is slightly higher (almost 18%)
among those students who provided an incorrect answer for tasklet 1, there
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� To find the condition of a while or do-while
loop (1);

� To define a complex condition including
logical operators (2);

� To deal with nested loops (3);

� To understand, in general, when the loop
should end (4);

� To deal with the loop control variable (5).

Fig. 3: Major difficulty with iteration in students’ perception.

Table 4: Contingency table: correct/incorrect answers to tasklet 1 vs. perceived
prominence or not of difficulties with loop conditions.

difficulties with
loop conditions other difficulties

incorrect answer to tasklet 1 18 83

correct answer to tasklet 1 7 56

appear to be no statistically significant correlation between correct/incorrect
answers to this tasklet and perceiving or not the related feature as a major
source of difficulty: by cross-tabulating the corresponding counts, see Table 4,
and subjecting them to a χ2-test we get a p-value of about 0.35, meaning that
the data are fairly consistent with the assumption of independence of the two
variables (null hypothesis). In addition, the limited awareness of difficulties with
loop conditions is also signaled by the observation that just one out of the ten
students who failed only on tasklet 1 seems to give prominence to the problem.
More in general, as can be elicited “pictorially” from the partitioned bars in
Figure 4, we cannot find any statistical evidence of correlation between poor
performance in subsets of the tasklets and subjective perception of difficulty
with specific concepts.

To conclude the summary of the results of interest here, we consider the
answers to the second question about the mistakes having had more severe im-
plications in the students’ subjective perception. An inductive analysis [20] of
keywords occurring in the open answers gave rise to the categories summarized
in Table 5. From the data in the right column it appears that of the 37.6%
of students who identify some specific concept as a major source of mistakes,
more than one fourth mention precisely iteration, so confirming they are aware
of the relevance of this topic to their learning of programming. Other reported
concepts, with similar or lower frequency, refer to procedural and object abstrac-
tions, language syntax, mathematical and logical prerequisites.
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Fig. 4: Distribution of students’ perception of difficulty vs. performance; the in-
terpretation of the colors is the same as in Figure 3.

4 Discussion

Based on the data we collected, as can be seen from the bars in Fig. 4, almost two
thirds of the students achieved successfully no more than one of the three pro-
posed tasklets. Mastery of iteration, even in relatively simple programs, is then
to be considered a cognitively demanding learning objective for the considered
age range. The results outlined in the previous section appear to corroborate,
in the high school context, the findings of previous work addressing students’
difficulties with conditionals and loops, e.g. [4,14]. In particular, it turns out that
dealing with nested flow-control structures and, perhaps to a minor extent, with
loop conditions are especially challenging to novices, the former aspect also in
their subjective perception.

Here is a summary of our interpretation of the findings.

i. When (essentially) required to trace the code execution, as in tasklet 2, a
large majority of the students are able to determine the correct outcome,
see Table 2. It is also conceivable that a number of the about 20% who
opted for ‘2’ or ‘4 or more’ iterations made only minor computing mistakes.
We can then presume that most high school students develop a viable and
accurate enough mental model of the notional machine underlying code
execution, including the functioning of nested constructs and the evaluation
of relatively complex conditions.

ii. It is worth observing that 77% of the students who were correct in tasklet 2
provided seriously wrong answers to tasklet 1 or tasklet 3. Apparently, then,
the students tend to not exploit their tracing abilities in order to test their
conjectures about program behavior. This observation could be explained
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Table 5: Major sources of mistakes in students’ perception.

Sources of mistakes Percentage

iteration, loops 10.4%
functions, subroutines 10.4%
syntax, instructions 7.3%
mathematics and logic 4.9%
objects, classes, methods 3.7%
general causes such as poor understanding of text,
lack of time, insufficient practice, distraction 41.4%
elusive answers 11.6%
no answer provided 10.4%

either by some general lazy attitude or, what is more relevant from a peda-
gogical perspective, by lack of method to approach programming tasks.

iii. As shown in Table 1, more than 40% of the students chose seriously in-
correct options in tasklet 1 (first and last option). A similar performance
shows that, as a matter of fact, a large part of them are unable to master
the relationships between loop condition and accurate specification in the
application domain, even in a straightforward situation. This may possibly
be ascribed to confusion about the role of the loop condition, meant as an
‘exit’ condition instead of a ‘continue’ condition, or to some more basic lack
of problem-solving skills.

iv. Overall, the students seem to underestimate their difficulties to deal with
loop conditions — even simple conditions. On the one hand, they did not
feel the need to check their solution to tasklet 1 by tracing the program
execution for sample inputs (what could have been done very quickly). On
the other hand, only a low percentage of those who made serious errors in
tasklet 1 and/or tasklet 2 perceive their weakness in this respect as a major
difficulty (see the chart in Figure 4).

v. By comparing students’ performance in tasklets 2 and 3, it appears that
their difficulties with nested constructs are not so much about the mechan-
ics of code execution as about the ability of grasping code behavior at a more
abstract level. So, the crucial point is how to develop students’ abstraction
skills, besides the understanding of the mechanical features of code (to il-
lustrate which there are several widespread tools — see for example the
paragraphs on program visualization in [19]).

Implications for instructors

A few provisional implications for the instructional practice can be drawn from
the points raised above. In particular, we point out three potential insights, which
are worth further, more accurate investigation. By referring to a competency
framework for computing education [7], the first two pertain to the skills area
and the third one to the dispositions area:
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– Firstly, more efforts are to be addressed to the development of a method to
approach programming tasks, in particular to identify suitable test cases in
order to confirm or refute working conjectures.

– Secondly, more careful attention should be paid to the role and treatment of
loop conditions, especially in connection with a problem’s statement.

– Finally, at the meta level, students’ attitude to think critically about their
learning should be enhanced, for example by asking them to make explicit
their degree of self-confidence in the achievement of a task or of a part of it.

Learning to program is however a slow and gradual process, as argued by
Dijkstra in [5], and therefore the teacher must grant adequate learning time to
be spent on several effective examples.

Future work and perspectives

To begin with, in order to validate (or refute) our provisional interpretation of the
findings discussed above, our next step will be to design a more comprehensive
survey, to be administered to a larger sample of students, from as wide an area
of the country as possible.

We are also trying to envisage appropriate methodological approaches to the
teaching and learning of iteration. In this respect, we think that it would be
helpful to collect a rich and varied set of examples, not limited to the stereo-
typical code patterns mentioned in the teachers’ interviews [26]. In particular,
such examples should address “interesting” problems involving more complex
loop conditions or (nested) combinations of flow-control structures.

As to the development of students’ abstraction skills to interpret program be-
havior, a possible line of research could be based on de Raadt’s and colleagues ap-
proach to explicitly teaching (and assessing) programming strategies [23], which
are relevant to a comprehensive understanding of nested constructs. Another
potential source of inspiration in this respect may be the instructional work that
elaborates on the concept of loop invariant [28,1,9,8], suitably adapted to fit less
formal learning styles [2].

As a further middle/long term objective, from a more general pedagogical
standpoint, it may be interesting to explore the implications of the productive
failure perspective [15,17] in a computing education context, especially in con-
nection with the learner’s self-confidence on the solution provided [21].

5 Conclusions

As part of a project aimed at identifying methodological tools to enhance a
comprehensive understanding of iteration, in this paper we have analyzed the
answers of a sample of 164 high school students to three small programming
tasks and two questions on their perception of difficulty. The results appear
to confirm that dealing with iteration, even in simple programs, is cognitively
demanding to students of the considered age range.
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Apparently, the problems faced by most of the students should not be as-
cribed to a flawed model of the notional machine. Rather, lack of carefulness and
accuracy, i.e. of a method, while dealing with the program constructs may be
at the root of several mistakes. In particular, interpreting loop conditions and
abstracting on nested flow-control structures turned out to be major challenges
to novices. To extend the scope of this exploratory analysis, we are now planning
to design a survey to collect more data on students’ performance in small pro-
gramming tasks, as a basis to develop methodological tools to enhance students’
mastery of iteration and to support their learning.
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