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FINITENESS OF TOPOLOGICAL ENTROPY FOR

LOCALLY COMPACT ABELIAN GROUPS

DIKRAN DIKRANJAN], ANNA GIORDANO BRUNO[, AND FRANCESCO G. RUSSO\

Abstract. We study the locally compact abelian groups in the class E<∞, that is, having only continuous endo-

morphisms of finite topological entropy, and in its subclass E0, that is, having all continuous endomorphisms with
vanishing topological entropy. We discuss the reduction of the problem to the case of periodic locally compact abelian

groups, and then to locally compact abelian p-groups.
We show that locally compact abelian p-groups of finite rank belong to E<∞, and that those of them that belong

to E0 are precisely the ones with discrete maximal divisible subgroup. Furthermore, the topological entropy of

endomorphisms of locally compact abelian p-groups of finite rank coincides with the logarithm of their scale.
The backbone of the paper is the Addition Theorem for continuous endomorphisms of locally compact abelian

groups. Various versions of the Addition Theorem are established in the paper and used in the proofs of the main

results, but its validity in the general case remains an open problem.

1. Introduction

The topological entropy for continuous self-maps of compact spaces was introduced by Adler, Konheim and
McAndrew [1], in analogy with the metric entropy from ergodic theory introduced by Kolmogorov and Sinai (see
[29]). Later, Bowen [5] gave a definition of topological entropy for uniformly continuous self-maps of metric spaces,
which was extended by Hood [21] to uniformly continuous self-maps of uniform spaces. This notion of topological
entropy coincides with that in [1] in the compact case, when the given compact topological space is endowed with
the unique uniformity compatible with the topology.

Hood’s definition of topological entropy applies to topological groups G, endowed with their left uniformity U ,
as continuous endomorphisms φ : G → G are uniformly continuous with respect to U . Assume that G is a locally
compact group, denote by C(G) the family of all compact neighborhoods of 1 in G, and let µ be a left Haar measure
on G. For U ∈ C(G) and n ∈ N+, the n-th φ-cotrajectory of U is

Cn(φ,U) = U ∩ φ−1(U) ∩ . . . ∩ φ−n+1(U) ∈ C(G).

The topological entropy of φ with respect to U ∈ C(G) is

Htop(φ,U) = lim sup
n→∞

− logµ(Cn(φ,U))

n

and the topological entropy of φ is

htop(φ) = sup{Htop(φ,U) | U ∈ C(G)}.
Following [7, 12], the topological entropy of G is

Etop(G) = {htop(φ) | φ ∈ End(G)}.

Some of the most relevant problems concerning discrete dynamical systems deal with the values of entropy,
for instance the problem of the existence of topological automorphisms of compact groups with arbitrary small
topological entropy. This problem is certainly the most outstanding and can be written equivalently for continuous
endomorphisms as follows:

(1.1) is inf{Etop(G) \ {0} | G compact group} > 0?

It is equivalent to the celebrated Lehmer’s problem in number theory (see [26]). In fact,

inf{Etop(G) \ {0} | G compact group} = inf({htop(φ) | φ ∈ Aut(Q̂n), n ∈ N} \ {0})

and, for n ∈ N and φ ∈ Aut(Q̂n), the so-called Yuzvinski’s formula states that htop(φ) coincides with the Mahler
measure of the characteristic polynomial of φ taken with integer coefficients (see [24, 31]). Lehmer’s problem asks
whether or not the infimum of all positive values of the Mahler measure is zero (see [23]).

A positive answer to the question in (1.1) would imply that the set

Etop = {Etop(G) | G compact group}
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of all possible values of the topological entropy of continuous endomorphisms of compact groups is countable, while
a negative answer would imply that Etop = R≥0 ∪{∞} (see [5, 7, 26, 31], see also [9] for the algebraic counterpart).

In the larger class of locally compact groups the counterpart of (1.1) has an easy answer. In fact, Etop(R) = R≥0;
more precisely, every continuous endomorphism of R has finite topological entropy and for every non-negative real
r there exists a topological automorphism of R of topological entropy r (see [5, 29], see also Remark 2.7 below).
This is why this paper, following the direction of [12] in the compact case, studies the problem of the finiteness of
the topological entropy for locally compact groups. In order to pursue this scope, we follow [12] and introduce

E0 = {G | Etop(G) = {0}} and E<∞ = {G | ∞ 6∈ Etop(G)}.
We start recalling the results from [12] about locally compact abelian groups in E<∞ and in E0.

Following [11] and denoting by P the set of all primes, for p ∈ P we say that an element x of a locally compact
group G is topologically p-torsion if xp

n → 1 in G, and let Gp = {x ∈ G | x topologically p-torsion} be the topological
p-component of G. We denote by c(G) the connected component of G and by B(G) the largest compactly covered
subgroup of G. According to [18], a locally compact p-group is a locally compact group G such that G = Gp.

Theorem 1.1 (See [12, Theorems A, B and C and Corollary 2]). Let G be a locally compact abelian group.

(a) If G ∈ E<∞, then dim(G) < ∞; this implication can be inverted when G is compact and G/c(G) ∈ E<∞ (in
particular, when G is compact and connected).

(b) If G ∈ E0, then G is totally disconnected; if G is compact and totally disconnected, then G ∈ E0 if and only if
G ∈ E<∞.

(c) In case G is compact, G ∈ E0 if and only if G is totally disconnected and Gp ∈ E0 for every p ∈ P.

Items (a) and (b) of the above theorem suggest to treat the case of totally disconnected locally compact abelian
groups G (it is worth noting that no complete reduction to the totally disconnected case is available – see Ques-
tion 6.2(a)). We handle the case when G is also compactly covered (i.e., each element of G is contained in some
compact subgroup of G); following the terminology from [18], we call those locally compact groups G periodic.

For periodic locally compact abelian groups we have the following reduction to locally compact abelian p-groups
extending Theorem 1.1(c).

Theorem 1.2. Let G be a periodic locally compact abelian group. Then:

(a) G ∈ E0 if and only if Gp ∈ E0 for every p ∈ P;
(b) G ∈ E<∞ if and only if Gp ∈ E<∞ for every p ∈ P and Gp ∈ E0 for almost all p ∈ P.

From now on, with p we always denote a prime number. A locally compact abelian p-group G is a Zp-module,
so we can consider its Zp-rank rkZp

(G) and its p-rank rp(G) as well. When rkZp
(G) and rp(G) are finite, let

rankp(G) = rkZp
(G) + rp(G).

According to [18, Lemma 3.91], rankp(G) is the smallest n ∈ N such that every topologically finitely generated
subgroup of G is generated by at most n elements. For example the group Qp of p-adic numbers is a torsion-free
periodic locally compact abelian p-group with rp(G) = 0 while rankp(Qp) = rkZp

(Qp) = 1.
Motivated by the following remark, we impose the additional restriction to have finite rankp on the locally

compact abelian p-groups. Very roughly speaking, the finiteness of the cardinal invariant rankp will replace (only
to a certain extent – see Remark 1.3(a)) the finiteness of the dimension in Theorem 1.1(a) as far as the description
of the locally compact abelian p-groups in E<∞ is concerned.

Remark 1.3. Here we recall some results from [12], showing that the question of a complete classification of the
compact abelian p-groups G (i.e., abelian pro-p-groups) belonging to E0 is far from a satisfactory understanding.

(a) By [12, Theorem E] (its proof makes essential use of [10, Theorem 13]), there exists a family of 2c many pairwise
non-isomorphic compact abelian p-groups K of weight c in E0 with rankp(K) infinite. Therefore, rankp(G) <∞
is not a necessary condition neither for G ∈ E<∞ nor (even) for G ∈ E0.

(b) There exists a class of compact abelian p-groups K with Etop(K) = {0,∞} (i.e., for every φ ∈ End(K) one has
htop(φ) ∈ {0,∞} and no intermediate values of the topological entropy can be attained). The groups ZN

p and∏
n∈N+

Z(pn) have this property, and a complete description of this class can be found in [12, Theorem D].

We recall the following recent characterization of the structure of locally compact abelian p-groups with finite
rankp.

Theorem 1.4 (See [18, Theorem 3.97]). A locally compact abelian p-group G has rankp(G) < ∞ if and only if it
is isomorphic to

(1.2) Zn1
p ×Qn2

p × Z(p∞)n3 × Fp
for some integers n1, n2, n3 ∈ N and a finite p-group Fp with rp(Fp) = n4 ∈ N. In particular,

rankp(G) = n1 + n2 + n3 + n4,

with rkZp(G) = n1 + n2 and rp(G) = n3 + n4.
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This result provides a nice property of the cardinal invariant rankp, namely its preservation under Pontryagin

duality. Indeed, if G ∼= Zn1
p ×Qn2

p ×Z(p∞)n3×Fp, then Ĝ ∼= Zn3
p ×Qn2

p ×Z(p∞)n1×Fp, and so rankp(Ĝ) = rankp(G),

while rkZp
(Ĝ) and rkZp

(G), and similarly rp(Ĝ) and rp(G), need not coincide.

It turns out that all locally compact abelian p-groups with finite rankp are in E<∞, and one can characterize
those of them that are actually in E0:

Theorem 1.5. If G is a locally compact abelian p-group with rankp(G) <∞, then G ∈ E<∞. Moreover, G ∈ E0 if
and only if n2 = 0 in (1.2).

The condition n2 = 0 in Theorem 1.5 means that the maximal divisible subgroup d(G) of G has rkZp
(d(G)) = 0,

that is, d(G) is discrete.

Theorem 1.5 has to be compared with its counterpart for compact abelian groups; indeed, we have seen in
Theorem 1.1(b) that when G is a totally disconnected compact abelian group, G ∈ E<∞ precisely when G ∈ E0.
More specifically, if G is a compact abelian p-group with rankp(G) < ∞, then G ∼= Znp × Fp for some n ∈ N and a
finite p-group Fp, by Theorem 1.4. According to Proposition 4.8, Znp ×Fp ∈ E0 (this follows also from Theorem 1.5).

Making use of the “local” Theorem 1.5, in Theorem 1.6 we extend the characterization of the classes E<∞ and
E0 within a significantly larger class of locally compact abelian groups G. Note that

$(G) = c(G) +B(G),

which is a fully invariant open subgroup of G (see [11, Proposition 3.3.6], see also [8, pp. 29–30]).

Theorem 1.6. Let G be a locally compact abelian group with c(B(G)) = {0} and rankp(Gp) <∞ for every p ∈ P.
Then:

(a) G ∈ E<∞ holds whenever
∑
p∈P rkZp

(d(Gp)) <∞;

(b) G ∈ E0 holds whenever G is totally disconnected and rkZp(d(Gp)) = 0 (i.e., d(Gp) is discrete) for every p ∈ P.

If G = $(G), then also the converse implications hold in (a) and (b).

The scale function s(φ) was introduced by Willis [30] for continuous endomorphisms φ of totally disconnected
locally compact groups (see Section 5). Since by definition the scale is always finite, and since every locally compact
abelian p-group G with rankp(G) <∞ is in E<∞ by Theorem 1.5, it makes sense to verify whether htop(φ) = log s(φ)
or not for every φ ∈ End(G). Indeed we prove this equality, as reported below.

Theorem 1.7. Let G be a locally compact abelian p-group with rankp(G) <∞ and let φ ∈ End(G). Then htop(φ) =
log s(φ).

The precise connection between the scale and the topological entropy was given in [4, 16] (see Section 5). In
particular Theorem 1.7 was already known for G = Qnp and φ a topological automorphism.

The proofs of Theorem 1.5 and Theorem 1.6 make substantial use of the so called Addition Theorem that we
discuss in the sequel.

We say that the Addition Theorem holds for a triple G,φ,H of a topological group G, φ ∈ End(G) and a
φ-invariant closed normal subgroup H of G, and we briefly say that AT (G,φ,H) holds, if

(1.3) htop(φ) = htop(φ �H) + htop(φ̄G/H),

where φ̄G/H ∈ End(G/H) is induced by φ. The relevant formula (1.3) can be briefly resumed by saying that in the
following commutative diagram

0 −−−−→ H
ι−−−−→ G

π−−−−→ G/H −−−−→ 0

φ�H

y φ

y φ̄

y
0 −−−−→ H

ι−−−−→ G
π−−−−→ G/H −−−−→ 0

the topological entropy of the middle vertical arrow is the sum of the topological entropies of the remaining two
vertical arrows.

Similarly, we say that AT (G) holds if AT (G,φ,H) holds for every φ ∈ End(G) and for every φ-invariant closed
normal subgroup H of G.

It is known that AT (G,φ,H) holds when G is compact (see [2, 31]), and also when G is totally disconnected and
locally compact and φ is a topological automorphism of G (see [16]). However the validity of the Addition Theorem
in the general case of locally compact groups and their continuous endomorphisms is not yet established even in the
abelian setting, to the best of our knowledge. (A wrong proof of the Addition Theorem for locally compact abelian
groups appeared in [25] – see [13] for more details.)

The next theorem provides a formula reducing the computation of the topological entropy for totally disconnected
locally compact abelian groups to the case of locally compact abelian p-groups. It allows for a convenient reduction
of the Addition Theorem for totally disconnected locally compact abelian groups to the case of locally compact
abelian p-groups.
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Theorem 1.8. Let G be a totally disconnected locally compact abelian group. Then, for every φ ∈ End(G),

htop(φ) =
∑
p∈P

htop(φ �Gp).

(a) If AT (Gp) holds for every for p ∈ P, then also AT (G) holds.
(b) In case G is periodic, AT (G) holds if and only if AT (Gp) holds for every p ∈ P.

Moreover, we prove the following version of the Addition Theorem, leaving open the problem in the general case
of locally compact abelian p-groups of finite rankp (see Question 6.5).

Theorem 1.9. For n ∈ N, AT (Qnp ) holds.

The paper is organized as follows.
In Section 2 we recall some useful results on topological entropy; among them we mention the p-adic counterpart

of the so-called Yuzvinski’s formula (see Theorem 2.5), which gives an explicit computation of the values of the
topological entropy of continuous endomorphisms of Qnp .

In Section 3 we discuss some instances of the Addition Theorem, and in particular we prove Theorems 1.8 and 1.9.
In Section 4 we prove Theorems 1.2, 1.5 and 1.6. We make use of a direct computational rule for the topological

entropy of a continuous endomorphism of a locally compact abelian p-group with finite rankp (see Proposition 4.8),
more precisely, one can reduce this computation to the mere use the p-adic Yuzvinski’s formula.

In Section 5 we recall the definition of the scale and the p-adic Yuzvinski’s formula for the scale; we verify some
basic properties in the abelian setting in order to prove Theorem 1.7 (again as a consequence of Proposition 4.8).

Section 6 contains some final comments and open questions, regarding those locally compact groups that have not
been treated in the main body of the paper. In the first place, some attention is paid to the case of not necessarily
totally disconnected locally compact abelian groups. The remaining part concerns the non-abelian setting, with a
particular emphasis on the Heisenberg group on Zp and Qp.

Notation and terminology. As usual, R denotes the reals and R≥0 = {r ∈ R | r ≥ 0}, Q the rationals, Z the
integers, N the natural numbers and N+ the positive integers. We denote by P the set of all primes. For p ∈ P, Z(p)
is the finite cyclic group of order p, Z(p∞) the Prüfer group, Zp denotes the ring of p-adic integers, and Qp the field
of p-adic numbers.

For an abelian group G, we denote by t(G) the torsion subgroup of G, by D(G) the divisible hull of G, and by
d(G) the largest divisible subgroup of G.

For p ∈ P and an abelian group G, we use rp(G) to denote the p-rank of G, that is rp(G) = dimZ/pZG[p] where
G[p] = {x ∈ G | px = 0}; moreover, for a Zp-module M we denote by rkZp

its Zp-rank.
For a topological group G we denote by End(G) the set of all continuous endomorphisms of G and by Aut(G) the

set of all topological automorphisms of G. For a locally compact abelian group G we denote by Ĝ its Pontryagin
dual group.

For undefined symbols and terms, see [11, 18, 19, 20].

Acknowledgements. It is a pleasure to thank the referee for the helpful comments. The first and the second
author thank GNSAGA of Indam, the third author thanks DMIF of Udine (Italy) for Grant No. PRID2017 and
NRF of South Africa for Grant No. 118517.

2. Some background on topological entropy

Some useful facts on the topological entropy for locally compact groups are listed below.

Lemma 2.1 (See [16, Lemma 3.6(1)]). Let G be a locally compact group, φ ∈ End(G) and U, V ∈ B(G). If U ≤ V ,
then Htop(φ, V ) ≤ Htop(φ,U). In particular, if B ⊆ C(G) is a local base of G, then htop(φ) = sup{Htop(φ,U) | U ∈
B}.

Corollary 2.2 (See [12]). Let G be a locally compact group and φ ∈ End(G). If there exists a local base B ⊆ C(G)
of G consisting of φ-invariant subgroups, then htop(φ) = 0. In particular, Znp ∈ E0 for every p ∈ P and n ∈ N.

Item (a) of the next lemma reveals the monotonicity of the topological entropy with respect to taking restrictions
to invariant closed subgroups or quotients with respect to such subgroups. Item (b), which easily follows from (a),
shows that htop is an invariant for topological dynamical systems (G,φ), where G is a locally compact group and
φ ∈ End(G).

For G,H locally compact abelian groups, we say that φ ∈ End(G) and ψ ∈ End(H) are conjugated if there exists
a topological isomorphism α : G→ H such that ψ = αφα−1.

Lemma 2.3 (See [7]). Let G be a locally compact group and φ ∈ End(G).

(a) If H a φ-invariant closed subgroup of G. Then htop(φ �H) ≤ htop(φ). If H is also normal, then htop(φ̄G/H) ≤
htop(φ) where φ̄G/H : G/H → G/H is the endomorphism induced by φ.

(b) If H is a locally compact abelian group, and ψ ∈ End(H) is conjugated with φ, then htop(φ) = htop(ψ).
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When G is a totally disconnected locally compact group, the computation of the topological entropy of φ ∈
End(G) can be simplified. Indeed, for these groups van Dantzig [27] proved that the family

B(G) = {U ≤ G | U compact and open} ⊆ C(G)

is a local base of G. As noticed in [7, Proposition 4.5.3], the topological entropy of φ can be computed as

(2.1) htop(φ) = sup{Htop(φ,U) | U ∈ B(G)}, where Htop(φ,U) = lim
n→∞

log[U : Cn(φ,U)]

n

(here Cn(φ,U) ∈ B(G), and so the index [U : Cn(φ,U)] is finite since Cn(φ,U) is open in the compact subgroup
U); moreover Htop(φ,U) ∈ logN+, hence

(2.2) Etop(G) ⊆ logN+ ∪ {∞}

Remark 2.4. If G is a discrete group, then G ∈ E0. In fact, B(G) = {U ≤ G | U finite}, so if φ ∈ End(G) and
U ∈ B(G), then [U : Cn(φ,U)] ≤ |U | for every n ∈ N+. Hence, Htop(φ,U) = 0 and consequently htop(φ) = 0.

Theorem 2.5 below is the p-adic counterpart of the Yuzvinski’s formula from [31] explicitly computing the

topological entropy of all continuous endomorphisms of Q̂. The p-adic Yuzvinski’s formula was given in [24] for
topological automorphisms, the general case can be obtained also from its counterpart for the algebraic entropy
proved in [14] together with the so-called Bridge Theorem from [8] (see also [15]).

If Kp is a finite extension of Qp, we denote by | − |p the unique extension of the p-adic norm | − |p of Qp to Kp.
In particular, if Kp = Qp and 0 6= x ∈ Qp is written as x = p`u, where ` ∈ Z and u ∈ U(Zp) (i.e., |u|p = 1), then
|x|p = (1/p)` = p−`.

Theorem 2.5 (See [24]). Let n ∈ N+ and φ ∈ End(Qnp ). Then

htop(φ) =
∑
|λi|p>1

log |λi|p,

where {λi | i ∈ {1, . . . , n}} are the eigenvalues of φ in some finite extension Kp of Qp.

In particular, the above highly non-trivial theorem implies that Qnp ∈ E<∞.

Example 2.6. Let n ∈ N+ and consider the multiplication by 1/p, that is, φ : Qnp → Qnp , x 7→ 1
px. A straightforward

computation (or an easy application of Theorem 2.5) gives htop(φ) = n log p > 0. Taking into account the above
observation as well, one has

Qnp ∈ E<∞ \ E0.

Remark 2.7. An explicit formula, similar to the p-adic Yuzvinski’s formula, for the computation of the topological
entropy of continuous endomorphisms of Rn, for n ∈ N, is known from [5]. It implies that, for n ∈ N+,

(2.3) Rn ∈ E<∞ \ E0.

3. Addition Theorem

3.1. Basic facts. We start recalling the following weak version of the Addition Theorem.

Lemma 3.1 (See [1, 7, 16, 28]). Let G1, G2 be locally compact groups that are either compact or totally disconnected,
or isomorphic to Rn for some n ∈ N, and φ1 ∈ End(G1), φ2 ∈ End(G2). Consider G1×G2 with the product topology
and φ1 × φ2 ∈ End(G1 ×G2). Then htop(φ1 × φ2) = htop(φ1) + htop(φ2).

We now introduce other three levels of Addition Theorem.

Definition 3.2. Let G be a topological group.

(a) If H is a fully invariant closed subgroup of G,

AT (G,H)

means that AT (G,φ,H) holds for every φ ∈ End(G).
(b) If φ ∈ End(G) and H is a φ-invariant closed normal subgroup of G,

AT0(G,φ,H) (respectively, AT 0(G,φ,H))

means that htop(φ) = htop(φ �H) and htop(φ̄G/H) = 0 (respectively, htop(φ) = htop(φ̄G/H) and htop(φ �H) = 0).
(c) If H is a fully invariant closed subgroup of G,

AT0(G,H) (respectively, AT 0(G,H))

means that AT0(G,φ,H) (respectively, AT 0(G,φ,H)) holds for every φ ∈ End(G).

The following basic case of Addition Theorem was already proved in [13, Corollary 4.17] in the general case of
all topological groups, here we give a short proof for the case of locally compact groups.
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Lemma 3.3. Let G be a locally compact group, φ ∈ End(G) and H a φ-invariant open normal subgroup of G. Then
AT0(G,φ,H) holds.

Proof. By the hypotheses C(H) ⊆ C(G) and C(H) is a local base of G, so htop(φ) = htop(φ �H) by Lemma 2.1. Since
G/H is discrete, htop(φ̄G/H) = 0 by Remark 2.4. �

Corollary 3.4. Let G be a locally compact group and H a fully invariant open subgroup of G. Then AT0(G,H)
holds.

Next we give a useful application of Lemma 3.3.

Corollary 3.5. Let G be a locally compact abelian group and endow D(G) with the unique group topology that makes

G an open topological subgroup of D(G). Then every φ ∈ End(G) admits a continuous extension φ̃ ∈ End(D(G)),

and AT0(D(G), φ̃, G) holds.

Proof. The existence of such extension φ̃ of φ ∈ End(G) to D(G) follows from the fact that D(G) is divisible. The

continuity of φ̃ follows from that of φ since G is open in D(G). By Lemma 3.3, AT0(D(G), φ̃, G) holds. �

The next result shows that in order to verify AT (G) it suffices to verify AT (N) for a fully invariant open subgroup
of G.

Proposition 3.6. Let G be a locally compact group and N a fully invariant open subgroup of G. If AT (N) holds,
then also AT (G) holds.

Proof. Let φ ∈ End(G) and let H be a φ-invariant closed normal subgroup of G. Since N is fully invariant,
ψ = φ �N∈ End(N) is well defined. As AT (N,ψ,H ∩N) holds by hypothesis, we have that

(3.1) htop(ψ) = htop(ψ �H∩N ) + htop(ψ̄N/H∩N ).

By Lemma 3.3,

(3.2) htop(ψ) = htop(φ) and htop(ψ �H∩N ) = htop(φ �H).

It remains to prove that

(3.3) htop(ψ̄N/H∩N ) = htop(φ̄G/H).

Indeed, (3.1), (3.2) and (3.3) give that AT (G,φ,H) holds.
The open subgroup N +H/H of G/H is φ̄G/H -invariant, so Lemma 3.3 gives that, letting ξ be the restriction of

φ̄G/H to N +H/H,

htop(ξ) = htop(φ̄G/H).

The quotient map q : G→ G/N is open, so is its restriction q �N : N → q(N) = N +H/H onto the open subgroup
N + H/H of G/H. Hence, the canonical continuous isomorphism t : N/H ∩ N → N + H/H is a topological
isomorphism, and ξ is conjugated to ψ̄N/H∩N via t. Therefore,

htop(ψ̄N/H∩N ) = htop(ξ).

This equality, along with the previous one, yields (3.3). �

3.2. Totally disconnected locally compact groups. The following proposition plays a prominent role in the
proof of our main results.

Proposition 3.7. Let G1 be a totally disconnected locally compact abelian group, G2 a discrete abelian group, and
let G = G1 × G2 equipped with the product topology. If φ ∈ End(G) and G2 is φ-invariant, then AT 0(G,φ,G2)
holds.

Proof. There exist φ1 ∈ End(G1), φ2 ∈ End(G2) and a continuous homomorphism φ3 : G1 → G2, such that for
every (x, y) ∈ G

φ(x, y) = (φ1(x), φ2(y) + φ3(x)).

Let K ∈ B(G1). Since G2 is discrete, the compact subgroup φ3(K) of G2 must be finite. Therefore, V = kerφ3 ∩K
has finite index in K, so V ∈ B(G1), that is, V × {0} ∈ B(G).

For every U ∈ B(G) contained in V , and for every n ∈ N+,

Cn(φ,U × {0}) = (U × {0}) ∩ φ−1(U × {0}) ∩ . . . ∩ φ−n+1(U × {0})

= {(x, 0) ∈ U × {0} | φk1(x) ∈ U ∀k ∈ {0, . . . , n− 1}}

= {(x, 0) ∈ U × {0} | x ∈ φ−k(U) ∀k ∈ {0, . . . , n− 1}}
= Cn(φ1, U)× {0}.

This yields Htop(φ,U ×{0}) = Htop(φ1, U). Since B = {U ×{0} | U ∈ B(G1), U ⊆ V } ⊆ B(G) is a local base of G,
by Lemma 2.1 we conclude that htop(φ) = htop(φ1).
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Let α : G/G2 → G1, (x, y) + G2 7→ x, be the canonical isomorphism. Then φ̄ : G/G2 → G/G2 is conjugated
to φ1 by α, and so we can conclude that htop(φ) = htop(φ̄) by Lemma 2.3(b). On the other hand, htop(φ �G2

) =
htop(φ2) = 0, as G2 is discrete. Therefore, AT 0(G,φ,G2) holds true. �

The following is a direct consequence of Proposition 3.7 when G2 is fully invariant whenever identified with the
subgroup {0} ×G2 of G.

Corollary 3.8. Let G1 be a totally disconnected locally compact abelian group, G2 a discrete abelian group, and let
G = G1 ×G2 equipped with the product topology. If G2 is fully invariant, then AT 0(G,G2) holds.

The above corollary applies directly in the following one.

Corollary 3.9. Let G1 be a totally disconnected locally compact abelian group and let G2 be a discrete abelian
group. Suppose that one of the following conditions is fulfilled:

(a) G1 is torsion-free and G2 is torsion;
(b) G1 is reduced and G2 is divisible.

Then, for G = G1 ×G2 equipped with the product topology, AT 0(G,G2) holds.

We see now that under some suitable conditions the validity of AT (G) implies the validity of AT (G1) for a
topological direct summand G1 of G.

Proposition 3.10. Let G = G1 ×G2 be a locally compact abelian group, where G1 and G2 are either compact, or
totally disconnected, or isomorphic to Rn for some n ∈ N. If AT (G) holds then both AT (G1) and AT (G2) holds.

Proof. Obviously, it is enough to check AT (G1). To this end fix φ1 ∈ End(G1) and a φ1-invariant closed subgroup
H of G1.

Consider φ = φ1 × 0 ∈ End(G), so that φ �G1= φ1 and φ �G2= 0. This yields htop(φ �G2) = 0. Therefore,
Lemma 3.1 gives

(3.4) htop(φ) = htop(φ �G1
) = htop(φ1).

Note that H is also a φ-invariant closed subgroup of G. Since AT (G,φ,H) holds in view of our hypothesis AT (G),
we have that

(3.5) htop(φ) = htop(φ �H) + htop(φ̄G/H) = htop(φ1 �H) + htop(φ̄G/H).

Since G/H ∼= G1/H ×G2 and φ̄G/H is conjugated to ψ = (φ1)G1/H
× φ �G2

, by Lemma 3.1 and Lemma 2.3(b),

htop(φ̄G/H) = htop(ψ) = htop((φ1)G1/H
).

Along with (3.4) and (3.5), this implies htop(φ1) = htop(φ1�H) + htop((φ1)G1/H
), i.e., AT (G1, φ1, H1) holds. �

Next we prove a natural instance of the Addition Theorem with respect to the kernel of the endomorphism.

Theorem 3.11. Let G be a totally disconnected locally compact group and φ ∈ End(G). If there exists a local base
B ⊆ B(G) of G such that, for every U ∈ B, φ−n(U) is normal in G for every n ∈ N+, then AT 0(G,φ, kerφ) holds.

Proof. Clearly, htop(φ �kerφ) = 0, since φ �kerφ= 0.
It remains to verify that htop(φ) = htop(φ̄), where we denote φ̄ = φ̄G/ kerφ. Since htop(φ̄) ≤ htop(φ) by

Lemma 2.3(a), we are left with the converse inequality.
Denote by π : G → G/ kerφ the canonical projection. Moreover, recall that π(B(G)) = {π(U) | U ∈ B(G)} ⊆

B(G/ kerφ) is a local base of G/ kerφ (see [16, Corollary 2.5]). Let U ∈ B and n ∈ N+. It follows from our
hypothesis that N = φ−1(U)∩ . . .∩φ−n+1(U) is a normal subgroup of G, so π(N) is a normal subgroup of G/ kerφ.
Therefore,

U

Cn(φ,U)
∼=
UN

N
∼=
π(UN)

π(N)
=
π(U)π(N)

π(N)
∼=

π(U)

π(U) ∩ π(N)
=

π(U)

Cn(φ̄, π(U))
;

hence,

[U : Cn(φ,U)] = [π(U) : Cn(φ̄, π(U))].

Therefore, Htop(φ,U) = Htop(φ̄, π(U)) and finally htop(φ) = htop(φ̄) by Lemma 2.1 and (2.1). �

3.3. Reduction to locally compact abelian p-groups. Following [11], for a topological abelian group G we
denote by B(G) the set of all compact elements of G, that are the elements of G contained in a compact subgroup
of G. Hence (by definition), B(G) is the largest compactly covered subgroup of G, therefore it is fully invariant G.
Also the subgroup

$(G) = B(G) + c(G)

is fully invariant, and, if G is locally compact, $(G) is also open in G (see [11, Proposition 3.3.6]). This means that
B(G) itself is open in G if and only if G contains no copies of R, i.e., c(G) is compact.

Proposition 3.12. Let G be a locally compact abelian group. Then AT0(G,$(G)) holds.
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Proof. As mentioned above, the subgroup $(G) is open and fully invariant. Therefore, Corollary 3.4 applies. �

If G is a locally compact abelian group, for every p ∈ P, the subgroup Gp is compactly covered. Since the closure

Gp contains c(B(G)) = c(G)∩B(G), and since c(B(G))p 6= {0} whenever c(B(G)) 6= {0}, Gp is closed (equivalently,
locally compact) if and only if c(B(G)) = {0} (i.e., G contains no non-trivial compact connected subgroups). In
particular, Gp is closed precisely when G is totally disconnected.

Every periodic locally compact abelian group G (i.e., G = B(G) and c(G) = {0}) is a local product
loc∏
p∈P(Gp,Kp),

where K ∈ B(G) (see [6]). Let us recall that this is the subgroup(xp)p ∈
∏
p∈P

Gp | xp ∈ Kp for all but finitely many p ∈ P


of
∏
p∈PGp endowed with the topology with respect to which

∏
p∈PKp is open.

Proof of Theorem 1.8. First we prove that, for the totally disconnected locally compact abelian group G,

(3.6) htop(φ) =
∑
p∈P

htop(φ �Gp
).

Since c(G) = {0}, AT0(G,B(G)) holds, according to Proposition 3.12. Therefore, htop(φ) = htop(φ �B(G)). Since
Gp = B(G)p for every p ∈ P, we may assume without loss of generality that G is periodic, i.e., G = B(G). Hence,

we can write G as G =
loc∏
p∈P(Gp,Kp), where Kp ∈ B(Gp) for every p ∈ P and K =

∏
p∈PKp. For every p ∈ P, Gp

is fully invariant in G, so it makes sense to consider φ �Gp
.

For each n ∈ N+ let Pn be the set of the first n primes and consider the splitting

G = G(n) ×Hn, where G(n) =
∏
p∈Pn

Gp and Hn =

loc∏
p∈P\Pn

(Gp,Kp).

Since both G(n) and Hn are fully invariant in G, by Lemma 3.1 we have that

htop(φ �B(G)) = htop(φ �G(n)
) + htop(φ �Hn) =

∑
p∈Pn

htop(φ �Gp) + htop(φ �Hn).

Since htop(φ �Gp
) ≥ 0 for every p ∈ P, this equality gives us (3.6) in both cases, when the series

∑
p∈P htop(φ �Gp

)
converges and when it diverges.

We prove now the second part of the theorem.

(a) If AT (Gp) holds for every for p ∈ P, then also AT (G) holds.
(b) In case G is periodic, AT (G) holds if and only if AT (Gp) holds for every p ∈ P.

First we assume that G = B(G) is periodic and write G =
loc∏
p∈P(Gp,Kp), where Kp ∈ B(Gp) for every p ∈ P and

K =
∏
p∈PKp.

Assume that AT (G) holds, fix q ∈ P and consider the group G∗ =
loc∏
p∈P\{q}(Gp,Kp). Hence, G = G∗ × Gq.

Therefore, AT (Gp) follows from Proposition 3.10. This concludes the proof of the additional implication in item
(b).

Now assume that AT (Gp) holds for every p ∈ P. Let φ ∈ End(G) and let H be a φ-invariant closed subgroup of
G. Then

H =

loc∏
p∈P

(Hp, Hp ∩Kp),

where Hp = H ∩ Gp. Indeed, H is a periodic locally compact abelian group and for every p ∈ P the subgroup
Hp ∩Kp = Hp ∩K ∈ B(Hp). Moreover,

G/H ∼=
loc∏

p∈P
(Gp/Hp, (Kp +Hp)/Hp),

where (Kp +Hp)/Hp
∼= Hp/(Hp ∩Kp).

By (3.6) applied to G,φ, G/H, φ̄ and H,φ �H , we get

htop(φ) =
∑
p∈P

htop(φ �Gp), htop(φG/H) =
∑
p∈P

htop(φ �Gp/Hp
) and htop(φ �H) =

∑
p∈P

htop(φ �Hp
).

Since AT (Gp) holds for every p ∈ P, we have

htop(φ �Gp
) = htop(φ �Hp

) + htop(φ �Gp/Hp
)

and we are done.
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We end with the general case of the proof of (a), for a totally disconnected group G, supposing that AT (Gp) holds
for every p ∈ P. Since c(G) = {0}, B(G) is a fully invariant open subgroup of G. Moreover, since B(G) is periodic
and B(G)p = Gp for every p ∈ P, we deduce from the above argument that AT (B(G)) holds. By Proposition 3.6
we conclude that AT (G) holds as well. �

Note that in the above proof the subgroups G(n) ×
∏
p∈P\Pn

Kp form an increasing chain of open subgroups of

G =
⋃
n∈NG(n), but these subgroups need not be invariant.

3.4. The Addition Theorem for Qnp . An important instance of Addition Theorem is given by the following
example, where we have a locally compact abelian p-group which is not compact. A more general result will be
given in Proposition 4.8, nevertheless we anticipate this particular case which can be checked directly, without any
recourse to the highly non-trivial Theorem 2.5.

Example 3.13. Let G = Zp × Qp, for a prime p, and φ ∈ End(G). Since Qp = d(G), it is fully invariant, so in
particular it is φ-invariant. We prove that

(3.7) AT0(Zp ×Qp,Qp) holds.

Since d(G) = {0} ×Qp is a fully invariant subgroup of G, there exist φ1 ∈ End(Zp), φ2 = φ �Qp∈ End(Qp), and
a continuous endomorphism φ3 : Zp → Qp such that for every (x, y) ∈ G,

φ(x, y) = (φ1(x), φ2(y) + φ3(x)).

Therefore, there exist ξ1 ∈ Zp and ξ2, ξ3 ∈ Qp such that φi(z) = ξiz for i ∈ {1, 2, 3}. Let p`i = |ξi|p with the
convention that `i = −∞ in case ξi = 0 since |0|p = 0.

Let us see that

(3.8) htop(φ2) =

{
0 if `2 ≤ 0,

`2 log p if `2 > 0.

In fact, consider the local base B = {pkZp | k ∈ N} ⊆ B(Qp). Then, for every k, n ∈ N,

Cn+1(φ2, p
kZp) =

{
pkZp if `2 ≤ 0,

pk+n`2Zp if `2 > 0,

and so

Htop(φ2, p
kZp) =

{
0 if `2 ≤ 0,

`2 log p if `2 > 0.

By Lemma 2.1, we obtain (3.8).
Next we verify that

(3.9) htop(φ) =

{
0 if `2 ≤ 0

`2 log p if `2 > 0.

Consider the local base B = {pkZp× pkZp | k ∈ N, k ≥ `2} ⊆ B(G). For U = pkZp× pkZp ∈ B and for every n ∈ N,
one has

Cn+1(φ,U) =

{
U if `2 ≤ 0,

pkZp × pk+n`2Zp if `2 > 0,

and so

[U : Cn+1(φ,U)] =

{
1 if `2 ≤ 0,

pn`2 if `2 > 0.

Hence,

Htop(φ,U) =

{
0 if `2 ≤ 0,

`2 log p if `2 > 0.

By Lemma 2.1, we conclude that (3.9) holds.
Now (3.8) and (3.9) give (3.7).

Consider φ̄ ∈ End(G/Qp). Since G/Qp ∼= Zp, by Corollary 2.2 we conclude htop(φ̄) = 0. Hence, AT0(G,φ,Qp)
holds, as announced above.

Proof of Theorem 1.9. Let G = Qnp and φ ∈ End(Qnp ), and let H be a φ-invariant closed subgroup of G. Being
a closed subgroup of G,

H = Zmp ×Qkp with l = m+ k ≤ n.
Since G is divisible, we may assume without loss of generality that D(H) ⊆ G. Moreover, D(H) is a φ-invariant
closed subgroup of G. Indeed, being a closed subgroup, H is a Zp-submodule of Qnp , so its divisible hull D(H) is
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a Qp-submodule of G; the isomorphism D(H) ∼= Qlp implies that D(H) is locally compact, hence complete, and
therefore D(H) is a closed subgroup of G.

Since H is open in D(H), by Corollary 3.5 we have that

(3.10) htop(φ �H) = htop(φ �D(H)).

Since D(H)/H is a discrete φ̄G/H -invariant subgroup of G/H, and since the endomorphism induced by φ̄G/H on

(G/H)/(D(H)/H) is conjugated to φ̄G/D(H), by Lemma 2.3(b9 and by Proposition 3.7, we have that

(3.11) htop(φ̄G/H) = htop(φ̄G/D(H)).

Therefore, it remains to show that AT (G,φ,D(H)) holds, that is,

htop(φ) = htop(φ �D(H)) + htop(φ̄G/D(H)).

Since D(H) ∼= Qlp is divisible, then G = D(H)× L, where L ≤ Qnp and L ∼= Qn−lp . Being G a Qp-vector space, φ is
a Qp-linear transformation, and since D(H) and L are Qp-linear subspaces of Qnp with D(H) φ-invariant, we have
that φ is induced by a matrix A ∈Mn(Qp) of the form

A =

(
A1 0
B A2

)
where A1 ∈ Ml(Qp) induces φ �D(H) and A2 ∈ Mn−l(Qp) induces φ2 : L→ L, where φ2 is conjugated to φ̄G/D(H).
Since A has the same eigenvalues of (

A1 0
0 A2

)
,

which is the matrix of φ �D(H) ×φ2, by Theorem 2.5 and Lemma 2.3(b), we conclude that

htop(φ) = htop(φ �D(H)) + htop(φ2) = htop(φ �D(H)) + htop(φ̄G/D(H)).

This concludes the proof in view of (3.10) and (3.11). �

We are not aware whether AT (G) holds for every locally compact abelian p-group G with rankp(G) < ∞ (see
Question 6.5).

4. Locally compact abelian groups in E<∞ and E0

4.1. General facts on E<∞ and E0. The classes E0 and E<∞ are obviously stable under taking direct summands.
Moreover, they are also stable under taking extensions with respect to fully invariant closed subgroups satisfying
the Addition Theorem in the sense of Definition 3.2(b):

Lemma 4.1. Let G be a locally compact abelian group with a fully invariant closed subgroup H such that AT (G,H)
holds.

(a) If H ∈ E<∞ and G/H ∈ E<∞, then G ∈ E<∞.
(b) If H ∈ E0 and G/H ∈ E0, then G ∈ E0.

Assume that AT0(G,H) holds.

(a′) If H ∈ E<∞, then G ∈ E<∞.
(b′) If H ∈ E0, then G ∈ E0.

Note that for G ∈ E0 the conjunction of H ∈ E0 and G/H ∈ E0 for a fully invariant closed subgroup H obviously
implies that AT (G,H) holds.

Remark 4.2. One may ask whether the implications in Lemma 4.1 can be inverted. To show that the answer is
negative, at least in the cases (a) and (b), we make use of the examples of compact abelian p-groups G ∈ E0 of
weight c from Remark 1.3. Let us see that G has a fully invariant closed subgroup H with G/H 6∈ E<∞. Since

|Ĝ| = w(G) = c, one has rp(Ĝ) = |Ĝ| = c, and consequently Ĝ[p] ∼=
⊕

c Z(p). Therefore, G/pG ∼= Z(p)c 6∈ E<∞ (see
Example 4.7).

The following is a direct application of Lemma 3.5.

Lemma 4.3. Let G be a locally compact abelian group and endow D(G) with the unique group topology that makes
G an open topological subgroup of D(G).

(a) If D(G) ∈ E<∞, then G ∈ E<∞.
(b) If D(G) ∈ E0, then G ∈ E0.

We are not aware if the implication in the conclusion of the Lemma 4.3 can be inverted, see Question 6.1.
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4.2. Reduction to locally compact abelian p-groups. Since we want to determine when a locally compact
abelian group G is in E<∞, the following lemma gives a sufficient condition in terms of the open fully invariant
subgroup $(G) of G.

Lemma 4.4. Let G be a locally compact abelian group. If $(G) ∈ E<∞, then G ∈ E<∞.

Proof. Follows from Lemma 4.1, as AT0(G,$(G)) holds by Proposition 3.12. �

A locally compact abelian group G can be identified with Rn × G0 with the product topology, for some n ∈ N
and with B(G0) 6= ∅. Since Rn contains no non-trivial subgroups, B(G) ⊆ G0. On the other hand, c(G) = Rn ×K,
where K is compact and connected, so $(G) = B(G) + Rn.

While B(G) is fully invariant in G, Rn is fully invariant in G if and only if B(G) is totally disconnected, that is,
c(B(G)) = c(G) ∩ B(G) = {0}. Under this assumption, c(G) = Rn and $(G) = B(G) × Rn topologically, and we
see that $(G) ∈ E<∞ when B(G) ∈ E<∞:

Lemma 4.5. Let G be a locally compact abelian group such that c(B(G)) = {0}. Then

(4.1) htop(φ) = htop(φ �c(G)) + htop(φ �B(G)) for every φ ∈ End(G).

Consequently, if B(G) ∈ E<∞ then G ∈ E<∞.

Proof. First we note that AT0(G,$(G)) holds by Proposition 3.12, hence htop(φ) = htop(φ �$(G)). Moreover, the
open subgroup G1 = $(G) of G satisfies B(G1) = B(G) and c(G1) = c(G), so we may assume without loss of
generality that G = $(G).

As c(G) = Rn × c(B(G)) for some n ∈ N, our hypothesis implies that c(G) = Rn and c(G) ∩B(G) = c(B(G)) =
{0}. This gives the isomorphism G ∼= B(G)× c(G). Since both c(G) and B(G) are fully invariant in G, (4.1) holds,
by Lemma 3.1.

The last assertion follows from (4.1) and (2.3). �

The following result covers Theorem 1.2. It permits the crucial reduction to the case of locally compact abelian
p-groups.

Proposition 4.6. Let G be a locally compact abelian group such that c(B(G)) = {0}. Then:

(a) G ∈ E<∞ whenever Gp ∈ E<∞ for every p ∈ P and Gp ∈ E0 for almost all p ∈ P;
(b) G ∈ E0 whenever G is totally disconnected and Gp ∈ E0 for every p ∈ P.

If G = $(G), then also the converse implications hold. In particular, G ∈ E<∞ if and only if B(G) ∈ E<∞.

Proof. If φ ∈ End(G), by Theorem 1.8 and Lemma 4.5 we have htop(φ) = htop(φ �c(G)) +
∑
p∈P htop(φ �Gp

). The

conclusion follows since htop(φ �Gp
) ∈ logN+ ∪ {∞} for every p ∈ P by (2.2).

Assuming G = $(G), we have a direct product G = c(G) × B(G), where c(G) ∼= Rn for some n ∈ N. Since
for every p ∈ P the fully invariant closed subgroup Gp = B(G)p is a direct summand of B(G), we have that Gp
is a direct summand of G. Therefore, G ∈ E0 implies that c(G) = 0 in view of (2.3), and that each Gp ∈ E0 by
Lemma 3.1. Similarly, G ∈ E<∞ implies Gp ∈ E<∞ for every p ∈ P.

The last assertion follows from the fact that under the assumption G = $(G) the subgroup B(G) is a direct
summands of G, so Lemma 4.5 applies. �

4.3. Locally compact abelian p-groups in E<∞ and in E0. In the following example we see that E<∞ contains
locally compact abelian p-groups G with rankp(G) infinite, and that the same abelian group G may be endowed
with two different locally compact topologies τ1, τ2 with (G, τ1) ∈ E0 and (G, τ2) 6∈ E<∞.

Example 4.7. Any torsion abelian p-group of infinite rank (e.g., the group Z(p)N) equipped with the discrete
topology belongs to E0 ⊆ E<∞ by Remark 2.4 and it has finite p-rank.

On the other hand, Z(p)N endowed with the compact product topology does not belong to E<∞. In fact,
Z(p)N ∼= (Z(p)N)N and, letting K = Z(p)N, the one-sided left Bernoulli shift

σ : KN → KN, (x0, x1, x2, . . .) 7→ (x1, x2, x3, . . .),

has infinite topological entropy [7, 12]. A similar argument shows that the compact group Z(p)κ belongs to E<∞
for no infinite cardinal κ (just note that Z(p)κ ∼= (Z(p)κ)N).

In the following proposition we see how one can compute the topological entropy of a continuous endomorphism
of a locally compact abelian p-group G with rankp(G) <∞.

Note that for G = Zn1
p ×Qn2

p × Z(p∞)n3 × Fp, with n1, n2, n3 ∈ N and Fp a finite p-group, the subgroup

d(G) = Qn2
p × Z(p∞)n3

is fully invariant in G, hence the subgroup t(d(G))) = Z(p∞)n3 is fully invariant in G. Moreover,

d(G)/t(d(G)) ∼= d(G/t(G)) ∼= Qn2
p

and for elements of End(Qn2
p ) the topological entropy can be explicitly computed by applying Theorem 2.5.
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Proposition 4.8. Let G be a locally compact abelian p-group with rankp(G) <∞ and φ ∈ End(G). Then

htop(φ) = htop
(
φ̄G/t(G) �d(G/t(G))

)
.

Proof. By Theorem 1.4 we can assume that G = Zn1
p × Qn2

p × Z(p∞)n3 × Fp, for some n1, n2, n3 ∈ N and a finite
p-group Fp.

Since t(G) = Z(p∞)n3 × Fp, Corollary 3.9 entails

(4.2) htop(φ) = htop(φ̄G/t(G)),

where φ̄G/t(G) ∈ End(G/t(G)) is induced by φ and G/t(G) ∼= Zn1
p ×Qn2

p . For

H = G/t(G) ∼= Zn1
p ×Qn2

p

note that

D(H) ∼= Qn1
p ×Qn2

p .

Since the subgroup d(H) ∼= Qn2
p is fully invariant in H, φ̄G/t(G) is conjugated to a ψ ∈ End(Zn1

p ×Qn2
p ) such that,

for every (x, y) ∈ Zn1
p ×Qn2

p ,

ψ(x, y) = (ψ1(x), ψ2(y) + ψ3(x)),

where ψ1 ∈ End(Zn1
p ), ψ2 ∈ End(Qn2

p ) and ψ3 : Zn1
p → Qn2

p is a continuous homomorphism. Note that ψ2 is

conjugated to φ̄H �d(H). By Lemma 2.3(b),

(4.3) htop(ψ) = htop(φ̄H) and htop(ψ2) = htop(φ̄H �d(H)).

Since the subgroup Zn1
p is open in Qn1

p , Lemma 3.5 gives that ψ1 extends to ψ̃1 ∈ End(Qn1
p ), ψ extends to

ψ̃ ∈ End(Qn1
p ×Qn2

p ),

(4.4) htop(ψ1) = htop(ψ̃1) and htop(ψ) = htop(ψ̃).

Since Qn2
p is ψ̃-invariant, ψ̃ �Qn2

p
= ψ2 and the endomorphism induced by ψ̃ on Qn1

p ×Qn2
p /Qn2

p is conjugated to ψ̃1,

by Theorem 1.9 and Lemma 2.3(b), we deduce that

htop(ψ̃) = htop(ψ2) + htop(ψ̃1).

Since htop(ψ1) = 0 by Corollary 2.2, from (4.2), (4.3) and (4.4) we have that

htop(φ) = htop(ψ) = htop(ψ̃) = htop(ψ2) = htop(φ̄H �d(H)),

as required. �

We are ready to prove Theorem 1.5.

Proof of Theorem 1.5. By Theorem 1.4 we can assume thatG = Zn1
p ×Qn2

p ×Z(p∞)n3×Fp, for some n1, n2, n3 ∈ N
and a finite p-group Fp.

By Proposition 4.8, for φ ∈ End(G), we obtain htop(φ) = htop
(
φ̄G/t(G) �d(G/t(G))

)
. This value is finite since

d(G/t(G)) ∼= Qn2
p and Qn2

p ∈ E<∞ by Theorem 2.5. Hence, G ∈ E<∞.

We verify now that G ∈ E0 precisely when n2 = 0. If n2 6= 0, then G 6∈ E0 because Qn2
p 6∈ E0 by Example 2.6 or

by Theorem 2.5. Assume that n2 = 0, so

G = Zn1
p × Z(p∞)n3 × Fp.

By Remark 2.4 we have that t(G) = Z(p∞)n3 ×Fp ∈ E0, while Zn1
p ∈ E0 by Corollary 2.2. Since AT (G, t(G)) holds

in this case by Corollary 3.9, we conclude that G ∈ E0 by Lemma 4.1. �

Combining Proposition 4.6 with Theorem 1.5 we obtain the proof of Theorem 1.6:

Proof of Theorem 1.6. Let G be a locally compact abelian with c(B(G)) = {0} and rankp(Gp) < ∞ for every
p ∈ P.

(a) If
∑
p∈P rkZp

(d(Gp)) < ∞, then rkZp
(d(Gp)) < ∞ for every p ∈ P and rkZp

(d(Gp)) = 0 for almost all p ∈ P.
By Theorem 1.5, this means that Gp ∈ E<∞ for every p ∈ P and Gp ∈ E0 for almost all p ∈ P, and so G ∈ E<∞ by
Proposition 4.6.

(b) If c(G) = {0} and rkZp
(d(Gp)) = 0 for every p ∈ P, then Gp ∈ E0 for every p ∈ P by Theorem 1.5, and so

G ∈ E0 by Proposition 4.6.
Analogously one can prove the converse implications under the assumption G = $(G). �
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5. The scale

If G is a totally disconnected locally compact group and φ ∈ End(G), the scale of φ was defined in [30] as

s(φ) = min{[φ(U) : U ∩ φ(U)] | U ∈ B(G)}.

By [16, Proposition 4.8], we have that always

(5.1) log s(φ) ≤ htop(φ).

A subgroup U ∈ B(G) is minimizing for s(φ) if the minimum in the definition is attained at U , that is, s(φ) =
[φ(U) : U ∩ φ(U)]. Obviously, every φ-invariant subgroup U ∈ B(G) is minimizing and witnesses the equality
s(φ) = 1; in particular, s(φ) = 1 for every φ ∈ End(G), if G is either compact or discrete.

The nub nub(φ) of φ is the intersection of all minimizing subgroups of s(φ); by [16, Corollary 4.6 and Corollary
4.11] nub(φ) is a compact subgroup of G such that φ(nub(φ)) = nub(φ) and

htop(φ) = log s(φ) if and only if nub(φ) = {1}.

In [3, Theorem 3.32] several conditions equivalent to nub(φ) = {1} are given in case φ is a topological automorphism.

The scale can be computed also by using the following useful formula, called Möller’s formula.

Fact 5.1 (See [30, Proposition 18]). Let G be a totally disconnected locally compact group and φ ∈ End(G). If
U ∈ B(G), then

s(φ) = lim
n→∞

[φn(U) : U ∩ φn(U)]
1
n .

In the abelian case φn(U)/(U ∩ φn(U)) ∼= (U + φn(U))/U , hence Möller’s formula can be written as

(5.2) s(φ) = lim
n→∞

∣∣∣∣U + φn(U)

U

∣∣∣∣ 1n .
The counterpart of the Addition Theorem, namely s(φ) = s(φ �H)s(φ̄G/H), does not hold for the scale (see [4,

Remark 4.6]). Nevertheless, by applying the formula in (5.2) we can easily extend the following monotonicity needed
below to all continuous endomorphisms.

Lemma 5.2. Let G be a totally disconnected locally compact abelian group, φ ∈ End(G) and H a φ-invariant closed
subgroup of G. Then s(φ) ≥ max{s(φ �H), s(φ̄G/H)}.

Proof. By [16, Corollary 2.5], B(H) = {U ∩H | U ∈ B(G)} and π(B(G)) = {π(U) | U ∈ B(G)} ⊆ B(G/H) is a local
base of G/H.

Let U ∩H ∈ B(H). Then, for every n ∈ N,

U + φn(U)

U
≥ U + φn(U ∩H)

U
=
U + (U ∩H) + φn(U ∩H)

U

∼=
(U ∩H) + φn(U ∩H)

U ∩ ((U ∩H) + φn(U ∩H))
=

(U ∩H) + φn(U ∩H)

U ∩H
.

To conclude that s(φ �H) ≤ s(φ), apply (5.2).
Let now π(U) ∈ π(B(G)). Then U + φn(U)/U has as a quotient

U + φn(U)

(U +H) ∩ (U + φn(U))
∼=
U + φn(U) +H

U +H
∼=
π(U + φn(U) +H)

π(U +H)
=
π(U + φn(U)

π(U)
=
π(U) + (φ̄G/H)n(π(U))

π(U)
.

To conclude that s(φ̄G/H) ≤ s(φ), apply (5.2). �

The p-adic Yuzvinski’s formula for the scale was given for topological automorphisms of Qnp in [4, Theorem 5.2]
(see also [17] for more general results) and can be generalized to continuous endomorphisms applying the same
argument.

Theorem 5.3. Let n ∈ N and φ ∈ End(Qnp ). Then s(φ) =
∏
|λi|p>1 |λi|p, where {λi | i ∈ {1, . . . , n}} are the

eigenvalues of φ in some finite extension Kp of Qp.

From Theorem 2.5 and Theorem 5.3, we get immediately the following equality.

Corollary 5.4. Let n ∈ N and φ ∈ End(Qnp ). Then htop(φ) = log s(φ).

We extend Corollary 5.4 to all locally compact abelian p-groups of finite rankp in the next result which covers
Theorem 1.7.

Theorem 5.5. Let G be a locally compact abelian p-group with rankp(G) <∞ and let φ ∈ End(G). Then htop(φ) =
log s(φ) and nub(φ) = {0}.
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Proof. By Theorem 1.4 we can assume that G = Zn1
p × Qn2

p × Z(p∞)n3 × Fp, for some n1, n2, n3 ∈ N and a finite

p-group Fp. By Proposition 4.8, htop(φ) = htop(φ̄G/t(G) �d(G/t(G))), where d(G/t(G)) ∼= Qn2
p . By Lemma 5.2 and

Corollary 5.4,
log s(φ) ≥ log s(φ̄G/t(G) �d(G/t(G))) = htop(φ̄G/t(G) �d(G/t(G))).

Since log s(φ) ≤ htop(φ) by (5.1), we obtain the thesis. �

6. Final comments and open questions

6.1. The abelian case. We start with a question related to Lemma 4.3.

Question 6.1. Let G be a locally compact abelian group and endow D(G) with the unique group topology that makes
G an open topological subgroup of D(G).

(a) Does G ∈ E<∞ imply D(G) ∈ E<∞?
(b) Does G ∈ E0 imply D(G) ∈ E0?

According to Theorem 1.1(a), a locally compact abelian group G ∈ E<∞ is finite-dimensional. This motivates
us to focus on finite-dimensional locally compact abelian groups in the sequel.

Theorem 1.2 leaves open the following questions. A positive answer to both items would completely reduce the
problem of understanding the structure of the locally compact abelian groups in E<∞ to the totally disconnected
case.

Question 6.2. Suppose that G is a finite-dimensional locally compact abelian group.

(a) Does G/c(G) ∈ E<∞ imply G ∈ E<∞?
(b) Does G ∈ E<∞ imply G/c(G) ∈ E<∞?

According to Theorem 1.1(a), the answer to item (a) is affirmative for compact abelian groups. On the other
hand, the answer to item (b) is not known even for compact abelian groups (see [12, Question 7.3]).

We do not know whether the implication in Lemma 4.4 can be inverted:

Question 6.3. Does G ∈ E<∞ imply $(G) ∈ E<∞ for a locally compact abelian group G?

A positive answer to this question would allow us to work in the case when G = $(G). Assuming also that
c(B(G)) = {0} (i.e., B(G) is periodic), in Proposition 4.6 we saw that G ∈ E<∞ if and only if B(G) ∈ E<∞. So
the study of the locally compact abelian groups in E<∞ would be reduced to the case of periodic locally compact
abelian groups, for which Theorem 1.2 gives a further reduction to locally compact abelian p-groups.

Question 6.3 remains open even in the totally disconnected case, when $(G) = B(G):

Question 6.4. Suppose that G is a totally disconnected locally compact abelian group. Does G ∈ E<∞ imply
B(G) ∈ E<∞?

The answer is positive whenever G is divisible, since in this case every continuous endomorphism of B(G) extends
to an endomorphism of G, as G is divisible and B(G) is an open subgroup of G.

Theorem 1.9, stating that the Addition Theorem holds for Qnp , leaves open the following general question.

Question 6.5. Does AT (G) hold for every locally compact abelian p-group G? What about locally compact abelian
p-groups with rankp(G) <∞?

According to Theorem 1.8, an affirmative answer to the first part of the above question would imply that AT (G)
holds for every totally disconnected locally compact abelian group. We conjecture that the answer is affirmative at
least in the second more restrictive version.

6.2. The non-abelian case. Finally, we report a few comments regarding the non-abelian case.
Following [22], for a compact p-group G and n ∈ N, consider the subgroup

Ωn(G) = 〈{g | gpn = 1}〉,
which is obviously fully invariant in G.

Lemma 6.6. If G is a compact p-group such that B = {Ωn(G) | n ∈ N} ⊆ B(G) is a local base of G, then G ∈ E0.

Proof. It suffices to apply Corollary 2.2. �

An instance of the above lemma, are the groups Znp × Fp, where n ∈ N and Fp is a finite p-group.

In order to provide another example we need to recall first a family of non-abelian locally compact nilpotent
groups of nilpotency class 2 with significant applications in theoretical physics and Lie theory. The Heisenberg group
on a commutative unitary ring R is the group of all (3× 3)-matrices

H(R) = {M(a, b; z) | a, b, z ∈ R}, where M(a, b; z) =

1 a z
0 1 b
0 0 1

 .
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The group H(R) is nilpotent of class 2, since

Z(H(R)) = H(R)′ = {M(0, 0; z) | z ∈ R} ∼= (R,+) and H(R)/Z(H(R)) ∼= (R,+)× (R,+).

When R is a topological commutative unitary ring, H(R) is equipped with the product topology induced by R9.

One can see that H(Zp) is a compact p-group, while H(Qp) is a locally compact p-group; for both these groups
rankp equals 2. Here, following [18], we take as a definition of rankp(G) of a locally compact group G, the equivalent
condition mentioned in the introduction, that is, rankp(G) is finite if there exists n ∈ N such that every topologically
finitely generated subgroup of G is generated by at most n elements, and rankp(G) is the smallest n ∈ N with such
property.

Example 6.7. The group H(Zp) satisfies the hypothesis of Lemma 6.6, hence H(Zp) ∈ E0.

While H(Zp) ∈ E0 comes as an application of Lemma 6.6, for H(Qp) we prove the following result using several
versions of the Addition Theorem and specific algebraic properties of the Heisenberg groups.

Theorem 6.8. The group G = H(Qp) satisfies G ∈ E<∞ \ E0.

Proof. To check that G 6∈ E0, let

φ : G→ G, M(a, b; z) 7→M(a/p, b; z/p).

Then φ ∈ Aut(G), so by the Addition Theorem for topological automorphisms of totally disconnected locally
compact groups in [16],

(6.1) htop(φ) = htop(φ �Z(G)) + htop(φ̄G/Z(G)).

Since

(6.2) Z(G) ∼= Qp and G/Z(G) ∼= Q2
p,

and φ �Z(G) is conjugated to the multiplication by 1/p of Qp, by Lemma 2.3(b) and Example 2.6 we conclude that
htop(φ) ≥ htop(φ �Z(G)) = log p > 0.

It remains to verify that G ∈ E<∞. To this end, fix φ ∈ End(G) and let N = kerφ; we have to prove that
htop(φ) <∞.

Assume that N = {1}. We show that φ ∈ Aut(G). Indeed, since Z(G) is fully invariant, φ �Z(G) is an injective

endomorphism of Z(G) ∼= Qp, hence φ �Z(G) is an automorphism of Z(G). In particular, φ−1(Z(G)) = Z(G), so

the induced endomorphism φ̄G/Z(G) : G/Z(G)→ G/Z(G) is injective as well. As G/Z(G) ∼= Qp×Qp, φ̄G/Z(G) is an
automorphism of G/Z(G). This proves that φ is a bijective continuous endomorphism of G. Since H(Qp) is locally
compact and σ-compact, φ is a topological automorphism by the Open Mapping Theorem (see [19, Theorem 5.29]).
In view of (6.2), by Lemma 2.3(b) and by Theorem 1.5, htop(φ �Z(G)) < ∞ and htop(φ̄G/Z(G)) < ∞, so we can
conclude with (6.1) that htop(φ) <∞.

Now suppose that N 6= {1}. First we show that H = N ∩ Z(G) 6= {1} and then the inclusion Z(G) ⊆ N .
Indeed, if H = N ⊆ Z(G), there is nothing to prove, as N 6= {1}. If there exists a non-central element y ∈ N ,
then there exists x ∈ G such that the commutator [x, y] 6= 1. This implies H = N ∩ G′ 6= {1}, as [x, y] ∈ N .
Then H is a non-trivial closed subgroup of Z(G), hence Z(G)/H is torsion in view of (6.2). On the other hand,
Z(G)/H ∼= φ(Z(G)) is (isomorphic to) a subgroup of G, hence torsion-free as G itself. Consequently Z(G)/H is
trivial, that is H = Z(G) ⊆ N .

Since N contains Z(G) = G′, Theorem 3.11 is applicable and gives htop(φ) = htop(φ̄G/N ). Since G/N is
isomorphic to a quotient of G/Z(G), we get G/N ∈ E<∞ by (6.2) and in view of Theorem 1.5. Therefore,
htop(φ) = htop(φ̄G/N ) <∞. �

This theorem motivates the following:

Conjecture 6.9. Every nilpotent locally compact p-group G with rankp(G) <∞ is in E<∞.

Due to the Addition Theorem for topological automorphisms of totally disconnected locally compact groups
from [16], it is not hard to deduce from Theorem 1.5 an affirmative answer of the above conjecture for topological
automorphisms.

Since totally disconnected locally compact groups are precisely the zero-dimensional ones, now we impose again
finiteness of the dimension, instead of finiteness of the rank. We conjecture that the following question has a positive
answer in the abelian case. This is inspired by the implication in the first part of Theorem 1.1(a).

Question 6.10. If G is a finite-dimensional connected locally compact group, can we assert that G ∈ E<∞?

According to [5, Corollary 16], the answer is affirmative for Lie groups. On the other hand, it is affirmative also
for compact groups. Indeed, the second part of Theorem 1.1(a) (this is [12, Theorem A]) works also for classes of
compact-like groups other than locally compact (e.g., ω-bounded, or simply pseudocompact, etc.). In particular,
G ∈ E<∞ if G is a finite-dimensional connected pseudocompact group by [12, Proposition 4.4]. So, one can try to
further push the study of the class E<∞ in the framework that simultaneously generalizes both locally compact and
pseudocompact groups, namely, that of locally pseudocompact groups.
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