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Abstract
This study proposes a methodology for the drought assessment based on the seasonal
forecasts. These are climate predictions of atmospheric variables, such as precipitation,
temperature, wind speed, for upcoming season, up to 7 months. In regions particularly
vulnerable to droughts and to changes in climate, such as the Mediterranean areas,
predictions of precipitation with months in advance are crucial for understanding the
possible shifts, for example, in water resource availability. Over Europe, practical
applications of seasonal forecasts are still rare, because of the uncertainties of their skills;
however, the predictability varies depending on the season and area of application. In this
study, we describe a methodology which integrates, through a statistical approach,
seasonal forecast and reanalysis data to assess the climate state, i.e. drought or not, of a
region for predefined periods in the next future, at monthly scale. Additionally, the skill of
the forecasts and the reliability of the released climate state assessment are estimated in
terms of the false rate, i.e. the probability of missing alerts or false alarms. The method-
ology has been first built for a case study in Zakynthos (Greece) and then validated for a
case study in Sicily (Italy). The selected locations represent two areas of the Mediterra-
nean region often suffering from drought and water shortage situations. Results showed
promising findings, with satisfying matching between predictions and observations, and
false rates ranging from 1 to 50%, depending on the selected forecast period.
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1 Introduction

Fulfilling water demand in situations of water scarcity is one of the major challenges faced by
Water Utilities (WUs). Prolonged droughts due to alterations in climate are among the causes
of water scarcity, particularly in the Mediterranean area, which is one of the regions most
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vulnerable to climate alterations (IPCC 2013; Forestieri et al. 2018). Climate alterations have
direct impacts on the surface water balance and groundwater recharge (Arnone et al. 2018),
and thus changes in the reservoir inputs. In such conditions, the management of water
resources becomes a challenging task for WUs (Wilhite et al. 2007). However, WUs man-
agement routines scarcely consider climate information, and, when they do, they are based on
the stationary assumption. Therefore, their response to water shortage relies on short-term
strategies aimed at reducing water consumption and improving watershed management, rather
than focusing on comprehensive planning for the long-term consequences of climate change.

When planning their operations for the next relevant period (few months to a year), as well
as their long-term infrastructures investments (few years to decades), the standard approach is
to rely on historical weather data (e.g., Danilenko et al. 2010) to derive probability distribu-
tions, and to estimate the likelihood of future events (e.g., occurrence of a certain amount of
precipitation in a certain period of the year). Specifically, the approach used to assess
anomalies in precipitation and drought is based on the derivation of standardized indices, such
as the Standardized Precipitation Index (SPI, McKee et al. 1993; Cancelliere et al. 2007;
Bonaccorso et al. 2015), and its modifications, e.g. Standardized Precipitation Evapotranspi-
ration Index (SPEI, Vicente-Serrano et al. 2010). Information from large scale atmospheric
circulation patterns, e.g. the North Atlantic Oscillation (NAO), as predictor of future SPI index
have been successfully adopted to develop forecasting models of droughts transition proba-
bilities at short and middle terms (Cutore et al. 2009; Bonaccorso et al. 2015). The assumption
underlying the above described approaches is that the climate system remains essentially
stationary over the timescales of interest. In a situation of increasing climate volatility, this
assumption is no longer viable.

Inaction on water supply systems by the WUs, especially in the Mediterranean area, may
imply higher costs of coping with emergencies or higher costs for the provision of a given
standard of service with the existing infrastructure. An interesting example, in this sense, is the
case of Rome Municipality, in Italy, where the WU ACEA experienced a serious water
shortage in summer 2017 during the extreme heat wave that hit Southern Europe (WWA
2017). Years 2001 and 2016 also recorded precipitation anomalies in Southern-Italy, espe-
cially in Sicily (SIAS 2002, 2016; ISPRA 2001, 2016).

Getting a reliable early assessment of near-future rainfall anomalies would provide a valid
support for the evaluation of water availability and the management of the related water supply
system.

Seasonal forecasts (SFs) may offer a powerful tool for guiding a strategic planning of the
resources across several climate-sensitive sectors (e.g. De Felice et al. 2015; Viel et al. 2016).
Over Europe, practical applications of seasonal forecasts were rarer up to the last decade,
mainly due to their uncertain skills in this region (Doblas-Reyes 2012). To fill the gap, the
projects EUPORIAS promoted the use of climate information for decision support by involv-
ing both providers and potential users of seasonal data (Buontempo et al. 2017). It was
demonstrated that seasonal forecasts may give important contributions in the fields of
drought-risk assessment and mid-term reservoir management (Viel et al. 2016; Crochemore
et al. 2017). A synoptic overview of the current applications of climate information across
different sectors in Europe is given by Soares et al. (2018). Today, seasonal forecasts and
climate projections are rather commonly used in agriculture, energy, water and ‘other’ sectors
(including the environment, weather and climate change, industry and research sectors). For
instance, Clark et al. (2017) successfully explored the skills of seasonal forecasts for the wind
energy industry over Europe. Specifically, they demonstrated the good predictability of the
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selected variables, i.e. wind speed and temperature, through the NAO index. The potential of
seasonal forecasting in the prediction of reservoir-hydrological variables (e.g. reservoir month-
ly volume) has been demonstrated by Marcos et al. (2017) on a river basin in Spain based on
multilinear regression models. Arnal et al. (2018) conducted an in depth investigation over
Europe on the advantages of using seasonal forecasts for predicting the streamflow at seasonal
scale as compared with the use of classical historical meteorological observations. They
analyzed the skill of the operational EFAS (European Flood Awareness System) seasonal
streamflow forecasts against the ESP (Ensemble Streamflow Prediction) forecasting approach,
founding that the predictability varies in space and time.

In this study, we propose a methodology based on seasonal forecast data to assess the
probability of drought occurrence in the future, over a mid-term horizon which spans from 1 to
7 months. The cumulated precipitation over different time windows is analyzed to assess the
drought occurrence probability. Based on this information, changes in the expected future
water availability can be evaluated by the local water resources managers. To design and then
validate the methodology, we conducted two case studies, one in Zakynthos (Greece) and one
in Sicily (Italy). The selected areas belong to two countries which most suffer for changes in
climate and water scarcity.

The structure of the manuscript is the following: section 2 describes the methodology, i.e.
the types of the adopted data (2.1 and 2.2) and the developed procedure (2.3 and 2.4); section 3
introduces the two case studies; in section 4 the results are discussed; finally, section 5
concludes the manuscript.

2 Methodology

2.1 Seasonal Forecasts

The methodology builds on two datasets: SF and reanalysis data.
SFs are climate predictions for the next few months, starting from any initial date. They are

produced with numerical models of the climate system, that are very similar to those adopted
for forecasting the weather of the next few days (Hoskins 2012). Differently from wheater
forecasts, SFs directly predict both the slow component of the climate system (i.e. the ocean)
and the fast component (i.e. the atmosphere).

In seasonal climate predictions, as in any chaotic system, tiny variations of the initial
state may lead to diverging trajectories in a relatively small amount of time. A number of
predictions, known as ensemble, is performed with the numerical climate model, and
each result is defined as a member of the ensemble. The initial states of the ensemble
members differ only slightly, and the spread is consistent with the observation uncer-
tainties. However, the predictions might differ substantially further ahead in the future. In
this way, it is possible to sample the uncertainty in the forecasts caused by the initial-
ization intrinsic uncertainty.

A characteristic of the SF is the lead time, LT, which indicates the ‘time distance’ between
the issuance of the forecast and the occurrence of the phenomena that are predicted. Value 0
means that the forecast target period begins the same month of the release; value 3 means that
target period begins 3 months after the release.

The entire data normally includes two types of dataset: forecasts in real-time, which are
those updated to the present, and retrospective forecasts (hindcasts) initialized at equivalent
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intervals and necessary to validate and test the skill of the forecast using historical data. The
two datasets can be characterized by a different number of members.

SFs are released by various climate centers. This study uses the SF belonging to the System 5
(SEAS5) archive, released by the European Centre for Medium-Range Weather Forecasts
(ECMWF) and made available by the data access system of Copernicus Climate Data Store (CDS).

We use the total precipitation at surface daily data available at the following link:
https://cds.climate.copernicus.eu/cdsapp#!/dataset/seasonal-original-single-levels. The dataset
has a global coverage and a spatial resolution of 1°×1°, and it includes forecasts in real-time
(since 2017) and hindcasts initialized in the period 1986–2016. Real-time forecasts consist of a
51-member ensemble, generated using a combination of SST and atmospheric initial condition
perturbations and the activation of stochastic physics. The runs are 7-months long and are
released on the 5th day of each month at 12:00 UTC. Therefore, LT goes from 0 to 6. The
hindcast datasets have the same characteristics but consist of 25-member ensembles.

2.2 Reanalyses

Reanalysis data are becoming of common use in hydrological and, in general, impact
modeling. They derive from the combination of forecasts models and data assimilation
systems, used to reanalyze archived observations. The main advantage of reanalysis data is
the continuity in space and time, since they are produced at global scale and do not have gap or
missing records. Similar to the SFs, they are produced within a regular grid format by the same
climatic centers.

In this work, reanalysis data serve as a reference to derive the site-specific climatic
characteristics, to assess the skill of the SFs and to estimate the anomalies as compared to
the expected statistics. Reanalysis data are assumed as a surrogate of observations. The
development of ad hoc statistical metrics for relative comparison with historical observation
allowed to overcome the procedure of data correction (e.g. bias correction).

The daily total precipitation data have been retrieved from the ERA-Interim dataset. Data
are available from 1979 to present, and the spatial resolution is 0.75°x.75°, i.e. approximately
80 km.

2.3 Drought Assessment

The likelihood of a drought occurrence in the upcoming season is assessed at monthly scale
over a defined time window. The cumulated precipitation is the main input variable, which is
computed and verified by comparison with the climatology over the same time window, in
order to define a ‘climate state’.

Let us denote the time window as cumulation period, CPm, where m indicates the number
of months, which may vary from 1 to 6, i.e. over the all possible LTs. Once a CPm is selected,
precipitation is cumulated over a rolling window of length CPm: as an example, CP3 leads to a
three-month rolling window, targeting the periods January–February-March, JFM, February–
March-April, FMA, and so on.

The statistical properties characterizing the cumulated precipitation in each period are
derived from the SF hindcast data over a predefined number of years, Ntot (Fig. 1). For each
CPm, a time series of length Ntot is created and the terciles of its probability distribution are
derived. Two classes of precipitation are derived: ‘dry’, for cumulated precipitation below the
1st tercile; ‘not-dry’ for cumulated precipitation above the 1st tercile.
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The methodology then requires that the real-time seasonal predictions (in the next future)
for the selected CPm are verified against the climatology. The ‘drought’ alert is released when
the frequency of ensemble members that fall within the dry class is sufficiently high, according
to a probabilistic approach. This then involves a classification procedure.

Theoretically, the frequency threshold which discriminates dry and not-dry classes is equal
to 1/3, corresponding to the tercile frequency. Practically, the optimal value of this threshold is
derived from a calibration procedure of hindcast data against observations. This allows the
computation of (i) the skill of the classification over past predictions, (ii) the optimal
discriminate threshold frequency, and (iii) a curve to assess the reliability of future predictions
(see next section). The entire procedure is depicted in Fig. 1. It is based on the derivation of the
sensitivity/specificity variables and Receiving Operating Characteristic (ROC) curves (Fawcett
2006), widely used in literature and SF approaches to quantify the goodness of a prediction
model (e.g. Vogel et al. 2018; Hyvärinen et al. 2015). In particular, the sensitivity evaluates the
true positive rate, i.e. the matching between observations and prediction in correctly classifying
an occurrence within the dry class. The specificity evaluates the true negative rate, i.e. the
matching between observation and prediction in correctly discarding an occurrence from dry
class:

sensitivity ¼ TP
TP þ FN

ð1Þ

specificity ¼ TN
TN þ FP

ð2Þ

where TP indicates true positive, TN the true negative, FN and FP are the false negative
and false positive, respectively. They quantify the ability of the system to correctly

Fig. 1 Steps to compute the discriminant threshold frequency and the maximum false rate for given CPm-LT
combination. Hindcast data of SF and reanalysis data over a test period are used
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identify the reference observations as belonging to the not-dry and dry classes, respec-
tively. Sensitivity and specificity are calculated from the classification tables by varying
the cutoff threshold, which is the threshold frequency of the ensemble members that
determines whether the predicted cumulated precipitation falls within the dry or not-dry
class.

The intersection between the sensitivity and specificity curves identifies the threshold
frequency that optimizes the capability of the algorithm to correctly attribute forecasts to
the dry and not-dry classes, i.e. which minimizes the rate of the two types of erroneous
classifications. The definition agrees with one of the methods available in literature that
identifies the optimal cut-off threshold as the value corresponding to the intersection of
the ROC curve with the −45 degree line (Sanchez 2017). Other methods are based on the
Youden index (Youden 1950) and the minimum distance from the (1,0) point to the ROC
curve (Kumar and Indrayan 2011), which lead, in most of the cases, to similar result. We
denote the optimal cut-off threshold as Discriminant Threshold Frequency (DTF).

The procedure applies for all 21 possible combinations of CPm-LT, (CP1:6-LT0,
CP1:5-LT1, CP1:4-LT2, CP1:3-LT3, CP1:2-LT4, CP1-LT5), which are characterized
by their own sensitivity/specificity curves and DTF. The resulted value is site and
CPm-LT specific.

Ultimately, in operative phase and with real-time SFs, the climate state (drought or not) for
an upcoming CPm, at lead time LT, results from the comparison between the frequency of
ensemble members of the forecast dataset which fall within the dry class of the corresponding
CPm and LT (fqCPm,LT), and the DTF associated to the given CPm-LT, DTFCPm,LT:

& fqCPm,LT ≥DTFCPm,LT implies drought;
& fqCPm,LT < DTFCPm,LT implies normal conditions.

The release of the climate state is updated on a monthly level, once the seasonal forecasts are
released.

The methodology has been developed at single grid-cell. However, the use of multiple cells
does not alter significantly the procedure and its reliability.

2.4 Reliability Assessment

The uncertainty associated to the monthly release of the drought assessment is evaluated in
terms of classification reliability. Specifically, when a drought is predicted, we want to
evaluate how confident we are that the information is not wrong and what the chances are
that the methodology is missing alerts or giving false alarms.

The reliability definition builds on the classification procedure described in the
previous section and it is assessed in terms of the so-called false rate (FR, ranging from
0 to 100%). FR is a metric that depends on both the system capability of discriminating
between the two classes and the reliability of the next future precipitation forecasts. The
FR is defined as a function of the actual frequency of ensemble members falling within
the dry class (the previously defined fqCPm,LT, hereinafter simply fq whereas DTFCPm,LT

hereinafter simply DTF), and depends on the predicted climate state. Specifically, in case
of drought, FR(fq) indicates the expected frequency of false alarms (Eq. 3). Conversely
FR(fq) indicates the expected frequency of missing drought alerts (Eq. 4).

Arnone E. et al.



FR fqð Þ ¼ 1−specificity fqð Þ if fq > DTF

FR fqð Þ ¼ 1−sensitivity fqð Þ if fq < DTF

8
<

:
ð3; 4Þ

Figure 2 depicts how to derive FR(fq) from the sensitivity/specificity curves and over a
forecast dataset.

Let us assume that the frequency of ‘dry’ ensemble members is fq* ≥DTF, and so the
forecast is attributed to the dry class and the drought state is released (Fig. 2a). SpIn denotes
the specificity value associated to fq* (red line). This value indicates that, over the reference
dataset, attributing forecast ensembles characterized by the highlighted fq* value to the not-dry
class resulted in a correct classification SpIn times over one. On the contrary, the quantity 1-
SpIn indicates the cases in which the algorithm wrongly attributed the reference observations
to the dry class (false positive, FP) in presence of the same fq* value. Thus, it represents the
expected frequency of false alarms.

Conversely, let us assume the frequency of forecast members belonging to the dry clss
being fq** <DTF. In this case the forecast get discarded from the dry class (no drought).
SnOut denotes the sensitivity value associated to fq** (green line) and indicates that the
algorithm correctly attributed the precipitation occurrences to dry class, over the reference
dataset, with a frequency equal to SnOut (true positive, TP). The quantity 1-SnOut indicates
the cases in which the algorithm wrongly discarded the precipitation occurrences from the dry
class (false negative, FN) when they actually belonged to it. Thus, it represents the expected
frequency of missing alerts.

Finally, at fq = DTF, FR(fq) reaches its maximum value, which corresponds to the maxi-
mum possible rate of false alarms and missing alert (Fig. 2c). This is denoted as maxFR, it
characterizes each CPm-LT combination and it is representative of the overall skill of the
methodology. Indeed, maxFR provides an assessment of the possible chance of failure of the
tool.

3 Case Studies Description

The methodology was developed in the context of an EU’s Horizon 2020 Program Project,
named CrossClimate, coordinated by the NEPTUNE Consortium. The key-steps of the
procedure have been defined within a co-design process, which was explicitly tailored to
small-medium WUs of the Mediterranean region. The aim of the project was to support their
water resources management and decisions planning in situations of water scarcity and drought
(Amigo s.r.l 2018; Arnone et al. 2020). To this end, two case studies have been conducted to

Fig. 2 Definition of False Rate, FR(fq) and maxFR based on sensitivity and specificity
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(i) identify and test the key steps of the methodology, and (ii) validate the algorithm at a
specific site.

Depending on the climatology characterizing the area and on the dominant water abstrac-
tion practices, someWUs may be interested in forecasts with different lead times or in different
variables and climatic indices. Therefore, defining the WU needs is a necessary first step.

A first co-design process was conducted with the WU DEYA located in the small island of
Zakynthos, Greece (Fig. 3). This allowed to assess the WU needs, mainly in terms of timing of
plans, and to practically first applying the algorithm. A further case study was then conducted
with the WU Siciliacque S.p.A., located in Sicily, Italy (Fig. 3). This WU is characterized by
an integrated type of service, much greater water demand, different water sources and
management strategies, but similar climate and criticisms in water shortage and timing of
plans.

The following section describes the information collected during the co-design process
from both DEYA and Siciliacque. The methodology application is presented for the Greek
case, whereas validation and the relative results are discussed for the Siciliacque case.

3.1 Collecting Information

Greece and Sicily (south Italy) are two of the widest areas of the Mediterranean region.
Precipitations are abundant in winter and spring, while scarce during summer. In conjunction
with high temperatures during summer, this may lead to recurrent conditions of drought.
Moreover, relatively minor modifications of the general circulation can lead to substantial
changes in the Mediterranean climate (Giorgi and Lionello 2008). This makes the Mediterra-
nean areas a potentially vulnerable region to climatic changes (Lionello et al. 2006; Ulbrich
et al. 2006).

DEYA is the Public Water & Wastes Corporation of Greece, and it includes 227 DEYAs,
one of which is in Zakynthos, which satisfies mainly domestic water demands for about
40,000 inhabitants (Megalovasilis 2014). The main water source of the island comes from the
groundwater. DEYA manages 70 drill holes all over the island.

Fig. 3 Case study locations: Zakynthos (Greece) (top) and Sicily (Italy) (bottom). The overlapping with the grid-
data of seasonal forecast is showed (on the right)
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Siciliacque is a mixed public (25%) and private (75%) company of integrated water service
(SII, Servizio Idrico Integrato), i.e. it is a second level water utility. The main aim of Siciliacque
is to collect the water from different sources and distribute it to the local WUs. Siciliacque
manages the infrastructure of water distribution in a portion of land that includes 1.600.000
inhabitants and focuses mainly on the civil use of water resources. It manages an average of
88.000.000 mc of water in entrance and distributing around 63.300.000 mc of water. The main
water sources are surface and underground water from several hydrological basins.

Both the two WUs have indicated a multi-monthly precipitation over 3 months as a
common used variable to monitor their resources, given the correlation rainfall-water source
recharge. Depending on the specific type of water source, i.e., surface (e.g., dam) or under-
ground (e.g., groundwater), on the size of the hydrographic basins and on the type of soil
(which controls the infiltration and redistribution processes), the recharge time of the water
source can be even longer, such as 5 months. According to this information, we selected CP3
and CP5.

Connected to the CP, the optimal timing to know the prediction of the climate state is at
least 3 months, i.e. having information on seasonal forecast 3 months in advance would be
helpful to develop, for example, a new supply distribution strategy. Additionally, winter and
spring are the periods whenWUs are mostly interested in forecasts, so to have prediction of the
upcoming summer period, which is often the most critical period in terms of water shortage for
both the island. Such requirements would provide indications for the choice of lead times
(LTs). However, the skill of the predictions has to be taken into account, which normally
decreases at longer LT depending on the specific location (Arnal et al., 2018). For the
validation test, we selected LT0 and LT3 (skills are reported in section 4), which means
forecast starting from the current month, and from month 3, respectively. The months of
interest to assess the forecast are from January to April and in some cases also December,
which broadly correspond to the hydrological year.

Sicily has experienced extreme drought events in 2001 and 2016, as indicated by
Siciliacque and reported by Superior Institute of Environmental Research and Protection
(ISPRA) and the Sicilian Agrometeorological Information Service (SIAS) (SIAS 2002,
2016; ISPRA 2001, 2016). These two events were selected to validate the methodology.

3.2 Meteorological Dataset and Algorithm Parameters

The climatology has been assessed across 30 years of reanalysis data (1986–2016), as common
assumption in literature (WMO 2018). An interpolation procedure has been applied to the SF
to make them directly overlapping with the reanalysis.

The coordinates of the cells corresponding to the two case studies are reported in Table 1.
All dataset properties used in this study and combinations selected for the validation are
summarized in Table 1.

4 Results

4.1 Zakynthos Case

The algorithm is run for all combinations defined in section 2.3, for a total of 21 cases. The
DTF is the first variable of interest derived from the calibration. As an example, Fig. 4a shows
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the DTF resulted for the CP3-LT0 combination, which was indicated by the WU as one of the
most interesting for their strategy planning. The error bar obtained from a jack-knife procedure
is also reported. Red line indicates tercile threshold 0.33.

Results indicate that the optimal threshold is always higher than 0.33 but for two periods,
i.e., jul-aug-spt (07-08-09) and dec-jan-feb (12-01-02), with the latter also showing the greatest
uncertainty.

The skills of the forecasts for each rolling 3-months period are depicted in Fig. 4b in terms
of maxFR. Over the most critical periods, i.e. the last two trimesters and the beginning of the
year (which both correspond to the rainy season of the Mediterranean area), up to jun-jul-aug,
skills are very promising, with mean values between 0.25 and around 0.35. This means that the
algorithm classifies correctly the predictions for about the 0.65–0.75 of the cases.

As demonstrated by other studies, the skills tend to worsen at increasing LT. Figure 5
provides a compacted overview of the skills for all the possible combinations LT and CPm
(skills panel). Specifically, the x axis reports the first month of the cumulation period, from 01
(jan) to 12 (dec), whereas the y axis (or columns) indicates the CPm-LT combination, with
increasing LT moving from bottom to top. Each cell reports the maxFR value with an
associated color.

The bottom-left corner corresponds with the best skills: in January, at LT0, skills are
satisfying for all the simulation periods (up to CP6). This means that in January the algorithm
would release reliable predictions for a cumulated precipitation up to June, i.e. 6 months in

Fig. 4 DTF (a) and maxFR (b) variation for the CP3-LT0 combination and Zakynthos’ case

Table 1 Description of dataset properties and combinations

Dataset type Dataset
name

Spatial resolution
(lon/lat grid)

Temporal
resolution

no.
members

Temporal
coverage

SF real-time SEAS5 1°×1° transformed in
0.75°×0.75°

daily 51 1986–2016

SF hindcast SEAS5 1°×1° transformed in
0.75°×0.75°

daily 25 2017–2019

Reanalysis Era-Interim 0.75°×0.75 hourly – 1986–2019
Geographical coordinates

Latitude Longitude
Zakynthos 37.5° 21.0°
Sicily 37.5° 14.5°
Combinations in validation
CP3-LT0 next 3 months (short term)
CP3-LT3 3 months from next 3 months (outlook)
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advance. The most reliable combination is CP1-LT0 is in March (maxFR = 0.15). Only
1 month of cumulated precipitation known 1 month in advance could also be useful for the
WU, in the case, for example, of very fast water recharge. As highlighted in the previous
section, best combinations are not fixed but they depend on the specific case (co-design
process). The worst case, as expected, is for the greatest LT in May (maxFR = 0.75). The
results of Fig. 5 provide a complete characterization of the algorithm in terms of skill. Based on
this simple panel, the end user could decide whether to trust or not the methodology and thus
to exploit the information or not.

4.2 Sicily Case: Validation

As a reference, Fig. 6 reports the 3-months cumulated precipitation for the analyzed years 2001
(red markers) and 2016 (blue markers) obtained from the reanalysis, as compared to the 30-years
climatology represented by the boxplot. The first three trimesters of both years show values lower
than the median (horizontal line in each box), confirming the anomalies from the expected values.

A skill panel similar to the one obtained for Zakyntos was derived, not here reported for the
sake of brevity. The results are similar to the ones presented in the previous section, with
January and December having among the best skills. This matches the needs of Siciliacque,
which identifies the period from December to April as the most critical one (section 3.2).

When used in operative phase, i.e. based on real-time forecasts, the following information
are provided and assessed: date of forecast, period of forecast, drought flag (yes/no), the
associated FR (in %), the percentage of members within the dry class (DRY), the DTF value
(in %) and the maxFR. While the latter is representative of the skill of the methodology for the
selected parameters combination, FR provides the effective reliability associated to that
specific forecast.

Table 2 reports the results obtained for Sicily, here shown for the combinations CP3-LT0
and CP-LT3. The analyzed period covers Dec-2000 to Sept-2001 and Dec-2015 to Sept-2016.

Fig. 5 Skill panel of the algorithm in classifying correctly the predictions in terms of maxFR. Zakynthos’s case
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The last column of the table reports an indication on the anomalies on the observed cumulated
precipitation.

The combined evaluation of FR, DRY, DTF provides a solid assessment of the reliability of
the forecast, in addition to themaxFR. As an example, in the forecast Dec-2000, LT3, although
the low skill (maxFR = 56.25%), the algorithm correctly predicted lower than normal precip-
itation, with a low probability of error (FR = 8%). Indeed, the DRY percentage is way greater
than DTF. Anomalies in precipitation for a period up to 5 months are sufficiently well
detected. Anomalies over jan-feb-mar period are also well predicted in Jan-2001, but with a
higher FR (equal to 15%), although same DRY and similar maxFR and DTF.

Fig. 6 Three-months cumulated precipitation observed in Sicily in 2001 and 2016. Boxplot describes the
statistics and variability of the climatology evaluated over 30 years. Reanalysis data from Era-Interim

Table 2 Results of forecast in terms of drought (yes/no), False Rate (FR), percentage of members within the dry
class (DRY), Discriminant Threshold Frequency (DTF), maximum FR (maxFR). Last column indicates whether
the observed cumulated precipitation is less than the expected value P50)

Date of
forecast

First month of
CP

LT Period Drought FR
[%]

DRY
[%]

DTF
[%]

maxFR
[%]

OBS < P50

Dec-2000 December LT0 dec-jan-feb YES 3 68 32 36.67
March LT3 mar-apr-may YES 8 48 32 56.25 YES

Jan-2001 January LT0 jan-feb-mar YES 15 48 31 52.38 YES
April LT3 apr-may-jun NO 0 16 35 43.33 NO

Feb-2001 February LT0 feb-mar-apr YES 33 36 36 33.33 YES
May LT3 may-jun-jul YES 4 56 34 47.5 NO

Mar-2001 March LT0 mar-apr-may YES 0 64 33 48.33 YES
June LT3 jun-jul-aug YES 23 44 32 55 NO

Apr-2001 April LT0 apr-may-jun NO 33 36 38 33.33 NO
July LT3 jul-aug-spt NO 33 28 33 56.67 YES

Dec-2015 December LT0 dec-jan-feb YES 0 84 32 36.67
March LT3 mar-apr-may YES 3 52 32 56.25 YES

Jan-2016 January LT0 jan-feb-mar YES 23 44 31 52.38 YES
April LT3 apr-may-jun YES 8 44 31 43.33 YES

Feb-2016 February LT0 feb-mar-apr YES 27 40 36 33.33 YES
May LT3 may-jun-jul NO 17 24 34 47.5 NO

Mar-2016 March LT0 mar-apr-may NO 33 28 33 48.33 YES
June LT3 jun-jul-aug YES 46 36 32 55 NO

Apr-2016 April LT0 apr-may-jun NO 17 24 38 33.33 YES
July LT3 jul-aug-spt YES 21 44 33 56.67 NO

Bold entries indicate a match between predictions (drought column) and observations (last column)
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The resulting FR values depend on the shape of the corresponding sensitivity-specificity
curves, which are shown in Fig. 7 for the cases CP3-LT3 in mar-apr-may (Fig. 7a) and CP3-
LT0 in jan-feb-mar (Fig. 7b). In the former combination, sensitivity curve assumes a steeper
shape compared to the latter case, indicating a better capability of discerning droughts events,
since the sensitivity moves rapidly towards 1 (Fig. 7a). In the latter combination, FR value
corresponding to the same frequency 0.48 (i.e., the percentage of members within the dry
class, DRY) is significantly higher because the sensitivity curve indicates lower skill in
catching the correct classification within the dry class (gentle slope of the curve).

In Jan-2001, the algorithm correctly predicted the absence of anomalies for the period apr-
may-jun with an associated FR equal to zero; indeed, the specificity value corresponding to the
DRY percentage of 16% (i.e. frequency of ensemble equal to 0.16) is 1 (Fig. 7c), which is
representative of an straight correct classification of events as belonging to the not-dry class.

Prediction of lower than normal precipitation over the first month of 2016 are also very well
predicted even with 3 months in advance (Dec-2015, LT0 and LT3; Jan-2016, LT0 and LT3;
Feb-2016, LT0). In Mar-2016, LT0 and LT3 predictions cannot be considered reliable. Indeed,
the FR values are high. Similar observations can be made for Apr-2016.

Overall, the results demonstrate the potential of such methodology for planning manage-
ment strategies. In case of water shortage, the main strategy of Siciliacque is based on the
possibility of modifying the supply plan and of withdrawing the water from the reserves where
the level is higher. The water distribution network is well interconnected and, thanks to the
recent investments made on the infrastructure, it is possible to face water shortages through
changing the source of water supply. The management of critical events derives from the
trimestral plan for water supply developed by the Environmental Department of the Regional
Administration. The technical unit of the WU takes action and develops the new distribution
strategies following the guidelines of such plan that gives priorities to the sectors in which
water should be used in case of shortage. Therefore, knowing in advance eventual anomalies in
the water reservoir recharge would be optimal for establish the enhanced distribution.

5 Conclusion

This study describes a novel methodology for drought predictions thanks to the exploitation of
SFs. The methodology aims at assessing the occurrence of anomalies in the cumulated
monthly precipitation, compared to the expected values, and defines a drought alert system
for the upcoming season, up to 6 months.

Fig. 7 Sensitivity and specificity curves for the combinations CP3-LT3 in mar-apr-may (a), CP3-LT0 in jan-feb-
mar (b) and CP3-LT3 in apr-may-jun (c), which corresponds to the cases Dec-2000, LT3 and Jan-2001, LT0
analyzed in Table 2
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The proposed algorithm integrates seasonal hindcasts and reanalysis to assess the overall
skill of the classification system (maximum false rate) and to estimate reliabilities associated to
the real-time drought predictions (false rate). Computation is applied for selected target and
cumulation period, i.e. months of the year and time window over which precipitation is
cumulated. Two case studies are carried out to test and validate the procedure across two
areas of the Mediterranean region, which is frequently hit by extreme droughts and which is
particularly vulnerable to consequences of climate change.

Results and highlights are summarized as follows:

– the algorithm does not necessarily require bias correction, since it is based on a compar-
ative assessment of statistics;

– skill of the predictions depends on the selected target period, cumulation period and lead
times, in agreement with previous studies that used SFs (e.g. Doblas-Reyes 2012; Arnal
et al. 2018, Marcos et al., 2017). Up to 5 months of cumulation period, months ranging
from November to April showed the best skill at lead time zero. This period matches very
well with the needs of the WUs, here identified as possible users of the methodology.

– Summer months (e.g. June, July, August) showed low rates of general skill, espe-
cially at long lead times; the result agrees with the findings obtained in Sicily by
Bonaccorso et al. (2015), who found out that during winter-spring season the
precipitation series (in terms of SPI index) exhibits the best correlation with the
climate predictor variable NAO and that the influence of NAO becomes less influent
as the lead time increases. However, this might not constitute an issue, since WUs
are interested in predictions for the rainy months.

– Ultimately, the reliability of the forecast in real-time depends on the effective frequency of
the ensemble members that fall within the dry class; therefore, in some cases, even low
skill could provide reliable prediction.

– The application to the Sicilian case demonstrated that the method correctly predicts the
drought 3 months in advance.

The methodology enables the user to exploit or not the drought alert, based on an acceptable
risk. Concluding, its formulation is particularly flexible. Forecasts of precipitation anomalies
months in advance may be crucial for understating possible delays in water resources recharge,
and thus may be strategic for the water supply management.

Further development of the methodology includes the analysis at multiple grid-cells and, if
required, a procedure of downscaling.
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