
19 April 2024

Università degli studi di Udine

Original

Unsupervised hashing with neural trees for image retrieval and person re-
identification

Publisher:

Published
DOI:10.1145/3243394.3243687

Terms of use:

Publisher copyright

(Article begins on next page)

The institutional repository of the University of Udine (http://air.uniud.it) is provided by ARIC services. The
aim is to enable open access to all the world.

Availability:

Association for Computing Machinery

This version is available http://hdl.handle.net/11390/1171388.5 since 2020-06-30T12:24:38Z

Unsupervised Hashing with Neural Trees for Image Retrieval
and Person Re-Identification

Niki Martinel
University of Udine

Udine, Italy
niki.martinel@uniud.it

Gian Luca Foresti
University of Udine

Udine, Italy
gianluca.foresti@uniud.it

Christian Micheloni
University of Udine

Udine, Italy
christian.micheloni@uniud.it

ABSTRACT
Recent vision studies have shown that learning compact codes is
of paramount importance to improve the massive data processing
while significantly reducing storage footprints. This has recently
yielded to a surge of effort in learning compact and robust hash
functions for image retrieval tasks. The majority of the existing lit-
erature has been devoted to the exploration of deep hash functions,
typically under supervised scenarios. Unsupervised hashing meth-
ods have been less attractive due to the their difficulty in achieving
satisfactory performance for the same objective. In this work, we
propose a simple yet effective unsupervised hashing framework,
which exploits the powerful visual representation capabilities of
deep architectures and combines this within a tree structure in-
volving a multi-path scheme. The key advantage of the proposed
method is the ability to bring in a divide-and-conquer approach to
reduce the complexity of the classification problem at each node of
the tree without the need of labeled data. To validate the proposed
solution, experimental results on two benchmark datasets for image
retrieval and person re-identification have been computed.

KEYWORDS
Hash Encoding, Neural Tree, Hierarchical Learning

ACM Reference Format:
Niki Martinel, Gian Luca Foresti, and Christian Micheloni. 2018. Unsu-
pervised Hashing with Neural Trees for Image Retrieval and Person Re-
Identification: . In International Conference on Distributed Smart Cameras
(ICDSC ’18), September 3–4, 2018, Eindhoven, Netherlands. ACM, New York,
NY, USA, 6 pages. https://doi.org/10.1145/3243394.3243687

1 INTRODUCTION
Being able to fetch a list of relevant samples starting from a vi-
sual similarity search is a problem of paramount importance for
information retrieval applications [17]. In particular, when such
a process has to be conducted on large-scale visual sets, hashing

This research was partially supported by the Horizon 2020 research and innovation
programme under the Marie Sklodowska-Curie grant agreement No. 765866.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICDSC ’18, September 3–4, 2018, Eindhoven, Netherlands
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6511-6/18/09. . . $15.00
https://doi.org/10.1145/3243394.3243687

Root Node

H
id

de
n

N
od

es

Bi
na

ry
 L

ea
ve

s

In
pu

t I
m

ag
e

1
10

0

0
01

0
00

0
10

1 0 1

Figure 1: Illustration of the proposed tree-based architecture
used as hash generator. An image is the input to the whole
architecture, which grows by adding hidden child nodes as
long as the stop criteria is notmet. Since the input datumcan
be routed to multiple child nodes, we use the notification of
leaf nodes receiving the input as a binary answer which is
finally concatenated to build the hash code.

techniques are exploited. This attractive approach generally digest
high-dimensional visual features to generate a binary vector lying
in a similarity-preserved low-dimensional Hamming space. The
encoded hashes significantly reduce both the storage requirements
and the computational burden.

As discussed in recent surveys [29, 30], a surge of effort has been
recently spent to propose novel hashing methods. The existing lit-
erature can be categorized into two main groups: data-independent
and data-dependent methods.

Approaches belonging to the former category rely on random
projections to create hash functions generating compact binary
codes. The Iterative Quantization (ITQ) algorithm [3] learns an
orthogonal rotation matrix by minimizing the quantization loss
while mapping the data generated by PCA (Principal Component
Analysis) projections to binary codes. ISpherical Hashing (SpH) [5]
exploits hypersphere-based hashing function maps spatially coher-
ent data points to similar binary codes. In [16], the table construc-
tion is treated as a selection problem over a set of candidate hash
functions while in Spectral Hashing (SH) [31] the hash function
learning problem is formulated as a particular form of graph parti-
tion.Minimal Loss Hashing (MLH) [23] adopts a pairwise hinge-like
loss function and minimizes its upper bound to learn binary codes.

https://doi.org/10.1145/3243394.3243687
https://doi.org/10.1145/3243394.3243687

ICDSC ’18, September 3–4, 2018, Eindhoven, Netherlands Niki Martinel, Gian Luca Foresti, and Christian Micheloni

Binary Reconstructive Embedding (BRE) [9] utilizes pairwise rela-
tions between samples and minimizes the squared error between
the original normalized Euclidean and Hamming distances.

Methods within the latter group leverage on the available train-
ing data to learn hash functions either in an unsupervised (e.g., [27,
32]) or supervised fashion (e.g., [2, 14]). Traditional supervised hash-
ing methods aim to preserve the semantic similarity in Hamming
space. In [15], the compact binary code is learned by minimizing
the Hamming distances on similar pairs and simultaneously maxi-
mizing the Hamming distances on dissimilar pairs. In [11], a flexible
yet simple framework is proposed to accommodate different types
of loss functions and hash functions.

Supervised hashingmethods include deep-learning inspired tech-
niques as well. In [33], the hash learning function problem is posed
as a regularized similarity learning task. In [13], a novel neural net-
work is developed to learn binary codes preserving the non-linear
relationship of samples.

For unsupervised hashing, the methods based on deep neural
networks [1, 24] only involve the point-wise constraints, due to
the lack of labels or class information. As a pioneering work using
deep learning techniques for unsupervised hashing, semantic hash-
ing [24] applies the stacked Restricted Boltzmann Machine (RBM)
to learn compact binary codes for visual search.

A crucial issue with these deep learning strategies for hash func-
tion learning is that they have to deal with binary codes. To handle
the NP-hard mixed-integer optimization problem, a large majority
of the literature relaxes such a constraint during the learning pro-
cess. Thus, the continuous codes are learned first, then binarization
is applied (e.g., with thresholding) to obtain the final hash. However,
the solution can be suboptimal, i.e., the binary codes resulting from
thresholded continuous codes could be inferior to those that are
obtained by including the binary constraint in the learning.

In addition to this tasks-specific issues, CNN-based solutions
have a significant drawback regarding the definition of the archi-
tecture. Indeed, there is currently no fixed a priori rule to decide,
for any given problem, the architecture of a deep net (i.e., number
of hidden layers and nodes in each of these).

To overcome some of these limitations, we introduce a novel
hybrid architecture (see Figure 1) originating from Neural Trees
(NTs). The main motivation for the development of this new archi-
tecture came from the search for a training algorithm able to learn
the structure of the architecture rather than requiring its upfront
definition (e.g., [20, 22]). Furthermore, to keep the powerful fea-
tures of the hierarchical visual learning frameworks, within each
node of the tree-based solution we leverage on the power of deep
neural networks as feature extractors and exploit such neural repre-
sentations in an unsupervised learning technique used for routing
patterns to child nodes. The hash code is obtained by combining
the binary notifications generated by each leaf node receiving the
input datum.
Contributions.

(i) We propose to use an hybrid neural architecture as a hash
function for unsupervised hashing. The tree-based approach
allows us to severely limit the suboptimal and inefficient trial
and error process in deciding the deep net architecture while
still keeping the desirable non-linear mapping. To the best

of our knowledge, our approach is the first unsupervised
hashing method that uses a neural tree as hash function.

(ii) In order to efficiently learn the neural tree architecture for
unsupervised hashing, within each node of the tree, we ap-
ply a two-step strategy. We first exploit the power of deep
learning architectures to obtain the neural feature represen-
tation of the input datum. Then, we leverage on a clustering
solution to route patterns that are close to each other in the
neural feature space to the same child node.

(iii) We introduce a multiple routing approach based on the con-
fidence of each cluster on the input features. By doing this,
we aim to both overcome the issue generated by routing a
pattern to a single, maybe wrong, child as well as to increase
the number of training patters that can be exploited to learn
each in-node model.

(iv) For binary code inference, we exploit the multiple-routing
solution and construct the binary code upon notification of
leaves receiving the input pattern.

To substantiate our contributions we have conducted the experi-
ments on two publicly available benchmark datasets: one for image
retrieval and the other for person re-identification. Results demon-
strate that the proposed approach obtains comparable performance
with state-of-the-art methods that involve more complicated and
computationally demanding training procedure.

2 UNSUPERVISED HASH LEARNING
2.1 Definitions
Consider a hash coding problem with input and (finite) output
spaces given by I and Y, respectively. A neural tree is a tree-
structured architecture consisting of internal nodes and terminal
nodes. Letψ ∈ ΨΨΨ denote an internal node of the tree and let λ ∈ ΛΛΛ
represent a terminal nodes of the tree. The aim is to learn the tree
structure and its internal route node models such that, for any given
image I ∈ I, the tree generates a hash code h of length m. The
pipeline of the proposed solution is shown in 2.

To obtain the hash code, each routing nodeψ ∈ ΨΨΨ sees a set of
training patterns X(ψ) = {x(ψ)

j }
|X(ψ) |

j=1 with each x(ψ)

j ∈ RM×N×d .
These are first exploited to obtain their neural feature represen-
tation f (x(ψ);W(ψ)) : X(ψ) → F (ψ) controlled by a set of pre-
trained parameters W(ψ). The so obtained visual features are later
considered to learn the parameters Θ(ψ) controlling the routing
function π (ψ)(·;Θ(ψ)) : F (ψ) → [1,k]. When a sample x(ψ) ∈ X(ψ)

reaches a routing nodeψ it will be sent to at least one of its child
nodes on the basis of π (ψ)(f (x(ψ);W(ψ));Θ(ψ)).

Each leaf node λ ∈ ΛΛΛ generates a binary label hλ ∈ {0, 1}. All
together, the binary leaves yield to the hash code h = {hλ }λ∈ΛΛΛ.

2.2 Internal Nodes
Each internal node of the tree ψ ∈ ΨΨΨ is responsible of a two-step
process. It first computes the neural feature representation of the
input data. Then, it exploits the obtained representations to learn the
parameters Θ(ψ) controlling the routing function. In the following,
the two steps are described in details. To ease the notation, the (ψ)
superscript is omitted.

Unsupervised Hashing with Neural Trees for Image Retrieval and Person Re-IdentificationICDSC ’18, September 3–4, 2018, Eindhoven, Netherlands

Feature Extraction

Routing

Hash Code
1 1 0 0 0 0 0 0 1 0 1 1 0 0 1

1

10

0

0

01

0

00

0

10

1 0 1

Convolutional
+

Non-Linearity
+

Pooling Layers

Linearization

Figure 2: Illustration of the proposedhash encoding pipeline. On the left hand side, an overviewof the introduced tree structure
is depicted. On the right hand side, an exploded view of an internal node is depicted. This includes a CNN-based feature
extraction mechanism as well as a color-coded clustering approach that is exploited to route input patterns towards child
nodes. The tree leaves are responsible of creating the final hash code.

2.2.1 Feature Extraction. Inspired by the wide success of deep
neural networks as generic visual feature detectors, we consider f
being a deep neural network composed by a stack of convolutional
feature detectors, non-linearity mappings and a pooling operators.
The weights of the stacked convolutional feature detectors are
parameterized byW(ψ). Such parameters are obtained by exploita-
tion of state-of-the-art deep neural networks pre-trained on image
recognition tasks with supervised data (e.g., VGG [26]).

Specifically, to get the neural features we adopt a CNN feature
extractor which uses a set of n kernel weights W = {wi }

n
i=1 ∈

W(ψ) to produce, for any given input pattern x, the i-th feature
map obtained as

x̂(a,b, i) =
w∑
u=1

w∑
v=1

d∑
t=1

x(a + u,b +v, t)wi (u,v, t) (1)

for a ∈ {0, · · · ,M − w − 1} and b ∈ {0, · · · ,N − w − 1}, where
w denotes the width/height of the receptive field. The resulting
feature maps are then input to the non-linearity function and sub-
sequently to the pooling operator as defined by the considered
CNN architecture. The output of a stack of such layers is the neural
representation for the input datum x. All these steps combined can
be summarized as x̂ = f (x;W).

2.2.2 Routing Patterns. In standard decision trees, each node
evaluates a (generally parameterized) split function that is in charge
of routing input patterns towards one of two children. We remove
such a constraint and let an input pattern be forwarded to at least
one its k child nodes. Such a relaxation allows us to increase the
number of patters that reach each children, hence to enlarge the
training set that can be exploited within each node. In addition,
having a same pattern flowing towards more than a single leaf node
will open to multiple “decision answers” –over the same pattern–
which can be considered to build the final hash code.

We propose to use a routing function that depends on the rela-
tion of the considered neural representations. Following such an

idea, we let the π (·;Θ) be a two step function that (i) clusters the
input patterns through k-means, then (ii) determines how patterns
are routed to one or more child nodes. K-means has been chosen
over more complex non-linear alternatives (e.g., Gaussian Mixtures,
DBSCAN) since we aim to capture the data non-linearities through
the hierarchical structure, not through the routing procedure per se.
More formally, given the set of neural features X̂(ψ) = {x̂j }

| X̂(ψ) |

j=1
reaching a specific nodeψ , this is used to find the k-means cluster-
ing centroids {µµµc }kc=1 by solving

argmin
µµµ

k∑
c=1

∑
x̂∈Cc

∥x̂ − µµµc ∥
2
2 (2)

where Cc denotes the c-th cluster set that needs to be identified and
∥ · ∥22 is the squared ℓ2-norm applied to elementiwse differences.

The learned cluster centroids can be used to route the input
patterns towards the k child nodes. A standard approach would
have been to send a given pattern to a single child node, indexed
by the closest cluster centroid. However, in doing so, we would not
consider the contribution of other clusters to the routing decision. In
particular, if a pattern lies on the boundary separating two (or more)
clusters, it means that the path to be followed is highly uncertain.
In light of such an intuition, we propose to capture and exploit such
uncertainty through a probabilistic approach.

We begin by converting the dissimilarities of the given pat-
tern with the obtained centroids to probabilities. This is achieved
through the exponential decay function resulting in

p(x̂|µµµc) =
exp

(
− ∥x̂ − µµµc ∥

2
2

)
∑k
i=1 exp

(
− ∥x̂ − µµµi ∥

2
2

) (3)

with
∑k
c=1 p(x|µµµc) = 1. Then, we hypothesize that the obtained

probabilities are Normally distributed, hence exploit the distribution
characteristics to send a pattern to the c-th child iff

p(x̂|µµµc) > max
c

(p(x̂|µµµc)) − λσ (p(x̂)) (4)

ICDSC ’18, September 3–4, 2018, Eindhoven, Netherlands Niki Martinel, Gian Luca Foresti, and Christian Micheloni

(a)

(b)

Figure 3: Sample images of ten different objects appearing
in (a) CIFAR-10, and (b) CUHK03 datasets. Each row high-
lights the intra-class variations for the same category (one
per column). (Best viewed in color)

where λ = 2 (we considered the standard 95% rule of the Normal
distribution), and maxc (p(x̂|µµµc)) and σ (p(x̂)) denote the maximum
probability and the standard devision of the distribution over p,
respectively.

2.3 Terminal Nodes
With the feature representation function and the clustering proce-
dure we have defined an approach to route a pattern x(ψ) reaching
a particular internal nodeψ to its children. The tree structure grows
by adding internal nodes as long as a stop criterion is not satisfied.
In this work, such a criterion is the maximum depth of the tree
–denoted as γ . This, together with the number of child nodes k ,
allows us to control the number of terminal nodes, hence the hash
encoding dimensionm.

More precisely, when an internal node satisfies the stop criterion,
this is converted into a terminal node λ. This will result in the tree
having |ΛΛΛ| =m = kγ leaves.

For any given sample x, its hash code h is obtained by traversing
the tree in a top-down fashion starting from the root node. All
the node-dependent learned parameters (i.e.,W(ψ) and Θ(ψ)) are
exploited to route the sample towards the leaves. Thanks to the
proposed routing procedure the sample can reachmore than a single
leaf node. We use this particular feature to obtain a binary answer
from each leaf node. That is, any leaf node λ will generate a positive
binary output (i.e.,h = 1) if it receives the sample. Otherwise, a
negative binary output (i.e., h = 0) is generated. The hash code is
constructed by collecting the binary outputs from all the leaves as
h = {hi }

m
i=1.

3 EXPERIMENTAL RESULTS
3.1 Datasets
To validate the proposed approach, experimental evaluations on
two benchmark datasets have been carried out.

CIFAR-101. The CIFAR-10 [8] is a challenging dataset containing
color images belonging to 10 different object classes (see Figure3(a)).
Each class comes with 6,000 32 × 32 samples, leading to a total of
60,000 images. The dataset is already partitioned into a training set
with 50,000 samples and a test set having 10,000 images. To provide
a fair comparison with existing solutions, we followed a common
approach [32] and for each class in the test set randomly selected
100 samples as the query set (1,000 images in total). The remaining
portion of the test is used to extend the training set, thus forming a
dataset of 59,000 images.
CUHK032. The CUHK03 [10] dataset is one of the largest and
most challenging Re-Identification datasets (see Figure 3(b)). It
contains 13,164 images of 1,360 pedestrians acquired by six disjoint
cameras. Each person has been observed by two disjoint camera
views and has an average of about 5 images in each view. To run the
experiments, we followed the same procedure as in [10] and used
the 20 provided trials with the manually labeled detections. Each
of these splits the data into a training set and a test set containing
1,160 and 100 persons, respectively.

3.2 Evaluation Protocol
Evaluation of image retrieval approaches (e.g., [2, 30, 32, 35]) is gen-
erally performed by showing the mean Average Precision (mAP)
as well as the precision@N retrieved samples. The mAP is a per-
formance indicator that is independent from the dataset size and is
obtained as

mAP =
1
Q

|Q |∑
i=1

©« 1
|Ri |

Gi∑
j=1

Pi (j)1{Gi (j)∈Ri }
ª®¬ (5)

where, Q is the query image set, Ri is the set of relevant images and
Gi is the ranked set of retrieved images. Gi (j) and Pi (j) represents
the j-th retrieved image and the precision at j for the i-th query, re-
spectively. 1{·} ∈ {0, 1} is the indicator function. The precision@N
measure gives the percentage of ground truth images among top–N
retrieved samples. We followed such a common protocol and report
on the results of our method using such indicators also considering
different hash code lengths (refer to the next section for details).

3.3 Experimental and Implementation Settings
The majority of the existing image retrieval approaches tweak their
hyperparameters to the specific dataset (e.g., [32]). In our evaluation,
we have decided not to do so to provide a more generic framework.
Feature Extraction. We exploited an available deep neural net-
work for feature extraction, namely the VGG16 [26] architecture3.
At each specific depth of the tree, for any given node, we select a
subset of the the aforementioned architectures layers dependently
on the maximum depth of the considered tree (i.e.,γ). Details on
the selected layers are given in Table 1.
Routing. To identify cluster centroids, k-means is run for at max-
imum 100 iterations. To allow a fair comparison with the results

1https://www.cs.toronto.edu/~kriz/cifar.html
2http://www.ee.cuhk.edu.hk/~xgwang/CUHK_identification.html
3Among the plethora of available architectures, we have selected the VGG16 to have a
more fair comparison with existing methods using a similar network. We remind to
future works the exploitation of more powerful yet less computationally demanding
architectures.

https://www.cs.toronto.edu/~kriz/cifar.html
http://www.ee.cuhk.edu.hk/~xgwang/CUHK_identification.html

Unsupervised Hashing with Neural Trees for Image Retrieval and Person Re-IdentificationICDSC ’18, September 3–4, 2018, Eindhoven, Netherlands

Table 1: Selected layers of the VGG-16 architecture exploited
for feature extraction.

Depth Hash Code
Length (m) Internal Nodes VGG-16 Layers

1 4
64x[Conv3x3]→ 64x[Conv3x3]→
[MaxPool2x2] → 128x[Conv3x3]→
128x[Conv3x3] → [MaxPool2x2]

2 16 256x[Conv3x3]→ 256x[Conv3x3]→
256x[Conv3x3]→ [MaxPool2x2]

3 64 512x[Conv3x3]→ 512x[Conv3x3]→
512x[Conv3x3]→ [MaxPool2x2]

provided by existing methods (i.e., to provide results with m ∈

{16, 32, 64}), we set the number of clusters k = 4. Please notice that,
since our approach is not designed to directly output a hash code
length ofm = 32 (i.e., directly available hash code lengths are only
powers of k), we obtain a hash code ofm = 32 by first generating a
hash code ofm = 64, then removed those leaves that has the lowest
number of training patterns.

3.4 Image Retrieval
We systematically compare our method with 6 state-of-the-art non-
deep-learning based methods, namely LSH [7], SH [24], PCAH [28],
SPhH [5], KMH [4], PCA-ITQ [3] and 5 existing unsupervised deep-
learning-based-solutions. These are DH [13], DA [6], DeepBit [12],
UH-BDNN [2] and SADH-L [25]. Notice that the non-deep methods
and UH- BDNN use the VGG-19 feature extracted from the last
fully connected layer.

In Table 2, we report on the comparisonwith existingmethods on
the CIFAR-10 dataset. Results show that with an mAP of 17.32% for
m = 64, the proposed solution achieves similar results to existing
methods. Specifically, we obtain the third-best result. However, it
should be noted that methods achieving best performance, namely
DeepBit [12] and SADH-L [25], require two/three-stages training
procedures that requiremore computational efforts.We hypothesize
that their advantage is due to the fact that, by such procedures, they
modify the feature extraction functions (i.e., the involved deep
network weights) to adapt to the specific problem

3.5 Person Re-Identification
We evaluate our method using CUHK03 dataset with images resized
to 96×96. To compute the performance, the widely used Cumulative
Matching Characteristic (CMC) curve [18, 19, 21] has been used.

We report on the comparison with five state-of-the-art hash
learning methods BRE [9], MLH [23], KSH [15], DSRH [34], and
DRSCH [33] and a deep-learning-based re-identification solution
(FPNN [10]). When using traditional hashing learning methods, the
4096D CNN features are extracted from an AlexNet network pre-
trained on ImageNet. For DSRH and DRSCH, the parameters of the
corresponding deep networks are learned from raw images without
any pretraining. Please notice that DSRH, DRSCH, and FPNN are
supervised methods which have been trained with training samples
coming from the same dataset.

Results in Table 3 show that the proposed solution performs
better than existing unsupervised state-of-the-art approaches, even

Figure 4: Qualitative ranking performance obtained by the
proposed solution on the CUHK03 dataset. Each row show
the top 15 retrieved galleries for a given probe. The true
match is highlighted in green. (Best viewed in color)

with a significantly lower hash code length. To verify the qualitative
performance, results in Figure4 have been computed. These show
that for each considered query, the retrieved list contains persons
that are very similar to each other and to the searched sample. Such
retrieval performance might indicate that our solution is able to
gather then route similar semantic patterns to a same child node,
thus generating similar hash codes.

4 CONCLUSIONS
In this paper we have introduced a novel approach to learn a hash
generation function. To achieve such a goal, a hierarchical archi-
tecture which grounds on a tree structure has been proposed. The
internal nodes of the tree exploits a pre-trained deep neural network
to obtain a hierarchical representation of the input datum. This is
then used to forward a pattern to multiple child nodes by means of a
probabilistic routing function. The hash code is obtained by travers-
ing the tree in a top-down fashion then by collecting the leaf node
binary outputs. Experimental results on two benchmark datasets
show that our solution achieves state-of-the-art performance.

REFERENCES
[1] Miguel A. Carreira-Perpinan and Ramin Raziperchikolaei. 2015. Hashing with

Binary Autoencoders. In CVPR.
[2] Thanh Do, Anh Dzung Doan, and Ngai Man Cheung. 2016. Learning to hash

with binary deep neural network. ECCV 9909 LNCS (2016), 219–234.
[3] Yunchao Gong, Svetlana Lazebnik, Albert Gordo, and Florent Perronnin. 2013.

Iterative quantization: A procrustean approach to learning binary codes for
large-scale image retrieval. IEEE TPAMI 35, 12 (2013), 2916–2929.

[4] Kaiming He, Fang Wen, and Jian Sun. 2013. K-means hashing: An affinity-
preserving quantization method for learning binary compact codes. In CVPR.
2938–2945.

ICDSC ’18, September 3–4, 2018, Eindhoven, Netherlands Niki Martinel, Gian Luca Foresti, and Christian Micheloni

Table 2: Retrieval comparisons on the CIFAR-10 dataset with K ∈ {16, 32, 64} bits. Hamming ranking accuracy by mAP and
precision@N (N = 1000). Best result for each number of bits is in boldface font.

mAP [%] Precision@N [%]Method 16 32 64 16 32 64 Publication

LSH 12.55 13.76 15.07 16.21 19.10 22.25 ACMComm2008 [7]
SH 12.95 14.09 13.89 14.79 17.87 18.27 JAR2009 [24]
PCAH 12.91 12.60 12.10 18.89 19.35 18.73 CVPR2010 [28]
SphH 13.98 14.58 15.38 20.13 22.33 25.19 CVPR2012 [5]
KMH 13.59 13.93 14.46 20.28 21.97 22.80 CVPR2013 [4]
PCA-ITQ 15.67 16.20 16.64 22.46 25.30 27.09 TPAMI2013 [3]
DH 16.17 16.62 16.96 23.79 26.00 27.70 CVPR2015 [13]
DA 16.82 17.01 17.21 24.54 26.62 28.06 CVPR2016 [6]
DeepBit 19.43 24.86 27.73 – – – CVPR2016 [12]
UH-BDNN 17.83 18.52 – – – – ECCV2016 [2]
SADH-L 16.45 16.48 17.61 19.11 19.42 19.96 TPAMI2018 [25]
Proposed 16.13 17.04 17.32 21.27 25.23 26.98 –

Table 3: Retrieval performance comparison with state-of-
the-art methods on the CUHK03 dataset with manually la-
beled pedestrian detections. Results are shown using the Cu-
mulativeMatching Characteristic (CMC) curve. The numeri-
cal suffix of eachmethod denotes the hash code length. First
5 rows shows the performance of supervised approaches
training on the same dataset. Last 8 results represent the
recognition performance obtained by unsupervised meth-
ods. The majority of the results have been taken from [33].
Best result for each rank is in boldface font.

Method / Rank→ 1 5 10 20 30 Publication
DRSCH-128 18.74 48.39 69.66 81.03 91.28 TIP2015 [33]
DRSCH-64 21.96 46.66 66.04 78.93 88.76 TIP2015 [33]
DSRH-128 8.08 26.10 45.82 64.95 79.03 CVPR2015 [34]
DSRH-64 14.44 43.38 66.77 79.19 87.45 CVPR2015 [34]
FPNN 20.65 50.09 66.42 80.02 87.71 CVPR2014 [10]

KSH-CNN-128 3.65 11.71 19.75 30.68 43.46 CVPR2012 [15]
KSH-CNN-64 3.12 12.90 19.96 32.59 45.62 CVPR2012 [15]
MLH-CNN-128 2.75 11.62 24.61 39.68 49.26 ICML2011 [23]
MLH-CNN-64 1.75 8.14 19.60 35.64 47.45 ICML2011 [23]
BRE-CNN-128 3.91 7.24 11.83 24.20 36.15 NIPS2009 [9]
BRE-CNN-64 3.22 6.74 10.25 24.69 37.75 NIPS2009 [9]
Proposed-64 7.21 15.19 26.10 39.97 49.59 –
Proposed-16 3.85 10.52 18.59 28.07 37.19 –

[5] Jae Pil Heo, Youngwoon Lee, Junfeng He, Shih Fu Chang, and Sung Eui Yoon.
2012. Spherical hashing. In CVPR. 2957–2964.

[6] Chen Huang, Chen Change Loy, and Xiaoou Tang. 2016. Unsupervised Learning
of Discriminative Attributes and Visual Representations. In CVPR. 5175–5184.

[7] Piotr Indyk and Alexandr Andoni. 2006. Near-Optimal Hashing Algorithms for
Approximate Nearest Neighbor in High Dimensions. Commun. ACM 51, 1 (2006),
117–122.

[8] Alex Krizhevsky. 2009. Learning Multiple Layers of Features from Tiny Im-
ages. Technical Report. Department of Computer Science, University of Toronto,
Toronto, ON, Canada. 1—-60 pages.

[9] Brian Kulis and Trevor Darrell. 2009. Learning to hash with binary reconstructive
embeddings. In NIPS. 1–9.

[10] Wei Li, Rui Zhao, Tong Xiao, and Xiaogang Wang. 2014. DeepReID: Deep Filter
Pairing Neural Network for Person Re-identification. In CVPR. Ieee, 152–159.

[11] Guosheng Lin, Chunhua Shen, David Suter, and Anton Van Den Hengel. 2013. A
general two-step approach to learning-based hashing. In ICCV. 2552–2559.

[12] Kevin Lin, Jiwen Lu, Chu-Song Chen, and Jie Zhou. 2016. Learning Compact
Binary Descriptors with Unsupervised Deep Neural Networks. In CVPR. 1183–
1192.

[13] Venice Erin Liong, Jiwen Lu, GangWang, Pierre Moulin, and Jie Zhou. 2015. Deep
hashing for compact binary codes learning. In CVPR, Vol. 07-12-June. 2475–2483.

[14] Haomiao Liu, Ruiping Wang, Shiguang Shan, and Xilin Chen. 2016. Deep Super-
vised Hashing for Fast Image Retrieval. In CVPR. 2064–2072.

[15] Wei Liu, Jun Wang, Rongrong Ji, Yu Gang Jiang, and Shih Fu Chang. [n. d.]. In
CVPR.

[16] Xianglong Liu, Cheng Deng, Bo Lang, Dacheng Tao, and Xuelong Li. 2016. Query-
Adaptive Reciprocal Hash Tables for Nearest Neighbor Search. IEEE TIP 25, 2
(2016), 907–919.

[17] Yang Long, Li Liu, Fumin Shen, Ling Shao, and Xuelong Li. 2017. Zero-shot
Learning Using Synthesised Unseen Visual Data with Diffusion Regularisation.
IEEE TPAMI 8828, c (2017), 1–14.

[18] Niki Martinel, Matteo Dunnhofer, Gian Luca Foresti, and Christian Micheloni.
2017. Person Re-Identification via Unsupervised Transfer of Learned Visual
Representations. In ICDSC. 1–6.

[19] Niki Martinel and Christian Micheloni. 2014. Sparse Matching of Random Patches
for Person Re-Identification. In ICDSC. 1–6.

[20] Niki Martinel, Christian Micheloni, and Gian Luca Foresti. 2015. The Evolution
of Neural Learning Systems: A Novel Architecture Combining the Strengths of
NTs, CNNs, and ELMs. IEEE SMC Magazine 1, 3 (jul 2015), 17–26.

[21] NikiMartinel, ChristianMicheloni, and Claudio Piciarelli. 2013. Learning pairwise
feature dissimilarities for person re-identification. In ICDSC. 1–6.

[22] Niki Martinel, Claudio Piciarelli, Gian Luca Foresti, and Christian Micheloni.
2016. Mobile Food Recognition with an Extreme Deep Tree. In ICDSC. 56—-61.

[23] Mohammad Norouzi, Dm Blei, and David Fleet. 2011. Minimal Loss Hashing for
Compact Binary Codes. In ICML. 353–360.

[24] Ruslan Salakhutdinov and Geoffrey Hinton. 2009. Semantic hashing. IJAR 50, 7
(2009), 969–978.

[25] Fumin Shen, Yan Xu, Li Liu, Yang Yang, Zi Huang, and Heng Tao Shen. 2018.
Unsupervised Deep Hashing with Similarity-Adaptive and Discrete Optimization.
IEEE TPAMI 8828, c (2018), 1–1.

[26] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. ICLR (2015), 1–14.

[27] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Pan-
chanathan. 2017. Deep Hashing Network for Unsupervised Domain Adaptation.
In CVPR.

[28] Jun Wang, Sanjiv Kumar, and Shih Fu Chang. 2010. Semi-supervised hashing for
scalable image retrieval. In CVPR. 3424–3431.

[29] Jingdong Wang, Heng Tao Shen, Jingkuan Song, and Jianqiu Ji. 2014. Hashing
for Similarity Search: A Survey. arXiv preprint (2014), 1–29. arXiv:1408.2927

[30] Jingdong Wang, Ting Zhang, Jingkuan Song, Nicu Sebe, and Heng Tao Shen.
2017. A Survey on Learning to Hash. IEEE TPAMI 13, 9 (2017). arXiv:1606.00185

[31] Y Weiss, A Torralba, R Fergus Advances in neural Information, and Undefined
2009. 2008. Spectral hashing. In NIPS. 1–8.

[32] Haofeng Zhang, Li Liu, Yang Long, and Ling Shao. 2018. Unsupervised Deep
Hashing With Pseudo Labels for Scalable Image Retrieval. IEEE TIP 27, 4 (apr
2018), 1626–1638.

[33] Ruimao Zhang, Liang Lin, Rui Zhang, Wangmeng Zuo, and Lei Zhang. 2015. Bit-
Scalable Deep Hashing With Regularized Similarity Learning for Image Retrieval
and Person Re-Identification. IEEE TIP 24, 12 (dec 2015), 4766–4779.

[34] Fang Zhao, Yongzhen Huang, Liang Wang, and Tieniu Tan. 2015. Deep semantic
ranking based hashing for multi-label image retrieval. In CVPR. 1556–1564.

[35] Han Zhu, Mingsheng Long, Jianmin Wang, and Yue Cao. 2016. Deep Hash-
ing Network for Efficient Similarity Retrieval. In AAAI Conference on Artificial
Intelligence. 2415–2421.

http://arxiv.org/abs/1408.2927
http://arxiv.org/abs/1606.00185

	Abstract
	1 Introduction
	2 Unsupervised Hash Learning
	2.1 Definitions
	2.2 Internal Nodes
	2.3 Terminal Nodes

	3 Experimental Results
	3.1 Datasets
	3.2 Evaluation Protocol
	3.3 Experimental and Implementation Settings
	3.4 Image Retrieval
	3.5 Person Re-Identification

	4 Conclusions
	References

