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Appendix to: Efficient European and American Option Pricing
Under a Jump-diffusion Process

Marcellino Gaudenzi, Alice Spangaro, Patrizia Stucchi

Università di Udine, Dipartimento di Scienze Economiche e Statistiche, via Tomadini 30/A, Udine

Abstract

This paper constitutes the Appendix of the article “Efficient European and American option pricing under

a jump-diffusion process”. Here are detailed the proofs that could not be part of the main sections of the

article, for length and readability reasons. Every section is dedicated to a proof, starts with the recollection

of the statement of the lemma, proposition or theorem involved and continues with its proof.

1. Proof of Lemma 5.10

Lemma:

Qk
N(k) ≤

N∑
i=1

Q̃N(2k − k + 2i)

QN l(k) ≤
N∑

i=1

Q̃N(2l + k + 2i)

for all −l ≤ k ≤ k.

Proof:

The proof is analogous to that of Lemma 5.4. When the original path first trespasses the k level, it can

reach level k + 1, . . . , k + N. Therefore its reflection (defined as in Lemma 5.4) can end at level 2k − k + 2,

2k − k + 4 . . . , 2k − k + 2N. Likewise for the paths that cross the −l level.

⋄

2. Proof of Proposition 5.11

Proposition: Given G and WN as defined in Equation (4.3) in the main article, for integers 0 ≤ k, k ≤ Nn

we have:



For k ≥ N⌈2WN − 1⌉ Q̃N(k) ≤ G
W⌊

k
N ⌋

N⌊
k
N

⌋
!

(1)

For k ≥ N⌈2WN − 1⌉
Nn∑
k=k

Q̃N(k) ≤ 2GN
W

⌊
k
N

⌋
N⌊
k
N

⌋
!

(2)

For k ≥ N⌈2eNhWN − 1⌉
Nn∑
k=k

ehkQ̃N(k) ≤ 2G
(ehNWN)

⌊
k
N

⌋
⌊

k
N

⌋
!

N−1∑
r=0

ehr (3)

For k ≥ N⌈2WN − 1⌉
Nn∑
k=k

e−hkQ̃N(−k) ≤ 2G
(e−hNWN)

⌊
k
N

⌋
⌊

k
N

⌋
!

N−1∑
r=0

e−hr (4)

Proof:

We need an upper estimate of the probability QN(k) of reaching level k ≥ 0 in the jump dynamics.

This will allow us to obtain an upper estimate of how much the value of the option in (n, j, k) for some j

contributes to the current value.

We recall that for a fixed N, in a single timestep∆t the possible jump moves are−Nh, . . . ,−h, 0, h, . . . ,Nh.

For simplicity, in the following we will talk about −N, . . . ,−1, 0, 1, . . . ,N jumps.

Level k ≥ 0 at maturity can be reached with a variety of possible combinations of jumps. In order to

consider all the possible paths that arrive at level k in n timesteps, exactly as we did in the N = 1 case, we

distinguish between the positive and the negative jumps: if k ≥ 0 is the total balance and the sum of all

negative jumps is −l, then the sum of all positive jumps must be k + l, with l ≥ 0. QN(k) is the sum of

all probabilities of reaching balance level k with a negative balance of −l, over all possible non negative l,

subject to the condition of a total of n moves.

Let us denote by e−j the number of − j jumps and e+j the number of j jumps in a path, for j = 1, . . . ,N.

With this notation, the probability QN(k) of reaching at maturity level k ≥ 0 for the jump dynamics is

given by:

QN(k) =
∑

l

∑
e+N

· · ·
∑
e+1

∑
e−N

· · ·
∑
e−1

C(e+N , e
−
N , e

+
N−1, e

−
N−1, . . . , e

+
1 , e
−
1 )qe+N
+N · · · q

e+1
+1qe−N
−N · · · q

e−1
−1qe0

0

where the e0 exponent is given by n − ∑N
i=1 e+i −

∑N
i=1 e−i , and C(e+N , e

−
N , e

+
N−1, e

−
N−1, . . . , e

+
1 , e
−
1 ) denotes the
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number of combinations of the n factors, once the exponents are fixed, and is equal to

C(e+N , e
−
N , e

+
N−1, e

−
N−1, . . . , e

+
1 , e
−
1 ) =

n!
e+N!e−N!e+N−1!e−N−1! . . . e+1 !e−1 !e0!

.

While in the N = 1 setting, a −l negative balance meant l jumps of the −h kind, and similarly a k + l

positive balance meant k + l jumps of the +h kind, here the situation is complicated by the possibility of

different jump amplitudes, so extra care is needed in order to understand the relation between l and the

exponents e+i , e−i .

We use Euclidean division in order to write l as a multiple of N plus a remainder 0 ≤ r−N ≤ N − 1:

l = Nz + r−N . This means that the negative balance −l is due to at most z jumps of the −N kind, and the

difference between Nz and l shall be covered with smaller jumps.

Instead of summing over all possible l, then, it will be easier to consider the summation over all possible

z and 0 ≤ r−N ≤ N − 1.

For any fixed z and r−N , we will have at most z jumps of the −N kind, therefore we need to vary e−N
between 0 and z; the choice of e−N sets additional constraints for e−N−1, and proceeding backwards the choice

of every e−i sets additional constraints for e−i−1. We apply the same idea to the positive balance k + l: given k,

the values t and 0 ≤ rN ≤ N − 1 such that k = Nt + rN are uniquely determined; therefore for any given pair

of z and r−N the positive balance can be written as N(t + z) + rN + r−N . This provides the limitation for e+N , and

the choice of every e+j imposes further conditions on the possible values for e+j−1.

In order to better express the relationships and mutual limitations between exponents, we need a change

in perspective in the summations.

For any fixed z, let us define bN−1 = z − e−N . Of the negative balance −(Nz + r−N), then, −Ne−N will be

covered by −N jumps and the rest, −(NbN−1 + r−N), by jumps of smaller amplitude. Instead of summing over

e−N from 0 to z, we sum over bN−1, that is over how many of the −Nz are covered by jumps of amplitude

smaller than N.

Once fixed z, r−N and e−N , we have a negative balance of −(NbN−1 + r−N) to cover with negative jumps

of amplitude at most N − 1: we compute the Euclidean division of NbN−1 + r−N by N − 1: the quotient

zN−1 = ⌊
NbN−1+r−N

N−1 ⌋ is an upper bound (we shall consider the more stringent between this value and the

condition of a total of n moves), and we call r−N−1 the remainder. Once again, instead of summing over e−N−1,

we sum over bN−2 = zN−1 − e−N−1.

We repeatedly use Euclidean division in order to find the upper bounds for all e−j , and operate in the same

way for the positive jumps, where we similarly introduce the a j and r+j values.
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The probability QN(k) of reaching at maturity level k ≥ 0 for the jump dynamics can then be written as:

QN(k) =
N−1∑
r−N=0

∑
z

∑
aN−1

· · ·
∑
a1

∑
bN−1

· · ·
∑
b1

n!
e+N!e−N!e+N−1!e−N−1! . . . e+1 !e−1 !e0!

qe+N
+N · · · q

e+1
+1qe−N
−N · · · q

e−1
−1qe0

0 .

The indices a j (b j) are indicators of how much of the total positive (respectively, negative) balance is due to

moves of amplitude at most j, and are related to the exponents in the following way:

e−N = z − bN−1 e+N = t + z +
⌊
rN + r−N

N

⌋
− aN−1

e−i =
⌊
(i + 1)bi + r−i+1

i

⌋
− bi−1 where r−i is the remainder of

(i + 1)bi + r−i+1

i
for 1 < i < N

e+i =
⌊
(i + 1)ai + r+i+1

i

⌋
− ai−1 where r+i is the remainder of

(i + 1)ai + r+i+1

i
for 1 < i < N

e−1 = 2b1 + r−2 e+1 = 2a1 + r+2

Substituting c±i with wi, we obtain

Q̃N(k) =
N−1∑
r−N=0

∑
z

∑
aN−1

· · ·
∑
a1

∑
bN−1

· · ·
∑
b1

n!
e+N!e−N!e+N−1!e−N−1! . . . e+1 !e−1 !e0!

we+N
N · · ·w

e+1
1 we−N

N · · ·w
e−1
1

n
∑N

i=1 e+i +
∑N

i=1 e−i
qe0

0

Since q0 ≤ 1 and n!

e0!n
∑N

i=1 e+i +
∑N

i=1 e−i
≤ 1:

Q̃N(k) ≤
N−1∑
r−N=0

∑
z

∑
aN−1

· · ·
∑
a1

we+N
N · · ·w

e+1
1

e+N!e+N−1! . . . e+1 !

∑
bN−1

· · ·
∑
b1

we−N
N · · ·w

e−1
1

e−N!e−N−1! . . . e−1 !

We treat separately the positive and the negative parts, and we work from the inside outwards.

∑
bN−1

we−N
N

e−N!
· · ·
∑
b3

we−4
4

e−4 !

∑
b2

we−3
3

e−3 !

∑
b1

we−2
2

e−2 !
we−1

1

e−1 !
=

=
∑
bN−1

we−N
N

e−N!
· · ·
∑
b3

we−4
4

e−4 !

∑
b2

we−3
3

e−3 !

∑
b1

w

⌊
3b2+r−3

2

⌋
−b1

2(⌊
3b2+r−3

2

⌋
− b1

)
!

w2b1+r−2
1

(2b1 + r−2 )!

≤
∑
bN−1

we−N
N

e−N!
· · ·
∑
b3

we−4
4

e−4 !

∑
b2

we−3
3

e−3 !
wr−2

1

(w2 + w2
1)

⌊
3b2+r−3

2

⌋
⌊

3b2+r−3
2

⌋
!
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Since r−2 is the remainder of 3b2+r−3
2 , it can only assume the values 0 or 1; therefore we can write:

∑
bN−1

we−N
N

e−N!
· · ·
∑
b3

we−4
4

e−4 !

∑
b2

we−3
3

e−3 !
wr−2

1

(w2 + w2
1)

⌊
3b2+r−3

2

⌋
⌊

3b2+r−3
2

⌋
!

≤

≤
∑
bN−1

we−N
N

e−N!
· · ·
∑
b3

we−4
4

e−4 !

∑
b2

w

⌊
4b3+r−4

3

⌋
−b2

3

(
⌊

4b3+r−4
3

⌋
− b2)!

max{w1, 1}
(w2 + w2

1)
3b2+r−3 −r−2

2

3b2+r−3 −r−2
2 !

According to the definitions in Equation (4.3) in the main article, max{w1, 1} = max{W1
1 ,W

0
1 } = M1, and

w2 + w2
1 = W2.

In general, we take care of the sum over bi−1, for 1 < i < N, in the following way:

∑
bi−1

w

⌊
(i+1)bi+r−i+1

i

⌋
−bi−1

i(⌊
(i+1)bi+r−i+1

i

⌋
− bi−1

)
!

W

⌊
ibi−1+r−i

i−1

⌋
i−1⌊

ibi−1+r−i
i−1

⌋
!
=

=
∑
bi−1

w

⌊
(i+1)bi+r−i+1

i

⌋
−bi−1

i

(
⌊

(i+1)bi+r−i+1
i

⌋
− bi−1)!

W
ibi−1+r−i −r−i−1

i−1
i−1⌊
ibi−1+r−i

i−1

⌋
!
≤

≤
∑
bi−1

w

⌊
(i+1)bi+r−i+1

i

⌋
−bi−1

i

(
⌊

(i+1)bi+r−i+1
i

⌋
− bi−1)!

(W
i

i−1
i−1)bi−1

bi−1!
W

r−i −r−i−1
i−1

i−1 ≤

≤
∑
bi−1

w

⌊
(i+1)bi+r−i+1

i

⌋
−bi−1

i

(
⌊

(i+1)bi+r−i+1
i

⌋
− bi−1)!

(W
i

i−1
i−1)bi−1

bi−1!
max{Wi−1,W

− i−2
i−1

i−1 } =

= Mi−1
(wi +W

i
i−1

i−1)

⌊
(i+1)bi+r−i+1

i

⌋
⌊

(i+1)bi+r−i+1
i

⌋
!

= Mi−1
W

⌊
(i+1)bi+r−i+1

i

⌋
i⌊

(i+1)bi+r−i+1
i

⌋
!

and similarly for the sum over ai−1, for 2 ≤ i < N. Proceeding in this way for both the negative and the
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positive balance parts of the summation, we get

Q̃N(k) ≤
N−1∏
j=1

M2
j

N−1∑
r−N=0

∑
z

Wz
N

z!
W

t+z+
⌊

rN+r−N
N

⌋
N

(t + z +
⌊

rN+r−N
N

⌋
)!

≤
N−1∏
j=1

M2
j

∑
z

Wz
N

z!
W t+z

N

(t + z)!

N−1∑
r−N=0

W

⌊
rN+r−N

N

⌋
N

≤
N−1∏
j=2

M2
j

∑
z

Wz
N

z!

∑
z

W t+z
N

(t + z)!
N max{WN , 1}

≤ N max{WN , 1}
N−1∏
j=2

M2
j e

WN · 2
W t

N

t!

for t ≥ 2WN − 1. Calling G = 2N max{WN , 1}
∏N−1

j=2 M2
j e

WN we have Equation (1) for k ≥ N⌈2WN − 1⌉.

Now we apply the previous inequality to the summation
∑Nn

k=k
Q̃N(k), obtaining

+∞∑
k=k

Q̃N(k) ≤
+∞∑
k=k

G
W⌊

k
N ⌋

N⌊
k
N

⌋
!

≤ 2GN
W

⌊
k
N

⌋
N⌊
k
N

⌋
!

provided that k ≥ N⌈2WN − 1⌉.

We apply again Equation (1) to the summation
∑+∞

k=k
ehkQ̃N(k); for k ≥ N⌈2eNhWN − 1⌉ we have:

+∞∑
k=k

ehkQ̃N(k) ≤
Nn∑
k=k

ehkG
W⌊

k
N ⌋

N⌊
k
N

⌋
!
≤ G

+∞∑
t=
⌊

k
N

⌋
N−1∑
r=0

ehNt+hr W t
N

t!
≤ 2G

(ehNWN)
⌊

k
N

⌋
⌊

k
N

⌋
!

N−1∑
r=0

ehr. (5)

Similarly, we obtain the analogous inequality for
∑+∞

k=k
e−hkQ̃N(−k) with k ≥ N⌈2WN − 1⌉.

⋄

3. Proof of Theorem 4.1

Theorem: Given ε > 0, considering V the HS European call option value, taking

k ≥ max{N
⌈
ehN+1WN − ln ε + ln(4S 0G) + (α − r)τ + ln k+

⌉
− 1,N

⌈
2ehNWN − 1

⌉
− 1} (6)

l ≥ max{N
⌈
e−hN+1WN − ln ε + ln(4S 0G) + (α − r)τ + ln k−

⌉
− 1,N

⌈
2ehNWN − 1

⌉
− 1} (7)

6



with k+ and k− the following constants,

k+ =
N−1∑
r=0

ehr + N max{W2
N , 1}e2hN

N−1∑
r=0

e−hr

k− =
N−1∑
r=0

e−hr + N max{W2
N , 1}

N−1∑
r=0

ehr,

we have that the European call option value VTT obtained via truncation of the tree at levels k and −l

satisfies:

V − VTT < ε.

Proof:

Combining Equation (5.3) in the main article,

V − VPT ≤ e(α−r)τS 0

 Nn∑
k=k+1

ehkQ̃N(k) +
Nn∑

k=l+1

e−hkQ̃N(k)


and Equation (5.7) in the main article, to which we apply Lemma 5.10,

VPT − VTT ≤ e(α−r)τS 0

k∑
k=−l

ehk(Qk
N(k) + QN l(k))

≤ e(α−r)τS 0

2k+l+2∑
s=k+2

eh(2k−s+2)
N−1∑
i=0

Q̃N(s + 2i) +
2l+k+2∑
s=l+2

eh(s−2l−2)
N−1∑
i=0

Q̃N(s + 2i)


the difference between V and VTT is less or equal than the sum of four discarded parts:

V−VTT ≤ e(α−r)τS 0

 Nn∑
k=k+1

ehkQ̃N(k) +
Nn∑

k=l+1

e−hkQ̃N(k) + eh(2k+2)
Nn∑

s=k+2

e−hs
N−1∑
i=0

Q̃N(s + 2i) + eh(−2l−2)
Nn∑

s=l+2

ehs
N−1∑
i=0

Q̃N(s + 2i)


By Proposition 5.11:

V − VTT ≤e(α−r)τS 0G

2(ehNWN)
⌊

k+1
N

⌋
⌊

k+1
N

⌋
!

N−1∑
r=0

ehr + 2
(e−hNWN)

⌊
l+1
N

⌋
⌊

l+1
N

⌋
!

N−1∑
r=0

e−hr+ (8)

+eh(2k+2)
Nn∑

s=k+2

e−hs
N−1∑
i=0

W⌊
s+2i

N ⌋
N⌊

s+2i
N

⌋
!
+ eh(−2l−2)

Nn∑
s′=l+2

ehs′
N−1∑
i=0

W
⌊

s′+2i
N

⌋
N⌊

s′+2i
N

⌋
!

 (9)

7



where we operated the substitutions s = 2k− k+2, s′ = 2l+ k+2 and G = 2N max{WN , 1}eWN
∏N−1

i=1 M2
i ,

and considered k ≥ N⌈2ehNWN − 1⌉ − 1 and l ≥ N⌈2WN − 1⌉ − 1.

Since
⌊

s
N

⌋
≤
⌊

s+2i
N

⌋
≤
⌊

s
N

⌋
+ 2 for 0 ≤ i < N, we have that W⌊

s+2i
N ⌋

N

⌊ s+2i
N ⌋! ≤

W⌊
s
N ⌋

N

⌊ s
N ⌋! ·max{W2

N , 1}:

V − VTT ≤2e(α−r)τS 0G

 (ehNWN)
⌊

k+1
N

⌋
⌊

k+1
N

⌋
!

N−1∑
r=0

ehr +
(e−hNWN)

⌊
l+1
N

⌋
⌊

l+1
N

⌋
!

N−1∑
r=0

e−hr

+
+ e(α−r)τS 0GN max{W2

N , 1}

eh(2k+2)
Nn∑

s=k+2

e−hs W⌊
s
N ⌋

N⌊
s
N

⌋
!
+ eh(−2l−2)

Nn∑
s=l+2

ehs W⌊
s
N ⌋

N⌊
s
N

⌋
!


≤2e(α−r)τS 0G

 (ehNWN)
⌊

k+1
N

⌋
⌊

k+1
N

⌋
!

N−1∑
r=0

ehr +
(e−hNWN)

⌊
l+1
N

⌋
⌊

l+1
N

⌋
!

N−1∑
r=0

e−hr

+
+ 2e(α−r)τS 0GN max{W2

N , 1}

e2h(k+1) (e−hNWN)
⌊

k+1
N

⌋
⌊

k+1
N

⌋
!

N−1∑
r=0

e−hr + e−2h(l+1) (ehsWN)
⌊

l+1
N

⌋
⌊

l+1
N

⌋
!

N−1∑
r=0

ehr


for k, l ≥ N⌈2ehNWN − 1⌉ − 1. Since we also have hs ≤ hN

⌊
s
N

⌋
+ hN and −hs ≤ −hN

⌊
s
N

⌋
, we can write:

V − VTT ≤2e(α−r)τS 0G

 (ehNWN)
⌊

k+1
N

⌋
⌊

k+1
N

⌋
!

N−1∑
r=0

ehr +
(e−hNWN)

⌊
l+1
N

⌋
⌊

l+1
N

⌋
!

N−1∑
r=0

e−hr

+N max{W2
N , 1}

e2hN (ehNWN)
⌊

k+1
N

⌋
⌊

k+1
N

⌋
!

N−1∑
r=0

e−hr +
(e−hNWN)

⌊
l+1
N

⌋
⌊

l+1
N

⌋
!

N−1∑
r=0

ehr




≤2e(α−r)τS 0G

 (ehNWN)
⌊

k+1
N

⌋
⌊

k+1
N

⌋
!

N−1∑
r=0

ehr + N max{W2
N , 1}e2hN

N−1∑
r=0

e−hr

 + (e−hNWN)
⌊

l+1
N

⌋
⌊

l+1
N

⌋
!

N−1∑
r=0

e−hr + N max{W2
N , 1}

N−1∑
r=0

ehr




In order to have the desired inequality, V − VTT < ε, we ask:

(ehNWN)
⌊

k+1
N

⌋
⌊

k+1
N

⌋
!

N−1∑
r=0

ehr + N max{W2
N , 1}e2hN

N−1∑
r=0

e−hr

 < ε

4e(α−r)τS 0G

(e−hNWN)
⌊

l+1
N

⌋
⌊

l+1
N

⌋
!

N−1∑
r=0

e−hr + N max{W2
N , 1}

N−1∑
r=0

ehr

 < ε

4e(α−r)τS 0G
.

Let us call
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k+ =
N−1∑
r=0

ehr + N max{W2
N , 1}e2hN

N−1∑
r=0

e−hr

k− =
N−1∑
r=0

e−hr + N max{W2
N , 1}

N−1∑
r=0

ehr.

Using Lemma 5.3 we impose:

ehN+1WN −
k + 1

N

 ≤ ln ε − ln(4S 0G) − (α − r)τ − ln k+

e−hN+1WN −
 l + 1

N

 ≤ ln ε − ln(4S 0G) − (α − r)τ − ln k−

which means

k ≥ N
⌈
ehN+1WN − ln ε + ln(4S 0G) + (α − r)τ + ln k+

⌉
− 1

l ≥ N
⌈
e−hN+1WN − ln ε + ln(4S 0G) + (α − r)τ + ln k−

⌉
− 1

Adding the conditions for Proposition 5.11, we have:

k ≥ max{N
⌈
ehN+1WN − ln ε + ln(4S 0G) + (α − r)τ + ln k+

⌉
− 1,N

⌈
2ehNWN − 1

⌉
− 1} (10)

l ≥ max{N
⌈
e−hN+1WN − ln ε + ln(4S 0G) + (α − r)τ + ln k−

⌉
− 1,N

⌈
2ehNWN − 1

⌉
− 1} (11)

⋄

4. Proof of Theorem 4.2

Theorem: Given ε > 0, considering V the HS European put option value, taking k ≥ max{N⌈2WN − 1⌉ −

1,N⌈WNe − ln ε − rτ + ln(4N(N + 1)KG)⌉ − 1}, we have that the European put option value VTT obtained

via truncation of the tree at levels k and −l with l = k satisfies

V − VTT < ε.

9



Proof:

Taking l = k in Equation (5.34) in the main article, we have

V − VTT ≤ 2e−rτK(N + 1)
Nn∑

k=k+1

Q̃N(k) (12)

Applying Proposition 5.11 to Equation (12) we obtain:

V − VTT ≤ 4e−rτK(N + 1)GN
W

⌊
k+1
N

⌋
N⌊

k+1
N

⌋
!

for k ≥ N⌈2WN − 1⌉ − 1.

In order for it to be less than an arbitrary ε, we impose k ≥ N⌈WNe − ln ε − rτ + ln(4N(N + 1)KG)⌉ − 1.

Collecting all requirements on k, we get

k ≥ max{N⌈2WN − 1⌉ − 1,N⌈WNe − ln ε − rτ + ln(4N(N + 1)KG)⌉ − 1}.

⋄

5. Proof of Lemma 6.1

Lemma: V0
E(0, 0, 0) = VTT .

Proof: We want to show that the value VTT coincides with the value V0
E(0, 0, 0) obtained via backward

procedure according to the following formula: V0
E(i, j, k) = e−r∆t∑N

l=−N(V0
E(i + 1, j + 1, k + l)p + V0

E(i +

1, j, k + l)(1 − p))ql if k ∈ [−l, k], 0 otherwise; with initial data V0
E(n, j, k) = 0 for j integer between 0 and n

and k integer such that −nN ≤ k ≤ −l − 1 or k + 1 ≤ k ≤ nN, and V0
E(n, j, k) = (S (n, j, k) − K)+ for the call

option, V0
E(n, j, k) = (K − S (n, j, k))+ for the put option, for j integer between 0 and n and k integer such that

−l ≤ k ≤ k.

Let us denote as B the class of all paths on the tree that go from the node (0, 0, 0) to one of the nodes

(n, j, k) at maturity τ. For any β ∈ B we will denote by prob(β) the probability of following β and value(β)

the value of the option at the end of the path β. Let us denote B[−l,k] the class of all the paths on the tree that

go from the node (0, 0, 0) to one of the nodes at maturity without trespassing the −l and k boundaries, that

is, where every node (i, j, k) of the path has −l ≤ k ≤ k.
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The expression

e−rτ
∑
β∈B[−l,k]

prob(β) · value(β) (13)

coincides with VTT , since they identify the same sum: every path that does not go out of the borders

needs to end at a level −l ≤ k ≤ k; all the paths ending in a node (n, j, k) share the same value for the option,

so if we collect all the addenda in (13) that end in the same node we obtain (K−S 0e(−n+2 j)σ
√
∆t+hk)+P( j)QT

N(k)

in the put case and (S 0e(−n+2 j)σ
√
∆t+hk − K)+P( j)QT

N(k) in the call case.

We will show that the VTT as in (13) coincides with V0
E(0, 0, 0) for induction on the number of steps n.

Let us start with n = 1. Our tree has only one step, which means that the values at maturity of the option

are given by the 2(2N + 1) children of (0, 0, 0). In this case ∆t = τ. Let 0 ≤ l, k ≤ N, that means that (0, 0, 0)

is surely in the allowed zone, while some of its children may not. Since the value of the option on the nodes

(1, j, k) with k < [−l, k] is 0, we can write:

V0
E(0, 0, 0) = e−rτ

N∑
l=−N

(V0
E(1, j + 1, l)p + V0

E(1, j, l)(1 − p))ql =

= e−rτ
k∑

l=−l

V0
E(1, j + 1, l)pql + V0

E(1, j, l)(1 − p)ql =

= e−rτ
∑
β∈B[−l,k]

prob(β) · value(β) = VTT

where the last equality is due to the fact that in a single step the paths that trespass are those that end

outside the boundary.

Let us now suppose the thesis is true for all trees with n−1 steps. Let us consider a tree of n steps. In this

case ∆t = τ/n. We focus on the first step and compute the value of the option in (0, 0, 0), with the backward

procedure: V0
E(0, 0, 0) = e−r∆t∑N

l=−N(V0
E(1, 1, l)p + V0

E(1, 0, l)(1 − p))ql.

If l < [−l, k], V0
E(1, 1, l) = V0

E(1, 0, l) = 0. Otherwise, we consider the n − 1 trees that start at (1, j, l) with

j = 0, 1 and l ∈ [−l, k] and end at τ. For such j, l, let us denote B(1, j,l)
[−l,k]

the class of all the paths on the tree

that go from the node (1, j, l) to one of the nodes (n, j, k) at maturity without going out of the [−l, k] zone.

On these smaller trees we apply induction and write the values V0
E(1, j, l) as

V0
E(1, j, l) = e−rτ′

∑
β′∈B(1, j,l)

[−l,k]

prob(β′) · value(β′)

11



where we indicated with τ′ the time interval τ′ = ∆t(n − 1).

Therefore we can write

V0
E(0, 0, 0) = e−r∆t

N∑
l=−N

l∈[−l,k]

(V0
E(1, 1, l)p + V0

E(1, 0, l)(1 − p))ql

= e−rτ
N∑

l=−N

l∈[−l,k]


∑
β′∈B(1,1,l)

[−l,k]

prob(β′) · value(β′)pql +
∑
β′∈B(1,0,l)

[−l,k]

prob(β′) · value(β′)(1 − p)ql

 =
= e−rτ

∑
β∈B[−l,k]

prob(β) · value(β)

where we used the fact that ∆t + τ′ = τ, and we considered that if a path β that connects the node (0, 0, 0) to

a node at maturity τ (without trespassing) visits node (1, 0, l) and is afterwards identical to β′, we will have

value(β) =value(β′) and prob(β) = (1 − p)ql· prob(β′), while if a path β that connects the node (0, 0, 0) to

a node at maturity τ (without trespassing) visits node (1, 1, l) and is afterwards identical to β′, we will have

value(β) = value(β′) and prob(β) = pql· prob(β′).

⋄

6. Proof of Lemma 6.2

Lemma: Vb
E(0, 0, 0) = V̂b.

Proof: The proof, similar to that of Lemma 6.1, is written for induction on the number of steps n.

In this situation, in order to understand the contribution of every path to the value of the option, we

are interested in when a path, going from (0, 0, 0) to maturity, first crosses the boundaries. Given any

β ∈ B \ B[−l,k], we will denote with i(β) the time index 0 ≤ i ≤ n of the first exit of β from the allowed zone

[−l, k].

When n = 1, the tree has only one step, which means that the values at maturity of the option are given

by the 2(2N + 1) children of (0, 0, 0). In this case ∆t = τ. Let 0 ≤ l, k ≤ N, that means that (0, 0, 0) is surely

in the allowed zone, while some of its children may be not. Since the value of the option is b on the nodes

(1, j, k) with k < [−l, k], we can write:
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Vb
E(0, 0, 0) =e−rτ

N∑
l=−N

(Vb
E(1, j + 1, l)p + Vb

E(1, j, l)(1 − p))ql =

=e−rτ
k∑

l=−l

(Vb
E(1, j + 1, l)pql + Vb

E(1, j, l)(1 − p)ql) + e−rτ
−l−1∑
l=−N

b + e−rτ
N∑

l=k+1

b =

=e−rτ
∑
β∈B[−l,k]

prob(β) · value(β) +
∑

β∈B\B[−l,k]

prob(β) · be−r∆ti(β)

=VTT +
∑

β∈B\B[−l,k]

prob(β) · be−r∆ti(β) = V̂b

where we take into account the fact that in a single step the paths that trespass are those that end outside the

boundaries.

Let us now suppose the thesis is true for all trees with n−1 steps. Let us consider a tree of n steps. In this

case ∆t = τ/n. We focus on the first step and compute the value of Vb
E(0, 0, 0) with the backward procedure:

Vb
E(0, 0, 0) = e−r∆t∑N

l=−N(Vb
E(1, 1, l)p + Vb

E(1, 0, l)(1 − p))ql.

If l < [−l, k], Vb
E(1, 1, l) = Vb

E(1, 0, l) = b.

Vb
E(0, 0, 0) = e−r∆t

N∑
l=−N

l∈[−l,k]

(Vb
E(1, 1, l)p + Vb

E(1, 0, l)(1 − p))ql + e−r∆t
N∑

l=−N

l<[−l,k]

bql

If l ∈ [−l, k], we can consider the n − 1 trees that start at (1, j, l) for j = 0, 1 and end at maturity τ. For

any such j, l, we will denote as B(1, j,l) the class of all paths starting from (1, j, l) and ending at maturity. For

any β′ ∈ B(1, j,l) \ B(1, j,l)
[−l,k]

, i(β′) is the time index 0 ≤ i ≤ n of the first exit of β′ from the allowed zone [−l, k].

We apply induction and write that the value Vb
E(1, j, l) for this smaller trees is given by

Vb
E(1, j, l) = e−rτ′

∑
β′∈B(1, j,l)

[−l,k]

prob(β′) · value(β′) +
∑

β′∈B(1, j,l)\B(1, j,l)
[−l,k]

prob(β′) · be−r∆ti(β′)

where τ′ indicates τ′ = τ − ∆t, ∆t′ = τ′/(n − 1).

Therefore
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Vb
E(1, j, l) =e−rτ

N∑
l=−N

pql

∑
β′∈B(1,1,l)

[−l,k]

prob(β′) · value(β′) + pql

∑
β′∈B(1,1,l)\B(1,1,l)

[−l,k]

prob(β′) · be−r∆ti(β′)+

+(1 − p)ql

∑
β′∈B(1,0,l)

[−l,k]

prob(β′) · value(β′) + (1 − p)ql

∑
β′∈B(1,0,l)\B(1, j,l)

[−l,k]

prob(β′) · be−r∆ti(β′)

+
+ e−r∆t

N∑
l=−N

l<[−l,k]

bql

Applying Lemma 6.1, we can rewrite the previous expression introducing the values V0
E(1, j, l).

Vb
E(0, 0, 0) =e−rτ

N∑
l=−N

l∈[−l,k]

(
pqlV0

E(1, j, l) + (1 − p)qlV0
E(1, 0, l)+

+pql

∑
β′∈B(1,1,l)\B(1,1,l)

[−l,k]

prob(β′) · be−r∆ti(β′) + (1 − p)ql

∑
β′∈B(1,0,l)\B(1, j,l)

[−l,k]

prob(β′) · be−r∆ti(β′)

+
+ e−r∆t

N∑
l=−N

l<[−l,k]

bql

Now we consider a path β starting from the node (0, 0, 0), visiting node (1, j, l) and reaching maturity

trespassing the boundaries. We call β′ the path going from (1, j, l) to maturity which visits the same nodes

as β. If j = 0 then prob(β) = (1 − p)ql prob(β′), while if j = 1 prob(β) = pql prob(β′). If l < [−l, k], then

i(β) = 1, otherwise i(β) =i(β′) + 1. This means we can write

Vb
E(0, 0, 0) = V0

E(0, 0, 0)+

+
∑

β∈B\B[−l,k]

i(β)>1

prob(β) · be−r∆ti(β)+

+
∑

β∈B\B[−l,k]

i(β)=1

prob(β) · be−r∆ti(β) =

=V̂b

⋄
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7. Proof of Lemma 6.3

Lemma: Given ε > 0, taking G = 2N max{WN , 1}
∏N−1

i=1 M2
i eWN , the values V̂K and VTT obtained via

truncation of the tree at levels k and −k, with k the smallest integer which satisfies:

k ≥ max{N⌈2WN − 1⌉ − 1,N⌈WNe − ln ε + ln(4N(N + 1)KG)⌉ − 1}, we have

∣∣∣∣V̂K − VTT
∣∣∣∣ < ε

Proof:

V̂K − VTT =
∑

β∈B\B[−l,k]

prob(β) · Ke−r∆ti(β)

For brevity, let us call Bk the set of all paths in B \ B[−l,k] which reach a node (n, j, k), with 0 ≤ j ≤ n, at

maturity. We have:

V̂K − VTT ≤K
Nn∑

k=−Nn

∑
β∈Bk

prob(β)

≤K
−l−1∑

k=−Nn

∑
β∈Bk

prob(β) + K
k∑

k=−l

∑
β∈Bk

prob(β) + K
Nn∑

k=k+1

∑
β∈Bk

prob(β)

≤K
−l−1∑

k=−Nn

QN(k) + K
Nn∑

k=k+1

QN(k)+

+ K
k∑

k=−l

∑
β∈Bk

first trespassing −l

prob(β) + K
k∑

k=−l

∑
β∈Bk

first trespassing k

prob(β)

≤K
Nn∑

k=l+1

Q̃N(k) + K
Nn∑

k=k+1

Q̃N(k) + K
k∑

k=−l

Ql(k) + K
k∑

k=−l

Qk(k).

Therefore we have
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V̂K − VTT ≤ K(N + 1)

 Nn∑
k=l+1

Q̃N(k) +
Nn∑

k=k+1

Q̃N(k)


≤ 2K(N + 1)

Nn∑
k=k+1

Q̃N(k)

≤ 4K(N + 1)GN
W

⌊
k+1
N

⌋
N⌊

k+1
N

⌋
!

for l = k ≥ N⌈2WN − 1⌉ − 1 and applying Equation (2).

We ask k ≥ N⌈WNe − ln ε + ln(4N(N + 1)KG)⌉ − 1, in order to have

4e−rτK0(N + 1)GN
W

⌊
k+1
N

⌋
N⌊

k+1
N

⌋
!
< ε.

Collecting all the requirements on k, we get that for

k ≥ max{N⌈2WN − 1⌉ − 1,N⌈WNe − ln ε + ln(4N(N + 1)KG)⌉ − 1}

we have

∣∣∣∣V̂K − VTT
∣∣∣∣ < ε.

⋄
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