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Cell wall turnover and modification in its composition are key factors during stone fruit
development and patterning. Changes in cell wall disassembly and reassembly are
essential for fruit growth and ripening. Modifications in cell wall composition, resulting in
the formation of secondary cell walls, are necessary for producing the most distinctive trait
of drupes: the lignified endocarp. The contribution of primary metabolism to cell wall
synthesis has been investigated in detail, while the knowledge on the contribution of the
cell wall to primary metabolites and related processes is still fragmented. In this review,
starting from peculiarities of cell wall of drupes cells (in mesocarp and endocarp layers), we
discuss the structure and composition of cell wall, processes related to its modification
and contribution to the synthesis of primary metabolites. In particular, our attention has
been focused on the ascorbate synthesis cell wall-related and on the potential role of
cyanogenic compounds in the deposition of the secondary cell wall.

Keywords: endocarp, ascorbic acid, cyanogenic compounds, lignin, cell wall turnover
INTRODUCTION

Cell wall metabolism is an integral part of the primary metabolism since the cell wall is the primary
carbon sink in many plant tissues. The majority of C is stored into the cell wall polysaccharides
making this cellular component the most important biomass on earth. In addition to
polysaccharides (cellulose, hemicelluloses, and pectins), cell walls are composed by other,
quantitatively minor but functionally important components, such as polyphenols and proteins,
many of which are glycosylated (Somerville et al., 2004). Plant cell walls composition is highly
variable not only among species but also within an individual plant at both the tissue and cell levels
(Zhang et al., 2014). Moreover, cell walls are classified as primary walls, which are surrounding the
cell driving its growth and consequently also its morphology, and secondary walls, whose rigidity
and strength is necessary to fulfill specialized cell functions (Somerville et al., 2004). In stone fruits
(or drupes), cell wall changes resulting in the formation of secondary cell walls are particularly
important because they are necessary for producing the most distinctive trait of drupes: the
lignified endocarp.
.org July 2020 | Volume 11 | Article 10541
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PRIMARY METABOLISM AND PRIMARY
CELL WALL

Primary Cell Wall Composition and Its
Metabolism During Drupe Growth and
Ripening
Similarly to other fleshy fruit, an active cell wall turnover is
essential for a correct fruit development and ripening in Prunus
spp. More than 50 cell wall-related genes encoding for
lignocellulose-degrading enzymes and nonenzymatic protein
(e.g., expansins, EXP) (Goulao and Oliveira, 2008; Mercado
et al., 2011; Gapper et al., 2013), as well as components of
subcellular structures (e.g. cytoskeleton), have been claimed to be
involved in the cell wall turnover (Bashline et al., 2014). Drupe
growth is the result of coordinated cell divisions and expansion
processes in which cell turgor pressure, cell wall biosynthesis and
its remodeling play a fundamental role. During fruit ripening,
cell wall disassembly, combined with a decrease of cell turgor
pressure, is the main process responsible for fruit softening. In
this context, before discussing how the cell wall changes during
fruit development and ripening and its contribution to primary
metabolism, it is necessary to provide some information about
the cell wall composition of Prunus spp. fruit.

Parenchyma cells with a thin primary wall are the main cell
type present in fleshy fruit tissues. In dicotyledonous plants, the
primary cell wall is composed roughly by equal part, ranging
around 30%, of cellulose, hemicelluloses, and pectins, plus 1–
10% of structural proteins. Fruit cell walls have also high content
of water (Posé et al., 2018).

A detailed description of each component is not the main goal
of this review, however, here it will be summarized the newest
results on cell wall component reached by employing the Atomic
Force Microscopy (AFM), an imaging tool for studying food
macromolecules and colloids (Gunning and Morris, 2017). The
advantage of AFM, in comparison to techniques based on high-
resolution scanning electron microscopy, is the avoidance of cell
wall polymers coalescing because it is not necessary to dehydrate
the sample before the analysis. Thanks to this characteristic,
AFM, in the last decade, has opened a new vision of structural
features of cell wall components, particularly polysaccharides.

Among polysaccharides, cellulose is the main component of
the primary cell wall. It is composed of a repetitive unit formed
by residues of b-(1–4) linked D-glucose. These are arranged in
fibrils. By using AFM, Niimura et al. (2010) demonstrated that
cellulose microfibrils present in peach fruit are ultra-thin
(diameter ranging between 1 and 2 nm). Based on this
characteristic, peach cellulose nanofibrils can be classified as
dietary fiber, and therefore, they can heavily contribute to the
nutritional value of peach fruit.

Xyloglucan (XyG) is the most abundant hemicellulosic
component, this polymer is embedded in an amorphous pectin
matrix composed of polygalacturonides together with other less
abundant components, such as phenols, structural proteins,
enzymes, and a variety of receptors and sensors (Goulao and
Oliveira, 2008; Posé et al., 2018). Differences in the thickness of
hemicellulose chains have been related to differences in fruit
Frontiers in Plant Science | www.frontiersin.org 2
texture. Chen et al. (2009) reported that tick hemicellulose chains
were more abundant in cherries with crisp texture than the
softer ones.

Pectin is a heterogeneous polysaccharide mainly composed of
D-galacturonic acid (GalA) (Fishman et al., 2004; Yang et al.,
2009; Wang et al., 2018). Visualization of the pectin sample
isolated from the fruit by AFM has confirmed the great nano-
structure heterogeneity. In peach, plum, and apricot fruit, pectins
are naturally aggregated in large (1–3 nm) and branched fiber
(Yang et al., 2009; Liu et al., 2017; Mierczynska et al., 2017). The
presence of long pectin chains (longer than 1000 nm) is usually
associated with a consistent texture/relatively high firmness,
while fruits with thinner and shorter pectin chains (e.g.
strawberry and tomato) undergo to a rapid softening. A
reduction of the complexity of pectin nanostructure occurs
during the fruit softening of Prunus ssp., as observed by Zhang
et al. (2008) in Chinese cherry. In this study, differences in the
structure of chelated pectins that were presently moving from the
first growth phases to ripening have been detected by AFM,
being pectins from unripe fruit longer and wider than those from
ripe fruit.

Modifications of cell wall composition and structure are the
foundation of changes in fruit firmness and texture during
ripening. Some changes in cell wall components ultrastructure
appear to be common (e.g. the hemicellulose depolymerization),
but others occur in a specie-specific manner or are totally absent.
For example, a slightly decrease of cellulose content occurs
during ripening in most fruits, although this event is often
uncoupled with the increase of crystalline cellulose in ripe fruit
(Posé et al., 2018). On the other hand, although in cell wall
galactose (Gal) and arabinose (Ara) level declines in ripe fruit of
most species, Gal and Ara loss does not take place in plum, and
Ara reduction is minor or absent in apricot. In peach, XyG
depolymerization is among early events during softening
(Brummell et al., 2004; Posé et al., 2018), while other fleshy
fruit such as apple (Percy et al., 1997) the ripening proceeds in
absence of the XyG depolymerization or this event is cultivar-
dependent as in strawberry (Rosli et al., 2004).

Fruit softening is a very important event during ripening (Payasi
et al., 2009) and it, primarily, results from both the decline in cell
wall strength and cell-to-cell adhesion caused by modification of
mechanical properties of cell wall and the depolymerization of
pectins forming the middle lamella, respectively. These
modifications together with the turgor pressure decline, that is
associated with an increase in the concentration of apoplastic solutes
(Wada et al., 2008), lead to fruit juiciness and texture softening
(Toivonen and Brummell, 2008).

Pectins are the cell wall components showing the highest
structural modifications during ripening; however, their role in
fruit firmness and softening is still extremely controversial
(Paniagua et al., 2014). These changes are an early solubilization
and loss of neutral side chain, and, later on, a depolymerization
mainly by polygalacturonases (PGases) (Goulao, 2010). Pectin
solubilization may occur when cohesion of pectin molecules is
weakened by the loss of neutral sugars in the form of neutral
galactose-rich side-chains of rhamnogalacturonans 1 (RG-I).
July 2020 | Volume 11 | Article 1054
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Neutral side chains from RG-I might aggregate pectins either by
physical interaction with other cell wall polymers or by binding to
hemicellulose and cellulose (Zykwinska et al., 2008). In the Colorless
non-ripening (Cnr) tomato fruit, the deposition of (1!5)-a-L-
arabinan, which is the constituent the branched sidechain of RG-I, is
impaired resulting in a reduced length and the low esterification
degree of pectin (Orfila et al., 2001). The consequence of the altered
Cnr fruit pectins structure is the lack of pericarp swelling and the
presence of large intercellular space in the inner pericarp in
comparison with the wild type fruit. Loss of cell adhesion has
been also observed between cells of leaf parenchyma and abscission
zone of transgenic apple plants overexpressing a PG gene. The
overexpression of PG leads to a formation of pectins with shorter
chains in comparison to those observed in the wild-type plants
(Atkinson et al., 2002). These observations confirm that the cell
adhesion strength is related to the composition of pectins forming
the middle lamella (Jarvis, 1984). Later on, a more detailed analysis
of cell wall microstructure of Cnr fruit parenchyma cells located in
the interface with neighboring cells highlighted the presence of
xylan and xyloglucan (Ordaz-Ortiz et al., 2009).This result indicates
that hemicellulose polymers are structural cell wall component
involved in the cell adhesion/cell separation process.
Depolymerization of pectins during ripening is largely due to
result of a sequential and coordinated action of several pectin-
metabolizing enzymes such as PGases, pectinmethylesterases
(PME) and pectinlyases (PL) (Brummell et al., 2004; Morgutti
et al., 2006). Among PGs, endo-polygalacturonase (endo-PG)
plays a central role in the depolymerization of cell wall pectins of
peach fruit; however, endo-PG is essential for the achievement of a
melting flesh (MF) fruit texture, due to the loss of cell adhesion, but
not for reducing fruit firmness. The localization of endo-PG
isoforms at the middle lamella of the cell wall of MF fruit
supports this role (Morgutti et al., 2006). In addition, in non-MF
(NMF) no endo-PG was detected and consequentially no loss of cell
adhesion was observed. On the basis of these observations, the role
of endo-PG activity on the reduction of fruit firmness has been
debunked because of NMF peaches are able to soften and, at the
same time, change of symplast/apoplast water status has been
suggested as the main mechanism through which peach fruit
firmness is regulated. A re-thinking of the main role of pectin
depolymerization in the fruit softening (Wang et al., 2018) has been
proposed for other fleshy fruits including strawberry and apple also
on the basis of observation carried out after the silencing of PL (Posé
et al., 2013) and PG (Atkinson et al., 2012), respectively. In both
species the silencing of pectolitic enzymes lead an increase in cell-to-
cell adhesion together with slight depolymerization of pectins and
an improvement of fruit firmness and textural proprieties, without
affecting other fruit quality traits.

Level of cell wall hydrolases change accordingly with the
variation of the transcription of the corresponding genes of these
enzymes (particularly PGases and PL) in ripening fruit, as
pointed out by several transcriptome studies (Trainotti et al.,
2006; Pan et al., 2016; Pei et al., 2019). In ripening peaches, Pei
et al., 2019 also reported the up-regulation of xyloglucan
endotransglucosylase/hydrolases (XTHs), responsible for the
reduction of mass of wall-bound xyloglucans and consequently
Frontiers in Plant Science | www.frontiersin.org 3
able to increase the cell wall extensibility. Worthy of note is the
fact that the action of XTHs is induced by xyloglucan
oligosaccharides (XGOs) and that, during peach fruit ripening,
Pei et al. (2019) observed the down-regulation of two esterase/
lipase proteins (GELPs) known for their action against XGOs.

Contribution of Cell Wall Disassembly to
Primary Metabolites in Ripening Fruit
Cell wall degradation during ripening contributes substantially to
the change level of primary metabolites fundamental for the
human diet. It is high probable, that the quantity of these
metabolites is strictly related to the composition and structure
of polymers of the primary cell walls and the middle lamella as
well as the disassembly mechanisms that can differ among species
and within them among cultivars. However, at the moment,
studies on the contribution of cell wall disassembly have been
focused on the impact of pectin depolymerization on the
ascorbate level (AsA, vitamin C). The biosynthetic pathway of
AsA in plants can be represented with a complex network in
which different pathways are converging: D-mannose/L-galactose
(D-Man/L-Gal) (Wheeler et al., 1998), L-glucose (Wolucka and
Van Montagu, 2003), myo-inositol (Lorence et al., 2004) and D-
galacturonic acid (D-GalUA) (Agius et al., 2003), which is a
component of pectins (Figure 1). Which pathway predominates
is dependent on the species, tissue and stage of development
(Walker and Famiani, 2018). The degradation of pectins releases
methyl-galacturonate (Smirnoff et al., 2011), which is then
converted into D-GalUA by a (pectin) methyl esterase (Paciolla
et al., 2019) and successively into L-galactonic acid by D-
galacturonate reductase (GalAR), firstly isolated in strawberry
(Agius et al., 2003). An aldonolactonase (Alase), up to now
isolated and well characterized only in Euglena (Ishikawa et al.,
2008), converts L-galactonic acid into L-galactono-1,4-lactone,
which is the last precursor of vitamin C (Figure 1). The D-
Man/L-Gal pathway has been reported for many fruit-bearing
plants, such as kiwifruits, acerola, peach, and tomato (Badejo
et al., 2009; Bulley et al., 2009; Imai et al., 2009; Ioannidi et al.,
2009), but these evidences are only clear for developing fruits,
while there is still obscure how the AsA pool size is controlled
during fruit maturation. A study carried out on microtomato
fruit, based on feeding experiment with potential AsA precursors,
suggests that it could be activated a switch from D-Mann/L-Gal to
Ga1UA pathway moving from immature to ripe fruit (Badejo
et al., 2012). In peach, genes involved in the conversion of sugar
pool into L-Galactose were showing different expression pattern
although the majority of them were highly expressed in the early
phases of fruit development (Figure 1).The expression level of L-
galactose dehydrogenase (GDH) and L-galactono-1,4-lactone
dehydrogenase (GalLDH), the most important genes involved
in the D-Man/L-Gal pathway were showing a biphasic expression
profile with maximal at early stage and, at lower extent, during
ripening phase. Transcript accumulation of GDH and GalLDH
and AsA content, expressed per gram fresh weight basis, were
related in the early period of fruit development, whereas this
relationship was less evident in the last phase of fruit development
in which AsA was at the lowest content (Imai et al., 2009). This
July 2020 | Volume 11 | Article 1054
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result opens the possibility that in peach, as suggested in tomato, a
switch between the AsA biosynthetic pathways can occur at
ripening. Experiment feeding with D-GalUA of peach ripe fruit
induced an increase of in the reduced form of AsA (Imai et al.,
2009). At the moment, for GalUA pathway it is available only the
expression of GalAR that shows the lowest expression at ripe
stage, no information is available for Alase. Investigations are
necessary to demonstrate if this mechanism may be present in
peach or other Prunus species. For this goal, the major constrain
is the lack of identified orthologs to the Euglena Aldolactonase in
higher plants. However, a quantitative trait locus (QTL) analysis
allowed the identification of five regions and two of them included
genes annotated with terms related to the known D-Man/L-Gal
and AsA/glutathione pathways (Stevens et al., 2007). Based on
this result, it is probable that genes encoding the unidentified
enzymes for the D-GalA pathway could reside in the rest of the
candidate loci.

Partial cell wall degradation at ripening also leads to a massive
release of sugars, which in plants are recycled for providing
energy and building units for a large number of processes,
including synthesis of protein and sugar accumulation. An
indirect evidence of this causal relationship was obtained in
fruit of transgenic plant of tomato in which PME transcripts
Frontiers in Plant Science | www.frontiersin.org 4
were almost abolished by an antisense approach (Tieman et al.,
1992). In particular, fruits from transgenic tomato plant were
richer in soluble neutral sugar (sucrose) than wild-type fruits.
PRIMARY METABOLISM AND
FORMATION OF THE LIGNIFIED
ENDOCARP

Both the end-products and intermediates of primary metabolism
are precursors of secondary metabolites (Douglas, 1996). The
amino acid phenylalanine (Phe) is an example of the
interconnection between primary and secondary metabolism
because Phe can be a protein building block or a precursor of
lignin, a secondary metabolite essential for plant growth,
development, and defense (Pascual et al., 2016). Here, we first
describe the structural characteristics of a lignified endocarp and
then we analyze the role of primary metabolism in its formation.

Structural Characteristics of Drupe Pit
The lignified endocarp (or pit) is a distinctive trait of mature
drupe fruits, but its formation occurs relatively early in fruit
development, and its subsequent lignification takes place in phase
FIGURE 1 | Network for the biosynthesis of AsA. The four possible pathways include the D-galacturonic acid (GalUA), L-galactose (Gal), L-gulose, and myo-inositol
(MI). Enzymes catalyzing reaction are Alase, aldonolactonase; GalLDH, L-galactono-1,4-lactone dehydrogenase; GalAR, D-galacturonate reductase; GDH, L-galactose
dehydrogenase; GlcAR, D-glucuronate reductase; GME, GDP-D-mannose -3′,5′-epimerase; GulLDH, L-gulono-1,4-lactone dehydrogenase; ME, methyl esterase,
MIOX, myo-inositol oxygenase; GMPH, GDP-D-mannose pyrophosphorylase; GGP, GDP-L-galactose phosphorylase; GPP, L-galactose 1-P phosphatase. Broken
arrows show more than one enzymatic reaction step. Red arrows indicate steps still missing in higher plants. Transcripts profiles of GMPH, GME, GGP, GPP, GDH,
GalLDH, GalAR genes during peach fruit development (cv Fantasia) have been retrieved from Gene Expression Omnibus (GEO) database under accession number
GSE71561. Each gene is identified by the transcript code (peach genome version 1, see at https://www.rosaceae.org/organism/24333). Transcript levels significantly
decreased were displayed in blue, while transcript levels significantly increased were displayed in yellow. The brightness of each color corresponded to the
magnitude of the difference when compared with the average value.
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II of the double sigmoid fruit-growth curve, in which the
mesocarp growth is suspended (Bonghi et al., 2011; Rapoport
et al., 2013). This alternate pattern of growth between the
different fruit tissues suggests the presence of cyclic events of
competition for assimilates among fruit tissues and seed (Bollard,
1970; Opara, 2000). During stage II, when the endocarp is
lignifying, the endosperm, throughout the absorption of
nucellus, grows largely and later on, the embryo development is
sustained by metabolites stored in the endosperm (Bassi and
Ryugo, 1990; Ognjanov et al., 1995; Walker et al., 2011; Famiani
et al., 2012). Therefore, one view is that the cost of embryo growth
and endocarp lignification, in terms of assimilates, results in a
temporary cessation of mesocarp growth. However, it is also
possible that the temporary cessation in growth is brought about
either largely or in part by genetic information that controls
development (Pavel and DeJong, 1993b). The pit hardening is a
progressive event as suggested by both anatomical observations
and chemical analysis of lignin deposition. In the olive fruit, the
time occurring for pit hardening takes, after bloom, a period
ranging from 5 weeks up to 3 months (Hartmann, 1949; Lavee,
1986). In nectarine, the evaluation of force required to crush the
endocarp pointed out that, although sclerification occurred
slowly, the degree of hardness increased sharply around 12 to
13 weeks post-flowering (King et al., 1987). However, in peaches,
the timing of this event is more related to the ripening time and
shows large differences among early, mid, and late ripening peach
cultivars (Pavel and DeJong, 1993a; Yamaguchi et al., 2002). In
particular in early ripening peach and plums cultivars, the second
exponential growth phase (Stage III) of fruit starts before the
endocarp has completely lignified (Kritzinger et al., 2017).
Additional factors in the variation of pit hardening timing are
the tree water status (Rapoport et al., 2004; Lavee et al., 2007) and
temperature (Dardick and Callahan, 2014; Souza et al., 2019).

Endocarp expansion ceases with the deposition of a thick,
lignified secondary wall in endocarp cells (King, 1938; Dardick
et al., 2010; Rapoport, 2010). In peaches, it has been reported that
the onset of wall thickening and lignification of endocarp cells
starts at the stylar end (Hayama et al., 2006; Dardick et al., 2010)
and, then, proceeds toward the stem end of the fruit (Sterling,
1953; Lilien-Kipnis and Lavee, 1971). The presence of lignin in the
peach endocarp was firstly reported by Ryugo (1963) in the early
1960s. This observation has been supported by a subsequent study
in which the accumulation of lignin precursors (phenol bodies)
was observed in endocarp cells (Masia et al., 1992). The lignin
biosynthesis results from a sequential involvement of
phenoloxidase, peroxidase, and laccases (Alba et al., 2000;
Dardick et al., 2010). In peach endocarp cells, phenoloxidase
was detected mainly in the ionically bound cell wall protein
fraction suggesting its role in the polymerization of lignin
precursor. This localization could suggest the engagement of this
enzyme in the early changes of cell wall undergoing lignification,
such as the polymerization reactions of oligolignols, occurring at
the end of the first stage of development. Peroxidase and laccases
seem more related to the late stage of sclerefication process by
aiding the cross-coupling between the growing polymers. To
support this vision, the activity of peroxidase and laccase
Frontiers in Plant Science | www.frontiersin.org 5
increases concurrently with the rise of lignin content detected
during the second stage of fruit development.

Additional information on lignin deposition in cell wall
during drupe development and patterning have obtained from
a Slow Ripening (SR) peach phenotype in which fruit
development is apparently stopped during the stage III
(Bonghi et al., 2011), and the flesh shows a very slow rate of
softening accompanied by a low level of ethylene (Brecht and
Kader, 1984). A metabolomic analysis of SR fruit, pointed out a
strong accumulation of phenylpropanoids (in particular lignin
and its precursors) in the mesocarp paralleled by the expression
of phenylpropanoids biosynthetic genes (Botton et al., 2016).
This evidence, together with microscopic analysis, suggests that
SR mesocarp behaves like an endocarp. The comparison of the
expression profile of genes responsible for endocarp identity in
SR and Fantasia allowed the identification of an additional
regulator of endocarp lignification named FLESHY, similar to
Arabidopsis HECATE3 (Botton et al., 2016). In SR fruit,
FLESHY shows a transient increase in the mesocarp while
remaining at a very low level in Fantasia mesocarp. Therefore,
FLESHY has been claimed to play a crucial role in determining
the fruit tissue patterning of the peach fruit.

In Prunus spp, there is a strong variability of endocarp
phenotypes, the most part of them have been obtained by
using traditional breeding. Dardick and Callahan (2014),
reported that almond shells were found to differ according to
endocarp thickness, hardness, and bitterness. The seed of some
peach, apricot, and plum varieties is easily exposed to pests and
diseases as a consequence of the unsealed endocarp. This defect,
named “split pit”, is the result of a down-regulation of
phenylpropanoid biosynthetic genes (Zhang et al., 2017).
Environmental conditions (Engin et al., 2010), cultivation
practices (Claypool et al., 1972) and the ripening time, play a
role in the development of split pit. In particular, early maturing
peach and plum cultivars are usually more susceptible to stone
splitting, because their stones do not harden properly for
resisting the growing forces of the rapidly expanding fruit flesh
(Tani et al., 2009).

A natural phenotype isolated in a wild-type population of
plum was called “Stoneless” for its incomplete development of
the endocarp layer that results in a partially naked seed (Callahan
et al., 2009). The stoneless phenotype is strongly affected by the
environment conditions since a complete endocarp can develop
in years with hot spring temperatures, while in cooler years very
little stone is present. The absence of endocarp tissue suggests
that this mutant does not contain a complete endocarp layer
(Dardick and Callahan, 2014).

Contribution of Primary Metabolism to the
Formation of a Lignified Endocarp
It has been reported that the activity of the most enzymes involved
in primary metabolism are repressed during lignin and flavonoid
biosynthesis in the endocarp layer (Dardick et al., 2010). However,
this contrasts with the observation by Hu et al. (2012), which found
the lignin content is positively related with the Pyruvate
Dehydrogenase (PDH E1a) protein level, a well-characterized
July 2020 | Volume 11 | Article 1054
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enzyme complex that links two of the most important metabolic
pathways of primary metabolism: glycolysis and TCA cycle (Tovar-
Méndez et al., 2003). In addition, another PDH gene (a sub-unit
called PDH E1b) has been identified as a member belong to a
regulon that is induced in correspondence of lignin deposition in
the peach endocarp layer (Dardick et al., 2010). One interpretation
of these conflicting observations is that the expression of enzyme
abundance was on a per DW basis and during lignification there is a
large increase in the DW content of the tissue; and thus the decrease
is just a dilution effect (Famiani et al., 2015). In support of this in
both plum and cherry endocarp, a large number of enzymes
involved in primary metabolism are abundant (or actually
increase in abundance) on a per FW basis during lignification
(Walker et al., 2011; Famiani et al., 2012). On the other hand, the
relevant impact of endocarp lignification on fruit primary
metabolism is suggested by the rerouting of several primary
Frontiers in Plant Science | www.frontiersin.org 6
metabolites toward lignin biosynthesis. A decrease of protein
synthesis has been observed during the very early phase of peach
development, which follows the use of free amino acids as substrates
for the synthesis of phenylpropanoids required for endocarp
lignification (Lombardo et al., 2011; Rodriguez et al., 2019).
Amino acids, phenylalanine in particular, are also precursors of
cyanide glucosides such as prunasin, which are nitrogen-containing
secondary metabolites that strongly accumulate in Prunus fruit.
Cyanide glucosides have the ability to produce highly toxic
hydrogen cyanide (HCN) when cleaved by mandelonitrile lyase.
Differential expression of a putative mandelonitrile lyase gene has
been observed in apricots having endocarp with different
thicknesses and lignin content (Zhang et al., 2017). Previous
reports have demonstrated that HCN can generate reactive
oxygen species (ROS) (Oracz et al., 2009). Accumulation of ROS
has been observed in tissues, including endocarp, undergoing
A B

FIGURE 2 | The metabolic pathways for synthesis, bio-activation, and detoxification of the cyanogenic glucosides prunasin and amygdalin in the peach mesocarp of
Fantasia (FAN) and slow ripening (SR). (A) Biosynthetic enzymes/genes (blue arrows) are: CYP79 and CYP71 (Cyt P450 monooxygenases); UGT1 (UDPG-
mandelonitrile glucosyltransferase); and UGT2 (UDPG-prunasin glucosyltransferase). Bio-activation enzymes/genes (red arrows) are: AH (Amygdalin hydrolase); PH
(prunasin hydrolase); MDL1 (mandelonitrile lyase). Detoxification enzymes/genes (green arrows) are: b-CAS (b-cyanoalanine synthase), NIT (Nitrilase 4). Lignin
biosynthetic enzymes/genes (black arrows) LAC (Laccases). Levels of Phenylalanine, Prunasin, Asparagine, Aspartate at three fruit developmental stages (80 DAFB,
late S2; 96 DAFB, early S3; 127 DAFB, pre-climacteric S4) assessed in both the genotypes (Fantasia= FAN, and slow ripening= SR). Metabolites significantly
decreased were displayed in blue, while metabolites significantly increased were displayed in yellow. The brightness of each color corresponded to the magnitude of
the difference when compared with average value. (B) Expression profile of genes involved in biosynthesis and bio-activation of cyanide glucosides, and in the last
step lignin biosynthesis evaluated in FA and SR mesocarp at the three developmental stage reported in A. Each gene is identified by the transcript code (peach
genome version 1, see at https://www.rosaceae.org/organism/24333). Transcript levels significantly decreased were displayed in blue, while transcript levels
significantly increased were displayed in yellow. The brightness of each color corresponded to the magnitude of the difference when compared with the average
value. Metabolites and transcripts level were retrieved from Botton et al. (2016). CYP79, CYP71, and UTG2 genes, boxed in grey, have been characterized only in
almond seeds and their putative orthologs have been identified in peach (Thodberg et al., 2018). Transcripts of MALD1, boxed in light blue, have been detected in
the endocarp layer of apricots (Zhang et al., 2017). Enzyme activity of b-CAS, boxed in orange, has been determined in peach endocarp (Hu et al., 2012; Rodriguez
et al., 2019).
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lignification (Liu et al., 2017). The detoxification of hydrogen
cyanide, and consequently a potential reduction of ROS, is
catalyzed by b-cyanoalanine synthase (Blumenthal et al., 1968;
Machingura et al., 2016). It has been reported that during early
phases of fruit development (up to 59 DAFB corresponding to S2)
b-cyanoalanine synthase protein level shows a decreasing trend (Hu
et al., 2012) or it almost stable (Rodriguez et al., 2019) during the
lignification of endocarp, while it is increasing in the mesocarp (Hu
et al., 2012; Rodriguez et al., 2019). These pieces of evidence suggest
that endocarp lignification is accompanied by an increase of ROS
precursors due to an increase of cyanide glucosides and reduced or
stable detoxification of the action of hydrogen cyanide. To support
this view, in the lignin-rich mesocarp of SR peach mutant it was
observed a higher level of prunasin, paralleled by the accumulation
of genes involved in its biosynthesis, in comparison to wild type
peaches (Figure 2; Botton et al., 2016).

In addition, the interconversion between nucleotide sugars is
affected by the lignification process on fruit primary metabolism.
In peach, xylans are the most important component of
hemicelluloses in the secondary wall as observed in other
dicotyledonous plants (Harper and Bar-Peled, 2002). UDP-
xylose is used for the backbone of xylans and its conversion
from UDP-D-glucuronate is mediated by UDP-D-glucuronate
carboxylase (UDP‐GlcA DCX). The peach UDP‐GlcA DCX was
strongly over-expressed during endocarp lignification, while it
remained at lower levels in the mesocarp (Hu et al., 2012).
FUTURE PERSPECTIVES

New investigations methods on the architectural and composition
of cell walls, such as AFM and optical imaging approaches (for more
detail see Sarkar et al., 2009), can aid in the understanding of cell
wall modification occurring throughout the fruit patterning and
development. This information is essential to correctly address the
manipulation of the biosynthesis of primary metabolites used in cell
Frontiers in Plant Science | www.frontiersin.org 7
wall building with the goal of rerouting them toward other
biosynthetic pathways. Up to now, the most interesting
advancements in this direction are regarding the manipulation of
carbon flux formodifying cell wall polysaccharides composition and
consequently fruit firmness and composition. A study has been
carried out by silencing the tomato galacturonosyltransferase 4
(GAUT4), a member of enzyme family responsible for the pectin
biosynthesis, showed that silenced fruits had an altered pectin
composition, which coincided with an increase in firmness (De
Godoy et al., 2013). Authors suggested that in silenced plants a shift
in source to sink carbon partitioning occurred via the modulation of
resource allocation via cell wall polysaccharides and raffinose
metabolisms. For fruit trees, and in particular those harboring
stone fruit, genetic transformation is still a long way for the
difficulty to regenerate transformed plants (Prieto, 2011).
However, it is possible by using agricultural practices to modify
the carbon flux as demonstrated by covering with plastic film
tangerine trees (Jin et al., 2018). Tangerine fruits collected from
trees cultivated under plastic film were sweeter and softer. Authors
suggested that the higher sugar accumulation in fruit may depend
on the redistribution of carbohydrate toward fruit as indirectly
supported by the parallel increase of sugar transporters gene
expression in shaded trees. On the contrary, the modification of
the water-soluble pectin and the protopectin content in shaded fruit
resulted from the alteration of GAUTs and pectinesterases
transcript profiles.

In conclusion, there are all premises for putting the reciprocal
contribution between primary metabolism and cell wall into
perspective to obtain better fruit as underlined by Beauvoit
et al. (2018).
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