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The emergence of chaotic behavior in many physical systems has triggered the curiosity

of scientists for a long time. Their study has been concentrated in understanding which

are the underlying laws that govern such dynamics and eventually aim to suppress such

(often) undesired behavior. In layman terms, a system is defined chaotic when two orbits

that initially are very near to each other will diverge in exponential time. Clearly, this

translates to the fact that a chaotic system can hardly have regular behavior, a property

that is also often required even for human-made systems. An example is that of particle

accelerators used a lot in the study of experimental physics. The main principle is that

of forcing a large number of particles to move periodically in a toroidal space in order to

collide with each other. Another example is that of the tokamak, a particular accelerator

built to generate plasma, one of the states of the matter. In both cases, it is crucial for

the sake of the accelerating process, to have regular periodic behavior of the particles

instead of a chaotic one.

In this dissertation, we have studied the question of chaos in mathematical models

for the motion of magnetically charged particles inside the tokamak in the presence or

absence of plasma. We start by a model introduced by Cambon et al., which describes

in general mathematical terms, also known as the Duffing modes, the formalism of the

above problem. The central core of this work reviews the necessary mathematical tools to

tackle this problem, such as the theorem of the Linked Twisted maps and the variational

Hamiltonian equations which describe the evolutionary dynamics of the system under

consideration. Extensive analytical and numerical tools are required in this thesis work

to investigate the presence of chaos, known as chaos indicator. The main ones we have

used here are the Poincaré Map, the Maximum Lyapunov Exponent (MLE), and the

SALI and GALI methods.

Using the techniques mentioned above, we have studied our problem analytically and

validated our results numerically for the particular case of the Duffing equation, which

applies to the motion of charged particles in the tokamak. In detail, we first discuss the

presence of chaotic dynamics of charged particles inside an idealized magnetic field, sug-

gested by a tokamak type configuration. Our model is based on a periodically perturbed

Hamiltonian system in a half-plane r ¿ 0. We propose a simple mechanism producing

complex dynamics, based on the theory of Linked Twist Maps jointly with the method

of stretching along the paths. A key step in our argument relies on the monotonicity

of the period map associated with the unperturbed planar system. In the second part

of our results, we give an analytical proof of the presence of complex dynamics for a

model of charged particles in a magnetic field. Our method is based on the theory of

topological horseshoes and applied to a periodically perturbed Duffing equation. The

existence of chaos is proved for sufficiently large, but explicitly computable, periods. In

the latter part, we study the generalized aforementioned Duffing equations and study
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the chaoticity using the Melnikov topological method and verify the results numerically

for the models of Wang & You and the tokamak one.

I declare that this thesis has been composed by myself and that the work has not be

submitted for any other degree or professional qualification. I confirm that the work

in preparation is my own, except where work which has formed part of jointly-authored

publications has been included. My contribution and those of other authors to this work
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Introduction 1

Introduction

The growth of the population has increased the depletion of natural resources, becom-

ing one of the most problems in nowadays society. Regardless, recycling and no wasting

politics, our interests are to find and to develop new methods and technology as the

grand challenge of the future centuries.

An important task is to use fission reactors to provide replacement of fossil fuel consid-

ered as an unsustainable source and a global warming main factor. The development of

this new renewable energy source depends on the amount of uranium available on earth.

According to Professor Cohen [1] , it is estimated to have enough energy for another 5

billion years extracting uranium at a higher cost from the seawater and from eroding

earth crust by river water, and from other types of hard rock mining like in-situ leach,

underground, open pit, and heap leaching mining methods. The fast-breeder reactor, are

potentially more vulnerable to accidents and would produce large amounts of plutonium

that can be used in nuclear weapon production (proliferating bomb-making capacity)

and deals with the problems of storing radioactive waste. In 2017, in the United King-

dom, the share of generation from non-fossil fuel was 46%, where 19% is composed of

nuclear energy. In 2018 the share of fuel was increased by 2% driven by renewables form

of energy.

Fusion reactors offer another way of energy production without disadvantages of fossil

and non-fossil fuel. The tokamak, invented in the Soviet Union in the late 1950s by

Igor Tamm and Andrei Sakharov, was one of the grand engineering challenges of the

last century providing us energy from fusion reactor using deuterium and tritium in

equal part in the development of the thermonuclear reaction. Deuterium is a stable

isotope of hydrogen. One in 6700 atoms of hydrogen in seawater is deuterium. This

amounts to 33 grams of D per m3, or a total resource of 4.6 × 1019 g in the oceans of

the world. Meanwhile, tritium is a radioactive isotope of hydrogen. It can be produced

by irradiating lithium metal. However, the serious problem with fusion is the enormous

temperature required to overcome the repulsive force between colliding charged particles

achieved at temperatures exceeding 2× 108K, round 12 times hotter than the center of

the sun which operates on fusion, but at densities some 1012times greater than reactor

values. It is mind-boggling that the deuterium contained in 0.5 liters of ordinary water

can provide enough energy for a single family house in Europe for a year when properly

fused with tritium in a fusion reactor. The first prototype of tokamak called stellarator

was proposed by Spitzer in 1951 using the notion of magnetic confinement, where the

solenoidal coils encircling a toroidal tube generate a strong magnetic field. In the 1960s

the first tokamak, named T-3 was built at Kurchatov Institute in Moscow with a minor

radius of 15 cm and a major radius of 100 cm. Some years later, it was built the JET (

joint European torus), remaining until now the largest tokamak in the world.
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The study of confined plasma within tokamak remains the main topic of this thesis.

Charged particle motion in magnetic field configurations has been proved theoretically

to give rise to chaotic dynamics and has been related to ionospheric plasmas [2]. It is

shown increasing the number of particles the system becomes more chaotic.

What is chaos? Usually, a dynamical system is called chaotic if small changes to its

initial conditions can create large changes to the behavior of the solutions. This is the

so-called sensitive dependence on initial conditions. Such instability property is not

enough to capture the true meaning of deterministic chaos. Indeed, also the linear equa-

tion ẋ = x of exponential growth presents the same instability features. Typically the

condition on sensitive dependence is paired with some other conditions, like the density

of periodic orbits, or, more in general, some form of compactness (boundedness) of the

solutions. By analogy, a dynamical system is called structurally chaotic if small changes

to the equations describe the evolution of the system producing large changes in its

behavior. This thesis considers the numerical and theoretical part of chaos detection,

with applications to a second-order differential equation model introduced in the study

of the dynamics of charged particles confined in a toroidal magnetic field.

Following standard numeric methods (Maximal Lyapunov exponent, SALI, and GALI)

supposing small changes of initial conditions, one is able to discriminate between regular

and chaotic orbits. The smaller and the generalized alignment index (SALI and GALI)

introduced recently by H. Skokos [4] tends to zero for chaotic orbits and approximately

remain constant round non zero values in the case of regular orbits. Meanwhile, Maxi-

mal Lyapunov exponent tends to zero for regular orbits and remains constant for chaotic

orbits.

Other theories treat the same argument but from the topological point of view. One of

the first pioneering works of chaos theory was made by Poincaré in the study of transver-

sal homoclinic points, an example becoming the trademark of chaos. But the person who

made a revolution in this field was the famous topologist Smale. He was involved in the

study of this topic after the preceding pioneering research by Cartwright-Littlewood-

Levinson, who encountered some form of chaotic phenomena in the analysis of a set

of equations involving radio waves (the periodically forced van der Pol equations). As

a topologist, Smale translated some peculiar features concerning the solutions of these

equations in terms of the language of geometry, visually interpreted by a horseshoe shape.

Smale said −

“. . . Sometimes a horseshoe is considered an omen of good luck. The horseshoe that I

found on the beaches of Rio certainly seemed to have such a property . . . ”
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Knowing the paper of Birkhoff, he panned out to prove that if a dynamic system pos-

sesses a homoclinic point, then it also contains a horseshoe. Continuing on the traces of

A. Andronov and L. Pontryagin, he started to develop the theory of hyperbolic dynam-

ical system referring to the concept of structural stability.

Smale continues −

“. . . Thus the mathematics created on the beaches of Rio was the horseshoe and the higher

dimensional Poincaré’s conjecture . . . ”

Smale’s horseshoe, together with his researches on the Poincaré’s conjecture, led him to

the Fields medal, transforming Smale into an icon of the science.

An important consequence related to our work is the Stretching along a path or shortly

SAP method that when it applies to a couple of oriented rectangular regions (home-

omorphic with horseshoe shapes) causes chaotic dynamics following the Linked Twist

Maps theorem. Chapter 3 is entirely dedicated to numerical indicators of chaos such as

the Maximal Lyapunov Exponent, SALI, and GALI methods, which can discriminate

between regular and chaotic orbits as a consequence of small changes in the initial con-

ditions. In particular, the Smaller and the Generalized Alignment Indices (respectively

SALI and GALI) were introduced in recent times by H. Skokos [4]. Their measures tend

to zero for chaotic orbits and approximately remain constant around non zero values

in the case of regular orbits. Meanwhile, Maximal Lyapunov Exponent tends to zero

for regular orbits and remains constant for chaotic ones. The latter numerical methods

allow fast and precise chaos detection even for higher dimensional systems. In fact,

as part of the original contribution, using these methods, I have shown the existence

of chaos for a model of charged particles in the absence of plasma in the case of two

particles. A survey paper on this topic is in the state of preparation [G]. For the sake

of clarity, the original work of Vittot et al. has been limited to the case of a single

particle. The same model with a single particle has also been the focus of the original

study we present in Chapter 4. As a first step, we have proved the monotonic behavior

of the orbits of such a system in the absence of plasma by studying the corresponding

Time Mapping function. For more, we also show the minimal conditions for the ex-

istence of kT -periodic orbits. These aspects are essential to understand the eventual

chaoticity of the system. Using the Linked Twist Map theorem, we prove that our

model is chaotic for a particular region of parameters. Based on the topological concept

of the horseshoe map, we generalize the results related to the chaoticity of the motion

of the charged particles, but now in the presence of plasma. The contributions in this

direction, in collaboration with F. Zanolin, which can be founded in [GZ01] and [GZ02].
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One of the first followers of Poincaré’s theory was V. Melnikov, who continued to work

in this direction and introduced a theoretical tool, nowadays known as the ” Melnikov

method,” to predict if the smooth system exhibits chaotic behavior. In other words, if

the Melnikov function has simples zeros, then the stable and unstable manifold of the

perturbed system intersect transversally. Then by Moser’s theorem or the Smale-Birkoff

homoclinic theorem, in turn, it has been shown that a smooth system exhibits chaotic

dynamics. We applied this theory to a general case of non-smooth Duffing systems. As

an illustration, we present an application for a piecewise linear oscillator. These results

are presented in [GZ03]. In Chapter 5, we use the Maximal Lyapunov Exponent and the

Poincaré map to study the chaoticity of the charged particles model and a more general

class of Duffing equations by varying some control parameters. It is observed that for

the general Duffing model, the system behaves chaotically only for small values of the

frequency, here the control parameter. On the contrary, the tokamak model shows a

robust chaoticity for a wide range of the studied control parameter. The Poincaré map

also validates these results, where islands of irregularity appear for indicating the pres-

ence of chaos. The original contribution to this thesis work has been organized in the

following articles:

[GZ01 ] O.Gjata, F. Zanolin, An example of chaotic dynamics for the motion of charged

particle in a magnetic field, submitted (2020)

[GZ02 ] O.Gjata, F. Zanolin, Complicated dynamics in a model of charged particles, ac-

cepted for publication (2020)

[GZ03 ] O.Gjata, F. Zanolin, An application of the Melnikov method to a piecewise linear

oscillator, in preparation (2020)

[G ] O. Gjata Numerical investigation of the chaotic behaviour of charged particles in

the tokamak, in preparation (2020)



Chapter 1

Mathematical model

1.1 Definition, properties and applications of Plasma

Any ionized gas cannot be called a plasma; of course, there is always some small degree

of ionization in any gas. A useful definition is as follows [5]

“A plasma is a quasineutral gas of charged and neutral particles which exhibits collective

behavior ”

By collective behavior, we mean motions that depend not only on local conditions but

on the state of the plasma in remote regions as well. A plasma is quasineutral it the

density of positively charged ions is approximately equal to the density of negatively

charged electrons such that electromagnetic forces control their collision. An ionized gas

to be called a plasma must satisfy the following property:

1. should be dense enough such that the quantity λD called Debye length is much

smaller than the dimension of the system L. The quantity Debye length represents

the number of charge carriers within a sphere (called the Debye sphere whose radius

is the Debye screening length) surrounding a given charged particle is sufficiently

high as to shield the electrostatic influence of the particle outside of the sphere.

2. the number of particles ND in a ”Debye sphere” must be greater than 1.

3. we require ωτE > 1 where ω is the frequency of typical plasma oscillations and τE

is the mean time between collisions with neutral atoms.

5
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Plasmas can be characterized by the two parameters n and KTe where n is the density,

K Bolzman’s constant, and Te temperature of the electron. Plasma applications cover an

extremely wide range of n andKTe: n varies over 28 orders of magnitude from 106 to 1034

m−3 and KT can vary over seven orders from 0.1 to 106 eV. Plasma usually exists only in

a vacuum. In the laboratory, we need to pump the air out of the vacuum chamber. There

are many applications of plasma-like in gas discharges lamp, controlled thermonuclear

fusion, atmospheric plasmas, particle accelerators, gas lasers, MHD energy conversion,

and ion propulsion.

Plasma is called the fourth state of matter. It is estimated that 99% of the matter in the

observable universe is in the plasma state. Just to mention the stellar interior, plasma of

sun, solar, wind, ionospheres and magnetospheres of the earth, gaseous nebulas, entire

galaxies, and Aurora Borealis.

1.2 Tokamak

A tokamak is a toroidal chamber which uses a strong magnetic field, Bφ, to contain

hight temperature plasma within the torus. Charged particles cannot easily move across

a strong magnetic field. If the fields are closed into nested surfaces, then deuterium

and tritium ions trapped in this way colliding with sufficient energy to overcome their

repulsive Coulomb potential will fuse liberate energy. The toroidal field is produced

by external electric currents flowing in coils around the torus, as shown in Figure 4.13.

Superimposed on the toroidal field is much weaker than the poloidal field, Bθ, generated

by an electric current Ip flowing in the plasma around the torus. The plasma forms the

secondary circuit of a transformer so that Ip is induced by changing the magnetic flux

BT passing through the torus, which is usually carried by an iron core, as indicated in

the figure.

Figure 1.1: Tokomak currents and fields: (a) toroidal plasma current induced by
transformer, (b) primary winding.This figure has been reproduced from [6]
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In a plasma consisting of deuterium, or deuterium mixed with tritium, the fusion reac-

tions

D2 +D2 −→He3 + n1 + 3.27MeV

D2 +D2 −→T 3 +H1 + 4.03MeV

D2 +He3 −→ He4 +H1 + 18.3MeV

D2 + T 3 −→ He4 + n1 + 17.6MeV

will occur frequently if the ion temperature, Ti, and the ion number density, ni, are

large enough. Furthermore, in a fusion reactor, these high values of Ti and ni must be

maintained long enough for the energy liberated by fusion to more than balance the

energy losses due to radiation, conduction, convection and neutron flux. Let τE be the

time it takes these loss processes to remove all the energy from the system than for

a given value of niτE there is a minimum temperature at which the plasma is said to

ignite, i.e., at which the liberated fusion energy is just adequate to balance all losses.

As D-D plasmas require a considerably higher temperature to achieve ignition, almost

all reactor proposals have concentrated on D-T fusion.

Figure 1.2: Ignition curve for a D-D, a D-T and a D-He plasma. This figure has been
reproduced from [7]

Figure 4.14 shows the ignition curve for a D-T plasma. It has a minimum at a temper-

ature of about 30 keV, where for ignition we need niτE > 1.5× 1020 m−3s.

1.3 Physical model of charged particells inside tokamak

In this section, we will study the motion of charged particles in the presence and absence

of plasma in terms of the laboratory toroidal coordinates (r, θ, φ) where r denotes the

distance from the magnetic axis, which is located at a distance R, from the axis of
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symmetry, θ denotes poloidal angle, and φ indicates a toroidal angle. The the following

relation gives the toroidal coordinates:

(x, y, z) = (r, rθ, (R+ r cos θ)φ) (1.1)

Furthermore, we shall adopt a Lagrangian approach to describe the dynamics of charged

particles In a tokamak magnetic field as in [? ]. Since the corresponding the element

of length ds satisfies

ds2 = r2 + r2dθ2 + (R+ r cos θ)2dφ2

and magnetic field ~B satisfies

~B = (0, Bφ, Bθ) = (0, ψT (r, θ), ψP (r, φ))

for a particle of unit mass and charge e in a tokamak magnetic field, with an electrostatic

potential V also present one can easily define the toroidal coordinate Lagrangian function

L =
1

2
r2 +

1

2
r2θ̇2 +

1

2
(R+ r cos θ)2φ̇2 + e

(
θ̇ψT (r, θ) + φ̇ψP (r, φ)

)
+ eV (1.2)

In eq. (1.2) the first three terms describe the particle kinetic energy and the last ones

the particle potential energy. The Euler- Langrage equations

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 (1.3)

when applied to the Lagrangian of eq. (1.2), yields the evolution equations

r̈ − rθ̇2 − cos θ(R+ r cos θ)φ̇2 − e
(
θ̇
∂ψT
∂r
− φ̇∂ψp

∂r

)
− e∂V

∂r
= 0 (1.4)

d

dt
(r2θ̇) + eṙ

∂ψT
∂r

+ r sin θ(R+ r cos θ)φ̇2 − e∂V
∂r

= 0 (1.5)

d

dt
((R+ r cos θ)2φ̇)− eṙ ∂ψp

∂r
− e∂V

∂r
= 0 (1.6)

respecting the flux conservation of the magnetic field ∇ · ~B = 0.

We write
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r = r0 + rs + rf , θ = θs + θf , φ = φs + φf (1.7)

Here the subscripts f and s refer to rapidly oscillatory and nonoscillatory terms respec-

tively with 〈φ̇f 〉 = 0 and 〈φ̇s〉 6= 0, where 〈〉 denotes the slow time scale average and

rf , rs � r0, which is a costant corresponding to the average distance of the particle from

the magnetic axis.

Figure 1.3: Toroidal geometry and notations. This figure has been reproduced by [8]

In eqs. (1.4) to (1.6) for convenience we shall assume that

• the electrostatic potential is weak that it does not perturb the fast time scale

motion; that is, recognizable cyclotron orbits exist,

• we will consider the linear terms in oscillatory quantities and otherwise involve the

zeroth-order quantities r0, ψT and ψP ,

• , we will consider only the radial centrifugal force associated with poloidal motion.

r̈ − rθ̇2 − e
(
θ̇
∂ψT
∂r
− φ̇∂ψp

∂r

)
= 0 (1.8)

d

dt
(r2θ̇) + eṙ

∂ψT
∂r

= 0 (1.9)

d

dt
((R+ r cos θ)2φ̇)− eṙ ∂ψp

∂r
= 0 (1.10)
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Similarly, integrating eqs. (1.9) and (1.10) we can easily express in (r, θ, z) coordinates

the evolutions eqs. (1.8) to (1.10)

r̈ − rθ̇2 − e
(
θ̇
∂ψT
∂r
− φ̇∂ψp

∂r

)
= 0 (1.11)

r2θ̇ + ψT r
2 = C (1.12)

ż = eψp (1.13)

where C is a costant.

Let’s suppose for example that the magnetic potential, written in polar coordinates

(r, θ, φ) is given by

A(r) =
B0RF (r)

ε
~eθ −B0 log

ε

R
~ez (1.14)

where ε = R+ r cos(θ) and F (r) =
∫ r
f(ε)dε. Since B = 5A then the magneric field is

B =
B0R

ε
(~ez + f(r)~eθ) (1.15)

A very similar calculation to eqs. (1.11) to (1.13) can be made in the case of cylindrical

geometry. In this case when R→∞ the magnetic field is given by

B = B0~ez +B0f(r)~eθ (1.16)

In polar coordinates (r, θ, z) we have:

r̈ − rθ̇2 = e(B0θ̇ −B0f(z)ż) (1.17)

r2θ̇ +
eB0

2m
r2 = C (1.18)

ż =
e

m
F (r) (1.19)

where C is a costant and F (r) =
∫ r
f(r)dx.

In the simple case, when there is no plasma inside the tokamak, we can write the

magnetic filed as:
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B =
B0R

ε
ez (1.20)

Similarly to eqs. (1.11) to (1.13) in polar coordinates (r, θ, z) we have:

r̈ − rθ̇2 = −B0Re

r
ż (1.21)

r2θ̇ = C (1.22)

ż =
B0Rq

m
+ C ′ (1.23)

where C and C ′ are two costants.

The eqs. (1.17) to (1.19) and (1.21) to (1.23) are in accordance to the plasma model

proposed by [3].





Chapter 2

Definitions of chaos and

topological methods

2.1 On various definitions of chaos

In this section, we provide some tools from symbolic dynamics that will be useful to

investigate more deeply the relationship between the different notions of chaos. This

part of chapter follows the Ph.D thesis of [9].

We start by introducing a model of a continuous map in a compact metric space, the

so-called Bernoulli shift, which presents all the features which are usually associated

with the concept of chaos. Understanding this model is important because different

definitions of chaotic dynamics are then related to the Bernoulli shifts via a procedure

of conjugation.

Given an integer m ≥ 2, we denote by Σm = {0, . . . ,m − 1}Z the set of two-sided

sequences of m symbols and by Σ+
m = {0, . . . ,m− 1}Z the set of one-sided sequences of

m symbols. These compact spaces are usually endowed with the distance

d̂(s′, s′′) =
∑
i∈I

| s′i − s
′′
i |

m|i|+1
, for s′ = (s′i)i∈I, s

′′ = (s′′i )i∈I, (2.1)

where I = Z or I = N respectively. The metric in (2.1) could be replaced with

d̂(s′, s′′) =
∑
i∈I

d(s′i, s
′′
i )

m|i|+1
, for s′ = (s′i)i∈I, s

′′ = (s′′i )i∈I,

where d(·, ·) is the discrete distance on {0, . . . ,m − 1},that is, d(s′i, s
′′
i ) = 0 for s′i = s′′i

and d(s′i, s
′′
i ) = 1 for s′i 6= s′′i . The significance of this second choice reveals when one

13



Chapter 2 14

needs to look at the elements from 0, . . . ,m− 1 as symbols instead of numbers. On such

spaces we define one-sided Bernoulli shift σ : Σ+
m → Σ+

m and the two-sided Bernoulli

shift σ : Σm → Σm on m symbols as σ((s)i)i = (si+1)i, ∀i ∈ I for I = Z or I = N
respectively. Both maps are continuous and the two-sided shift is a homeomorphism.

A precious tool for the detection of complex dynamics is the topological entropy and

indeed its positivity is generally considered as one of the trademarks of chaos. Such

object can be introduced for any continuous self-map f of a compact topological space

X and we indicate it with the symbol htop(f). More precisely, for an open cover α of

X, we define the entropy of α as H(α) = logN(α), where N(α) is the minimal number

of elements in a finite open subcover of α. Given two open covers α and β of X, we

define their join α ∨ β as the open cover of X made by all sets of the form A ∩ B with

A ∈ α and B ∈ β. Similarly one can define the join ∨ni=1αi of any finite collection of

open covers of X. If α is an open cover of X and f : X → X a continuous map, we

denote by f−1α the open cover consisting of all sets f−1(A), with A ∈ α. By ∨n−1
i=0 f

−1α

we mean α ∨ f−1α ∨ · · · ∨ f−n+1α. Finally we have

htop(f) = sup
α

( lim
n→∞

1

n
(H(∨n−1

i=0 f
−iα)))

where α ranges over all open covers of X. Among the several properties of the topological

entropy, we recall just the ones that are useful in view of the subsequent discussion.

In regard to the (one-sided or two-sided) Bernoulli shift σ on m symbols, it holds that

htop(σ) = log(m)

Given a continuous self-map f of a compact topological space X and a invariant subset

I ⊆ X,i.e. such that f(I) = I then

htop(f) ≥ htop(f |I) (2.2)

Denoting by fn the n-th iterate of the continuous self map f of a compact topological

space X, we have

htop(f
n) = nhtop(f), ∀n ≥ 1. (2.3)

Given two continuous self maps f : X → X and g : Y → Y of the compact topological

spaces X and Y and a continuous onto map φ : X → Y which makes the diagram
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X X

Y Y

-f

?

φ

?

φ

-
g

(2.4)

commute, i.e. such that φ ◦ f = g ◦ φ, then it holds that

htop(f) ≥ htop(g).

If φ is also injective, the above inequality is indeed an equality. When the diagram

in (2.4) commutes, we say that f and g are topologically semi-conjugate and φ is a

semiconjugacy between them. If φ is also one-to-one, then f and g are topologically

conjugate and φ is named conjugacy. Thus,when for a continuous self-map f of a com-

pact topological space X and a invariant (positively) subset I ⊆ X it holds that f |I is

semiconjugate to the (one sided or two sided) Bernoulli shift σ on m symbols,then

htop(f) ≥ htop(f |I) ≥ htop(σ). = log(m) (2.5)

If f |I is conjugate to σ, then the second inequality is indeed an equality. We notice that,

although the topological entropy can be defined for continuous self-maps of topological

spaces, we confine ourselves to the case of metric spaces. More precisely, when dealing

with chaotic dynamics, we will consider dynamical systems, i.e. couples (X, f), where

X is a compact metric space and f : X → X is continuous and surjective.

We will show the mutual relationships among some of the most classical definitions of

chaos (such as the ones by Li-Yorke, Devaney, etc.), considering also the notion of chaotic

dynamics in the coin-tossing sense that will be presented later on in Definition 2.8. In

[10] it has been proven that the presence of a point of period three for a continuous self-

map f which is defined on a compact interval, is a condition that ensures the existence

of periodic points of any period. The existence of a point of period three also implies

the positivity of the topological entropy for f . This result which is due to Li and Yorke

is often considered as a particular case of the Sharkovskii Theorem [11] but, actually,

the authors in [10] proved much more than simply the conditions for the existence of

positivity of the topological entropy. In fact, for this particular map they showed the

existence of an uncountable scrambled set (cf. Definition 2.1), which was called “chaotic”

in [10] for the first time in the literature, although the precise corresponding definition

of chaos nowadays known as Li-Yorke chaos, was not given there.
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Definition 2.1. Let (X, dX) be a metric space and f : X → X be a continuous map.

We say that S ⊆ X is a scrambled set for f if for any x, y ∈ S with x 6= y, it holds that

lim inf
n→∞

dX(fn(x), fn(y)) = 0 and lim sup
n→∞

dX(fn(x), fn(y)) > 0

If the set S is uncountable, we say that f is chaotic in the sense of Li− Y orke.

Let us remark that according to [10] the scrambled set S should satisfy an extra as-

sumption, i.e.

lim sup
n→∞

dX(fn(x), fn(p)) > 0

for any x ∈ S and for any periodic point p ∈ X. However, this further condition is

usually omitted since it has been proven in [12] to be redundant in any compact metric

space. We also point out that the original framework in [10] was one-dimensional. The

later extension to generic metric spaces has been done by different authors (see e.g.

[12, 13]) that have compared the concept of chaos from [10] to other ones available

in the literature. The aim of the following pages is to try to present some of these

connections. We warn the reader that, in what follows, the term chaotic will be referred

without distinction to a dynamical system, meant as a couple (X, f), where X is the

compact metric space and f : X → X is the continuous and surjective map. In case we

need to specify the distance dX on X, then we will write (X, f, dX) in place of (X, f).

If we are in the framework of Theorem 2.12 and since the map f has to be onto, the

dynamical system we usually consider is given by (I, ψ |I), where I is the invariant set.

In order to understand the relationship between the kind of chaos expressed in Definition

2.10 and the Li-Yorke chaos, a key role is played by the topological entropy. Indeed,

as we have seen in Theorem 2.12, conclusion (iv), thanks to the semi-conjugacy with

the Bernoulli shift, the topological entropy of ψ is positive in the setting described in

Definition 2.10. On the other hand, in [13] it is established that any dynamical system

with positive topological entropy admits an uncountable scrambled set and therefore it

is chaotic in the sense of Li-Yorke. Hence, we can conclude that our notion of chaos is

stronger than the one in Definition 2.1, since any system chaotic according to Definition

2.10 is also Li-Yorke chaotic, while the vice versa is not true in general. In fact, there

exist maps Li-Yorke chaotic but with zero topological entropy; such an example on the

unit interval is given in [14].

In perspective of the following discussion and also for the reader’s convenience, we

present the complete definition of Devaney chaos, although we will focus at first only on

the third condition.
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Definition 2.2. Given a metric space (X, dX) and a continuous function f : X → X,

we say that f is chaotic in the sense of Devaney if:

• f is topologically transitive, i.e. for any couple of nonempty open subsets U, V ⊆ X
there exists an integer n ≥ 1 such that U ∩ fn(V ) 6= ∅;

• the set of periodic points for f is dense in X;

• f is sensitive with respect to initial data on X, i.e. there exists δ > 0 such that for

any x ∈ X there is a sequence (xi)i∈N of points in X such that xi → x when i→∞
and for each i ∈ N there exists a positive integer mi with dX(fmi(xi), f

mi(x)) ≥ δ

So, the positivity of the topological entropy and the sensitivity on initial conditions

are related in some way, being both signals of a certain instability of the system. The

topological entropy is however, a “locally detectable” feature, in the sense that, according

to (2.2), it is sufficient to find a (positively) invariant subset of the domain where it is

positive in order to infer its positivity on the whole domain. Therefore, in general,

we cannot expect the system to be sensitive at each point if the entropy is positive.

In order to make this implication true we should also add a global property, such as

transitivity. Indeed in [13] it is argued that any transitive map with positive topological

entropy displays sensitivity with respect to initial data. On the other hand, some authors

have obtained results with the presence of sensitivity only on an invariant subset of the

domain by considering, instead of the positivity of the entropy, the stronger property of

chaos in the sense of coin-tossing, or at least the semi-conjugacy to the Bernoulli shift

σ for the map f defining the dynamical system or one of its iterates. For example, the

already cited [15] (Chaos Lemma), under hypotheses for a map f similar to the ones

for ψ in Theorem 2.10, establishes the existence of a compact f -invariant set Q∗ , on

which f is sensitive and such that each forward itinerary on m symbols is realized by

the itinerary generated by some point of Q∗ (here m is the crossing number). A similar

result is mentioned, without proof, by Aulbach and Kieninger in [12] and it asserts that

if a continuous self-map f of a compact metric space X is chaotic in the sense of Block

and Coppel, that is, if there exist an iterate fK (with k ≥ 1) of f and a compact

subset Y ⊆ X positively fk -invariant, such that fk |Y is semi-conjugate to the one-

sided Bernoulli shift on two symbols , then f |Z is Block-Coppel chaotic, transitive and

sensitive on Z, where Z is a suitable compact positively f -invariant subset of X. To

conclude this discussion, we should also observe that, as proved independently by Banks

et al in [16] and by Silverman in [17]

Based on the references [12, 18], we notice that any map chaotic according to Definition

2.10 is also chaotic in the sense of Block-Coppel, thanks to Theorem 2.12 conclusion (ii).
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More precisely, the later result consitutes a stronger property than the notion of chaos

in the sense of Block-Coppel. Indeed, the semi-conjugacy with the Bernoulli shift is

established for the map ψ itself and not for one of its iterates. The same remark applies

to Theorem 2.12, conclusion (v), where again a sharper feature than the Block-Coppel

chaos is deduced. Pursuing further this discussion on the Block-Coppel chaos, we notice

that every system (X, f) Block-Coppel chaotic has positive topological entropy. Indeed,

by the postulated semi-conjugacy between an iterate fk (with k ≥ 1) of the map f ,

restricted to a suitable positively invariant subset of the domain, and the one-sided

Bernoulli shift on two symbols, by (2.3) and (2.4) it follows that khtop(f) = htop(f
k) ≥

log(2), from whichhtop(f) ≥ log(2)/k > 0. Thus, based on the previously quoted [13],

any such system is also Li-Yorke chaotic. However, we observe that the Block-Coppel

chaos is strictly weaker than chaos in the sense of coin-tossing and, a fortiori, also than

the concept introduced in Definition 2.10. In fact, according to [12], there exist systems

(X, f) such that f2 restricted to some f -invariant subset of X is semi-conjugate to the

one-sided Bernoulli shift on two symbols, while such property does not hold for f .

Regarding the analysis of the relationship between the topological entropy and the sen-

sitivity on initial conditions, we recall that, except for the particular case of continuous

self-mappings of compact intervals, in general, the sensitivity does not imply a positive

entropy [12]. Actually, if instead of the sensitivity alone, we take into account the defini-

tion of Devaney chaos in its completeness, then it is possible to prove that the Devaney

chaoticity and the positivity of topological entropy are independent, as none of the two

implies the other [19, 20]. In this sense it means that, in generic metric spaces, Devaney

definition does not imply chaos in the sense of Definition 2.10 because, otherwise, the

topological entropy would be positive in any Devaney chaotic system. On the other

hand, we cannot conclude if our notion of chaos implies the one by Devaney. In fact, in

[12] it is presented a dynamical system Block-Coppel chaotic, but not chaotic according

to Devaney, since it has no periodic points. So, although we have already pointed out

that our notion of chaos is strictly stronger than the one of Block-Coppel, we cannot

state the same compared to the definition of Devaney.

When we restrict ourselves to the one-dimensional case, most of the definitions of chaos

are known to be equivalent, while it is in the higher dimensional setting that these rela-

tionships become more involved. Indeed, in [21] it has been proved that for a continuous

self-mapping f of a compact interval to have positive topological entropy is equivalent

to be chaotic in the sense of Devaney on some closed (positively) invariant subset of

the domain. The positivity of the topological entropy is also equivalent to the fact that

some iterate of f is turbulent or to the chaoticity in the Block-Coppel sense [12]. How-

ever, such equivalence, is not valid with the definition of Li-Yorke, because as we have
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already pointed out, there exist interval maps which are Li-Yorke chaotic, but with zero

topological entropy [14].

The previous discussion suggests that for more general frameworks, several links among

the various notions of chaos can be lost, although something can still be said for particu-

lar cases. For instance, in addition to the facts already exposed (e.g., chaos according to

Definition 2.10⇒ chaos in the sense of coin-tossing⇒ Block-Coppel chaos⇒ htop > 0⇒
Li-Yorke chaos), we mention that Devaney chaos implies Li-Yorke chaos in any compact

metric space. In order to prove this implication, the hypothesis on the density of periodic

points in Definition of Devaney chaos could be replaced with the weaker condition that

at least one periodic point does exist [22]. On the other hand this weaker condition is

necessary, because transitivity and sensitivity alone are not sufficient to imply Li-Yorke

chaos and vice versa, as shown in [13]. Let us notice that a dynamical system that

is both sensitive and transitive is sometimes called Auslander-Yorke chaotic [13, 18].

Therefore we can rephrase the previous sentence by saying that the concepts of Li-Yorke

chaos and Auslander-Yorke chaos are independent.

2.2 Stretching along the paths and variants

Before introducing the main concepts of the “Stretching Along the Paths” method, let

us recall some facts about generalized rectangle.

Given a metric space X, we call generalized rectangle any set R ⊆ X homeomorphic to

the unit square Q := [0, 1]2 of R2. If R is a generalized rectangle and h : Q → h(Q) = R

is a homeomorphism defining it, we call contour vR of R the set vR = h(∂Q), where ∂Q
is the usual boundary of the unit square. Notice that the contour vR is well defined as it

does not depend on the choice of the homeomorphism h. Indeed, if h1 : Q → h1(Q) = R

and h2 : Q → h2(Q) = R are two homeomorphisms from the square onto the same

rectangle R, then h−1
2 ◦ h1 is a homeomorphism of the unit square Q onto itself. In this

case, h−1
2 ◦h1(∂Q) = ∂Q and hence h1(∂Q) = h2(∂Q). Then vR is also a homeomorphic

image of S1, that is a Jordan curve. When X = R2 is the plane, then the contour vR
actually coincides with the boundary ofR, but, in general, they are different (for instance

when R is a part of two-dimensional surface embedded in R3.

By an oriented rectangle we mean a pair

R̂ = (R,R−)
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where R ⊆ X is a generalized rectangle and

R− = R−l ∪R
−
r

is the union of two disjoint arcs R−l ,R
−
r ⊆ vR, that we call the left and the right sides

of R−. Since vR is a Jordan curve it follows that vR\ (mathcalR−l ∪ R
−
r ) consists of

two open arcs. We denote by R+ the closure of such open arcs, that we name R+
d and

R+
u (the down and the up sides of R+). It is important to notice that we always can

label the arcs R+
d , R+

u ,R+
l and R+

r following this orientation l− d− r− u− l, and take

a homeomorphism g : Q → g(Q) = R so that

g({0} × [0, 1]) = R−l g({1} × [0, 1]) = R−r
g([0, 1]× {0}) = R−d g([0, 1]× {1}) = R−u

The notation R− is inspired by the concept of exist set in the Conley-Waėwski theory

[23]. For example, given in the plane a flow defined by an autonomous differential system

ẋ = f(x), the sets labeled as [·]− , or as [·]+ , are made by those points of ∂R which are

moved by the flow outward/inward, with respect to R (see [24, 25]).

Definition 2.3. Let X be a metric space and let ψ : X ⊇ Dψ → X be a map defined

on a set Dψ. Assume that Â = (A,A−) and B̂ = (B,B−) are oriented rectangles of X

and let K ⊆ A ∩Dψ be a compact set. We say that (K, ψ) stretches Â to B̂ along the

paths and write

(K, ψ) : Â m−→ B̂,

if any path γ in A connecting the opposite sides of A− has a sub-path σ contained in K
and such that ψ ◦ σ is a path contained in B and connecting the opposite sides of B−.

When K = A we simply write

ψ : Â m−→ B̂.

In the applications an important case is when the ”SAP”-property is satisfied with

respect to different compact subsets of an oriented rectangle. With this respect, we have

also the following definition.

Definition 2.4. Let X be a metric space and let ψ : X ⊇ Dψ → X be a map defined

on a set Dψ. Assume that Â = (A,A−) and B̂ = (B,B−) are oriented rectangles of X.

Let also m ≥ 1 be an integer. We say that (D, ψ) stretches Â to B̂ along the paths with

crossing number m and write

ψ : Â m−→m B̂,
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Figure 2.1: A pictorial comment to Definition 2.3. The rectangles A and B have been
oriented by selecting the sets A− and B− (drawn with thicker black lines), respectively.

We represent a case in which the relation (K, ψ) : Â m−→B̂. For a generic path γ :
[0, 1] → A with γ(0) and γ(1) belonging to different components of A−, we have a

sub-paths σ in K which is mapped by ψ across B and joining the two sides of B−.

if there exists m pairwise disjoint compact sets

K0, . . . ,Km−1 ⊆ D

such that

(Ki, ψ) : Â m−→ B̂, i = 0, . . . ,m− 1. (2.6)

The role of the compact sets K (respectively the compact sets Ki) is fundamental in the

applications of Definition 2.3 and Definition 2.4. For instance, if 2.3 is satisfied with

B̂ = Â we are able to prove the existence of a fixed point for ψ in K. If, in particular

Definition 2.4 is satisfied with respect to two or more pairwise disjoint compact sets Ki
we get e multiplicity of fixed point. On the other hand, when Definition 2.4 holds for

some iterate of ψ, the existence of periodic points is ensured.

Theorem 2.5. Let X be a metric space and let ψ : X ⊇ Dψ → X be a map defined on

a set Dpsi. Assume that R̂ = (R,R−) is an oriented rectangle of X. If K ⊆ R∩Dpsi is
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Figure 2.2: A pictorial comment to Definition 2.4. The rectangles A and B have been
oriented by selected the sets A− and B− (drown with thicker lines), respectively. We

represent a case in which the relation (Ki, ψ) : Â m−→mB̂, i = 0, 1, is satisfied for a
map ψ : R2 ⊇ A → R2 and for the two darker compact subsets K0 and K1 of A, on
which ψ is continuous. For a generic path γ : [0, 1]→ A with γ(0) and γ(1) belonging to
different components of A−, we have highlighted two sub-paths ω0 and ω1 with range in
K0 and K1,respectively, such that their composition with ψ determines two new paths
(drawn by bolder vertical lines) with values in B and joining the two sides of B−. In

this framework according to the Definition 2.4 we could also write ψ : Â m−→2 B̂. This
figure has been reproduced from [9].

a compact set for which it holds that

(K, ψ) : R̂ m−→R̂ (2.7)

then there exists at least one point z ∈ K with ψ(z) = z.

Proof. By the definition of oriented rectangle, there exists a homeomorphism h : R2 ⊇
Q → h(Q) = R ⊆ X mapping in a correct way the sides of Q = [0, 1]2 into the arcs that

compose the sets R− and R+. Then passing to the planar map φ = h−1 ◦ ψ ◦ h defined

on Dφ := h−1(Dψ) ⊆ Q we can confine ourselves to the search of a fixed point for φ in

the compact set H := h−1(K) ⊆ Q. T he stretching assumption on ψ is now translated

to

(H, φ) : Q̂ m−→Q̂.

On Q̂ we consider the natural ”left-right” orientation, by choosing

Q− = (0× [0, 1]) ∪ (1× [0, 1])
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A fixed point for phi in H corresponds to a fixed point for ψ in K. For φ = (φ1, φ2) and

x = (x1, x2) we define the compact set

V := {x ∈ H : 0 ≤ φ2(x) ≤ 1, x1 − φ1(x) = 0}

The proof consists in showing that V contains a continuum C which joins in Q the lower

side [0, 1]× {0} to the upper side [0, 1]× {1}. To this end, it is sufficient to prove that

V acts as a ”cutting surface” between the left and right sides of Q, that is, V intersects

any path in Q joining the left side {0}× [0, 1] to the right side {1}× [0, 1]. Such cutting

property can be checked via the intermediate value theorem by observing that if γ =

(γ1, γ2) : [0, 1]→ Q is a continuous map with γ(0) ∈ 0×[0, 1] and γ(1) ∈ 1×[0, 1],then the

stretching hypothesis (H, φ) : Q̂ m−→Q̂ implies that there exists an interval [t′, t′′] ⊆ [0, 1]

such that γ(t)H, φ(γ(t)) ∈ Q, ∀t ∈ [t′, t′′] and γ1(t′)−φ1(γ(t′)) ≥ 0 ≥ γ1(t′′)−φ1(γ(t′′))

or γ1(t′) − φ1(γ(t′)) ≤ 0 ≤ γ1(t′′) − φ1(γ(t′′)). Notice that, by the definition of V it

follows that φ2(z) ∈ [0, 1], ∀z ∈ C. Hence for every point p = (p1, p2) ∈ C ∩ ([0, 1]× 0) we

have p2−φ2(p) ≤ 0 and, similarly, p2−φ2(p) ≥ 0 for every p = (p1, p2) ∈ C ∩ ([0, 1]× 1).

Applying Bolzano Theorem we obtain the existence of at least a point v = (v1, v2) ∈
C ⊆ V ⊆ H such that v2 − φ2(v) = 0. Hence v is a fixed point φ in H and z = h(v) is a

fixed point for ψ in K ⊆ R. �

Remark 2.6. Notice that, for the validity of Theorem 2.5, it is fundamental that the

orientation of the generalized rectangle R in Definition 2.7 remains the same for R
considered as ”starting set” A and ”target set” B of the map ψ. Indeed, if one chooses

two different orientations for R, in general the above result does not hold anymore and

the existence of fixed points for ψ is no longer ensured, not only in K, but even in R, as

shown by the example depicted in Figure 2.3.

The next result shows that the ”SAP” property is preserved by composition of maps.

Theorem 2.7. Let X be a metric space and let φ : X ⊇ Dphi → X and ψ : X ⊇ Dpsi →
X be maps defined on the sets Dφ and Dψ, respectively. Assume that Â = (A,A−),

B̂ = (B,B−) and Ĉ = (C, C−) are oriented rectangles of X. If H ⊆ A∩Dφ and K ⊆ B∩Dψ

are compact sets such that

(H, φ) : Â m−→B̂ and (K, ψ) : B̂ m−→Ĉ

then it follows that

(H ∩ φ−1(K), ψ ◦ φ) : Â m−→Ĉ
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Figure 2.3: The generalized rectangle R is transformed by a continuous planar map ψ
onto the generalized rectangle S = ψ(R), so that, in particular, S−l = ψ(R−l ) andS−r =
ψ(R−r ). The boundary sets R− = R−l ∪R−r and S− = S−l ∪S−r are drawn with thicker

lines. As it is immediate to verify, for R̂ = (R,R−) and Ŝ = (S,S−) ,it holds that

ψ : R̂ m−→ Ŝ. On the other hand, calling
̂̂R the generalized rectangle R oriented by

choosing ¯vR \R− as [·]−-set, it also holds that (K′, ψ) : R̂ m−→ ̂̂R, where K′ is the
subset of R depicted with darker color. However, since R∩ S is mapped by ψ outside
R (both R ∩ S and ψ(R ∩ S) are drawn with the same light color),there cannot exist
fixed points for ψ in R and, a fortiori, neither in R. Notice that Theorem 2.5 does
not apply because we have taken two different orientation of R. This figure has been

reproduced from [9].

Proof. Let γ : [0, 1]→ A be a path such that γ(0) and γ(1) belong to the different sides

of A−. Then,since (H, φ) : Â m−→B̂, there exists a subinterval [t′, t′′] ⊂ [0, 1] such that

γ(t) ∈ H, φ(γ(t)) ∈ B, ∀t ∈ [t′, t′′]

and, moreover, φ(γ(t′)) and φ(γ(t′′)) belong to different components of B−. Let us call

ω the restriction of γ to [t′, t′′] and define ν : [t′, t′′] → B as ν := φ ◦ ω. Notice that

ν(t′) and ν(t′′) belong to the different sides of B− and so, by the stretching hypothesis

(K, ψ) : B̂ m−→Ĉ there is a subinterval [s′, s′′] ⊆ [t′, t′′] such that

ν(t) ∈ K, ψ(ν(t)) ∈ C, ∀t ∈ [s′, s′′]
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with ψ(ν(s′)) and ψ(ν(s′′)) belonging to different components of C−. Rewriting all in

terms of γ, this means that we have found a subinterval [s′, s′′] ⊆ [0, 1] such that

γ(t) ∈ H ∩ φ−1(K), ψ(φ(γ(t))) ∈ C, ∀t ∈ [s′, s′′]

and ψ(φ(γ(s′))) and ψ(φ(γ(s′′))) belonging to different sides of C−. By the arbitrariness

of the path γ, the stretching property

(H ∩ φ−1(K), ψ ◦ φ) : Â m−→Ĉ

is thus fulfilled. We just point out that the continuity of the composite mapping ψ ◦ φ
on the compact set H ∩ φ−1(K) follows from the continuity of φ on H and of ψ on K,

respectively. �

Theorem 2.8. Assume there is a double sequence of oriented rectangles (R̂i)i∈Z (with

R̂i = (Ri,R−i )) of a metric space X and a sequence ((Ki, ψi))i∈Z, with Ki ⊆ Ri compact

sets, such that

(Ki, ψi) : R̂i m−→R̂i+1, i ∈ Z

Let us denote by Ril and Rir the two components of R−i and by Rid and Riu the two

components of R−i . Then the following conclusions hold:

• There is a sequence (ωk)k∈Z such that ωk ∈ Kk and ψk(ωk) = ωk+1 for all k ∈ Z;

• For each j ∈ Z there exists a compact connected set Cj ⊆ Kj satisfying

Cj ∩Rjd 6= ∅ Cj ∩Rju 6= ∅

and such that, for every w ∈ Cj, t here is a sequence (yi)i≥j with yj = w and

yi ∈ Ki, ψi(yi) = yi+1, i ≥ j;

• If there are integers h and l, with h < l, such that R̂h = R̂l, then there exists a

finite sequence (zi)h≤i≤l−1, with zi ∈ Ki and ψi(zi = zi+1 for each i = h, . . . , l − 1

such that zl = zh, that is, zh is a fixed point of ψl−1 ◦ · · · ◦ ψh in Kh.
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Theorem 2.9. Let X be a metric space and ψ : X ⊇ Dψ → X be a map defined on a

set Dψ. Assume that R̂ = (R,R− is an oriented rectangle of X. If K0, . . . ,Km−1 are

m ≥ 2 pairwise disjoint compact subsets of R∩Dψ and

(Ki, ψ) : R̂ m−→R̂, for i = 0, . . . ,m− 1, i ∈ Z

then the following conclusion hold:

• The map ψ has at least a fixed point in Ki, i = 0, . . . ,m− 1;

• For each two-side sequence (sh)h∈Z ∈ 0, . . . ,m− 1Z there exists a sequence of point

(xh)h∈Z such that ψ(xh−1) = xh ∈ Ksh,∀k ∈ Z;

• For each sequence s = (sn)n ∈ 0, . . . ,m− 1N,there exists a compact connected set

Cs ⊆ Ks0 satysfying

Cs ∩R+
d 6= ∅ Cs ∩R+

u 6= ∅

and such that ψi(x) ∈ Ksi, ∀i ≥ 1, ∀x ∈ Cs

• Given an integer j ≥ 2 and a j + 1-uple (s0, . . . , sj),si ∈ 0, . . . ,m− 1, for i =

0, . . . , j and s0 = sj, then there exists a point w ∈ Ks0 such that

ψi(w) ∈ Ksi , ∀i = 1, . . . , j and ψj(w) = w.

2.3 Linked Twist Maps

Definition 2.10. Let X be a metric space, ψ : X ⊇ Dψ → X be a map and let D ⊆ Dψ.

Let also m ≥ 2 be an integer. We say that psi induces chaotic dynamics on m symbols

on the set D if there exists m nonempty pairwise disjoint compact sets

K0, . . . ,Km−1 ⊆ D

such that for each two sided sequence (si)i∈Z ∈ 0, . . . ,m− 1Z, there exists a correspond-

ing sequence wi)i∈Z ∈ DZ such that

wi ∈ Ksi and wi+1 = ψ(wi), ∀i ∈ Z (2.8)
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and whenever (si)i∈Z is a k-periodic sequence (that is, si+k = si, ∀i ∈ Z) for some k ≥ 1,

there exists a corresponding k- periodic sequence wi)i∈Z ∈ DZ satisfying 2.8. When we

want to emphasize the role of the sets Kj ’s, we also say that ψ induces chaotic dynamics

on m symbols on the set D relatively to K0, . . . ,Km−1.

For example let us take in consideration a coin-flipping experiment such that we can

associate the nme ”head” = H to the set K0 and the name ”tail” = T to K1. If we

consider any sequence of symbols

(si)i∈Z ∈ {0, 1}Z ≡ {H,T}Z

so that for each i, si is either ”head” or ”tail”, then we have the same itinerary of heads

and tails realized through the map ψ. For instance, there exists a fixed point of ψ in

the set K1 corresponding to the costant sequence of symbols si = ”tail”, ∀i ∈ Z. There

is also a point w ∈ K0 of period three with ψ(w) ∈ K0 and ψ2(w) ∈ K1 corresponding

to the periodic sequence . . . HHT HHT HHT . . . , and so on.

The Theorem below shows the link between the method of stretching along the paths

and the notion of chaotic dynamics in the sense of Definition 2.10.

Theorem 2.11. Let R̂ = (R,R−) be an oriented rectangle of a metric space X and

let D ⊆ R ∩ Dψ the domain of a map ψ : X ⊇ Dψ → X. If K0, . . . ,Km−1 are m ≥ 2

pairwise disjoint compact sets contained in D and

(Ki, ψ) : R̂ m−→R̂, for i = 0, . . . ,m− 1, i ∈ Z

then psi induces chaotic dynamics on m symbols on the set D relatively to K0, . . . ,Km−1.

Proof. Recalling Definition 2.10, the thesis is just a reformulation of the second and

forth conclusions in the Theorem 2.9. �

Theorem 2.12. Let ψ be a map inducing chaotic dynamics on m ≥ 2 symbols on a set

D ⊆ X and which is continuous on

K =
m−1⋃
i=0

Ki ⊆ D

where K0, . . . ,Km−1,D and X are as in Definition 2.10. Setting

Iinf =
inf⋂
n=0

ψ−n(K), (2.9)
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then there exists a nonempty compact set

I ⊆ Iinf ⊆ K

on which the following are fulfilled:

1. I is invariant for ψ (that is, ψ(I = I);

2. ψ |I is semi-conjugate to the one-sided Bernoulli shift on m symbols, i.e. there

exists a continuous map π of I onto Σ+
m = {0, . . . ,m − 1}N, endowed with the

distance

d̂(s′, s′′) =
∑
i∈N

| s′i − s′′i |
mi+1

(2.10)

for s′ = (s′i)i∈N and s′′ = (s′′i )i∈N such that the diagram

I I

Σ+
m Σ+

m

-ψ

?

π

?

π

-
σ

commutes, i.e. π ◦ψ = σ ◦ π, where σ : Σ+
m → Σ+

m is the Bernoulli shift defined by

σ((si)i) = (si+1)i, ∀i ∈ N

3. The set P of periodic points of ψ | I∞ is dense in I and the preimage π−1(s) ⊆ I
of every k-periodic sequence s = (si)i∈N ∈ Σ+

m contain at least on k − periodic
point.

Furthermore, from conclusion 2) it follows that:

4.

htop(ψ) ≥ htop(ψ | I) ≥ htop(Σ) = log(m), (2.11)

where htop is the topological entropy;

5. There exists a compact invariant set Λ ⊆ I such that ψ | I is semiconjugate to the

one-sided Bernoulli shift on m symbols, topologically transitive and has sensitive

dependence on initial conditions.

Theorem 2.13. Let X be a metric space and assume that φ : X v Dφ → X and

π : X v Dψ → X are continuous maps defined on the sets Dφ and Dψ, respectively.

Let also Â = (A,A−) and B̂ = (B,B−) be oriented rectangles of X. Suppose that the

following conditions are satisfied:
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(Hφ) There are m ≥ 2 pairwise disjoint compact sets H0, . . . ,Hm−1 ⊆ A∩Dψ such that

(Hi, φ) : Â m−→B̂ for i = 0, . . . ,m− 1;

(Hψ) B ⊆ Dψ and ψ : B̂ m−→Â

Then the map ϕ = ψ ◦ φ induces chaotic dynamics on m symbols in the set H∩ φ−1(B)

where H =
⋃m
i=0Hi and thus satisfies properties from Theorem 2.12.

Proof. We show that

(H ∩ φ−1(B), ϕ) : Â m−→Â ∀ i = 0, . . . ,m− 1 (2.12)

from which the thesis about the chaotic dynamics is an immediate consequence of The-

orem 2.11. To check condition 2.12 let us consider a path γ : [0, 1] → A such that

γ(0) ∈ A−l and γ(1) ∈ A−r or otherwise and let us fix i ∈ 0, . . . ,m− 1. By (Hφ) there

exists a compact interval [t′, t′′] ⊆ [0, 1] such that γ(t) ∈ Hi and φ(γ(t)) ∈ B for every

t ∈ [t′, t′′], and φ(γ(t′)) and φ(γ(t′′)) belonging to different components of B−. Define

now

ω : [t′, t′′]→ B, ω(t) = φ(γ(t)).

By (Hψ) there is a compact interval [s′, s′′] ⊆ [t′, t′′] such that ψ(ω(t)) ∈ A for every t ∈
[s′, s′′], with ψ(ω(s′)) and ψ(ω(s′′)) belonging to different components of A−. Rewriting

all in terms of γ we have thus proved that

γ(t) ∈ H ∩ φ−1(B) and ϕ(γ(t)) ∈ A ∀t ∈ [s′, s′′]

with ϕ(γ(s′)) and ϕ(γ(s′′)) belonging to different components of A−. THe continuity of

the composite mapping ϕ = ψ ◦ φ on H ∩ φ−1(B) follows from the continuity of φ on

Dφ ⊇ Hi and from continuity of ψ on Dψ ⊇ B. By the arbitrariness of the path γ and

of i ∈ 0, . . . ,m− 1 the verification of 2.12 is complete. �

Theorem 2.14. Let X be a metric space and assume that φ : X v Dφ → X and

π : X v Dψ → X are continuous maps defined on the sets Dφ and Dψ, respectively.

Let also Â = (A,A−) and B̂ = (B,B−) be oriented rectangles of X. Suppose that the

following conditions are satisfied:

(Hφ) There are m ≥ 1 pairwise disjoint compact sets H0, . . . ,Hm−1 ⊆ A∩Dψ such that

(Hi, φ) : Â m−→B̂ for i = 0, . . . ,m− 1;

(Hψ) There are l ≥ 1 pairwise disjoint compact sets K0, . . . ,Kl−1 ⊆ B ∩ Dψ such that

(Ki, ψ) : B̂ m−→Â for i = 0, . . . , l − 1;
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If at least one between m and l is greater or equal than 2, then the composite map

ϕ = ψ ◦ φ induces chaotic dynamics on m× l

H∗ =
⋃
i,j

Hi,j′ with Hi,j′ = Hi ∩ φ−1(Kj), i = 0, . . . ,m− 1, j = 0, . . . ,m− 1. (2.13)

and thus satisfies properties from Theorem 2.12.

Proof. In order to get the thesis,it suffices to show that

(H′i,j , φ) : Â m−→Â, ∀i = 0, . . . ,m− 1, and j = 0, . . . , l − 1

Such condition can be checked by steps analogous to the ones in Theorem 2.12. The

details are omitted since they are straightforward. �
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Chaos indicators and numerical

methods

In this chapter, we will discuss several numerical methods that have been developed

with the intent to detect chaotic behavior in Hamiltonian systems. In particular and

different from the standard Poincaré map or the Lyapunov exponents, we will present two

relatively recent numerical indicators of chaos. The two methods, named SALI (Smaller

ALignment Index) and GALI (Generalised ALignment Index), have been developed by

C. Skokos and coworkers and are based on the alignment of the unit vectors defined on

the orbits of the system under investigation [26]. Studying how the angle (SALI) of two

unit vectors or the volume (GALI) of n unit vectors evolve over the orbits contributes to

establishing the chaoticity of the conservative system. In this chapter, we will extensively

refer to the paper of C. Skokos [26, 27] when we discuss the part regarding the maximum

Lyapunov Characteristic Exponents (mLCE), and the SALI and GALI chaos detectors.

As an original contribution, at the end of this chapter, we discuss also the application

of the SALI and GALI methods to the case of the dynamical system that describes the

motion of two charged particles inside the tokamak. The peculiarity of these methods

is due to the fact that they can be used to investigate the behavior of the system even

for higher dimensional systems as in this case. In fact, such results cannot be obtained

with the analytical methods described in the previous chapter.

3.1 Hamiltonian systems

The first idea of a dynamical system emerged with the seminal work of Isaac Newton

while formulating his famous laws (in particular the second one) of mechanics. Newton

mechanics was initially successfully used to explain Kepler’s laws for the motion of the

31
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planets. From the mathematical point of view, we represent the evolution of the state,

so the variables that characterize a given physical, biological, chemical system, by a set

of differential equations which can be either of the deterministic or stochastic nature. In

other words, a system in which the state is a function of time is called “dynamical.” To

determine the state for all future times requires iterating the system many times—each

advancing time a small step. The iteration procedure is referred to as solving the system

or integrating the system. For integrable systems, given an initial point it is possible

to determine analytically all its future positions, a collections of points known as a

trajectory or orbit.

Euler, Lagrange, Laplace, and Hamilton did further development and generalization

of the theory that studied the mechanics of dynamical systems representing the state

as a geometric variable associating a spatial position with a given temporal point. In

particular, the Hamiltonian formulation of dynamical systems is widely used nowadays to

describe many physical systems. In modern times, a major contribution to the standard

mathematical definition of dynamical systems is due to the work of Poincaré, who studied

the stability of the system, e.g., that of the three-body problem, with the eventual

chaoticity of the orbits. In particular, he introduced his recurrence theorem that we

have extensively used even in this thesis. Later on, respectively, Lyapunov and Lorenz

formalized the idea of stability and chaoticity of dynamical systems. The study of

dynamical systems is still a significant research field of mathematics with many essential

applications in everyday life spanning from medicine to social behavior.

Definition 3.1. A dynamical system consists of a phase space S and a family of con-

tinuous transformations φt : S → S, depending by the parameter t where t is the time

and may be either discrete, t ∈ Z or continuous t ∈ R. For arbitrary states x ∈ S the

following must hold

1. φ0(x) = x identity

2. φt(φs(x)) = φt+s(x)∀t, s ∈ R additivity

A dynamical system can be of a continuous or discrete nature, depending on the way

the state of the system evolves. So, if the state evolves as a function of a (continuous or

discrete) variable, usually representing time, in a continuous domain, then it is a con-

tinuous (state) system. Otherwise, if the state space is a discrete one and the evolution

of the system is described by a succession of points in the discrete state space, then the

system is considered to be discrete.

Definition 3.2. Let S ⊂ Rn be an open set, n ∈ N, x = (x1, . . . , xn) ∈ S,t ∈ R Then
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F : S → S, ẋ = F (x(t)) = F (x) (3.1)

is called a vector field. It can be written as a system of n first order, autonomus (i.e.,

not explicitely time - dependent), ordinary differential equations.

dx1

dt
= F 1(x1, . . . , xn)

dx2

dt
= F 2(x1, . . . , xn)

...

dxn

dt
= Fn(x1, . . . , xn)

The formal solution of (3.3) satisfying the initial condition x(0) = z is defined as

x(t) = φt(z) (3.2)

and is called the flow of the vector field.

A single path in phase space followed by x(t) in time is called the trajectory or orbit of

the dynamical system.

Definition 3.3. Let S ⊂ RN , N ∈ N, xn ∈ S,n ∈ Z Then given a map

M : S → S, such that xn+1 = M(xn) (3.3)

we have a discrete dynamical system, setting φn(w) = Mn(w) with M0(w) = Id. The

relation xn+1 = M(xn) defines equations of motion of the dynamical system.

A Hamiltonian system is a system of 2N ordinary differential equations of the form

q̇i =
∂H

∂pi
(t,q,p), ṗi = −∂H

∂pi
(t,q,p), i = 1, . . . , N (3.4)

whereH = H(t,q,p), known as the Hamiltonian is a smooth real-valued function defined

for (t,q,p) in an open set of R1 × RN × RN .

The vectors q = (q1, . . . , qN ) and p = (p1, . . . , pN ) traditionally denote the position and

momentum vectors, respectively. The integer N is the number of degrees of freedom of

the system. Equations (3.4) are also formulated in matrix form as following:
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ẋ = F(x) =

[
∂H

∂p
,−∂H

∂q

]T
= J2N ·DH(x) (3.5)

with q = (q1(t), q2(t), ...qN (t)), p = (p1(t), p2(t), ..., pN (t)) and

DH(x) =

[
∂H

∂q1
,
∂H

∂q2
, . . .

∂H

∂qN
,
∂H

∂p1
,
∂H

∂p2
, . . .

∂H

∂pN

]T

Matrix J2N has the following block form:

J2N =

[
0N IN

−IN 0N

]
with IN being the N ×N identity matrix and 0N being the N ×N matrix with all its

elements equal to zero. Let’s see now the following example:

Example 3.1. Using eqs. (1.18) and (1.19) in eq. (1.17) which we multiply by ṙ before

integration we end up with the Hamiltonian function of a charge e with mass m in

cylindrical geometry

H(r, ṙ) = m
ṙ2

2
+
mA2

2r2
+

(eB0)2

8m
r2 +

e2

m
F 2(r) (3.6)

meanwhile, similarly one can easily obtain the Hamiltonian function in the case without

plasma for a particle with charge e with mass m as

H(r, ṙ) =
ṙ2

2
+
C2

2r2
+

(B0Rq
m log(r))2

2
+
B0Rq

m
C ′ log(r) (3.7)

For further details refer to [8].

3.2 Variational equations

Let us now turn our attention to the (continuous or discrete) time evolution of deviation

vectors w from a given reference orbit of a dynamical system. These vectors evolve on

the tangent space TxS of the set S. We denote by dxΦt the linear mapping which maps

the tangent space of S at a point x onto the tangent space at point Φt(x) and so we

have dxΦt : TxS → TΦt(x)S with

w(t) = dxΦtw(0) (3.8)
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where w(0), w(t) are deviation vectors with respect to the given orbit at times t = 0

and t > 0, respectively and the followed property are satisfied:

1. If t and s are two successive time intervals, then the composition property dxφ
t+s =

dφs(x)φ
t ◦ dxφs holds;

2. dxφ
t(aw) = adxφ

tw, for any a ∈ R.

In the case of Hamiltonian systems (eq. (3.5)) an initial deviation vector

w(0) = (δx1(0), δx2(0), ..., δx2N (0))

from the solution x(t) (eq. (3.2)) evolves on the tangent space TxS according to the

so-called variational equations:

ẇ = Df(x(t)) ·w

= [J2N ·D2H (x(t))] ·w
(3.9)

with D2H(x(t)) being the Hessian matrix of the Hamiltonian function calculated on the

reference orbit x(t), i.e.,

D2H(x(t))i,j =
∂2H

∂xi∂xj
Φt(x(0)), ı, j = 1, 2, ..., 2N.

When dealing with Hamiltonian systems, the variational equations have to be integrated

simultaneously with the Hamilton equations of motion since the x and w variables appear

explicitly in it. Thus if we want to follow the time evolution of an initial deviation

vector w(0) with respect to a reference orbit with initial condition x(0) we are obliged

to integrate simultaneously the whole set of differential equations (eq. (3.5)) and (eq.

(3.9)).

3.3 Chaos Indicators

3.3.1 The Poincaré map

A flow in the state space corresponds to a trajectory flowing around a torus with period
2π
ω . This naturally leads to a Poincaré mapping of a θ = θ0 plane to itself, as depicted
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in Figure 3.1. The notion of the Poincaré section was named after Henri Poincaré, who

realized the first map of this type. It was M.Henon, who proposed a trick on how to

compute this map.

Figure 3.1: The first return of a point P0 to P1 in the plane θ = θ0. The trajectories
flow inside a torus in three-dimensional space.This figure has been reproduced from

[28]

We consider an autonomous dynamical system defined by 2N simultaneous differential

equations:

dx1

dt
= f1(x1, . . . , x2N ) (3.10)

dx2

dt
= f2(x1, . . . , x2N ) (3.11)

...

dx2N

dt
= f2N (x1, . . . , x2N ) (3.12)

and the surface of section θ0 defined by

θ0(x1, . . . , x2N ) = 0

A solution can be represented by a curve, or trajectory, in an 2N-dimensional phase

space (x1, . . . , x2N ). The Poincaré map is a application of θ0 on itself, generated by the

points obtained as intersection of the trajectory with θ0 which in general is an (2N −1)-

dimesional subset of the phase space. The aim of this section is to give an efficient

scheme of integration (see [28]) in order to generate the Poincare map such that the

error is reduced or is comparable to the error generated by the integration of eqs. (3.10)

to (3.12).

The idea is to transform such system in xi-dependent for each i = 1, . . . , 2N such that



Chapter 3 37

xi − a = 0

and by inverting the ith eqs. (3.10) to (3.12) and dividing the (2N − 1)- remaining

equation by the ith:

dx1

dxi
=
f1

fi
(3.13)

...

dt

dxi
=

1

fi
(3.14)

...

dx2N

dxi
=
f2N

fi
(3.15)

The two system eqs. (3.10) to (3.12) and eqs. (3.13) to (3.15) can be merged into a single

form. If we define xi = τ as the current independent variable and

K =
dt

dτ

then eqs. (3.10) to (3.12) and eqs. (3.13) to (3.15) are two particular cases of the general

form

dx1

dτ
= Kf1 (3.16)

...

dx2N

dτ
= Kf2N (3.17)

dt

dτ
= K (3.18)

obtained by taking respectively K = 1 and K = 1/fN .

A numerical computation of Poincaré section is given by the following algorithm. The

program numerically integrates the equations of a trajectory up to a given maximal

integration time t = Tmax, detects and computes its intersections with a surface of

section of the form xi = xj
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Input: 1. General form of motion equation 3.5.

2. Initial condition for the orbit x(0).

3. PSS value xi.

4. Integration time step τ .

5. Maximal integration time Tmax.

Output: Intersections with surface of section xi = a

1 Set the counter k = 1;

2 while kτ < Tmax do

3 Evolve the orbit and the deviation vector from time t = (k − 1)τ to

t = kτ , i. e. Compute x(kτ);

4 if (xi − xj(kτ))(xi − xj((k − 1)τ) < 0) and xj+N (kτ) > 0 for some

j ∈ {1, 2, . . . , N} then

5 Set integration step λ = xi − xj((k − 1)τ) ;

6 Set the initial conditions y(0) = (x1((k − 1)τ), . . . , xi−1((k −
1)τ), xj+1((k − 1)τ), . . . , x2N ((k − 1)τ), (k − 1)τ) ;

7 Integrate eqs. (3.16) to (3.18) with y(0) for one time step using the

4th order Runge-Kutta method ;

8 Store y(λ);

end

9 Set the counter k ← k + 1;

end

Algorithm 1: Algorithm for the numerical computation of the (Poincaré

surface of section) or PSS of a dynamical system.
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3.3.2 Lyapunov Characteristic Exponent

The theory of Lyapunov Characteristic Exponents (LCEs) is crucial for chaos investi-

gation. Lyapunov was the first person to observe the evolution of the orbits originating

from an initial point near an equilibrium state formalizing this way the concept of sta-

bility. It was Henon-Heiles who introduced the notion of the divergence of two nearby

orbits, going ahead in time with the quantity of the exponential divergence by Casartelli

et al. [29] transforming it in an estimator of the Maximal Lyapunov Characteristic

Exponent for t −→∞ by [30]. Let’s start with the definition of the LCEs.

Let At be an n × n matrix function defined either on the whole real axis or on the set

of integers, such that A0 = In, for each time t the value of function At is a nonsingular

matrix and ‖At‖ the usual 2-norm of At. In particular we consider only matrices

satisfying

max{‖At‖, ‖A−1
t ‖} ≤ ect

with c a suitable constant.

Definition 3.4. Considering a matrix function At as above and a nonzero vector w of

the Euclidean space Rn the quantity

X (At,w) = lim sup
t→∞

1

t
ln ‖Atw ‖ (3.19)

is called the 1-dimensional Lyapunov Characteristic Exponent or the Lyapunov Char-

acteristic Exponent of order 1 (1-LCE) of At with respect to vector w.

For simplicity, we will usually refer to 1-LCEs as LCEs. We note that the value of LCE

is independent of the norm appearing in (3.19). This can easy be seen as follows: Let

us consider a second norm ‖ · ‖′ satisfying the inequality of equivalent norms with ‖ · ‖

β1‖w‖ ≤ ‖w‖′ ≤ β2‖w‖

for some positive real numbers β1, β2 and for all vectors w. It is easily to see that the use

of norm ‖ · ‖′ in (3.19) leaves unchanged the value of X (At,w). Since all norms of finite

dimensional vector spaces are equivalent, we conclude that LCEs do not depend on the

chosen norm. Let wi, i = 1, . . . , p be a set of linearly indipendent vectors in Rn, Ep be

the subspace generated by all wi and volp(At,E
p) be the volume of the p-parallelogram

having as edges the p vectors Atwi. This volume is computed as the norm of the wedge
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product of this vectors

volp(At,E
p) = ‖Atw1 ∧ · · · ∧ Atwp‖.

Let also volp(A0,E
p) be the volume of the initial p-parallelogram defined by all wi, since

A0 is the identity matrix. Then the quantity

λt(Ep) =
volp(At,E

p)

volp(A0,E
p)

is called the coefficient of expansion in the direction of Ep and it depends only on

Ep and not of the choice of the linearly indipendent set of vectors. Obviously for an

1-dimensional subspace E1 the coefficient of expansion is ‖Atw1‖/‖w1‖. If the limit

lim
t→∞

1

t
log λt(Ep)

exist it is called the characteristic exponent of order p in the direction of Ep.

Definition 3.5. Considering the linearly indipendent set wi, i = 1, . . . , p and the cor-

responding subspace Ep of Rn as above the p- dimensional Lyapunov characteristic ex-

ponent or the Lyapunov characteristic exponent of order p (p-LCE) of At with respect

to subspace Ep is defined as

X (At, E
p) = lim sup

t→∞

1

t
log volp(At,E

p) (3.20)

Similarly to the case of the 1-LCE, the value of the initial volume volp(A0,E
p) as well as

the used norm, do not influence the value of X (At,E
p). From (3.3.2) and the Hadamard

inequality, according to which the Euclidean volume of a p-parallelogram does not exceed

the product of the lengths of its sides, we conclude that the LCEs of (3.19) and (3.5)

are finite. From the definition of the LCE it follows that

X (At, c1w1 + c2w2) ≤ max{X (At,w1),X (At,w2)}

for any two vectors w1,w2 ∈ Rn and c1, c2 ∈ R with c1, c2 6= 0, while Hadamard

inequality implies that if wi, i = 1, 2, . . . , n is a basis of Rn then
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n∑
i=1

X (At,wi) ≥ lim sup
t→∞

1

t
log |det At| (3.21)

where det At is the determinant of matrix At.

It can be shown that for any r ∈ R the set of vectors {w ∈ Rn : X (At,w) ≤ r} is a

vector subspace of Rn and that the function X (At,w) with w ∈ Rn, w 6= 0 takes at

most n different values, say

ν1 > ν2 > · · · > νs with 1 ≤ s ≤ n. (3.22)

For the subspaces

Li = {w ∈ Rn : X (At,w) ≤ νi} (3.23)

we have

Rn = L1 ⊃ L2 ⊃ · · · ⊃ Ls ⊃ Ls+1 = 0 (3.24)

with Li+1 6= Li and X (At,w) = νi if and only if w ∈ Li \ Li+1 for i = 1, . . . , s.

Definition 3.6. A basis wi , i = 1, 2, . . . , n of Rn is called normal if
∑n

i=1X (At,wi)

attains a minimum at this basis. In other words, the basis wi, is a normal basis if

n∑
i=1

X (At,wi) ≤
n∑
i=1

X (At,gi)

where gi, i = 1, 2, . . . , n is any other basis of Rn

A normal basis wi,i = 1, 2, . . . , n is not unique but the numbers X (At, wi) depend only

on At and not on the particular normal basis and are called the LCEs of function At.

By a possible permutation of the vectors of a given normal basis, which always exist, we

can always assume that X (At, w1) ≥ X (At, w2) ≥ · · · ≥ X (At, wn).

Definition 3.7. Let wi,i = 1, 2, . . . , n be a normal basis of Rn and X1 ≥ · · · ≥ Xn,

with Xi ≡ X (At, wi), i = 1, 2, . . . , n, the LCEs of these vectors. Assume that value

νi,i = 1, 2, . . . , s appears exactly ki = ki(νi) > 0 times among these numbers. Then ki

is called the multiplicity of value νi and the collection (νi, ki) for i = 1, 2, . . . , s is called

the spectrum of LCEs.
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In order to clarify the used notation we stress that Xi, i = 1, 2, . . . , n are the n (possibly

nondistinct) LCEs, satisfying X1 ≥ X2 ≥ · · · ≥ Xn, while νi, i = 1, 2, . . . , s represent the

s (1 ≤ s ≤ n), different values of the LCEs have,with ν1 > ν2 > · · · > νs.

Definition 3.8. The matrix function At is called regular as t → ∞ if for each normal

basis wi, i = 1, 2, . . . , n it holds that

n∑
i=1

X (At, wi) = lim inf
t→∞

1

t
log |detAt|

which,due to (3.21) leads to

lim inf
t→∞

1

t
log | detAt| = lim sup

t→∞

1

t
log |detAt| (3.25)

guaranteeing that the limit

lim
t→∞

1

t
log |detAt| (3.26)

exists, is finite and is equal to

lim
t→∞

1

t
log |detAt| =

n∑
i=1

X (At, wi) =

n∑
i=1

kivi (3.27)

We can now state a very important theorem for the LCEs:

Theorem 3.9. If the matrix function At is regular then the LCEs of all orders are given

by (3.19) and (3.5) where the lim supt→∞ is substituted by limt→∞

X (At, w) = lim
t→∞

1

t
log ‖Atw‖ (3.28)

X (At, E
p) = lim

t→∞

1

t
log volp(At, E

p) (3.29)

In particular, for any p-dimensional subspace Ep ⊆ Rn we have

X (At, E
p) =

p∑
j=1

Xij (3.30)

with a suitable sequence 1 ≤ i1 ≤ i2 ≤ · · · ≤ ip ≤ n.
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The part of the theorem concerning equations (3.28) and (3.29) was proved in [31] and

the validity of (3.30) was shown in [32].

Heretofore we have been interested in the existence and the computation of the LCEs of

all orders for a general matrix function At. In the following, we will restrict our study

to the case of multiplicative cocycles R(t, x).

Definition 3.10. A cocyle is a function R(t, x) which satisfies the relation

R(t+ s, x) = R(t, φs(x)) ·R(s, x)

with respect to the dynamical system φt where R(t, x) is the matrix corresponding to

dxφ
t.

In particular we will consider the multiplicative cocycle dxφ
t which maps the tangent

space at x ∈ S to the tangent space φt(x) ∈ S for a dynamical system defined on

differentiable manifold S.

Besides the existence and finiteness of the LECs, another important property is their

regularity. We will show such regularity based on a result due to Oseledec is known

as Multiplicative Ergodic Theorem (MET) or shortly Oseledec Theorem [31]. MET

is one of the pillars of the ergodic theory of dynamical systems because it contains

important results about the dynamical structure of the multiplicative cocycle R(t, x) and

its asymptotic behavior when t→∞. Apart from the original version and proof proposed

by Oseledec [31], which applies to continuous and discrete systems, several alternative

versions and adaptions have been proposed throughout the years. For instance, Ruelle

extended the results to flows and Benedettin et. al., [32] proposed an adaption for the

Hamiltonian flows and symplectic maps.

The application of the Oseledec Theorem to the particular multiplicative cocycle dXΦt

lays the theoretical ground for the computation of LCEs for a general dynamical system.

In particular MET applies to R(t, x), if it satisfies the following condition

||R(t, x)|| ≤ eJ(x)|t| (3.31)

for t → ±∞ for almost all x with respect to a measure µ, and where J(x) is a µ-

measurable function.For this condition it follows that R(t, x), considered as a function

of t for a fixed x satisfies 3.3.2. Benettin et. al., [32] considered a particular version of the

original theorem [31] focused to the particular cocycle dXΦt since they were interested

in the regularity in the framework of continuous and discrete dynamical systems where

Φt was a diffeomorphism of class C1. Since here we are interested in the autonomous
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Hamiltonian systems, following [31, 32], we will state the MET for the specific cocycles

dXΦt.

Theorem 3.11. Multiplicative Ergodic Theorem-MET. Consider a dynamical system as

follows: Lets its phase space S be an n-dimensional compact manifold with a normalized

measure ν, ν(S) = 1, and a smooth Riemannian metric ‖ · ‖. Consider also a measure-

preserving diffeomorphism φt of class C1 satisfying

φt+s = φt ◦ φs

With t denoting time and having real (continuous system) or integer (discrete system)

values. Then for almost all x ∈ S, with respect to measure ν we have.

1. The family of multiplicative cocycles dxφ
t : TxS → Tφt(x)S, where TxS denotes the

tangent space of S at point x, is regular

2. The LCEs of all orders exist and are indipendent of the choice of the Riemannian

metric of S. In particular, for any w ∈ TxS the finite limit

X (x,w) = lim
t→∞

1

t
log ‖dxφtw‖ (3.32)

exists and defines the LCE of order 1.There exists at least one normal basis

vi,i = 1, 2, . . . , n of TxS for which the corresponding (possibly nondistinct) 1-LCEs

Xi(x) = Xi(x, vi) are ordered as

X1(x) ≥ X2(x) ≥ · · · ≥ Xn(x) (3.33)

Assume that the value νi(x),i = 1, 2, . . . , s with s = s(x), 1 ≤ s ≤ n appears

exactly ki(x) = ki(x, νi) > 0 among these numbers. Then the spectrum of LCEs

(νi(x), ki(x),i = 1, 2, . . . , s is a measurable function of x, and as w 6= 0 varies in

TxS, X (x,w) takes one of these s different values

ν1(x) ≥ ν2(x) ≥ · · · ≥ νs(x)

It also holds
s∑
i=1

ki(x)νi(x) = lim
n→∞

1

t
log | det dxφ

t | (3.34)

For any p-dimensional (1 ≤ p ≤ n) subspace Ep ⊆ TxS, generated by a linearly

indipendent set wi, i = 1, 2, . . . , p the finite limit
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X (x, Ep) = limt→∞
1

t
log volp(dxφ

t, Ep) (3.35)

where volp(dxφ
t, Ep)is the volume of the p-parallelogram having as edges the vectors

dxφ
twi, exists, and defines the LCE of order p. The value of X (x, Ep) is equal to

the sum of p 1-LCE Xi(x), i = 1, 2, . . . , n.

Let’s give now the definition of maximal Lyapunov Characteristic Exponent mLCE Let

w(0) and w(t) be the deviation vector at time t = 0 and at time t > 0. The equation

w(t) = dxφ
tw(0)

represents the solution of variational equations. Then the quantity

X = lim
t→∞

1

t
log
‖dx(0)φ

tw(0)‖
‖w(0)‖

= lim
t→∞

1

t
log
‖w(x(t))‖
‖w(x(0))‖

= lim
t→∞

X1(t) (3.36)

where X1(t) = ‖w(x(t))‖
‖w(x(0))‖ , is called Maximal Lyapunov Characteristic Exponent mLCE .

If X = 0 the orbit is called regular. If X > 0 the orbit is called chaotic. The inverse of

mLCE

tL =
1

X
(3.37)

is called Lyapunov time. Particularly, the Lyapunov time gives an estimate of the time

needed for a dynamical system to become chaotic and, in practice, measures the time

needed for nearby orbits of the system to diverge by e.

The existence of the limit (3.36) is guaranteed by a week version of the Oseledets the-

orem. The direct numerical implementation of (3.36) leads to numerical overflow of

‖w(t)‖ due to its large value that extends beyond the capacity of the memory of the

computer. Fixing a small time interval τ we express time t with respect to τ as t = kτ ,

k = 1, 2, . . . .Then X1(t) can be written equivalently as:

X1(kτ) =
1

kτ

k∑
n=1

log
‖w(iτ)‖

‖w((i− 1)τ)‖

cite
=

1

kτ

k∑
n=1

log
‖dx(0)φ

iτw(0)‖
‖dx(0)φ(i−1)τw(0)‖

(3.38)

The termination of the algorithm 2 is garanteed by Theorem 3.12 (see [27])



Chapter 3 46

Theorem 3.12. The termination of algorithm 2 is garanteed if and only if ‖ w((i −
1)τ) ‖= 1, i = 1, 2, . . . , n

Proof.

Applying composition and linearity property of dxφ
t one can easily prove the following

equality:

dx(0)φ
iτw(0)

‖ dx(0)φ(i−1)τw(0) ‖
=

dφ(i−1)τx(0)φ
iτ (

dx(0)φ
(i−1)τw(0)

‖ dx(0)φ(i−1)τw(0) ‖
D0)

D0
(3.39)

where D0 is the norm of the initial deviation vector ~w(0). Let us now denote by

ŵ((i− 1)τ) =
dx(0)φ

(i−1)τw(0)

‖ dx(0)φ(i−1)τw(0) ‖
D0, (3.40)

the deviation vector at point φ(i−1)τ (x(0)) having the same direction with w((i − 1)τ)

and norm D0, and by Di its norm after its evolution for τ time units.

Di =‖ dφ(i−1)τx(0)φ
τ ŵ((i− 1)τ) ‖ . (3.41)

Using this notation we derive from (3.39)

log
‖ dx(0)φ

iτw(0) ‖
‖ dx(0)φ(i−1)τw(0) ‖

= log
Di

D0
(3.42)

From (3.36),(3.38) and (3.42) we conclude that mLCE X can be computed as

X = lim
k→∞

1

kτ

k∑
i=1

log
Di

D0
. (3.43)

Since the initial norm D0 can have any arbitrary value, one can usually set it to D0 = 1.
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Input: 1. Hamiltonian equation of motion (3.5) and variational equations

(3.9).

2. Initial condition for the orbit x(0).

3. Initial unitary deviation vector w(0).

4. Renormalization time τ .

5. Maximal time TM .

6. Minimum allowed value of X1(t): X1m

7. The stopping flag SF .

Output: Report the time evolution of X1(t)

1 SF ← 0;

2 k ← 1;

3 while SF = 0 do

4 Evolve the orbit and the deviation vector from time t = (k − 1)τ to

t = kτ , i. e. Compute x(kτ) and w(kτ).;

5 Compute current value of αk =‖ w(kτ) ‖;
6 Compute and store current value of X1(kτ) = 1

kτ

∑k
i=1 logαi;

7 Renormalize deviation vector by setting w(kτ)← w(kτ)/αk ;

8 Set the counter k ← k + 1;

9 if [(kτ > TM )or(X1((k − 1)τ) < X1m)] then

10 SF ← 1;

end

end

Algorithm 2: The algorithm for the computation of the mLCE X as the

limit for t→∞ of X1(t) according to (3.43)

A direct numerical scheme of mLCE is given by the following algorithm below. The

program computes the evolution of X1(t) as a function of time t up to a given upper

value of time t = TM or until X1(t) attains a very small value, smaller than a low

threshold value X1m.The idea of how it works is illustrated by figure 3.2.

The unitary deviation vector ŵ((i − 1)τ), i = 1, 2, . . . , is evolved according to the

variational equations 3.9 (continuous map) for t = τ time units. The evolved vector

w(iτ) is replaced by a unitary vector ŵ(iτ) having the same direction with w(iτ).

Let us turn our attention to the structure of the spectrum of mLCE for N -dimensional

autonomus Hamiltonian system. Such system preserve the phase space volume. So for
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Figure 3.2: Numerical scheme for the computation of the mLCE X1. This figure has
been reproduced from [27].

the sum of all the mLCEs we have

2N∑
i=1

Xi(x) = 0

It is proved in [33] that the spectrum of mLCEs consists of pairs of values having

opposite sign.

Xi(x) = −X2N−i+1(x), i = 1, 2, . . . , N (3.44)

such that

X1(x) ≥ X2(x) ≥ · · · ≥ XN (x) ≥ −XN (x) ≥ · · · ≥ −X2(x) ≥ −X1(x) (3.45)

For a general differentiable flow on a compact manifold without stationary points at

least one mLCE must vanish then follows that at least two mLCE must vanish i.e.

XN (x) = XN+1(x) = 0 (3.46)

in the case of autonomous Hamiltonian flows due to the symmetry of the spectrum of

mLCE (see [34]).
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3.3.3 SALI and GALI

mLCE remains a basic method in chaos detection. New techniques are introduced by

[26, 35] in the detection of chaoticity called Smaller and Generalized Alignment Index.

Their ability to detect chaotic motion faster than other techniques classified them as

ones of the ”best” indicator of chaos, estimating here the overflow problems as a result

of their faster decay of exponential growth from a numerical scheme point of view.

Definition 3.13. The quantity

SALI(t) = min(‖ ŵ1(t) + ŵ2(t) ‖, ‖ ŵ1(t)− ŵ2(t) ‖) (3.47)

with ŵi(t) =
wi(t)

‖ wi(t) ‖
, i = 1, 2 being unit vector is called the Smaller Alignment Index

(SALI).If SALI(t) goes to 0 the orbit is chaotic otherwise the orbit is regular.

Any two deviation vectors from a chaotic orbit with X1 > X2 are stretched towards

the direction defined by the mLCE, eventually becoming aligned having the same or

opposite directions. Referring to figure 3.3 easily follows when two unitary deviation

vectors become aligned following the parallelogram rule.

Figure 3.3: Schematic representation of the evolution of two deviation vectors and of
the corresponding SALI for a chaotic orbit.This figure have been produced by [26]

Let ŵ1(t) and ŵ2(t) be two initially distinct unit deviation vectors at point P (t) of

w1(t) and w2(t).They are aligned i.e they converge to the some direction when ‖ ŵ1(t)−
ŵ2(t) ‖→ 0 and ‖ ŵ1(t)+ŵ2(t) ‖→ 2 or ‖ ŵ1(t)−ŵ2(t) ‖→ 2 and ‖ ŵ1(t)+ŵ2(t) ‖→ 0 if

ŵ1(t) and ŵ2(t) change orientation. On the other hand, the regular motion is manifested

when the two unitary deviation vectors are not aligned. Initially they are not neccessary

on the tagent space, but as time evolves they tend to fall on the torus tagent space where

their difference ‖ ŵ1(t)− ŵ2(t) ‖ following the paralellogram rule remains constant.
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Theorem 3.14. If the orbit is regular or chaotic then the cost of algorithm 3 is constant

or exponential, respectively obeing the law:

SALI(t) ∝

cost if arg(‖ ŵ1(t) ‖, ‖ ŵ2(t) ‖) ∈ {0, π}

e−(λ1−λ2)totherwise

where arg(·, ·) is the angle between the two unitary deviation vectors and λ1 , λ2 are the

first and second largest LCE.

Given two distinct orthonormal random unit deviation vectors w1(0),w2(0) the algo-

rithm computes the evolution of the SALI with respect to time t up to a given upper

value of time t = TM or until the index becomes smaller than a low threshold value

Sm. Orthonormality of w1(t) and w2(t) helps to avoid overflow problems meanwhile

orthogonality helps to bound t he fluctuations of the SALI, reaching very small values

around the computer’s accuracy 10−16 in the interval [0,
√

2] during the evolution of

the orbits. SALI is strongly connected to the area of parallelogram generated by two

unit deviation vector. In other words, observing that the minimum of the two positive

quantities in 3.13 is equivalent to evaluating the product

P (t) =‖ ŵ1(t) + ŵ2(t) ‖ · ‖ ŵ1(t)− ŵ2(t) ‖ (3.48)

at every value of t. Indeed, if the minimum of these two quantities is zero, so will be

the value of P (t). On the other hand, if it is not zero P (t) will be proportional to the

constant about which this minimum oscillates. This suggests that, instead of computing

the SALI(t) from 3.13 , one might as well evaluate the exterior product of the two

deviation vectors ŵ1 ∧ ŵ2 for which it holds

‖ ŵ1 ∧ ŵ2 ‖=
‖ ŵ1(t) + ŵ2(t) ‖ · ‖ ŵ1(t)− ŵ2(t) ‖

2
(3.49)

which represents the area of the parallelogram formed by the two deviation vectors.
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Input: 1. Hamiltonian equation of motion 3.5 and variational equations 3.9.

2. Initial condition for the orbit x(0).

3. Initial orthonormal unitary deviation vector w1(0),w2(0).

4. Renormalization time τ .

5. Maximal time TM .

6.Threshold value of the SALI:Sm

7.The stopping flag:SF

Output: Report the time evolution of SALI(t)

1 SF ← 0;

2 k ← 1;

3 OC ← regular;

4 while SF = 0 do

5 Evolve the orbit and the deviation vector from time t = (k − 1)τ to

t = kτ , i. e. Compute x(kτ) and w1(kτ), w2(kτ).;

6 Normalize the two vectors, i.e.Set w1(kτ)→ w1(kτ)/ ‖ w1(kτ) ‖ and

w2(kτ)→ w2(kτ)/ ‖ w2(kτ) ‖;
7 Compute and store current value of

SALI(kτ) = min ‖ ŵ1(kτ) + ŵ2(kτ) ‖, ‖ ŵ1(kτ)− ŵ2(kτ) ‖;
8 Set the counter k ← k + 1;

9 if SALI((k − 1)τ) < Sm then

10 SF ← 1 and OC → chaotic;

end

11 if (kτ > TM ) then

12 SF ← 1;

end

end

Algorithm 3: The algorithm for the computation of the SALI according to

3.13

Generalizing this idea we now follow the evolution of k deviation vectors, for 2 ≤ k ≤ 2N

in 2N - dimensional space by introducing a new quantity called GALI.

Definition 3.15. Let Pk = {w ∈ Rk|l ≤ Aw ≤ u} be a parallelotope where A ∈ GL(n)

and l, u ∈ Rk. Then the quantity

GALIk(t) = vol(P) (3.50)
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where by vol(·) is denoted the volume of k-parallelotope, is called Generalized Alignment

Index of order k, denoted by GALIk.

Before explaining a numerical approach, how to define GALIk (see [36])let recall some

preliminary notions. Let V (R) be a vector space over the field of real numbers R.

Let Λ(V ) and Λk(V ) be the Grassman/exterior algebra and k-th exterior power of V

respectively. If e1, . . . , eM is an orthonormal basis of V then the wedge product u1 ∧
u2 ∧ · · ·uk is defined by

u1 ∧ u2 ∧ · · ·uk =
∑

1≤i1<i2<···≤M

∣∣∣∣∣∣∣∣∣∣∣

u1i1 u1i2 · · · u1ik

u2i1 u2i2 · · · u2ik
...

...
...

uki1 uki2 · · · uki

∣∣∣∣∣∣∣∣∣∣∣
ei1 ∧ ei2 ∧ . . . eik (3.51)

since Λ(V ) can be written as the direct sum of k-th exterior power of V with i = 1, . . . ,M

i.e.

Λ(V ) =
M⊕
k=0

Λk(V ) (3.52)

where Λk(V ) =< ei1 ∧ ei2 ∧ . . . eik |1 ≤ i1 < i2 < . . . < ik > and the sum in (3.52) is

performed over all possible combinations of k indices out of the M total indices. So

the coefficient of a particular k-vector ei1 ∧ ei2 ∧ · · · eik is the determinant of the k × k
submatrix of the M ×K matrix of coefficients appearing (3.51) formed by i1, i2, . . . , ik

rows.

The inner product on V induces an inner product on each vector space Λk(V ) as follows:

Considering two decomposable k-vectors u = u1∧ u2∧· · ·∧uk and v = v1∧v2∧· · ·∧vk

with ui,vj ∈ V , i, j = 1, 2, . . . , k, the inner product of u,v ∈ Λk(V ) is defined by

< u,v >k=

∣∣∣∣∣∣∣∣∣∣∣

u1 · v1 u1 · v2 · · · u1 · vk
u2 · v1 u2 · v2 · · · u2 · vk

...
...

...

uk · v1 uk · v2 · · · uk · vk

∣∣∣∣∣∣∣∣∣∣∣
(3.53)

where U and V are matrices having as columns the coefficients of vectors ui, vi, i =

1, 2, · · · , k with respeskt to the orthonormal e1, . . . , eM . Since every elementof Λk(V ) is a

sum of a decomposable elements,this definition extends by bilinearity of any k-vector. If
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ωi = ei1∧ei2∧·∧eik and ψi = ei1∧ei2∧·∧eik for 1 = 1, 2, ·, dk and 1 ≤ i1 ≤ i2 ≤ · · · ≤ ik
are two othonormal basis of Λk(V ) we have

< ωi, ωj >= δij , i, j = 1, 2, . . . , dk

Implying that the basis is orthonormal. Inner product define a norm ‖ · ‖ for k vectors

by

‖ u ‖=‖ u1 ∧ u2 ∧ · · · ∧ uk ‖=
√
|UT · U | (3.54)

and it measures the volume vol(Pk)of the parallelotope having as edge the k vectors

u1, u2, . . . , uk.

A different way of evaluation GALIk which actually proved to be more accurate, is

obtained by performing the Singular Value Decomposition (SVD) of AT . So, the 2N ×
kmatrix AT can be written as a product of a 2N × k column-orthogonal matrix U , a

k × k diagonal matrix Z with positive or zero elements zi, i = 1, . . . , k (the so-called

singulular values) and the transpose of a k × k orthogonal matrix V :

AT = U · Z · V T (3.55)

We note that the matrices U and V are orthogonal so that:

UT · U = V T · V = Ik (3.56)

with Ik being k × k unit matrix.

Using equation (3.54) for the computation of GALIk as well as equations (3.55)) and

(3.56) we get:

GALIk =
√
det(A ·AT ) (3.57)

=
√

det(V · Z · UT · U · Z · V T ) (3.58)

=
√

det(V · diag(z2
i ) · V T ) (3.59)

=
√

det(diag(z2
i ) (3.60)

=
k∏
i=1

zi (3.61)
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Thus, we conclude that GALIk is equal to the product of the singular values of matrix

A defined by the k normalized deviation vectors. An algorithm for implementation of

GALIk is given below:
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Input: 1. Hamiltonian equation of motion 3.5 and variational equations 3.9.

2. Initial condition for the orbit x(0).

3. Initial orthonormal unitary deviation vector

w1(0),w2(0), . . . ,wk(0).

4. Renormalization time τ .

5. Maximal time TM .

6.Threshold value of the GALI:Gm

7.Order k of desired GALI

8.The stopping flag SF

Output: Report the time evolution of GALIk and the nature of the orbit

1 SF ← 0;

2 k ← 1;

3 OC ← regular;

4 while SF = 0 do

5 Evolve the orbit and the deviation vector from time t = (k − 1)τ to

t = kτ , i. e. Compute x(kτ) and w1(kτ),w2(kτ), . . . ,wk(kτ).;

6 for j = 1→ k do

7 Set wj(kτ)→ wj(kτ)/ ‖ wj(kτ) ‖ ;

end

8 Compute and store current value of GALI(kτ)

Create matrix A(kτ) having as rows the deviation vectors

w1(kτ),w2(kτ), . . . ,wk(iτ)

Apply SVD algorithm to compute singular values z1(iτ), z2(iτ), . . . , zk(iτ)

GALIk(iτ) =
∏k
j=1 zj(iτ);

9 Set the counter i← i+ 1;

10 if GALI((k − 1)τ) < Gm then

11 SF ← 1 and OC → chaotic;

end

12 if [(kτ > TM )] then

13 SF ← 1;

end

end

Algorithm 4: The algorithm for the computation of the GALI according to

3.51

The program computes the evolution of the GALIk with respect to time t up to a given
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upper value of time t = Tm or until the index becomes smaller than a low threshold

value Gm. For a more detailed description of the SVD method, as well as an algorithm

for its implementation, the reader is referred to [37]. Referring to the accuracy of the

computation of this algorithm let’s state the following theorem (see [26]):

Theorem 3.16. If the orbit is chaotic, GALIk goes to zero exponentially fast by the

law:

GALIk(t) ∝ e−
∑k
j=2(σ1−σj)t (3.62)

If on the other hand, the orbit lies in a N -dimensional torus GALIk display the following

behaviors

GALIk(t) ∝


costant for2 ≤ k ≤ N

1
t2(k−N)−m if N ≤ k ≤ 2Nand0 ≤ m < k −N

1
tk−N

if N ≤ k ≤ 2Nandm ≥ k −N

(3.63)

depending on the number m of deviation vectors which initiallly lie in the tangent space

of the torus.
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3.4 Applications and numerical investigation

To verify the validity of theoretical predictions, let’s see the following two applications:

3.4.1 Henon Heiles model

y
-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

p
y

-0.5

-0.25

0

0.25

0.5

Figure 3.4: The Poincaré section of Henon Heiles model for x = 0 and px ≥ 0.

Let’s consider the following 2D continuous, conservative, autonomous Hamiltonian sys-

tem

H(x, y, px, py) =
1

2
(p2
x + p2

y) +
1

2
(x2 + y2) + x2y − 1

3
y3 (3.64)

known as Henon-Heiles. Such a system describes the motion of stars in a galactic center,

with the motion restricted to a plane. Therefore, from the definition 3.5 and 3.9 one can

easily define motion equation 

ẋ = px

ẏ = py

ṗx = −x− 2xy

ṗy = −y − x2 + y2

(3.65)

and the variational equations as
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

˙δx = δpx

δ̇y = δpy

˙δpx = δx(−1− 2y)− 2xδy

˙δpy = −2xδx+ (−1 + 2y)δy

(3.66)

As can be seen in figure 3.4 the dimension of the system is reduced by 4 dimensional

in 2 dimensional supposing x = 0 and px ≥ 0. Poincare section helps us to visualize

the dynamics of the system where chaotic orbits generate scattered dots while regular

orbits create smooth curves. The bounding curve is depicted by the intersection of

H(x, y, px, py) = costant in 3.64 with the surface x = 0 using the forth order Runge-

Kutta method. For these set of initial conditions, one can distinguish between ”islands”

of non-chaotic behavior with elliptic fixed points at their centers, where the boundary

of each region meets is a hyperbolic point
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Figure 3.5: Plots of the time evolutionof of the mLCE X against time. Regular orbits
with initial conditions x = 0, y = −0, 364855,py = −0.0278586 and px = 0.24 is dysplaid
with red colour and chaotic orbits with initial conditions x = 0, y = −0, 25,py = 0 and

px = 0.42 is dysplaid with blue colour . The axes are in logarithmic scale.

from chaotic regions. Increasing the value of energy, the regions between these islands

will be filled with a completely random set of points. These confined areas of chaos are a

cross-section of a strange attractor. The existence of this strange attractor guarantee as

to apply the definition of mLCE. In the figure 3.5 is depicted as a quantitative analysis

of the chaotic and regular nature of orbits of the system using the computation of the

mLCE. In this analysis the time evolution of the deviation vector using the variational

equation is used as a method of computation since in literature co-exist another method
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known as the time evolution of nearby orbits. Furthermore as predicted theoretically,

depending on the spectrum of mLCE i.e. X1 = −X3 and X2 = −X4 = 0 chaotic orbits

have a positive mLCE i.e., X > 0 (the red curve)while for regular orbits X tends to

zero(the blue curve).
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Figure 3.6: Plots in log-log scale of SALI as a function of time t for a chaotic and
a regular orbits.Regular orbits with initial conditions x = 0, y = −0, 364855,py =
−0.0278586 and px = 0.24 is dysplaid with blue colour and chaotic orbits with initial

conditions x = 0, y = −0, 25,py = 0 and px = 0.42 is dysplaid with red colour .

Another easy and efficient method to detect chaotic and regular orbits from a qualitative

facet is given by the SALI method. Contrary, from the mLCE ,if the SALI → 0 the

orbit behaves chaotic, while when the value of SALI fluctuate around non zero values the

orbit is individualized regular. Refering to the figure 3.6 this result are obtained for this

set of initial conditions: x = 0, y = −0, 364855,py = −0.0278586, px = 0.24 (blue curve)

and x = 0, y = −0, 25,py = 0, px = 0.42(red curve) respectively. So the theoretical

results are numerically validated for an orthonormal set of initial variational vectors.

Moreover, it can be seen that the exponential decay of the chaotic orbit corresponds to

a function proportional to e−X1t.

Remain to trait the GALI method as the last test of chaos indicator. The GALI is a set

of GALIk curve with 2 < k < 2N for an N-degree of freedom Hamiltonian system. ùsuch

methods give an accurate estimation of the nature of orbits. Depending on the evolution

of k-orthonormal deviation vector, such a method is classified according to [26] as the

best estimator of chaos. More precisely, since our system is four-dimensional, we have

to study the time evolution of GALI2, GALI3, and GALI4. As shown inf figure 3.7 of

chaotic orbits GALI2, GALI3 and GALI4 tends to zero exponentially following the lows

e−X1t, e−3X1t, e−4X1t, respectively in accordance with theoretical prediction of theorem
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Figure 3.7: (a) Plots in log-log scale of time evolution of GALI2, GALI3 and
GALI4,for a regular orbits with initial conditions x = 0, y = −0, 364855,py =
−0.0278586 and px = 0.24. (b) Plots of evolution of time of GALI2, GALI3 and
GALI4,for a chaotic orbit with initial conditions x = 0, y = −0, 25,py = 0.42 and

px = 0. Note that the t-axis is linear

3.16. In the case of 4-dimensional phase space of a 2-degree of freedom Hamiltonian flow,

the tangent space is one dimensional since the only possible torus is one dimensional

(s = 1) invariant curve. So the time evolution of GALI3 and GALI4 obey the lows t−2,

t−4 respectively.

Concluding, evaluating the rate of divergence to 0, GALI4 remains the fastest indicator

of chaos followed by GALI3, GALI2, and SALI ending with mLCE as the least indi-

cator. This classification depends on the number of the time evolution of the deviation

vector. So growing the number of deviation vector, we increase the rate of divergence of

chaos. For example, for t > 10 GALI4 starts to decay exponentially faster than GALI3

and GALI2.

3.4.2 Tokamak model

The description of the dynamical behavior of single or multiple particles under the in-

fluence of a magnetic field inside a tokamak, we will follow the Hamiltonian formalism

introduced earlier by Vittot and coworkers in Ref. [3]. They have shown that the con-

servative dynamics for a particle with mass m and charge q in the case without plasma

is given by the following effective Hamiltonian function:

H(r, ṙ) =
ṙ2

2
+
C2

2r2
+

(
B0Rq

m
log(r)

)2

2
+
B0Rq

m
C ′ log(r) (3.67)

where r is the polar coordinate, R is the radius of the tube and torus of the tokamak,

B0 the magnetic field and the constants C, C ′ as given in Ref. [3]. In order to tackle

the problem from the analytical and numerical point of view, Skokos et. al. [38] have
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proposed to use for the case of the system with two particles the coupling term Ω(xpy−
ypx) for the independent equations of each particle. This makes the Hamiltonian self-

consistent and integrable:

H(x, y, px, py) =
p2
x

2
+
p2
y

2
+K2

(
C1

2x2
+
C2

2y2
+

log2 x

2
+

log2 y

2

)
− Ω(xpy − ypx) (3.68)

where we have used the constant K =
B0Rq

m
> 0 and let C1,C2 are T−periodic functions

greater than 1. Also notice that in order to ease the calculation, we have considered the

constant C ′ = 0. From this we can now obtain the equations of the motion:



ẋ = px + Ωy

ẏ = py − Ωx

ṗx = K2

(
C1

2x3
− log x

x

)
+ Ωpy

ṗy = K2

(
C1

2y3
− log y

y

)
− Ωpx

(3.69)

and the corresponding variational equations are



˙δx = Ωδy + δpx

δ̇y = −Ωδx+ δpy

˙δpx = −K2

(
3C1

x4
+

1

x2
− log x

x2

)
δx+ Ωδpy

˙δpy = −K2

(
3C2

y4
+

1

y2
− log y

y2

)
δy − Ωδpx .

(3.70)

In Chapter 4 it will be analytically shown by means of topological methods that the

aformentioned system (3.67) behaves chaotically in a particular regime of parameters.

In the following we will verify such results by using the numerical techniques of chaos

detection, the SALI and GALI methods.

3.4.2.1 Detection chaotic behaviour of charged particles in the tokomak:

numerical approach

After a thorough reviewing of the numerical measures for detecting the presence of

chaotic motions in conservative systems, we are now ready to apply such methods

to the problem of stability of charged particles under the influence of the magnetic

field inside the tokamak. We will start by solving numerically the variational Hamil-

ton eqs. (3.70) to obtain the orbits of the particles involved. At this point, we are
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able to measure the values of SALI and GALI by correspondingly computing formu-

las (3.13) and (3.61). For our model (3.68) we have fixed the energy at H = 1.8 and

we have chosen the parameters K = 1.7, C1 = (1 + 0.2 cos(18ωt)) log(1 + 0.2 cos(18ωt)),

C2 = (1.1 + 0.2 cos(18ωt)) log(1.1 + 0.2 cos(18ωt))1 where by varying the value of Ω is

possible to study the behavior of the system under different coupling strengths. At

variance with the works [3] and Chapter 4 where only one particle is considered, here

we study a 4−dimensional version of the system (3.68), but the results can easily be

extended to higher dimensions. Let us note that such results can only be obtained us-

ing numerical methods. For illustration purpose, we will first consider two well-known

classical methods for chaos detection and we will later compare them to the SALI and

GALI ones. In Fig. 3.8 a) we have plotted the Poincare map obtained from the orbits

of the system under scrutiny. Although in this case no regular curves appear at all,

in general, the Poincaré map is not an exhaustive method meaning that not always is

possible to have a mathematical certainty about the presence of chaos. This is mostly

due to the fact of being the procedure itself of a qualitative nature. This is the case,

for example, when for a given number of numerical iterations, we notice only regular

orbits in the Poincaré section and the chaotic islands in between will appear only when

we increase the number of iterations. Another standard technique which constitutes a

quantitative measure of chaos, is the mLCE [32]. It has been considered in Fig. 3.8

b) where we have plotted the dependence of mLCE as a function of time and although

the curve seems to have a decaying trend, there is not a clear evidence of convergence,

sometimes yielding to misleading conclusions.

To solve the problem of the finite time integration and the speed of the convergence of

the algorithms, we will restore to the SALI and GALI measures. In Fig. 3.9 we plot

the results obtained by both aforementioned methods. Obviously, in both cases, the

methods give very satisfactory results regarding the chaoticity of the system we study

in this work. In fact, the major advantages of these methods are their convergence in

a relatively short time, making the estimation regarding the stability of the behavior

of our system with considerable higher accuracy than previous methods. Furthermore,

the GALI method, compared to the SALI one, can be optimized even more in terms

of convergence time once the number of the vectors on which the measure is based is

further increased. This way, we can conclude that with these new methods we have

more confidence that our system is chaotic or not. Moreover, by means of numerical

techniques, we are able to evaluate the chaoticity for higher dimensions.

1The reason for such particular expressions for the constants C1 and C2 can be found in section 3.3
of Chapter 4.



Chapter 3 63

y

0 2 4 6 8

p
y

-2

-1

0

1

2

Time

10
2

10
4

m
L

C
E

10
-3

10
-2

10
-1

a) b)

Figure 3.8: a) We plot the Poincare section of the model (3.68) obtained for x = 0.5,
px > 0 and Ω = 0.1. The system in this state represent a total sea of chaoticity, however
a large number of points is required in general to have a overall evaluation of where
the system behaves chaotically. b) Plots in log-log scale of time evolutions of mLCE
versus time for a chaotic orbit with initial conditions x = 0.5, y = 0.92, px = 1.85 and
py = 0.62. As it can be noticed although the long simulation the mLCE is not yet

converging making the detection of the chaos difficult.
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Figure 3.9: a) We plot the evolution of the SALI measure in the log-log scale. The
finite time convergence of the method allows to conclude for certain that our system
is chaotic. b) Similar results are also obtained from the GALI method where we plot
the evolution of the curves for different number of vectors considered . In this case it is
easy to conclude in a shorter time about the chaoticity of the system once more vectors

are taken in consideration.

3.4.2.2 Conclusions

In this work, we study by means of numerical methods the stability of the dynamics of

a Hamiltonian system of charged particles under the effect of the magnetic field inside

a tokamak in the absence of plasma. In fact, it has been previously shown from the

qualitative perspective using analytical approaches based on topological methods that

the 2−dimenstional version of this system is highly chaotic. Here our goal has been
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two-fold, first to verify these results by alternative tools such as the numerical ones and

second to extend them to higher dimensions by means of numerical chaos indicators

we chose to apply to our problem. To this aim, we have used the well-known Small

Alignment Index (SALI) and Generalised Alignment Index (GALI) methods to the

question of stability of the system under study. These methods are known of having quite

reasonable convergence time with a very high accuracy making them quite favorable

compared to more classical ones, such as the Poincare map or the maximal Lyapunov

Characteristic Exponent. The disadvantages in the former are due to the large number

of points needed for the estimation of the chaoticity which translated to long integration

time and the latter is usually known for its long algorithmic convergence time. This

makes the results obtained in particularly complicated systems for a finite time from

both previous methods misleading. On the contrary, the SALI and GALI algorithms

are renowned for their fast exponential convergence time. In addition, GALI can be

further optimized in order to decrease the waiting time. We have used both methods

to the problem of stability of charged particles in the tokamak verifying once more, this

time by numerical means, that such a system is highly chaotic. In addition, we have

extended our results to systems of a higher number dimensions (i.e. the number of

charged particles), that cannot be explained in terms of the theoretical approach that

will be used in Chapter 4.
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A topological approach to chaos

for the Duffing equation

In this chapter we present two applications of the topological approach introduced in

the Chapter 2, in order to prove the presence of chaotic dynamics in a model of charged

particles in a toroidal magnetic field previously studied by Cambon et al. [8] from the

numerical point of view.

Before introducing these two main applications, we describe the general structure of the

Duffing equations and present also an alternative technique which is usually applied to

prove analytically the presence of chaotic dynamics, the so-called Melnikov method.

4.1 A brief introduction to the Duffing equation

One of the simplest but more widely studied examples of a planar conservative systems

is given by the two-dimensional systemẋ = y

ẏ = −g(x)
(4.1)

which corresponds to the scalar equation

ẍ+ g(x) = 0 (4.2)

in the phase-plane.

Throughout the section we will suppose that g : J → R is a locally Lipschitz continuous

function defined on an open interval J ⊆ R where g vanishes at least in a point. Without

65
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loss of generality (using, if necessary, a simple change of variables) we can suppose that

0 ∈ J and g(0) = 0, so that the origin is an equilibrium point of (4.1). In general, a

point P = (x0, y0) is an equilibrium point for (4.1) if and only if y0 = 0 and g(x0) = 0.

System (4.1) is a planar Hamiltonian system with associated Hamiltonian (energy func-

tion)

H(x, y) =
1

2
y2 +G(x), G(x) =

∫ x

0
g(s) ds.

As a consequence, the orbits of (4.1) are contained in the level sets of H. In fact, if

(x(t), y(t)) is any solution of (4.1) then (x(t), y(t)) ∈ Γc for all t, where

Γc := {(x, y) ∈ R2 : H(x, y) = c}, for c = H(x(0), y(0)).

Equation (4.2) is the autonomous Duffing equation, named after Georg Duffing (1861–

1944). A large literature, still growing up, has been devoted to the investigation of the

perturbations of (4.2) by periodic forcing terms, as well as by damping terms, leading

to

ẍ+ g(t, x) = 0 (4.3)

and to

ẍ+ cẋ+ g(t, x) = 0, (4.4)

respectively. Usually, in (4.3) and (4.4) the nonlinear restoring force g : R× J → R is a

continuous function, locally Lipschitzian in the x-variable and periodic in the t-variable

of a fixed period T > 0. The domain J for the x-variable in an open interval of the real

line. The most common case is given by J = R, however research has been devoted also

to the case when J 6= R, in order to describe some physical models where the points at

the boundary of J represent possible singularities of the vector field.

Classical results on the Duffing equation can be found in the books of J.K. Hale [39] and

Guckenheimer and Holmes [40]. In [41] the study of harmonic and subharmonic solutions

for (4.3) was performed in the case J = R, while in [42, 43] the cases J =]0,+∞[ and

J =]a, b[ where considered as well.

Concerning the presence of chaotic-like solutions in [40, Section 4.5] the Melnikov method

is applied to the perturbed equation

ẍ+ εcẋ+ g(x) = εp(ωt), (4.5)

where c, ε, ω > 0 and p(·) is a non-constant periodic forcing term. According to [40], the

functions g(x) and p(t) should be sufficiently smooth (of class Cr with r ≥ 2).
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The main assumption in [40] is the presence of a homoclinic solution γ0(t) = (q0(t), v0(t))

at the origin for the autonomous system (4.1). Associated with γ(t), the Melnikov

function

M(α) :=

∫ +∞

−∞

(
v0(t)p(ω(t+ α))− cv0(t)2

)
dt

is introduced. Melnikov’s theory (cf. [40, Theorem 4.5.3]) guarantees that, if M(α)

has a simple zero for some α = α0 , then, for ε > 0 sufficiently small, there exists an

hyperbolic equilibrium point Pα0
ε near the origin for systemẋ = y

ẏ = −g(x)− εp(ωt)− εcy
(4.6)

such that its stable and unstable manifoldsW s(Pα0
ε ) andW u(Pα0

ε ) intersect transversely.

This property, in turn, via the Smale-Birkhoff theorem, implies that some N -th iterate of

the Poincaré map Φε associated with system (4.6), has a Smale horseshoe and therefore

it has an invariant set where it is conjugate to the Bernoulli shift on a set of symbols. As

a consequence, ΦN
ε presents chaotic dynamics in the sense of Devaney. Further relevant

results in this directions can be found in [44] for the equation

ẍ+ λa(t)g(x) = 0

and in [45] for

ẍ+ g(x) = εp(t).

The Melnikov method, although very powerful and relevant from the point of view of the

applications is typically applied in situations where the unperturbed Duffing system (4.1)

possesses homoclinic or heteroclinic solutions. Moreover, the analysis of the Melnikov

function M(α) or its variants can be extremely difficult when an explicit analytic form of

the homoclinic solution γ(t) is unknown. Finally, the result allows to make conclusions

for small perturbations, namely for ε > 0 sufficiently small.

A classical application of the Melnikov method to the periodically perturbed Duffing

equation (4.5) deals with the case

g(x) = −x+ x3. (4.7)

In this situation, for the associated autonomous system (4.1), the origin is a saddle point

and the energy level line H(x, y) = 0, that is

1

2
y2 − 1

2
x2 +

1

4
x4 = 0
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is composed by two homoclinic orbits

Γ0
+ := {(x, y) : x > 0, H(x, y) = 0}, Γ0

− := {(x, y) : x < 0, H(x, y) = 0}

and the origin. Each of the orbits Γ0
± is the locus of a homoclinic solution solution

γ±0 (t) = (q±0 (t), v±0 (t)), for which an explicit analytical expression is known, namely:

q+
0 (t) =

√
2secht, v+

0 (t) = −
√

2secht tanh t

and γ−0 (t) = −γ+
0 (t).

Then, in case of (4.6) with g(x) as in (4.7), we can explicitly compute the Melnikov

function as

M(α) =

∫ +∞

−∞

(
v0(t)p(ω(t+ α))− cv0(t)2

)
dt

= −
√

2

∫ +∞

−∞
secht tanh tp(ω(t+ α)) dt− 2c

∫ +∞

−∞
sech2t tanh2 t dt

Using the fact that ∫ +∞

−∞
sech2t tanh2 t dt =

2

3
,

we obtain the explicit formula

M(α) = −4

3
c−
√

2

∫ +∞

−∞
secht tanh tp(ω(t+ α)) dt.

This latter expression can be evaluated whenever a specific analytical expression of p(t)

is known. For instance, following [40], for

p(t) := E cos(ωt),

the following form of M(α) is obtained.

M(α) = −4

3
c−
√

2E

∫ +∞

−∞
secht tanh t cos(ω(t+ α)) dt

= −4

3
c−
√

2E cos(ωα)

∫ +∞

−∞
secht tanh t cos(ωt) dt

+
√

2E sin(ωα)

∫ +∞

−∞
secht tanh t sin(ωt) dt

Since the function t 7→ secht tanh t is odd (see Figure 4.1), the first integral vanishes.



Chapter 4 69

Figure 4.1: Graph associated with the function t 7→ secht tanh t.

Concerning the second integral, we observe that the function t 7→ secht tanh t sin(ωt) is

even, so that∫ +∞

−∞
secht tanh t sin(ωt) dt = 2

∫ +∞

0
secht tanh t sin(ωt) dt := K(ω).

The analytical expression of K(ω) can be found using the method of the residues (cf.

[40]) and is given by

K(ω) = πωsech
(πω

2

)
.

In conclusion, for (4.6) with g(x) as in (4.7) and in the special case of p(t) = E cos(t),

we obtain

M(α) =
√

2EK(ω) sin(ωα)− 4

3
c.

This function has simple zeros in the variable α and therefore the Melnikov method

guarantees the presence of chaotic dynamics for a N -th iterate of the Poincaré map

associated with system (4.6) for ε > 0 sufficiently small, if an only if

E

c
>

4

3
√

2K(ω)
.
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As one can see from this example taken from [40], the Melnikov method in principle can

be applied to a wide class of equations; on the other other hand, it may be very difficult

to prove the result about the existence of simple zeros for the function M(α) without

knowing the specific analytical expression of the homocinic solution. In [45], Battelli

and Palmer found a general result for the Duffing equation

ẍ+ a2g(x) = p(t), (4.8)

where p(t) is a T -periodic and both g(x) and p(t) are sufficiently smooth (at least of

class Cr+3 for r ≥ 5). Assuming the existence of homoclinic or heteroclinic points z±

with

g(z±) = 0, g′(z±) < 0

for the autonomous equation

ẍ+ g(x) = 0,

the Authors in [45] proved the existence of transversal intersection (as in Melnikov

theorem) for the Poincaré map associated with (4.8), provided that a > 0 is sufficiently

large and one of the following conditions holds:

• z+ 6= z− and there exists t0 such that p(t0) = 0 6= p′(t0); The case of heteroclinic

points;

• z+ = z− and there exists t0 such that p′(t0) = 0 6= p′′(t0) The case of homoclinic

points.

The advantage of this result with respect to the classical Melnikov formulation (as pre-

sented in [40]) depends on the fact that an explicit analytic expression for the homoclin-

ic/heteroclinic solutions is not needed. There are still, however, some assumptions on

the forcing term which require simple zeros or simple zeros for the derivative.

4.2 An application of the Melnikov method

In this section, we show a new application of the Melnikov method, described in the

preceding section, to a second-order Duffing equation previously considered in [46]. More

precisely, in [46] the Authors consider the piecewise linear oscillator

ẍ+ x = sin(
√

2t) + s(x),
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where

s(x) :=


−1, for x ≤ −1

5

5x, for − 1
5 ≤ x ≤ +1

5

1, for x ≥ 1
5

(see Figure 4.2).

Figure 4.2: Graph associated with the function s(x).

The proofs in [46] apply a method based on topological degree theory, for which some

geometric conditions must be satisfied. In order to check these geometric assumptions,

computer assisted proof are used to verify the inequalities required in the application

of the topological techniques. Here we propose a different approach based on recent

variants of the Melnikov method to non-smooth (possibly discontinuous) systems which

have been developed in [47, 48].

We study the periodically perturbed Duffing equation

ẍ+ ψ(x) = p(t), (4.9)

where p : R→ R is a T -periodic function and and

ψ(x) := x− s(x),

for s(x) the piecewise linear function defined as above, so that

ψ(x) :=


x+ 1, for x ≤ −1

5

−4x, for − 1
5 ≤ x ≤ +1

5

x− 1, for x ≥ 1
5

(see Figure 4.3).

By definition, the function ψ has exactly three zeros, namely, −1, 0, 1.
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Figure 4.3: Graph associated with the function psi(x).

Passing to the phase-plane, equation (4.9) writes asẋ = y

ẏ = −ψ(x)− p(t)
(4.10)

which is a periodic perturbation of the autonomous Hamiltonian systemẋ = y

ẏ = −ψ(x)
(4.11)

with Hamiltonian (energy function)

H(x, y) =
1

2
y2 + Ψ(x), Ψ(x) =

∫ x

0
ψ(s) ds.

An explicit computation shows that

Ψ(x) :=


1
2x

2 + x+ 1
10 , for x ≤ −1

5

−2x2, for − 1
5 ≤ x ≤ +1

5

1
2x

2 − x+ 1
10 , for x ≥ 1

5

(see Figure 4.4).

The phase-portrait associated with system (4.11) shows that there are three equilibrium

points −P = (−1, 0), 0 = (0, 0) and P = (1, 0). The points −P and P are two centers

surrounded by two orbits O− and O+ (respectively) which are homoclinic trajectories

to the origin, which is a saddle point.

In the sequel, we focus our attention on the homoclinic orbit contained in the right-half

plane, which is described as the zero-level line of Ψ with x > 0, namely

O+ = {(x, y) : x > 0, H(x, y) = 0}.
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Figure 4.4: Graph associated with the function Ψ(x).

The line O+ intersects the positive x-axis at the point

Q = (1 +
2√
5
, 0) (4.12)

and can be expressed as the union of the graphs of the functions

y =
√
−2Ψ(x), y = −

√
−2Ψ(x)

(see Figure 4.5).

Figure 4.5: Graphs associated with the functions y = ±
√
−2Ψ(x) which define the

homoclinic orbit O+. In the picture, for typographical reasons, the aspect-ratio has
been modified, using a different scale for the x and the y axes.

By symmetry, we restrict for a moment our analysis to the upper graph, that is the part

of the homoclinic orbit contained in the first quadrant. A direct computation shows

that the homoclinic is described by

y = 2x, for 0 < x ≤ 1

5
(4.13)
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and

y =

√
2x− x2 − 1

5
, for

1

5
≤ x ≤ 1 +

2√
5
. (4.14)

Similarly, for y ≤ 0 we have

y = −2x, for 0 < x ≤ 1

5
(4.15)

and

y = −
√

2x− x2 − 1

5
, for

1

5
≤ x ≤ 1 +

2√
5
. (4.16)

In this manner, we see that the homoclinic orbit O+ can be described as follows:

• The local unstable manifold of the origin, contained in the half-line y = 2x, for

x > 0;

• The circumference C of equation

5x2 + 5y2 − 10x+ 1 = 5((x− 1)2 + y2)− 4 = 0

with center at (1, 0) and radius 2/
√

5;

• The local stable manifold of the origin, contained in the half-line y = −2x.

Observe that the lines y = ±2x and the circumference C intersect transversally the

vertical line x = 1
5 , which is the manifold where the planar vector field (y,−ψ(x)) is not

smooth (see Figure (see Figure 4.6). In this manner we can enter in the setting of the

Melnikov theory for non-smooth systems developed in [47].

As a next step, we define analytically the Melnikov function. To this end, we need to

find an explicit parametric expression of the homoclinic orbit O+ by means of a solution

of the autonomous Duffing equation (4.11). This task is solved by considering separately

the differential equations

ẍ− 4x = 0, 0 < x(t) ≤ 1

5
(4.17)

and

ẍ+ x− 1 = 0,
1

5
≤ x(t) ≤ 1 +

2√
5
. (4.18)

The first equation corresponds to the systemẋ = y

ẏ = 4x
in the strip ]0,

1

5
]× R, (4.19)
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Figure 4.6: Graphs associated with the lines y = ±2x and with the circumference C.
All these lines/curves intersect transversally the line x = 1

5 where the vector field is not
smooth. In the picture, for typographical reasons, the aspect-ratio has been modified,

using a different scale for the x and the y axes.

while, for the second one, we haveẋ = y

ẏ = 1− x
in the strip [

1

5
, 1 +

2√
5

]× R, (4.20)

as equivalent system.

In order to find the homoclinic solution, we have to find the solution of system (4.20)

passing through the point Q defined in (4.12) and to glue it with the solutions corre-

sponding to the local unstable and stable manifolds of the origin, which are obtained,

solving (4.19).

The local unstable manifold at the origin. We solve the system (4.19), looking for so-

lutions (x(t), y(t)) with x(t) > 0, y(t) > 0, which tend to the origin as t → −∞. The

corresponding solutions have the formx(t) = L exp(2(t− t1))

y(t) = 2L exp(2(t− t1))
L > 0, t1 ∈ R. (4.21)

Parameterizing the arc of circumference. We solve the system (4.20) looking for solutions

(x(t), y(t)) with x(t) > 0 and such that the trajectory passes through the point Q. The
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corresponding solutions have the formx(t) = 1 + r sin(t− t2)

y(t) = r cos(t− t2)
r > 0, t2 ∈ R. (4.22)

Taking

r :=
2√
5
,

we have that the trajectory passes through the point Q at the time

t̂ :=
π

2
+ t2 ≈ 2.677945045.

The local stable manifold at the origin. We solve the system (4.19), looking for solu-

tions (x(t), y(t)) with x(t) > 0, y(t) < 0, which tend to the origin as t → +∞. The

corresponding solutions have the formx(t) = L exp(−2(t− t3))

y(t) = −2L exp(−2(t− t3))
L > 0, t3 ∈ R. (4.23)

We can take the same coefficient L > 0 in both (4.21) and (4.23), modifying (if necessary)

t1, t3 .

Now we are in position to fix the missing parameters L > 0 and t1 < t2 < t3 in order to

obtain the parametrization of the homoclinic solution.

We initiate conventionally assuming that at the time t = 0 the solution starts at the

point

P0 := (
1

5
,
2

5
),

which is the point of tangency of the local unstable manifold y = 2x with the circum-

ference C. In this case, from equation (4.21), we obtain t1 = 0 and

L :=
1

5
.

Next, from equation (4.22) and having r > 0 already fixed as above, we determine the

precise value of the time t2 so that at the initial time t = 0, the solution of (4.22) starts

at the point P0 . In this manner we obtain the system1 + 2√
5

sin(0− t2) = 1
5

2√
5

cos(0− t2) = 2
5
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and hence

t2 := arcsin(2/
√

5).

As already observed the solution achieves its maximum in the x-component at the time

t̂ =
π

2
+ arcsin(2/

√
5).

Thus the analytic expression of the homoclinic solution (x(t), y(t)) is

x(t) :=


1
5 exp(2t), for t ≤ 0

1 + 2√
5

sin(t− arcsin(2/
√

5)), for 0 ≤ t ≤ t̂

and

y(t) :=


2
5 exp(2t), for t ≤ 0

2√
5

cos(t− arcsin(2/
√

5)), for 0 ≤ t ≤ t̂.

We do not need to study further the equations in order to glue the solutions of (4.22)

with (4.23), because, by the symmetry of the system, we know that the homoclinic

solution has symmetry with respect to t̂, with q0(t) even and v0(t) odd with respect to

the origin of the time-axis shifted at t̂. Hence, the homoclinic solution, defined on the

whole real line takes the form

x(t) :=


1
5 exp(2t), for t ≤ 0

1 + 2√
5

sin(t− arcsin(2/
√

5)), for 0 ≤ t ≤ 2t̂

1
5 exp(−2(t− 2t̂)), for t ≥ 2t̂.

(4.24)

and

y(t) = x′(t) :=


2
5 exp(2t), for t ≤ 0

2√
5

cos(t− arcsin(2/
√

5)), for 0 ≤ t ≤ 2t̂

−2
5 exp(−2(t− 2t̂)), for t ≥ 2t̂

(4.25)

Introduction of the Melnikov function. From equations (4.24) and (4.25), we have ob-

tained the precise analytical expression of the homoclinic solution γ0(t) = (q0(t), v0(t)),

that we write as

q0(t) :=


1
5 exp(2(t+ t̂)), for t ≤ −t̂

1 + 2√
5

cos(t), for − t̂ ≤ t ≤ t̂
1
5 exp(−2(t− t̂)), for t ≥ t̂.

(4.26)



Chapter 4 78

and

v0(t) = q′0(t) :=


2
5 exp(2(t+ t̂)), for t ≤ −t̂

− 2√
5

sin(t), for − t̂ ≤ t ≤ t̂

−2
5 exp(−2(t− t̂)), for t ≥ t̂

(4.27)

in order to make evident the symmetry with respect to t = 0.

Figure 4.7: Graph associated with the function v0(t) and q0(t).

We consider now the Melnikov function associated with equation (4.28)

ẍ+ εcẋ+ ψ(x) = εp(ωt), (4.28)

which is defined as

M(α) :=

∫ +∞

−∞

(
v0(t)p(ω(t+ α))− cv0(t)2

)
dt (4.29)

To start with a simpler situation, we consider the case

p(t) = sin(t).

Putting

p(ω(t+ α)) = sin(ωt) cos(ωα) + cos(ωt) sin(ωα)

in (4.29) and using the fact that v0 is odd, we have that
∫ +∞
−∞ v0(t) cos(ωt) dt = 0 and

hence

M(α) = cos(ωα)

∫ ∞
−∞

v0(t) sin(ωt) dt− c
∫ ∞
−∞

v0(t)2 dt.
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Next, using the fact that v0(t) sin(ωt) and v0(t)2 are even functions, we obtain

M(α) = 2 cos(ωα)

∫ 0

−∞
v0(t) sin(ωt) dt− 2c

∫ 0

−∞
v0(t)2 dt.

Hence, for any ω > 0 such that the auxiliary function

N(ω) :=

∫ 0

−∞
v0(t) sin(ωt) dt =

∫ +∞

0
v0(t) sin(ωt) dt

does not vanish, we can find a suitable c (sufficiently small) such that M(α) has simple

zeros located near the simples zeros of cos(ωα) and hence the Melnikov method applies.

In [46], the Authors prove the presence of chaotic dynamics for the case ω :=
√

2. With

our method, computing N(
√

2) u −4.508948445, we obtain chaos according to Melnikov

theorem for (4.28), provided that |c| and ε > 0 are sufficiently small. Moreover, from

the numerical study of the function N(ω), we can extend the result to all the values of

ω such that N(ω) 6= 0. A simple analysis of this function shows that the following result

holds.

Lemma 4.1. There exists ω∗ ' 2.36707 such that N(ω) < 0 for each 0 < ω < ω∗.

Proof. We observe that, for N(ω) defined as

N(ω) =

∫ +∞

0
v0(t) sin(ωt) dt,

we have N(ω)→ 0 for ω → 0+ and

N ′(ω) =

∫ +∞

0
tv0(t) cos(ωt) dt

with

lim
ω→0+

N ′(ω) =

∫ +∞

0
tv0(t) dt u −8.870707261 < 0.

On the other hand, a direct calculations shows that N(π) u 2.331126686 > 0. This

implies that there is a maximal interval ]0, ω∗[ such that N(ω) < 0 for each 0 < ω < ω∗.

Using Maple software an approximate lower estimate for ω∗ is given by ω∗ ' 2.36707. �

Figure 4.8 shows the behavior of N(ω) for ω in a right-neighborhood of the origin.

In any case, the analysis of the function shows that N(ω) 6= 0 except for a discrete set

of points.

In the next sections, we propose a different topological approach which although provides

a weaker conclusion than the Melnikov method (namely the semi-conjugacy, instead
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Figure 4.8: Graph associated with the function N(ω) for ω ∈ [0.1, 4]

of conjugacy with the Bernoulli shift), nevertheless it applies to a broader variety of

situations. In particular, we give applications to the case of perturbations of centers

and, moreover, we allow larger perturbations, namely the parameter ε is not assumed

to be small [1].

4.3 An example of chaotic dynamics for the motion of a

charged particle in a magnetic field

4.3.1 Mathematical model

In this section we will provide the mathematical description of a physical problem,

following the approach considered in [8] and motivated by a model for the confinement

of charged particles inside a toroidal geometric configuration, like in the case of tokamaks.

In [8, Appendix A] the Authors consider the motion of a single particle of charge q

and mass m inside a tokamak in absence of the plasma. Hence, they suppose that the

magnetic field has only a component in the θ-direction, due to the effect of the external

coils around the tokamak chamber. In this context, the magnetic vector field is assumed

to have the special form

B =
B0R

ρ
êθ ,
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where ρ > 0 is the distance of the point from the z-axis and êθ is the unit vector

associated with the θ-direction. The (large) constant R > 0 represents the distance of

the center of the torus from the z-axis (see [8, Fig. 1]) 1.

Now we apply the Newton second law to the particle moving in this magnetic field,

using also the fact that the force acting on the charged particle is given by F = q~v ∧B

(where ~v is the velocity of the particle). Passing to the cylindrical coordinates (ρ, θ, z)

and recalling also the expressions of the velocity and the acceleration in cylindrical

coordinates, namely

~v = ρ̇êρ + ρθ̇êθ + żêz

and

~a = (ρ̈− ρθ̇2)êρ + (ρθ̈ + 2ρ̇θ̇)êθ + z̈êz,

we obtain 
ρ̈− ρθ̇2 = −B0Rq

mρ ż

ρθ̈ + 2ρ̇θ̇ = 0

z̈ = B0Rq
mρ ρ̇,

(4.30)

where B0 is the magnitude of the magnetic field.

Integrating the last two equations we obtain:

ρ2θ̇ = C (4.31)

ż =
B0Rq

m
log ρ+ C ′ (4.32)

where C and C ′ are two constants. Then we can use expressions (4.31) and (4.32) in

equation (4.30), to get

ρ̈− ρ
(C
ρ2

)2
= −B0Rq

mρ

(B0Rq

m
log ρ+ C ′

)
.

We multiply it by ρ̇ and obtain

ρ̇ρ̈− ρρ̇
(C
ρ2

)2
= −B0Rq

mρ
ρ̇
(B0Rq

m
log ρ+ C ′

)
.

An integration gives

ρ̇2

2
− C2

∫
1

ρ3
dρ = −

(B0Rq

m

)2
∫
ξ=log ρ

ξ dξ − B0RqC
′

m

∫
1

ρ
dρ.

1We adopt a slight change of notation with respect to [8, II. Model], in the sense that our variable
ρ is denoted in [8, Appndix A] at first as ξ and then as r and, in the same Appendix, our variable θ is
at first denoted as φ but at the end it is called θ. For this reason, we prefer to denote it as θ, from the
beginning.
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This latter expression defines the following effective Hamiltonian Heff = Heff(x, y) with

x = ρ > 0 and y = ρ̇ :

Heff(x, y) =
y2

2
+
C2

2x2
+

1

2

(
B0Rq

m
log x

)2

+
B0Rq

m
C
′
log x

(cf. [8, (A7)]). This also shows that the equation describing the particle trajectory in

the magnetic field defined above, is integrable (for a constant magnetic field). Recall

that C and C ′ are two real constants.

To simplify our analysis, from now on we consider the special case

C
′

= 0, C 6= 0

(as in [8, p.4]) and get the Hamiltonian

H(x, y) :=
y2

2
+
C2

2x2
+

(B0Rq log x)2

2m2
,

which is the typical energy function associated with a planar conservative system of the

form of (4.2) with

g(x) = G′(x), ∀x > 0 and G(x) =
C2

2x2
+

1

2
(K log x)2,

for

K :=
B0Rq

m
.

4.3.2 The monotonicity of the the period map

As observed in the previous section, we are led to consider the Hamiltonian

H(x, y) :=
y2

2
+
C2

2x2
+

(K log x)2

2
,

where C,K > 0 are suitable constants. The Hamiltonian H is the energy associated to

an autonomous planar differential system of the form (4.2) that now we prefer to write

as

u̇ = v, v̇ = −K2g(u), (4.33)

for u(t) := x(t) = ρ(t) > 0 for all t and

g(x) := −(C/K)2

x3
+

log(x)

x
, x > 0. (4.34)
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The planar differential system (4.33) is studied in the phase-plane Ω = R+
0 × R. The

analysis of the trajectories of (4.33) shows the presence of a unique equilibrium point

P0 := (x0, 0) which is a global center (see Figure 4.9). Using the condition g(x0) = 0 we

can write equivalently (4.34) as

g(x) := −x
2
0 log(x0)

x3
+

log(x)

x
, for x0 > 1. (4.35)

Figure 4.9: Some level lines of the Hamiltonian function H(x, y) =
y2

2
+G(x), for

G(x) =
(C/K)2

2x2
+

(log x)2

2
in the phase-plane Ω = R+

0 × R. Note that the level lines

H = constant > H(x0, 0) are the periodic orbits of system (4.33).

Observe that any solution u(t) of the equation

ü+K2g(u) = 0,

which is equivalent to the planar system (4.33), can be written as u(t) = x(Kt), where

x(t) is a solution of

ẍ+ g(x) = 0.

This proves that we can confine ourselves to the study of the orbits of system

ẋ = y, ẏ = −g(x) (4.36)

(for g defined as in (4.35)), which, as already observed above, describes a global center

at P0 = (x0, 0) in the phase-plane Ω.
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We introduce now the potential function

V (x) :=
1

2

(
x2

0 log(x0)

x2
+ log2(x)− log(x0)− log2(x0)

)
, (4.37)

which has has a non-degenerate strict absolute minimum at the point x0 . Indeed, observe

that

V ′(x) = g(x), V (x) > V (x0) = 0, ∀x > 0

and, moreover,

V ′′(x0) = g′(x0) = 2
log(x0)

x2
0

+
1

x2
0

> 0,

For any value E > 0, we denote by Γ(E) the level line of energy E, in the domain Ω,

defined by
y2

2
+ V (x) = E. (4.38)

Note that, for any E > 0, Γ(E) is a strictly star-shaped curve (around P0) which is also

a periodic orbit of (4.36). We denote by τ(E) the (minimal) period of Γ(E), for each

E > 0.

Now we are in position to prove the following result.

Theorem 4.2. The period-mapping τ : R+
0 → R+

0 associated with (4.36) is a strictly

monotone increasing function such that

lim
E→0+

τ(E) =
2π√
g′(x0)

, lim
E→+∞

τ(E) = +∞. (4.39)

Proof. We preliminarily observe that potential function V : R+
0 → R+ is strictly de-

creasing on ]0, x0] and strictly increasing on [x0,+∞[ with

lim
x→0+

V (x) = lim
x→+∞

V (x) = +∞.

Recalling also that V (x0) = 0, we find that, for every E > 0, the equation V (x) = E,

has exactly two solutions that we denote by d∓(E) and we choose such that

0 < d−(E) < x0 < d+(E).

We set

τ+(E) := 2

∫ d+(E)

x0

dx√
2(E − V (x))

= 2

∫ d+(E)

x0

dx√
2(V (d+(E))− V (x))
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and

τ−(E) := 2

∫ x0

d−(E)

dx√
2(E − V (x))

= 2

∫ x0

d−(E)

dx√
2(V (d−(E))− V (x))

.

Recalling that Γ(E) the level energy curve in (4.38) (with E > 0), we have that Γ(E)

intersects the line x = x0 the points P±(E) := (x0,±
√

2E). Then τ+(E) is the time

needed to run from P+(E) to P−(E) along Γ(E) in the half-plane x ≥ x0 . Similarly,

τ−(E) is the time needed to run from P−(E) to P+(E) along Γ(E) in the strip 0 < x ≤
x0 . In this manner, we have that

τ(E) = τ+(E) + τ−(E).

As a consequence of g(x)/x→ 0 as x→ +∞, we have that τ+(E)→ +∞ as E → +∞
(cf. [49]). This in turns implies that τ(E)→ +∞ as E → +∞. On the other hand, using

the fact that g(x0) = 0 and g(x) = g′(x0)(x−x0), we easily obtain that limE→0+ τ(E) =

2π/
√
g′(x0). Thus (4.39) is verified.

Proving the monotonicity of the period map τ(E) is a more difficult task. In fact, even

if we could prove the monotonicity of τ+(E), using Opial’s results [49], nevertheless we

have to take into account that τ−(E)→ 0 as E → +∞. In fact, due to the presence of

a singularity at x = 0+ satisfying the strong force condition V (0+) = −V ′(0+) = +∞,

we know that the solutions move faster and faster near the singularity as d−(E) → 0+

(cf. [43]); thus the monotonicity “balance” for τ(E) does not follows from the analysis

of τ+(E) and τ−(E), separately.

To our aim, we then apply a theorem by Chicone [50] which, in our situation, reads as

follows.

Let us set

N(x) := 6V (x)V ′′(x)2 − 3V ′(x)2V ′′(x)− 2V (x)V ′(x)V ′′′(x).

Then τ(E) is strictly monotone increasing on R+
0 , if N(x) > 0 for all x 6= x0 .

For V (x) defined as in (4.37), we find explicitly N(x) and then we introduce the function

N1(x) := x10N(x), for x > 0,
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which takes the following form

N1(x) = −3(log(x0))x6 + (log(x))4x6 + 3(log(x0))(log(x))x6

−(log(x0))(log(x))2x6 − 3(log(x0))2x6 + 3(log(x0))2(log(x))x6

−(log(x0))2(log(x))2x6 − 15(log(x0))3x2
0x

4 + 4(log(x0))3(log(x))x2
0x

4

+3(log(x0))x2
0x

4 + 4(log(x0))2(log(x))x2
0x

4 − 15(log(x0))2x2
0x

4

−4(log(x))3(log(x0))x2
0x

4 + (log(x0))(log(x))2x2
0x

4 + 3(log(x0))(log(x))x2
0x

4

+15(log(x))2(log(x0))2x4
0x

2 + 17(log(x0))2(log(x))x4
0x

2 + 12(log(x0))2x4
0x

2

−15(log(x0))3x4
0x

2 − 15(log(x0))4x4
0x

2 + 6(log(x0))3x6
0

(the computation has been verified using symbolic manipulations with Maple software).

In order to simplify the analysis of the function N1(x), we introduce the auxiliary func-

tion

N2(θ) :=
N1(θx0)

x6
0

, for θ > 0

and obtain

N2(θ) = (log(θ))4θ6 + 3(log(x0))(log(θ))θ6 − 3(log(x0))θ6 + 2(log(x0))3θ6

+5(log(θ))2(log(x0))2θ6 − (log(x0))(log(θ))2θ6 + (log(x0))2(log(θ))θ6

+4(log(θ))3(log(x0))θ6 + 2(log(θ))(log(x0))3θ6 − 12(log(x0))2(log(θ))2θ4

−12(log(x0))2θ4 + 6(log(x0))2(log(θ))θ4 − 4(log(x0))(log(θ))3θ4

+3(log(x0))(log(θ))θ4 − 10(log(x0))3θ4 − 8(log(x0))3(log(θ))θ4

+(log(x0))(log(θ))2θ4 + 3(log(x0))θ4 + 15(log(x0))2(log(θ))2θ2

+17(log(x0))2(log(θ))θ2 + 30(log(x0))3(log(θ))θ2 + 12(log(x0))2θ2

+2(log(x0))3θ2 + 6(log(x0))3.

As a final change of variables, we set

x0 := exp(u0), θ := exp(t)

and consider the function

N3(t) := N2(exp(t)), for t ∈ R.

After some simplifications, one can see that N3(t) can be represented as

N3(t) = M3(t)u3
0 +M2(t)u2

0 +M1(t)u0 +M0(t), (4.40)
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where

M3(t) := 30te2t + 2te6t − 8te4t + 6 + 2e2t + 2e6t − 10e4t,

M2(t) := 15t2e2t − 12t2e4t + 5t2e6t + 17te2t + te6t + 6te4t − 12e4t + 12e2t,

M1(t) := 4t3e6t − 4t3e4t + t2e4t − t2e6t + 3te6t + 3te4t − 3e6t + 3e4t,

M0(t) := t4e6t.

Observe that the sign of N(x) for x > 0 and with x0 > 1 is the same as that of N3(t)

for t ∈ R and u0 > 0. One can also easily check that

N(x0) = N1(x0) = N2(1) = N3(0) = 0.

Our goal is to prove that N3(t) > 0 for all t 6= 0, which is equivalent to prove that

N(x) > 0 for all x 6= x0 . By the expression of N3(t) and recalling that u0 > 0, we are

led to study separately the functions Mi(t) for i = 0, 1, 2, 3.

With this respect we have the following

Claim. For all i = 0, 1, 2, 3 : Mi(0) = 0 and Mi(t) > 0 for all t 6= 0.

It trivially follows that Mi(0) = 0 for all i = 0, 1, 2, 3 and M0(t) > 0 for all t 6= 0.

Let us check now the other cases of the claim:

Case 1: M3(t) > 0 for all t 6= 0. To check this assertion, we introduce the auxiliary

function

P3(t) := M3(t)e−4t

and prove that P3 has a minimum for t = 0 and is convex. Indeed, one can easily prove

that P ′3(0) = P ′′3 (0) = 0 and, moreover,

P ′′3 (t) = −112e−2t + 16e2t + 96e−4t + 120te−2t + 8te2t.

Next we introduce the function

S3(t) := P ′′3 (t)e2t

and prove that S′3(0) = 0, with

S′′3 (t) = (320 + 384e−6t + 128t)e4t
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It is easy to see that the function

K3(t) := 320 + 384e−6t + 128t

achieves its minimum positive value (1024 + 64 log(18))/3 in t = log 18
6 and, moreover,

K ′′3 (t) = 13824e−6t > 0 for all t. From the information on the function K3 , we have

that S′′3 (t) > 0 for all t and therefore, S3(t) > 0 for all t 6= 0. Finally, having proved that

P ′3(0) = 0 and P ′′3 (t) > 0 for all t 6= 0, we can conclude that M3(t) > 0 for all t 6= 0.

The verification of the inequalities for M2(t) and M1(t) follows a similar argument. We

give below only the main steps in the proofs.

Case 2: M2(t) > 0 for all t 6= 0. To check this assertion, we introduce the following

auxiliary function

M2(t)e−4t

and prove that P2(t) has a minimum for t = 0 and is convex. Indeed, one can easily

prove that P ′2(0) = P ′′2 (0) = P ′′′2 (0) = 0. To prove the convexity, one can check that

P ′′′2 (t) = e−2t(f(t)− g(t)) where f(t) = e4t(40t2 + 128t+ 72) e g(t) = 120t2 − 224t+ 72.

Since for t > 0, f(t) > g(t) it follows that P ′′′2 (t) > 0 for all t > 0. In similar way we can

prove that W ′′(t) ≥ 0 for t < 0 and then the conclusion easily follows.

Case 3: M3(t) > 0 for all t 6= 0. To check this assertion, we follow again a similar

argument as above and introduce the auxiliary function

P1(t) := M1(t)e−4t.

We have that P ′1(0) = P ′′1 (0) = P ′′′1 (0) = 0 with

P ′′1 (t) = e2t(16t3 + 44t2 + 28t− 2)− 24t+ 2.

A direct computation shows that P ′′′′1 (t) > 0 for all t > 0. This in turns implies that

P ′′1 (t) > 0 for all t > 0. In order to study the sign on ] − ∞, 0], we consider S1(t) :=

P ′′1 (−t)e2t for t ≥ 0. Then we obtain S1(0) = S′1(0) = 0 and

S′′1 (t) = −96t+ 88 + 104e2t + 96te2t,

which is positive for every t > 0. From this we obtain that P ′′1 (t) > 0 for all t 6= 0 and

then the conclusion follows from the same argument as in Case 1. �
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4.3.3 Subharmonic solutions and chaotic dynamics

In [8] the authors give numerical evidence of the presence of chaotic motions, by in-

troducing a perturbation into the magnetic field. In particular, the magnetic moment

µ = mv⊥
2B is considered to vary (slowly) as a function µ(t).

Since the unperturbed equation (after rescaling and change of variables) reduces to

system (4.36) with g(x) defined as in (4.35), we can suppose to perturb our system by

varying the constant x0 . Namely, we can treat x0 as a parameter ν > 1 and assume

that such parameter can change with the time t in a periodic manner. This leads us to

consider an equation of the form

ẍ+ g(t, x) = 0, (4.41)

with

g(t, x) := −ν(t)2 log(ν(t))

x3
+

log(x)

x
, (4.42)

with ν : R → R a bounded, measurable and T -periodic function such that ν(t) > 1 for

all t ∈ R. Equivalently, we consider the planar system

ẋ = y, ẏ = −g(t, x) (4.43)

in the phase-plane Ω = R+
0 × R. Solutions are considered in the Carathéodory sense

(cf. [51]) and are intended in the classical sense when ν is continuous (or piecewise

continuous).

Periodically perturbed scalar differential equations with singularities at the origin have

been the focus of several investigations after the seminal work of Lazer and Solimini [52]

who considered the case

g(t, x) = δ
1

xα
− e(t), δ = ±1.

A general study of different kind of ODEs with singularities can be found in [53]; we

also refer to [54] for several interesting models and problems in this area. The kind of

nonlinearity g(t, x) considered in our model example presents some similarities with the

one analyzed in the work of Margheri and Torres [55] where, motivated by a problem of

celestial mechanics,

g(t, x) =
h(t)

x2
− µ2

x3
.

As a first result concerning equation (4.41) we discuss the existence and multiplicity of

subharmonic solutions, namely periodic solutions of minimal period mT with m ≥ 2.
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To this aim, the following consequence of [43] holds.

Theorem 4.3. Assume that there are two constants ν−, ν+ such that

1 < ν− ≤ ν(t) ≤ ν+, ∀ t ∈ R. (4.44)

Then (4.41) has a sequence (xk)k of positive kT -periodic solutions with minimal period

tending to infinity.

Proof. From (4.44), we have

−
ν2

+ log ν+

x3
+

log(x)

x
≤ g(t, x) ≤ f(x) := −

ν2
− log ν−
x3

+
log(x)

x
.

Now we introduce the function

F (x) :=
1

2

(
ν2
− log ν−
x2

+ log2(x)

)
, with F ′(x) = f(x), for x > 0

and observe that F (0+) = +∞ and F (x)/x2 → 0 as x → +∞. Moreover, we have

g(t, x)sgn(x− 1) > 0 for 0 < x < 1/d and x > d, with d > 1 and sufficiently large. Then

we can apply a result from [43] concerning the equation ẍ+ g(t, x) = e(t) (in our case,

we take e = 0). More precisely, we enter in the setting of [43, Theorem 2.1 & Remark

2.1], according to which (4.41) has a sequence (xk)k of positive kT -periodic solutions

with minimal period tending to infinity. �

Condition (4.44) is always satisfied if ν : R →]1,+∞[ is a continuous and T -periodic

function.

As a next step, we show how to provide more precise information on the dynamics of the

solutions of (4.41). To this purpose, associated with (4.43) we introduce the Poincaré

map ΦT
0 where, for t1 < t2 we set

Φt2
t1

(z) := ζ(t2, t1, z),

where ζ(·, t1, z) is the solution ζ(t) = (x(t), y(t)) of system (4.43) satisfying the initial

condition ζ(t1) = z ∈ Ω.

As a consequence of the fundamental theory of ODEs, the domain of the Poincaré map

ΦT
0 is an open subset of Ω. In the next result we prove that ΦT

0 is defined on the whole

right half-plane.

Theorem 4.4. Suppose that ν : R→]1,+∞[ is a continuously differentiable T -periodic

function. Then, for any initial point z0 ∈ Ω = R+
0 × R the solution of (4.43) with
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(x(0), y(0)) = z0 is defined for all t ∈ R. As a consequence, ΦT
0 is a homeomorphism of

Ω onto itself.

Proof. We introduce the energy function

E(t, x, y) :=
1

2

(
y2 +

a(t)

x2
+ log2(x)

)
, for a(t) := ν(t)2 log(ν(t)),

which is motivated by (4.37) and by the fact that ∂E
∂x = g(t, x). Notice that

E(t, x, y)→ +∞, uniformly in t ∈ [0, T ], as (x, y)→ ∂Ω, (4.45)

for Ω = R+
0 ×R. Let (x(t), y(t)) be the solution of (4.43) with (x(0), y(0)) = z0 ∈ Ω and

let ]α, β[ the maximal interval of existence for the solution. We set v(t) := E(t, x(t), y(t))

and observe that v(t) > 0 for all t ∈ ]α, β[. Differentiating, we obtain

|v′(t)| =

∣∣∣∣∂E∂t (t, x(t), y(t))

∣∣∣∣ =
a′(t)

x(t)2
≤ 2
‖a′‖∞
amin

1

2

a(t)

x(t)2

≤ 2
‖a′‖∞
amin

E(t, x(t), y(t)) = 2
‖a′‖∞
amin

v(t).

Hence, Gronwall inequality implies that

E(t, x(t), y(t)) = v(t) ≤ K0e
K1|t|, ∀ t ∈ ]α, β[ ,

where we have set

K0 := v(0) = E(0, z0), K1 := 2
‖a′‖∞
amin

.

The upper bound on the energy function and (4.45) imply that ]α, β[= R, namely the

solution is globally defined. �

Remark 4.5. The proof can be easily modified in order to include the case of a periodic

function ν(t) which is piecewise smooth, that is we suppose that there are at most a

finite number of points 0 ≤ t0 < t1 < t2 < · · · < tm < T ≤ tm+1 = t0 + T such

that on each open interval ]ti, ti+1[ (i = 0, . . . ,m) ν is the restriction of a continuously

differentiable function defined on [ti, ti+1] and such that ν(t) > 1 for all t.

Our aim is to prove the presence of chaotic dynamics for the map

Φ := ΦT
0 .
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To this end, we consider a simplified form for the function ν(t), namely, we take a

stepwise map for the form

νx1,x2(t) :=

x1, for 0 ≤ t < T1

x2, for T1 ≤ t < T1 + T2 = T
(4.46)

where x1 , x2 > 1 and T1 , T2 > 0 are given constants with x1 6= x2 . In the special case

in which ν(t) = νx1,x2(t), the associated Poincaré map can be decomposed as

ΦT
0 = Φ2 ◦ Φ1

where Φi is the Poincaré map for the time-interval [0, Ti] associated with the autonomous

Hamiltonian system

(Si) : ẋ = y, ẏ = −gi(x),

with

gi(x) := −x
2
i log(xi)

x3
+

log(x)

x
,

i = 1, 2. The corresponding Hamiltonian functions (which are the energies of the two

conservative systems) are defined as

Ei(x, y) :=
1

2

(
y2 +

x2
i log(xi)

x2
+ log2(x)

)
.

In this setting, the following result holds.

Theorem 4.6. Suppose that ν : R→]1,+∞[ is T -periodic function with ν(t) = νx1,x2(t)

for some x1 6= x2. Then there exist T ∗1 , T
∗
2 > 0 such that for each T1 > T ∗1 and T2 > T ∗2 ,

the Poincaré map exhibits chaotic dynamics.

The precise concept of “chaos” that we obtain in Theorem 4.8 corresponds to the so-

called chaotic dynamics in the coin-tossing sense [56, 57] and is recalled in the Chapter 2.

In any case, as a consequence of our definition, the existence of subharmonic solutions

of any order for the equation (4.41) is guaranteed, together with the existence of an

uncountable set of bounded and non-periodic solutions which can be coded according to

any prescribed sequence of symbols.

Before exhibiting the technical details of the proof, we describe informally, with the aid

of Figure 4.10 and Figure 4.11 below, how to show the presence of a horseshoe-type

geometry for the perturbed system.
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Just to fix the ideas, from now on we suppose that

1 < x1 < x2

(the other case, being treated in a completely symmetric manner). First of all, we

observe that system (4.43) for ν(t) as in (4.46) is a nonlinear switched system [58] in the

sense that we have two autonomous systems

(S1) :

ẋ = y

ẏ =
x21 log(x1)

x3
− log(x)

x

and

(S2) :

ẋ = y

ẏ =
x22 log(x2)

x3
− log(x)

x ,

which alternate in a periodic fashion, with (S1) acting on a time-interval of length T1,

followed by (S2) acting on a time-interval of length T2 and with T1 + T2 = T.

As already observed, both systems determine a global center on the domain Ω having

P := (x1, 0) and, respectively, Q := (x2, 0) as equilibrium points. Typical trajectories

of (S1) or (S2) are shown in 4.9 and the periodic orbits surrounding P and Q are the

level lines of the first integrals E1 and E2.

Now, as in Figure 4.10 below, we construct two closed annuli AP and AQ around the

equilibrium points P and Q. These closed annuli are made by (and filled with) the

periodic orbits/level lines of the corresponding autonomous systems and are of the form

AP := {(x, y) ∈ Ω : c1 ≤ E1(x, y) ≤ d1},

AQ := {(x, y) ∈ Ω : c2 ≤ E2(x, y) ≤ d2},

with di > ci > Ei(xi, 0) for i = 1, 2.

Choosing suitably the energy levels ci and di we can produce two annular domains AP
and AQ which intersect into two compact disjoint rectangular regions R1 and R2 which

are symmetric with respect to the x-axis and with R1 ⊂ R+
0 × R+

0 and R2 = Λ(R1),

where Λ : (x, y) 7→ (x,−y). Whenever this situation occurs, we say that the two annuli

AP and AQ are linked together. We denote by

Γ`P := {(x, y) ∈ Ω : E1(x, y) = ` > E1(x1, 0)}

and

Γ`Q := {(x, y) ∈ Ω : E2(x, y) = ` > E2(x2, 0)}
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the closed level lines of energy ` associated with systems (S1) and (S2) around the

points P and Q, respectively.

Figure 4.10: Example of two linked annuli AP and AQ with their boundary orbits

Γc1
P , Γd1

P , and Γc2
Q , Γd2

Q , respectively.

At this point, we can enter in the setting of the theory of Linked Twist Maps [59] (see

also [55, 60–64] for related references including applications to situations similar to the

one considered in the present article) and, in particular, we can apply the results in [65]

to have guaranteed the presence of chaotic-like dynamics for the switched system (4.43)

provided that the switching times T1 and T2 are sufficiently large. Indeed, if we denote

by τP (`) and τQ(`) the periods of the orbits Γ`P and Γ`Q, respectively, by Theorem 4.2

we have that

τP (c1) < τP (d1), and τQ(c2) < τQ(d2). (4.47)

These conditions, in turn, imply that, if T1 and T2 are large enough, then the Poincaré

maps Φ1 (associated with system (S1)) and Φ2 (associated with system (S2)) satisfy

a twist condition at the boundaries of AP and AQ, with a sufficiently large gap in the

rotation numbers and therefore [65, Theorem 3.1] can be applied.

In order to describe more in detail our approach, we anticipate a few geometrical features

about the “Stretching Along the Paths” (SAP-technique) which is presented in the

Chapter 2
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First of all, we provide an “orientation” to the rectangular regions R1 and R2, by

selecting, for each of these regions, a pair of opposite edges which are conventionally

called the “left” and the “right” sides. In our specific example of Figure 4.10, we

orientate R1 and R2 as follows. Let R−1 (respectively R−2 ) be the intersection of R1

(respectively R2) with the inner and outer boundaries of AP (respectively AQ). In other

terms,

R−i = R−i,l ∪R
−
i,r

for i = 1, 2 and we name as “left” the component ofR−1 which is closer to the equilibrium

point P as well as the component of R−2 which is closer to the equilibrium point Q (so

that the “right” components will be the other ones). Thus we set

R−1,l := R1 ∩ Γc1P , R−1,r := R1 ∩ Γd1P

and

R−2,l := R2 ∩ Γc2Q , R−2,r := R2 ∩ Γd2Q

(see Figure 4.11).

Figure 4.11: Example of two linked annuli AP and AQ and the rectangular regions
R1 and R2 with their orientations.

We take any arbitrary (continuous) path γ : [0, 1]→ R1 with γ(0) ∈ R−1,l and γ(1) ∈ R−1,r
and describe its deformation in the phase-plane under the action of the Poincaré map
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ΦT
0 .

Recall that ΦT
0 = Φ2 ◦Φ1, where Φ1 the Poincaré map associated with the system (S1)

for the time interval [0, T1] and Φ2 the Poincaré map associated with the system (S2)

for the time interval [T1, T ] which, due to the fact that the system is autonomous, is the

same as the Poincaré map of (S2) for the time interval [0, T2].

From τP (c1) < τP (d1) it follows that the points of R−1,l move faster than those belonging

to R−1,r under the action of (S1). Hence, if we choose the first switching time T1 large

enough, the resulting image of γ through Φ1 is that of spiral crossing a certain number

of times, say m1, the rectangular region R2 from R−2,r to R−2,l. Thus we can select m1

subintervals of [0, 1] such that Φ1 ◦ γ restricted to each of these intervals is a path which

lies in R2 and connects the two components of R−2 . Figure 4.12 illustrates this situation.

We can then repeat the same argument as above for the map Φ2, observing that, as a

consequence of τQ(c2) < τQ(d2), the points of R−2,l move faster than those belonging to

R−2,r under the action of (S2). Hence, if we choose the second switching time T2 large

enough, the resulting image of each of the m1 sub-paths of Φ1 ◦ γ contained in R2, is a

spiral crossing a certain number of times, say m2, the rectangular region R1 from R−1,r
to R−1,l.

As a conclusion, we obtain that any path γ contained in R1 and joining the two com-

ponents of R−1 has at least m1 × m2 sub-paths whose image, under the action of the

Poincaré map ΦT
0 , cross again the rectangle R1. This a typical horseshoe situation for

the symbolic dynamics on m1 ×m2 symbols.

Therefore our main result can be reformulated as follows:

Theorem 4.7. For every pair of positive integers (m1,m2) with m := m1 × m2 ≥ 2,

there exist two positive constants T ∗1 (m1) and T ∗2 (m2) such that for all

T1 > T ∗1 (m1) and T2 > T ∗2 (m2),

the Poincaré map ΦT
0 induces chaotic dynamics on m symbols in R1.

Clearly, a completely symmetric argument can be applied in order to guarantee the

existence of chaotic dynamics for ΦT
0 on R2 .

The idea and the main steps of the proof are already described above. In the next section

we just provide a few technical details which were missing in the above discussion and we

also give a precise estimate for the numbers T ∗1 (m1) and T ∗2 (m2) (see (4.48) and (4.49)).
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Figure 4.12: Example of a path γ in R1 and joining the opposite sides R−1 . In this
picture we suppose that the image of γ through Φ1 is a spiral crossing at least m1 = 2
times the rectangle R2 coherently with the orientation chosen for R2 Each of the m1

sub-paths crossing R2 will be then transformed by Φ2 to spiral-like curves crossing R1

a certain number of times (say m2). So, at the end, we find that there are at least
m1 ×m2 sub-paths σi of γ such that ΦT

0 = Φ2 ◦ Φ1 stretches each of the σi to a path
crossing again R1 in the same direction as γ. The crucial steps to make this argument
working are: 1) the invariance of AP under Φ1 and AQ under Φ2 and 2) the twist
property at the boundary of the two annuli (this last one coming from the gap between

the periods expressed by (4.47)).

The result is stable with respect to small perturbations. In particular, it holds for a

g(t, x) as in (4.42), defined by a smooth T -periodic function ν(t), provided that |ν(t)−
νx1,x2(t)| is small in the L1-norm on [0, T ].

4.3.4 Technical estimates and proof of the main result

Our proof follows the argument in [66] when a similar problem was investigated for

the Lotka-Volterra prey-predator planar system. Indeed, the dynamical features of the

present model and those in [66] present strong analogies due to the fact that the period

map is strictly monotone increasing, according to the results in Section 4.4.2 and those

in [67, 68].

We start by studying the effect of the Poincaré map Φ1 on the points of R1 .
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For any point z ∈ R1, we consider the evolution in time along the solutions of the

system (S1). So, Φt
0(z) is the solution of (S1) starting at the initial point Φ0

0(z) = z

and evaluated at the time t, for 0 ≤ t ≤ T1 . Consistently with the definitions in Section

4.4.3, we have Φ1 := ΦT1
0 . Let us also consider a system of polar coordinates with center

in P = (x1, 0), taking the clockwise direction for the positive orientation of the angles

and denote by ϑ1(t, z) the angle associated to Φt
0(z). We use the convention that for the

initial points z ∈ R1 we have that −π < ϑ1(0, z) < 0.

Using the fact that the annulus AP is made by level lines of the energy of system (S1)

(which are strictly star-sped curves around P ), we have that for any non-negative integer

k, it holds that

ϑ1(t, z) T ϑ1(0, z) + 2kπ ⇐⇒ t T τP (`z),

for

`z := E1(z),

where we recall that τP (`) is the fundamental period of the level line of energy E1(x, y) =

` and, in our case, c1 ≤ ` ≤ d1 . Observe also that for any fixed z, the map t 7→ ϑ1(t, z)

is strictly monotone increasing; this follows from

d

dt
ϑ(t) =

y(t)2 + g1(x(t))(x(t)− x1)

y(t)2 + (x(t)− x1)2
> 0.

Let γ : [0, 1] → R1 be a continuous path with with γ(0) ∈ R−1,l and γ(1) ∈ R−1,r . We

want to describe its deformation in the phase-plane under the action of the Poincaré

map Φt
0. To this end we consider the angular function

ϕ1(t, s) := ϑ1(t, γ(s)), for 0 ≤ t ≤ T1 , s ∈ [0, 1],

which is continuous on the pair (t, s).

Let ` the energy level line of the point z = γ(s) for some s ∈ [0, 1]. For any t > 0, the

following estimate holds:

ϕ1(t, s) > π + 2π

(⌊
t

τP (`)

⌋
− 1

)
,

ϕ1(t, s) < 2π + 2π

(⌈
t

τP (`)

⌉
− 1

)
,

where, for any real number r, by brc and dre we denote, respectively, the greatest integer

less than or equal to r and the least integer greater than or equal to r.
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Hence we find that

ϕ1(t, 0) > π + 2πN+
1 (t), for N+

1 (t) :=

⌊
t

τP (c1)

⌋
− 1

(because E1(γ(0)) = c1) and

ϕ1(t, 1) < 2π + 2πN−1 (t), for N−1 (t) :=

⌈
t

τP (d1)

⌉
− 1

(due to the fact that E1(γ(1)) = d1).

Clearly, if π + 2πN+
1 (t) > 2π + 2πN−1 (t), then the interval [ϕ1(t, 1), ϕ1(t, 0)] covers at

least one interval of the form [2kπ+π, 2kπ] and therefore the path s 7→ Φt
0(γ(s)) crosses

at least once the set R2 . By the same argument, we obtain that, in order to have at

least m1 crossings, we may impose that⌊
t

τP (c1)

⌋
−
⌈

t

τP (d1)

⌉
> m1 ,

which is satisfied provided that

t

τP (c1)
− t

τP (d1)
> m1 + 2.

As a consequence we can determine the number

T ∗1 (m1) :=
τP (d1)− τP (c1)

τP (c1)τP (d1)
(m1 + 2) (4.48)

such that, for any t > T ∗1 (m1), the image of γ through Φt
0 is a spiral-like path which

crosses at least m1 times the rectangle R2 .

To complete the argument, let us fix now a time T1 > T ∗1 (m1) and define

α1 := max{ϑ1(T1, w) : w ∈ R−1,r}, β1 := min{ϑ1(T1, z) : z ∈ R−1,l}.

By the previous estimates on the angular function, we know that the interval [α1, β1]

contains at leastm1 consecutive and disjoint compact intervals of the form [2jπ, (2j+1)π]

for j = k∗1, k
∗
1 + 1, . . . , k∗1 +m1 − 1, where k∗1 is a suitable positive integer depending on

T1 . Then, for each i = 1, . . . ,m1 we define the compact set

Ki := {u ∈ R1 ; Φ1(u) ∈ R2 , ϑ1(T1, u) ∈ [2(k∗1 + i− 1)π, (2(k∗1 + i− 1) + 1)π]}

and where Φ1 = ΦT
0 and, by the previous discussion on the path γ, we find that the

following property holds: for every path γ : [0, 1]→ R1 such that γ(0) ∈ R−1,l and γ(1) ∈
R−1,r there exists a subinterval [t′i, t

′′
i ] ⊂ [0, 1] such that γ(s) ∈ Ki and Φ1(γ(s)) ∈ R2 for
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all t ∈ [t′i, t
′′
i ] and, moreover, Φ1(γ(t′i)) and Φ1(γ(t′′i )) belong to different components of

R−2 . This in turns implies that

(Ki,Φ1) : (R1,R−1 ) m−→(R2,R−2 ), ∀i := 1, . . . ,m1 ,

with K1, . . .Km1 pairwise disjoint compact subsets of R1.

Repeating verbatim the same argument for the map Φ2 relatively to the rectangle R2

we can determine the number

T ∗2 (m2) :=
τQ(d2)− τQ(c2)

τQ(c2)τQ(d2)
(m2 + 2) (4.49)

such that for every T2 > T ∗2 (m2) there arem2 pairwise disjoint compact subsetsK′1, . . .K′m2

of R2 such that

(K′i,Φ2) : (R2,R−2 ) m−→(R1,R−1 ), ∀i := 1, . . . ,m2 .

Then the conclusion follows from the main Theorem. This completes the proof of The-

orem 4.7. �

4.4 Complicated dynamics in a model of charged particles

4.4.1 Mathematical model

We follow the calculations in [8, Appendix B], in order to introduce the mathematical

model that we are going to study. In [8] the Authors introduce a cylindrical magnetic

geometry, which is considered as the limit, when R tends to infinity, of the toroidal

system. The approximation to new geometric configuration leads to a magnetic field

rewritten as

B = B0~ez + f(r)~eθ.

This is derived in [8] from (??) as a limit for R → ∞ and considering the z-direction

identified with the axes along with ~eφ, which is considered now as a constant. In order

to avoid misunderstanding, it is important to notice (cf. [8, Appendix B]) that the z-

direction here is not the one considered originally in [8, Fig. 1]. Moreover, with respect

to [8], now the function f already incorporates the effect of B0 .

In order to find the differential system describing the dynamics of the particle of mass m

and charge q moving in this magnetic field, we use the fact that the force acting on the

charged particle is given by F = q~v∧B (where ~v is the velocity of the particle). Next we
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recall also the expressions of the velocity and the acceleration in cylindrical coordinates,

namely

~v = ṙêr + rθ̇êθ + żêz

and

~a = (r̈ − rθ̇2)êr + (rθ̈ + 2ṙθ̇)êθ + z̈êz.

Then, an application of the Newton second law, yields to
r̈ − rθ̇2 = q

m(B0rθ̇ − f(r)ż)

rθ̈ + 2ṙθ̇ = − qB0

m ṙ

z̈ = q
m ṙf(r)

(4.50)

Multiplying by r the second equation and then integrating the second and the third

equations, we obtain θ̇ = A
r2
− qB0

2m

ż = q
mF (r)

(4.51)

where A is a constant and F (r) =
∫ r
f(x)dx. Substituting the two equations of (4.51)

into the first equation of (4.50), we obtain this second-order ODE

r̈ − A2

r3
+

(
qB0

2m

)2

r +
q2

m2
f(r)F (r) = 0. (4.52)

Multiplying equation (4.52) by ṙ and then integrating we finally obtain

∫
ṙr̈dt−

∫
r=r(t)

A2

r3
dr +

(
qB0

2m

)2 ∫
r=r(t)

rdr +
q2

m2

∫
r=r(t)

F (r)F ′(r)dr = constant.

Thus we end up with an effective Hamiltonian,

Heff :=
mṙ2

2
+
mA2

2r2
+

(qB0)2

8m
r2 +

q2

2m
F 2(r).

4.4.2 Geometric configurations

Following [8] we consider the effective Hamiltonian

Heff :=
ṙ2

2
+
A2

2r2
+
B2

0

8
r2 + F 2(r) (4.53)

for

F (r) := ar2 exp

(
−r

2

c2

)
, (4.54)
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where A, a, c are suitable positive constants and B0 is the intensity (magnitude) of the

magnetic field. Without loss of generality, we have considered in (4.53) a unitary mass m

and a unitary charge q (cf. formula (B7) in [8]). According to the formula of Heff , the

term depending on f(r) should be of the form F 2(r)/2, but clearly there is no mistake

in replacing it with F 2(r) (just rename the original function f or replace a with a
√

2 in

(4.54)). As in [8] we assume that the constants in the function F are adjusted in order

to generate a double well potential in the effective Hamiltonian. We split Heff as

Heff = Ec + V0(r) + F 2(r),

where Ec, is the kinetic energy and V0 is the potential in absence of the component of

the magnetic field given by f(r). To explain the details, the potential V0(r) tends to

infinity for r → 0+ and r → +∞ and it has a unique point of minimum at r0 > 0, where

r2
0 := 2A/B0. In [8], the Authors propose to fix the parameters a and c for the function

F in order to produce a maximum point near r0, so that the new potential V0(r)+F 2(r)

assumes a double-well shape as in Figure 4.13 below. This is obtained by choosing c2

close to r2
0 and a > 0 sufficiently large.

Figure 4.13: A possible profile of the modified potential V0(r) +F 2(r) for r > 0. The
coefficients are tuned-up with a choice of c2 > r2

0.

The level lines of the effective Hamiltonian function in the right half-plane R+
0 × R

describe a phase-portrait with two centers separated by homoclinic orbits emanated

from an intermediate saddle point. The typical portrait is like in Figure 4.14.

The level lines of Heff are associated with the orbits of the second-order Duffing equation

ẍ+ g(x) = 0, (4.55)

or, equivalently, the planar conservative systemẋ = y

ẏ = −g(x),
(4.56)
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Figure 4.14: Some level lines associated with the Hamiltonian Heff in the plane (r, ṙ)
for r > 0.

for x := r > 0, y = ṙ and

g(x) :=
d

dx

(
V0(x) + F (x)2

)
= −A

2

x3
+
B0

2

4
x+ 2F (x)f(x), (4.57)

where we have set

f(x) := F ′(x). (4.58)

If we choose F in order to produce a potential as described in [8, Section IV] and in

Figure 4.13, we find that the map g has precisely three simple zeros for x > 0 that we

denote and order as

a < xs < b.

In the phase-plane R+
0 × R, the points (a, 0) and (b, 0) are local centers, while (xs, 0) is

a saddle point.

The level line

H(x, y) :=
y2

2
+ V0(x) + F 2(x) = cs := V0(xs) + F 2(xs)

is a double homoclinic loop, namely, it splits as

Ol ∪ {(xs, 0)} ∪ Or ,

where Ol and Or two homoclinic orbits at the saddle point {(xs, 0)}. By convention,

we suppose that Ol is contained in the strip 0 < x < xs and surrounds (a, 0), while

Or is contained in the half-plane strip x > xs and surrounds (b, 0). We denote by (a, 0)

and the (b, 0) the intersection points of Ol and, respectively, Or with the x-axis. By
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definition, we have

0 < a < a < xs < b < b,

with a, xs, b the three solutions of V0(x) + F 2(x) = cs (see Figure 4.13).

We also introduce the open regions

Wl := {(x, y) : 0 < x < xs , H(x, y) < cs}

and

Wr := {(x, y) : x > xs , H(x, y) < cs}.

By construction, we have

∂Wl = Ol ∪ {(xs, 0)} and ∂Wr = Or ∪ {(xs, 0)}

(see Figure 4.15).

Figure 4.15: The saddle point (xs, 0) with the homoclinic orbits Ol,Ol and the
resulting regions Wl,Wl.

As a next step, we suppose that the modulus of the magnetic field B0 is affected by

a small change so that the three equilibrium points (a, 0), (xs, 0) and (b, 0) are shifted

along the x-axis. We suppose that the effect is small enough so that the new point

(xs, 0) will belong to the region surrounded by Ol or the one surrounded by Or. More

precisely, if we denote by B
(1)
0 and B

(2)
0 two different values of the magnetic field and

associated the index i = 1, 2 to the corresponding equilibrium points and homoclinic

orbits, we will assume that

H(1)(x(2)
s , 0) < H(1)(x(1)

s , 0) and H(2)(x(1)
s , 0) < H(2)(x(1)

s , 0). (4.59)

We tacitly use the convention the apex i = 1, 2 is associated to the points, orbits and

regions of the phase-plane associated with the differential systems having Hamiltonians

H(1) and H(2) for the magnetic fields B
(1)
0 and B

(2)
0 . Under the assumption (4.59) the

homoclinic loops associated with the two Hamiltonian systems, overlap as in Figure 4.16.
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Figure 4.16: An example of the double homoclinic loops overlapping. The effect is
obtained by moving the saddle point xs. This occurs via a change of parameters in the
equation. The aspect/ratio has been slightly modified in order to make the overlapping

more evident.

Our plan is to construct some regions homeomorphic to rectangles which are obtained

as intersections of suitable narrow bands around the homoclinics.

Let us consider the level line H(1)(x, y) = c(1) with c(1) < H(1)(x
(1)
s , 0) and H(1)(x

(1)
s , 0)−

c(1) small enough. This level line splits into two components, which are contained in the

open regions W(1)
l and W(1)

r , respectively. Now the equation V0(x) + F 2(x) = c(1) has

four solutions that we will denote a
(1)
± and b

(1)
± , so that

a(1) < a
(1)
− < a(1) < a

(1)
+ < x(1)

s < b
(1)
− < b(1) < b

(1)
+ < b(1) .

For the system associated with B
(2)
0 , we can similarly determine some corresponding

points with

a(2) < a
(2)
− < a(2) < a

(2)
+ < x(2)

s < b
(2)
− < b(2) < b

(2)
+ < b(2) .

By suitably selecting the energy levels, it is always possible to enter in a setting such

that the crossing condition

(CC)

a
(1)
− < a(2) < a

(2)
− < a

(1)
+

b
(1)
− < a

(2)
+

b
(2)
− < b

(1)
+ < b(1) < b

(2)
+

holds.

Let us consider now the ∞-shaped regions

Ai := {(x, y) : x > 0 , c(i) ≤ H(i)(x, y) ≤ c(i)
s }, for i = 1, 2,

which are bounded by the homoclinics O(i)
l and O(i)

l .
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The level line ≤ H(i)(x, y) = c(i) has two components which are closed orbits contained

in the regions W(i)
l and W(i)

r , respectively. We set, for i = 1, 2,

Γ
(i)
l := {(x, y) : 0 < x < x(i)

s , H(i)(x, y) = c(i)} ⊆ W(i)
l ,

Γ(i)
r := {(x, y) : x > x(i)

s , H(i)(x, y) = c(i)} ⊆ W(i)
r

and denote by τ
(i)
l and τ

(i)
r the fundamental periods of the orbits Γ

(i)
l and Γ

(i)
r , respec-

tively.

The sets A1 and A2 intersects into six rectangular regions that we denote by a±, b±, c±,

respectively, labelling from left to right and using the sign + or − according to the fact

that the region is contained in the upper or lower half-plane (see Figure 4.17).

Figure 4.17: An example of intersection of A1 with A2 producing the six rectangular
regions a±, b±, c±.

Each one of the six regions introduced above can be oriented in two different manners.

By an orientation of a topological rectangle R, we mean the selection of two opposite

sides whose union is denoted by R−. The two components of R− are conventionally

called the left and the right side (the order according to which we select to associate the

terms “right” or “left” with the two sides of R− is not relevant). The pair (R,R−) is

called an oriented rectangle.

Now, let R be any of the a±, b±, c±. We observe that R can be orientated in two

different manners, by choosing as R− the two intersection of R with H(1) = c(1) and

with H(1) = c
(1)
s or the two intersection of R with H(2) = c(2) and with H(2) = c

(2)
s .

The corresponding oriented rectangle (R,R−) will be denoted as
^
R in the former case

and as
_
R in the latter one. For example and with reference to Figure 4.17, the oriented

rectangle
_
b− is the region b− (center-below) in which we have selected as a couple of

opposite sides forming b−− the intersections of b− with the level lines H(2) = c(2) and

H(2) = c
(2)
s . Analogously, the oriented rectangle

^
c + is the region c+ (upper-right) in
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which we have selected as a couple of opposite sides forming c−+ the intersections of c+

with the level lines H(1) = c(1) and H(1) = c
(1)
s .

At this point we are ready to introduce a dynamical aspect, by supposing that we switch

periodically between the two systems associated with the Hamiltonians H(1) and H(2).

More in detail, we consider the non-autonomous second-order scalar equation

ẍ+ g(t, x) = 0 (4.60)

and also the associated first order systemẋ = y

ẏ = −g(t, x)
(4.61)

in the right-half plane x > 0, where g : R× R+
0 → R is T -periodic in the t-variable and

such that

g(t, x) :=

{
g1(x), for 0 ≤ t < T1

g2(x), for T1 ≤ t < T1 + T2 = T,
(4.62)

where

gi(x) :=
∂H(i)

∂x
(x, y), for i = 1, 2.

Equation (4.61) is a switched system (see [69] and the references therein) and its asso-

ciated Poincaré map Φ can be decomposed as

Φ = Φ2 ◦ Φ1

where Φi is the Poincaré map on the time-interval [0, Ti] associated with the systemẋ = y

ẏ = −gi(x)
(4.63)

for i = 1, 2.

Notice that, by the particular nature of the switched system (4.61), we can equivalently

study the Poincaré map

Φ = Φ1 ◦ Φ2.

Indeed, in this latter case, we consider just a shift in time of the solutions.
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4.4.3 Main result

After this preliminary discussion, we are now in position to state our main result which

reads as follows.

Theorem 4.8. For any integer m ≥ 2, there are T ∗1 and T ∗2 > 0 such that for each

T1 > T ∗1 and T2 > T ∗2 , the Poincaré map Φ induces chaotic dynamics on m symbols in

each of the sets a± , b± and c± . Moreover, the result is robust in the sense that it is

stable for small perturbations of system (4.61).

Our definition of chaotic dynamics is linked to the concept of chaos according to Block

and Coppel [70, 71], with a special emphasis to the presence of periodic points. More

precisely, we say that a continuous and one-to-one map ψ induces chaotic dynamics on

m symbols in a set R if there exists m pairwise disjoint compact subsets H1, . . . ,Hm of

R such that for each two-sides sequence (si)i∈Z of m symbols there exists a trajectory

xi+1 = ψ(xi) of ψ such that xi ∈ Hsi for each i ∈ Z. Moreover, if the sequence of

symbols (si)i∈Z is a k-periodic sequence, then also the sequence of points (xi)i∈Z is k-

periodic. As a consequence of this definition, we have also that there exists a compact

invariant set Λ ⊆ R having the set of periodic points of ψ as dense subset such that

ψ|Λ is topologically semiconjugate (by a continuous and surjective map h) to the full

shift automorphism on m-symbols σ : Σm → Σm := {1, . . . ,m}Z. Moreover, for each

k-periodic two-sided sequence s := (si)i∈Z , the set h−1(s) contains a k-periodic point of

ψ (see [72–74]).

4.4.4 Technical estimates and proof of the main result

Let M̂ := (M,M−) and N̂ := (N ,N−) be oriented rectangles and let ψ be a continuous

map. Let also m be a positive integer. We say that the triplet (M̂, N̂ , ψ) has the SAP

(stretching along the paths) property with crossing number m, if there exist H1, . . . ,Hm

pairwise disjoint compact subsets of M such that any path γ in M connecting the two

components of M− possesses m sub-paths γ1, . . . γm with γi in Hi such that ψ ◦ γi is a

path in N connecting the two components of N−. When this situation occurs, we write

ψ : M̂ m−→m N̂ .

We avoid mentioning the apex m when m = 1.

The above property is compatible with composition of maps, indeed we have that:

φ : L̂ m−→k M̂, ψ : M̂ m−→m N̂ =⇒ ψ ◦ φ : L̂ m−→km N̂ .
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The SAP property will be applied to prove the existence of complex dynamics for the

Poincaré map, using the following result.

Lemma 4.9. Let R̂ := (R,R−) be an oriented rectangle and ψ : R → R2 be a continuous

and one-to-one map. Suppose that

ψ : R̂ m−→m R̂,

for some m ≥ 2. Then ψ induces chaotic dynamics on m symbols on the set R.

Remark 4.10. A byproduct of Lemma 4.9 implies the existence of at least m fixed

points for ψ in R. More precisely, each of the pairwise disjoint compact sets H1 . . . , Hm,

involved in the definition of ψ : R̂ m−→m R̂, contains at least one fixed point of ψ. C

See [72–75] for the general theory.

Now we are going to describe the crossing relationships involving the sets
^
a±,

^
b±,

^
c ±

and the dual ones
_
a±,

_
b±,

_
c ± by the maps Φi .

Lemma 4.11. Given any positive integer `1, it holds that

Φ1 :
^
a+ m−→`1

_
a−,

provided that T1 > `1τ
(1)
l .

Proof. Let γ : [0, 1]→ a+ be a (continuous) map such that γ(0) ∈ Γ
(1)
l and γ(1) ∈ O(1)

l .

Equivalently, H(1)(γ(0)) = c(1) and H(1)(γ(1)) = c
(1)
s . We examine the evolution of the

set γ̄ := γ([0, 1]) along the Poincaré map Φ1. Observe that Φ1 is associated with the

system

ẋ = y, ẏ = −g1(x) (4.64)

on the time-interval [0, T1].

Along the proof, we denote by ζ(t, z0) = (x(t, z0), y(t, z0)) the solution of (4.64) satisfying

the initial condition ζ(0) = z0. By definition, Φ1(z0) = ζ(T1, z0), for any z0 ∈ R+
0 × R.

The point γ(1) belongs to the homoclinic trajectory and therefore it remains on O(1)
l for

all the forward time, moving in the phase-plane from left to right but never meeting the

saddle point x
(1)
s . As a consequence, x(t, γ(1)) < x

(1)
s and y(t, γ(1)) > 0 for all t ∈ [0, T1].

On the other hand, the point γ(0) belongs to the periodic orbit Γ
(1)
l of period τ

(1)
l and

therefore, if T1 > τ
(1)
l , it makes at least `1 complete turns (in the clockwise sense) around

the center (a(1), 0) in the interval [0, T1].
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If we introduce a polar coordinate system (θ, ρ), starting from the half-line {(x, 0) : x <

a(1)} and counting positive rotations in the clockwise sense, we have that 0 < θ(γ(s)) < π

for all s ∈ [0, 1] and then we define the sets

Hj := {z ∈ a+ : (2j − 1)π < θ(Φ(1)(z)) < 2jπ}, for j = 1, . . . , `1.

By the previous observation about the movement of the points γ(1) and γ(0) under

the influence of the dynamical system of (4.64), we know that θ(Φ1(γ(1))) < π, while

θ(Φ1(γ(0))) > 2jπ. A simple continuity argument on the map [0, 1] 3 s 7→ θ(Φ1(γ(s))),

implies the existence of `1 pairwise disjoint intervals [αj , βj ] ⊆ [0, T1] such that (2j −
1)π ≤ θ(Φ1(γ(s))) ≤ 2jπ for all s ∈ [αj , βj ] with θ(Φ1(γ(αj)) = 2jπ and θ(Φ1(γ(βj)) =

(2j − 1)π.

By definition, the path Φ1 ◦ γ restricted to the interval [αj , βj ] is contained in the half-

annulus

Ai ∩ {(x, y) : 0 < x < x(1)
s , y ≤ 0}

and therefore, it crosses the rectangle a− intersecting both components of a−−. Using again

an elementary continuity argument of the map s 7→ Φ1(γ(s)), for each j = 1, . . . , `1, we

determine a sub-interval [α′j , β
′
j ] ⊆ [αj , βj ] such that, Φ1(γ(s)) ∈ a− for all s ∈ [α′j , β

′
j ].

Moreover, Φ1(γ(α′j)) and Φ1(γ(β′j)) belong to different components of a−. Note also

that, by construction, γ(s) ∈ Hj for all s ∈ [α′j , β
′
j ]. We have thus verified the SAP

property for (
^
a+,

_
a−,Φ1) with crossing number `1, provided that T1 > `1τ

(1)
l and the

proof is complete. �

At this point, we can repeat the same argument of the proof of Lemma 4.11 and consider

all the possible combinations between the oriented rectangles and the maps Φi . We can

summarize these conclusions by the following lemmas where the times τ∗i can be easily

determined from the periods of the closed orbits Γ
(i)
l and Γ

(i)
s .

Lemma 4.12. There exist times τ∗1 and τ∗2 , such that, for any positive integers `1, `2 it

holds that:

Φ1 :
^
a± m−→`1

_
a± ,

^
b± m−→`1

_
b± ,

_
c ± ,

^
c ± m−→`1

_
b± ,

_
c ± ,

provided that T1 > `1τ
∗
1 .

Φ2 :
_
a± m−→`2

^
a± ,

^
b± ,

_
b± m−→`2

^
a± ,

^
b± ,

_
c ± m−→`2

^
c ± ,

provided that T2 > `2τ
∗
2 .

In the above lemma, when we write a condition such as
^
a± m−→` _a± , we mean that all

the four possibilities in the choice of ± for the domain and codomain are possible.

The content of Lemma 4.12 is explained by means of Figure 4.18 and Figure 4.19.
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Figure 4.18: This graph represents all the possible connections by the partial Poincaré
map Φ1. The arrows correspond to the m−→ symbol. The integer `1 is not indicated but

it can be arbitrarily chosen provided that T1 > `1τ
∗
1 .

Figure 4.19: This graph represents all the possible connections by the partial Poincaré
map Φ2. The arrows correspond to the m−→ symbol. The integer `2 is not indicated but

it can be arbitrarily chosen provided that T2 > `2τ
∗
2 .
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Now, we are in position to conclude the proof of our main result.

Proof. [Proof of Theorem 4.8]

Using Lemma 4.12 along with Lemma 4.9 we can guarantee that the Poincaré map

Φ = Φ2 ◦ Φ1, as well as Φ = Φ1 ◦ Φ2 induces chaotic dynamics on any finite number of

symbols, provided that T1 and T2 are large enough.

From the proof of Lemma 4.11 it is clear that the result is stable by small perturbations

and the same holds for all the connections considered in Lemma 4.12.

In our case we have several possibilities of producing chaotic dynamics on m ≥ 2 symbols

on a rectangular region R chosen among the sets a± , b± and a± . In order to explain

better how these possibilities arise, we fix out attention only on the Poincaré map Φ =

Φ2 ◦ Φ1 (the other case is treated in a similar manner).

A first and more natural case is to take max{`1, `2} ≥ 2, so that

m = `1 × `2 ≥ 2

and, considering the connections described in Lemma 4.12, we immediately see that

Lemma 4.9 can be applied for R̂ any of the sets
^
a± ,

^
b± ,

^
c ±. However, a more careful

analysis of the connection diagrams shows that in these sets the SAP property with

crossing number greater or equal than two can be obtained also in the case when `1 =

`2 = 1 (this may be more interesting from the point of view of the applications because

we need a lesser restriction on the period). In fact, the following connections are available

^
a+ m−→

_
a+ m−→

^
a+ ,

^
a+ m−→

_
a− m−→

^
a+

^
a− m−→

_
a− m−→

^
a− ,

^
a− m−→

_
a+ m−→

^
a−

^
b+ m−→

_
b+ m−→

^
b+ ,

^
b+ m−→

_
b− m−→

^
a+

^
b− m−→

_
b− m−→

^
b− ,

^
b− m−→

_
b+ m−→

^
b−

^
c + m−→

_
c + m−→

^
c + ,

^
c + m−→

_
c − m−→

^
a+

^
c − m−→

_
c − m−→

^
c − ,

^
c − m−→

_
c + m−→

^
c −

and therefore, we find that

Φ :
^
a± m−→2 ^

a± ,
^
b± m−→2

^
b± ,

^
c ± m−→2 ^

c ± .

In the last formula we use the convention that []± m−→ []± means that only the two

possibilities []+ m−→ []+ and []− m−→ []− are available.
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The situation becomes more complicated and interesting if we consider the iterates of

the map Φ. For instance, for the map Φ2, and taking R̂ =
^
a+ as a starting set, new

connections are available, such as

^
a+ m−→2

^
b± m−→2 ^

a+ and
^
a+ m−→2 ^

a± m−→2 ^
a+ .

Hence, counting all the possible connections for Φ2, we obtain that

Φ2 :
^
a+ m−→16 ^

a+.

In fact, from
^
a+ we come back again to

^
a+ by Φ2 passing through the four sets

^
a± and

^
b± and, each time we apply Φ we have two itineraries available. Similar combinations

occur for the other oriented rectangles. �

4.5 Final remarks

The existence of chaos in differential systems which are obtained as periodic perturba-

tions of planar autonomous systems exhibiting homoclinic or heteroclinic trajectories is

a well established fact (see [44, 76]). The methods of proof applied in those situations,

such as the Melnikov method, usually permit to enter in the framework of Smale’s horse-

shoe (cf. [77] and [78]) which guarantees the existence of a compact invariant set for the

Poincaré map Φ, where Φ is topologically conjugate to the Bernoulli shift on a certain set

of symbols. Our result provides a weaker form of chaos since only the semiconjugation is

proved. On the other hand, in the concrete applications, some explicit knowledge of the

homoclinic (or heteroclinic) solution, in terms of its analytic expression is often needed.

A typical example is given by the classical periodically perturbed Duffing equation

ẍ− x+ x3 = εp(ωt), (4.65)

where the Melnikov function can be explicitly defined (see [76]) thanks to the knowledge

of the analytic expression of the homoclinic solutions of

ẋ = y, ẏ = x− x3.

In the model studied in the present paper, two difficulties arise: first, we do not know

an explicit form of the homoclinic solutions of system (4.56) and, secondly, the periodic

perturbation leading to (4.60) from (4.55), which corresponds to a variation of the form

B0 7→ B0(t) in (4.57), appears to be more complicated than the perturbation considered

in equation (4.65). Our approach, even if applied to the simplified situation of a stepwise
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function B0(t), allows to prove the presence of chaotic dynamics using only few geometric

information on the geometry of the level curves of the associated energy functions. As

already shown in [79] and in [80, Section 8], the choice of a stepwise coefficient has the

advantage not only to simplify some technical estimates, but also to put in evidence

the presence of interesting bifurcation phenomena for the solutions of the nonlinear

equations which are involved.
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Numerical study of other Duffing

models

The study of the boundedness of the solutions to the Duffing equation has attracted

a lot of interest in the past 60 years. Starting with Littlewood in [6] who raised the

questions about boundness of the solutions. The model investigated take the form of

ẍ+ a(t)g(x) = 0 (5.1)

or

ẍ+ g(x) = p(t) (5.2)

with a, p : R → R T-periodic functions. Typically, the equation is referred to as

superlinear or sublinear according to

1.
g(x)

x
→∞ for x→ ±∞,

2.
g(x)

x
→ 0 for x→ ±∞

The simplest example is given by

g(x) = |x|αsign(x) for α > 0 and α 6= 1 (5.3)

where the superlinear and sublinear cases occur for α > 1 and 0 < α < 1, respectively.

In [40] Gottlieb and Sprott investigated the Duffing equations

115
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ẍ+ |x|αsign(x) = sin(ωt) for α > 1 (5.4)

and gave numerical evidence of the presence of chaotic behaviour, by using estimates on

the associated Lyapunov exponents.

5.1 Wang & Yu model

In the next analysis, we consider some more general models including Gottlieb e Sprott

[81] as special cases. Normally the following equations are consider

ẍ+ x2n+1 +
2n∑
j=0

aj(t)x
j = 0. (5.5)

5.1.1 Case I: Parameters are period functions

We restrict to the case ẍ+x3+a2(t)x2+a1(t)x+a0(t) = 0. Through this subsection we will

considered the following trigonometric functions a0(t) = sin(ω∗t), a1(t) = 0.1∗sin(ω∗t),
a2(t) = 2 ∗ cos(ω ∗ t).

In this case the authors of [82] have also proven the boundedness of all the solutions.

Here, following Gottlieb e Sprot we study the presence of possible chaos using the Lya-

punov exponent and plotting the corresponding Poincaré section. Of particular impor-

tance will be the dependence that such chaos indicators have on the control parameters

of the model which in this case for simplicity we consider only the frequency ω of the

T-periodic functions. In the following we will use the method developed by Skokos [27]

for numerically calculating the maximum Lyapunov exponent.

Let us start by studying the dependence of the maximum Lyapunov Characteristic

Exponent (mLCE) as defined in Chapter 4 by varying the frequency ω of the T-periodic

functions as previously defined. In Fig. 5.1 it is possible to observe that initially for

very small values of the frequency the system has a negative mLCE attesting a regular

behavior of the system. However, once the period of the system becomes slightly smaller

then chaos emerges. In the figure this is illustrated by a positive mLCE in the frequency

window [ 1, 5]. When the periodicity of the auxilary functions ai(t) decreases further

more then the system regains its regularity as shown by a negative mLCR of the control

parameter for ω & 5.
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Figure 5.1: Maximum Lyapunov Characteristic Exponent (mLCE) (for the case with
periodic parameters) as a function of the parameter ω. The system can behave caoti-
cally or not depending on the values of the frequency ω indicated respectively by the

positiveness or not of the Lyapunov exponent.

Figure 5.2: The Poincaré section for a value of the control parameter ω = 3. In blue
are shown the point for an initial value x(0) = 0, ẋ(0) = 0 and in red for x(0) = 2, ẋ(0) =

0. Here are shown only the iteration points from 200 to 2000 steps of integrations.

Qualitatively similar results are obtained even through the Poincaré section plotted in

Fig. 5.2. Here we integrate the system for a value of the frequency ω = 3 where chaos

invades the phase space. And in fact the Poincaré section is overall dominated by chaotic

islands and not a single regular orbits can be noticed. The symbols of two different
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Figure 5.3: Temporal evolution of the state variable x(t). Notice the absence of
periodicity of the oscillations. A lack of periodicity in the behavior is the proof for the
presence of chaos in the dynamics. Here the initial conditions are x(0) = 2, ẋ(0) = 0

and the iteration interval [T1− 200, T1], con T1 = 200 ∗ π/ω.

colours in Fig. 5.2 represent two different initial points in the integration process.

Exactly the same behavior can be observed even from the time evolution of the state

variable x(t) illustrated in Fig. 5.3 for the same choice of the control parameter as above.

It is easy to notice that the systems lacks periodicity and invariance of the amplitude in

the time space indicating this way a chaotic behavior.

As a conclusion, we can say that the model (5.5) has the ability to manifest both chaotic

and regular behavior depending on the values of the control parameter that in our case

was the frequency ω of the T-periodic auxilary functions as previously defined. In fact,

initially the system goes to a transition toward chaos when the frequency increases;

then when the period of the auxilary trigonometric functions becomes enough large it

undergoes a re-entering phase towards the regular behavior.

5.1.2 Case II: Parameters are constant functions

We now consider the case ẍ+x3 +a2(t)x2 +a1(t)x+a0(t) = 0 where now the parameters

are simply constant functions a1(t) = 1, a2(t) = 1, and the external forcing term is

defined as a0(t) = −8 ∗ sin(ω ∗ t). Notice that although we are changing the dynamical

systems here, it still remains of the Wang & Yu family. This translates that its dynamical

behavior is influenced only by the parameters.



Chapter 5 119

We will proceed following the previous line of study by first analysing the dependence

of the mLCE indicator as a function of the frequence ω of the forcing term.

Figure 5.4: Maximum Lyapunov Characteristic Exponent (mLCE) (for the case with
constant parameters) as a function of the parameter ω. The system can behave caoti-
cally or not depending on the values of the frequency ω indicated respectively by the

positiveness or not of the Lyapunov exponent.

Figure 5.5: The Poincaré section for a value of the control parameter ω = 0.2. In blue
are shown the point for an initial value x(0) = 1, ẋ(0) = 0, in magenta for x(0) = 2,
ẋ(0) = 0, and in red for x(0) = 0, ẋ(0) = 3. Here are shown the iteration points from
0 to 800 ∗ T0 steps of integrations where T0 = 10 ∗ π is the period of the forcing term.

In Fig. 5.4 we show the dependence of the maximum Lyapunov Characteristic Exponent

(mLCE) by varying the frequency ω of the T-periodic function of the external forcing
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Figure 5.6: Temporal evolution of the state variable x(t) corresponding to the intial
points as in 5.5. Notice the absence of periodicity of the oscillations in the first panel.
which is the proof for the presence of chaos in the dynamics. The situation becomes
more regular for the other initial values as the signal regains its periodicity. Here the

iteration interval for all the cases is [0, 20 ∗ T0], con T0 defined as above.

term. It is shown that for initial very small values of the frequency the system takes

positive and negative values of mLCE attesting the possibility of chaotic behavior of the

system. However, once the frequency of the system decisively increases, so the control
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parameter is ω & 10 the orbits clearly remain chaotic.

From the Poincaré section 5.5 it is clear that although we notice that the central part

is dominated by a chaotic island (blue symbols), the system has also a larger regular

orbits (in magenta) suggesting the presence of subharmonic orbits of very large period.

Notice in particular the very small number of red symbols which indicates the presence

of subharmonic with a very small period.

The same behavior can be observed even from the time evolution of the state variable

x(t) illustrated in Fig. 5.6 for the same choice of the control parameter as above. It

is easy to notice that the systems lacks periodicity and invariance of the amplitude in

the time space in the first panel corresponding to the initial point x(0) = 2, ẋ(0) = 0

indicating the chaotic behavior for these orbits. However the signal becomes more regular

(periodic) for the two other set of orbits.

We conclude that the model of Wang & Yu we considered here when the paramters take

constant values has the ability to manifest both chaotic and regular behavior depending

on the values of the control parameter that in our case was the frequency ω of the

T-periodic auxilary functions as previously defined. In fact, initially the system might

be chaotic for small frequencies; then when the period of the external forcing functions

becomes enough large it undergoes a re-entering phase towards the chaotic behavior.

5.1.3 Case III: Parameters are constant functions and with different

function

We now consider a different case ẍ+ x5 + a2(t)x3 + a1(t)x+ a0(t) = 0 where again the

parameters are constant functions a1(t) = 1, a2(t) = 1, and the external forcing term

is defined as a0(t) = −8 sin(ωt). Notice that although we are changing the dynamical

systems here, it still remains of the Wang & Yu family. This translates that its dynamical

behavior is influence only by the parameters.

As previously we start first by analysing the dependence of the mLCE indicator as a

function of the frequence ω of the forcing term.

In Fig. 5.7 we show the dependence of the maximum Lyapunov Characteristic Exponent

(mLCE) by varying the frequency ω of the T-periodic function of the external forcing

term. It is shown that for initial very small values of the frequency the system has a

positive mLCE attesting a chaotic behavior of the system. However, once the period of

the system becomes slightly smaller then the orbits stabilise. Even when the periodicity

of the forcing function a0(t) decreases further more the system maintains its regularity

as shown by a negative mLCR of the control parameter for ω & 5.
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Figure 5.7: Maximum Lyapunov Characteristic Exponent (mLCE) (for the case with
constant parameters) as a function of the parameter ω. The system can behave caoti-
cally or not depending on the values of the frequency ω indicated respectively by the

positiveness or not of the Lyapunov exponent.

Figure 5.8: The Poincaré section for a value of the control parameter ω = 0.2. In blue
are shown the point for an initial value x(0) = 1, ẋ(0) = 0, in magenta for x(0) = 2,
ẋ(0) = 0, and in red for x(0) = 0, ẋ(0) = 3. Here are shown the iteration points from
0 to 800 ∗ T0 steps of integrations where T0 = 10 ∗ π is the period of the forcing term.
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Figure 5.9: Temporal evolution of the state variable x(t) corresponding to the intial
points as in 5.5. Notice the absence of periodicity of the oscillations in the first panel.
which is the proof for the presence of chaos in the dynamics. The situation becomes
more regular for the other initial values as the signal regains its periodicity. Here the

iteration interval for all the cases is [0, 20 ∗ T0], con T0 defined as above.

From the Poincaré section 5.8 it is clear that although we notice that the central part

is dominated by a chaotic island (blue symbols), the system has also two larger regular

orbits (in magenta and red) suggesting the presence of subharmonic orbits of very high

periods.

The same behavior can be observed even from the time evolution of the state variable

x(t) illustrated in Fig. 5.9 for the same choice of the control parameter as above. It

is easy to notice that the systems lacks periodicity and invariance of the amplitude in
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the time space in the first panel corresponding to the initial point x(0) = 2, ẋ(0) = 0

indicating the chaotic behavior for these orbits. However the signal becomes more regular

(periodic) for the two other set of orbits.

We conclude that the model of Wang & Yu we considered here when the paramters take

constant values has the ability to manifest both chaotic and regular behavior depending

on the values of the control parameter that in our case was the frequency ω of the T-

periodic auxilary functions as previously defined. In fact, initially the system is chaotic

for low frequencies; then when the period of the external forcing functions becomes

enough large it undergoes a re-entering phase towards the regular behavior.

5.2 The Tokamak model

The next model that we will analyse here is that of the Tokomak already introduced

and discussed in Chapter 1. Here we will complement the analytical study of Chapter 5

with a numerical one. Let us repropose once more the model as follows

ẍ+
q(t)

x3
+

log x

x
= 0. (5.6)

Here the function q(t) : R → R is defined as a T-periodic function and is positive

q(t) > 0, ∀t ∈ R. In particular, we will consider q(t) = C + d ∗ sin(ω ∗ t+α) with C = 1,

α = 0 (or equivalently α = π/2) and d ∈]0, 1[.

We will proceed similarly as we did in the previous subsection, so we will start by

analysing the dependence that mLCE has on the frequency ω which again will be our

control parameter. In Fig. 5.10 is plotted the maximum Lyapunov exponent mLCE

as a function of the frequency ω. It can be obviously noted that for the window of the

values of the frequency explored mLCE almost does not change at all, remaining around

the value 0.5. This is a clear indicator of chaos as we have already discussed several

times already in this thesis. In this sense the chaoticity of the system is robust for the

control parameter ω.

In our model (5.6), we have also another control parameter, the constant d which also as

we have shown in Fig. 5.11 plays an important role in the dynamics. In fact, the mLCE

changes when the parameter d varies in the interval ]0, 1[. Nevertheless as before for the

frequency even in this case the chaos dominates the system in a robust way attested by

a positive value of mLCE around 0.5. We can conclude that this model is in general

strongly chaotic and although it depends in two control parameter they do not influence

its chaotic nature.
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Figure 5.10: Maximum Lyapunov Characteristic Exponent (mLCE) of the model
(5.6) as a function of the control parameter ω and a fixed value of d = 0.05. The system
behaves chaotically for the values of ω explored here. Such behavior is indicated by the

positiveness of the Lyapunov exponent.

Figure 5.11: Maximum Lyapunov Characteristic Exponent (mLCE) of the model
(5.6) as a function of the control parameter d and a fixed value of ω = 0. The system
behaves chaotically for the values of d explored here. Such behavior is indicated by the

positiveness of the Lyapunov exponent.

The same result can be obtained even if we explore the Poincaré section of such system.

In Fig. 5.12 we show the chaotic orbits that fill densely the Poincare section for the

model (5.6). There is no doubt at this point that the orbits behave chaotically in the

phase space.
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Figure 5.12: The Poincaré section for values of the control parameters ω = π/2,
d = 0.05. The orbits behave chaotically in the phase space for the parameters explored

here.
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