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Abstract: In this second paper of the series we continue to spell out a new program
for quantum gravity, grounded in the notion of corner symmetry algebra and its repre-
sentations. Here we focus on tetrad gravity and its corner symplectic potential. We start
by performing a detailed decomposition of the various geometrical quantities appearing
in BF theory and tetrad gravity. This provides a new decomposition of the symplectic
potential of BF theory and the simplicity constraints. We then show that the dynamical
variables of the tetrad gravity corner phase space are the internal normal to the spacetime
foliation, which is conjugated to the boost generator, and the corner coframe field. This
allows us to derive several key results. First, we construct the corner Lorentz charges. In
addition to sphere diffeomorphisms, common to all formulations of gravity, these charges
add a local sl(2,C) component to the corner symmetry algebra of tetrad gravity. Second,
we also reveal that the corner metric satisfies a local sl(2,R) algebra, whose Casimir cor-
responds to the corner area element. Due to the space-like nature of the corner metric,
this Casimir belongs to the unitary discrete series, and its spectrum is therefore quantized.
This result, which reconciles discreteness of the area spectrum with Lorentz invariance, is
proven in the continuum and without resorting to a bulk connection. Third, we show that
the corner phase space explains why the simplicity constraints become non-commutative
on the corner. This fact requires a reconciliation between the bulk and corner symplectic
structures, already in the classical continuum theory. Understanding this leads inevitably
to the introduction of edge modes.
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1 Introduction

We have recently proposed in the companion paper [1] a new roadmap towards quantum
gravity, grounded in the notion of representation of the corner symmetry algebra gS . This is
a universal notion of symmetry algebra at codimension-2 corners of any subregion of space,
which exists independently of boundary conditions. It can be defined at the classical level,
and demanding that the corner symmetries survive quantization gives a new organizing
principle for understanding quantum gravity.

1.1 Motivations

Our emphasis on the corner algebra is motivated by the lessons and deep insights com-
ing from two radically different approaches to quantum gravity, namely the teachings of
AdS/CFT holography and of loop quantum gravity (LQG). This new perspective, which
we call local holography,1 can be seen as a merging of some of the key concepts of both
approaches. It can also be seen as a new beginning, with an entirely different conceptual
perspective and new technical tools, allowing to address some critical shortcomings of both
approaches and to reconcile their principles and objectives.

1The term local holography has also been used in [2–4]. We use it here in a related but different manner.
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In AdS/CFT, one postulates that the bulk information can be encoded in terms of
observables living on an asymptotic boundary with specific dynamics. The challenge is
then to reconstruct the quantum bulk geometry, or even produce a consistent definition of
what this could be [5–14]. This question is still open despite interesting recent advances in
lower-dimensional gravity [15–25]. What is crucially missing in all these descriptions is an
understanding of the nature of micro-states of quantum geometry. In local holography, we
propose to decompose the bulk of spacetime into a collection of subregions, and to attach a
symmetry algebra to the corner of each subregion. The corner symmetry charges encode a
coarse-graining of the information inside each region it encloses. The corner Hilbert space
forms an irreducible representation of the local corner symmetry algebra, and choices of
states in this corner Hilbert space then encode quantum geometries. One of the goals of
this program is to show the conjectural claim that these continuous and covariant corner
Hilbert spaces can be taken to be finite-dimensional, with a size depending on the value
of the Casimirs of the corner algebra and the quasi-local energy. In this case, the coarse-
graining would no longer be an approximation, and can become exact at the quantum level.

One also expects to implement the bulk constraints as conservation laws for the local
corner charges. At the quantum level, these conservation laws are conjectured to be under-
stood in terms of generalized intertwiners, which defines a continuous version of the fusion
product for corner Hilbert spaces. This gives a concrete implementation of the profound
albeit rather vague statement that one can get “spacetime from entanglement of quantum
information” [26–33]. The program of constraint reconstruction as corner charge conserva-
tion was initiated in [34–37] with a focus on the kinematical constraints. A similar point
of view is also adopted in the group field theory approach [38], and some key ideas relating
dynamics and fusion product have been worked out in [39–42]. The two central points of
the program which we propose are still conjectural and should be thought of at this point
as directions to explore. In this series of papers we focus on some key kinematical and
semi-classical aspects as the first steps in this direction.

The idea that quantum gravity should assign to every local region a local Hilbert space
labeling state of quantum geometry associated with the boundary surface is not new. It
is one of the central and most crucial aspects of LQG [43, 44], as first revealed by Smolin
and Krasnov [45, 46], and successfully used in the black hole micro-states counting [47–51].
It also the central theme of tensor network realizations of spacetime as a quantum pro-
cess [39, 52–56] and it has made its appearance in attempts to extend AdS/CFT to finite
boundaries [57, 58]. In LQG, one postulates that quantum geometry is supported on a net-
work of distributional configurations (loops) and that the corresponding states of quantum
geometry are spin network states carrying SU(2) representations living on the links of the
network. When intersecting this network with a sphere one obtains a collection of punctures
labeling representations, which defines a Hilbert space attached to the sphere (the inter-
twiner space). This Hilbert space, which carries representations of a product of SU(2)’s, is
a particular and simple example of the discretization of a corner Hilbert space [59].

There are several challenges however with this approach. First, it relies on a connection
formulation using the su(2) Ashtekar-Barbero connection [60, 61], which exists only in the
tetrad formalism and in the so-called time gauge. This fact makes it almost impossible
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to transpose the results obtained there to metric gravity, where such a connection does
simply not exist. Moreover, attempts to relax the time gauge and extend this connection
to a manifestly Lorentz-invariant setting have at best led to ambiguous results [62, 63].
More problematic is the reliance of this formulation on the presence of an underlying
network along which one integrates the connection. The presence of this network introduces
discontinuities and singularities,2 which are usually rationalized as being quantum geometry
effects with no classical analog [67–72]. Moreover, the non-commutativity of the geometrical
observables, which is central to the program, can be traced back to these singularities [73].

One of our goals is to keep the deep insights of LQG, while freeing ourselves from
its most unpalatable aspects, such as the built-in discretization. In particular, in the
present paper we show that it is possible to have a non-commutative symmetry algebra
without introducing discrete graph structures, without relying on a connection formulation,
and without having to fix the time gauge. This, in turn, allows us to construct a new
geometrical operator, which is the corner metric. This then allows us to unambiguously
reconcile Lorentz invariance with discreteness of area.

1.2 Questions

Since the central focus of our program is the corner algebra, we first need to understand
what are the boundary symmetry algebras associated with different formulations of grav-
ity. As explained in [1], this is achieved by decomposing the symplectic potential of each
formulation of gravity into a bulk piece and a corner piece. The bulk piece is common to
all formulations and defined by a momentum density conjugated to the induced metric (or
induced coframe) on the slice. This yields the component diff(S) of the corner symme-
try algebra of gravity gS , corresponding to diffeomorphisms generated by tangent vector
fields non-vanishing on the corner S. This part of the algebra is non-trivially represented
in all formulations of gravity. What differentiates various formulations is then the corner
symplectic structure. We reveal that different formulations carry a different set of corner
charges, which provide a non-trivial representation for different components of the corner
symmetry algebra. This framework enables us to phrase the first central questions we
address in this paper:

(i) Can classically equivalent formulations of gravity lead to inequivalent quantizations?
Is there a fundamental difference in that respect between the second order metric
formulation and the first order formulation in terms of tetrads?

In [1] we have concentrated on the case of metric Einstein-Hilbert (EH) gravity and
established the results summarized in the first two lines of table 1 below. Here we switch
to tetrad gravity and consider the Einstein-Cartan-Holst (ECH) formulation, where Holst
denotes the inclusion of a topological term whose coupling is the Barbero-Immirzi parame-
ter γ = β−1. The goal of the present paper is to establish the last three lines in table 1. In
order to treat the ECH case, our strategy consists of first analyzing BF theory [74] and then
extanding our results to tetrad gravity by using the so-called simplicity constraints [75–80].

2There exists a reformulation of LQG working with discrete but non-singular representations [64–66].
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These constraints express the B field as a wedge product of the gravitational coframe field
according to

BIJ = (∗+ β)(e ∧ e)IJ =: EIJ [e]. (1.1)

In the Hamiltonian analysis, these primary constraints form a second class pair with their
conjugated secondary constraints [62, 63, 81–90]. If we don’t impose the time gauge, one
finds that the construction of a Lorentz covariant connection is ambiguous [62, 63, 91]. This
ambiguity is directly related to the question of whether discreteness of the area spectrum
survives the relaxation of the time gauge [86, 89, 92]. Moreover, the difference of treatment
of the simplicity constraints in canonical LQG and in the covariant spin foam approach
is the source of another set of ambiguities and puzzles [93–98]. This therefore raises the
second set of fundamental questions which we want to address:

(ii) Is it possible to reconcile Lorentz invariance with the discreteness of the area spec-
trum? How can the simplicity constraints be properly imposed at the quantum level?

It is important to acknowledge that the first question is relevant in any approach
to quantum gravity. Even in a metric formulation where the issue of dealing with the
simplicity constraints is bypassed, the derivation of a discrete area spectrum from the
continuum theory is a central open issue, which is key in order to explain the origin of
a finite entropy [99, 100]. In the context of tetrad gravity, we claim that the answer to
both questions in (ii) has been within reach all along. In order to realize this, one needs
to shift the emphasis from the bulk to the corner. Instead of using the Holst term and
the Barbero-Immirzi parameter in order to build a connection formulation in the bulk, one
can push this contribution to the corner and obtain a corner phase space structure with
a non-commutative coframe field. At the level of the symplectic potential, this follows
essentially from the identity [43, 101, 102]

β(e ∧ e)IJ ∧ δωIJ ' −βd(eI ∧ δeI), (1.2)

where the symbol ' denotes the use of the torsion-free condition. Acceptance of this
technically simple fact is forced upon us by the local holographic framework which we
are developing, and it has deep conceptual implications. In particular, it implies that the
connection is no longer the fundamental object required to build the kinematical Hilbert
space for quantum geometry. Instead, this role is now played by the non-commutative
corner coframe. This paradigm shift dissolves immediately ambiguities related to the choice
of bulk connection, and, as we will explain, it enables us to also treat unambiguously the
simplicity constraints (which become second class with themselves on the corner). At the
same time, it naturally explains from a continuum and semi-classical3 perspective how the
discreteness of the area spectrum follows from the symmetry algebra of the corner charges.

At this point, one could be worried about yet another fundamental puzzle: the fun-
damental geometrical fields seem to behave differently in the bulk and at the corner.
More precisely, while the fluxes classically Poisson commute in the bulk, they become

3The use of the term “semi-classical” in our context has to be understood in relation to the Kirillov orbit
method [103], as explained in [1].
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non-commutative at the corner after imposing the Gauss law [104]. In fact this is not a
new concern, and it was pointed out for the flux observables already early on in the LQG
framework [73]. There, it was believed that the resolution of the tension lies entirely in the
fact that the singular loopy excitations of quantum geometry develop quantum features (in
this case non-commutativity) which have no classical analog [105, 106]. If we want to let go
of this gap between classical and quantum states, the challenge is then to find a consistent
explanation for this puzzle already at the semi-classical and continuum level. If we believe
that the corner coframe field plays a fundamental role in describing the gravitational de-
grees of freedom both at the classical and at the quantum level, then we are forced to face
the third central question addressed in this paper:

(iii) How can we reconcile the different bulk and corner canonical Poisson structures with
the continuity of the coframe field?

The answer to this question will be grounded in the notion of edge modes. In order to
get there, let us now summarize the various results which we obtain, and how they build
upon each other in order to arrive at the edge modes.

1.3 Summary of the results

We now summarize three of our main results, which as we will explain encode essentially
the answer to the three questions raised above.

Our study of the classical phase space of ECH gravity is based on the covariant phase
space formalism. In this approach the discussion about the treatment of the second class
constraints of the Hamiltonian theory in the bulk is bypassed because the formalism is
simply on-shell. Still, one has to find a proper decomposition of the phase space variables
which enables us to access the equations of motion and to decompose the symplectic poten-
tial. As the bulk + corner decomposition of the symplectic potential for tetrad gravity is a
technically more involved and subtle process than in the metric case, with more constraints
involved, we proceed step by step.

We start with BF theory and perform a decomposition into tangential/normal and
horizontal/vertical components of all the geometrical objects defining the theory. This leads
us to the notion of boost and spin BF coframes, which in turn provides a decomposition
of the BF symplectic potential into a bulk term and a corner term. This is the first time
such a bulk + corner decomposition of BF theory is performed. In particular, this reveals
that BF theory possesses an additional canonical pair in the bulk as compared to gravity,
which turns out to vanish on-shell when imposing the bulk simplicity constraints turning
BF theory into ECH tetrad gravity. The novelty of our treatment of ECH gravity is that
it keeps the Holst contribution on the corner and parametrizes the bulk degrees of freedom
unambiguously in terms of the universal GR symplectic potential [1]. When relaxing the
requirement of the time gauge, the internal normal is part of the corner phase space, as
well as a contribution from the Holst term. This is expressed by the first main result of
the paper, derived in section 5, which is

(i) ΩECH '
∫

Σ
δP̃I ∧ δẽI +

∫
S

(
δẼI ∧ δnI −

β

2 δẽI ∧ δẽ
I
)
. (1.3)
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Elements of this decomposition, including the central role of the internal normal on the
corner phase space, have already appeared in the literature [43, 83, 101, 102, 107–116], but
here we put the pieces together and squeeze all the physical content out of this formula.
For Lorentz transformations, the corner potential yields symmetry charges satisfying an
sl(2,C)S algebra,4 with the generators given by the corner 2-form

EIJ
S= ẼJnI − ẼInJ + β(ẽ ∧ ẽ)IJ . (1.4)

We then find that there is an unambiguous description of the simplicity constraints on
this corner phase space, and that the bulk and corner simplicity constraints are different
in nature. More precisely, our parametrization of the bulk degrees of freedom with the
GR symplectic structure removes the ambiguities associated to a choice of connection in
the bulk, while an alternative and more symmetric parametrization of the corner symplec-
tic potential (see section 6.2) tells us how to introduce and make sense out of the corner
simplicity constraints. In this way, the confusions which have subsisted so far completely
wash away once the covariant phase space formalism is used to properly analyse the corner
symplectic structure. For the first time, LQG without the time gauge is non-ambiguous.
The same new parametrization naturally reveals the existence of an extra sl(2,R)S‖ com-
ponent of the corner symmetry algebra, which on-shell of the corner simplicity constraints
is associated to the tangential components of the corner metric. This second main result
of the paper, derived in section 6.5, is

(ii) {qab(x), qcd(y)} = − 1
β

(
qacεbd + qbcεad + qadεbc + qbdεac

)
(x)δ2(x, y), (1.5)

where εab is the totally skew Levi-Civita tensor. The corner area density is therefore
related to the sl(2,R)S‖ Casimir. Standard elements of representation theory together
with the space-like nature of the corner metric yield straightforwardly a discrete spectrum
for the corresponding area operator. The bracket (1.5) highlights the crucial role of the
Barbero-Immirizi parameter in obtaining an area gap, consistently with the standard LQG
description [105, 106]. However, here we achieve this result while shifting the emphasis from
the discrete holonomy-flux representation (and the use of the time gauge) to the continuum
corner symmetry algebra [34, 36, 37]. This result reconciles fundamental discreteness with
Lorentz invariance, and it is a manifestation of an underlying more general geometrical
structure which will be revealed and studied in the companion paper [59]. It is interesting
to point out that the discreteness of the area spectrum from the quantization of the corner
phase space in the continuum has also been derived in [117], although in a null context and
using spinorial variables.

Finally, we show how the answer to question (iii) is provided by the introduction of
the concept of edge modes as a set of fields (eI , JIJ , ϕ) living at the corner and a priori
independent of the (pull-back of the) bulk fields. These play a dual role: on the one hand,
they are required to restore gauge invariance at the corner, while defining non-trivial corner
symmetry charges. On the other hand, they are related to the pull-back of the bulk fields

4XS means the set of maps S → X.
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Corner symmetries gS

Formulation of gravity diff(S) sl(2,R)⊥ sl(2,R)‖ su(2) boosts
Canonical general relativity (GR) X

Einstein-Hilbert (EH) X X

Einstein-Cartan (EC) X X

Einstein-Cartan-Holst (ECH) X X X X

Einstein-Cartan-Holst + time gauge (ECHt) X X X

Table 1. Parts of the corner symmetry algebra which are non-trivially represented in various
formulations of gravity. The sl(2,R) algebras denoted with ⊥ and ‖ are respectively associated
with the metric components which are normal and tangent to the corner. The last two columns are
the decomposition of the Lorentz algebra into boosts and rotations.

on the corner by a gauge frame ϕ ∈ SL(2,C)S , which is an element of the corner symmetry
group which dresses the corner flux [118]. As shown in section 7, this gluing condition can
be expressed in terms of the coframe field and the Lorentz generators as

(iii) ẽIa
S' ρabeJb ϕJ I , EIJ

S' (ϕ−1Jϕ)IJ , (1.6)

where an additional corner group element ρ ∈ SL(2,R)S is necessary for the coframe. Since
the edge modes so introduced are non-commutative, their identification with the pull-
back of the bulk flux and coframe fields encodes naturally the non-commutativity of these
geometrical variables at the corner. Moreover, the introduction of the gauge frame ϕ is here
to insure that the gluing condition is a first class constraint invariant under the boundary
symmetry algebra. The appearance of this gauge frame also opens up the possibility to
understand how, even though we are not using a connection formulation to parametrize the
bulk phase space in (1.3) (as in standard LQG), the information about a gauge connection
(through its holonomy group elements) can still be reconstructed from the corner data when
considering the gluing of the coframe edge modes across subregions. This feature embodies
the paradigm shift which we are proposing: the discrete bulk holonomy is no longer a
constituent ingredient of the quantum geometry Hilbert space, but instead it emerges from
the representation of the continuum ultra-local algebra of the corner symmetry charges.
This interpretation of the gauge frame as a holonomy, which we just keep as an observation
at this point, will be developed in [59, 119].

The plan of the paper is as follows. In section 2 we review the basic ingredients of
BF theory and the tetrad formulation of gravity, including the pre-symplectic potential
and the Hamiltonian charges. These are known results (see also [120–122] for the study
of gravitational charges in the first order formalism), on which we however give a new
perspective in the rest of the paper.

In section 3 we perform a detailed decomposition of all the geometrical quantities that
play an important role in BF theory, including the simplicity constraints. This allows
us to derive a bulk + corner decomposition of the BF potential in section 4, and of the
ECH potential in section 5. This reveals the dynamical nature of the internal normal
at the corner. In fact, the main theme of section 5 is to show how, by analogy with
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the metric case [1], the ECH symplectic potential can be decomposed into a bulk term
common to all other formulations of gravity, plus a corner term. The bulk piece yields the
tangent diffeomorphism corner charge, with the spatial diffeomorphism constraint taking
the form of a conservation law for the momentum aspect. While this understanding of the
spatial diffeomorphism constraint is immediate in the metric case, in tetrad gravity this
interpretation has been revealed and exploited only recently [37, 123].

In section 6 we provide an alternative parametrization of the ECH corner potential in
terms of a Lie algebra-valued horizontal 1-form. We use this parametrization to introduce
the corner tangential metric and the corner simplicity constraints (which are the focus
of the follow-up paper [59]). The components of the corner metric satisfy an sl(2,R)S

algebra and represent additional corner Dirac observables. This establishes that the corner
symmetry algebra of tetrad gravity is given by5 gS = diff(S) n

(
sl(2,C)S ⊕ sl(2,R)S‖

)
.

We end the section by deriving a key result, which is the discreteness of the corner area
spectrum from the continuum.

After all this preparatory analysis we are ready to introduce the edge modes for ECH
gravity in section 7. This section is of a more conceptual nature, aiming at clarifying and
reconciling within our general framework several contrasting statements found across the
literature. This gives us the opportunity to set the stage for the next paper [59] in the series,
where the edge modes of ECH gravity provide the conceptually cleanest setup to study the
corner simplicity constraints in the continuum and classical theory. This analysis will reveal
the advantage of the edge mode formalism in unraveling new geometrical structures of
boundary degrees of freedom, which solves old puzzles in quantum geometry while opening
new paths towards quantization. A concluding discussion is presented in section 8.

We have included a long list of appendices containing details of various calculations.
Our notations and conventions are gathered in appendix A. Appendices B, C and D collect
several proofs and details of calculations used in the main text. An alternative decomposi-
tion of the ECH potential is presented in appendix E. Further details on the Hamiltonian
diffeomorphism charges are included in appendix F. Proof of the first class nature of the
gluing condition (1.6) is given in appendix G.

2 BF theory and tetrad formulation of gravity

In this section, following [1], we introduce notations and review basic facts about BF theory
and the Einstein-Cartan-Holst formulation of gravity. The reason for doing this is that we
are going to derive in (4.9) a new decomposition of the BF symplectic potential (into bulk
and corner pieces), from which the decomposition (5.1) of the ECH potential will immedi-
ately follow upon imposing the simplicity constraints (see [124] for a review of BF gravity).

5We will see in [59] that, in fact, there is an extra u(1) component as the sl(2,C) and sl(2,R) Casimirs
are related by a balance equation. For the sake of the preliminary analysis of the simplicity constraints
presented here, this aspect is not fundamental.
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2.1 BF theory

In terms of a Lorentz tensor 2-form BIJ and a Lorentz connection 1-form ωIJ with curvature
F IJ = dωIJ + ωIK ∧ ωKJ , BF theory is defined by the Lagrangian

LBF = 1
2BIJ ∧ F

IJ . (2.1)

The equations of motion are the flatness and Gauss equations

F IJ ≈ 0, T IJ := dωBIJ ≈ 0. (2.2)

The Bianchi identities
dωF IJ = 0, dωT IJ = [F, T ]IJ , (2.3)

signal the presence of two sets of gauge invariances,6 labelled by a Lie algebra-valued scalar
αIJ and a Lie algebra-valued 1-form φIJ , and acting as

δαB
IJ = [B,α]IJ , δαω

IJ = dωαIJ , δφB
IJ = dωφIJ , δφω

IJ = 0. (2.5)

Finally, the symplectic potential of BF theory, associated with a codimension-1 manifold
Σ, is simply given by

ΘBF = 1
2

∫
Σ
BIJ ∧ δωIJ . (2.6)

We perform its bulk + corner decomposition in section 4.

2.2 Einstein-Cartan-Holst gravity

In the first order tetrad formulation of gravity, the basic fields are an R4-valued form, or
coframe field eI = dxµeIµ, with inverse êI = eµI ∂µ, and a Lorentz connection ωIJ . In terms
of the coframe field, the spacetime metric is gµν = eIµe

J
ν ηIJ , where ηIJ = diag(−1, 1, 1, 1).

Coframes and their dual frames are related by eµI = gµνηIJe
J
ν .

The Einstein-Cartan-Holst (ECH) Lagrangian is

LECH = 1
2EIJ ∧ F

IJ , EIJ [e] := (∗+ β)(e ∧ e)IJ . (2.7)

The duality map acting on the Lie algebra is defined as (∗M)IJ = 1
2εIJ

KLMKL, and we
use the notation (e ∧ e)IJ := eI ∧ eJ . We refer the reader to appendix A for the rest of
our notations and conventions, as well as some useful formulas. The parameter γ = β−1

is the so-called Barbero-Immirzi parameter. It corresponds to a shift of the Lagrangian by
the topological Holst term7 [130]. The ECH Lagrangian is obtained from the BF one after
imposition of the simplicity constraints

(∗B)IJ − βBIJ = −(1 + β2)(e ∧ e)IJ ⇒ BIJ = EIJ [e]. (2.8)
6The interplay between Bianchi identities and gauge symmetries goes back to Noether [125], and results

in the conservation laws

d(αIJTIJ) = δαωIJT
IJ + δαB

IJFIJ , d(φIJFIJ) = δφωIJT
IJ + δφB

IJFIJ . (2.4)

7There are other topological terms which one can add to the Lagrangian, corresponding to the Pontrjagin,
Euler, and Nieh-Yan classes [120, 126–129]. We will come back to these terms in their influence on the
potential in future work.
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These constraints will be analyzed and decomposed in section 3.5 below. Their corner
counterpart and their quantization will be the focus of the companion papers [59, 119],
but we present a preliminary analysis of the corner simplicity constraints already here in
section 6.3.

The equations of motion obtained by varying the ECH Lagrangian with respect to eI

and ωIJ respectively are given by

GI := (∗+ β)F IJ ∧ eJ ≈ 0, TIJ := (∗+ β)
(
dωe[I ∧ eJ ]

)
≈ 0, (2.9)

with GI the Einstein tensor in tetrad variables. When the coframe is invertible, the second
equation is equivalent to the vanishing of the torsion T I := dωeI . These first order equations
of motion satisfy two Bianchi identities, namely

dωTIJ = e[I ∧GJ ], ξIdωGI = ξyTI ∧GI + ξyF IJ ∧ TIJ , (2.10)

where ξI = ξy eI . These identities signal the presence of two sets of gauge invariances.
They correspond to internal Lorentz transformations, which are labelled by a Lie algebra
valued scalar αIJ , and diffeomorphisms, which are labelled by a vector field ξ. Their action
on the fields is

δαe
I = −αIJeJ , δαω = dωαIJ , δξe

I = LξeI , δξω
IJ = LξωIJ , (2.11)

where Lξ(·) = d(ξy ·) + ξy (d ·) is the Lie derivative. The charges associated with these
transformations have been studied in [1]. Here we have another look at them once the
symplectic potential ECH has been decomposed into bulk and corner components.

The symplectic potential for tetrad gravity which we are going to study in the rest of
this paper, and which follows from the Einstein-Cartan-Holst Lagrangian, is

ΘECH = 1
2

∫
Σ
EIJ ∧ δωIJ . (2.12)

For completeness we recall that the corner Hamiltonian charges associated with Lorentz
transformations and diffeomorphisms are

HSECH[α] = 1
2

∫
S
αIJE

IJ , HSECH[ξ] = 1
2

∫
S
ξy γIJE

IJ , (2.13)

where γIJ [e] is the torsionless Lorentz connection compatible with eI . On-shell of the
Gauss and diffeomorphism constraints, these charges satisfy a non-commutative algebra,
which is the corner algebra diff(S) n sl(2, C)S under study [1]

{HSECH[α],HSECH[β]} ' HSECH
[
[α, β]

]
, (2.14a)

{HSECH[ξ],HSECH[α]} ' HSECH[Lξα], (2.14b)
{HSECH[ξ],HSECH[ξ′]} ' HSECH

[
[ξ, ξ′]Lie

]
. (2.14c)

One can clearly obtain the potential ΘECH from ΘBF by imposing the simplicity con-
straints. Our task is now to explain how this can be achieved when the potentials are
decomposed into bulk and corner components. This also shows the explicit relationship
between ΘECH and the universal bulk piece ΘGR. In order to get these results, we now need
to understand how all the various quantities which have appeared so far can be decomposed
geometrically on the slice Σ.
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2.3 A new look at canonical analysis

The role of the simplicity constraints in reducing topological BF theory to Einstein-Cartan-
Holst gravity has been extensively studied in the literature, as well as the canonical struc-
ture of the ECH Lagrangian (2.7) (see references in the next paragraph). However, this was
done almost exclusively using Dirac’s algorithm of Hamiltonian analysis. There exists a
second canonical way of studying the phase space of a classical theory, which is to use the co-
variant phase space formalism as we do here. These two possibilities differ in the sense that
the former uses a separation of the constraints into primary and secondary, while the latter
is simply an on-shell formalism which imposes the primary constraints for all time. This
is why in this paper we discuss only the nature of the simplicity constraints. More about
this point is explained in section 3.5. For the moment, It is important to explain at this
point where our treatment stands with respect to the already existing literature, and how
it enables us to solve some long standing puzzles in canonical LQG and spin foam models.

The Hamiltonian analysis of Einstein-Cartan gravity was performed in [81–83]. It leads
to a phase space parametrized by the ADM canonical pair (given by the induced metric on
the slice and its conjugate momentum associated to the extrinsic curvature of the slice), or
equivalently its first order tetrad analog. The classical starting point of LQG, however, is
a parametrization of the phase space in terms of an su(2) connection and the conjugated
densitized triad, traditionally called the flux. This was initially derived as a canonical
transformation from the ADM phase space [60, 61], and then from the Hamiltonian analysis
of the Einstein-Cartan-Holst Lagrangian [130]. These derivations however use the time
gauge, which amounts to fixing the internal normal nI , and therefore reduces the internal
gauge group from SL(2,C) to the SU(2) stabilizing nI . It was suggested that this gauge
choice was at the origin of the discreteness of the area spectrum in LQG [62, 92], and the
source of difficulties when trying to match canonical LQG with the covariant spin foam
approach [62, 63, 93, 131, 132]. This has motivated the study of the canonical theory
without the time gauge. When analyzing the ECH Lagrangian without the time gauge,
complications arise due to the presence of second class constraints,8 which are precisely
the primary simplicity constraints and their conjugated secondary constraints [63, 84, 87].
These can be dealt with either by using the Dirac bracket [85, 86], by working with an
explicit solution of the constraints [88–90, 134–137], or by adding variables to promote
the constraints to a first class set (so-called gauge unfixing) [110, 111, 138]. In all cases,
one arrives at the conclusion that the choice of Lorentz connection configuration variable
is ambiguous in the bulk [63, 91], an observation which has fueled the discussion on the
ambiguities of the imposition of the spin foam simplicity constraints.9 Obviously this also
translates into ambiguities in the quantum theory.

Therefore, some of the main questions which remain open from the point of view of
the Hamiltonian analysis of the simplicity constraints in the bulk are: does the discreteness

8Second class constraints are also present in the time gauge, but in this case they can be handled easily
and lead to an ambiguous parametrization of the phase space [130, 133].

9In the Hamiltonian analysis the simplicity constraints come in pairs given by primary and secondary
constraints, and these latter depend on which connection variable is chosen in order to parametrize the
phase space.
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of the area spectrum survive the relaxation of the time gauge and is it compatible with
Lorentz invariance? Are the simplicity constraints properly imposed in spin foam models?
Indications that the answer to the first question is positive are given in [89, 117] (see
also [139, 140]). The second question has been the source of much debate [93–98, 141]. In
our view, confusion in this debate is deeply rooted in a more fundamental puzzle of the
LQG framework, which consists of the incompatibility between the bulk and the corner
phase space canonical structures, as pointed out in the introductory section 1.2.

The rest of this paper is devoted to addressing these issues. Our new treatment is
based, at the conceptual level, on the shift of focus from the bulk connection to the corner
coframe field, and, at the technical level, on the analysis of tetrad gravity by means of
the covariant phase space formalism. The latter being an on-shell construction, all that
is required in order to deal with the second class constraints (which after all are just the
canonical decomposition of the torsion equations) is to properly decompose the connection
and to impose the equations of motion. This is what we do just below. Let us now dive step
by step into the technicalities of this construction. For this we perform a decomposition of
the various geometrical quantities using the spacetime and internal normals.

3 3 + 1 decompositions

In this section we introduce all the geometrical tools necessary in order to decompose
the symplectic potentials (2.6) and (2.12) respectively associated with topological BF the-
ory and ECH gravity. This requires to decompose the constraints, equations of motions,
Lorentz tensors, and connections. These decompositions reveal the precise form of the bulk
and corner components of the potentials, and their geometrical interpretation. They also
clarify the role of the bulk simplicity constraints.

We start by recalling some standard material. As usual, the 3 + 1 decomposition relies
on a foliation of the spacetime by codimension-1 submanifolds Σ. This foliation defines a
normal 1-form n = nµdxµ and the dual normal vector n̂ = nµ∂µ. Given a coframe eI =
dxµeIµ and dual frame êI = eµI ∂µ, we can introduce an internal normal nI = n̂y eI such that

n = eInI , n̂ = êIn
I , nInI = nµnµ = σ, (3.1)

with σ = −1 for a time-like normal and σ = +1 for a space-like one (whenever such a
choice is made in the following, it will be explicitly said).

With the help of these normals we can then introduce a new coframe field

ẽIµ := eIµ − σnµnI . (3.2)

This form is both tangential in the sense ẽInI = 0, and horizontal in the sense n̂y ẽI =
nµẽIµ = 0. It furthermore defines the induced metric on Σ as

g̃µν := ẽIµẽ
J
ν ηIJ = gµν − σnµnν . (3.3)

Note that it is important to differentiate between the normals n, n̂, nI because they have
a different behavior under field variations. One usually assumes that the normal form n
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is kinematical, i.e. independent of the metric except for its normalization. This means
that we impose that δn ∝ n under a field variation. This condition implies that the field
variation preserves the chosen foliation. It is important, however, to appreciate that the
normal vectors n̂ and nI are both phase space variables which possess non-trivial field
variations. Indeed, we have

ẽIδnI = −δẽInI , ẽIµδn
µ = −δẽIµnµ, (3.4)

which follows directly from the fact that ẽ is both tangential and horizontal. The inclusion
of the internal normal nI in the phase space is key to the construction which we present here.

In BF theory the fundamental field is the Lie algebra-valued 2-form BIJ , and there is no
intrinsic notion of coframe field. However, it turns out that once we chose an internal normal
vector nI we can define a tangential boost coframe b̃I and a tangential spin coframe s̃I .
Decomposing BIJ in terms of these coframes enables us to decompose the BF potential in
a form very similar to the ECH potential. Then, the simplicity constraints have an elegant
rewriting as a relationship between the coframes (b̃I , s̃I) and the gravitational coframe ẽI .

Two important notions in what follows are the decompositions of Lorentz and spacetime
indices into normal/tangential and vertical/horizontal components respectively. The first
decomposition refers to the internal Lorentz indices, while the second one to spacetime
differential form indices. Let us now introduce these decompositions

3.1 Normal/tangential decomposition

Let us start by discussing the decomposition into normal and tangential components. We
first use it for tensors like BIJ and EIJ , then for connections like ωIJ , and then for the
Gauss constraint, where it corresponds to a decomposition into boosts and rotations.

3.1.1 Decomposition of Lorentz tensors

Given the internal normal nI and a Lorentz tensorM IJ , we define its normal and tangential
components as

M I
⊥ := M IJnJ , M I

‖ := (∗M)IJnJ . (3.5)

With this we can then decompose the Lorentz tensor as

M IJ = 2σM [I
⊥ n

J ] − σε̃IJKMK
‖ , (3.6)

where we have introduced the induced epsilon tensor ε̃IJK := εIJKLn
L, and we recall that

antisymmetrization of indices is defined with a factor 1/2. Under duality M → ∗M , we
have that M⊥ →M‖ and M‖ → −M⊥.

We make extensive use of the decomposition of the 2-form BIJ . Since it appears as the
generator (or charge) of Lorentz transformation, we can naturally understand its tangential
and normal components as generators of rotation and boost. In order to reflect this we
therefore adopt the notation

BI := BIJnJ , SI := (∗B)IJnJ , (3.7)
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where BI stands for boost and SI for spin. In terms of these components, we will repeatedly
use the decomposition

BIJ = 2σB[InJ ] − σε̃IJKSK . (3.8)

This is particularly important for the decomposition of the BF potential and the rewriting
of the simplicity constraints.

3.1.2 Decomposition of connections

Both BF theory and ECH gravity feature the Lorentz connection ωIJ , whose decompo-
sition is a central ingredient of what follows. The spacetime Lorentz connection can be
decomposed as

ωIJ = ΓIJ + 2σK [InJ ]. (3.9)

In this decomposition, the only requirement which we impose is

dΓn
I = 0. (3.10)

This in turn implies that
KI = dωnI . (3.11)

This shows that KI is a tangential Lorentz vector since KInI = 0. As the space of Lorentz
connections is an affine space, the fact that KI is a tensor implies that ΓIJ is a Lorentz
connection. More precisely, it is the connection which preserves nI . Then, the fact that
dΓn

I = 0 means that its curvature tensor R[Γ] = dΓ + Γ ∧ Γ is purely tangential, i.e. such
that RIJnJ = 0.

One should be careful when comparing this decomposition of the connection with the
decomposition of tensors as in (3.6). Indeed, one can see that KI is not equal to the
normal part of the connection, since ωI⊥ = ωIJnJ = KI − dnI . However, we have that the
tangential part of ΓIJ is the tangential part of the Lorentz connection, i.e. ωI‖ = (∗ω)IJnJ =
ΓI‖ . In appendix C.1 we give for completeness the decomposition of the Lorentz gauge
transformations acting on KI and ΓIJ . This shows as expected that the former transforms
as a tensor and the latter as a Lorentz connection.

Finally, the decomposition of the connection implies that its curvature tensor decom-
poses as

F IJ = RIJ(Γ)− σ(K ∧K)IJ + 2σdΓK
[InJ ]. (3.12)

We can read from this the normal and tangential components, which are respectively
F I⊥ = dΓK

I and F IJ‖ = RIJ(Γ)− σ(K ∧K)IJ . We use this later on when decomposing the
Einstein equations.

3.1.3 Boost/rotation decomposition of the Gauss constraint

It is now useful to apply the tangential/normal decomposition to the Gauss constraint
T IJ = dωBIJ , which leads to a rotational and a boost Gauss laws. First, using (3.8)
and (3.9) leads to

dωBIJ = dΓB
IJ + 2σB[I ∧KJ ] + 2(K × S)[InJ ], (3.13)
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where we have used the cross product (M ×N)I := ε̃IJKM
J ∧NK . Then, using (3.8) once

again, and the fact that dΓε̃IJK = 0, we can further decompose

dΓB
IJ = 2σdΓB

[InJ ] − σε̃IJKdΓS
K . (3.14)

This implies that the boost and rotation components of the Gauss constraint, given re-
spectively by BI := T IJnJ and RI := (∗T )IJnJ , are equal to

BI = dΓB
I + σ(K × S)I , RI = dΓS

I − σ(K ×B)I . (3.15)

The boost component makes an appearance in the bulk piece of the BF symplectic potential
(when written off-shell). Furthermore, using the simplicity constraints in (3.15) will give a
boost/rotation decomposition of the torsion equations of motion of ECH gravity.

3.2 Horizontal/vertical decomposition

The presence of the normal form n allows us to decompose any spacetime form α into
horizontal and vertical components. The vertical component of the form α is the form
αn := n̂yα obtained by contraction with the normal vector. Therefore, a form α is said
to be horizontal when its vertical component vanishes, i.e. when n̂yα = 0. The horizontal
component α̃ is the component which survives the pull-back on Σ, and is denoted by α Σ= α̃.
With this, any form α can be decomposed into horizontal and vertical components as

α = α̃+ σn ∧ αn, αn := n̂yα. (3.16)

In what follows, forms with a tilde will always be horizontal. Notice that the coframe field
eI is special in the sense that its horizontal component is also tangential, as explained
below (3.2), although this is not true for a general form.

We can also decompose ordinary and covariant differentials of forms. For example, for
an horizontal form α̃ the covariant derivative satisfies

dΓα̃ = d̃Γα̃+ σn ∧ LΓ
n̂α̃, (3.17)

where d̃ is the pull-back differential on Σ, and where we have introduced the covariant
Lie derivative LΓ

ξ α̃
I := ξy (dΓα̃

I) + dΓ(ξy α̃I). This covariant Lie derivative is such that
LΓ
ξn

I = 0. We also have
dn = d̃n+ σn ∧ Ln̂n. (3.18)

This decomposition can be applied to the tensor appearing in the decomposition of the
connection. In this case we have

KI = K̃I + σn ∧KI
n, (3.19)

where K̃I is the extrinsic curvature form and KI
n can be identified with the acceleration.

Using the fact that Lξω = ξyF + dω(ξyω), the vertical component of the curvature can be
expressed in terms of the Lie derivative of the connection along the vector n̂ as

F IJn = Ln̂ωIJ − dωωIJn . (3.20)
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3.3 BF coframes

Let us now focus again on the Lie algebra-valued 2-form BIJ . We can decompose it in
both tangential/normal and horizontal/vertical components, but then also combine these
decompositions. Then, both the normal (boost) and the tangential (spin) parts can be
decomposed into horizontal and vertical components as

BI = B̃I + σn ∧BI
n, SI = S̃I + σn ∧ SIn. (3.21)

With these two decompositions, we have rewritten the 36 components of the 2-form BIJ

in terms of the 18 + 18 components (BI , SI), and then each of these (say, for BI) 18
components in terms of the 9 + 9 horizontal/vertical components (B̃I , BI

n). The object BI
n

is a vector-valued vertical 1-form, and can be thought of as a the vertical component of
a coframe, which we call the normal boost coframe. On the other hand B̃I is a vector-
valued horizontal 2-form. It is important to appreciate that it is possible to generically10

decompose B̃I as a cross product of horizontal 1-forms b̃I by writing

B̃I = 1
2(b̃× b̃)I , (b̃ ∧ b̃)IJ = −σε̃IJK B̃K . (3.22)

Indeed, here we are simply trading the 9 components of B̃I for the 9 components of b̃I .
We call b̃I the tangential boost coframe. Similarly we can rewrite S̃I as

S̃I = 1
2(s̃× s̃)I , (s̃ ∧ s̃)IJ = −σε̃IJK S̃K , (3.23)

in terms of a tangential spin coframe s̃I . Notice that these decompositions hold before
imposing the simplicity constraints relating BIJ to the gravitational EIJ [e]. Here we are
still in BF theory, which is why there are two coframes.11 We show below that the simplicity
constraints have an elegant interpretation as relating b̃I and s̃I with the gravitational
coframe ẽI .

This completes our tangential/normal and horizontal/vertical decomposition of the B
field in terms of two boost coframes (b̃, Bn) and two spin coframes (s̃, Sn). We use this
decomposition in section 4 to rewrite the potential of BF theory.

3.4 Equations of motion

We now present the decomposition of the equations of motion of Einstein-Cartan-Holst
gravity. These are the torsion equation12 T I = dωeI ' 0 and the Einstein equation GI ≈ 0
introduced in (2.9). The details are given in appendix B.

The torsion equation can be decomposed into normal T⊥ = T InI and tangential T I‖
parts, and equation (B.6) gives its decomposition into horizontal and vertical components.
The horizontal components give the constraints, while the vertical components are the

10Provided that B̃I satisfies the non-degeneracy condition εabcε̃IJKB̃IabB̃Jcd 6= 0.
11This can also be understood in terms of the Urbantke metrics of BF theory [142].
12The torsion equation can be imposed alone, which we denote by ', while the Einstein equation requires

to also impose the torsion, and is therefore denoted by ≈.
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evolutions equations. More precisely, the tangential and normal horizontal components are
respectively given by

d̃Γẽ
I ' 0, ẽI ∧ K̃I ' 0. (3.24)

The first equation establishes that Γ̃ is the spin connection associated with ẽ. The second
equation can be understood as the condition that the extrinsic curvature tensor is symmet-
ric, i.e. K̃ [IJ ] = 0 where K̃I = K̃IJ ẽJ . The vertical components n̂yT I‖ and n̂yT⊥ define
the evolution equations

LΓ
n̂ẽ
I ' K̃I , ẽIK

I
n ' Ln̂n, (3.25)

where LΓ
ξ is the covariant Lie derivative associated with Γ. The first relation tells us that

the pull-back of KI can be understood as the extrinsic curvature, i.e. the normal derivative
of the induced coframe.

Using the normal and tangential components (B.10) of the Lorentz curvature tensor
F IJ , we can similarly decompose the Einstein tensor GI = (∗ + β)F IJ ∧ eJ into normal
G⊥ = GInI and tangential GI‖ components. We then denote by C the horizontal component
of G⊥, and by CI the horizontal component of GI‖ . The quantities C and CI are the
constraints when σ = −1, and they are boundary evolution equations when σ = +1.
Explicitly, they are given by

CI ' d̃ΓP̃
I , C = −R̃I(Γ̃) ∧ ẽI + σ

2 (K̃ × K̃)I ∧ ẽI − βd̃ΓK̃
I ∧ ẽI , (3.26)

where we had to use the torsion equations to rewrite CI . These two expressions are
nothing but the spatial diffeomorphism constraint and the Hamiltonian constraint. The
spatial diffeomorphism constraint is here nicely expressed as a conservation equation for
the momentum aspect [37]

P̃ I := −σ(K̃ × ẽ)I . (3.27)

Note that the last term of C vanishes when the torsion constraints (3.24) are satisfied. The
vertical components n̂yG⊥ and n̂yG‖ are the evolutions equations.

3.5 Bulk simplicity constraints

In their most elementary form, the simplicity constraints taking us from BF theory to ECH
gravity are just the requirement that

BIJ = EIJ [e], EIJ [e] = (∗+ β)(e ∧ e)IJ . (3.28)

It is now natural to decompose both sides of this relation in terms of horizontal/vertical and
normal/tangential components, and thereby express the simplicity constraints as relations
between the various components of BIJ and EIJ .

Let us start by decomposing the gravitational 2-form EIJ . Applying the tangen-
tial/normal decomposition to the wedge product of the coframe fields, we get

(e ∧ e)I⊥ = (e ∧ e)IJnJ = ẽI ∧ n, (e ∧ e)I‖ = ∗(e ∧ e)IJnJ = 1
2(ẽ× ẽ)I . (3.29)
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We now introduce the horizontal 2-form ẼI (called the flux in LQG) defined as

ẼI := 1
2(ẽ× ẽ)I , (ẽ ∧ ẽ)IJ = −σε̃IJK ẼK , ∗(ẽ ∧ ẽ)IJ = 2σẼ[InJ ]. (3.30)

From this definition, one can see that ẼI is also a tangential form, i.e. ẼInI = 0. Using
these ingredients in (3.6) tells us that

(e ∧ e)IJ = 2σẽ[InJ ] ∧ n− σε̃IJK ẼK , ∗(e ∧ e)IJ = 2σẼ[InJ ] + σε̃IJK ẽ
K ∧ n , (3.31)

and we find that the decomposition of the gravitational 2-form is

EIJ = σ
(
2Ẽ[InJ ] − βε̃IJK ẼK

)
− σn ∧

(
2βẽ[InJ ] + ε̃IJK ẽ

K). (3.32)

This means in particular that the pull-back to Σ of EIJ is given by

ẼIJ = 2σẼ[InJ ] + β(ẽ ∧ ẽ)IJ = σ
(
2Ẽ[InJ ] − βε̃IJK ẼK

)
(3.33)

and it satisfies ẼIJnJ = ẼI .
Similarly, using the decompositions (3.8) and (3.21) of BIJ in terms of boost and spin

coframes yields

BIJ = σ
(
2B̃[InJ ] − ε̃IJK S̃K

)
+ n ∧

(
2B[I

n n
J ] − ε̃IJK SKn

)
. (3.34)

The simplicity constraints BIJ = EIJ can therefore be written in terms of the boost and
spin components as

B̃I = ẼI , S̃I = βẼI , BI
n = −σβẽI , SIn = σẽI . (3.35)

One sees that the simplicity constraints identify the tangential boost form with the gravi-
tational flux. To go from the BF symplectic potential (4.9) to the ECH symplectic poten-
tial (5.1), it will be sufficient to focus only on the fact that the simplicity constraints identify

B̃I = ẼI , s̃I =
√
βẽI . (3.36)

Notice that the actual names of the coframes are irrelevant: what matters is that BF theory
has two coframes while ECH gravity only has one. The bulk simplicity constraints say that
the two coframes of BF theory are in fact not independent, but proportional to each other
through β (if β = 0, the simplicity constraints amount to killing one of the BF coframes).
For this reason, we could have chosen from the onset a “notational gauge” in which the
pair of BF coframes is either (b̃I ≡ ẽI , s̃I) or (b̃I , s̃I ≡

√
βẽI). We have chosen not to do so

at this point in order not to mix notations between BF and ECH and introduce possible
sources of confusion. We however choose the latter notational shortcut in sections 6 and 7.

An important word of caution must be mentioned at this point, and has to do with
the difference between the bulk and corner simplicity constraints. In the bulk, reducing
topological BF theory to ECH gravity requires to impose BIJ = EIJ , which as we have
shown translates into the various identifications (3.35) between components. As these
components all commute in the bulk, this identification is not problematic. On the corner
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the flux can be viewed as the generator of the corner algebra is therefore non-commutative.
Due to this, the corner simplicity constraints are second class, and their imposition must
therefore be performed with care in order to respect the Lorentz algebra structure of the
boost and spin (rotation) generators.

With the simplicity constraints, we can finally express the boost and rotational
parts (3.15) of the Gauss law as

BI [e] Σ= d̃ΓẼ
I + σβ(K̃ × Ẽ)I ' 0, RI [e] Σ= βd̃ΓẼ

I − σ(K̃ × Ẽ)I ' 0. (3.37)

One can see that in this case these two constraints are proportional to each other when
β2 = −1, which is to be expected as we work in Lorentzian signature. Their imposition
implies that

d̃ΓẼ
I ' 0, (K̃ × Ẽ)I ' 0. (3.38)

In terms of ẽI and the momentum aspect P̃ I = −σ(K̃ × ẽ)I , this is

d̃Γẽ
I ' 0, (P̃ × ẽ)I ' 0. (3.39)

We now have at our disposal all the ingredients necessary to decompose the symplectic
potentials of BF theory and ECH gravity.

Finally, let us comment on the relationship between the simplicity constraints in the
Hamiltonian framework and in the covariant phase space formalism which we use here.
In the covariant formalism we work on-shell with the symplectic form and we only have
one constraint to impose at all time: the constraint (3.28). In the Hamiltonian analysis,
the simplicity constraints are given by a pair of primary and secondary constraints. The
primary simplicity constraints are (the spatial part of) the simplicity constraints (2.8) on
the B field, while the secondary constraints involve also the connection. Although the pri-
mary constraints are first class the system of primary and secondary constraints is second
class. As usual in the Dirac algorithm of constrained systems, the secondary simplicity
constraints arise from the requirement of preserving in time the primary simplicity con-
straints, i.e. from their Poisson bracket with the Hamiltonian. As shown in [81, 83] (see
also [63, 87, 143]), the primary and secondary simplicity constraints in the Hamiltonian
picture are given, when β = 0, respectively by

Φab = εIJKLBa
IJB

b
KL ≈ 0, Φ̇ab ≈ 0⇒ Ψab = εIJKLBcM

I B
(a
MJ∇cB

b)
KL ≈ 0, (3.40)

where BaIJ = 1
2ε
abcBIJ

bc is a densitized vector constructed from the flux 2-form.13

In the covariant phase space formalism, this separation into primary and secondary
constraints does not exist. This follows from the fact that the covariant phase space
formalism is on-shell. This means that it assumes that all equations of motion (whether
they are true dynamical equations or constraints) are imposed. Therefore the imposition
of the primary constraints B ∼ e∧e for all time is equivalent to the primary and secondary
constraints. It is also clear that even if the simplicity constraints commute at equal time

13Explicitely we have BaIJ = en[I ẽ
a
J].
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(that is even if they are first class on a slice Σ) the simplicity constraint at one time does
not necessarily commute with the simplicity constraints at another time.

However, one can still ask where in covariant phase space the information about the
simplicity constraints is encoded. The primary constraint is encoded of course in the
decomposition BIJ = EIJ [e] for the B field, see (3.28). The secondary constraint is on
the other hand encoded into the decomposition (3.9) of the connection. Indeed, one can
check that plugging the relation BIJ = EIJ [e] into the secondary simplicity constraint and
using the decomposition (3.9) of the connection reduces the secondary constraints to the
first condition14 in (3.24). This means that the secondary constraints is essentially the
statement that Γ is the connection compatible with ẽ. This is consistent since we have
shown that (3.24) are the zero torsion constraints. The first equation of (3.24), which says
that Γ is the spin connection for ẽ is equivalent to the secondary constraints, while the
second equation of (3.24) is the boost component of the Gauss-Law.

Since the covariant phase space formalism is on-shell and the torsionless conditions are
implemented, all the Hamiltonian simplicity constraints are satisfied. This explains why,
although we do not explicitly use a Dirac algorithm to treat the simplicity constraint, the
variables we are working with have the same physical content as in the usual Hamiltonian
picture.

4 Decomposition of the BF symplectic potential

The symplectic potential of BF theory is

ΘBF = 1
2

∫
Σ
BIJ ∧ δωIJ . (4.1)

Using the decomposition (3.8) in terms of boost and spin, and the fact that on Σ only the
tangential components contribute, we get

ΘBF = σ

∫
Σ

(
B̃I ∧ δωIJnJ −

1
2 ε̃IJK S̃

K ∧ δωIJ
)
. (4.2)

We now evaluate the two terms separately. For the first term, we use the variation of (3.9)
to get

δωIJnJ = δKI + δΓIJnJ + σnIKJδnJ , (4.3)

while from the variation of (3.10) we obtain

dΓδn
I + δΓIJnJ = 0. (4.4)

Together, this leads to

δωIJnJ = δKI − dΓδn
I + σnIKJδnJ . (4.5)

14We can check that Ψab is proportional to eK (aε̃b)cd(DcedK), where D is the covariant derivative asso-
ciated with Γ.
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The last term does not contribute when contracted with BI , so we can therefore write that

BI ∧ δωIJnJ = BI ∧ (δKI − dΓδn
I)

= BI ∧ δKI + dΓBIδn
I − d(BIδnI). (4.6)

To write the second term in the potential, let us first notice that

− σε̃IJKSK ∧ δωIJ = −σε̃IJKSK ∧ δΓIJ + 2(K × S)JδnJ , (4.7)

and then use (3.23) to write

−σε̃IJKSK ∧ δΓIJ
Σ= (s̃ ∧ s̃)IJ ∧ δΓIJ

= −s̃I ∧ δΓIJ ∧ s̃J
= s̃I ∧

(
dΓδs̃

I − δ(dΓs̃
I)
)

= 2dΓs̃I ∧ δs̃I − δ(s̃I ∧ dΓs̃
I)− d(s̃I ∧ δs̃I). (4.8)

Noticing that (4.6) and (4.7) have two terms which combine to form the boost Gauss law
BI of (3.15), and writing all the quantities on Σ in terms of horizontal forms, we finally get

ΘBF = ΘΣ
BF + ΘS

BF, (4.9)

where the bulk potential is

ΘΣ
BF :=

∫
Σ

(
σB̃I ∧ δK̃I + d̃Γs̃I ∧ δs̃I + σB̃IδnI

)
− δ

(1
2

∫
Σ
s̃I ∧ d̃Γs̃

I
)
, (4.10)

and the corner one is
ΘS

BF := −
∫
S

(
σB̃Iδn

I + 1
2 s̃I ∧ δs̃

I
)
. (4.11)

Notice that, in the bulk potential, the third term vanishes on-shell while the last one is
a total variation. These two terms therefore don’t contribute to the on-shell symplectic
structure.

It is now a straightforward task to impose the simplicity constraints in order to obtain
the gravitational potential.

5 Decomposition of the ECH symplectic potential

With the decomposition of the BF symplectic potential we can now easily obtain the de-
composition of the ECH potential by plugging the simplicity constraints. We then compare
this ECH potential with the GR potential of metric gravity in order to identify the relative
potential, and then use this latter to study the relative charges.

5.1 ECH symplectic potential

Using the simplicity constraints (3.36) in (4.9) gives us

ΘECH = ΘΣ
ECH + ΘS

ECH, (5.1)
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with

ΘΣ
ECH :=

∫
Σ

(
σẼI ∧ δK̃I + βd̃ΓẽI ∧ δẽI + σB̃IδnI

)
− δ

(
β

2

∫
Σ
ẽI ∧ d̃Γẽ

I
)
, (5.2a)

ΘS
ECH := −

∫
S

(
σẼIδn

I + β

2 ẽI ∧ δẽ
I
)
. (5.2b)

The ECH potential is manifestly very similar to the BF potential. The third term in
the bulk vanishes on-shell of the boost Gauss constraint B̃I ' 0, and the last one is a
total variation. The key difference between the BF and ECH potentials is that the former
depends on the two coframes b̃I (through B̃I) and s̃I , while the latter depends only on15

ẽI . Using the form (3.38) of the Gauss law, we therefore get

d̃ΓẼI ' 0 ⇒ d̃Γẽ
I ' 0, (5.3)

meaning that the second bulk term also vanishes on-shell. While BF theory therefore
possesses two bulk canonical pairs, ECH gravity only has a single bulk canonical pair.
This is the usual gravitational pair expressing the fact that the extrinsic curvature K̃I is
conjugated to the flux 2-form ẼI . On-shell, the symplectic structure takes the simple form

ΩECH ' σ
∫

Σ
δẼI ∧ δK̃I −

∫
S

(
σδẼIδn

I + β

2 δẽI ∧ δẽ
I
)
. (5.4)

The corner term in (5.4) is consistent with [83, 102, 111]. Here we have clarified how the
simplicity constraints reduce the BF symplectic structure to the gravitational one.

In order to compare these results with metric gravity, it is useful to rewrite the bulk
potential in terms of the momenta P̃ I = −σ(K̃× ẽ)I . This can be done using the identities
(see appendix C.2 for the third one)

ẼI = 1
2(ẽ× ẽ)I , σẼI ∧K̃I = −1

2 P̃I ∧ ẽ
I , σẼI ∧δK̃I = P̃I ∧δẽI−

1
2δ(ẽ

I ∧ P̃I), (5.5)

leading to

ΘΣ
ECH =

∫
Σ
P̃I ∧ δẽI +

∫
Σ

(
βd̃ΓẽI ∧ δẽI + σB̃IδnI

)
− δ

(1
2

∫
Σ
ẽI ∧

(
P̃I + βd̃Γẽ

I)) , (5.6)

where the Boost Gauss law now reads B̃I =
(
(d̃Γẽ− βP̃ )× ẽ

)
I
.

We now want to establish that this bulk piece coming from the tetrad gravity potential
is, on-shell of the torsion, the universal piece ΘGR common to all formulations of gravity,
as stated in [1].

5.2 Relationship between ECH and GR potentials

We now give the explicit proof of the relationship between the bulk ECH potential and the
GR potential. Similar relationships are given in [110, 111, 115, 116], but here we establish
them here in minute details. For this we have to consider the case σ = −1, but notice

15As mentioned above, we can actually choose a notation to match b̃I with ẽI from the onset.

– 22 –



J
H
E
P
1
1
(
2
0
2
0
)
0
2
7

that we could also take σ = +1 and compare with the Gibbons-Hawking potential ΘGH
introduced in [1]. Recall that the canonical gravitational symplectic potential is [1]

ΘGR = 1
2

∫
Σ
ε̃(K̃g̃µν − K̃µν)δg̃µν , (5.7)

where K̃µν = g̃αµ g̃
β
ν∇αnβ is the extrinsic curvature tensor of the slice Σ. This potential

expresses the fact that
P̃µν := ε̃(K̃g̃µν − K̃µν) (5.8)

is conjugated to the induced metric g̃µν , as we know from ADM analysis [144, 145]. In
vacuum, this momentum satisfies the conservation law

∇̃µP̃µν = 0, (5.9)

where ∇̃ is the induced derivative on Σ. This is the vector constraint generating spatial
diffeomorphisms.

This structure is of course reminiscent of the momentum aspect 2-form introduced
above. When σ = −1 it is given by

P̃ I := (K̃ × ẽ)I . (5.10)

This momentum aspect was previously introduced and investigated in [37, 123]. We have
shown in (3.26) that the validity of vacuum Einstein equations implies the momentum
conservation

d̃ΓP̃
I ≈ 0, (5.11)

and in (5.6) that P̃ I is the momentum canonically conjugated to the coframe field. As
shown in appendix C.2, for any vector-valued 1-formM I = M I

µdxµ which is both tangential
and horizontal we have∫

Σ
P̃I ∧M I =

∫
Σ
ε̃
(
K̃g̃µ

ν − K̃µ
ν)M I

ν ẽ
µ
I =

∫
Σ
P̃ νµM

I
ν ẽ
µ
I . (5.12)

By taking M I = dξI one gets that the momentum conservation takes the form

d̃ΓP̃
I = (∇̃µP̃µν)ẽIν ≈ 0. (5.13)

Taking M I = δẽI and using δg̃µν = ẽIµδẽνI + ẽIνδẽµI on the one hand, and M I = ẽI on the
other hand, implies that

ΘGR =
∫

Σ
P̃I ∧ δẽI ,

∫
Σ
ε̃K̃ = 1

2

∫
Σ
P̃I ∧ ẽI . (5.14)

We can finally state our main result, in line with [1], which is that the ECH and GR
potentials only differ by a corner symplectic potential. On-shell we have

ΘECH ' ΘGR + ΘECH/GR − δ
(∫

Σ
ε̃K̃

)
, (5.15)
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where the relative potential is the corner potential (recall that we have σ = −1)

ΘECH/GR := ΘS
ECH =

∫
S

(
ẼIδn

I − β

2 ẽI ∧ δẽ
I
)
. (5.16)

This can be put in parallel with the decomposition of the Einstein-Hilbert potential per-
formed in [1] (see (2.14) there), which is

ΘEH = ΘGR + ΘEH/GR − δ
(∫

Σ
ε̃K̃

)
. (5.17)

Moreover, continuing this comparison with the metric case, let us point out as a remark
that we can express the relation (5.15) in terms of the boundary Lagrangian16

LECH/GR := 1
2
(
σ ∗ (e ∧ e)IJ ∧ dωnInJ − βeI ∧ dωeI

)
(5.18)

as
δLECH/GR + dθECH/GR

S' θECH − θGR. (5.19)

This is the exact analog of equation (2.15) in [1], which expresses the same relation-
ship between the EH and GR metric formulations. The proof of this relation is given
in appendix D. This formula means that the first order GR Lagrangian is given by
LGR = LECH−dLECH/GR. We will come back to this boundary Lagrangian when studying
the whole boundary dynamics in future work.

Taking the variation of (5.17) to obtain the symplectic structures we have

ΩECH ' ΩGR + ΩECH/GR, (5.20)

with

ΩGR =
∫

Σ
δP̃I ∧ δẽI , ΩECH/GR =

∫
S

(
δẼI ∧ δnI −

β

2 δẽI ∧ δẽ
I
)
. (5.21)

We can now use the relative symplectic structure in (5.21) to discuss the relative
charges. Before going on to this, let us discuss for completeness the relationship between
the ECH and Einstein-Hilbert potentials.

5.3 Relationship between ECH and EH potentials

In our previous work [1] we have established the relationship between the canonical GR
potential and the Einstein-Hilbert potential. Similarly, in the previous section we have
established the relationship between the GR and the Einstein-Cartan-Holst potential. This
is summarized in the two identities

ΘEH = ΘGR + ΘEH/GR − δ
(∫

Σ
ε̃K̃

)
, (5.22a)

ΘECH ' ΘGR + ΘECH/GR − δ
(∫

Σ
ε̃K̃

)
, (5.22b)

16This form of Lagrangian has been used to write the covariant Gibbons-Hawking term [107, 109, 146]
plus a Holst boundary term vanishing on-shell of the torsion [35]. We have written it here for an arbitrary σ.
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where ' means that the torsion equation of motion has been used, and where the corner
symplectic potentials are (we continue to restrict our analysis to the case where nI is
time-like, so σ = −1) [1]

ΘEH/GR = 1
2

∫
S

√
q sµδn

µ, ΘECH/GR =
∫
S

(
ẼIδn

I − β

2 ẽI ∧ δẽ
I
)
. (5.23)

Here ŝ = sµ∂µ denotes17 the outward unit vector tangent to the slice Σ and normal to S.
By taking the difference of the corner symplectic potentials, we get a direct relationship
between Einstein-Hilbert and Einstein-Cartan-Holst potentials, namely

ΘECH −ΘEH := ΘECH/EH = ΘECH/GR −ΘEH/GR. (5.24)

This gives the relative potential between the ECH and EH formulations, and enables to
study the relationship between the diffeomorphism Komar charge HEH[ξ] and the ECH
diffeomorphism charge HECH[ξ]. Let us expand a bit on this formula and explain how it is
related to the work [115].

Since all quantities are pulled back to S, which is of codimension-2, it is convenient to
introduce the pull-back on S of the coframe. We focus again on the time-like n̂ case, so
that σ = −1, and use the availability of the space-like unit vector ŝ normal to the surface S.
Given these two normal vectors such that gµνnµnν = −1, gµνsµsν = 1, and gµνnµsν = 0, we
introduce the induced coframes ẽI := eI +nnI , ēI := eI−ssI , and ¯̃eI = ˜̄eI := eI +nnI−ssI .
This last coframe is the pull-back to S of the bulk coframe field, i.e. we have

eI
Σ= ẽI

S= ¯̃eI . (5.25)

These coframes are tangential in the sense that ēIsI = 0 = ẽInI , and satisfy ẽI = ¯̃eI + ssI

and ēI = ˜̄eI − nnI .
In [115], De Paoli and Speziale have studied the relationship between the Einstein-

Cartan-Holst and Einstein-Hilbert formulations of gravity. They have introduced a corner
potential for tetrad gravity such that internal gauge invariance is restored, i.e. the Lorentz
charges on the corner vanish, and such that the Komar expression is recovered for Hamil-
tonian charge associated with tangent diffeomorphisms. In order to write this corner term
we use the inverse êI = eµI ∂µ to introduce the variational 1-form

$IJ := ê[Iy δeJ ]. (5.26)

The De Paoli-Speziale (DPS) corner term18 is

ΘDPS := 1
2

∫
S
$IJE

IJ . (5.27)

17This vector is denoted by ˆ̃s = s̃µ∂µ in our previous paper [1], where we consider a more generic
geometrical setup at the corner with two pairs of normals: (nµ, s̃µ) is used when the slice is space-like, and
(sµ, n̄µ) when it is time-like, with a boost angle between n̂ and ŝ. When this boost angle vanishes we have
ŝ = ˆ̃s. Here we work on a space-like slice, but drop the tilde in order to have lighter notations in this section.

18Please note that we have adjusted signs and numerical factors with respect to [115] in order to fit our
conventions.
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We are now going to show this DPS corner term is related to the various potentials and
relative potentials introduced so far. This is the series of equalities

ΘDPS = ΘECH/GR −ΘEH/GR = ΘECH −ΘEH = ΘECH/EH. (5.28)

Introducing ¯̃EI = (¯̃e× ¯̃e)I , we show in appendix C.3 that

∗ (e ∧ e)IJ$IJ S= 2 ¯̃EIδnI −
√
q sµδn

µ. (5.29)

For the Holst term we have

(ẽ ∧ ẽ)IJ$IJ = (ẽ ∧ ẽ)IJ êIy δeJ = −ẽI ∧ δẽI . (5.30)

Putting this together shows the desired result, namely that

ΘDPS = 1
2

∫
S
$IJE

IJ =
∫
S

(
ẼIδn

I − β

2 ẽI ∧ δẽ
I − 1

2
√
q sµδn

µ
)

= ΘECH/EH. (5.31)

This identity clearly shows that the DPS corner symplectic potential contains three canon-
ical pairs, namely (Ẽ, nI), (ẽI1, ẽI2), and (√q sµ, nµ).

5.4 Relative charges

Let us now go back to the relationship between the two formulations GR and ECH. Since we
have two different expressions for the gravitational potentials, we also have two different
expressions for the corner charges of symmetry associated with Lorentz transformations
and diffeomorphisms. This is captured by the notion of relative charge defined as

HSECH/GR = HSECH −HSGR. (5.32)

The charges HSECH and HSGR are evidently expressed as boundary integrals after imposing
the bulk equations of motion [1]. The relative charge can then be expressed either as
the difference HSECH − HSGR, or directly as a canonical charge coming from the relative
symplectic potential. This last option amounts to treating the relative charge and the
relative potential (and symplectic structure) as standing on their own feet. Let us elucidate
this point of view by analyzing these relative charges.

We start with the easier case of the charges for Lorentz transformations with parameter
αIJ . In this case, the GR charge vanishes identically, so the relative charge HSECH/GR[α] is
simply equal to HSECH[α] in (2.13) and given by

HSECH/GR[α] = HSECH[α] = 1
2

∫
S
αIJE

IJ = −
∫
S

(
αI⊥ẼI −

β

2αIJ(ẽ ∧ ẽ)IJ
)
, (5.33)

where we have used the first equality in (3.33) with σ = −1. Using the explicit expres-
sion (5.21) for ΩECH/GR and the transformation rule δαV I = −αIJV J for V I = (ẼI , nI , ẽI),
it is easy to show that the relative charge is in fact a canonical charge for the corner sym-
plectic structure, i.e. that

− δαyΩECH/GR = δHSECH/GR[α]. (5.34)
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We now prove the same results for the diffeomorphism charges. The GR and ECH
charges for diffeomorphisms tangent to the corner are simply obtained by the on-shell
Noether expression HS [ξ] ≈ LξyΘ and accordingly they are given by19

HSGR[ξ] ≈
∫
S
ξy ẽI P̃I , HSECH[ξ] ≈ 1

2

∫
S
ξyωIJE

IJ . (5.35)

We present in appendix F two computations of the relative charge. One can directly
compute the subtraction HSECH/GR[ξ] = HSECH[ξ] − HSGR[ξ], as done in F.1 (where as a
byproduct we also decompose the diffeomorphism charge of BF theory). Alternatively,
one can compute the relative charge as the canonical charge of the relative symplectic
structure. From the expression (5.23) of the relative potential, it is immediate to see that
the contraction LξyΘECH/GR, for σ = −1, yields the relative charge

HSECH/GR[ξ] =
∫
S

(
ẼILξnI −

β

2 ẽI ∧ Lξ ẽ
I
)
, (5.36)

in agreement with (F.11).
For the sake of completeness, we give in appendix F.2 yet another proof of the

relationship (5.32) between the diffeomorphism charges. There we show how the GR
charge written as HSECH[ξ]−HSECH/GR[ξ] and in the parametrization introduced in section 6
contains two terms. One is a Holst piece which yields the so-called topological Komar
charge (see also [115, 176]). The second one is a gravitational piece which yields the
Brown-York charge expressed in first order variables, as expected for the GR charge [1].

Finally, we can also compare the diffeomorphism ECH charge with the EH Komar
charge. The difference is encoded in the relative charge HSECH/EH[ξ] = HSECH[ξ]−HSEH[ξ].
To compute this relative charge directly, let us first recall that on-shell of the torsion
equations the Lorentz connection ωIJ becomes the compatible torsion-less connection

γIJµ [e] =
(
δαµ
(
eIβδJK − eJβδIK

)
− eIαeJβeµK

)
∂[αeβ]

K . (5.37)

Using this we get that
ξy γIJ = ê[IyLξeJ ] − êIy êJy dξ, (5.38)

where ξ = ξµdxµ. This enables us to decompose the diffeomorphism charge as

HSECH[ξ] = 1
2

∫
S
ξy γIJE

IJ = 1
2

∫
S
EIJ(êIyLξeJ)− 1

2

∫
S
EIJ êIy êJy dξ. (5.39)

The last term on the right-hand side is precisely the Komar charge, telling us that

HSECH/EH[ξ] = HSECH[ξ]−HSEH[ξ] = 1
2

∫
S
EIJ(êIyLξeJ), (5.40)

which immediately shows that this is also the canonical charge derived from the relative
potential (5.28).

19On-shell of all the torsion-free equations one can replace ω by the spin connection γ[e]. It is however
sometimes also useful to keep ω and first decompose it as (3.9) before going on-shell.
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6 Normal coframe, corner simplicity constraints, and corner metric

So far we have studied in details the relationship between the ECH, GR, and EH poten-
tials and charges. It is now time to focus exclusively on the corner symplectic potential
ΘS

ECH (5.2b). After pointing out why the corner phase space has to be handled with care,
we show that it contains important physical information, in particular the symplectic struc-
ture of the tangential corner metric and its algebra. The corner potential also guides us
towards the corner simplicity constraints which we study in details in [59]. At the end of
this section, we will be in position to make the last conceptual jump towards edge modes,
by promoting the corner fields to new independent degrees of freedom, and shifting once
and for all the focus to the corner symplectic structure.

6.1 Danger around the corner

In section 3.5 we put the reader on alert about the danger of using the naive pull-back of the
bulk simplicity constraints (3.35) to the corner. Let us explicitly show on the example of
the Lorentz charges where such a wrong turn would lead us. First, let us recall that in BF
theory the B field conjugated to ω is a commutative bulk variable, as can be seen on (2.6).
However, after imposing the Gauss law the B field at the corner becomes non-commutative.
This is evidently also the case in ECH gravity with the simple field BIJ = EIJ [e] [104].
This simply follows from the identity

HSECH[α] = 1
2

∫
S
αIJE

IJ ' 1
2

∫
Σ

dAαIJ ∧ EIJ (6.1)

and the Poisson bracket {HSECH[α],HSECH[α]} ' HSECH[[α, β]].
Now, notice that a naive imposition on the corner of the simplicity constraints in (5.33)

would yield the Lorentz charge

HSECH[α] = 1
2

∫
S
αIJE

IJ 4!= σ

∫
S
ẼI
(
αI⊥ − βαI‖

)
. (6.2)

One would therefore be tempted to call ẼI the boost generator and βẼI the rotation
generator. This identification is however clearly at odds with the Poisson brackets of the
boost and spin generators B̃I and S̃I which one can read off from the BF corner symplectic
potential (4.11) before imposing the simplicity constraints (this phase space structure will
be analyzed in detail in [59]). In the bulk of Σ the identification S̃I

Σ= βB̃I is harmless
since all the components of BIJ commute with each other (as well as the components of
EIJ). At the corner B̃I is the canonical generator for boosts while S̃I is the canonical
generator of rotations, so the identification S̃I S= βB̃I cannot be done without harm to the
Poisson structure.20 At the quantum level we also cannot naively identified the rotation
and boost operators.

This means that we cannot simply understand the corner simplicity constraint as
arising by continuity from the bulk one. That is why one needs to be very careful in

20The fact that boundary continuity equations should be treated as second class constraints was first
realized by Smolin [147].
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identifying the flux (and eventually the area) with the Lorentz spin generator when talking
about the corner phase space. We will see in [59] how this apparently innocent fact is
actually at the core of the persisting confusion about the reconciliation of fundamental
discreteness of quantum geometry and Lorentz invariance. In fact, such a reconciliation
follows straightforwardly from the reconciliation between the bulk and the corner phase
space structures. This is where the edge modes come to the rescue, as this is exactly their
main role. We elaborate extensively on this crucial aspect in section 7.

For the time being, as a warm-up to the introduction of the edge modes, let us present
an alternative way of lifting this difficulty of reconciling bulk simplicity with corner non-
commutativity. This is provided by performing a more “symmetric” rewriting of ẼIJ so
that the simplicity can be implemented straightforwardly in the corner phase space while
intertwining the Lorentz algebra (at the cost of losing for the moment the clear geometrical
split between boosts and rotations).

6.2 Normal coframe parametrization

The corner phase space can be elegantly described by using the so-called normal coframe
parametrization. Let us consider the Lie algebra-valued horizontal 1-form nIJ defined as

nIJ := σn̂y (e ∧ e)IJ = 2σn[I ẽJ ]. (6.3)

From this definition, one can see that the normal component (up to a sign) of nIJ is the
horizontal coframe, i.e. nInIJ = ẽJ . This object satisfies many relations which are proven
in appendix C.4. In particular, it enables us to write the horizontal part (3.33) of the
gravitational 2-form as

ẼIJ = −σ4 (∗+ β)[n ∧ n]IJ . (6.4)

This normal coframe also provides an elegant alternative parametrization of the corner
symplectic potential. In order to see this, we use the fact that the Einstein-Cartan piece
of the corner potential ΘS

ECH can be rewritten as

ẼIδn
I = 1

2εIJKLn
J ẽK ∧ δ(nI ẽL) = 1

8εIJKLnIJ ∧ δnKL = 1
4(∗n)IJ ∧ δnIJ , (6.5)

while the Holst component can be written as
1
2 ẽI ∧ δẽ

I = σ

2 (nI ẽJ − nJ ẽI) ∧ (δnI ẽJ + nIδẽJ) = σ

4 nIJ ∧ δnIJ . (6.6)

With this we get
ΘS

ECH = −σ4

∫
S

(∗+ β)nIJ ∧ δnIJ , (6.7)

and the corner symplectic structure is therefore

ΩS
ECH = −σ4

∫
S

(∗+ β)δnIJ ∧ δnIJ . (6.8)

Note that this parametrization of the corner symplectic structure is used in appendix F.2
as a way to compute the relative diffeomorphism charge. This can be seen as an interesting
consistency check for our formulas, and as an exercise in manipulating the corner variables
nIJ which we have introduced.

– 29 –



J
H
E
P
1
1
(
2
0
2
0
)
0
2
7

6.3 Corner simplicity constraints

It is important at this point to stop and think about the number of independent variables in
the various parametrizations of the corner phase space. For this, let us forget momentarily
about relation (6.3). The unconstrained corner phase space with canonical variables nIJa ,
with a = 1, 2 an index tangent to S, is then 12-dimensional. This amounts to working
with the BF corner potential (4.11) in terms of variables (B̃I , nI , ẽIa), which because of
the relations B̃InI = 0 = ẽIanI and n2 = σ gives indeed a 12-dimensional phase space.21

Another convenient parametrization is to use the 3 + 3 + 6 = 12 objects

sab := ∗nIJ(a nb)IJ , qab := σ

2 nIJ(a nb)IJ , JIJ := −σ4 (∗+ β)[n ∧ n]IJ . (6.9)

To go back to the gravitational phase space, one should impose the 3 corner simplicity
constraints B̃I = ∗(ẽ ∧ ẽ)IJnJ . These can elegantly be imposed directly on nIJ as the
conditions

sab = 0, (6.10)

which indeed imply that there exists a vector nI (which can always be chosen to be nor-
malized) and a form ẽIa such that nIJa = 2σn[I ẽ

J ]
a . As we will explain in details in [59], the 3

simplicity constraints contain actually a first class constraint and 2 second class constraints,
and as such remove 4 degrees of freedom. The reduced phase space is then 8-dimensional,22

and parametrized by the components of qab and JIJ . When the simplicity constraints are
satisfied qab = ẽIaẽ

J
b ηIJ is the corner metric, while JIJ then coincides with the gravitational

2-form (6.4). We will now compute Poisson brackets and show that JIJ is the generator of
corner Lorentz transformations.23

Now that we have motivated the use of the variables nIJ to parametrize the phase
space as (6.8), we can derive the associated Poisson brackets and use them to study the
algebra of the objects (6.9).

6.4 Poisson brackets

Let us now invert the symplectic form (6.8) in order to derive the corner phase space
Poisson brackets. Given a Lie algebra-valued 1-form λIJ , the transformation δλnIJ = λIJ

is Hamiltonian, i.e. satisfies δλyΩS
ECH = −δN(λ), where the corresponding Hamiltonian

generator is
N(λ) = σ

2

∫
S

(∗+ β)λIJ ∧ nIJ . (6.11)

The Poisson bracket of these Hamiltonians can be computed in two equivalent ways. First,
using the covariant phase space formalism, it is given by

{N(λ),N(λ′)} = δλN(λ′) = −σ2

∫
S

(∗+ β)λIJ ∧ λ′IJ . (6.12)

21In [59] we will even relax these 4 kinematical constraints and start from a 16-dimensional corner phase
space. This will enable to unravel an interesting symmetry breaking pattern.

22The corner metric qab and the Lorentz generator JIJ satisfy the scalar relation
(
(∗+β)−1J

)2 ∝ det(q),
which is why they together describe 8 variables and not 9.

23JIJ is just a rewriting at the corner of BIJ before simplicity, and of the gravitational 2-form EIJ after
simplicity.
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On the other hand, we can write it in terms of the fundamental Poisson bracket which we
are trying to compute as

{N(λ),N(λ′)} = 1
4

∫∫
S

(∗+ β)λaIJ(x)(∗+ β)λ′cKL(y){nIJb (x), nKLd (y)}εabεcdd2xd2y. (6.13)

Making the ansatz
{nIJb (x), nKLd (y)} = εbdδ

(2)(x, y)T IJKL, (6.14)

where T IJKL is a tensor to be determined, and comparing these two expressions for the
Poisson bracket, we arrive at the condition

λIJ = −σ2 (∗+ β)λKLTIJKL. (6.15)

Using the identity
σ(∗+ β)(∗ − β) = 1− σβ2, (6.16)

we get the Poisson structure

{nIJa (x), nKLb (y)} = 1
1− σβ2 εab

(
β(ηIKηJL − ηILηJK)− εIJKL

)
δ(2)(x, y). (6.17)

Here εab = εab is the totally skew symbol with ε12 = +1. It enters the wedge product of
forms as α ∧ β = (αaεabβb)d2x. Finally, δ(2) denotes the Dirac distribution normalized by
f(x) =

∫
S δ

(2)(x, y)f(y)d2y.

6.5 Corner metric and its algebra

Now that we have the Poisson brackets arising from the symplectic form (6.8), we can
evaluate the algebra of the simplicity constraint generators sab, of the metric components
qab, and of the Lorentz generators JIJ given in (6.9). Note that these calculations use only
the brackets (6.17) and the definitions (6.9), but not explicitly the relation (6.3) solving
the simplicity constraints (and giving to qab its interpretation as the metric).

A straightforward calculation by means of the bracket (6.17) reveals the second class
nature of the simplicity constraints. Explicitly, one finds

{sab, scd} = 4 ∗ nIJ(a ∗ nKL(c {nb)IJ , nd)KL}

= − 4
1− σβ2 ∗ nIJ(a ∗ nKL(c εb)d)(εIJKL − 2βηKIηJL)

= − 2σ
1− σβ2 (sacεbd + sbcεad + sadεbc + sbdεac)

+ 4β
1− σβ2 (qacεbd + qbcεad + qadεbc + qbdεac) . (6.18)

This shows that 2 of these constraints are second class, while 1 is first class. We provide
the explicit separation into first and second class components in [59], where we study in
details the imposition of the simplicity constraints both at the classical and quantum level.
These details are not necessary at this point.
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Then, one can check that the Lorentz generators JIJ are Dirac observables with respect
to the simplicity constraints as {sab, JIJ} = 0, and that they satisfy as expected the
sl(2,C)S Lie algebra commutation relations

{JIJ(x), JKL(y)} =
(
ηJKJIL + ηILJJK − ηIKJJL − ηJLJIK

)
(x)δ2(x, y). (6.19)

Focusing on the corner metric, one first notices that the 3 components defined in (6.9)
are not Dirac observables, as their bracket with the simplicity constraints is

{qab(x), scd(y)} = σβ

1− σβ2
(
sacεbd + sbcεad + sadεbc + sbdεac

)
(x)δ2(x, y)

− 2σ
1− σβ2

(
qacεbd + qbcεad + qadεbc + qbdεac

)
(x)δ2(x, y). (6.20)

However, defining the components

q′ab := qab + σ

2β sab (6.21)

provides Dirac observables. Indeed, the bracket is found to be

{q′ab(x), scd(y)} = − 1
β

(
sacεbd + sbcεad + sadεbc + sbdεac

)
(x)δ2(x, y) ≈ 0, (6.22)

where the symbol ≈ means that we have imposed the corner simplicity constraints sab ≈ 0.
Therefore, while q′ab ≈ qab, we need to use the expression (6.22) in order to correctly
compute the algebra of the remaining corner charges without having to introduce the Dirac
bracket. Explicitly, the remaining bracket is that of the metric with itself, and is given by

{q′ab(x), q′cd(y)} = − 1
β

(
q′acεbd + q′bcεad + q′adεbc + q′bdεac

)
(x)δ2(x, y). (6.23)

This calculation shows that the corner metric satisfies an sl(2,R)S Lie algebra, in line
with the analysis of [34, 36]. Importantly, it also reveals that the non-commutativity of
the corner metric components is due to the presence of a non-vanishing Barbero-Immirzi
parameter γ = β−1. Taking the limit β →∞ shows that in metric gravity, the corner met-
ric components commute with each other. This highlights the role of the Barbero-Immirzi
parameter in the context of gravity. The usual viewpoint is that a finite value of β does not
affect the classical bulk theory. However, we see here that it does have important impli-
cations on the corner and for its symmetry algebra: it gives rise to non-vanishing rotation
charges in (5.33), and yields an extra sl(2,R) factor in the corner symmetry algebra.

In summary, the Lorentz charges and the corner metric components form together an
sl(2,C) ⊕ sl(2,R)‖ algebra. This gives a priori 9 generators, but these are constrained by
a relation between the two sl(2,C) Casimirs and the sl(2,R)‖ Casimir associated to the
corner area. This condition is a generalization of the Casimir balance equation derived
in [34, 36, 37] once the restriction of the time gauge is lifted. Taking into account this
balance equation, we therefore recover 8 physical corner degrees of freedom. All this will
be studied in great details in the follow-up paper [59].
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6.6 A glimpse into the quantization and discreteness of area

We now come to the final main result of the paper. Having access to a non-commutative
corner metric, we can investigate the fate of its quantum spectrum. In order to do so we
need to introduce some regularization.

Let us assume that we choose a kinematical reference metric q0 on S, and furthermore
that D ⊂ S is an infinitesimal (with respect to q0) disk inside S with A0(D) :=

∫
D

√
q0 d2x.

We can then smear the local charge generators along D and define

A(D) :=
∫
D

√
q d2x, Qab(D) :=

∫
D
qab
√
q0 d2x. (6.24)

These observables are such that detQ(D)/A(D)2 → det q0 in the limit where A0(D)→ 0.
Since the original algebra (6.23) is ultra-local, we have that

{Qab(D), Qcd(D′)} = 0, if D ∩D′ = ∅. (6.25)

The only non-trivial commutation relation happens on each infinitesimal disk. In order to
evaluate this algebra we need to choose coordinates on D such that q0ab(x) is constant on
D and such that √q0 = 1. This is always possible, and we assume that this choice is made.
With this choice we get from (6.23) that {A(D), Qab(D)} = 0, while

{Qab(D), Qcd(D)} = − 1
β

(
Qac(D)εbd +Qbc(D)εad +Qad(D)εbc +Qbd(D)εac

)
. (6.26)

It is convenient to then define the new generators

J0 := β

4
(
Q11(D) +Q22(D)

)
, J1 := β

4
(
Q11(D)−Q22(D)

)
, J2 := β

2Q12(D). (6.27)

The quantum algebra [·, ·] = −i{·, ·} is then simply the sl(2,R) algebra with commutators24

[J0, J1] = −iJ2, [J0, J2] = iJ1, [J1, J2] = iJ0, (6.29)

with J0 the elliptic generator. The Casimir is then found to be

C = J2
0 − J2

1 − J2
2 = β2

4 detQ(D). (6.30)

In a unitary representation the Casimir is real and labelled by a weight λ where

C = λ(λ− 1) =
(
λ− 1

2

)2
− 1

4 . (6.31)

A priori, the Casimir can be positive for the discrete series of representations where λ ∈ Z,
and negative for the continuous series where λ = 1

2 + is. The operator detQ(D) has to be
24As an intermediate step, one has

{Q11(D), Q22(D)} = 4
β
Q12(D), {Q11(D), Q12(D)} = 2

β
Q11(D), {Q22(D), Q12(D)} = − 2

β
Q22(D).

(6.28)
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a positive operator if we want the metric qab to be the metric of a 2-dimensional space-like
surface. The condition detQ(D) > 0 means that C > 0, and therefore that the surface
area spectrum is labelled by the discrete representations. Since in the limit of infinitesimal
disk one has that A(D) '

√
detQ(D), one concludes that the area spectrum also has to

be discrete.
Note that this discretization and regularization is still a bit naive. It gives us just a

hint of the quantization of the area spectrum. A more appropriate treatment that respects
the diffeomorphism symmetry on the sphere needs to be given [148] (see also [35, 37, 117]).

7 Turning on the edge modes

We have now shown that the symplectic potential of ECH gravity differs from the canonical
GR potential by a corner term. This is the content of our claim that all formulations of
gravity share the same bulk symplectic potential and differ only by a corner potential. It
means that although the GR formulation of gravity is equivalent to tetrad gravity in the
bulk, it is not equivalent as a theory including boundaries. Tetrad gravity has additional
charges associated with local Lorentz transformations at the corner, and therefore a bigger
corner symmetry algebra.25 We have also shown that the corner symplectic structure
of ECH gravity encodes information about the corner coframe and metric, and revealed,
following [34, 37], the non-commutativity and sl(2,R)‖ structure of the latter.

One should recall that, in the first place, the very existence of the corner symmetry
charges is due to the breaking of gauge symmetry at the boundary of the canonical slice.
For instance, we have seen in [1] that canonical GR has vanishing surface boost charges at
the corner, meaning that it is trivially boost-invariant at the corner. On the other hand, in
the EH formulation the presence of the corner breaks boost-invariance, as revealed by the
presence of non-vanishing corner charges for sl(2,R)⊥. Similarly, EH and canonical GR pos-
sess trivial charge associated with Lorentz invariance, while in the ECH tetrad formulation
the corner breaks local Lorentz invariance and gives rise to non-vanishing charges. In other
words different formulation of the same theories have different notion of corner symmetries.

7.1 Conceptual motivations

While it would seem that everybody agrees on these facts, there is a conceptual confusion
on how to interpret them and deal with them. After all (continuing on the example
of Lorentz transformations) one could proceed as in [115, 116] and introduce the relative
ΘDPS potential in order to cancel the Lorentz charges and thereby restore gauge invariance.
But this restoration is then at the price of loosing access to the underlying charges, which
is unfortunate since they give us an handle on quantization, and are the building blocks
of the LQG quantization. More generally, we are arguing for a quantization program of
gravity which uses the various charges of corner symmetry as the fundamental building
blocks, so we should give them a more prominent role instead of taming them. As argued
in [1], in this quantization program based on local holography, one should look for the

25When comparing ECH gravity with EH gravity one cannot fairly say which theory has a bigger corner
symmetry algebra, since the former has Lorentz charges while the latter surface boost charges.
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maximally extended theory which reveals all the corner charges as element of the quantum
geometry. In this section we clarify these points and emphasize that we can both restore
gauge invariance and also have non-trivial corner charges. They key is to allow for the
introduction of edge modes.

The historical view on this question [149–154] has been to simply accept that the pres-
ence of boundaries breaks gauge invariance. Recall that this breaking of gauge invariance
is manifest once we realize that the canonical generator of gauge transformations does not
vanish for transformations that are non-vanishing at the slice’s boundary. For instance,
in ECH gravity the generator of Lorentz gauge transformations associated with a gauge
parameter α is given by

HECH[α] = 1
2

∫
Σ
EIJ ∧ dωαIJ . (7.1)

These charges do not vanish after imposition of the Gauss law, but instead satisfy

HECH[α] ' HECH[α′], when α
S= α′, (7.2)

where ' means that the Gauss law is imposed. This means that generators can be sep-
arated in gauge generators, associated with parameters α S= 0 that vanish at the cor-
ner, and symmetry generators, associated with transformations that do not vanish on S.
The Gauss law (7.2) is the expression of the fact that these canonical charges are inde-
pendent of their bulk extension. The algebra generated by these charges is denoted by
gS , and the corresponding group by GS . In the case of ECH gravity we have seen that
GS = Diff(S)n

(
SL(2,C)S × SL(2,R)S‖

)
. The presence of non zero-charges attached to the

corner suggests that there are new corner degrees of freedom associated with the presence of
the broken gauge group [155, 156]. These degrees of freedom should play the role of bound-
ary Goldstone modes for the broken symmetry. However, these Goldstone modes are not in-
cluded in the usual treatments of gauge theories at boundaries, as they are implicitly super-
selected. As we are about to argue, we need a framework where they are explicitly present.

A more modern take on this, introduced in [118] and developed in [157–162], consists in
explicitly introducing new corner degrees of freedom, called edge modes, in order to restore
gauge invariance and decouple the notion of corner symmetry from that of gauge. The
advantage is that we can, in this case, construct two sets of canonical charges, which for
the example of Lorentz transformations with parameter α we denote C[α] and Q[α]. The
charge C[α] is the generator of gauge transformations. It vanishes on-shell and it generates a
transformation of both the bulk and corner variables. The bulk component of C[α] imposes
the Gauss law, while its corner component imposes a continuity equation relating the bulk
and corner field. The charge Q[α], on the other hand, is the corner symmetry generator
which acts on the corner variables only. It does not vanish on-shell, and is gauge-invariant
in the sense that it commutes with the gauge generator C[α]. One can then go back to
the “usual” picture mentioned above if one explicitly breaks the corner gauge invariance.
The residual symmetry which preserves this explicit breaking is a combination of the gauge
transformation and the corner symmetry, and its generator H[α] is therefore given by a
linear combination of C[α] and Q[α].
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7.2 Concrete implementation

Let us now explain how to implement this construction with the explicit example of BF
theory and then ECH gravity. For BF theory, we have in the bulk of a slice Σ the canonical
pair (B̃IJ , ω̃IJ). In order to resolve once and for all the confusion between having a B-field
which is commutative when viewed as a bulk variable, and non-commutative when viewed
as a corner variable, we propose to introduce edge modes variables. This means that we
are considering corner variables denoted (BI , eI , nI , ϕ), where the straight bold font is used
to emphasize that these corner edge mode fields are a priori independent from the bulk
fields. These fields satisfy the constraints26

BInI = 0, eInI = 0, nInI = σ. (7.3)

Here BI is a vector-valued 2-form on S, nI is an internal vector, eI is a vector-valued 1-form
on S, and ϕ ∈ SL(2,C)S is an element of the corner symmetry group. Since these variables
live at the corner, we drop the tilde label on them. The corner variables (BI , eI , nI) have a
different status than ϕ. They are gauge-invariant, while ϕ allows us to specify the choice
of the corner gauge frame. With these new corner edge mode fields we can now introduce
the notion of extended symplectic potential [118, 123, 158, 162].

The extended symplectic potential is obtained by subtracting from the original sym-
plectic potential a corner potential for the edge modes. More precisely, in the example at
hand it is

Θext
BF := ΘBF −ΘS

BF, (7.4)

where ΘBF is given by (2.6) or (4.9), and the corner symplectic potential for the edge
modes is

ΘS
BF := −

∫
S

(
σBIδnI + β

2 eI ∧ δeI
)
. (7.5)

Comparing this corner potential with the corner potential ΘS
BF (4.11) contained in ΘBF

reveals two differences (aside from the innocent fact that we have chosen convenient nota-
tions for the BF coframes). First, the fields in ΘS

BF are edge-modes: corner variables with
no bulk potential. Second, the edge mode corner potential is defined with a variational
derivative δ. This is an horizontal derivative which depends on the corner edge mode field
ϕ. It is given by

δ := δ − δχ, with χ := ϕ−1δϕ. (7.6)

Here δα represents as usual the gauge transformation associated with a gauge parameter
α. For this notion of horizontal derivative the gauge parameter is the Lie algebra-valued
variational 1-form χ = ϕ−1δϕ, which can be interpreted as a flat connection on field space.
The explicit action of δ on eI for instance is simply δeI = δeI + χIJeJ . The covariant

26These are just kinematical constraints which ensure that we have a 12-dimensional phase space, and
their presence has nothing to do per se with the fact that we are talking about edge modes.
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variational derivative27 was first introduced in [118], and conceptualized as an horizontal
field derivative in [163]. Like δ, the covariant variation δ satisfies the Cartan axiom δ2 = 0.

A conceptually very important point for what follows is to acknowledge that the corner
fields (BI , eI , nI) are a priori different from the corresponding bulk fields. They become only
identified once gluing conditions are imposed. This is key to the mechanism of restoration of
gauge invariance. To see this, let us consider the bulk gauge transformation δαωIJ = dωαIJ

and δαB
IJ = [B,α]IJ . We choose the edge mode fields to be such that the extension of

the gauge transformation at the corner is

δαnI = δαeI = δαBI = 0, δαϕ = −αϕ. (7.7)

This means that the corner fields (BI , eI , nI) are gauge invariant observables. The generator
C[α] mentioned above is the canonical generator of these extended gauge transformations.
It is defined as usual with the covariant phase space formula

δCBF[α] = −δαyΩext
BF, (7.8)

from which we find

CBF[α] = HBF[α]− 1
2

∫
S

(ϕ−1αϕ)IJJIJ = 1
2

∫
Σ
BIJ ∧ dωαIJ −

1
2

∫
S

(ϕ−1αϕ)IJJIJ . (7.9)

Here we have introduced the corner generator

JIJ := 2σB[InJ ] + β(e ∧ e)IJ . (7.10)

The corner symplectic potential implies that these generators satisfy an ultra-local Lorentz
algebra

{JIJ(x), JKL(y)} =
(
ηJKJIL + ηILJJK − ηIKJJL − ηJLJIK

)
(x)δ2(x, y). (7.11)

Now, demanding the validity of the extended Gauss law CBF[α] ' 0 imposes the bulk and
corner constraints

dωBIJ Σ' 0, BIJ S' (ϕJϕ−1)IJ . (7.12)

The corner constraint is a boundary condition relating the pull-back of the bulk fields on
S with the value of the corner fields. Importantly, this identification involves an element of
the corner symmetry group ϕ ∈ SL(2,C)S . The reason this group element is needed is that
the naive identification BIJ S' JIJ is second class while the identification BIJ S' (ϕJϕ−1)IJ

is first class. A proof of this is given in appendix G. The first class nature of the constraint
ensures that we can let go of the notion of boundary B field, and replace it by the dressed
Lorentz generator. Since JIJ is naturally a non-commutative corner variable, this resolve
the confusion about the difference of Poisson structure of the bulk and corner B fields. This
is how the puzzle pointed out in section 6.1 is resolved by the introduction of edge modes.

27We could also extend the horizontal field derivative to be covariant under the Diff(S) symmetry group
by introducing a position frame as in [118, 157]. In this case everything said in this section for SL(2,C)S

can be extended to Diff(S) n SL(2,C)S . For this paper we emphasize only the SL(2,C)S modes which are
key for commutativity.
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Imposing the bulk and corner Gauss constraints (7.12) means that CBF[α] ' 0, and
therefore that we have restored gauge invariance. Now that gauge invariance has been
restored by the addition of the corner degrees of freedom, we can construct a gauge-
invariant, and therefore physical charge. This charge is defined as being associated with
transformations ∆α which leave the bulk fields unchanged, i.e. ∆α(BIJ , ωIJ) = 0, while
rotating the corner fields as

∆αBI = −αIJBJ , ∆αeI = −αIJeJ , ∆αnI = −αIJnJ , ∆αϕ = 0. (7.13)

The canonical generator for this transformation is the object Q[α] mentioned above. Here
it is the corner charge associated with J introduced in (7.10), i.e.

QBF[α] = ∆αyΘS
BF = 1

2

∫
S
αIJJIJ . (7.14)

Because of the definition of its action, this charge comes entirely from the edge mode sym-
plectic structure. Furthermore, it is gauge-invariant in the sense that {CBF[α],QBF[β]} = 0,
and it enters the relationship between the extended gauge generator CBF[α] and the “naive”
charge HBF[α] given by

HBF[α] = CBF[α] +QBF[ϕ−1αϕ], (7.15)

as can be seen from (7.9). This shows that the naive transformation generated by HBF[α]
is in fact a gauge transformation followed by a corner rotation, which explains why its
generator does not vanish. Note that the rotation (7.13) of the corner generators which
leaves ϕ fixed is equivalent to a right translation of the gauge frame ϕ. This follows from
the fact that (∆α + ∆̃α)y δ = 0 for the right translation defined28 as ∆̃α(BI , eI , nI) = 0
and ∆̃αϕ = ϕα. Equivalently, we can say that the corner transformations

(∆α + ∆̃α)
(
BI , eI , nI , ϕ

)
=
(
BJαJ I , eJαJ I , nJαJ I , ϕα

)
(7.16)

are pure gauge and the corresponding canonical generator identically vanishes.
As we have discussed previously at length, the case of ECH gravity is obtained from

the BF analysis by imposing the simplicity constraints. In the bulk they are BIJ = EIJ [e],
and the boundary simplicity constraint is

BI = 1
2(e× e)I . (7.17)

It is important to appreciate that the knowledge of BI only determines eI up to an SL(2,R)S

rotation eIa → ρa
beIb where det ρ = 1. This means that, after imposing the bulk and corner

simplicity constraints, the gluing condition (7.12) can be written in terms of the coframe
field as

ẽIa
S' ρabeJb ϕJ I = (e ·ϕ)Ia, (7.18)

where we have introduced the corner group element ϕ := (ρ, ϕ) ∈ GS , with here the corner
symmetry group GS = SL(2,R)S × SL(2,C)S .

28This is the notion of surface symmetry which was actually initially used and named ∆α in [118, 157–160].

– 38 –



J
H
E
P
1
1
(
2
0
2
0
)
0
2
7

To understand the physical meaning of identity (7.18), let us consider two closed regions
ΣL and ΣR sharing a common corner ΣL ∩ ΣR = SLR = ∂ΣL ∩ ∂ΣR, and further assume
that the bulk field is continuous across the corner. This continuity equation implies a
matching condition of the corner fields which involves an holonomy attached to each point
of the sphere. Denoting by (ẽL, ẽR) the bulk coframe fields associated with the left and
right regions, and by (eL, eR) the corner ones, the continuity equation takes the form

ẽL
SLR= ẽR ⇐⇒ eL

SLR= eR ·ϕLR, (7.19)

where ϕLR ∈ GS is the corner holonomy with value in the extended corner symmetry group.
The SL(2,C)S component of this holonomy can be understood as a change of section of the
coframe bundle when we go from the left to the right region. The SL(2,R)S component,
on the other hand, is a fundamentally new contribution whose important interpretation
will be developed in a forthcoming publication.

7.3 Trivial limits

From the general perspective presented here, it is now easy to recover the naive picture
where only the charge HBF[α] appears. This is done by simply choosing the corner group
element to be the identity. The condition ϕ = 1 effectively breaks the gauge invariance at
the corner. The transformation generated byHBF[α] = CBF[α]+QBF[α] is then the only one
which preserves the condition ϕ = 1. In this gauge, the gluing condition becomes ẽI S' eI
and there is no need to introduce independent corner fields different from the bulk ones.

We can also recover the approach of [115, 116]. What is done in these references can
be interpreted in our framework as imposing strongly, independently of any corner Gauss
law, the condition ẽI S= eI in the extended symplectic potential. Imposing this condition
strongly also forces ϕ = 1 and implies, by virtue of (5.17) and (5.21), that the extended
potential reduces to the gravity potential Θext

ECH = ΘGR − δ
(∫

Σ ε̃K̃
)
. This choice then

amounts to working with the metric gravitational potential which has vanishing Lorentz
charges. This way of restoring gauge invariance kills all the non-trivial charges and it
corresponds at the quantum level to a choice of representation which reduces the effective
symmetry group. As mentioned above however, the reason for which we cannot impose
strongly (and innocently) the condition ẽI S= eI comes from the fact that ẽI is a commuting
field in the bulk while eI is a non-commuting corner field. The condition ẽI S= eI is therefore
a second class constraint. The boundary condition BIJ S' (ϕJϕ−1)IJ or (7.18) is, on the
other hand, a first class constraint due to the presence of the corner gauge frame ϕ and the
Gauss law. This is one of the main points made in [118], where it served as the motivation
for introducing the edge modes.

Some authors [164, 165] have also pointed out that it is possible to restore gauge
invariance without introducing new corner fields, and have concluded from this fact that
edge modes do not exists or are not relevant. Once again such perspective easily follows
from the general framework presented here. One can effectively kill all the corner charges
while keeping gauge symmetry by imposing some gauge invariant boundary condition on ϕ,
such as ϕ = ϕ(A), where ϕ(Ag) = ϕ(A)g is a functional of A which intertwines the gauge
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transformation of the potential with the right translation of the gauge frame (see [166–168]
for explicit constructions). This type of conditions effectively break the corner symmetry
and the only charges that commute with the condition ϕ = ϕ(A) are the gauge charges
C[α]. Of course, the fact that it is possible to fix the corner symmetry doesn’t mean that
the corner edge modes do not enter the counting of degrees of freedom, it only means that
the corner edge modes can be rotated into one another by a corner symmetry.

While it might be harmless to ignore edge modes at the classical level, it is not at the
quantum level. Edge modes reveal all their usefulness and efficacy, as we demonstrate in
this series of works, once we take into account the presence of non-trivial commutation
relations. The main point is that, although bulk fields and edge mode fields look the same,
they have different commutation relations and cannot be identified as operators.

We take the point of view that a symmetry algebra needs to be represented non trivially
in order to access all degrees of freedom. After all, the central insight of the LQG description
of quantum geometry is to keep track precisely of the flux charges labelled by SU(2) spins
coloring spin networks, which are in fact coming from the rotational edge modes and
satisfy a non-trivial commutation relation. Here we push this logic further, and reveal that
it inevitably leads to additional charges and new quantum numbers on the corner.

8 Conclusion

Our proposal for quantum gravity is rooted in the notion of representation of the corner
symmetry algebra. As a step towards this construction, we have here analyzed tetrad
gravity by shifting the emphasis from the bulk to the corner: instead of working with
a connection in the bulk, and having to deal with the ambiguities associated to it, here
we have instead considered the Holst term on the corner and kept the bulk parametrized
by the universal GR symplectic structure. This is still a non-trivial construction because
the Holst term and the associated coupling, which is the Barbero-Immirzi parameter, now
control the non-commutativity of the corner frame field and, as we showed in section 6.5,
the non-commutativity of the corner metric as well. Shifting the emphasis to the corner
also enables us to resolve the tension of having a commutative bulk B field while B becomes
non-commutative at the corner (after imposing Gauss Law).

To summarize, in this paper we have achieved three results. The first set of results is
technical and follows from a careful decomposition of B field and the connection in terms
of tangential/normal and horizontal/vertical components. This led us to the introduction
of the notion of BF coframes and to a new split of the BF symplectic potential in a
bulk and corner piece. We have also analyzed in details the simplicity constraints in
this context, and presented the construction of the relative corner potential relating the
Einstein-Cartan-Holst formulation to the ADM and Einstein-Hilbert metric formulations
of gravity. These results reorganize in a coherent manner a large collection of disparate
results in the literature on first order gravity and its symplectic potential [43, 51, 83, 101,
102, 110, 111, 115, 116, 120, 169, 170].

The second result consists in showing, starting from a new parametrization of the
corner phase space given in (6.7), that the corner metric satisfies an ultra-local sl(2,R)S
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algebra. This generalizes the conclusions of [34, 35, 37] in a context where the time gauge
is not imposed and therefore full Lorentz covariance preserved. The quantization of this
algebra led us to the conclusion that the area spectrum is quantized even in the presence of
full Lorentz symmetry. This result resolves a long-standing debate in the quantum gravity
community, which revolved around the possibility to reconcile Lorentz invariance with the
discreteness of the area spectrum [62, 85, 86, 91, 92, 139, 140, 171–175]. Further insights
into this reconciliation are provided in [59]. A similar conclusion was reached by Wieland
using a corner algebra associated with null boundaries and written in spinor variables [117].
It would be interesting to understand the relationship between the two frameworks. Since
our work exclusively used space-like or time-like slices, this suggests that there should be a
more general framework generalizing our results to all types of slices, including the null ones.

The third result is more conceptual. We have explained how to resolve the fundamental
tension which exists between bulk and corner variables. Classically, and if we ignore the
canonical structure, one can think of the corner variable as being obtained by continuity
as the pull-back of the bulk field on the corner. But this is not possible at the quantum
level or even at the classical level if we take into account the canonical structure. The issue
is that the pull-back of the bulk fields possess different commutation relations than the
corner fields. We have explained how this tension is resolved by the introduction of edge
modes carrying an independent corner symplectic potential. To do so, we have replaced the
condition of continuity by the imposition of gauge invariance extended to the corner. The
tension between the different commutation relation is resolved by the presence of corner
gauge frames that relate bulk and boundary fields. This result conceptualizes and extends
the work done earlier in [118, 123].

Although the analysis presented in this paper is semi-classical, it prepares the terrain
for a new form of quantization of the gravitational variables focusing on their expression
as corner charges of symmetry.
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A Notations and conventions

Throughout this work we consider that the spacetime M is equipped with a Lorentzian
metric gµν of signature (−,+,+,+). We use µ, ν, . . . to denote spacetime indices, while
a, b, . . . when this are pulled back on the co-dimension 2 corner S. The internal metric is
ηIJ = diag(−1, 1, 1, 1), and we use I, J, . . . to denote internal Lorentz indices. The these
internal indices the Hodge duality operation is

(∗M)IJ = 1
2ε

IJ
KLM

KL, ∗2 = −1. (A.1)
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We denote the antisymmetrisation of indices with the bracket [A1 · · ·An], and the conven-
tion that [[A1 · · ·An]] = [A1 · · ·An]. In particular, in the case of two indices we have

M[IJ ] = 1
2(MIJ −MJI), M[IJ ]N

[IJ ] = M[IJ ]N
IJ . (A.2)

The commutator of Lie algebra-valued forms is denoted by

[M ∧N ]IJ = M I
K ∧NKJ −MJ

K ∧NKI = 2M [I
K ∧NKJ ]. (A.3)

This commutator is such that

∗ [M ∧N ] = [∗M ∧N ] = [M ∧ ∗N ]. (A.4)

We have the relations

εIJKLε
MNPQ = −24δ[M

I δNJ δ
P
Kδ

Q]
L , (A.5a)

εIJKLε
INPQ = −6δ[N

J δPKδ
Q]
L = −2(δNJ δ

[P
K δ

Q]
L + δQJ δ

[N
K δ

P ]
L + δPJ δ

[Q
K δ

N ]
L ), (A.5b)

εIJKLε
IJPQ = −4δ[P

K δ
Q]
L = −2(δPKδ

Q
L − δ

Q
Kδ

P
L ), (A.5c)

εIJKLε
IJKQ = −6δQL . (A.5d)

With the internal normal nI such that nInI = σ we define

ε̃IJK := εIJKLn
L. (A.6)

These satisfy

ε̃IJK ε̃
ILM = −σ(δ̃LJ δ̃MK − δ̃MJ δ̃LK), (A.7a)

ε̃IJK ε̃
IJM = −2σδ̃MK , (A.7b)

where δ̃MK := δMK − σnKnM . Finally, we define the cross product

(M ×N)I := ε̃IJKM
J ∧NK , (A.8)

between vector-valued forms. The cross product satisfy

− σ

2 ε̃
IJ
K(M ×M)K = M I ∧MJ = (M ∧M)IJ . (A.9)

B Gravitational equations of motion

B.1 Torsion equations

Here we want to decompose the torsion equations, and explain the geometrical meaning of
the decomposition (3.9) of the connection. More precisely, we are going to show that if ωIJ

is the spin connection preserving eI , then the pull-back of Γ to Σ is the spin connection
preserving the pull-back ẽI = eI − σnnI . In order to see this, we first project the torsion
T I = dωeI and use dωnI = KI and dΓn

I = 0 to obtain

nIT
I = dn+ eI ∧KI Σ= eI ∧KI ' 0, (B.1)
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where the weak equality 'means that we have imposed the vanishing of the torsion T I ' 0.
By virtue of (3.10) we have

dΓe
I = dΓ(ẽI + σnnI) = dΓẽ

I + σdnnI − σn ∧ dΓn
I = dΓẽ

I + σdnnI . (B.2)

Similarly to the decomposition of forms (3.16), we can also decompose the differential of
an horizontal form as

dΓα̃ = d̃Γα̃+ σn ∧ LΓ
n̂α̃, (B.3)

where d̃ is the pull-back differential on Σ and we have introduced the covariant Lie deriva-
tive

LΓ
ξ := ξy (dΓ ·) + dΓ(ξy ·). (B.4)

This derivative is such that LΓ
ξn

I = 0. We can also decompose the differential of n using

dn = d̃n+ σn ∧ Ln̂n. (B.5)

From now on we will also use the hypersurface orthogonality condition d̃n = 0, which
follows from the fact that n is normal to the slices Σ.

We can use these ingredients to decompose the torsion into horizontal and vertical
components. Starting from the decomposition of ω (3.9), we have

T I = dΓe
I − σn ∧KI + σnI(eJ ∧KJ)

= dΓẽ
I − σn ∧KI + σnI(dn+ ẽJ ∧KJ)

= d̃Γẽ
I − σn ∧

(
KI − LΓ

n̂ẽ
I)+ σnI(dn+ ẽJ ∧KJ)

= d̃Γẽ
I − σn ∧

(
K̃I − LΓ

n̂ẽ
I)+ σnI ẽJ ∧ K̃J + nIn ∧

(
Ln̂n− ẽJ ∧KJ

n

)
, (B.6)

where we have used KI = K̃I + σn ∧KI
n, with KI

n := n̂yKI the acceleration vector, and
we have used the hypersurface orthogonality condition d̃n = 0. This enables us to read the
horizontal and vertical components of the torsion equations. The horizontal equations are

d̃Γẽ
I ' 0, ẽI ∧ K̃I ' 0. (B.7)

The first condition tells us that the pull-back of Γ is the spin connection of ẽ. The second
condition means that the tensor K̃IJ entering the expansion K̃I = K̃IJ ẽJ is symmetric.
On the other hand, the vertical equations are

LΓ
n̂ẽ
I ' K̃I , ẽI ∧KI

n ' Ln̂n. (B.8)

The first one tells us that the pull-back of KI can be understood as the extrinsic curvature,
i.e. the normal derivative of the induced coframe.

B.2 Einstein equations

Here we decompose the first set of equations of motion in (2.9), which are Einstein’s
equations in tetrad variables. Let us start by using the normal/tangential decomposition
of the Lorentz curvature to write the Einstein tensor as

GI = (∗+ β)
(
F IJ‖ + 2σF [I

⊥ n
J ]
)
∧ eJ

= (∗F‖)IJ ∧ eJ + βF IJ‖ ∧ eJ − σ(F⊥ × e)I + σβF I⊥ ∧ n− σβnIF J⊥ ∧ eJ . (B.9)
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We can then insert the normal and tangential components (3.12) of the Lorentz curvature
tensor in this expression. They are given by

F I⊥ = dΓK
I , F IJ‖ = RIJ(Γ)− σ(K ∧K)IJ . (B.10)

Using these components, contracting the Einstein tensor with the internal normal, and
denoting RI(Γ) = ε̃IJKRJK(Γ), we get the normal equations

G⊥ := GInI = −RI(Γ) ∧ eI + σ

2 (K ×K)I ∧ eI − βdΓK
I ∧ eI ≈ 0. (B.11)

The horizontal component of this equation gives the Hamiltonian constraint

C := −R̃I(Γ̃) ∧ ẽI + σ

2 (K̃ × K̃)I ∧ ẽI − βd̃ΓK̃
I ∧ ẽI . (B.12)

The remaining components of the Einstein tensor (i.e. the ones which have been killed by
the normal projection above) are given by

GI‖ = βRIJ ∧ eJ − σβ(K ∧K)IJ ∧ eJ − σ(dΓK × e)I + σβdΓK
I ∧ n ≈ 0. (B.13)

This equation can be considerably simplified by taking the pull-back to Σ and using the
relations obtained in (B.7), namely d̃Γẽ

I ' 0 and ẽI∧K̃I ' 0. It yields the conservation law

d̃ΓP̃
I ≈ 0, (B.14)

where P̃ I := −σ(K̃ × ẽ)I is the momentum aspect.

C Various proofs

C.1 Gauge transformations of the decomposed connection

In this appendix, we give for completeness the behavior of the different parts of the Lorentz
connection under Lorentz gauge transformations. In particular, this shows that ΓIJ trans-
forms as a connection and KI as a tensor.

Using the decomposition (3.6), we can write the Lorentz gauge parameter as

αIJ = ᾱIJ⊥ + ᾱIJ‖ , ᾱIJ⊥ := 2σα[I
⊥n

J ], ᾱIJ‖ := −σε̃IJKαK‖ . (C.1)

Here we have used a notation where ᾱ⊥ denotes a Lie algebra element and α⊥ a vector
perpendicular to nI . By definition, αI⊥ represent the change in the normal vector since
δαn

I = −αIJnJ = −αI⊥. We can use this to decompose the gauge transformation as

δαω
IJ = dωαIJ = δᾱ⊥ω

IJ + δᾱ‖ω
IJ . (C.2)

Using the decomposition (3.9), we can then write the two gauge transformation on the
right-hand side as

δᾱ⊥ω
IJ = dωᾱIJ⊥

= dΓᾱ
IJ
⊥ + σ(KInA − nIKA)ᾱAJ⊥ + σ(KJnA − nJKA)ᾱIA⊥

= dΓᾱ
IJ
⊥ − 2σK [Iα

J ]
⊥ , (C.3)
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and similarly for δᾱ‖ωIJ . Using the fact that dΓn
I = 0, one can rewrite these transforma-

tions as

δᾱ⊥ω
IJ = 2σ(dΓα

[I
⊥n

J ] −K [Iα
J ]
⊥ ), δᾱ‖ω

IJ = 2(K × α‖)[InJ ] − 2σ ∗ (dΓα
[I
‖ n

J ]). (C.4)

From this we then get

(δᾱ⊥ω
IJ)nJ = dΓα

I
⊥, (δᾱ‖ω

IJ)nJ = σ(K × α‖)I . (C.5)

On the other hand, using δαnI = −αIJnJ = −αI⊥, the variation of the decomposition (3.9)
leads to

δαω
IJ = δαΓIJ + 2σδαK [InJ ] − 2σK [Iα

J ]
⊥ , (C.6)

and using (δαΓIJ)nJ = dΓα
I
⊥ gives

(δαωIJ)nJ = dΓα
I
⊥ + δαK

I − σnIδαKJnJ = dΓα
I
⊥ + δαK

I − σnIαJ⊥KJ . (C.7)

Taking the normal and tangential components of α in this equation and comparing to (C.5)
then tells us that

δᾱ⊥K
I = σnIαJ⊥KJ , δα‖K

I = σ(K × α‖)I . (C.8)

This is in agreement with what we could have derived from the definition KI = dωnI .
Indeed, this gives

δαK
I = dωδαnI + δαω

IJnJ

= −dωαI⊥ + dωαIJnJ
= −αIJdωnJ
= −αIJKJ

= σnIαJ⊥KJ + σ(K × α‖)I . (C.9)

Finally, comparing (C.4) with (C.6) gives

δᾱ⊥ΓIJ = 2σdΓα
[I
⊥n

J ], δᾱ‖Γ
IJ = −2σε̃IJKdΓα

K
‖ , (C.10)

which implies that
(δαΓ)I⊥ = dΓα

I
⊥, (δαΓ)I‖ = dΓα

I
‖ . (C.11)

We therefore get as expected that K transforms as a tensor and Γ as a connection.

C.2 Momentum aspect identities

Here we give two useful identities involving the momentum P̃ I = −σ(K̃ × ẽ)I . First, we
have that

ẼI ∧ δK̃I = 1
2 ε̃IJK(ẽ ∧ ẽ)JK ∧ δK̃I

= 1
2 ẽ

J ∧ δ(ε̃IJK ẽK ∧ K̃I)− 1
2 ε̃IJK ẽ

J ∧ δẽK ∧ K̃I − ∗(ẽ ∧ ẽ)IJ ∧ K̃IδnJ

= −σ2 ẽ
I ∧ δP̃I + σ

2 δẽ
I ∧ P̃I

= σP̃I ∧ δẽI −
σ

2 δ(ẽ
I ∧ P̃I), (C.12)

– 45 –



J
H
E
P
1
1
(
2
0
2
0
)
0
2
7

where for the third equality we have used K̃InI = 0 = nIδn
I to write

∗ (ẽ ∧ ẽ)IJ ∧ K̃IδnJ = 2σẼ[InJ ] ∧ K̃IδnJ = 0. (C.13)

We now prove equation (5.12). Using the pull-backs of the tetrad and the curvature, we
have ∫

Σ
P̃I ∧M I = −σ

∫
Σ

(K̃ × ẽ)K ∧MK

= −σ
∫

Σ
K̃I
µ(ε̃IJK ε̃µνρẽJν )MK

ρ

=
∫

Σ
(det ẽ)K̃I

µ

(
ẽµI ẽ

ρ
K − ẽ

ρ
I ẽ
µ
K

)
MK
ρ

=
∫

Σ
ε̃
(
K̃g̃µ

ρ − K̃µ
ρ)MK

ρ ẽ
µ
K , (C.14)

where we have used ε̃IJK ε̃µνρẽJν = −σ(det ẽ)(ẽµI ẽ
ρ
K − ẽ

ρ
I ẽ
µ
K) and ẽIν ẽ

µ
I = g̃ν

µ.

C.3 DPS variational 1-form identity

Here we give the proof of (5.29). In order to establish this we introduce the internal and
spacetime normal 2-forms

ε⊥IJ := ∗(˜̄e ∧ ˜̄e)IJ = √q(nIsJ − sInJ), ε⊥µν := eIµe
J
ν ε
⊥
IJ = √q(nµsν − sµnν). (C.15)

These 2-forms are such that

ε⊥µνn
µ = −√q sν , ε⊥µνs

µ = −√q nν , ˜̄EI = (˜̄e× ˜̄e)I = ε⊥IJn
J = √q sI . (C.16)

One can then show that

∗(e ∧ e)IJ$IJ = ∗(e ∧ e)IJeIµδeJµ
S= ε⊥IJe

IµδeJµ

= ε⊥IJ
(
sIsµ − nInµ

)
δeJµ

= ε⊥IJ
(
sIδsJ − nIδnJ

)
− ε⊥IJ

(
sIeJµδs

µ − nIeJµδnµ
)

= ε⊥IJ
(
sIδsJ − nIδnJ

)
− ε⊥µν

(
sµδsν − nµδnν

)
= √q

(
sIδn

I − nIδsI
)
−√q

(
sµδn

µ − nµδsµ
)

= 2√q sIδnI −
√
q sµδn

µ

= 2 ¯̃EIδnI −
√
q sµδn

µ, (C.17)

where in the second to last step we have used the foliation preserving condition δnµ ∝ nµ.
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C.4 Relationship between the normal, flux, and coframe

Here we prove some useful relations involving the normal coframe 1-form, and in particu-
lar (6.4). First, we have

1
2(∗n)IK ∧ nJK = 1

4εIKMLnML ∧ nJK

= 1
4εIKML(nM ẽL − nLẽM ) ∧ (nJ ẽK − nK ẽJ)

= 1
2εIKMLn

M ẽL ∧ (nJ ẽK − nK ẽJ)

= 1
2εIKMLn

MnJ(ẽL ∧ ẽK)

= 1
2 ε̃ILKnJ(ẽ ∧ ẽ)LK

= ẼInJ . (C.18)

For the second equality, a direct calculation gives

n[I
K ∧ nJ ]K = (nI ẽK − nK ẽI) ∧ (nJ ẽK − nK ẽJ) = σ(ẽ ∧ ẽ)IJ . (C.19)

Denoting by [· , ·] the matrix commutator (A.3), these two relations can be rewritten re-
spectively in the form

ẼInJ − ẼJnI = −1
2[∗n∧n]IJ = −1

2 ∗ [n∧n]IJ = 1
2ε

IJ
KLn[K

M ∧nL]M = 1
2ε

IJ
KLnKM ∧nLM

(C.20)
and

(ẽ ∧ ẽ)IJ = −σ2 [n ∧ n]IJ . (C.21)

From this we also get

ε̃IJKẼK = −σ(ẽ ∧ ẽ)IJ = 1
2[n ∧ n]IJ . (C.22)

Using these ingredients we can decompose the wedge product of coframes as

(e ∧ e)IJ = n ∧ nIJ + (ẽ ∧ ẽ)IJ = n ∧ nIJ − σε̃IJK ẼK , (C.23a)

∗(e ∧ e)IJ = n ∧ ∗nIJ + 2σẼ[InJ ]. (C.23b)

Finally, using this we can write the horizontal part of the EIJ = (∗+ β)(e ∧ e)IJ in terms
of the 1-forms nIJ as

ẼIJ = σ

2
(
(∗n)[I

K ∧ nJ ]K + βn[I
K ∧ nJ ]K

)
, (C.24)

or more compactly
ẼIJ = −σ4 (∗+ β)[n ∧ n]IJ . (C.25)
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D Relationship between ECH and GR Lagrangians

Let us consider the codimension-1 Lagrangian

LECH/GR := 1
2
(
σ ∗ (e ∧ e)IJ ∧ dωnInJ − βeI ∧ dωeI

)
. (D.1)

Our goal is to show (5.19), or in other words that LECH − dLECH/GR is the Lagrangian
LGR written in tetrad variables. To show this we establish the relationship at the level of
the symplectic potentials by varying the boundary Lagrangian. We have the variation

δLECH/GR = 1
2
(
2σ ∗ (e ∧ e)IKnJnK + β(e ∧ e)IJ

)
∧ δωIJ

+ δeI ∧
(
σε̃IJKe

J ∧ dωnK − βdωeI
)

+ σ
(
2 ∗ (e ∧ e)IJ ∧ dωnI + dω

(
∗ (e ∧ e)IJ

)
nI
)
δnJ

+ d
(
σ ∗ (e ∧ e)IJδnInJ + β

2 eI ∧ δe
I
)
. (D.2)

Going on-shell using dωeI ' 0, denoting KI = dωnI , pulling-back to Σ, and using the
definitions ẼI = ∗(ẽ ∧ ẽ)IJnJ and P̃ I = −σ(K̃ × ẽ)I , we get that the third line vanishes.
Indeed, the last term vanishes on-shell, and the first term vanishes by virtue of (C.13).
Noticing that the second line on-shell and on Σ is

σε̃IJKδẽ
I ∧ ẽJ ∧ K̃K = −P̃I ∧ δẽI = −θGR, (D.3)

we are therefore left with the identity

δLECH/GR
S' θECH − θGR − dθSECH

= θECH − θGR − dθECH/GR. (D.4)

This is the exact analog of the formula for δLEH/GR which was derived in [1].

E Alternative decomposition of the ECH potential

Here we present an alternative way to write the ECH symplectic potential. It is a Lorentz
covariant version of the usual LQG potential in connection and triad variables. At the
difference with what we have done in the main text, here the contribution of the topological
Holst term is put in the bulk and not on the boundary. This leads to the covariant (i.e.
without fixing nI in the time gauge) parametrization of the bulk degrees of freedom with
the Ashtekar-Barbero connection AI conjugated to EI . We did not use this decomposition
because we have chosen instead to write the bulk piece as the GR potential, and to push
the dependency on the Barbero-Immirzi parameter on the boundary.
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Using (3.33), one can write

σΘECH = σ

2

∫
Σ
EIJ ∧ δωIJ

=
∫

Σ
ẼI ∧ δ(ω − β ∗ ω)IJnJ

=
∫

Σ

(
ẼI ∧ δ(AIJnJ)− ẼI ∧ AIJδnJ

)
=
∫

Σ

(
ẼI ∧ δ(dnI +AIJnJ)− ẼI ∧ δdnI − ẼI ∧ AIJδnJ

)
=
∫

Σ

(
ẼI ∧ δAI + πIδn

I
)
−
∫
S
ẼIδn

I , (E.1)

where we have introduced

AIJ := (1− β∗)ωIJ , AI := dAnI , πI := dAẼI . (E.2)

This shows that the gravitational ECH phase space can be parametrized in terms of the
two bulk canonical pairs (ẼI , AI) and (nI , πI), and the corner pair (ẼI , nI). In the bulk,
the first pair represents 9 degrees of freedom (since we have ẼInI = 0 and AInI = 0) and
the second pair 3, for a total of 12. This is compensated by 6 Lorentz transformations
and 4 diffeomorphisms, so a total of 10 constraints, which leaves indeed 2 degrees of free-
dom. In the time gauge nI = (1, 0, 0, 0) the momentum AI becomes the Ashtekar-Barbero
connection Ai := Ai0.

For the sake of curiosity, we can match the expression (E.1) with the various ingredients
of the bulk-corner decomposition which we have performed in section 3. In order to do so,
let us first notice that (3.6) implies that

ẼI ∧ (∗ω)IJδnJ = σ(ω⊥ × Ẽ)IδnI . (E.3)

Using this and the fact that (∗ω)IJnJ = ΓI‖ , we can write the Holst piece of the ECH
potential as

1
2

∫
Σ

(ẽ ∧ ẽ)IJ ∧ δωIJ =
∫

Σ
ẼI ∧ δ(∗ω)IJnJ

=
∫

Σ

(
ẼI ∧ δ

(
(∗ω)IJnJ

)
− ẼI ∧ (∗ω)IJδnJ

)
=
∫

Σ

(
ẼI ∧ δΓI‖ − σ(ω⊥ × Ẽ)IδnI

)
. (E.4)

With this, the full ECH potential can be written in the form

ΘECH =
∫

Σ

(
ẼI ∧ δ(σK̃I + βΓI‖) + σ

(
d̃ΓẼI − β(ω⊥ × Ẽ)I

)
δnI

)
− σ

∫
S
ẼIδn

I , (E.5)

so that even on-shell of the Gauss constraint there is a pair in the bulk involving the normal
nI . One can then check that the momenta conjugated to ẼI and nI are indeed AI and πI
introduced in (E.1).
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F Relative diffeomorphism charge

F.1 From the difference of charges

Here we establish (5.36) by a direct subtraction of the ECH and GR charges. It is actually
possible to start this calculation by decomposing the BF diffeomorphism charge [169].

HSBF[ξ] = 1
2

∫
S
ξyωIJB

IJ . (F.1)

This decomposition follows almost verbatim the decomposition of the potential (2.6). We
first have

HSBF[ξ] =
∫
S

(
σB̃Iξyω

IJnJ + 1
2 s̃I ∧ (ξyωIJ)s̃J

)
. (F.2)

We evaluate the two terms separately. For the first term, we use (3.9) to get

ξyωIJnJ = ξyKI + ξyΓIJnJ , (F.3)

and (3.10) to write

ξy dΓn
I = ξy dnI + ξyΓIJnJ = LξnI + ξyΓIJnJ = 0. (F.4)

Together, this gives
ξyωIJnJ = ξyKI − LξnI . (F.5)

We this we can therefore write

BIξyω
IJnJ = BI(ξyKI − LξnI) = ξy (BI ∧KI)− (ξyBI)KI −BILξnI . (F.6)

For the second term we have

s̃I ∧ (ξyωIJ)s̃J = s̃I ∧ (ξyΓIJ)s̃J
= s̃I ∧

(
ξy (ΓIJ ∧ s̃J) + ΓIJ(ξy s̃J)

)
= s̃I ∧

(
ξy (dΓs̃

I − ds̃I) + dΓ(ξy s̃I)− d(ξy s̃I)
)

= s̃I ∧
(
ξy dΓs̃

I + dΓ(ξy s̃I)− Lξ s̃I
)

= dΓs̃
I(ξy s̃I)− (ξy dΓs̃

I) ∧ s̃I − d
(
s̃I(ξy s̃I)

)
− s̃I ∧ Lξ s̃I

= 2dΓs̃I(ξy s̃I)− ξy (s̃I ∧ dΓs̃
I)− d

(
s̃I(ξy s̃I)

)
− s̃I ∧ Lξ s̃I . (F.7)

One can note the ressemblance with (4.8) with δ there traded for ξy here. Putting this
together, and focusing on the case of tangent diffeomorphisms, we get that the BF diffeo-
morphism charge decomposes in the form

HSBF[ξ] = −
∫
S

(
σξy B̃IK̃

I + σB̃ILξnI − d̃Γs̃I(ξy s̃I) + 1
2 s̃I ∧ Lξ s̃

I
)
. (F.8)

Imposing the simplicity constraints (3.36) leads to the ECH diffeomorphism charge

HSECH[ξ] = −
∫
S

(
σξy ẼIK̃

I + σẼILξnI − βd̃ΓẽI(ξy ẽI) + β

2 ẽI ∧ Lξ ẽ
I
)
. (F.9)
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Going on-shell and using the definition of ẼI together with the momentum P̃ I = −σ(K̃ ×
ẽ)I , we finally get

HSECH[ξ] '
∫
S
ξy ẽI P̃I −

∫
S

(
σẼILξnI + β

2 ẽI ∧ Lξ ẽ
I
)
. (F.10)

For σ = −1, the relative charge is therefore

HSECH/GR[ξ] = HSECH[ξ]−HSGR[ξ] =
∫
S

(
ẼILξnI −

β

2 ẽI ∧ Lξ ẽ
I
)
. (F.11)

F.2 From the relative symplectic structure

Let us rewrite the relation (5.20) between the GR and ECH symplectic structures using
the 1-forms (6.3). As shown in section 6.2, we can write

ΩGR = ΩECH − ΩECH/GR = ΩECH + σ

4

∫
S

(∗+ β)δnIJ ∧ δnIJ . (F.12)

We now want to use this relationship between the symplectic structures in order to relate
the GR, ECH, and relative charges.

Let us first notice that the contraction of a diffeomorphism with the boundary term is
integrable by virtue of the identity

−Lξy
(∫

S
δnIJ ∧ δnIJ

)
= 2

∫
S
δnIJ ∧ LξnIJ

= 2
∫
S
δnIJ ∧

(
d(ξy nIJ) + ξy (dnIJ)

)
= 2

∫
S
δnIJ ∧ d(ξy nIJ) + ξy δnIJdnIJ

= 2
∫
S
δnIJ ∧ d(ξy nIJ) + nIJ ∧ d(ξy δnIJ)

= 2
∫
S
δ
(
nIJ ∧ d(ξy nIJ)

)
. (F.13)

This tells us that the relative charge is

HSECH/GR[ξ] = −σ2

∫
S

(∗+ β)nIJ ∧ LξnIJ . (F.14)

We can then contract a diffeomorphism with the above symplectic structures to find the
following relation between the corner charges:

HSGR[ξ] = HSECH[ξ]−HSECH/GR[ξ]

=
∫
S
ξyωIJ Ẽ

IJ + σ

2

∫
S

(∗+ β)nIJ ∧ d(ξy nIJ)

=
∫
S
ωIJ ∧ ξy ẼIJ + σ

2

∫
S

(∗+ β)nIJ ∧ d(ξy nIJ)

= σ

∫
S
ωIJ ∧ (∗+ β)(ξy n[I

K)nJ ]K + σ

2

∫
S

(∗+ β)nIJ ∧ d(ξy nIJ)

= σ

2

∫
S

(∗+ β)nIJ ∧ dω(ξy nIJ), (F.15)
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where for the third equality we have used the fact that ξ is tangent to S, and for the fourth
one the simplicity constraint (6.4). Our goal is to show, as a consistency check, that this
charge written on the right-hand side in terms of nIJ is indeed the Brown-York charge
HSGR[ξ].

For this, let us study the two pieces of this expression separately. The second term,
proportional to the Barbero-Immirzi parameter, can be rewritten in metric form as

σ

2

∫
S

nIJ ∧ dω(ξy nIJ) =
∫
S

nIJ ∧ dω(nIξJ)

=
∫
S

nIJ ∧ (K̃IξJ + nIdωξJ)

= σ

∫
S

(nI ẽJ − nJ ẽI) ∧ (K̃IξJ + nIdωξJ)

'
∫
S
ẽI ∧ dωξI

'
∫
S
εµνρσnµsν ẽIρ∇σ(ξαẽIα)

= −
∫
S
εµνρσnµsν∇ρξσ, (F.16)

where we have used (B.7) and introduced ξI = ξy ẽI . This is the trivial “topological”
Komar charge as in [115]. The first term in (F.15), however, can be rewritten in terms of
the momentum P̃ I as

σ

2

∫
S

(∗n)IJ ∧ dω(ξy nIJ) =
∫
S

(∗n)IJ ∧ (KIξJ + nIdωξJ)

= σ

2

∫
S
εIJKL(nK ẽL − nLẽK) ∧ (KIξJ + nIdωξJ)

= σ

2

∫
S
εIJKL(nK ẽL − nLẽK) ∧KIξJ

= −σ
∫
S
εIJKLξ

IKJ ∧ ẽKnL

=
∫
S
ξI P̃I , (F.17)

which as expected is the Brown-York charge.

G First class nature of the gluing condition

In this final appendix we prove the statement that the rotated Lie algebra elements
(ϕJϕ−1)IJ commute with JIJ and form a Lorentz algebra sl(2,C) with orientation op-
posite to JIJ . This explains why the matching condition BIJ S' (ϕJϕ−1)IJ at the corner is
first class.

In order to get this result, we use the expression (7.10) for the corner generator
and the definition δ = δ − ϕ−1δϕ to rewrite the edge mode contribution to the corner
potential (7.5) as

−ΘS
BF =

∫
S

(
σBIδnI + β

2 eI ∧ δeI −
1
2(ϕ−1δϕ)IJJIJ

)
. (G.1)
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From this we can read the commutators of J[α] = 1
2
∫
S α

IJJIJ and ϕ, which are

{J[α], J[β]} = J
[
[α, β]

]
, (G.2a)

{J[α], ϕ(x)} = ϕ(x)α, (G.2b)
{ϕ(x), ϕ(y)} = 0. (G.2c)

Given these commutation relations, we see that the generator J commutes with the corner
generator of gauge transformations, i.e.

{J[α], J[ϕ−1βϕ]} = 0. (G.3)

This commutation relation follows from the fact that J[α] acts by right multiplication
on ϕ while J[ϕ−1βϕ] acts instead by left multiplication. The commutator of the dressed
charges is then given by

{J[ϕ−1αϕ], J[ϕ−1βϕ]} = −J
[
ϕ−1[α, β]ϕ

]
. (G.4)

This shows that if we have generators BIJsatisfying a local Lorentz algebra
{B[α], B[β]} = B

[
[α, β]

]
, the constraint B[α] − J[α] = 0 is second class while

B[α]− J[ϕ−1αϕ] = 0 is first class, as announced.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] L. Freidel, M. Geiller and D. Pranzetti, Edge modes of gravity. Part I. Corner potentials
and charges, JHEP 11 (2020) 026 [arXiv:2006.12527] [INSPIRE].

[2] B. Dittrich, C. Goeller, E. Livine and A. Riello, Quasi-local holographic dualities in
non-perturbative 3d quantum gravity I: convergence of multiple approaches and examples of
Ponzano-Regge statistical duals, Nucl. Phys. B 938 (2019) 807 [arXiv:1710.04202]
[INSPIRE].

[3] B. Dittrich, C. Goeller, E.R. Livine and A. Riello, Quasi-local holographic dualities in
non-perturbative 3d quantum gravity II: from coherent quantum boundaries to BMS3
characters, Nucl. Phys. B 938 (2019) 878 [arXiv:1710.04237] [INSPIRE].

[4] B. Dittrich, C. Goeller, E.R. Livine and A. Riello, Quasi-local holographic dualities in
non-perturbative 3d quantum gravity, Class. Quant. Grav. 35 (2018) 13LT01
[arXiv:1803.02759] [INSPIRE].

[5] J. de Boer, E.P. Verlinde and H.L. Verlinde, On the holographic renormalization group,
JHEP 08 (2000) 003 [hep-th/9912012] [INSPIRE].

[6] S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and
renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595
[hep-th/0002230] [INSPIRE].

– 53 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/JHEP11(2020)026
https://arxiv.org/abs/2006.12527
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.12527
https://doi.org/10.1016/j.nuclphysb.2018.06.007
https://arxiv.org/abs/1710.04202
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1710.04202
https://doi.org/10.1016/j.nuclphysb.2018.06.010
https://arxiv.org/abs/1710.04237
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1710.04237
https://doi.org/10.1088/1361-6382/aac606
https://arxiv.org/abs/1803.02759
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1803.02759
https://doi.org/10.1088/1126-6708/2000/08/003
https://arxiv.org/abs/hep-th/9912012
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9912012
https://doi.org/10.1007/s002200100381
https://arxiv.org/abs/hep-th/0002230
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0002230


J
H
E
P
1
1
(
2
0
2
0
)
0
2
7

[7] J.M. Maldacena, TASI 2003 lectures on AdS/CFT, in Theoretical Advanced Study Institute
in Elementary Particle Physics (TASI 2003): recent trends in string theory, (2003), pg. 155
[hep-th/0309246] [INSPIRE].

[8] D. Marolf, States and boundary terms: subtleties of Lorentzian AdS/CFT, JHEP 05 (2005)
042 [hep-th/0412032] [INSPIRE].

[9] A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Local bulk operators in AdS/CFT: a
boundary view of horizons and locality, Phys. Rev. D 73 (2006) 086003 [hep-th/0506118]
[INSPIRE].

[10] A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Holographic representation of local
bulk operators, Phys. Rev. D 74 (2006) 066009 [hep-th/0606141] [INSPIRE].

[11] D. Marolf, Unitarity and holography in gravitational physics, Phys. Rev. D 79 (2009)
044010 [arXiv:0808.2842] [INSPIRE].

[12] G. Compère and D. Marolf, Setting the boundary free in AdS/CFT, Class. Quant. Grav. 25
(2008) 195014 [arXiv:0805.1902] [INSPIRE].

[13] T. De Jonckheere, Modave lectures on bulk reconstruction in AdS/CFT,
PoS(Modave2017)005 (2018) [arXiv:1711.07787] [INSPIRE].

[14] X. Dong, D. Harlow and A.C. Wall, Reconstruction of bulk operators within the
entanglement wedge in gauge-gravity duality, Phys. Rev. Lett. 117 (2016) 021601
[arXiv:1601.05416] [INSPIRE].

[15] L. Freidel, Reconstructing AdS/CFT, arXiv:0804.0632 [INSPIRE].

[16] L. McGough, M. Mézei and H. Verlinde, Moving the CFT into the bulk with T T̄ , JHEP 04
(2018) 010 [arXiv:1611.03470] [INSPIRE].

[17] A.J. Tolley, T T̄ deformations, massive gravity and non-critical strings, JHEP 06 (2020) 050
[arXiv:1911.06142] [INSPIRE].

[18] E.A. Mazenc, V. Shyam and R.M. Soni, A T T̄ deformation for curved spacetimes from 3d
gravity, arXiv:1912.09179 [INSPIRE].

[19] P. Saad, S.H. Shenker and D. Stanford, JT gravity as a matrix integral, arXiv:1903.11115
[INSPIRE].

[20] D. Stanford and E. Witten, JT gravity and the ensembles of random matrix theory,
arXiv:1907.03363 [INSPIRE].

[21] A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian and A. Tajdini, Replica wormholes
and the entropy of Hawking radiation, JHEP 05 (2020) 013 [arXiv:1911.12333] [INSPIRE].

[22] T.G. Mertens and G.J. Turiaci, Liouville quantum gravity — holography, JT and matrices,
arXiv:2006.07072 [INSPIRE].

[23] L.V. Iliesiu, J. Kruthoff, G.J. Turiaci and H. Verlinde, JT gravity at finite cutoff,
arXiv:2004.07242 [INSPIRE].

[24] H. Maxfield and G.J. Turiaci, The path integral of 3D gravity near extremality; or, JT
gravity with defects as a matrix integral, arXiv:2006.11317 [INSPIRE].

[25] E. Witten, Matrix models and deformations of JT gravity, arXiv:2006.13414 [INSPIRE].

[26] M. Van Raamsdonk, Building up spacetime with quantum entanglement, Gen. Rel. Grav. 42
(2010) 2323 [Int. J. Mod. Phys. D 19 (2010) 2429] [arXiv:1005.3035] [INSPIRE].

– 54 –

https://arxiv.org/abs/hep-th/0309246
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0309246
https://doi.org/10.1088/1126-6708/2005/05/042
https://doi.org/10.1088/1126-6708/2005/05/042
https://arxiv.org/abs/hep-th/0412032
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0412032
https://doi.org/10.1103/PhysRevD.73.086003
https://arxiv.org/abs/hep-th/0506118
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0506118
https://doi.org/10.1103/PhysRevD.74.066009
https://arxiv.org/abs/hep-th/0606141
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0606141
https://doi.org/10.1103/PhysRevD.79.044010
https://doi.org/10.1103/PhysRevD.79.044010
https://arxiv.org/abs/0808.2842
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0808.2842
https://doi.org/10.1088/0264-9381/25/19/195014
https://doi.org/10.1088/0264-9381/25/19/195014
https://arxiv.org/abs/0805.1902
https://inspirehep.net/search?p=find+J%20%22Class.Quant.Grav.%2C25%2C195014%22
https://doi.org/10.22323/1.323.0005
https://arxiv.org/abs/1711.07787
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1711.07787
https://doi.org/10.1103/PhysRevLett.117.021601
https://arxiv.org/abs/1601.05416
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1601.05416
https://arxiv.org/abs/0804.0632
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0804.0632
https://doi.org/10.1007/JHEP04(2018)010
https://doi.org/10.1007/JHEP04(2018)010
https://arxiv.org/abs/1611.03470
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1611.03470
https://doi.org/10.1007/JHEP06(2020)050
https://arxiv.org/abs/1911.06142
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.06142
https://arxiv.org/abs/1912.09179
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.09179
https://arxiv.org/abs/1903.11115
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1903.11115
https://arxiv.org/abs/1907.03363
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.03363
https://doi.org/10.1007/JHEP05(2020)013
https://arxiv.org/abs/1911.12333
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.12333
https://arxiv.org/abs/2006.07072
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.07072
https://arxiv.org/abs/2004.07242
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.07242
https://arxiv.org/abs/2006.11317
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.11317
https://arxiv.org/abs/2006.13414
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.13414
https://doi.org/10.1142/S0218271810018529
https://arxiv.org/abs/1005.3035
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1005.3035


J
H
E
P
1
1
(
2
0
2
0
)
0
2
7

[27] A. Almheiri, X. Dong and D. Harlow, Bulk locality and quantum error correction in
AdS/CFT, JHEP 04 (2015) 163 [arXiv:1411.7041] [INSPIRE].

[28] F. Pastawski, B. Yoshida, D. Harlow and J. Preskill, Holographic quantum error-correcting
codes: toy models for the bulk/boundary correspondence, JHEP 06 (2015) 149
[arXiv:1503.06237] [INSPIRE].

[29] M. Van Raamsdonk, Lectures on gravity and entanglement, in Theoretical Advanced Study
Institute in Elementary Particle Physics: new frontiers in fields and strings, World
Scientific, Singapore (2017), pg. 297 [arXiv:1609.00026] [INSPIRE].

[30] B. Swingle, Spacetime from entanglement, Ann. Rev. Condensed Matter Phys. 9 (2018) 345
[INSPIRE].

[31] X. Dong, E. Silverstein and G. Torroba, De Sitter holography and entanglement entropy,
JHEP 07 (2018) 050 [arXiv:1804.08623] [INSPIRE].

[32] A. Almheiri, Holographic quantum error correction and the projected black hole interior,
arXiv:1810.02055 [INSPIRE].

[33] M. Van Raamsdonk, Building up spacetime with quantum entanglement II: it from BC-bit,
arXiv:1809.01197 [INSPIRE].

[34] L. Freidel and A. Perez, Quantum gravity at the corner, Universe 4 (2018) 107
[arXiv:1507.02573] [INSPIRE].

[35] L. Freidel, A. Perez and D. Pranzetti, Loop gravity string, Phys. Rev. D 95 (2017) 106002
[arXiv:1611.03668] [INSPIRE].

[36] L. Freidel and E.R. Livine, Bubble networks: framed discrete geometry for quantum gravity,
Gen. Rel. Grav. 51 (2019) 9 [arXiv:1810.09364] [INSPIRE].

[37] L. Freidel, E.R. Livine and D. Pranzetti, Gravitational edge modes: from Kac-Moody
charges to Poincaré networks, Class. Quant. Grav. 36 (2019) 195014 [arXiv:1906.07876]
[INSPIRE].

[38] D. Oriti, Group field theory and loop quantum gravity, arXiv:1408.7112 [INSPIRE].

[39] B. Dittrich and S. Steinhaus, Time evolution as refining, coarse graining and entangling,
New J. Phys. 16 (2014) 123041 [arXiv:1311.7565] [INSPIRE].

[40] C. Delcamp, B. Dittrich and A. Riello, Fusion basis for lattice gauge theory and loop
quantum gravity, JHEP 02 (2017) 061 [arXiv:1607.08881] [INSPIRE].

[41] B. Dittrich and M. Geiller, Quantum gravity kinematics from extended TQFTs, New J.
Phys. 19 (2017) 013003 [arXiv:1604.05195] [INSPIRE].

[42] W.J. Cunningham, B. Dittrich and S. Steinhaus, Tensor network renormalization with
fusion charges: applications to 3D lattice gauge theory, Universe 6 (2020) 97
[arXiv:2002.10472] [INSPIRE].

[43] T. Thiemann, Modern canonical quantum general relativity, Cambridge University Press,
Cambridge, U.K. (2007) [INSPIRE].

[44] A. Ashtekar and J. Lewandowski, Background independent quantum gravity: a status
report, Class. Quant. Grav. 21 (2004) R53 [gr-qc/0404018] [INSPIRE].

[45] L. Smolin, Linking topological quantum field theory and nonperturbative quantum gravity, J.
Math. Phys. 36 (1995) 6417 [gr-qc/9505028] [INSPIRE].

– 55 –

https://doi.org/10.1007/JHEP04(2015)163
https://arxiv.org/abs/1411.7041
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1411.7041
https://doi.org/10.1007/JHEP06(2015)149
https://arxiv.org/abs/1503.06237
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1503.06237
https://doi.org/10.1142/9789813149441_0005
https://doi.org/10.1142/9789813149441_0005
https://arxiv.org/abs/1609.00026
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1609.00026
https://doi.org/10.1146/annurev-conmatphys-033117-054219
https://inspirehep.net/search?p=find+doi%20%2210.1146%2Fannurev-conmatphys-033117-054219%22
https://doi.org/10.1007/JHEP07(2018)050
https://arxiv.org/abs/1804.08623
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1804.08623
https://arxiv.org/abs/1810.02055
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.02055
https://arxiv.org/abs/1809.01197
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1809.01197
https://doi.org/10.3390/universe4100107
https://arxiv.org/abs/1507.02573
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1507.02573
https://doi.org/10.1103/PhysRevD.95.106002
https://arxiv.org/abs/1611.03668
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1611.03668
https://doi.org/10.1007/s10714-018-2493-y
https://arxiv.org/abs/1810.09364
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.09364
https://doi.org/10.1088/1361-6382/ab40fe
https://arxiv.org/abs/1906.07876
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.07876
https://arxiv.org/abs/1408.7112
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1408.7112
https://doi.org/10.1088/1367-2630/16/12/123041
https://arxiv.org/abs/1311.7565
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1311.7565
https://doi.org/10.1007/JHEP02(2017)061
https://arxiv.org/abs/1607.08881
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1607.08881
https://doi.org/10.1088/1367-2630/aa54e2
https://doi.org/10.1088/1367-2630/aa54e2
https://arxiv.org/abs/1604.05195
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1604.05195
https://doi.org/10.3390/universe6070097
https://arxiv.org/abs/2002.10472
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2002.10472
https://doi.org/10.1017/CBO9780511755682
https://inspirehep.net/search?p=find+doi%20%2210.1017%2FCBO9780511755682%22
https://doi.org/10.1088/0264-9381/21/15/R01
https://arxiv.org/abs/gr-qc/0404018
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F0404018
https://doi.org/10.1063/1.531251
https://doi.org/10.1063/1.531251
https://arxiv.org/abs/gr-qc/9505028
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F9505028


J
H
E
P
1
1
(
2
0
2
0
)
0
2
7

[46] K.V. Krasnov, Counting surface states in the loop quantum gravity, Phys. Rev. D 55 (1997)
3505 [gr-qc/9603025] [INSPIRE].

[47] A. Ashtekar, J. Baez, A. Corichi and K. Krasnov, Quantum geometry and black hole
entropy, Phys. Rev. Lett. 80 (1998) 904 [gr-qc/9710007] [INSPIRE].

[48] M. Domagala and J. Lewandowski, Black hole entropy from quantum geometry, Class.
Quant. Grav. 21 (2004) 5233 [gr-qc/0407051] [INSPIRE].

[49] K.A. Meissner, Black hole entropy in loop quantum gravity, Class. Quant. Grav. 21 (2004)
5245 [gr-qc/0407052] [INSPIRE].

[50] I. Agullo, J. Barbero G., J. Díaz-Polo, E. Fernández-Borja and E.J.S. Villasenor, Black hole
state counting in LQG: a number theoretical approach, Phys. Rev. Lett. 100 (2008) 211301
[arXiv:0802.4077] [INSPIRE].

[51] J. Engle, K. Noui, A. Perez and D. Pranzetti, The SU(2) black hole entropy revisited, JHEP
05 (2011) 016 [arXiv:1103.2723] [INSPIRE].

[52] W. Donnelly, B. Michel, D. Marolf and J. Wien, Living on the edge: a toy model for
holographic reconstruction of algebras with centers, JHEP 04 (2017) 093
[arXiv:1611.05841] [INSPIRE].

[53] A. May, Tensor networks for dynamic spacetimes, JHEP 06 (2017) 118
[arXiv:1611.06220] [INSPIRE].

[54] X.-L. Qi and Z. Yang, Space-time random tensor networks and holographic duality,
arXiv:1801.05289 [INSPIRE].

[55] N. Bao, G. Penington, J. Sorce and A.C. Wall, Beyond toy models: distilling tensor
networks in full AdS/CFT, JHEP 11 (2019) 069 [arXiv:1812.01171] [INSPIRE].

[56] G. Chirco, A. Goeßmann, D. Oriti and M. Zhang, Group field theory and holographic tensor
networks: dynamical corrections to the Ryu-Takayanagi formula, Class. Quant. Grav. 37
(2020) 095011 [arXiv:1903.07344] [INSPIRE].

[57] M. Miyaji and T. Takayanagi, Surface/state correspondence as a generalized holography,
PTEP 2015 (2015) 073B03 [arXiv:1503.03542] [INSPIRE].

[58] T. Takayanagi and K. Tamaoka, Gravity edges modes and Hayward term, JHEP 02 (2020)
167 [arXiv:1912.01636] [INSPIRE].

[59] L. Freidel, M. Geiller and D. Pranzetti, Edge modes of gravity. Part III. Corner simplicity
constraints, arXiv:2007.12635 [INSPIRE].

[60] J. Barbero G., Real Ashtekar variables for Lorentzian signature space times, Phys. Rev. D
51 (1995) 5507 [gr-qc/9410014] [INSPIRE].

[61] J. Barbero G., Reality conditions and Ashtekar variables: a different perspective, Phys. Rev.
D 51 (1995) 5498 [gr-qc/9410013] [INSPIRE].

[62] S. Alexandrov and P. Roche, Critical overview of loops and foams, Phys. Rept. 506 (2011)
41 [arXiv:1009.4475] [INSPIRE].

[63] S. Alexandrov, M. Geiller and K. Noui, Spin foams and canonical quantization, SIGMA 8
(2012) 055 [arXiv:1112.1961] [INSPIRE].

[64] B. Bahr, B. Dittrich and M. Geiller, A new realization of quantum geometry,
arXiv:1506.08571 [INSPIRE].

– 56 –

https://doi.org/10.1103/PhysRevD.55.3505
https://doi.org/10.1103/PhysRevD.55.3505
https://arxiv.org/abs/gr-qc/9603025
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F9603025
https://doi.org/10.1103/PhysRevLett.80.904
https://arxiv.org/abs/gr-qc/9710007
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F9710007
https://doi.org/10.1088/0264-9381/21/22/014
https://doi.org/10.1088/0264-9381/21/22/014
https://arxiv.org/abs/gr-qc/0407051
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F0407051
https://doi.org/10.1088/0264-9381/21/22/015
https://doi.org/10.1088/0264-9381/21/22/015
https://arxiv.org/abs/gr-qc/0407052
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F0407052
https://doi.org/10.1103/PhysRevLett.100.211301
https://arxiv.org/abs/0802.4077
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0802.4077
https://doi.org/10.1007/JHEP05(2011)016
https://doi.org/10.1007/JHEP05(2011)016
https://arxiv.org/abs/1103.2723
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1103.2723
https://doi.org/10.1007/JHEP04(2017)093
https://arxiv.org/abs/1611.05841
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1611.05841
https://doi.org/10.1007/JHEP06(2017)118
https://arxiv.org/abs/1611.06220
https://inspirehep.net/search?p=find+doi%20%2210.1007%2Fjhep06%282017%29118%22
https://arxiv.org/abs/1801.05289
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1801.05289
https://doi.org/10.1007/JHEP11(2019)069
https://arxiv.org/abs/1812.01171
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.01171
https://doi.org/10.1088/1361-6382/ab7bb9
https://doi.org/10.1088/1361-6382/ab7bb9
https://arxiv.org/abs/1903.07344
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1903.07344
https://doi.org/10.1093/ptep/ptv089
https://arxiv.org/abs/1503.03542
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1503.03542
https://doi.org/10.1007/JHEP02(2020)167
https://doi.org/10.1007/JHEP02(2020)167
https://arxiv.org/abs/1912.01636
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.01636
https://arxiv.org/abs/2007.12635
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.12635
https://doi.org/10.1103/PhysRevD.51.5507
https://doi.org/10.1103/PhysRevD.51.5507
https://arxiv.org/abs/gr-qc/9410014
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F9410014
https://doi.org/10.1103/PhysRevD.51.5498
https://doi.org/10.1103/PhysRevD.51.5498
https://arxiv.org/abs/gr-qc/9410013
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F9410013
https://doi.org/10.1016/j.physrep.2011.05.002
https://doi.org/10.1016/j.physrep.2011.05.002
https://arxiv.org/abs/1009.4475
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1009.4475
https://doi.org/10.3842/SIGMA.2012.055
https://doi.org/10.3842/SIGMA.2012.055
https://arxiv.org/abs/1112.1961
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1112.1961
https://arxiv.org/abs/1506.08571
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1506.08571


J
H
E
P
1
1
(
2
0
2
0
)
0
2
7

[65] B. Dittrich and M. Geiller, Flux formulation of loop quantum gravity: classical framework,
Class. Quant. Grav. 32 (2015) 135016 [arXiv:1412.3752] [INSPIRE].

[66] B. Dittrich and M. Geiller, A new vacuum for loop quantum gravity, Class. Quant. Grav.
32 (2015) 112001 [arXiv:1401.6441] [INSPIRE].

[67] C. Rovelli and L. Smolin, Knot theory and quantum gravity, Phys. Rev. Lett. 61 (1988)
1155 [INSPIRE].

[68] C. Rovelli and L. Smolin, Loop space representation of quantum general relativity, Nucl.
Phys. B 331 (1990) 80 [INSPIRE].

[69] A. Ashtekar and C.J. Isham, Representations of the holonomy algebras of gravity and
non-Abelian gauge theories, Class. Quant. Grav. 9 (1992) 1433 [hep-th/9202053] [INSPIRE].

[70] A. Ashtekar, C. Rovelli and L. Smolin, Weaving a classical geometry with quantum threads,
Phys. Rev. Lett. 69 (1992) 237 [hep-th/9203079] [INSPIRE].

[71] A. Ashtekar and J. Lewandowski, Projective techniques and functional integration for gauge
theories, J. Math. Phys. 36 (1995) 2170 [gr-qc/9411046] [INSPIRE].

[72] C. Rovelli and L. Smolin, Spin networks and quantum gravity, Phys. Rev. D 52 (1995) 5743
[gr-qc/9505006] [INSPIRE].

[73] A. Ashtekar, A. Corichi and J.A. Zapata, Quantum theory of geometry III:
noncommutativity of Riemannian structures, Class. Quant. Grav. 15 (1998) 2955
[gr-qc/9806041] [INSPIRE].

[74] J.C. Baez, Four-dimensional BF theory with cosmological term as a topological quantum
field theory, Lett. Math. Phys. 38 (1996) 129 [q-alg/9507006] [INSPIRE].

[75] J.F. Plebanski, On the separation of Einsteinian substructures, J. Math. Phys. 18 (1977)
2511 [INSPIRE].

[76] R. Capovilla, T. Jacobson and J. Dell, A pure spin connection formulation of gravity, Class.
Quant. Grav. 8 (1991) 59 [INSPIRE].

[77] R. Capovilla, T. Jacobson, J. Dell and L.J. Mason, Selfdual two forms and gravity, Class.
Quant. Grav. 8 (1991) 41 [INSPIRE].

[78] M.P. Reisenberger, A left-handed simplicial action for Euclidean general relativity, Class.
Quant. Grav. 14 (1997) 1753 [gr-qc/9609002] [INSPIRE].

[79] R. De Pietri and L. Freidel, SO(4) Plebanski action and relativistic spin foam model, Class.
Quant. Grav. 16 (1999) 2187 [gr-qc/9804071] [INSPIRE].

[80] R. Capovilla, M. Montesinos, V.A. Prieto and E. Rojas, BF gravity and the Immirzi
parameter, Class. Quant. Grav. 18 (2001) L49 [Erratum ibid. 18 (2001) 1157]
[gr-qc/0102073] [INSPIRE].

[81] A. Ashtekar, Lectures on nonperturbative canonical gravity, Adv. Ser. Astrophys. Cosmol. 6
(1991) 1.

[82] J.D. Romano, Geometrodynamics versus connection dynamics (in the context of (2+1) and
(3+1) gravity, Gen. Rel. Grav. 25 (1993) 759 [gr-qc/9303032] [INSPIRE].

[83] P. Peldán, Actions for gravity, with generalizations: a review, Class. Quant. Grav. 11
(1994) 1087 [gr-qc/9305011] [INSPIRE].

– 57 –

https://doi.org/10.1088/0264-9381/32/13/135016
https://arxiv.org/abs/1412.3752
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1412.3752
https://doi.org/10.1088/0264-9381/32/11/112001
https://doi.org/10.1088/0264-9381/32/11/112001
https://arxiv.org/abs/1401.6441
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1401.6441
https://doi.org/10.1103/PhysRevLett.61.1155
https://doi.org/10.1103/PhysRevLett.61.1155
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C61%2C1155%22
https://doi.org/10.1016/0550-3213(90)90019-A
https://doi.org/10.1016/0550-3213(90)90019-A
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB331%2C80%22
https://doi.org/10.1088/0264-9381/9/6/004
https://arxiv.org/abs/hep-th/9202053
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9202053
https://doi.org/10.1103/PhysRevLett.69.237
https://arxiv.org/abs/hep-th/9203079
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9203079
https://doi.org/10.1063/1.531037
https://arxiv.org/abs/gr-qc/9411046
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F9411046
https://doi.org/10.1103/PhysRevD.52.5743
https://arxiv.org/abs/gr-qc/9505006
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F9505006
https://doi.org/10.1088/0264-9381/15/10/006
https://arxiv.org/abs/gr-qc/9806041
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F9806041
https://doi.org/10.1007/BF00398315
https://arxiv.org/abs/q-alg/9507006
https://inspirehep.net/search?p=find+doi%20%2210.1007%2Fbf00398315%22
https://doi.org/10.1063/1.523215
https://doi.org/10.1063/1.523215
https://inspirehep.net/search?p=find+J%20%22J.Math.Phys.%2C18%2C2511%22
https://doi.org/10.1088/0264-9381/8/1/010
https://doi.org/10.1088/0264-9381/8/1/010
https://inspirehep.net/search?p=find+J%20%22Class.Quant.Grav.%2C8%2C59%22
https://doi.org/10.1088/0264-9381/8/1/009
https://doi.org/10.1088/0264-9381/8/1/009
https://inspirehep.net/search?p=find+J%20%22Class.Quant.Grav.%2C8%2C41%22
https://doi.org/10.1088/0264-9381/14/7/012
https://doi.org/10.1088/0264-9381/14/7/012
https://arxiv.org/abs/gr-qc/9609002
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F9609002
https://doi.org/10.1088/0264-9381/16/7/303
https://doi.org/10.1088/0264-9381/16/7/303
https://arxiv.org/abs/gr-qc/9804071
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F9804071
https://doi.org/10.1088/0264-9381/18/5/101
https://arxiv.org/abs/gr-qc/0102073
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F0102073
https://doi.org/10.1142/1321
https://doi.org/10.1142/1321
https://doi.org/10.1007/BF00758384
https://arxiv.org/abs/gr-qc/9303032
https://inspirehep.net/search?p=find+doi%20%2210.1007%2Fbf00758384%22
https://doi.org/10.1088/0264-9381/11/5/003
https://doi.org/10.1088/0264-9381/11/5/003
https://arxiv.org/abs/gr-qc/9305011
https://inspirehep.net/search?p=find+J%20%22Class.Quant.Grav.%2C11%2C1087%22


J
H
E
P
1
1
(
2
0
2
0
)
0
2
7

[84] N. Barros e Sa, Hamiltonian analysis of general relativity with the Immirzi parameter, Int.
J. Mod. Phys. D 10 (2001) 261 [gr-qc/0006013] [INSPIRE].

[85] S. Alexandrov, SO(4, C) covariant Ashtekar-Barbero gravity and the Immirzi parameter,
Class. Quant. Grav. 17 (2000) 4255 [gr-qc/0005085] [INSPIRE].

[86] S. Alexandrov and E.R. Livine, SU(2) loop quantum gravity seen from covariant theory,
Phys. Rev. D 67 (2003) 044009 [gr-qc/0209105] [INSPIRE].

[87] S. Alexandrov, E. Buffenoir and P. Roche, Plebanski theory and covariant canonical
formulation, Class. Quant. Grav. 24 (2007) 2809 [gr-qc/0612071] [INSPIRE].

[88] F. Cianfrani and G. Montani, Towards loop quantum gravity without the time gauge, Phys.
Rev. Lett. 102 (2009) 091301 [arXiv:0811.1916] [INSPIRE].

[89] M. Geiller, M. Lachieze-Rey and K. Noui, A new look at Lorentz-covariant loop quantum
gravity, Phys. Rev. D 84 (2011) 044002 [arXiv:1105.4194] [INSPIRE].

[90] M. Montesinos, J. Romero and M. Celada, Revisiting the solution of the second-class
constraints of the Holst action, Phys. Rev. D 99 (2019) 064029 [arXiv:1903.09201]
[INSPIRE].

[91] S. Alexandrov, On choice of connection in loop quantum gravity, Phys. Rev. D 65 (2002)
024011 [gr-qc/0107071] [INSPIRE].

[92] S. Alexandrov and D. Vassilevich, Area spectrum in Lorentz covariant loop gravity, Phys.
Rev. D 64 (2001) 044023 [gr-qc/0103105] [INSPIRE].

[93] S. Alexandrov, Simplicity and closure constraints in spin foam models of gravity, Phys. Rev.
D 78 (2008) 044033 [arXiv:0802.3389] [INSPIRE].

[94] F. Anzà and S. Speziale, A note on the secondary simplicity constraints in loop quantum
gravity, Class. Quant. Grav. 32 (2015) 195015 [arXiv:1409.0836] [INSPIRE].

[95] M. Dupuis and E.R. Livine, Revisiting the simplicity constraints and coherent intertwiners,
Class. Quant. Grav. 28 (2011) 085001 [arXiv:1006.5666] [INSPIRE].

[96] M. Geiller and K. Noui, Testing the imposition of the spin foam simplicity constraints,
Class. Quant. Grav. 29 (2012) 135008 [arXiv:1112.1965] [INSPIRE].

[97] E.R. Livine and S. Speziale, Consistently solving the simplicity constraints for spinfoam
quantum gravity, EPL 81 (2008) 50004 [arXiv:0708.1915] [INSPIRE].

[98] B. Dittrich and J.P. Ryan, Simplicity in simplicial phase space, Phys. Rev. D 82 (2010)
064026 [arXiv:1006.4295] [INSPIRE].

[99] J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [INSPIRE].

[100] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT,
Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

[101] L. Liu, M. Montesinos and A. Perez, A topological limit of gravity admitting an SU(2)
connection formulation, Phys. Rev. D 81 (2010) 064033 [arXiv:0906.4524] [INSPIRE].

[102] J. Engle, K. Noui, A. Perez and D. Pranzetti, Black hole entropy from an SU(2)-invariant
formulation of type I isolated horizons, Phys. Rev. D 82 (2010) 044050 [arXiv:1006.0634]
[INSPIRE].

[103] A.A. Kirillov, Lectures on the orbit method, Grad. Studies Math 64, American
Mathematical Society, U.S.A. (2004).

– 58 –

https://doi.org/10.1142/S0218271801000858
https://doi.org/10.1142/S0218271801000858
https://arxiv.org/abs/gr-qc/0006013
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F0006013
https://doi.org/10.1088/0264-9381/17/20/307
https://arxiv.org/abs/gr-qc/0005085
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F0005085
https://doi.org/10.1103/PhysRevD.67.044009
https://arxiv.org/abs/gr-qc/0209105
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F0209105
https://doi.org/10.1088/0264-9381/24/11/003
https://arxiv.org/abs/gr-qc/0612071
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F0612071
https://doi.org/10.1103/PhysRevLett.102.091301
https://doi.org/10.1103/PhysRevLett.102.091301
https://arxiv.org/abs/0811.1916
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0811.1916
https://doi.org/10.1103/PhysRevD.84.044002
https://arxiv.org/abs/1105.4194
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1105.4194
https://doi.org/10.1103/PhysRevD.99.064029
https://arxiv.org/abs/1903.09201
https://inspirehep.net/search?p=find+doi%20%2210.1103%2Fphysrevd.99.064029%22
https://doi.org/10.1103/PhysRevD.65.024011
https://doi.org/10.1103/PhysRevD.65.024011
https://arxiv.org/abs/gr-qc/0107071
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F0107071
https://doi.org/10.1103/PhysRevD.64.044023
https://doi.org/10.1103/PhysRevD.64.044023
https://arxiv.org/abs/gr-qc/0103105
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F0103105
https://doi.org/10.1103/PhysRevD.78.044033
https://doi.org/10.1103/PhysRevD.78.044033
https://arxiv.org/abs/0802.3389
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0802.3389
https://doi.org/10.1088/0264-9381/32/19/195015
https://arxiv.org/abs/1409.0836
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1409.0836
https://doi.org/10.1088/0264-9381/28/8/085001
https://arxiv.org/abs/1006.5666
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1006.5666
https://doi.org/10.1088/0264-9381/29/13/135008
https://arxiv.org/abs/1112.1965
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1112.1965
https://doi.org/10.1209/0295-5075/81/50004
https://arxiv.org/abs/0708.1915
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0708.1915
https://doi.org/10.1103/PhysRevD.82.064026
https://doi.org/10.1103/PhysRevD.82.064026
https://arxiv.org/abs/1006.4295
https://inspirehep.net/search?p=find+doi%20%2210.1103%2Fphysrevd.82.064026%22
https://doi.org/10.1103/PhysRevD.7.2333
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD7%2C2333%22
https://doi.org/10.1103/PhysRevLett.96.181602
https://arxiv.org/abs/hep-th/0603001
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0603001
https://doi.org/10.1103/PhysRevD.81.064033
https://arxiv.org/abs/0906.4524
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0906.4524
https://doi.org/10.1103/PhysRevD.82.044050
https://arxiv.org/abs/1006.0634
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1006.0634


J
H
E
P
1
1
(
2
0
2
0
)
0
2
7

[104] A.S. Cattaneo and A. Perez, A note on the Poisson bracket of 2d smeared fluxes in loop
quantum gravity, Class. Quant. Grav. 34 (2017) 107001 [arXiv:1611.08394] [INSPIRE].

[105] C. Rovelli and L. Smolin, Discreteness of area and volume in quantum gravity, Nucl. Phys.
B 442 (1995) 593 [Erratum ibid. 456 (1995) 753] [gr-qc/9411005] [INSPIRE].

[106] A. Ashtekar and J. Lewandowski, Quantum theory of geometry. 1: area operators, Class.
Quant. Grav. 14 (1997) A55 [gr-qc/9602046] [INSPIRE].

[107] Y.N. Obukhov, The Palatini principle for manifold with boundary, Class. Quant. Grav. 4
(1987) 1085.

[108] E. Bianchi and W. Wieland, Horizon energy as the boost boundary term in general relativity
and loop gravity, arXiv:1205.5325 [INSPIRE].

[109] N. Bodendorfer and Y. Neiman, Imaginary action, spinfoam asymptotics and the
‘transplanckian’ regime of loop quantum gravity, Class. Quant. Grav. 30 (2013) 195018
[arXiv:1303.4752] [INSPIRE].

[110] N. Bodendorfer, T. Thiemann and A. Thurn, New variables for classical and quantum
gravity in all dimensions II. Lagrangian analysis, Class. Quant. Grav. 30 (2013) 045002
[arXiv:1105.3704] [INSPIRE].

[111] N. Bodendorfer, T. Thiemann and A. Thurn, New variables for classical and quantum
gravity in all dimensions V. Isolated horizon boundary degrees of freedom, Class. Quant.
Grav. 31 (2014) 055002 [arXiv:1304.2679] [INSPIRE].

[112] W.M. Wieland, A new action for simplicial gravity in four dimensions, Class. Quant. Grav.
32 (2015) 015016 [arXiv:1407.0025] [INSPIRE].

[113] W. Wieland, Discrete gravity as a topological field theory with light-like curvature defects,
JHEP 05 (2017) 142 [arXiv:1611.02784] [INSPIRE].

[114] W. Wieland, New boundary variables for classical and quantum gravity on a null surface,
Class. Quant. Grav. 34 (2017) 215008 [arXiv:1704.07391] [INSPIRE].

[115] E. De Paoli and S. Speziale, A gauge-invariant symplectic potential for tetrad general
relativity, JHEP 07 (2018) 040 [arXiv:1804.09685] [INSPIRE].

[116] R. Oliveri and S. Speziale, Boundary effects in general relativity with tetrad variables, Gen.
Rel. Grav. 52 (2020) 83 [arXiv:1912.01016] [INSPIRE].

[117] W. Wieland, Fock representation of gravitational boundary modes and the discreteness of
the area spectrum, Annales Henri Poincaré 18 (2017) 3695 [arXiv:1706.00479] [INSPIRE].

[118] W. Donnelly and L. Freidel, Local subsystems in gauge theory and gravity, JHEP 09 (2016)
102 [arXiv:1601.04744] [INSPIRE].

[119] L. Freidel, M. Geiller and D. Pranzetti, Edge modes of gravity. Part IV. Corner Hilbert
space, to appear.

[120] A. Corichi, I. Rubalcava and T. Vukasinac, Hamiltonian and Noether charges in first order
gravity, Gen. Rel. Grav. 46 (2014) 1813 [arXiv:1312.7828] [INSPIRE].

[121] M. Montesinos, D. González, M. Celada and B. Díaz, Reformulation of the symmetries of
first-order general relativity, Class. Quant. Grav. 34 (2017) 205002 [arXiv:1704.04248]
[INSPIRE].

[122] E. Frodden and D. Hidalgo, Surface charges for gravity and electromagnetism in the first
order formalism, Class. Quant. Grav. 35 (2018) 035002 [arXiv:1703.10120] [INSPIRE].

– 59 –

https://doi.org/10.1088/1361-6382/aa69b4
https://arxiv.org/abs/1611.08394
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1611.08394
https://doi.org/10.1016/0550-3213(95)00150-Q
https://doi.org/10.1016/0550-3213(95)00150-Q
https://arxiv.org/abs/gr-qc/9411005
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F9411005
https://doi.org/10.1088/0264-9381/14/1A/006
https://doi.org/10.1088/0264-9381/14/1A/006
https://arxiv.org/abs/gr-qc/9602046
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F9602046
https://doi.org/10.1088/0264-9381/4/5/011
https://doi.org/10.1088/0264-9381/4/5/011
https://arxiv.org/abs/1205.5325
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1205.5325
https://doi.org/10.1088/0264-9381/30/19/195018
https://arxiv.org/abs/1303.4752
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1303.4752
https://doi.org/10.1088/0264-9381/30/4/045002
https://arxiv.org/abs/1105.3704
https://inspirehep.net/search?p=find+J%20%22Class.Quant.Grav.%2C30%2C045002%22
https://doi.org/10.1088/0264-9381/31/5/055002
https://doi.org/10.1088/0264-9381/31/5/055002
https://arxiv.org/abs/1304.2679
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1304.2679
https://doi.org/10.1088/0264-9381/32/1/015016
https://doi.org/10.1088/0264-9381/32/1/015016
https://arxiv.org/abs/1407.0025
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1407.0025
https://doi.org/10.1007/JHEP05(2017)142
https://arxiv.org/abs/1611.02784
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1611.02784
https://doi.org/10.1088/1361-6382/aa8d06
https://arxiv.org/abs/1704.07391
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1704.07391
https://doi.org/10.1007/JHEP07(2018)040
https://arxiv.org/abs/1804.09685
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1804.09685
https://doi.org/10.1007/s10714-020-02733-8
https://doi.org/10.1007/s10714-020-02733-8
https://arxiv.org/abs/1912.01016
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.01016
https://doi.org/10.1007/s00023-017-0598-6
https://arxiv.org/abs/1706.00479
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1706.00479
https://doi.org/10.1007/JHEP09(2016)102
https://doi.org/10.1007/JHEP09(2016)102
https://arxiv.org/abs/1601.04744
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1601.04744
https://doi.org/10.1007/s10714-014-1813-0
https://arxiv.org/abs/1312.7828
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1312.7828
https://doi.org/10.1088/1361-6382/aa89f3
https://arxiv.org/abs/1704.04248
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1704.04248
https://doi.org/10.1088/1361-6382/aa9ba5
https://arxiv.org/abs/1703.10120
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1703.10120


J
H
E
P
1
1
(
2
0
2
0
)
0
2
7

[123] L. Freidel, E.R. Livine and D. Pranzetti, Kinematical gravitational charge algebra, Phys.
Rev. D 101 (2020) 024012 [arXiv:1910.05642] [INSPIRE].

[124] M. Celada, D. González and M. Montesinos, BF gravity, Class. Quant. Grav. 33 (2016)
213001 [arXiv:1610.02020] [INSPIRE].

[125] E. Noether, Invariant variation problems, Gott. Nachr. 1918 (1918) 235 [Transp. Theory
Statist. Phys. 1 (1971) 186] [physics/0503066] [INSPIRE].

[126] H.T. Nieh and M.L. Yan, An identity in Riemann-Cartan geometry, J. Math. Phys. 23
(1982) 373 [INSPIRE].

[127] L. Freidel and A. Starodubtsev, Quantum gravity in terms of topological observables,
hep-th/0501191 [INSPIRE].

[128] D.J. Rezende and A. Perez, 4d Lorentzian Holst action with topological terms, Phys. Rev. D
79 (2009) 064026 [arXiv:0902.3416] [INSPIRE].

[129] A. Corichi, I. Rubalcava-García and T. Vukašinac, Actions, topological terms and
boundaries in first-order gravity: a review, Int. J. Mod. Phys. D 25 (2016) 1630011
[arXiv:1604.07764] [INSPIRE].

[130] S. Holst, Barbero’s Hamiltonian derived from a generalized Hilbert-Palatini action, Phys.
Rev. D 53 (1996) 5966 [gr-qc/9511026] [INSPIRE].

[131] S. Alexandrov, Spin foam model from canonical quantization, Phys. Rev. D 77 (2008)
024009 [arXiv:0705.3892] [INSPIRE].

[132] S. Alexandrov, The new vertices and canonical quantization, Phys. Rev. D 82 (2010)
024024 [arXiv:1004.2260] [INSPIRE].

[133] M. Geiller and K. Noui, A note on the Holst action, the time gauge, and the
Barbero-Immirzi parameter, Gen. Rel. Grav. 45 (2013) 1733 [arXiv:1212.5064] [INSPIRE].

[134] M. Montesinos, J. Romero and M. Celada, Manifestly Lorentz-covariant variables for the
phase space of general relativity, Phys. Rev. D 97 (2018) 024014 [arXiv:1712.00040]
[INSPIRE].

[135] M. Montesinos, J. Romero, R. Escobedo and M. Celada, SU(1, 1) Barbero-like variables
derived from Holst action, Phys. Rev. D 98 (2018) 124002 [arXiv:1812.02755] [INSPIRE].

[136] M. Montesinos, J. Romero and M. Celada, Canonical analysis of Holst action without
second-class constraints, Phys. Rev. D 101 (2020) 084003 [arXiv:1911.09690] [INSPIRE].

[137] M. Montesinos and M. Celada, Canonical analysis with no second-class constraints of BF
gravity with Immirzi parameter, Phys. Rev. D 101 (2020) 084043 [arXiv:1912.02832]
[INSPIRE].

[138] N. Bodendorfer, T. Thiemann and A. Thurn, New variables for classical and quantum
gravity in all dimensions I. Hamiltonian analysis, Class. Quant. Grav. 30 (2013) 045001
[arXiv:1105.3703] [INSPIRE].

[139] B. Dittrich and T. Thiemann, Are the spectra of geometrical operators in loop quantum
gravity really discrete?, J. Math. Phys. 50 (2009) 012503 [arXiv:0708.1721] [INSPIRE].

[140] C. Rovelli and S. Speziale, Lorentz covariance of loop quantum gravity, Phys. Rev. D 83
(2011) 104029 [arXiv:1012.1739] [INSPIRE].

[141] B. Dittrich and J.P. Ryan, Phase space descriptions for simplicial 4d geometries, Class.
Quant. Grav. 28 (2011) 065006 [arXiv:0807.2806] [INSPIRE].

– 60 –

https://doi.org/10.1103/PhysRevD.101.024012
https://doi.org/10.1103/PhysRevD.101.024012
https://arxiv.org/abs/1910.05642
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.05642
https://doi.org/10.1088/0264-9381/33/21/213001
https://doi.org/10.1088/0264-9381/33/21/213001
https://arxiv.org/abs/1610.02020
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1610.02020
https://doi.org/10.1080/00411457108231446
https://doi.org/10.1080/00411457108231446
https://arxiv.org/abs/physics/0503066
https://inspirehep.net/search?p=find+EPRINT%2Bphysics%2F0503066
https://doi.org/10.1063/1.525379
https://doi.org/10.1063/1.525379
https://inspirehep.net/search?p=find+J%20%22J.Math.Phys.%2C23%2C373%22
https://arxiv.org/abs/hep-th/0501191
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0501191
https://doi.org/10.1103/PhysRevD.79.064026
https://doi.org/10.1103/PhysRevD.79.064026
https://arxiv.org/abs/0902.3416
https://inspirehep.net/search?p=find+doi%20%2210.1103%2Fphysrevd.79.064026%22
https://doi.org/10.1142/S0218271816300111
https://arxiv.org/abs/1604.07764
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1604.07764
https://doi.org/10.1103/PhysRevD.53.5966
https://doi.org/10.1103/PhysRevD.53.5966
https://arxiv.org/abs/gr-qc/9511026
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F9511026
https://doi.org/10.1103/PhysRevD.77.024009
https://doi.org/10.1103/PhysRevD.77.024009
https://arxiv.org/abs/0705.3892
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0705.3892
https://doi.org/10.1103/PhysRevD.82.024024
https://doi.org/10.1103/PhysRevD.82.024024
https://arxiv.org/abs/1004.2260
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1004.2260
https://doi.org/10.1007/s10714-013-1552-7
https://arxiv.org/abs/1212.5064
https://inspirehep.net/search?p=find+doi%20%2210.1007%2Fs10714-013-1552-7%22
https://doi.org/10.1103/PhysRevD.97.024014
https://arxiv.org/abs/1712.00040
https://inspirehep.net/search?p=find+doi%20%2210.1103%2FPhysRevD.97.024014%22
https://doi.org/10.1103/PhysRevD.98.124002
https://arxiv.org/abs/1812.02755
https://inspirehep.net/search?p=find+doi%20%2210.1103%2FPhysRevD.98.124002%22
https://doi.org/10.1103/PhysRevD.101.084003
https://arxiv.org/abs/1911.09690
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.09690
https://doi.org/10.1103/PhysRevD.101.084043
https://arxiv.org/abs/1912.02832
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.02832
https://doi.org/10.1088/0264-9381/30/4/045001
https://arxiv.org/abs/1105.3703
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1105.3703
https://doi.org/10.1063/1.3054277
https://arxiv.org/abs/0708.1721
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0708.1721
https://doi.org/10.1103/PhysRevD.83.104029
https://doi.org/10.1103/PhysRevD.83.104029
https://arxiv.org/abs/1012.1739
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1012.1739
https://doi.org/10.1088/0264-9381/28/6/065006
https://doi.org/10.1088/0264-9381/28/6/065006
https://arxiv.org/abs/0807.2806
https://inspirehep.net/search?p=find+J%20%22Class.Quant.Grav.%2C28%2C065006%22


J
H
E
P
1
1
(
2
0
2
0
)
0
2
7

[142] L. Freidel and S. Speziale, On the relations between gravity and BF theories, SIGMA 8
(2012) 032 [arXiv:1201.4247] [INSPIRE].

[143] E. Buffenoir, M. Henneaux, K. Noui and P. Roche, Hamiltonian analysis of Plebanski
theory, Class. Quant. Grav. 21 (2004) 5203 [gr-qc/0404041] [INSPIRE].

[144] R.L. Arnowitt, S. Deser and C.W. Misner, Dynamical structure and definition of energy in
general relativity, Phys. Rev. 116 (1959) 1322 [INSPIRE].

[145] R.L. Arnowitt, S. Deser and C.W. Misner, The dynamics of general relativity, Gen. Rel.
Grav. 40 (2008) 1997 [gr-qc/0405109] [INSPIRE].

[146] W. Wieland, Complex Ashtekar variables and reality conditions for Holst’s action, Annales
Henri Poincaré 13 (2012) 425 [arXiv:1012.1738] [INSPIRE].

[147] L. Smolin, A holographic formulation of quantum general relativity, Phys. Rev. D 61 (2000)
084007 [hep-th/9808191] [INSPIRE].

[148] W. Donnelly, L. Freidel, S.F. Moosavian and A.J. Speranza, On the quantization of
gravitational edge modes, to appear.

[149] T. Regge and C. Teitelboim, Role of surface integrals in the Hamiltonian formulation of
general relativity, Annals Phys. 88 (1974) 286 [INSPIRE].

[150] A.P. Balachandran, L. Chandar, E. Ercolessi, T.R. Govindarajan and R. Shankar,
Maxwell-Chern-Simons electrodynamics on a disk, Int. J. Mod. Phys. A 9 (1994) 3417
[cond-mat/9309051] [INSPIRE].

[151] A.P. Balachandran, L. Chandar and A. Momen, Edge states in gravity and black hole
physics, Nucl. Phys. B 461 (1996) 581 [gr-qc/9412019] [INSPIRE].

[152] A.P. Balachandran, L. Chandar and A. Momen, Edge states in canonical gravity, in 17th

Annual MRST (Montreal-Rochester-Syracuse-Toronto) meeting on high-energy physics,
(1995) [gr-qc/9506006] [INSPIRE].

[153] S. Carlip, The statistical mechanics of the (2 + 1)-dimensional black hole, Phys. Rev. D 51
(1995) 632 [gr-qc/9409052] [INSPIRE].

[154] S. Carlip, Conformal field theory, (2 + 1)-dimensional gravity, and the BTZ black hole,
Class. Quant. Grav. 22 (2005) R85 [gr-qc/0503022] [INSPIRE].

[155] S. Carlip, Statistical mechanics and black hole entropy, gr-qc/9509024 [INSPIRE].

[156] A. Strominger, Lectures on the infrared structure of gravity and gauge theory,
arXiv:1703.05448 [INSPIRE].

[157] A.J. Speranza, Local phase space and edge modes for diffeomorphism-invariant theories,
JHEP 02 (2018) 021 [arXiv:1706.05061] [INSPIRE].

[158] M. Geiller, Edge modes and corner ambiguities in 3d Chern-Simons theory and gravity,
Nucl. Phys. B 924 (2017) 312 [arXiv:1703.04748] [INSPIRE].

[159] M. Geiller, Lorentz-diffeomorphism edge modes in 3d gravity, JHEP 02 (2018) 029
[arXiv:1712.05269] [INSPIRE].

[160] L. Freidel and D. Pranzetti, Electromagnetic duality and central charge, Phys. Rev. D 98
(2018) 116008 [arXiv:1806.03161] [INSPIRE].

[161] M.R. Setare and H. Adami, Edge modes and surface-preserving symmetries in
Einstein-Maxwell theory, Nucl. Phys. B 950 (2020) 114844 [arXiv:1808.03257] [INSPIRE].

– 61 –

https://doi.org/10.3842/SIGMA.2012.032
https://doi.org/10.3842/SIGMA.2012.032
https://arxiv.org/abs/1201.4247
https://inspirehep.net/search?p=find+doi%20%2210.3842%2Fsigma.2012.032%22
https://doi.org/10.1088/0264-9381/21/22/012
https://arxiv.org/abs/gr-qc/0404041
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F0404041
https://doi.org/10.1103/PhysRev.116.1322
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2C116%2C1322%22
https://doi.org/10.1007/s10714-008-0661-1
https://doi.org/10.1007/s10714-008-0661-1
https://arxiv.org/abs/gr-qc/0405109
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F0405109
https://doi.org/10.1007/s00023-011-0134-z
https://doi.org/10.1007/s00023-011-0134-z
https://arxiv.org/abs/1012.1738
https://inspirehep.net/search?p=find+doi%20%2210.1007%2Fs00023-011-0134-z%22
https://doi.org/10.1103/PhysRevD.61.084007
https://doi.org/10.1103/PhysRevD.61.084007
https://arxiv.org/abs/hep-th/9808191
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9808191
https://doi.org/10.1016/0003-4916(74)90404-7
https://inspirehep.net/search?p=find+J%20%22Annals%20Phys.%2C88%2C286%22
https://doi.org/10.1142/S0217751X94001357
https://arxiv.org/abs/cond-mat/9309051
https://inspirehep.net/search?p=find+EPRINT%2Bcond-mat%2F9309051
https://doi.org/10.1016/0550-3213(95)00622-2
https://arxiv.org/abs/gr-qc/9412019
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F9412019
https://arxiv.org/abs/gr-qc/9506006
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F9506006
https://doi.org/10.1103/PhysRevD.51.632
https://doi.org/10.1103/PhysRevD.51.632
https://arxiv.org/abs/gr-qc/9409052
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F9409052
https://doi.org/10.1088/0264-9381/22/12/R01
https://arxiv.org/abs/gr-qc/0503022
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F0503022
https://arxiv.org/abs/gr-qc/9509024
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F9509024
https://arxiv.org/abs/1703.05448
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1703.05448
https://doi.org/10.1007/JHEP02(2018)021
https://arxiv.org/abs/1706.05061
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1706.05061
https://doi.org/10.1016/j.nuclphysb.2017.09.010
https://arxiv.org/abs/1703.04748
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1703.04748
https://doi.org/10.1007/JHEP02(2018)029
https://arxiv.org/abs/1712.05269
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1712.05269
https://doi.org/10.1103/PhysRevD.98.116008
https://doi.org/10.1103/PhysRevD.98.116008
https://arxiv.org/abs/1806.03161
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.03161
https://doi.org/10.1016/j.nuclphysb.2019.114844
https://arxiv.org/abs/1808.03257
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1808.03257


J
H
E
P
1
1
(
2
0
2
0
)
0
2
7

[162] M. Geiller and P. Jai-akson, Extended actions, dynamics of edge modes, and entanglement
entropy, JHEP 09 (2020) 134 [arXiv:1912.06025] [INSPIRE].

[163] H. Gomes and A. Riello, The observer’s ghost: notes on a field space connection, JHEP 05
(2017) 017 [arXiv:1608.08226] [INSPIRE].

[164] H. Gomes and A. Riello, Unified geometric framework for boundary charges and particle
dressings, Phys. Rev. D 98 (2018) 025013 [arXiv:1804.01919] [INSPIRE].

[165] H. Gomes, F. Hopfmüller and A. Riello, A unified geometric framework for boundary
charges and dressings: non-Abelian theory and matter, Nucl. Phys. B 941 (2019) 249
[arXiv:1808.02074] [INSPIRE].

[166] G.A. Vilkovisky, The unique effective action in quantum field theory, Nucl. Phys. B 234
(1984) 125 [INSPIRE].

[167] D. Zwanziger, Local and renormalizable action from the Gribov horizon, Nucl. Phys. B 323
(1989) 513 [INSPIRE].

[168] M. Lavelle and D. McMullan, Constituent quarks from QCD, Phys. Rept. 279 (1997) 1
[hep-ph/9509344] [INSPIRE].

[169] M. Mondragon and M. Montesinos, Covariant canonical formalism for four-dimensional BF
theory, J. Math. Phys. 47 (2006) 022301 [gr-qc/0402041] [INSPIRE].

[170] N. Bodendorfer, Black hole entropy from loop quantum gravity in higher dimensions, Phys.
Lett. B 726 (2013) 887 [arXiv:1307.5029] [INSPIRE].

[171] E.R. Livine, Projected spin networks for Lorentz connection: linking spin foams and loop
gravity, Class. Quant. Grav. 19 (2002) 5525 [gr-qc/0207084] [INSPIRE].

[172] L. Freidel, E.R. Livine and C. Rovelli, Spectra of length and area in (2 + 1) Lorentzian loop
quantum gravity, Class. Quant. Grav. 20 (2003) 1463 [gr-qc/0212077] [INSPIRE].

[173] C. Rovelli and S. Speziale, Reconcile Planck scale discreteness and the Lorentz-Fitzgerald
contraction, Phys. Rev. D 67 (2003) 064019 [gr-qc/0205108] [INSPIRE].

[174] C. Rovelli, Comment on ‘are the spectra of geometrical operators in loop quantum gravity
really discrete?’ by B. Dittrich and T. Thiemann, arXiv:0708.2481 [INSPIRE].

[175] J. Ben Achour, M. Geiller, K. Noui and C. Yu, Testing the role of the Barbero-Immirzi
parameter and the choice of connection in loop quantum gravity, Phys. Rev. D 91 (2015)
104016 [arXiv:1306.3241] [INSPIRE].

[176] H. Godazgar, M. Godazgar and M.J. Perry, Hamiltonian derivation of dual gravitational
charges, JHEP 09 (2020) 084 [arXiv:2007.07144] [INSPIRE].

– 62 –

https://doi.org/10.1007/JHEP09(2020)134
https://arxiv.org/abs/1912.06025
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.06025
https://doi.org/10.1007/JHEP05(2017)017
https://doi.org/10.1007/JHEP05(2017)017
https://arxiv.org/abs/1608.08226
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1608.08226
https://doi.org/10.1103/PhysRevD.98.025013
https://arxiv.org/abs/1804.01919
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1804.01919
https://doi.org/10.1016/j.nuclphysb.2019.02.020
https://arxiv.org/abs/1808.02074
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1808.02074
https://doi.org/10.1016/0550-3213(84)90228-1
https://doi.org/10.1016/0550-3213(84)90228-1
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB234%2C125%22
https://doi.org/10.1016/0550-3213(89)90122-3
https://doi.org/10.1016/0550-3213(89)90122-3
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB323%2C513%22
https://doi.org/10.1016/S0370-1573(96)00019-1
https://arxiv.org/abs/hep-ph/9509344
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9509344
https://doi.org/10.1063/1.2161805
https://arxiv.org/abs/gr-qc/0402041
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F0402041
https://doi.org/10.1016/j.physletb.2013.09.043
https://doi.org/10.1016/j.physletb.2013.09.043
https://arxiv.org/abs/1307.5029
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1307.5029
https://doi.org/10.1088/0264-9381/19/21/316
https://arxiv.org/abs/gr-qc/0207084
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F0207084
https://doi.org/10.1088/0264-9381/20/8/304
https://arxiv.org/abs/gr-qc/0212077
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F0212077
https://doi.org/10.1103/PhysRevD.67.064019
https://arxiv.org/abs/gr-qc/0205108
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F0205108
https://arxiv.org/abs/0708.2481
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0708.2481
https://doi.org/10.1103/PhysRevD.91.104016
https://doi.org/10.1103/PhysRevD.91.104016
https://arxiv.org/abs/1306.3241
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1306.3241
https://doi.org/10.1007/JHEP09(2020)084
https://arxiv.org/abs/2007.07144
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.07144

	Introduction
	Motivations
	Questions
	Summary of the results

	BF theory and tetrad formulation of gravity
	BF theory
	Einstein-Cartan-Holst gravity
	A new look at canonical analysis

	3+1 decompositions
	Normal/tangential decomposition
	Decomposition of Lorentz tensors
	Decomposition of connections
	Boost/rotation decomposition of the Gauss constraint

	Horizontal/vertical decomposition
	BF coframes
	Equations of motion
	Bulk simplicity constraints

	Decomposition of the BF symplectic potential
	Decomposition of the ECH symplectic potential
	ECH symplectic potential
	Relationship between ECH and GR potentials
	Relationship between ECH and EH potentials
	Relative charges

	Normal coframe, corner simplicity constraints, and corner metric
	Danger around the corner
	Normal coframe parametrization
	Corner simplicity constraints
	Poisson brackets
	Corner metric and its algebra
	A glimpse into the quantization and discreteness of area

	Turning on the edge modes
	Conceptual motivations
	Concrete implementation
	Trivial limits

	Conclusion
	Notations and conventions
	Gravitational equations of motion
	Torsion equations
	Einstein equations

	Various proofs
	Gauge transformations of the decomposed connection
	Momentum aspect identities
	DPS variational 1-form identity
	Relationship between the normal, flux, and coframe

	Relationship between ECH and GR Lagrangians
	Alternative decomposition of the ECH potential
	Relative diffeomorphism charge
	From the difference of charges
	From the relative symplectic structure

	First class nature of the gluing condition

