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Abstract

The dynamics of surfactant-laden droplets are investigated in this thesis using Di-
rect Numerical Simulations (DNS) of turbulence coupled with a two-order-parameter
Phase Field (PF) method to describe interface and surfactant dynamics. This problem
is characterized by the presence of a deformable interface transported by the (eventu-
ally turbulent) flow and of a soluble surfactant. The complex interplay among flow,
interface and surfactant, whose effects are deeply intertwined, is presented in detail in
the following chapters and is also briefly summarized here with the help of the graph-
ical abstract. The flow deforms the interface and advects surfactant via the shear
stresses at the interface. In turn, the interface feeds back onto the flow field via capil-
lary stresses (normal to the interface). The interface also, while deforming, breaking
and merging, modifies the local surfactant concentration over the interface. Surfac-
tant locally reduces surface tension of the interface, changing the local deformability
of the interface. In addition, eventual surface tension gradients, generated by an un-
even surfactant distribution, introduce stresses tangential to the interface (Marangoni
stresses). Surfactant, indeed, feeds back onto the flow field via Marangoni stresses and
onto the interface by locally reducing surface tension.
In the thesis, the outcome of this complex interplay is characterized, starting from
simpler laminar cases (as for instance the deformation and interaction of droplets in
laminar flow) and concluding with the more complex case of a swarm of surfactant-
laden droplets in turbulence.
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1
Introduction

Multiphase flows are common in our everyday life: they are of crucial importance in a
large number of industrial applications and environmental phenomena. For instance,
multiphase flows are often found in pharmaceutical [85], power [65] and process [156,
133] engineering (mixers, separators, boilers, heat exchangers, etc.), in micro-fluidic
devices [28] and environmental [173] and physiological processes [41]. All of these
systems involve liquid-liquid or gas-liquid mixtures characterized, in most of the cases,
by the presence of an additional element (as an additive or as an impurity). When
this additional element locally modifies the surface tension of the interface between
the phases (liquid and/or gas), it is referred to as surfactant (surface active agent).
Surfactants are amphiphilic molecules composed of a polar head and non-polar tails;
due to this particular configuration, surfactant molecules are most likely found at the
interface between the phases, where they arrange exposing their polar head towards
the polar phase and the non-polar tails towards the other phase. The main effect
introduced by a surfactant is a local modification of the surface tension of the interface;
the magnitude of this modification depends on the local concentration of surfactant.
A local modification of the surface tension introduces, however, an additional factor:
Marangoni stresses. These stresses, tangential to the interface, are proportional to
the surface tension gradients; clearly, the presence of a surfactant, locally modifying
the surface tension value, can generate Marangoni stresses [68]. Surfactants, even at
extremely low concentrations, can strongly influence the dynamics of the multiphase
system [32, 151]; the aim of this work is to better understand the complex physics
underlying surfactant-laden multiphase flows. The accurate physical insights will be
useful in the control, improvement and optimization of many industrial processes and
natural phenomena.

As the dynamics of surfactant-laden multiphase flows will be investigated via numer-
ical simulations, first the numerical framework that will be adopted must be defined.
Multiphase flows are characterized by physics acting at many different scales: from the
molecular scale of the interface up to the largest scales of the problem. The smallest
length scale (molecular scale of the interface) is of the orders of few nanometers, while
the largest scale can be of the order of tenths of meters for industrial setups or even
larger (tens of meters) for natural phenomena, thus spanning eight or more orders of
magnitude. Resolving all these scales is however impossible, even with the help of
the most modern supercomputing resources currently available, which can handle a
length scale separation of about three to four orders of magnitude. Thus, the small
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interfacial scales cannot be resolved and must be accounted for through assumptions
and numerical models. Several numerical methods have been developed to overcome
the multi-scale aspects of multiphase flows. Broadly speaking, these numerical meth-
ods can be categorized, based on the approach adopted to describe the interface, in
interface tracking and interface capturing methods.

The formers, interface tracking methods, rely on the advection of a set of Lagrangian
markers, which define the instantaneous position of the interface. Among these meth-
ods, the Front Tracking method has been used for the simulation of droplets and
bubbles in turbulence [102], and has been recently extended to model surfactant-laden
droplets [105] and topology changes of the interface [103]. Indeed, interface tracking
methods need closure models to describe interface interactions and topological changes
(as for instance collision, breakage and coalescence) [158] and complex re-meshing al-
gorithms to properly describe the interface morphology upon stretching, breakage and
coalescence.

On the other hand, interface capturing methods use a Eulerian concentration field to
describe the instantaneous distribution of the various phases; the interface is defined
as an iso-level of this concentration field. Among interface capturing method, there
are the Volume of Fluid [62], the Level Set [49], the Lattice Boltzmann [58, 138] and
the Phase Field method [3, 69]. The chapter dedicated to the methodology, Chap. 2,
will briefly review some of these approaches; for a more complete review, the reader is
referred to Elghobashi [46] for a general review on numerical methods for multiphase
flows, to Scardovelli and Zaleski [136] for the Volume of Fluid methods, to Gibou et al.
[52] for the Level Set methods and to Chen and Doolen [27] for the Lattice Boltzmann
methods.

While there is plenty of methods for the description of multiphase flows, fewer methods
have been developed for multiphase flows involving surface active agents and even fewer
works considered a surfactant-laden turbulent multiphase flow [105, 142]. Indeed,
the description of a surfactant and of its effects on the multiphase flow adds further
complexity to an already challenging problem: an additional variable, the surfactant
concentration, has to be computed over a deformable, topologically changing and ever
moving interface, considering also eventual exchanges among the interface and the bulk
of the phases (adsorption/desorption phenomena). In recent years several numerical
methods have been extended to consider the effect introduced by a surfactant; among
these there are the Front Tracking [105, 112], the Immersed Boundary [88, 89], the
Volume of Fluid [70, 126], the Level Set [122, 174, 175], the Lattice Boltzmann [48, 98]
and the Phase Field method [47, 82, 145].

In this work a two-order-parameter formulation of the Phase Field method for the
simulation of surfactant-laden multiphase flows is developed based on the original for-
mulation proposed by Engblom et al. [47] and including further improvements by Yun
et al. [184]. With respect to previous works, the range of validity of the method is
also widened: the original method was limited to low surfactant concentrations, while
here this limitation is removed and surfactant saturation dynamics are included. This
novel numerical approach is employed to simulate the dynamics of a soluble surfactant
over a deformable and topologically-changing interface. At first, simpler simulation
setups are adopted to investigate and better highlight the effects of a dissolved surfac-
tant; taking these preliminary simulations as a starting ground, the surfactant effects
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have been characterized in more complex setups involving turbulence, strong defor-
mations and topological modifications of the interface. In Chap. 6 the limitations
and prospects of the capabilities of current numerical methods for multiphase flows
in simulating topological modifications of the interface (i.e. coalescence and breakage
phenomena) are reviewed, giving an important insight on what numerical simulations
can tell us about the real physics underlying these phenomena.

Thesis outline

• Chap. 2: Methodology
The governing equations that define the dynamics of a surfactant-laden multi-
phase flows are introduced: the two-order-parameter formulation of the Phase
Field method and the coupling with the momentum equations (Navier-Stokes
equations) are presented in this chapter. The discretization, the numerical
method and its implementation are also reported. In the last part the per-
formances of the numerical implementation are investigated and the validation
benchmarks are presented.

• Chap. 3: Mass-conservation-improved Phase Field Methods
An improvement to the classic phase field method is presented. This modified
formulation circumvents some of the drawbacks of the phase field method, in
particular reducing shrinkage and coarsening and improving the representation
of thermo-physical properties and the calculation of surface forces. Numerical
simulations are performed to test the capabilities of the method.

• Chap. 4: Comparison of 2D vs 3D droplet deformation
The effect of problem dimensionality on the deformation of a surfactant-laden
droplet is investigated: the steady-state deformation and the surfactant distri-
bution are analyzed for a circular (2D) and a spherical (3D) droplet in laminar
shear flow. The deformation is also compared with the theoretical solution.

• Chap. 5: Surfactant effects on binary droplet interactions
The effects of a soluble surfactant on binary droplet interactions are investi-
gated, for different surfactant strengths and total concentrations. The increased
deformability and the stresses tangential to the interface (Marangoni stresses)
prevent coalescence for high surfactant concentrations and/or strong surfactants.

• Chap. 6: Breakage, coalescence and droplet size distribution
The dynamics of a large swarm of deformable, surfactant-laden droplets are
investigated, particularly focusing on the morphology of the dispersed phase.
The surfactant effects on the dynamics of the droplets are investigated and the
final droplet size distribution is computed and compared with theoretical scaling,
experimental measurements and numerical results.
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Methodology

Reproduced in part from:

G. Soligo, A. Roccon, and A. Soldati, Coalescence of surfactant-laden drops by Phase Field Method,

Journal of Computational Physics 376:1292–1311, 2019,

and

G. Soligo, A. Roccon, and A. Soldati, Mass-conservation-improved phase field methods for turbulent

multiphase flow simulation, Acta Mechanica 230:683–696, 2019.

The most commonly used approaches for the description of multiphase flows will be
briefly reviewed throughout the first section, Sect. 2.1, particularly focusing on the
method chosen, the Phase Field (PF) method. The following section, Sect. 2.2, is
devoted to the presentation of a two-order-parameter phase field method [47, 145,
184] capable of describing the dynamics of a soluble surfactant. The presence of a
moving and deformable interface and of a dissolved surfactant affects the surrounding
flow field: the coupling among flow field, interface and surfactant is described in
Sect. 2.3. Once all the equations have been defined, all the relevant dimensionless
parameters are introduced, together with the dimensional analysis, Sect. 2.4. Then,
the numerical method is described in Sect. 2.5. This section covers the pseudo-spectral
discretization and the solution algorithm; additional details on the Fortran 2003/2008
code that has been purposely developed are given in Sect. 2.6. Finally, the last section,
Sect. 2.7, presents the validation benchmarks used to test the code. In particular, the
deformation of a droplet in laminar shear flow and the Rayleigh-Taylor instability are
used as validation tools.

2.1 Interface modelling

This section introduces some among the most widespread approaches adopted in the
description of multiphase flows. These approaches can be split in two categories:
interface tracking and interface capturing methods. The former adopt a set of marker
points, which identify the position of the interface (explicit definition of the interface).
The latter methods rely instead on a marker function; the interface corresponds to a
specific iso-level of this function (implicit definition of the interface). The main feature
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differentiating these methods is indeed the definition of the interface: interface tracking
methods explicitly track the interface through the advection of a set of marker points,
while interface capturing ones use a marker function (representing, for example, the
concentration of one of the phases) to define the local distribution of each phase and
the interface is identified as a particular value of this function.

2.1.1 Front Tracking

The Front Tracking (FT) method [15, 158, 161] is the most popular among the interface
tracking methods. A set of Lagrangian marker points defines the interface position
and shape; each of these points is advected by the local flow field.

∂xi

∂t
= ui (2.1)

The position of the i-th marker point, xi, is updated according to the local flow
velocity, ui, which is interpolated from the flow field computational grid to the marker
point position. The interface is then reconstructed by linking together this set of
points. Once the interface shape has been computed, the interface curvature and,
thus, interfacial forces can be calculated. These forces act at the marker point position
and have to be redistributed on the Eulerian grid on which the flow field is solved
(smoothing operation). This method thus requires continuous interpolation between
the two grids: from the Eulerian (flow field) grid to the Lagrangian marker points
to get the advection velocity and from the Lagrangian marker points to the Eulerian
grid to obtain the distributed interfacial forces. The main drawbacks of the Front
Tracking method are the low accuracy in the interface curvature computation from
the Lagrangian marker points and the need for additional models to describe interface
topological changes, as coalescences or breakages of the interface.

2.1.2 Volume of Fluid

The Volume of Fluid (VoF) [62] method belongs to the interface capturing methods.
An Eulerian marker function, f , defined in the entire domain defines the concentration
of one of the phases. This Eulerian marker function is advected by the flow field:

∂f

∂t
+ u · ∇f = 0 . (2.2)

The cell value, fi, of the local concentration is the volume average of the concentration
over the computational cell:

fi =
1

Vi

∫

v

f(x)dV . (2.3)

The local marker function is initialized as a Heaviside function; to avoid numerical dif-
fusion of the marker function over time, specific advection algorithms must be adopted
[123]. The volume-averaged value in the neighbouring computational cells is used to
reconstruct the shape of the interface front, thus avoiding numerical diffusion prob-
lems. Interface topological changes (coalescence and breakup) are implicitly handled
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by the volume-averaged marker function. It must be noted that this volume-averaged
marker function, fi, does not give an exact representation of the interface, which must
be reconstructed (using for example a PLIC algorithm [127, 178]). Coalescence and
breakage of the interface thus may not be properly resolved [42]. The main advantage
of the Volume of Fluid method is the exact mass conservation of each phase.

2.1.3 Level Set

The Level Set (LS) method [115, 116] is another of the interface capturing methods,
which is gaining an increasing popularity as a viable alternative to the VoF method.
The interface is identified as the zero-level of a smooth function, φ; an advection
equation determines the evolution of the interface.

∂φ

∂t
+ u · ∇φ = 0 (2.4)

In the original formulation φ is defined as the signed distance from the interface; due
to numerical diffusion the marker function may lose its signed distance property. A
reinitialization operation may be performed to restore the marker function profile:
the iso-level φ = 0 (interface) is kept fixed and the marker function is reinitialized
to be the signed distance from the interface. This reinitialization procedure leads to
mass leakages among the two phases. To reduce mass leakages the Level Set method
is often coupled with a VoF approach [109] or different marker functions are used
instead of the signed distance from the interface (conservative Level Set [38]). As for
the VoF, the Level Set method is capable of handling merging and breakage of the
interface without the need for any additional model. In addition, interface topological
changes are accurately captured as the interface is exactly identified as the zero-level
of a smooth function. It must be noted, however, that merging and breakage of the
interface are not based on physical considerations, but on the local grid resolution. The
computation of the curvature and, thus, of interfacial forces is extremely accurate, as
it is based on the gradients of the smooth marker function.

2.1.4 Phase Field method

The Phase Field (PF) method [16, 17, 18] belongs to the interface capturing methods.
This method was initially developed to model the microstructure dynamics of alloys
during spinodal decomposition. Later on, the method has been generalized to the
study of incompressible multiphase flow [3, 69] by adding an advection term and
coupling the description of the interface to the Navier-Stokes equations. A marker
function, φ, defines the dynamics of the interface; this function (order parameter) is
usually referred to as phase field. The phase field corresponds to the local concentration
of one of the phases; this variable changes smoothly across the interface (finite thickness
interface). A Cahn-Hilliard equation describes the transport of the order parameter:

∂φ

∂t
+ u · ∇φ = ∇ · (Mφ∇µφ) . (2.5)

With respect to the original Cahn-Hilliard equation, an advection term has been in-
cluded (u is the velocity field). The diffusive term on the right hand side is the flux
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of the chemical potential gradient, with Mφ being the mobility (Onsager) coefficient
(relaxation time of the interface) and µφ the phase field chemical potential. Here,
the mobility coefficient is set constant [8]. The chemical potential is obtained as the
variational derivative of a Ginzburg-Landau free energy functional F [φ,∇φ] [8, 69]:

µφ =
δF [φ,∇φ]

δφ
. (2.6)

When considering a mixture of two immiscible fluids, the free energy functional is the
sum of two contributions, the first one accounting for the system bulk free energy (f0),
while the second one for the mixing free energy (fi). The bulk free energy describes
the tendency of the system to separate in two pure (stable) phases; the mixing free
energy considers the energy stored within the interfacial layer, which, for a fluid-fluid
system, corresponds to the surface tension.

F [φ,∇φ] =
∫

Ω

[f0(φ) + fi(∇φ)]dΩ (2.7)

The first term, f0, is a double well potential, Fig. 2.1(a), with the two minima corre-
sponding to the pure phases, φ = ±

√
β/α.

f0(φ) =
α

4

(
φ−

√
β

α

)2(
φ+

√
β

α

)2

(2.8)

The parameters α and β are positive constant corresponding to the bulk properties of
the fluids. The mixing term, Fig. 2.1(b) is proportional to the gradient of the marker
function, which is maximum at the interface and zero in the bulk of the phases.

fi(∇φ) =
κ

2
|∇φ|2 (2.9)

The positive constant κ defines the magnitude of surface tension. The chemical po-
tential, obtained by taking the variational derivative of the free energy functional, is:

µφ =
δF [φ,∇φ]

δφ
= αφ3 − βφ− κ∇2φ . (2.10)

From the chemical potential the phase field equilibrium profile can be derived: at
the equilibrium the chemical potential is constant in the entire domain, ∇µφ = 0.
Imposing a constant phase field chemical potential throughout the entire domain, the
equilibrium profile for a flat interface (Fig. 2.3) results in:

φ =

√
β

α
tanh

(
s√
2ξ

)
, (2.11)

with ξ =
√
k/β being a measure of the interfacial layer thickness,

√
β/α the absolute

value of the phase field in the bulk of the phases and s a coordinate normal to the
interface. From the equilibrium solution it can be seen how the phase field is constant
in the bulk of the phases (s→ ±∞) and it undergoes a smooth transition following a
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Figure 2.1 – Panel (a): double well potential, f0. Panel (b): mixing free energy, fi; the interface
has been marked for reference with a thin dotted line.

hyperbolic tangent profile across the interface, whose thickness is proportional to the
parameter ξ.

The main advantages of the phase field method include the implicit handling of topo-
logical changes at the interface (coalescences and breakages) and the accurate de-
scription of the interface and calculation of the interfacial curvature. Thanks to the
chemical potential diffusive fluxes, reinitialization of the interface is not needed (as
for the LS method): specific advection schemes are not necessary to keep the marker
function profile. The main drawbacks of the phase field method are shrinkage, coars-
ening and misrepresentation of surface forces and thermo-physical properties. As for
the Level Set method, also the phase field method suffers of mass leakages among the
phases (shrinkage): when a double well potential is adopted together with a constant
mobility, the phase field deviates from its equilibrium profile and the phase enclosed
by the interface diffuses in the other phase to restore the equilibrium profile [39, 182].
Shrinkage could be avoided by adopting a non-constant mobility and a different bulk
free energy functional (for example a logarithmic bulk free energy functional); this
choice would however introduce severe numerical difficulties (including singularities in
the free energy functional) in the solution of the equation, also reducing the stability
of the numerical method. For these reasons a constant mobility together with a double
well potential are usually preferred. The energy minimization criterion on which the
method is based introduces coarsening phenomena: larger domains of one phase grow
at the expense of smaller domains of the same phase to reduce the system interfacial
energy. The last drawback, misrepresentation of surface forces and thermo-physical
properties, originates from the deviation of the phase field from its equilibrium profile:
overshoots and undershoots of the phase field may generate unphysical values of surface
tension forces and negative values of the thermo-physical properties. Thermo-physical
properties (density and viscosity) are assumed to be a function of the phase field, thus
undershoots and overshoots of the phase field could lead to negative/unphysical values
of these properties. Further details on the treatment of non-matched thermo-physical
properties among the phases are reported in Sect. 2.3.1. The following section ad-
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dresses the problem of shrinkage, coarsening and misrepresentation of surface forces
and thermo-physical properties: a profile-corrected [11, 96, 144] and a flux-corrected
[185] phase field formulations are introduced to limit these drawbacks.

Mass-conservation-improved phase field methods

Corrected formulations of the original phase field method have been proposed
[11, 96, 185] to overcome the method drawbacks, namely shrinkage, coarsening and
misrepresentation of surface tension forces and thermo-physical properties. The orig-
inal phase field method formulation for incompressible multiphase flows [3, 69] from
now on will be referred to as classic formulation. The two proposed corrections will
be briefly reviewed in the following part of this section; further details on these for-
mulations and on their performances are reported in Chap. 3.
Shrinkage and misrepresentation of surface forces and thermo-physical properties
originate from the same issue: an out-of-equilibrium interfacial profile. To restore
the equilibrium profile, the phase enclosed by the interface diffuses into the other
phase, leading to mass leakages among the phases (shrinkage). In addition, as sur-
face tension forces and thermo-physical properties are calculated from the phase
field, an out-of-equilibrium interfacial profile introduces inaccuracies. Surface ten-
sion forces are defined to match the exact surface tension of the sharp interface model
[8, 69, 76, 77, 79, 179]: the integral of the system free energy density across the interface
must be equal to the surface tension, σ.

σ =
βκ

α

∫ +∞

−∞

F [φ,∇φ]dx (2.12)

The equilibrium profile, which minimizes the free energy, is used in the integration:

σ =
2
√
2

3

βκ

αξ
=

2
√
2

3

√
β3κ

α
. (2.13)

Clearly, if the interfacial profile is perturbed from its equilibrium, the correct surface
tension, and thus surface tension forces, cannot be recovered. On the other hand,
thermo-physical properties are a function of the phase field variable; overshoots and
undershoots with respect to bulk values introduce inaccuracies in the calculation of
the thermo-physical properties or even unphysical values (e.g. a negative density or
viscosity). The profile-corrected formulation introduces a penalty flux that forces the
interfacial profile towards its equilibrium profile; this penalty flux is proportional to
the magnitude of the perturbation from the equilibrium.
The flux-corrected phase field model builds on the profile-corrected formulation: in
addition to the profile-correction penalty flux, the component normal to the interface
of the chemical potential gradient is cancelled out. This way, no diffusive fluxes normal
to the interface appear, preventing shrinkage and coarsening.

2.2 Surfactant

The dynamics of a soluble surfactant is described using a modified phase field method
[47, 145, 184], which considers the transport of surfactant over the interface and surfac-
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tant exchanges among the interface and the bulk phases or among different interfaces.
The surfactant distribution is described by the variable ψ, which is the local sur-
factant concentration; this variable can span from 0 (absence of surfactant) up to 1
(maximum concentration). The original single-order-parameter Ginzburg-Landau free
energy functional has been modified in a two-order-parameter free energy functional
to consider also surfactant dynamics: the first order parameter is the phase field, while
the second one is the surfactant concentration.

F [φ,∇φ, ψ] =
∫

Ω

[f0 + fi + fψ + f1 + fEx ]dΩ (2.14)

The first two terms, f0 and fi, are the same for the single-order-parameter formulation,
Eq. (2.8) and Eq. (2.9). The latter three terms account for the presence of a dissolved
surfactant. The term fψ, Fig. 2.2(a), is an entropy term: it defines the entropy decrease
obtained when the surfactant is uniformly distributed in the entire domain Ω.

fψ = κT [ψ logψ + (1− ψ) log(1− ψ)] (2.15)

T is the absolute temperature, while κ is the same positive constant defined for the
single-order-parameter free energy functional defining the surface tension magnitude.
The dimensionless parameter Pi can be defined as Pi = κTα/β2. The entropy term
thus becomes:

fψ =
β2

α
Pi[ψ logψ + (1− ψ) log(1− ψ)] . (2.16)

This term strictly limits the possible values assumed by the surfactant concentra-
tion between the lower bound, ψ = 0 (absence of surfactant), and the upper bound,
ψ = 1 (maximum concentration). The temperature-dependent parameter Pi defines
surfactant diffusivity: a higher value of Pi increases surfactant diffusion, thus a uni-
form surfactant distribution in the entire domain is favoured. The terms f1 and fEx ,
Fig. 2.2(b), describe the amphiphilic character of surfactant molecules: due to their
particular configuration (hydrophilic head and hydrophobic tail), surfactant molecules
naturally gather at the interface between two fluids, minimizing the system configura-
tion energy. In particular f1 describes the adsorption of surfactant at the interface; in
the original formulation [91, 164] this term is proportional to (∇φ)2. Engblom et al.
[47] showed that this term can be replaced by a polynomial one, so that the range of
parameters in which the problem is well-posed is widened.

f1 = −α
2
ψ

(
β

α
− φ2

)2

(2.17)

This term is active at the interface where the gradients of the phase field are non-zero;
this behaviour is properly captured by the polynomial approximation as f1 is zero
in the bulk of the phases, which correspond to φ = ±

√
β/α. The last term, fEx ,

penalizes the presence of surfactant in the bulk of the phases (cost of free surfactant),
thus favoring its adsorption at the interface.

fEx =
W

2
ψφ2 (2.18)
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Figure 2.2 – Panel (a): entropy term fψ for different values of the surfactant diffusivity, Pi.
Panel (b): for ease of visualization the terms f1 and fEx have been divided by the surfactant
concentration, ψ. The interface has been marked with a thin dotted line.

The parameter W defines the surfactant solubility in the bulk. fEx has a minimum
at the interface (φ ∼ 0) and is positive in the bulk of the phases. Once defined all
the terms of the two-order-parameter free energy functional, the chemical potentials
of the phase field, µφ, and of the surfactant, µψ, can be calculated:

µφ =
δF
δφ

= αφ3 − βφ− κ∇2φ+

Cφψ︷ ︸︸ ︷
2αψφ

(
β

α
− φ2

)
+Wφψ , (2.19)

µψ =
δF
δψ

=
β2

α
Pi log

(
ψ

1− ψ

)
− α

2

(
β

α
− φ2

)2

+
W

2
φ2 . (2.20)

The dynamics of the phase field is controlled by the phase field chemical potential,
Eq. (2.19). The phase field chemical potential depends also on the surfactant concen-
tration (terms collected in Cφψ); this dependence induces an unphysical behaviour of
the interface [184]. According to Yun et al. [184], this term has to be neglected in
the phase field chemical potential to restore the correct interfacial behaviour. From
the two chemical potentials the equilibrium profile for both the phase field and the
surfactant concentration can be obtained. As the phase field chemical potential is un-
changed, the phase field equilibrium profile of the single-order-parameter formulation
is maintained, Eq. (2.11). At equilibrium conditions the chemical potential is constant
in the entire domain. In the bulk of the phases (φ = ±

√
β/α) the surfactant chemical

potential is:

µψ,b =
β2

α
Pi log

(
ψb

1− ψb

)
+
W

2

β

α
, (2.21)
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Figure 2.3 – Phase field and surfactant equilibrium profiles. The phase field is uniform in the
bulk of the phases, φ = ±

√

β/α, and it undergoes a smooth transition at the interface. The
equilibrium surfactant concentration is equal to the surfactant bulk concentration, ψb, in the bulk
of the phases and reaches its maximum at the interface.

with ψb being the surfactant bulk concentration. As the chemical potential at equilib-
rium is constant, we have µψ = µψ,b. From this condition we obtain:

ψb
1− ψb

1− ψ

ψ
=

ψc︷ ︸︸ ︷
exp

{
− α

2β2Pi

(
β

α
− φ2

)[
α

(
β

α
− φ2

)
+W

]}
. (2.22)

The auxiliary variable ψc is a function of the phase field solely. The final surfactant
equilibrium profile results in:

ψ =
ψb

ψb + ψc(1− ψb)
. (2.23)

The phase field and the surfactant equilibrium profiles are displayed in Fig. 2.3.
Once the chemical potential for the surfactant has been defined, a second Cahn-
Hilliard-like equation, which describes the surfactant dynamics can be obtained:

∂ψ

∂t
+ u · ∇ψ = ∇ · (Mψ∇µψ) . (2.24)

The surfactant mobility coefficient (Onsager coefficient) is a function of the surfactant
concentration: Mψ = mψψ(1− ψ).

2.2.1 Calculation of surface forces

Surfactants (surface active agents) locally reduce surface tension with respect to a clean
(surfactant-free) interface. The surface tension reduction depends on the local surfac-
tant concentration: a lower surface tension can be obtained with a higher surfactant
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Figure 2.4 – Langmuir equation of state for different values of the elasticity number βs; the thick
dashed lines show the equation of state beyond its range of validity, marked with the thin dotted
line. A higher elasticity number leads to a stronger surface tension reduction.

concentration. Surface tension, thus, varies with the local surfactant concentration
and can be non-homogeneous over the interface (non-homogenous surfactant concen-
tration). In turn, surface tension gradients generate Marangoni stresses; these stresses
are directed as the surface tension gradients (thus opposite to surfactant gradients)
and are tangential to the interface.
The surface tension reduction operated by the surfactant is quantified using a Lang-
muir equation of state (Szyszkowski equation, Fig. 2.4) [10, 118]:

σ(ψ) = σ0 [1 + βs log(1− ψ)] , (2.25)

where σ0 is the clean interface surface tension and βs is the elasticity number, which
characterizes the strength of the surfactant. The surface tension reduction is propor-
tional to the elasticity number: the higher the elasticity number is, the stronger the
surface tension reduction will be. This equation of state is valid in the limit of low
to moderate surfactant concentration. Experimental works [21, 71, 100, 149] showed
that surface tension never decreases below about half of its clean interface value; this
limit is not captured by the Langmuir equation of state, which has then been modified
to extend its range of validity:

σ(ψ) = σ0 max [1 + βs log(1− ψ), 0.5] . (2.26)

With this modification, the equation of state better follows experimental observations
and unphysical values of surface tension are avoided. The physical mechanism that
limits the minimum surface tension traces back to the local saturation of surfactant:
due to the finite-size of surfactant molecules, the maximum surfactant concentration
is limited. The saturation concentration is also known as critical micelle concentra-
tion, as surfactant molecules, once reached the saturation concentration, start forming
aggregates (micelles) made of surfactant molecules alone. Large-scale numerical simu-
lations, however, cannot capture these molecular-scale phenomena: indeed, numerical
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simulations can cover a limited range of length scales (about three to four orders of
magnitude). This limitation originates from the available computational power: the
computational cost grows as the range of resolved scales is increased (this issue will be
extensively addressed in Chap. 6). The usual choice of resolved scales ranges from the
macroscopic flow (larger scales) down to the smallest structures of the flow (smaller
scales, order of Kolmogorov length scale). Thus, all phenomena occurring at even
smaller scales (as for instance, at the molecular scale) are modelled on a larger, re-
solved scale. For this reason, the numerical simulations presented here do not directly
simulate the formation of micelles, which in addition would be too small to affect the
macroscopic dynamics of the multiphase flow system. However, the effect of the sur-
factant saturation limit is still considered in the model: surface tension keeps constant
when the surfactant exceeds the saturation limit. As the molecular-scale dynamics
of the surfactant molecules and of the micelles formation are not directly simulated,
in the following the surfactant saturation concentration is referred to as shutdown
concentration instead of critical micelle concentration.

2.3 Flow field

Continuity and Navier-Stokes equations describe the dynamics of the turbulent flow.
The presence of moving and deformable interfaces and of a dissolved surfactant is
accounted for in the Navier-Stokes equations with an interfacial term, which indeed
couples the Navier-Stokes equations to the two Cahn-Hilliard equations (one for the
phase field and one for the surfactant concentration). In the following the most general
formulation of the Navier-Stokes and continuity equations will be introduced: the two
phases can have different thermo-physical properties, in particular density [40] and
viscosity [128]. Density and viscosity depend on the local concentration of each phase;
further details are reported in Sect. 2.3.1. The mass conservation (continuity equation)
for incompressible flows results in a divergence-free flow:

∇ · u = 0 . (2.27)

The velocity field is divergence-free also when phases with different densities are con-
sidered: imposing the conservation of volume at the interface, the volume diffusive
fluxes of the two species cancel out, resulting in a divergence-free field [40]. The mass
conservation of the two incompressible phases are:

∂(ρ1C)

∂t
+∇ · (ρ1Cu− ρ1j1) = 0 , (2.28)

∂[ρ2(1− C)]

∂t
+∇ · [ρ2(1− C)u− ρ2j2] = 0 , (2.29)

where C = (φ + 1)/2 is the local concentration of phase 1 (characterized by the
subscript 1, while the subscript 2 stands for the other phase) and j1, j2 are the diffusive
volume fluxes (volume diffusive flow rates) present at the interface. As both phases
are incompressible, their density is constant.

∂C

∂t
+∇ · (Cu− j1) = 0 , (2.30)
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∂(1− C)

∂t
+∇ · [(1− C)u− j2] = 0 . (2.31)

Summing the latter two equations we obtain:

∇ · u = ∇ · (j1 + j2) . (2.32)

Imposing the conservation of volume at the interface constrains the two diffusive fluxes
to j1 = −j2, thus resulting in a divergence-free velocity field.
The Navier-Stokes equations (momentum conservation) for a divergence-free velocity
field is:

ρ(φ)

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇·

[
η(φ)(∇u+∇uT )

]
+ρ(φ)g+∇·[τ cκfσ(ψ)] , (2.33)

with u = (u, v, w) being the velocity field, t time, ∇p the pressure gradient, ρ(φ) and
η(φ) respectively the local density and dynamic viscosity, g the gravity acceleration,
τ c the Korteweg tensor [83] and fσ(ψ) = σ(ψ)/σ0 the dimensionless surface tension
equation of state.
Surface forces are calculated adopting a geometric approach: the Korteweg tensor,
τ c = |∇φ|2I−∇φ⊗∇φ, considers the interface shape and curvature, while the Lang-
muir equation of state takes into account the surface tension local value. The geometric
approach was selected over the thermodynamic one, based on the chemical potentials,
for mainly two reasons: (i) the effect of surfactant on surface tension is completely
customizable (choice of equation of state and relative parameters), (ii) the thermody-
namic approach [47, 91] cannot be easily applied as the phase field chemical potential
was modified to remove the unphysical behaviour of the interface [184].

2.3.1 Treatment of non-matched properties

Thermo-physical properties are defined as a linear function of the phase field: at the
interface they undergo a smooth transition following the phase field profile. This fea-
ture circumvents all the complications that could arise from jumps and discontinuities
across the interface. The properties of the carrier phase are taken as reference quan-
tities: the carrier phase density, ρc, and the carrier phase viscosity, ηc. The density
and viscosity ratios among the two phases are respectively defined as:

ρr =
ρd
ρc

, ηr =
ηd
ηc

, (2.34)

with the subscripts d denoting the dispersed phase properties and c the carrier phase
properties. Fig. 2.5 shows the profile of a generic thermo-physical property, either
density or viscosity, across the interface. The interface is identified by the red dashed
line, while the interfacial layer (±96% of the phase field bulk value) is marked with
a light red rectangle. Two different property ratios are displayed, γr > 1 (solid line)
and γr < 1 (dashed line). As the property of the carrier phase (phase field bulk value
φ = −

√
β/α) are taken as a reference, the value of the dimensionless thermo-physical

property is equal to one in the bulk of the carrier phase.
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Figure 2.5 – Profile of a generic thermo-physical property γ across the interface (red dashed line)
for two different property ratios γr. The carrier phase thermo-physical property γc is taken as
reference value. The interfacial layer (light red area) identifies the region in which the phase field
spans ±96% of its bulk value.

ρ(φ) = ρc

[
1 +

ρr − 1

2

(
φ√
β/α

+ 1

)]
(2.35)

η(φ) = ηc

[
1 +

ηr − 1

2

(
φ√
β/α

+ 1

)]
(2.36)

With the current definition of the thermo-physical properties as a function of the phase
field, their value never reduces below zero (unphysical value for density or viscosity) if
the phase field profile does not strongly overshoot/undershoot its equilibrium profile.
As interactions with the surrounding (even turbulent) flow field perturb the interfacial
profile, the thermo-physical properties may be misrepresented; Chap. 3 tackles this
issue by introducing two corrected formulations of the phase field method tailored to
circumvent the drawbacks of the method.

2.4 Dimensional analysis

All the equations presented so far are in dimensional form; the non-dimensionalizing
procedure will be now introduced. Dimensionless quantities will be indicated using a
superscript ∗. A flat channel geometry is adopted in all the simulations presented in
this work, Fig. 2.6. The channel is bounded by two solid walls at z = ±h, with h being
the channel half height. The reference velocity depends on the problem considered:
for pressure-driven flows it is the friction velocity, uτ =

√
τw/ρc (τw is the shear stress

at the wall and ρc the reference density), while for the shear flow configuration it
corresponds to the wall velocity, uw. In the following the friction velocity, uτ , will be
used for ease of notation. From the velocity and the length scale, the time scale can
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Exploiting Eq. (2.13) and defining two dimensionless quantities, We and Ch, the
dimensionless surface force term becomes:

3√
8

σ0
ρcu2τh

√
κ/β

h
∇ · [τ∗cfσ(ψ)] =

3√
8

Ch

We
∇ · [τ∗cfσ(ψ)] . (2.44)

The Cahn number, Ch, is the dimensionless interface thickness; it is defined as the
ratio ξ/h. The Weber number, We, is the ratio of inertia forces over surface tension
forces:

We =
ρcu

2
τh

σ0
, (2.45)

where σ0 the reference surface tension (clean interface). This dimensionless parame-
ter, thus, does not account for any surface tension reduction operated by a dissolved
surfactant. The dimensionless Navier-Stokes equation is:

ρ∗(φ∗)

(
∂u∗

∂t∗
+ u∗ · ∇u∗

)
=−∇p∗ + 1

Reτ
∇ ·
[
η∗(φ∗)

(
∇u∗ +∇u∗T

)]
+

+
1

Fr2
ρ∗(φ∗)g∗ +

3√
8

Ch

We
∇ · [τ∗cfσ(ψ)] .

(2.46)

The dimensionless pressure is defined as p∗ = p/(ρcu
2
τ ). The shear Reynolds number,

Reτ is the ratio of inertial over viscous forces:

Reτ =
ρcuτh

ηc
; (2.47)

it is defined using the carrier phase properties as reference quantities. The Froude
number, Fr is defined as:

Fr =
uτ√
gh

, (2.48)

where g is the modulo of the gravity vector and g∗ is the gravity unit vector.
The dimensionless transport equation for the phase field is:

∂φ∗

∂t∗
+ u∗ · ∇φ∗ =

1

Peφ
∇2µ∗

φ . (2.49)

The phase field Péclet number, Peφ, is the ratio of convective over diffusive phe-
nomena of the phase field. The dimensionless phase field equilibrium profile is
φ∗ = tanh(s∗/

√
2Ch), with s∗ being a dimensionless coordinate normal to the in-

terface. The chemical potential is made dimensionless by a factor
√
β3/α.

µφ =

√
β3

α
µ∗
φ =

√
β3

α

(
φ∗

3 − φ∗ − Ch2∇2φ∗
)

(2.50)

The phase field Péclet number is defined as:

Peφ =
uτh

βmφ
, (2.51)

where mφ is the constant mobility coefficient for the phase field.
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The surfactant concentration is already a dimensionless quantity; its dimensionless
transport equation reads:

∂ψ

∂t∗
+ u∗ · ∇ψ =

1

Peψ
∇ · [ψ(1− ψ)∇µ∗

ψ] . (2.52)

Peψ is the surfactant concentration Péclet number, representing the ratio of convective
over diffusive phenomena.

Peψ =
uτhα

mψβ2
(2.53)

The surfactant concentration chemical potential is:

µψ =
β2

α
µ∗
ψ =

β2

α

[
Pi log

(
ψ

1− ψ

)
− (1− φ∗

2

)2

2
+

1

2Ex
φ∗

2

]
. (2.54)

The dimensionless parameter Ex = β/W defines the surfactant solubility in the bulk
of the two phases.
In the following the dimensionless notation ∗ will be dropped for ease of reading;
from now on, all equations presented are however dimensionless (outer units scaling
system, for the wall units scaling system the reader is referred to Appendix B). The
dimensionless equations are (in order: continuity, Navier-Stokes, density, viscosity,
phase field transport, surfactant concentration transport, phase field and surfactant
concentration chemical potentials):

∇ · u = 0 ; (2.55)

ρ(φ)

(
∂u

∂t
+ u · ∇u

)
=−∇p+ 1

Reτ
∇ ·
[
η(φ)

(
∇u+∇uT

)]
+

+
ρ(φ)g

Fr2
+

3√
8

Ch

We
∇ · [τ cfσ(ψ)] ;

(2.56)

ρ(φ) = 1 +
ρr − 1

2
(φ+ 1) ; (2.57)

η(φ) = 1 +
ηr − 1

2
(φ+ 1) ; (2.58)

∂φ

∂t
+ u · ∇φ =

1

Peφ
∇2µφ ; (2.59)

∂ψ

∂t
+ u · ∇ψ =

1

Peψ
∇ · [ψ(1− ψ)∇µψ] ; (2.60)

µφ = φ3 − φ− Ch2∇2φ ; (2.61)

µψ = Pi log

(
ψ

1− ψ

)
− (1− φ2)2

2
+

1

2Ex
φ2 . (2.62)
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The shear Reynolds number and the Weber number are phenomenological parameters,
which determine the setup of the problem analyzed. The Cahn number, which sets
the interface thickness with respect to the channel size, is determined based on the
computational grid. First, the grid spacing and problem size are selected in order
to properly resolve the flow configuration studied, then the Ch number is chosen so
that there are at least five grid points across the interface (clean interface). When
the surfactant is considered, this grid requirement almost doubles: at least eight grid
points across the interface are needed to resolve all the steep gradients appearing at
the interface. Then, the phase field Péclet number, Peφ, is set according to the scaling
Peφ = 1/Ch [108, 144, 183].

2.5 Numerical method

The dimensionless system of equations is solved in a closed-channel configuration,
with two solid walls at z = ±1, as shown in Fig. 2.6. A velocity-vorticity approach
is adopted to solve the flow field: the Navier-Stokes and continuity equations are
replaced by a second-order equation for the wall-normal component of the vorticity
(curl of the Navier-Stokes equation), a fourth-order equation for the wall-normal com-
ponent of velocity (twice the curl of the Navier-Stokes equation), the definition of
the wall-normal vorticity and the continuity equation itself. With this approach time-
consuming Poisson solvers for the calculation of the pressure field can be avoided. The
transport equations for the phase field and for the surfactant concentration are directly
solved, Eq. (2.59) and Eq. (2.60). A more compact notation is now introduced; all
non-linear terms that will be time-integrated using an explicit scheme are collected in
a non-linear term. The various non-linear terms are S, Sφ and Sψ, respectively for the
Navier-Stokes, phase field and surfactant concentration transport equation.

S =



Sx
Sy
Sz


 =− u · ∇u− ρr − 1

2
(φ+ 1)

(
∂u

∂t
+ u · ∇u

)
−Π+

+
1

Reτ
∇ ·
[
ηr − 1

2
(φ+ 1)

(
∇u+∇uT

)]
+

+
ρ(φ)g

Fr2
+

3√
8

Ch

We
∇ · [τ cfσ(ψ)]

(2.63)

Sφ = −u · ∇φ+
1

Peφ

[
∇2φ3 − (1 + s)∇2φ+ fc

]
(2.64)

Sψ = −u · ∇ψ +
1

Peψ
∇ ·
[
ψ(1− ψ)∇

(
(1− φ2)2

2
+

φ2

2Ex

)]
(2.65)

The pressure gradient has been split in two components, a constant mean pressure
gradient, Π, and a fluctuating component, ∇p′ [143]. A splitting coefficient, s, appears
in the phase field transport equation; the splitting of the Laplace operator improves
the stability of the numerical scheme [8, 179]. This splitting coefficient is defined as:

s =

√
4PeφCh2

∆t
, (2.66)
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with ∆t being the integration time step. For the sake of completeness, also the contri-
bution from the corrected phase field formulations, fc, has been included in the phase
field transport equation. In a more compact form, the complete system of equations
thus results in:

∇ · u = 0 ; (2.67)

∂u

∂t
= S−∇p′ + 1

Reτ
∇2u ; (2.68)

∂φ

∂t
= Sφ +

s

Peφ
∇2φ− Ch2

Peφ
∇4φ ; (2.69)

∂ψ

∂t
= Sψ +

Pi

Peψ
∇2ψ . (2.70)

The Navier-Stokes equation is solved in a velocity-vorticity formulation. First, by
taking the curl of the Navier-Stokes equation, a transport equation for the vorticity,
ω is obtained:

∂ω

∂t
= ∇× S+

1

Reτ
∇2

ω . (2.71)

The wall-normal component of this equation gives the wall-normal component of the
vorticity vector, ωz. Then, a fourth-order equation for the velocity can be obtained
by taking the curl of Eq. (2.71) (twice the curl of the Navier-Stokes equation).

∂(∇2u)

∂t
= ∇2S−∇(∇ · S) + 1

Reτ
∇4u (2.72)

The wall-normal projection of this equation results in a fourth-order equation for the
wall-normal velocity.
The final system of equations solved results in:





∇ · u = 0

ω · nz = (∇× u) · nz
∂(∇2u)

∂t
· nz =

[
∇2S−∇(∇ · S) + 1

Reτ
∇4u

]
· nz

∂ω

∂t
· nz =

(
∇× S+

1

Reτ
∇2

ω

)
· nz

∂φ

∂t
= Sφ +

s

Peφ
∇2φ− Ch2

Peφ
∇4φ

∂ψ

∂t
= Sψ +

Pi

Peψ
∇2ψ

(2.73)

The symbol nz represents the wall-normal direction unit vector (z axis). This di-
mensionless system of equations has been spatially-discretized using a pseudo-spectral
approach [19, 64, 121] with Fourier discretization in the streamwise (x) and spanwise
(y) directions and Chebyshev polynomials in the wall-normal (z) direction. The adop-
tion of Fourier series in the x and y directions implicitly enforces periodic boundary
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conditions on all variables along these directions. All variables are Eulerian and are
solved on the same computational grid; only the surfactant concentration is solved on
a finer grid in order to properly resolve the steep gradients present at the interface.
All the other variables are solved on the coarser grid to limit the overall computa-
tional cost. Variables are interpolated in modal space from one grid to the other by
adding/removing high wavenumber modes and renormalizing the modes. A uniform
grid spacing is adopted in the streamwise and spanwise directions (Fourier discretiza-
tion), while in the wall-normal direction Chebyshev-Gauss-Lobatto points were chosen,
thus leading to a much finer grid close to the channel walls. The points (xi, yj , zk) of
the Cartesian grid are defined as:

xi = (i− 1)
Lx

Nx − 1
i = 1, . . . , Nx

yj = (j − 1)
Ly

Ny − 1
j = 1, . . . , Ny

zk = cos

(
k − 1

Nz − 1
π

)
k = 1, . . . , Nz

. (2.74)

The number of grid points in each direction is Nx (x direction), Ny (y direction) and
Nz (z direction).
The time-advancement is performed adopting a IMplicit-EXplicit scheme (IMEX);
the terms S, Sφ and Sψ are integrated explicitly with an Adams-Bashforth scheme,
while the other terms implicitly. A Crank-Nicolson scheme is used to integrate the
implicit terms of the second order equation for the wall-normal vorticity and of the
fourth order equation for the wall-normal velocity. The implicit part of the two Cahn-
Hilliard equations for the phase field and surfactant transport is integrated with an
implicit Euler scheme; this choice reduces the unphysical high frequency oscillations
that could arise from the steep gradients of the equations [8, 179]. At the first time
step an explicit Euler scheme is used for the explicit part of all the equations. At the
generic time step n (current time step) the time-discretized system of equations is:





∇ · un+1 = 0

ω
n+1 · nz = (∇× un+1) · nz

∇2un+1 −∇2un

∆t
· nz =

[
3[∇2Sn −∇(∇ · Sn)]− [∇2Sn−1 −∇(∇ · Sn−1)]

2
+

+
1

Reτ

∇4un+1 +∇4un

2

]
· nz

ω
n+1 − ω

n

∆t
· nz =

(
3∇× Sn −∇× Sn−1

2
+

1

Reτ

∇2
ω
n+1 +∇2

ω
n

2

)
· nz

φn+1 − φn

∆t
=

3Snφ − Sn−1
φ

2
+

s

Peφ
∇2φn+1 − Ch2

Peφ
∇4φn+1

ψn+1 − ψn

∆t
=

3Snψ − Sn−1
ψ

2
+

Pi

Peψ
∇2ψn+1

(2.75)
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2.5.1 Pseudo-spectral discretization

All equations are solved in modal space; Fourier and Chebyshev transforms are em-
ployed to switch from a physical to a modal representation of variables. A generic
variable, f(x, y, z, t), in physical space can be represented in modal space as a func-
tion of Fourier wavenumbers and Chebyshev polynomials, Tk.

f(x, y, z, t) =

Nx/2∑

i=0

Ny/2∑

j=−Ny/2+1

Nz−1∑

k=0

f̂(kx,i, ky,j , k, t)Tk(z)e
ι(kx,ix+ky,jy) (2.76)

The Fourier coefficient f̂(kx,i, ky,j , k, t) depends on the wavenumbers, kx,i and ky,j , on
the kth Chebyshev polynomial and on time (ι =

√
−1 is the imaginary unit). The x

and y Fourier wavenumbers are defined as:

kx,i =
2π(i− 1)

Lx
i = 1, . . . , Nx/2 + 1 , (2.77)

ky,j =





2π(j − 1)π

Ly
j = 1, . . . , Ny/2 + 1

−2π(Ny − j + 1)

Ly
j = Ny/2 + 2, . . . , Ny

. (2.78)

Chebyshev polynomials and their derivatives are defined recursively:

T0(z) = 1
∂T0(z)

∂z
= 0

T1(z) = z
∂T1(z)

∂z
= 1

...
...

Tn(z) = 2zTn−1(z)− Tn−2(z)
∂Tn(z)

∂z
=
∂Tn−2(z)

∂z
+ 2nTn−1

. (2.79)

One of the main advantages of spectral and pseudo-spectral method is the accuracy in
the calculation of derivatives: spatial derivatives in modal space are exact. However,
a truncation error is introduced when truncating the infinite Fourier and Chebyshev
series to a finite sum of interpolating functions; nevertheless this truncation error is
extremely small. Derivatives in the homogeneous directions (x and y) can be imme-
diately computed from Eq. (2.76):

∂f(x, y, z, t)

∂x
=

Nx/2∑

i=0

Ny/2∑

j=−Ny/2+1

Nz−1∑

k=0

ιkx,if̂Tke
ι(kx,ix+ky,jy) , (2.80)

∂f(x, y, z, t)

∂y
=

Nx/2∑

i=0

Ny/2∑

j=−Ny/2+1

Nz−1∑

k=0

ιky,j f̂Tke
ι(kx,ix+ky,jy) . (2.81)



2.5. Numerical method 25

Once defined the variables in modal space, the system of equations Eq. (2.75) can be
transformed in modal space. As Fourier modes are all orthogonal, the problem can be
split in (Nx/2 + 1)×Ny independent subproblems, one for every wavenumber couple

(kx,i, ky,j). To shorten the notation, in the following the symbol f̂ will correspond to
the Chebyshev discretization of Fourier modes at a generic wavenumber couple:

f̂ = f̂i,j =

Nz−1∑

k=0

f̂(kx,i, ky,j , k, t)Tk(z)e
ι(kx,ix+ky,jy) , (2.82)

for each couple (i, j) ∈ ([1, Nx/2+1], [−Ny/2+1, Ny/2]). With this compact notation,
the system of equation results in:




ιkx,iû
n+1 + ιky,j v̂

n+1 +
∂ŵn+1

∂z
= 0

ω̂n+1
z = ιkx,iv̂

n+1 − ιky,j û
n+1

1

∆t

(
∂2ŵn+1

∂z2
− k2i,jŵ

n+1 − ∂2ŵn

∂z2
+ k2i,jŵ

n

)
=

=
3

2

(
−k2i,jŜnz − ιkx,i

∂Ŝnx
∂z

− ιky,j
∂Ŝny
∂z

)
−

− 1

2

(
−k2i,jŜn−1

z − ιkx,i
∂Ŝn−1

x

∂z
− ιky,j

∂Ŝn−1
y

∂z

)
+

+
1

2Reτ

(
k4i,jŵ

n+1 +
∂4ŵn+1

∂z4
− 2k2i,j

∂2ŵn+1

∂z2

)
+

+
1

2Reτ

(
k4i,jŵ

n +
∂4ŵn

∂z4
− 2k2i,j

∂2ŵn

∂z2

)

ω̂n+1
z − ω̂nz

∆t
=
3

2

(
ιkx,iŜ

n
y − ιky,jŜ

n
x

)
− 1

2

(
ιkx,iŜ

n−1
y − ιky,jŜ

n−1
x

)
+

+
1

2Reτ

(
∂2ω̂n+1

z

∂z2
− k2i,jω̂

n+1
z +

∂2ω̂nz
∂z2

− k2i,jω̂
n
z

)

φ̂n+1 − φ̂n

∆t
=
3Ŝnφ − Ŝn−1

φ

2
+

s

Peφ

(
∂2φ̂n+1

∂z2
− k2i,j φ̂

n+1

)
−

− Ch2

Peφ

(
k4i,j φ̂

n+1 +
∂4φ̂n+1

∂z4
− 2k2i,j

∂2φ̂n+1

∂z2

)

ψ̂n+1 − ψ̂n

∆t
=

3Ŝnψ − Ŝn−1
ψ

2
+

Pi

Peψ

(
∂2ψ̂n+1

∂z2
− k2i,jψ̂

n+1

)

. (2.83)

The coefficient k2i,j is the sum of the square of the corresponding wavenumbers: k2i,j =

k2x,i + k2y,j . All terms, which are already known (current, n, and previous, n− 1, time
step), can be collected in a history term.

Hn
x = ∆t

[
3Ŝnx − Ŝn−1

x

2
+

1

2Reτ

∂2ûn

∂z2
+

(
1

∆t
−

k2i,j
2Reτ

)
ûn

]
(2.84)
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Hn
y = ∆t

[
3Ŝny − Ŝn−1

y

2
+

1

2Reτ

∂2v̂n

∂z2
+

(
1

∆t
−

k2i,j
2Reτ

)
v̂n

]
(2.85)

Hn =
∂

∂z
(ιkx,iH

n
x + ιky,jH

n
y ) + k2i,jH

n
z (2.86)

Hn
φ =

∆t

2
(3Ŝnφ − Ŝn−1

φ ) + φ̂n (2.87)

Hn
ψ =

∆t

2
(3Ŝnψ − Ŝn−1

ψ ) + ψ̂n (2.88)

Exploiting the history terms and taking the unknowns (time step n + 1) at the left
hand side, we obtain for each couple (i, j):





ιkx,iû
n+1 + ιky,j v̂

n+1 +
∂ŵn+1

∂z
= 0

ω̂n+1
z = ιkx,iv̂

n+1 − ιky,j û
n+1

(
∂2

∂z2
− β2

)(
∂2

∂z2
− k2i,j

)
ŵn+1 =

Hn

γ
(
∂2

∂z2
− β2

)
ω̂n+1
z = −

ιkx,iH
n
y − ιky,jH

n
x

γ
(
∂2

∂z2
− β2

φ

)(
∂2

∂z2
− β2

φ

)
φ̂n+1 =

Hn
φ

γφ
(
∂2

∂z2
− β2

ψ

)
ψ̂n+1 = −

Hn
ψ

γψ

. (2.89)

The parameters γ, γφ, γψ and β, βφ, βψ are defined as:

γ =
∆t

2Reτ
, β2 =

1 + γk2i,j
γ

, (2.90)

γφ =
Ch2∆t

Peφ
, β2

φ =
s

2Ch2
+ k2i,j , (2.91)

γψ =
Pi∆t

Peψ
, β2

ψ =
1 + γψk

2
i,j

γψ
. (2.92)

Chebyshev-Tau method

The Chebyshev-Tau method is employed to solve all the independent problems for each
Fourier wavenumber couple. This method can be applied to solve one-dimensional
second order equations with mixed boundary conditions. The Chebyshev polynomials
are chosen as test functions together with the weights (1− z2)−1/2. This choice allows
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to exploit the orthogonality of the polynomials.

∫ +1

−1

Tj(z)Tk(z)
1√

1− z2
dz =





0 if j 6= k

π if j = k = 0

π/2 if j = k 6= 0

(2.93)

In total Nz − 2 test function are employed; the boundary conditions at z = ±1 close
the problem.
The Chebyshev-Tau method will be now presented for a generic one-dimensional
Helmholtz equation:

∂2u

∂z2
− α2u = F . (2.94)

The functions u and F can be written as truncated Chebyshev series:

u =

Nz−1∑

n=0

anTn(z) , (2.95)

F =

Nz−1∑

n=0

bnTn(z) . (2.96)

The equation is then integrated twice in z from −1 to z. The following property of
Chebyshev polynomials is exploited:

∫ z

−1

Nz−1∑

n=0

cnTn(s)ds =

Nz∑

n=1

lnTn(z) . (2.97)

The coefficients ln can be expressed in terms of the coefficients cn:





ln =
1

2(Nz − 1)
(cn−1 − cn+1) for n = 1, . . . , Nz − 2

lNz−1 =
cNz−1

2(Nz − 1)

lNz =
cNz−1

2Nz

. (2.98)

Upon integration over z twice we get:

Nz−1∑

n=0

anTn(z)−AT1(z)−BT0(z)− α2
Nz+1∑

n=2

mnTn(z) =

Nz+1∑

n=2

fnTn(z) . (2.99)

where the coefficients mn and fn are obtained exploiting twice Eq. (2.98). The coeffi-
cient A and B are:

A =
∂u

∂z

∣∣∣∣
z=−1

, B =
∂u

∂z

∣∣∣∣
z=−1

+ u(z = −1) . (2.100)
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To get a more compact notation the coefficient hn = an − β2mn − fn is introduced.

(a0 −B)T0(z) + (a1 −A)T1(z) +

Nz−1∑

n=2

hnTn(z)−
Nz+1∑

n=Nz

(β2mn − fn)Tn(z) = 0 (2.101)

The Chebyshev-Tau method solves the differential equation in weak form, so the in-
tegral over the domain of the equation multiplied by a test function f must be zero
for each test function. By choosing the Chebyshev polynomials T2, . . . , TNz−1 as test
functions with the weight (1−z2)−1/2, the orthogonality of Chebyshev polynomials can
be exploited. The missing two equations are obtained from the boundary conditions:

p1

Nz−1∑

n=0

anTn(−1) + q1

Nz−1∑

n=0

an
∂Tn
∂z

∣∣∣∣
z=−1

= r1 , (2.102)

p2

Nz−1∑

n=0

anTn(+1) + q2

Nz−1∑

n=0

an
∂Tn
∂z

∣∣∣∣
z=+1

= r2 . (2.103)

In a more compact form, dn = p1Tn + q1∂Tn/∂z and en = p2Tn + q2∂Tn/∂z. Using
the relation reported in Eq. (2.98) the coefficient mn can be expressed as a linear
function of an coefficients, while fn as a linear function of bn; this way a linear system
of equations for the unknown coefficents an is obtained.



d1 d2 d3 d4 d5 d6 d7 d8 ... dNz
e1 e2 e3 e4 e5 e6 e7 e8 ... eNz
s1 0 v1 0 t1 0 0 0 ... 0
0 s2 0 v2 0 t2 0 0 ... 0
0 0 s3 0 v3 0 t3 0 ... 0
...

...
...

...
...

...
...

...
. . .

...
0 0 0 0 0 0 0 0 ... vNz−2







a0
a1
a2
a3
a4
...

aNz−1




=




r1
r2
g1
g2
g3
...

gNz−2




(2.104)

The coefficients of the matrix are:

sn−2 = −α2n n = 3, . . . , Nz , (2.105)

vn−2 = 4n(n− 1)(n− 2) + 2(n− 1)α2 n = 3, . . . , Nz , (2.106)

tn−2 = −α2(n− 2) n = 3, . . . , Nz − 2 , (2.107)

gn =





gn−2 = nbn−2 − 2(n− 1)bn + (n+ 2)bn+2 n = 3, . . . , Nz − 2

gNz−3 = (Nz − 3)bNz−5 − 2(Nz − 4)bNz−3

gNz−2 = (Nz − 2)bNz−4 − 2(Nz − 3)bNz−2

. (2.108)

The coefficient matrix has the first two rows full (from the boundary conditions) and
from the third to the last (Nz) row is a tridiagonal matrix. This system can be readily
solved using a Gauss-Jordan elimination algorithm followed by forward substitution.
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The Chebyshev-Tau method is applied to the fourth order equation for the velocity,
the second order equation for the vorticity, the fourth order equation for the phase
field and the second order equation for the surfactant concentration. In the following
it will be shown how to get from the problem equations to an Helmholtz form, as in
Eq. (2.94). Then, the Chebyshev-Tau method applies to each Helmholtz-like equation
as shown in the previous steps.

Boundary conditions

Due to the Fourier discretization in the streamwise and spanwise directions (x and
y), periodic boundary conditions are implicitly enforced in these directions. A closed
channel setup is being considered: two solid walls bound the channel at z = ±1
(dimensionless units). No-slip and no-flux boundary conditions are imposed on the
flow field; at the wall the fluid moves with the same velocity of the wall.





u(x, y, z = ±1) = [uw, vw, 0]

∂w

∂z

∣∣∣∣
z=±1

= 0
(2.109)

For the shear flow setup uw and vw are respectively the x and y direction velocities
of the moving wall. From the no-slip condition at the wall the boundary condition for
the wall-normal component of the vorticity is obtained:

ωz(x, y, z = ±1) = 0 . (2.110)

No-flux boundary conditions are enforced for both the phase field and the surfactant
concentration. As the phase field transport equation is a fourth order differential
equation, two additional boundary conditions are needed; in particular, a no-flux
boundary condition is imposed at the two solid walls also on the phase field chemical
potential.





∂φ

∂z

∣∣∣∣
z=±1

= 0

∂3φ

∂z3

∣∣∣∣
z=±1

= 0

(2.111)

∂ψ

∂z

∣∣∣∣
z=±1

= 0 (2.112)

Solution of the velocity equation

The equation for the wall-normal velocity is a fourth-order equation, thus the
Chebyshev-Tau method cannot be directly applied. The equation is then split in
two second order Helmholtz-like equations, so that the Chebyshev-Tau method can be
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applied to each of these second order equations.





∂2θn+1

∂z2
− β2θn+1 =

Hn

γ

∂2ŵn+1

∂z2
− k2i,jŵ

n+1 = θn+1

(2.113)

Two separate differential problems are obtained for the wall-normal velocity ŵn+1 and
the auxiliary variable θ̂n+1; however, the physical boundary conditions apply only to
the first problem (boundary conditions on the value of the velocity and its derivative
at the wall). As there are no physical boundary conditions for the auxiliary problem,
the influence matrix method has to be employed.

Using the influence matrix method, the solutions ŵn+1 and θn+1 can be split in three
contributions: a first contribution that does not necessarily verify the boundary con-
ditions (w1 and θ1) and two contributions that verify the boundary conditions at one
boundary (w2, w3 and θ2, θ3). A linear combination of these three contributions gives
the solution ŵn+1 and θn+1.

{
ŵn+1 = w1 +Aw2 +Bw3

θn+1 = θ1 +Aθ2 +Bθ3
(2.114)

The coefficients A and B have to be determined to obtain the value of the unknowns;
the subproblems denoted by the subscript 1, 2 and 3 are second order differential
equations with a unique solution. In particular the first subproblem, subscript 1,
has a solution which does not necessarily satisfy the imposed boundary conditions;
subproblem 2 verifies the boundary conditions at z = −1, while subproblem 3 verifies
the boundary conditions at z = +1. In the following the domain will be denoted as
Ω, while its boundaries (z = ±1) as Γ.

[P1] =





∂2w1

∂z2
− k2i,jw1 = θ1 in Ω

w1 = wΓ in Γ

∂2θ1
∂z2

− β2θ1 =
Hn

γ
in Ω

θ1 = θΓ in Γ

(2.115)

[P2] =





∂2w2

∂z2
− k2i,jw2 = θ2 in Ω

w2 = 0 in Γ

∂2θ2
∂z2

− β2θ2 = 0 in Ω

θ2(z = −1) = 1 θ2(z = +1) = 0

(2.116)
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[P3] =





∂2w3

∂z2
− k2i,jw3 = θ3 in Ω

w3 = 0 in Γ

∂2θ3
∂z2

− β2θ3 = 0 in Ω

θ3(z = −1) = 0 θ3(z = +1) = 1

(2.117)

The boundary condition on [P1] is arbitrary; wΓ = 0 and θΓ = 0 were selected. The
subproblem [P1] is time-dependent as the history term Hn changes over time; the
solutions to subproblems [P2] and [P3] do not depend on time and are calculated only
once.
The most general form of the boundary conditions on the wall-normal velocity is:





p1ŵ
n+1(x, y, z = −1) + q1

∂ŵn+1

∂z

∣∣∣∣
z=−1

= r1

p2ŵ
n+1(x, y, z = +1) + q2

∂ŵn+1

∂z

∣∣∣∣
z=+1

= r2

. (2.118)

The variable ŵn+1 can be split in the three contributions, ŵn+1 = w1 + Aw2 + Bw3,
and substituted in the boundary conditions. This way a linear system for the unknown
coefficients A and B is obtained.



p1w2(−1) + q1

∂w2

∂z

∣∣∣∣
z=−1

p1w3(−1) + q1
∂w3

∂z

∣∣∣∣
z=−1

p2w2(−1) + q2
∂w2

∂z

∣∣∣∣
z=−1

p2w3(−1) + q2
∂w3

∂z

∣∣∣∣
z=−1



[
A
B

]
=

[
r̃1
r̃2

]
(2.119)

The right hand side is given by:

[
r̃1
r̃2

]
=



r1 − p1w1(−1)− q1

∂w1

∂z

∣∣∣∣
z=−1

r2 − p2w1(−1)− q2
∂w1

∂z

∣∣∣∣
z=−1


 . (2.120)

Once obtained the unique solutions w1, w2 and w3 from the three subproblems and
calculated the unknown parameters A and B, the unknown wall-normal velocity ŵn+1

is obtained.
The complete flow field is determined once the wall-normal velocity and vorticity are
known; using the continuity equation and the definition of the wall-normal vorticity
the values of ûn+1 and v̂n+1 are obtained.

[
−ιky,j ιkx,i
ιkx,i ιky,j

] [
ûn+1

v̂n+1

]
=




ω̂n+1
z

−∂ŵ
n+1

∂z


 (2.121)

This method however fails when the determinant of the matrix of coefficients is zero;
this occurs for k2i,j = 0, so for kx,i = 0 and ky,j = 0. These wavenumbers correspond to
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the mean modes in the x and y direction. The solution for the mean mode of u and v
can be calculated starting from the fourth order equation Eq. (2.72) and substituting
kx,0 = 0 and ky,0 = 0. This way, two second order equations for ûn+1 and v̂n+1 are
obtained. 




∂2ûn+1

∂z2
− ûn+1

γ
= −H

n
x

γ

û(z = ±1) = uw

(2.122)





∂2v̂n+1

∂z2
− v̂n+1

γ
= −

Hn
y

γ

v̂(z = ±1) = vw

(2.123)

Solution of the vorticity equation

The equation for the wall-normal vorticity is already a one-dimensional second order
Helmholtz equation, thus it does not require any particular treatment.
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The Chebyshev-Tau method can be readily applied to get the new vorticity value.

Solution of the phase field equation

The fourth order equation for the phase field is split in two subproblems, one for the
phase field and one for the auxiliary variable θ̂n+1.
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Here, as both problems have physical boundary conditions, the influence matrix
method is not needed and the two subproblems can be directly solved. First, the
problem for θ̂n+1 is solved, then the phase field is calculated.
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Figure 2.7 – Slab, panel (a), and pencil, panel (b), decomposition of the computational domain
in physical space. The numbering of the tasks, #0, #1, ..., #N, is reported for reference.

Solution of the surfactant transport equation

The surfactant concentration transport equation is a second order Helmholtz equation
and can be directly solved applying the Chebyshev-Tau method.
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2.6 Code implementation

The presented numerical method has been implemented in a parallel Fortran code.
A pure-MPI (Message Passing Interface) approach is adopted to divide the work-
load among independent MPI tasks; the computational domain is evenly distributed
among all the tasks. The main idea lying behind the MPI approach is the division
of the workload among several different tasks that work independently one from each
other (exception made for the communications among tasks); each tasks has its own
private variable space, which is not directly accessible to other tasks. With the current
implementation, the domain is split using a 2D decomposition (pencil decomposition):
the computational domain is partitioned along two out of three dimensions (pencil-like
subdomains). This partitioning constitutes an improvement with respect to the 1D
decomposition (slab decomposition), in which the computational domain is partitioned
along only one direction out of three; a graphical visualization of these domain parti-
tioning approaches is reported in Fig. 2.7. While on one hand the pencil decomposition
increases the volume of data communication among the tasks and slightly increases
the replication of data across the variable space of different tasks (parameters, con-
stants, . . . ), on the other hand it greatly increases the maximum number of tasks that
can be used to divide the workload. The maximum number of tasks is limited by the
number of grid points: for a grid with O(N3) points, the maximum number of tasks
for the slab decomposition is O(N), while for the pencil decomposition is O(N2). This
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Figure 2.8 – Comparison between slab (dashed lines with square markers) and pencil (solid line
with circle markers) decomposition for different grid sizes. The speed-up with respect to a reference
case on 64 tasks is shown; the ideal scaling is reported with a thin black dotted line. The pencil
decomposition achieves better performances than the slab decomposition even at low numbers of
tasks. The loss of performances for increasing number of tasks can be appreciated for the coarser
grid, Nx×Ny×Nz = 512×256×257. Performance results were obtained on the Broadwell (BDW)
partition of the HPC system Marconi hosted at CINECA (Bologna, Italy).

limitation occurs as the minimum size of a slab is N × N × 1, while for a pencil it
is N × 1 × 1: each subdomain must include at least one grid point in each direction.
The pencil decomposition thus overcomes the limitation of the maximum number of
tasks that could be employed; in addition it also shows better performances even at
low numbers of tasks, Fig. 2.8. A loss of performances for increasing number of MPI
tasks can be observed in Fig. 2.8 for the coarse and intermediate grids: in these cases
the number of grid points held by each task becomes too low (O(8k) points per task
for the coarse grid and O(33k) for the intermediate one). As the number of grid points
per task is too low, the time spent in communications among tasks overcomes the time
spent in actual calculations, reducing the overall performances of the code.

The distribution of the computational domain is defined with two parameters, Ny,CPU
and Nz,CPU ; these parameters determine the partitioning of the domain along the y
and z directions. In physical space each task holds all the points in the x direction
and a fraction of the points in the y and z directions. This way a Fourier transform
can be readily taken in the x direction: to compute a Fourier or Chebyshev trans-
form all points in the transform direction are needed. Once the Fourier transform in
the x direction has been taken, the pencils are transposed: data are communicated
through MPI communications among the various tasks, so that each task holds all
the points in the y direction and only a fraction in the remaining directions. Then,
Fourier transforms in the y direction are taken. Again, the pencils are transposed so
that each task holds all the points in the z direction and then Chebyshev transforms
are taken. In modal space the computational domain is divided along the x and y
directions (each task holds all the points in the wall-normal direction). The transform
from physical to modal space thus requires: (i) one-dimensional Fourier transforms
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Table 2.1 – Characteristics of the HPC machines on which performance benchmarks were run

Machine HPC centre Node layout Frequency [GHz]
Marconi BDW CINECA (IT) 2×18 cores Intel Xeon 2.3
Marconi KNL CINECA (IT) 1×68 cores Intel Xeon Phi 1.4
Vesta ANL (USA) 1×16 cores IBM BG/Q 1.6
VSC-3 VSC (AT) 2×8 cores Intel Xeon 2.6

(x direction), (ii) pencil transposition, (iii) one-dimensional Fourier transforms (y
direction), (iv) pencil transposition and (v) one-dimensional Chebyshev transforms
(z direction). The transform from modal to physical space follows the same path
backwards. This process is thus constituted of intensive computation phases (Fourier
and Chebyshev transforms) interleaved with MPI communications among the various
tasks. A MPI Cartesian communicator is adopted to easily define the communication
pattern. Fast Fourier and Chebyshev transforms are taken using the functions pro-
vided in the library FFTW (version 3.3.8) by Frigo and Johnson [50]. This domain
partitioning choice gives the best performances: MPI communications occur only dur-
ing transforms from physical to modal space (and backwards) and, in modal space,
each task solves a series of Helmholtz problems (all Helmholtz problems are indepen-
dent one from each other). Most of the transforms occur during the calculation of
non-linear terms: to avoid the costly calculation of convolution integrals, products
of variables are computed in physical space, then the result is transformed in modal
space (pseudo-spectral method).

Finally, parallel input/output instructions (MPI I/O library) are adopted when read-
ing/writing large data files; this choice improves the overall performances of the code
and allows to distribute the workload among high number of tasks with a limited
amount of replicated data (low usage of memory for each task).

The performances of the code were measured on several High Performance Computing
(HPC) machines: Marconi BDW, Marconi KNL, Vesta and VSC-3. Details on these
machines are reported in Tab. 2.1. Performance data will be reported for the Broadwell
(BDW) and Knights Landing (KNL) partitions of Marconi and for Vesta; VSC-3 (Ivy
Bridge) has similar performances to Marconi Broadwell, thus has not be reported. The
strong scaling benchmark for the various HPC machines is reported in Fig. 2.9. In this
benchmark the problem size is kept constant (fixed grid size), while the total number
of MPI tasks, Ntasks, is increased, thus reducing the load of each task (lower problem
size per node). The strong scaling benchmark measures the speed-up with respect to
a reference case; here the reference case has been selected as the lower number of tasks
that could be run using all physical cores on all the requested nodes. On Marconi
BDW and KNL the available RAM per node is higher (O(100) GB), thus the problem
could fit on the memory of two nodes on the BDW partition and one node on the
KNL partition. On the other hand, as on Vesta the available RAM per node is 16 GB,
the smaller problem size required a minimum of 4 nodes, while the larger problem size
required a minimum of 32 nodes. Ideally, the speed-up should grow linearly with the
number of tasks employed (thin black dashed line in Fig. 2.9). This benchmark is the
most relevant for the cases that will be presented in the following: the total problem
size is kept fixed (between 512 × 256 × 257 and 1024 × 1024 × 1025 grid points)
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Figure 2.9 – Strong scaling for different grid sizes on the various architectures: Marconi BDW,
panel (a), Marconi KNL, panel (b), Vesta (grid 512×512×513 in panel (c) and 1024×1024×1025
in panel (d)) for different Multi Threading (MT) configurations. A thin black dashed line shows
the ideal linear scaling.

and the strong scaling performances of the code are exploited by selecting a total
number of tasks that guarantees a reasonable time-to-solution while keeping a high
efficiency (speed-up close to the ideal one). As the total number of tasks is increased
the parallel overhead also increases: the time spent by the code in communications and
synchronizations increases with respect to the time spent in actual computations. This
effect is clear for the lower grid sizes (up to 512× 512× 513 grid points): as the total
number of MPI tasks is increased, the speed-up strongly reduces and departs from the
ideal speed-up. The number of points per task becomes too low for increasing total
number of tasks, thus the time spent in calculations reduces, while the communication
and synchronization time increases. On the larger problem size (1024 × 1024 × 1025
grid points) the computational load of each task is high enough to mask the time spent
in communications and synchronizations calls, thus this case shows an optimal strong
scaling for all the numbers of tasks tested. Considering the problem size adopted
for the three-dimensional simulations that will be presented in the following, usually
about 1024 MPI tasks are employed, so that a strong scaling close to the ideal is always
achieved.

Finally, Multi Threading (MT) was also included in the strong scaling benchmarks
performed on Vesta (IBM BG/Q architecture). This machine is characterized by 16
physical cores per node; each of these physical cores can spawn up to four virtual
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cores (threads). A different MPI task can then be assigned to each thread. In total,
three Multi Threading configurations were tested: 1, 2 and 4 threads per core (MT×1,
MT×2 and MT×4). Multi Threading is an attractive option, as it allows to increase
the total number of tasks while keeping the same usage of computational resources:
most HPC systems bill for the amount of time a physical core (or node) is requested,
without considering the effective number of tasks actually used. Thus, for the same
amount of physical computational resources, up to four times virtual computational
resources are available with Multi Threading. However, Multi Threading may not
always be convenient: the same CPU-level physical resources (for instance registers
and L1 and L2 cache levels) are shared among the various threads. Depending on the
specifics of the machine it may or may not be advantageous and thus it should be
checked beforehand.

2.7 Validation

The numerical method and its implementation have been validated using two different
benchmarks. The first one compares the deformation of a droplet in a laminar shear
flow with a known analytical solution, while the second one compares the evolution of
a Rayleigh-Taylor instability with previous simulations. These benchmarks separately
test various components of the method: the former tests the surface force and the
viscosity contrast among the phases, while the latter addresses the validation of the
density contrast among the phases.
In the following sections each benchmark will be introduced, together with all the
relevant parameters and quantities. Then, results from the implemented method will
be compared with analytic solutions and widely-accepted numerical solutions.

2.7.1 Drop deformation in shear flow

This benchmark investigates the deformation of a droplet under shear: a single droplet
is placed between two walls that move in opposite directions, thus shearing the droplet.
This is a commonly used benchmark and several numerical [66, 81, 86, 95] and exper-
imental [55, 124] results are available. An analytic solution was obtained by Taylor
[153, 154] with the hypotheses of negligible inertia and small droplet deformation.
In his pioneering work with a parallel band apparatus [154], it was shown that the
deformation of the droplet is proportional to the capillary number, Ca. With the
hypothesis of negligible inertia, the droplet is deformed by viscous shearing (gener-
ated by the moving walls), while surface forces oppose this deformation. The capillary
number is indeed the ratio of viscous contributions over surface forces:

Ca =
We

Re

d

2h
=
uwη

σ0

d

2h
. (2.128)

Here the velocity of the moving wall, uw, has been taken as the reference velocity.
The rescaling factor d/2h is introduced as in the non-dimensionalization procedure
the length scale used is the channel half-height, while most of the previous works use
the droplet radius, d/2, as the length scale. To better compare with previous works,
this rescaling coefficient has been adopted.
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Figure 2.10 – Computational domain used for the single droplet deformation benchmark. At
the beginning of the simulation a circular droplet (red circle) is released at the channel centre,
zc = 0 and yc = π. The shear flow, linear velocity profile v(z), deforms the droplet until a new
steady-state shape (black dashed line) is reached. In this latter configuration the droplet length,
L, and breadth, B, are measured.

The deformation parameter, D, has been here defined according to previous works as:

D =
L−B

L+B
. (2.129)

The major axis, L, and the minor axis, B, respectively the length and breadth of
the droplet, are measured on the droplet projection on the velocity-velocity gradient
plane, as shown in Fig. 2.10.
Taylor [153, 154] developed an analytic formula, which describes the small deformation
of a droplet as a function of the droplet capillary number, ratio between viscous and
surface force contributions, and of the viscosity ratio among the two phases, ηr.

DT =
16 + 19ηr
16 + 16ηr

Ca (2.130)

This analytic expression was later corrected by Shapira and Haber [139], who ac-
counted for the effect of the lateral confinement on the droplet deformation. This
correction includes a factor that considers the ratio of the drop diameter over the
channel height, d/2h.

D =
16 + 19ηr
16 + 16ηr

Ca

[
1 + CSH

3.5

2

(
d

2h

)3
]

(2.131)

The coefficient CSH is a numerical coefficient equal to 5.6996. In the following, this
latter formulation will be employed in the comparison against results obtained with
the current numerical method.
All simulations for the code validation have been performed considering a two-
dimensional domain (2D); the difference between 2D and 3D cases will be later ad-
dressed in Chap. 4. There it will be shown how results from 2D numerical simulations
well approximate Taylor analytic formula, experimental measurements and results
from 3D simulations in the limit of small deformations (low capillary numbers). As
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Figure 2.11 – Single drop deformation in laminar shear flow. Results from the present simulations
(PFM) are compared with Taylor formula (Taylor S-H), Guido and Simeone [55], Inamuro et al.
[66], Komrakova et al. [81], Kwak and Pozrikidis [86], Li et al. [95] and Rallison [124]. Shapira
and Haber correction is included in Taylor analytic formula.

the following validation is limited to low capillary numbers, the deformation computed
for 2D cases can be safely compared with Taylor analytic formula and 3D cases.
The computational setup is reported in Fig. 2.10. The domain size is Ly × Lz =
2πh × 2h and has been discretized with Ny × Nz = 512 × 513 grid points in the
streamwise and wall-normal directions respectively. The Cahn number has been se-
lected such that there are at least five grid points across the interface; for the present
configuration Ch = 0.02 was chosen. This value of the Cahn number allows for an
accurate description of the phase field and of the steep gradients across the interface.
The Péclet number for the phase field was set following the scaling Peφ = 3/Ch = 150
[108, 183] in order to achieve the sharp-interface limit. The Reynolds number has
been imposed to Re = 0.1 to verify the creeping flow hypothesis (negligible inertia).
Different values of the capillary number, set via the Weber number, were selected:
Ca = 0.0625, Ca = 0.1250, Ca = 0.1875 and Ca = 0.2500. The initial velocity field,
v(z), is a linear velocity profile for the streamwise component; the other velocity com-
ponents were set to zero. The top wall moves with velocity vw = v(h) = 1, while the
bottom wall moves with velocity −vw = v(−h) = −1. No-slip boundary conditions
are enforced at the two moving walls, while periodic conditions are imposed in the
streamwise direction. Finally, a single droplet with diameter d = 0.8h is initialized at
the channel centre; the phase field follows its equilibrium profile across the interface.
The deformation of the droplet (matched viscosity among the phases) is compared
against Taylor corrected formula in Fig. 2.11. An excellent agreement can be observed
between results from the current simulations and Taylor formula. Results from previ-
ous works (numerical and experimental) are also reported in the figure; the dispersion
in these results can be addressed to slightly different flow conditions (Reynolds num-
ber), confinement ratio, viscosities of the fluids or presence of impurities. However, a
fair agreement among the various results reported can still be appreciated.
The effect of different viscosities between the two phases on the droplet deformation
has then been considered and validated against Taylor formula. In particular, two
different viscosity ratios have been considered: ηr = 0.1 and ηr = 0.01. Results from
the simulations are reported in Fig. 2.12; the droplet deformations obtained with the
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Figure 2.12 – Single drop deformation in laminar shear flow, effect of the viscosity ratio. Panel
(a) refers to ηr = 0.1, while panel (b) refers to ηr = 0.01. Results from the simulations (PFM) are
compared with Taylor formula (Taylor S-H). Corrections from Shapira and Haber are included in
Taylor analytic formula.

presented method fall onto the analytic Taylor formula.

2.7.2 Rayleigh-Taylor instability

The Rayleigh-Taylor instability is a fingering instability which arises at the inter-
face between two fluids of different densities [140]. This particular flow instability is
frequently found in a number of physical phenomena, ranging from astrophysics, to
atmospheric fluid dynamics and cloud physics [12]. The configuration (heavier fluid on
top of the lighter one) is unstable and small perturbations at the interface trigger the
surface instability, which starts with the formation of fingers. In particular spikes of
heavy fluid and bubbles of light fluid will penetrate into the other phase. In archival
literature several numerical works investigating the triggering and evolution of the
Rayleigh-Taylor instability can be found [31, 40, 54, 59, 157, 170, 171]. The review
by Sharp [140] reports a complete picture on analytic, experimental and numerical
studies on the topic.
In this section the effect of a different density between the two phases will be validated
with the Rayleigh-Taylor instability. Specifically, the position and velocity of spikes
and bubbles over time will be compared with widely accepted previous numerical
works. Spikes are fingers of heavy fluid falling through the lighter fluid, while bubbles
are fingers of light fluid rising through the heavier fluid; Fig. 2.13(e) shows an example
of a bubble and a spike (red corresponds to the lighter fluid, while blue corresponds
to the heavier one).
The present method has been validated against results from He et al. [59] and Wang
et al. [170, 171], thus the same configuration used in these works has been adopted.
In this benchmark the reference velocity is ug =

√
gh, where g is the magnitude

of the gravity acceleration; gravity is directed downwards (negative z). Using the
channel half-height as length scale, the Reynolds number is set to Re = 724; this
value is different from previous works as here a different length scale has been chosen
(other works use the width of the channel, Ly, as length scale). The domain size is
Ly×Lz = 0.5h×2h and it has been discretized with Ny×Nz = 256×1025 collocation
points. The Cahn number has been set to Ch = 0.01 and the Péclet number to
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Figure 2.13 – Time evolution of the Rayleigh-Taylor instability, time increases from left to right.
The heavier fluid (blue) forms a spike that penetrates into the lighter fluid (red). The interface is
represented as the thin transition layer between the two phases. The position of the spike and of
the bubble is measured over time and compared with previous results.

Peφ = 1/Ch = 100. Surface tension is set to zero, thus We → ∞; in the code the
calculation of surface forces was switched off to reduce the overall computational cost.
Due to the choice of the velocity scale, the Froude number is set to Fr = 1. The
density ratio between the two phases is ρr = 0.3333, corresponding to an Atwood
number At = 0.5.

Fig. 2.13 reports a qualitative view of the time evolution of the Rayleigh-Taylor insta-
bility. At the beginning of the simulation, the interface is perturbed with a cosine wave
with an amplitude of 0.05h and a spatial frequency of 4π/h. This initial perturbation
speeds up the triggering of the instability; the same perturbation was adopted by He
et al. [59] and Wang et al. [170, 171]. The heavier fluid (φ = −1, blue phase) plunges
into the light fluid (φ = +1, red phase) and forms a spike; at the same time the lighter
fluid rises in two bubbles at the sides of the spike. Later in time, after t = 3.0, the
heavy fluid starts to roll up in two side spikes, which further elongates over time.
The time evolution of the Rayleigh-Taylor instability is in qualitative agreement with
previous reported results for the same parameters. To get a more quantitative compar-
ison, the position and velocity of the bubble and of the main spike are measured over
time. These positions are compared against previous numerical results; an excellent
agreement among the various methods can be appreciated in Fig. 2.14(a). In addition,
the velocity of the interface at the bubble and spike tip is reported in Fig. 2.14(b); the
present method accurately follows the benchmark solutions. In the early stages of the
simulation (t < 1) the perturbation follows an exponential growth; then the bubble
reaches a constant velocity and the growth of the perturbation is linear (cruising state).
Conversely, after an almost constant velocity stage (ending at about t = 3.5), the spike
starts to accelerate until the bottom of the domain is reached at about t = 4.5 (not
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Figure 2.14 – Panel (a) compares the results for the spike and tip position from the current method
with previous results. Panel (b) compares the results for the spike and tip vertical velocity. The
results obtained from the current method (PFM) are compared with results by He et al. [59]
(black open circles), Wang et al. [170] (blue upward-pointing triangles) and Wang et al. [171] (red
downward-pointing triangles).

shown here).
An excellent agreement with widely accepted results available in archival literature is
observed also for the Rayleigh-Taylor benchmark; the present method and its numer-
ical implementation have thus been validated.
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Reproduced in part from:

G. Soligo, A. Roccon, and A. Soldati, Mass-conservation-improved phase field methods for turbulent

multiphase flow simulation, Acta Mechanica 230:683–696, 2019.

The phase field method is a powerful tool for the simulation of multiphase flows. In
recent years the method has gained increasing popularity due to its sound physical
basis, which allows to accurately render physics when using it on a highly refined grid.
However, the currently available computational resources introduce a limitation on the
grid resolution: in the simulation of turbulent multiphase flows the smallest interfacial
scales cannot be resolved, even with modern HPC resources. Indeed, the wide range
of scales involved in a multiphase turbulent flow spans form the larger turbulent ed-
dies (O(1) m), down to the smallest interfacial scales (O(1) nm), thus covering about
nine orders of magnitude in size. The smallest interfacial scales are, indeed, smeared
out: a mean-field approximation [90] is adopted. The interface is represented as a
finite-thickness transition layer, much larger than a real interface (molecular scale):
simulating all the scales, from the problem scale down to the molecular scale is way
beyond the capabilities of the current HPC resources. As the smallest interfacial scales
are not resolved, some negative effects (namely shrinkage, coarsening and misrepre-
sentation of surface forces and thermo-physical properties), affecting the accuracy of
the simulations, arise. Corrected formulations of the phase field method have been
proposed to circumvent these drawbacks.

In the following, first, the three issues affecting the classic phase field method will be
presented in Sect. 3.1, then two possible corrected formulations, profile-corrected and
flux-corrected formulation, will be presented (Sect. 3.2) and benchmarked against the
classic formulation (Sect. 3.3).
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Figure 3.1 – Panel (a): comparison between the analytic and numeric profile of the phase field.
The numeric profile shows an overshoot at the left side and an undershoot at the right side.
These overshoots/undershoots influence the representation of thermo-physical properties: panel
(b) compares the analytic and numeric profiles of a generic thermo-physical property with property
ratio γ = 0.005. Due to the strong overshoot, the thermo-physical property Γ becomes negative.

3.1 Issues of the classic formulation

Shrinkage, coarsening and misrepresentation of surface forces and thermo-physical
properties negatively affect the quality of the simulation [78]. Shrinkage and misrepre-
sentation of interfacial forces and thermo-physical properties occur when the interfacial
profile deviates from the hyperbolic tangent equilibrium profile; for example, turbu-
lent fluctuations and shear at the interface can perturb the interfacial profile. Surface
forces are calculated based on the equilibrium interfacial profile, Eq. (2.13): an out-
of-equilibrium interfacial profile introduces an error in the calculation of these forces.
Also thermo-physical properties depend on the phase field profile, see Sect. 2.3.1 for
further details. Any perturbation of the interfacial profile generates inaccuracies in
the local value of these properties; a strong overshoot of the interfacial profile may also
lead to negative (unphysical) values of thermo-physical properties, such as density or
viscosity. Being γ the ratio of a generic thermo-physical property of the two phases,
it is assumed that this thermo-physical property, Γ, is a linear function of the phase
field:

Γ = 1 +
γ − 1

2
(φ+ 1) . (3.1)

Fig. 3.1 shows an out-of-equilibrium interfacial profile and the relative generic thermo-
physical property calculated on that perturbed interfacial profile.

The energy minimization approach, on which the phase field method is based, acts to
restore the equilibrium profile: overshoots and undershoots of the interfacial profile
are eliminated, originating however another drawback, shrinkage phenomena. Indeed
the volume of the phase enclosed by the interface diffuses into the other phase (bulk
diffusion), leading to a volume loss of one phase. The total volume is conserved (no-
flux and periodic boundary conditions on the phase field), however the volume of each
phase is not conserved, as there might be leakages of one phase into the other. These
volume leakages are proportional to the interface thickness, thus to the Cahn number;
they vanish in the sharp interface limit [108, 183]. The adoption of a logarithmic
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potential for the bulk free energy of the phase field free energy functional strictly
bounds the interfacial profile between the bulk values and prevents diffusion of one
phase into the other outside the interfacial region. However, a logarithmic potential
introduces singularities and complicates the numerical resolution, thus a double well
potential is usually preferred. Lastly, the coarsening phenomenon is linked to the bulk
diffusion of one phase into the other. Shrinkage and coarsening however originate
from different causes: coarsening is rooted in the energy minimization approach of
the method. To reduce the total interfacial energy, smaller domains enclosed by an
interface diffuse (bulk diffusion) into the larger ones, thus reducing the total surface.
While shrinkage vanishes in the sharp interface limit, coarsening does not depend on
the interface thickness and is still present even for Ch→ 0 (sharp interface limit).
Summing up, the phase field drawbacks can be traced back to two main sources: an
out-of-equilibrium interfacial profile and bulk diffusion. The corrected formulations
act on either of these sources to improve the phase field method.

3.2 Corrected formulations

In the following two corrected formulations will be presented, first the profile-corrected
formulation [11, 96] and then the flux-corrected [185] one will be introduced. Each of
these formulations acts to circumvent the drawbacks of the classic phase field method.

3.2.1 Profile-corrected Phase Field formulation

The profile-corrected formulation [11, 96] introduces a penalty flux term, fp, in the
phase field transport equation. This penalty flux forces the interfacial profile towards
its equilibrium solution, thus reducing the volume leakages among the phases and
improving the representation of surface forces and thermo-physical properties.

∂φ

∂t
+ u · ∇φ =

1

Peφ
∇2µφ + fp (3.2)

The penalty flux is defined as:

fp =
λ

Peφ

[
∇2φ− 1√

2Ch
∇ ·
(
(1− φ2)

∇φ
|∇φ|

)]
, (3.3)

with λ being a positive constant parameter. Li et al. [96] also proposed a scaling for
this parameter based on the Cahn number: λ = α/Ch. In the following, different
values of λ (α) will be tested and benchmarked to investigate the effect of λ and find
the optimal choice for this parameter.

3.2.2 Flux-corrected Phase Field formulation

The flux-corrected formulation [185] builds on the profile-corrected one and adds an
additional flux, ff , to this latter formulation.

∂φ

∂t
+ u · ∇φ =

1

Peφ
∇2µφ + fp + ff (3.4)
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This new flux exactly cancels out the component normal to the interface of the diffusive
flux produced by the chemical potential:

ff = − 1

Peφ
∇ ·
[(

∇µφ ·
∇φ
|∇φ|

) ∇φ
|∇φ|

]
. (3.5)

The normal to the interface is defined as n = ∇φ/|∇φ| [148]. The flux ff is the projec-
tion on the normal to the interface of the phase field chemical potential gradient. As
the diffusive flux normal to the interface has been removed, shrinkage and coarsening
phenomena strongly reduce.

3.2.3 Numerical resolution

The newly added fluxes, fp and ff , are discretized in time with an explicit Adams-
Bashforth scheme. These terms are included in the non-linear term of the phase field
equation Sφ, Eq. (2.64). The generic penalty flux, fc, is zero for the classic formulation,
while it corresponds to fc = fp and to fc = fp + ff for the profile-corrected and flux-
corrected formulations respectively.

fc =





0 Classic PF formulation

fp Profile-corrected PF formulation

fp + ff Flux-corrected PF formulation

(3.6)

3.3 Corrected formulations performances

The performances of the corrected phase field formulations have been compared against
the classic formulation to benchmark the improvements introduced by the corrections.
The effect of the parameter λ (profile-correction penalty flux) has been quantified and
an optimal scaling was identified. Three different benchmarks will be presented in
the following; each of them is aimed to strongly stress the method. In particular, the
capability of each formulation to maintain an interfacial profile as close as possible to
the equilibrium profile (thus reducing mass leakages and improving the calculation of
surface forces and thermo-physical properties) underwent a severe testing: high shear
at the interface (Sect. 3.3.1), interactions among interfaces (Sect. 3.3.2 and Sect. 3.3.3)
and turbulent fluctuations (Sect. 3.3.3) were used to perturb the interfacial profile.

3.3.1 Rising bubble

A buoyant bubble (diameter d = 1) rising in a vertical two-dimensional (2D) channel
is considered for this first benchmark. The sketch of the simulation setup is reported
in Fig. 3.2: a 2D circular bubble is initialized at the bottom of the channel. The size of
the channel in dimensionless units is Ly × Lz = 2π × 2; periodic boundary conditions
are implicitly employed in the y direction, while no-slip conditions are enforced at the
two solid walls. The domain has been discretized using Ny × Nz = 512 × 513 grid
points. The Cahn number has thus been set to Ch = 0.02, while the phase field Péclet
number as been set following the scaling Peφ = 1/Ch = 50. The Reynolds number
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Figure 3.2 – Simulation setup for the rising bubble benchmark. A circular bubble with diameter
d = 1 is released at the bottom of the channel. After its release the bubble, which is lighter than
the surrounding fluid, starts rising along the y direction.

has been set to Reτ = 10, the Weber number to We = 1 and the Froude number
to Fr = 0.1. Three different values of α were selected to calculate the parameter
λ = α/Ch: α = [0.02 ; 0.05 ; 0.1].

At the beginning of the simulation the fluid in the channel is at rest: u = 0. The
imposed pressure gradient in the y direction exactly balances the weight of the fluid;
the only motion is generated by the density difference among the two phases. The
density ratio is set to ρr = 0.1, while the viscosity ratio is set to ηr = 1: the two fluids
have different density but matched dynamic viscosity. After being released, the bubble
starts rising along the y direction; the shear generated by the bubble motion deforms
and eventually breaks the interface. This benchmark is extremely challenging, as the
strong shear stresses at the interface strongly perturb the interfacial equilibrium profile
leading to high mass leakages among the two phases (shrinkage) and to inaccuracies
in the calculation of surface forces and thermo-physical properties [182].

Fig. 3.3 shows the time evolution of the droplet for the three different formulations.
The results reported in the figure were obtained with λ = 5 (profile- and flux-corrected
formulations). From a macroscopic point of view, the multiphase system evolves sim-
ilarly over time for the three different formulations: first the droplet strongly deforms
due to the strong influence of the wall (no-slip condition), then two elongated tails
form and successively break up. Many differences among the corrected formulations
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Figure 3.3 – Time evolution of the rising droplet; time increases from the bottom to the top,
bottom row t = 0.25, middle row t = 0.5 and top row t = 0.75. The leftmost column refers to
the classic formulation, the central column to the profile-corrected formulation and the rightmost
column to the flux-corrected formulation. For the corrected formulations λ = 5 was selected.





50 3. Mass-conservation-improved Phase Field methods

Profile-corrected

0

1

φ

Classic
λ = 5.0
λ = 2.5
λ = 1.0

Flux-corrected

0

1

π 3π/2

φ

y

Classic
λ = 5.0
λ = 2.5
λ = 1.0

(a)

(b)

Figure 3.5 – Detail of the instantaneous phase field profile along the channel centerline (y axis)
at t = 0.5 for the three different values of λ. Panel (a) reports the results for the profile-corrected
formulation, while panel (b) for the flux-corrected one. The phase field profile obtained with the
classic formulation is shown for reference. The parameter λ determines the efficacy of the profile
correction: reducing its value, the classic formulation is recovered.

tion. This effect can be traced back to the additional flux, ff , in the flux-corrected
formulation.

Then, the effect of the parameter λ = α/Ch is investigated for both corrected for-
mulations. Three different values of α have been selected: α = [0.02 ; 0.05 ; 0.1],
corresponding respectively to λ = [1 ; 2.5 ; 5]. Fig. 3.5 shows a detail of the phase
field profile across the bubble for both corrected formulations and different values of
the parameter λ. For the profile-corrected formulation, the parameter λ has a limited
influence on the interfacial profile: at the lowest λ value a small overshoot at the
bubble front and a small undershoot at the bubble back appear. Reducing λ reduces
indeed the efficacy of the correction term. Similarly, the flux-corrected case at the
lowest λ shows an overshoot at the bubble front, but it is more uniform at the bubble
back. For high values of λ small fluctuations appear in the bulk bubble phase. For
the flux-corrected formulation, λ = 2.5 thus shows the best performances in keeping
the equilibrium interfacial profile.

The phase leakages for all the different cases have been quantified by measuring the
total volume of the bubble phase during the entire simulation. For the classic simu-
lation at t = 1 about 12% of the bubble volume diffused into the other phase; most
of the leakages occurs during the shrinkage of the small droplets in the tails of the
bubble. The corrected formulations strongly improve the conservation of the bubble
volume: with λ = 5 the leakages amount to about 4% of the initial volume for the
profile-corrected formulation and to about 2.5% for the flux-corrected one. Decreasing
the value of λ the volume leakages increase: 5% (λ = 2.5) and 8% (λ = 1) for the
profile-corrected formulation and 3% (λ = 2.5) and 3.5% (λ = 1) for the flux-corrected
one.

The corrected formulations proved to be effective in maintaining the interfacial profile
close to the equilibrium solution and in better conserving the total volume of each
phase. As already stated, this benchmark is rather challenging as the high shear at
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Figure 3.6 – Simulation setup used to investigate the effect of the added fluxes on a coalescence
event. The imposed shear flow makes the droplets collide. The droplets have diameter d = 0.7
and are placed at yc = π ∓ 0.5 and zc = ±0.25 (∆y = 1, ∆z = 0.5).

the interface and the small droplets in the bubble tails enhance shrinkage phenomena
[182]. For the profile-corrected formulation, the parameter λ mostly affected shrinkage
phenomena (equilibrium profile kept for all values of λ tested), while for the flux-
corrected one it had also a considerable effect on the conservation of the phase field
profile (overshoots/undershoots and fluctuations).

3.3.2 Droplet-droplet interaction

As the implicit and accurate description of topological changes is one of the main
advantages of the phase field method, the effect of the corrected formulations on a
coalescence event has been investigated. The simulation setup is reported in Fig. 3.6:
two 2D droplets are placed at yc = π∓0.5, zc = ±0.25 (center position). The imposed
shear flow drives the two droplets towards, first, collision and, then, coalescence. The
channel dimensions are Ly × Lz = 2π × 2 (discretized with Ny × Nz = 512 × 513
grid points); the two walls at z = ±1 move in opposite directions with vw = ±1.
The initial flow field is a linear profile, v(z) = z; the Reynolds number is calculated
using the velocity of the wall, vw, and has been set to Re = 0.5. The other two
components of the velocity are initially set to zero. The two phases have the same
density (ρ1 = ρ2) and viscosity (η1 = η2). Gravity has been neglected as there are
no density differences. Given the grid resolution, a Cahn number Ch = 0.02 has been
chosen; the Péclet number has been thus set to Peφ = 1/Ch = 50. The Weber number
was set to We = 1.5. Again, the effect of the parameter λ was tested: three different
values were tested, λ = [1 ; 2.5 ; 5].

Fig. 3.7 show the time sequence of the coalescence event: after an initial approaching
stage, t = 2.0, the two droplets start interacting. At this stage almost no differences
can be appreciated among the different formulations: the droplets simulated with the
classic formulation are slightly smaller as some small mass leakages already occurred.
Starting from t = 2.2 the effects of the additional fluxes can already be appreciated:
the corrected formulations anticipate the coalescence event. This effect can be traced
back to two causes: the droplets are slightly larger (lower leakages among the phases,
2% for the classic formulation and about 0% for the corrected ones) and the additional
fluxes accelerate the coalescence [185]. The following panels show the completion of
the coalescence event: as soon as the interfaces overlap, the droplets merge and, then,
surface tension forces reshape the newly formed droplet. As the coalescence event
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Figure 3.7 – Time sequence of the coalescence event: panels (a) to (d) refer respectively to t = 2.0,
t = 2.2, t = 2.4 and t = 2.6. The interface is identified by the contour line φ = 0. The results for
the three formulations are reported in black (classic formulation), blue (profile-corrected, λ = 5)
and red (flux-corrected, λ = 5).

took place earlier for the corrected formulations, the subsequent evolution for these
formulations is slightly anticipated. The flux-corrected formulation undergoes the
interface merging later than the profile-corrected formulation; indeed, the lack of the
chemical potential gradient diffusive flux normal to the interface slightly delays the
coalescence.

The effect of the parameter λ on the coalescence dynamics has been then investigated.
Fig. 3.8 shows a detailed view of the coalescence process, right before (t = 2.2) and
after (t = 2.4) the merging of the interfaces. For the sake of clarity only two values of
λ have been reported: λ = 5 (blue and red contour lines) and λ = 1 (cyan and orange
lines). The classic formulation has also been reported for reference (solid black line).
For the profile corrected formulation, the effect of the parameter λ is clear: increasing
its value anticipates the coalescence event. For λ = 1 the interface shape almost
falls back onto that obtained with the classic formulation. Indeed, the parameter λ
determines the strength of the penalty flux: for small values of λ the classic formulation
is recovered. Panels (c) and (d) show the snapshots of the coalescence event for the
flux-corrected formulation. For the highest value of λ the coalescence is anticipated
with respect to the classic formulation. Reducing the values of λ, the merging of the
interfaces is delayed; for λ = 1 (lowest value) coalescence occurs after the merging of
the interfaces in the classic formulation.

Thus, stronger correction fluxes, corresponding to high values of the parameter λ, an-
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Figure 3.8 – Detail of the coalescence event, before (t = 2.2) and after (t = 2.4) the merging of the
interfaces. The top row reports the results for the profile-corrected formulation, while the bottom
row those for the flux-corrected one. The classic formulation has been reported for reference with
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λ = 5, and the lowest, λ = 1. For the profile-corrected formulation blue lines report the results at
λ = 5, while cyan lines those at λ = 1; for the flux-corrected formulation red lines show the results
at λ = 5, while orange lines those at λ = 1.

ticipate the coalescence event: the magnitude of the penalty flux, fp, is proportional
to λ. The effect of the penalty flux is mitigated by the absence of the wall-normal
component of the chemical potential flux: coalescence is slightly delayed for the flux-
corrected formulation. From the shrinkage point of view, the classic formulation ex-
periences about 2% of leakages among the phases, while in the corrected formulation
the leakage is negligible.

3.3.3 Shrinkage in wall-bounded turbulence

The last benchmark consists in the simulation of a swarm of large and deformable
droplets in wall-bounded turbulence. A closed channel configuration has been selected,
as reported in Fig. 2.6; this configuration is characteristic of multiphase problems of
industrial or environmental interest. The previous benchmarks showed that better
performances can be obtained with the scaling λ = 0.05/Ch: shrinkage is limited
and interface topological changes are relatively unaffected. As the problem is highly
complicated, the effect of the additional fluxes on the interface topological changes was
not investigated; however, the dispersed phase (droplets) shrinkage was investigated
over time.
An array of 256 spherical droplets (diameter d = 0.4) is initialized in a fully-developed
turbulent channel flow (Reτ = 300) at the beginning of the simulation. The droplets
and the carrier fluid have the same density and viscosity; gravity was neglected. The
channel has dimensions Lx×Ly×Lz = 4π× 2π× 2; periodic boundary conditions are
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Figure 3.9 – Time evolution of the total mass of the droplets, m(t), normalized by its initial
value, m0. The three solid lines correspond to the classic formulation (black), the profile-corrected
(blue) and flux-corrected (red). A simulation with an halved Cahn number on a refined grid was
also performed for the classic formulation (dashed black line).

applied along the x and y direction, while no-slip boundary conditions are enforced at
the walls. Nx ×Ny ×Nz = 512× 256× 513 grid points are used; this grid resolution
allows for an accurate description of all flow scales. Given the grid resolution, a Cahn
number Ch = 0.02 was selected; the Péclet number was set to Peφ = 50. An additional
simulation was also run with a finer grid (double the resolution along each direction)
and Ch = 0.01 to investigate the shrinkage for the classic formulation. The Weber
number, representative of the importance of surface forces, was set to We = 1.5. The
parameter λ = 2.5 has been selected based on the chosen scaling, λ = 0.05/Ch.

After their initialization, droplets move with the surrounding fluid; turbulent fluc-
tuations shift and deform the droplets. Eventually, turbulent fluctuations can drive
droplets towards collision and coalescence. At earlier stages of the simulation the
droplets do not interact with each other and just deform; later on turbulence leads to
coalescence and breakage events. The time evolution of the total mass of the droplets
normalized by its initial value is reported in Fig. 3.9. The turbulent fluctuations
strongly perturb the interfacial profile from its equilibrium, leading to a consistent
bulk diffusion and thus to the shrinkage of the dispersed phase. Conversely, the cor-
rected formulations are able to keep the equilibrium profile and achieve an almost
constant dispersed phase mass. The total mass of the droplets reduces of about 0.5%
for the flux-corrected formulation and 2.5% for the profile-corrected formulation. It
must however be noted that after an initial shrinkage, the profile-corrected formula-
tion keeps the total droplets mass constant (t > 1). This initial sudden shrinkage
is generated by the initial conditions chosen: a regular array of droplets is suddenly
inserted in a single phase fully-developed turbulent flow field. During the initial stage
of the simulation the flow field has to couple with the phase field and the interfacial
profile is strongly perturbed. An additional simulation has been performed on a twice
as fine grid, Nx × Ny × Nz = 1024 × 512 × 1025, with the classic formulation. For
this latter case an halved Cahn number, Ch = 0.01, has been used. The magnitude of
shrinkage is proportional to the Cahn number, thus a better mass conservation for the
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dispersed phase is expected. Even though a lower Cahn number has been employed,
the corrected formulations still outperform the classic formulation. The better perfor-
mances of the corrected formulations together with the lower computational cost (a
better dispersed phase mass conservation can be achieved on a coarser grid) make the
corrected formulations an appealing option.

3.4 Conclusions

In this chapter three different phase field formulations have been tested and bench-
marked: the classic, the profile-corrected and the flux-corrected formulation. The
drawbacks of the classic phase field method have been exposed and stressed in three
different benchmarks and the performances of each formulations have been evaluated.
The corrected formulations are able to preserve the phase field equilibrium profile,
thus improving the representation of thermo-physical properties and the calculation
of surface tension forces. In addition, maintaining the equilibrium profile helps in
reducing shrinkage phenomena. The benchmarks also allowed to identify an optimal
scaling for the parameter λ = 0.05/Ch, such that shrinkage is strongly reduced and
interface topological changes are not affected by the additional fluxes.
In the following, all simulations will be performed using the profile-corrected formu-
lation with λ = 0.05/Ch; this formulation has been selected over the flux-corrected
one as it achieves similar performances with limited modifications with respect to the
classic phase field formulation.
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4
Comparison of 2D vs 3D droplet

deformation

Reproduced in part from:

G. Soligo, A. Roccon, and A. Soldati, Coalescence of surfactant-laden drops by Phase Field Method,

Journal of Computational Physics 376:1292–1311, 2019,

and

G. Soligo, A. Roccon, and A. Soldati, Deformation of clean and surfactant-laden droplets in shear flow,

Meccanica (in press), 2019.

Quantifying the deformation of a droplet in a laminar shear flow is important in many
industrial applications and biological systems, among which emulsifying devices [99],
polymer blending [53], oil recovery [111], formation and rheology of emulsions [37] and
the study of red blood cells [177]. Taylor, in his pioneering works [153, 154], developed
an analytic formula capable of quantifying the deformation of a droplet in the limit of
negligible inertial effects (low Reynolds number) and small drop deformation. Within
these hypothesis, Taylor analytic formula can predict the steady-state deformation of
a droplet as a function of the capillary number, Ca, and of the viscosity of the two
phases (droplet and carrier liquid). The capillary number is a dimensionless quantity
that defines the importance of viscous effects over surface tension forces. Indeed,
when inertial effects are negligible, the deformation of a droplet is determined by
the competition of viscous and surface tension forces: the shear rate tries to deform
the droplet, while surface tension restores the minimal energy configuration of the
interface (sphere for three-dimensional droplets, circle for two-dimensional ones). The
original Taylor analytic formula has been later corrected by Shapira and Haber [139],
who considered the confinement effect due to the presence of walls on the droplet
deformation. The correction factor introduced depends only on the ratio between the
droplet size and the distance from the walls.

Being a simple and easy to reproduce setup, the measurement of the deformation
of a droplet in laminar shear flow is now a well-assessed benchmark used to vali-
date numerical methods and calibrate experimental facilities. Taylor analytic for-
mula [153, 154], together with Shapira and Haber correction [139], has been widely
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used to benchmark and validate numerical methods and codes for multiphase flows
[67, 145, 150, 166, 181, 186]. For validation purposes, a fast and lightweight simula-
tion is always preferable; indeed, two-dimensional (2D) simulations are often preferred
to their three-dimensional (3D) counterpart when performing validation tests and
benchmarks. However, for the droplet deformation benchmark, 2D and 3D cases are
substantially different: the former are circular droplets (cylindrical when extended
to 3D), while the latter are spherical droplets. These different interfacial shapes will
undergo a different deformation, even at the same capillary number. Thus, reducing
a 3D case to a 2D one is a drastic simplification, in which several physical effects
are strongly affected (suppression of capillary instabilities, longer and stronger near-
contact droplet interaction), but other main effects are still kept (development of high
interfacial curvature regions, tip streaming) [187]. Zhou and Pozrikidis [187] presented
a first comparison on the deformation of 2D and 3D droplets and they found that 2D
and 3D droplets exhibit a similar behavior. Later on, Tang et al. [152] confirmed this
result.
This chapter is devoted to the investigation of the limits of Taylor analytic formula:
first, the deformation of clean 2D and 3D droplets will be computed and compared,
then, the effects of a dissolved surfactant and of the different problem dimensionality
on the surfactant distribution will be investigated. The different deformation of 2D
and 3D droplets can be traced back to the shrinkage of the droplets in the direction
normal to the velocity-velocity gradient plane: in the limit of small deformations,
the shrinkage of the droplet along this direction is limited, thus 2D and 3D droplets
do experience similar deformations at low capillary numbers. In particular, previous
analyses and comparisons among 2D and 3D droplet deformation [1, 152, 187] will
be further extended and the limits of applicability of Taylor analytic formula will be
tested. The different dimensionality of the problem (2D vs 3D) has also important
effects on the surfactant distribution and, thus, on Marangoni stresses (stresses act-
ing tangentially to the interface, whenever a surface tension gradient is present). In
addition, surfactant also modifies the droplet deformation: (i) surfactant reduces sur-
face tension, thus leading to a lower average surface tension over the interface, (ii)
the imposed external shear stresses accumulate surfactant at the droplet tips, further
reducing the local surface tension, and (iii) the non-uniform surfactant distribution
generates Marangoni stresses along the interface, modifying the local stresses acting
on the interface. Numerical simulations allow to separately pinpoint each of these
factors and to analyze their effect on the deformation of the droplet separately. In
particular, the average surface tension reduction produced by the surfactant accounts
for most of the droplet deformation. As a consequence, Taylor analytic formula can be
used to compute the deformation of surfactant-laden droplets if the capillary number
is rescaled with the lower average surface tension over the interface.

4.1 Simulation setup

The computational setup adopted to simulate the deformation of a droplet in lami-
nar shear flow is sketched in Fig. 4.1: a closed channel setup with two moving walls
(top wall moves with velocity uw, while the bottom wall with velocity −uw). A
single droplet, spherical for 3D cases and circular for 2D cases, is initialized at the
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Table 4.1 – List of the simulations performed; letters define the surfactant loading (C: clean,
L: low and H: high), while numbers indicate increasing capillary numbers (1: Ca = 0.062, 2:
Ca = 0.125 and 3: Ca = 0.187).

Ca = 0.062 Ca = 0.125 Ca = 0.187
Clean (ψb = 0) C1 C2 C3
ψb = 0.01 L1 L2 L3
ψb = 0.02 H1 H2 H3

performed. An additional simulation (Ca = 0.187 and ψb = 0.01, case L3) has been
performed to better understand the effects introduced by a surfactant. In particular,
this latter simulation neglects Marangoni stresses: surface tension is still free to change
along the interface, but surface tension gradients do not generate Marangoni stresses.
This way, the importance of Marangoni stresses on the droplet deformation and on
the surfactant distribution can be sorted out. Marangoni stresses can be turned off by
removing the component tangential to the interface of the surface forces term in the
Navier-Stokes equation:

3√
8

Ch

We
∇ · [τ cfσ(ψ)] =

3√
8

Ch

We


∇ · τ cfσ︸ ︷︷ ︸

Normal

+ τ c∇fσ︸ ︷︷ ︸
Tangential


 . (4.1)

4.2 Droplet deformation parameter

The deformation of a droplet is defined as a function of its major and minor axes in
the velocity-velocity gradient plane. Fig. 4.2 reports a sketch of a deformed droplet,
showing the three axes a (major axis of deformation), b (minor axis of deformation)
and c (third axis, normal to velocity-velocity gradient plane). The Taylor deformation
parameter is defined as:

D =
a− b

a+ b
. (4.2)

Taylor deformation parameter thus considers only two axes of the droplet, a and b;
this deformation parameter can be easily computed also from experimental data, as it
requires only the measurement of two axes. In the limit of validity of Taylor analytic
formula (limited inertial effects and small droplet deformation), the droplet never
undergoes breakage and it always attains a steady-state shape: surface tension forces
balance out the shear stresses. The capillary number, Ca, defines the competition of
these two factors: it is defined as the ratio of viscous over surface tension contributions.

Ca =
ηuw
σ0

d

2h
(4.3)

Indeed, Taylor formula computes the steady-state deformation of a droplet as a linear
function of this dimensionless number. Taylor deformation for fluids having the same
viscosity is:

D =
35

32
Ca . (4.4)
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Figure 4.3 – Panel (a): time evolution of the deformation parameter D for the different cases.
The droplet is initially spherical (circular in 2D simulations) and thus D = 0. Then, the shear flow
starts to deform the droplet until a new steady-state shape is achieved. Increasing the capillary
number, Ca, the droplet deformation increases and a longer time is required to reach the final
configuration. Panel (b): time evolution of the major, a, and minor, b, axes normalized by the
initial droplet diameter, d0. In both panels the different colors identify the various capillary
numbers: Ca = 0.062 (black), Ca = 0.125 (blue) and Ca = 0.187 (red), while different line styles
distinguish 2D (dashed lines) from 3D (solid lines) cases. Time, t, is made dimensionless using the
shear rate, uw/h.

results obtained for 2D cases, while solid lines identify those obtained for 3D cases.
At the beginning of the simulation the droplet is spherical (circular for 2D cases),
therefore D = 0 (a = b). Then the imposed shear stresses (the two moving walls
generate a Couette-like flow) start to deform the droplet until a steady-state shape
is reached at the end of the transient. The time required to attain the steady-state
deformation increases with the capillary number: more deformable droplets (higher
Ca) require a longer transient before the steady-state shape is reached. In the limit
of small deformation (low Ca), 2D and 3D deformation parameters well match each
other for each capillary number. Even though 2D and 3D droplets have matching
deformation parameters for the entire time span of the simulation, cylindrical and
spherical droplets do deform in a different way. In particular, Fig. 4.3(b) shows the
time evolution of the major and minor axes of deformation, a and b, normalized by
the initial droplet diameter, d0. For increasing capillary numbers the two axes of
deformation start to differentiate between 2D and 3D cases: this difference becomes
clear at the highest capillary number tested, Ca = 0.187. In particular, the major axis
of 3D droplets elongates more than its 2D counterpart, generating a more elongated
droplet (see Fig. 4.4). On the other hand, 3D droplets undergo a lower compression
along the minor axis of deformation, b with respect to the 2D cases. Thus, for 3D
droplets the longer major axis is balanced by a longer minor axis, thus resulting in
an overall similar deformation parameter between 2D and 3D cases in the limit of low
capillary numbers. As the capillary number is increased (see the case at Ca = 0.187),
it can be noticed that the major axis of deformation for 3D droplets elongates much
more than its 2D counterpart, while the minor axis has a similar length in both cases.
This difference results then in an increased deformation for 3D droplets for increasing
capillary numbers. This feature can also be appreciated in Fig. 4.4, in which the
steady-state droplet shape is compared for different capillary numbers and problem
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Figure 4.4 – Comparison of the steady-shape of the droplet obtained from 2D simulations (dashed
lines) and 3D simulations (solid lines) on a x − z plane located at y = Ly/2. Different colors
distinguish the various capillary numbers: Ca = 0.062 (black), Ca = 0.125 (blue) and Ca = 0.187
(red). The 3D cases experience a higher deformation with respect to their 2D counterpart. Indeed
the shrinkage of the third axes c largely contributes to droplet deformation. This difference is more
pronounced for the larger capillary number considered, Ca = 0.187.

dimensionality. At the lower capillary numbers (Ca = 0.062 and Ca = 0.125) the cross
sections of the deformed droplets fall on top of each other; however, at the highest Ca
the 3D droplet major axis elongates more with respect to the 2D case, but the minor
axes are almost of the same length. This results in a higher deformation parameter at
high capillary numbers for 3D droplets.

The numerical results presented so far have also been compared with previous works.
In particular the steady-state value of the deformation parameter, D, has been com-
pared with Taylor analytic formula [154] (including Shapira and Haber corrections
[139]), numerical results by Zhou and Pozrikidis [187] (2D Boundary Integral Method),
Li et al. [95] (3D simulations) and Komrakova et al. [81] (3D simulations) and exper-
imental results by Guido and Villone [56]. Results from the presented simulations are
reported with empty red squares for 2D simulations and empty red diamonds for 3D
simulations. A good agreement can be observed among all these works, see Fig. 4.5.
In particular, the presented results are in excellent agreement with other numerical
results [81, 95, 187] and with the predictions of Taylor analytic formula [139, 154].
A good agreement is also observed with the experimental results from Guido and
Villone [56]; the difference observed can be attributed to the small viscosity contrast
among the two fluids (in the experiments a slightly more viscous fluid was used for
the droplet), which reduces the droplet final deformation. From Fig. 4.5 it can be
observed how 2D and 3D steady-state droplet deformations start to deviate for in-
creasing capillary numbers: the deformation of 3D droplets is slightly larger at the
highest capillary number tested. This behavior is in agreement with previous findings
of Afkhami et al. [1], who performed an extensive comparison of 2D and 3D droplet
deformation, showing that a good agreement between 2D and 3D simulations is found
only at low capillary numbers.
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Figure 4.5 – Steady-state value of the droplet parameter deformation as a function of the capillary
number, Ca. The results obtained from our simulations are reported with empty red squares (2D
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4.3.2 Time evolution of the droplet principal axes

To better understand the origin of the agreement between 2D and 3D droplet defor-
mation at low capillary numbers and of the subsequent divergence at larger capillary
numbers, the time evolution of the three principal axes is investigated in this section.
This is an important issue, as Taylor analytic formula, which is derived for 3D droplets,
is often used as a validation tools of 2D simulations; it is thus important to assess the
limit of validity of this formula when comparing it to 2D simulations. In addition,
a more detailed study on the deformation of each axis will allow to obtain further
insights on the differences observed between 2D and 3D cases and on their agreement
at low capillary numbers.

Taylor analytic formula is obtained with the hypothesis that the deformed droplet is
a prolate spheroid (a > b = c). On the contrary, the numerical simulations performed
show that 2D droplets cannot deform in the y direction (c axis), while 3D droplets are
not constrained to be a prolate spheroid. This latter observation was also confirmed by
the experiments of Guido and Villone [56]. The length of the three principal axes of the
droplet is reported in Fig. 4.6 over time. The major axis of deformation, a, is reported
with solid lines, the minor axis of deformation, b, with dashed lines and the third
axis, c, with dotted lines. The different colors refer to the three capillary numbers
tested. At the beginning of the simulation the major axis, a, starts to elongate,
while the minor axis, b, starts to shrink. In the initial part of the simulation the c
axis does not change. When the major and minor axes of deformation have reached
almost their steady-state length, the third axis starts shrinking. Shrinkage/elongation
magnitude increases with the capillary number: as surface tension forces becomes
weaker with respect to viscous forces, the droplet becomes more deformed. With the
prolate spheroid assumption leading to Taylor formula, axes b and c are constrained to
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Figure 4.7 – Instantaneous spanwise velocity in a y′-z′ plane (see also Fig. 4.2 for details on the
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be equal. With this assumption, the integral of surface forces over the droplet interface
is higher (on average the curvature is higher) and, thus, a stronger shear rate is needed
to achieve the same steady-state deformation of an unconstrained droplet (axes a, b
and c can vary independently). Hence, Taylor analytic formula underestimates the
droplet deformation; this feature is even clearer at high capillary numbers.
The shrinkage of the third axis is a crucial parameter in determining the deformation
of 2D and 3D droplets. For the 2D case no out-of-plane velocity can appear, thus
no shrinkage in the third axis direction occurs. Due to this constraint 2D (circular)
droplets undergo a lower deformation with respect to their 3D counterpart. Indeed,
the shrinkage of c axis enhances the droplet deformation for 3D cases; this finding is
confirmed in the experiments of Guido and Villone [56], who were able to measure
at the same time all the three principal axes in their experiments. The contribution
of the third axis to the overall droplet deformation can be qualitatively visualized in
Fig. 4.7: a clear feeding from the sides of the droplet towards the core region (for
further details on the auxiliary reference frame and the denomination of the various
parts of the droplet, please refer to Fig. 4.2) can be observed. These fluxes are a direct
consequence of the shrinkage of the third axis and enhance the deformation of the
droplet.
The results, thus, show that the third axis undergoes a limited shrinkage at low cap-
illary numbers, as found in experiments [56]. The low shrinkage of c limits its effect
on the deformation of the droplet; indeed a good agreement between 2D (no c shrink-
age) and 3D simulations (limited c shrinkage) is found at low capillary numbers. This
agreement can also be extended to experiments and Taylor analytic formula in the
limit of low capillary numbers. As the capillary number is increased, analytic predic-
tions and 2D simulation results start to deviate from experimental and numerical (3D
simulations) results.

4.4 Surfactant-laden droplets

This section is devoted to the analysis of the effects of surfactant on the droplet defor-
mation. In particular, when a surfactant is present at the interface, three additional
effects have to be considered: (i) surfactant reduces the average surface tension, (ii)
surfactant accumulates at the tips of the deformed droplet, further reducing the lo-
cal surface tension, Fig. 4.8(a), and (iii) the shear-induced inhomogeneous surfactant
distribution generates stresses tangential to the interface, Fig. 4.8(b). Each of these
effects contributes in a different way to the overall droplet deformation. In particular,
the first and second effects (lower average surface tension and surfactant accumula-
tion at the droplet tips, respectively) favor the droplet deformation. Conversely, the
third effect (inhomogeneous distribution of surfactant and, thus, of surface tension)
generates tangential (Marangoni) stresses that hinder the droplet deformation.
To investigate each of these effects and quantify their relative contribution to the
droplet deformation, two surfactant-laden simulation have been run for each capillary
number. The two series of simulations differ for the total amount of surfactant, set
via the surfactant bulk concentration; L-series (low surfactant loading) has ψb = 0.01,
while H-series (high surfactant loading) has ψb = 0.02. Two additional simulations (2D
and 3D, same parameters of case L3) have also been run neglecting the contribution
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Figure 4.8 – Panel (a) shows the surfactant distribution over the droplet interface. Due to the
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of Marangoni stresses; these cases will be used to better highlight the contribution of
Marangoni stresses on the overall deformation.

4.4.1 Droplet deformation

The presence of surfactant over the interface increases the steady-state deformation
of the droplets, as can be observed in Fig. 4.9(a)-(b). The deformation parameter
increases with the amount of surfactant present in the system: at low surfactant load-
ing, Fig. 4.9(a), the deformation of the droplet is slightly higher than that predicted
by Taylor formula, while at high surfactant loading, Fig. 4.9(b), the deformation pa-
rameter is consistently higher. In addition, while Taylor formula well predicts the
deformation parameter at the lower capillary numbers for the low surfactant loading
case, it underestimates the deformation parameter obtained at ψb = 0.02 for all the
capillary numbers tested.
With the aim of quantifying the contribution of each one of the three surfactant-
induced effects on the droplet deformation, the effective capillary number has been
considered. The capillary number, Ca, is defined here using the surface tension of
a clean interface (absence of surfactant, σ0); the effective capillary number, Cae, is
defined using the actual surface tension over the droplet interface. The average surface
tension, 〈σ〉, is calculated over the interface considering the reduction operated by the
surfactant.

Cae =
ηuw
〈σ〉

d

2h
(4.6)

This way, the result of the first surfactant-induced effect is highlighted: Cae considers
only the effect introduced by a lower average surface tension. The deformation pa-
rameter is reported as a function of the effective capillary number in Fig. 4.9(c)-(d) for
all the six surfactant-laden cases. When using the effective capillary number, a close
agreement with Taylor analytic formula is observed. Still, at high capillary numbers
Taylor formula under-predicts the results of the simulation; as already discussed ear-
lier, this is an effect introduced by the prolate spheroid hypothesis used to derive the
analytic solution. This result proves that, in the range of parameters investigated here,
the most important surfactant-induced effect is the average surface tension reduction,
which can be accounted for by using the effective capillary number, Cae.

4.4.2 Surfactant distribution

The latter two surfactant-induced effects, accumulation at the droplet tips and inho-
mogeneous surface tension over the interface, are now investigated. In particular, the
surfactant distribution over the droplet interface is quantified using the joint Prob-
ability Density Function (PDF) of the surfactant concentration at the interface and
of the mean curvature, κ. The mean curvature of the interface is calculated as the
semi-sum of the two principal curvatures, κ1 and κ2, and can be directly computed
from the phase field. For the 2D cases (circular droplet, cylindrical when extended to
3D), only the first principal curvature is defined, thus the second principal curvature is
set to k2 = 0. The mean curvature is defined as half of the divergence of the normal to
the interface, n, which, in the framework of the phase field method, can be computed
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Figure 4.9 – Steady-state value of the droplet parameter deformation as a function of the capillary
number, Ca, panels (a)-(b) and as a function of the effective capillary number, Cae, panels (c)-(d).
Panels (a)-(c) refer to the cases L1, L2 and L3, surfactant bulk concentration ψb = 0.01 while
panels (b)-(d) refer to the cases H1, H2 and H3, surfactant bulk concentration ψb = 0.02. Taylor
formula [154] is plotted with a black solid line.

from the phase field as [5, 148]:

n = − ∇φ
|∇φ| . (4.7)

The minus sign is needed to obtain the outward-pointing normal (φ = +1 in the
droplets and φ = −1 in the carrier fluid). The mean curvature, thus, is:

κ =
1

2
∇ · n = −1

2
∇ ·
( ∇φ
|∇φ|

)
. (4.8)

Fig. 4.10 shows the joint PDF for the L-series (low surfactant loading, ψb = 0.01);
results of 2D simulations are reported in the left column, while those of 3D simulations
in the right column. Each row corresponds to a different capillary number: Ca = 0.062
(top row), Ca = 0.125 (middle row) and Ca = 0.187 (bottom row). A red vertical
dashed line denotes the initial curvature, k0 = 2/d0 for the 2D cases and k0 = 4/d0
for the 3D cases, while a red horizontal dashed line identifies the initial (equilibrium)
surfactant concentration at the interface, ψ0. The effect of the capillary number on
the droplet mean curvature can be immediately noticed: for increasing Ca the droplet
deforms more, thus higher (at the tips) and lower (in the central region) curvature
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values of the mean curvature can be found. Conversely, the capillary number has a
limited effect on the surfactant concentration. Also the problem dimensionality has a
clear effect on the range of curvature values sampled: for circular droplets (2D) the
second principal curvature is always zero (cylindric surface), so the mean curvature
for 2D droplets is about half that of 3D droplets. The joint PDFs for 2D and 3D
cases show a common trend: high surfactant concentration well correlates with high-
curvature regions. However, even though the trend is similar, 2D and 3D simulations
exhibit a different behavior: 2D cases show a bimodal distribution, while 3D cases a
trimodal distribution.

The bimodal distribution observed on 2D surfactant-laden droplets originates from the
asymmetric distribution of surfactant with respect to the major axis of deformation,
a: the shear stresses sweep surfactant toward the back and the front of the droplet (see
Fig. 4.2 for the denomination of the regions of the droplet). Thus, regions with the
same curvature experience two different surfactant concentrations. As the capillary
number is increased, panels (c) and (e), the bimodal distribution becomes even clearer
and the two branches of the distribution part away. This particular distribution can
be appreciated also in Fig. 4.8(a): surfactant accumulates at the back (and front, not
shown) of the droplet, while the belly is depleted of surfactant (dark red). The left side
of the joint PDF corresponds indeed to the droplet belly: low surfactant concentration
in regions with a low mean curvature.

3D simulations are characterized by a trimodal distribution; the third branch corre-
sponds to the sides of the droplets, where the surfactant concentration is lower, but
the mean curvature is relatively high, see Fig. 4.8(a). The third branch become more
evident for higher capillary numbers, as the droplet undergoes a stronger deformation,
panels (d) and (f), and a wider range of curvature values is sampled.

The results from cases H1 to H3 (higher surfactant bulk concentration, ψb = 0.02) show
an analogous behavior, thus they have not been reported. The joint PDF confirms
the tendency of the surfactant to accumulate in high-curvature regions, which are
also stagnation points [147]. However, the resulting surfactant distribution is not
straightforward and it is affected by the local flow.

4.4.3 Effect of Marangoni stresses

Lastly, the importance of Marangoni stresses on the droplet deformation is investi-
gated. In the previous section the accumulation of surfactant near the tips of the
droplet (high curvature region) has been described; this inhomogeneous surfactant
distribution (and, consequently, surface tension distribution) generates Marangoni
stresses. The effects of the average surface tension reduction and of the higher de-
formability at the droplet tips (due to surfactant accumulation) have been quantified,
showing how they increase the overall droplet deformation. Marangoni stresses, how-
ever, hinder droplet deformation: they are tangential to the interface and they follow
the surface tension gradient, from low surface tension regions (high surfactant concen-
tration) towards high surface tension regions (low surfactant concentration). Thus,
these tangential stresses, reported as black arrows in Fig. 4.8(b), are directed from
the tips to the belly of the droplet. Case L3 (2D and 3D) has been recomputed ne-
glecting Marangoni stresses (see Eq. (4.1)) and the resulting steady-state deformation
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Table 4.2 – Droplet deformation parameter, D, for the simulation L3 (Ca = 0.187) with and
without Marangoni stresses. First column, results obtained from 2D simulations; second column,
results obtained from 3D simulations. It can be noticed that the role played by Marangoni stresses
on the overall droplet deformation is marginal.

2D Simulations 3D Simulations
With Marangoni term 0.235 0.244

Without Marangoni term 0.237 0.246

parameter has ben calculated and reported in Tab. 4.2. The results indicate that
the contribution of Marangoni stresses is almost negligible, with a difference in the
deformation parameter lower than 1% for both 2D and 3D droplets.

4.5 Conclusions

In this chapter the effect of the problem dimensionality (2D vs 3D) on the deformation
of a droplet in laminar shear flow has been investigated for both clean and surfactant-
laden droplets. First, the range of validity of Taylor formula for the steady-state
deformation of a droplet has been tested and its predictions have been compared to
numerical results from 2D (circular droplets) and 3D (spherical droplets) simulations.
It was found that at low capillary numbers the droplet deformation predicted by Taylor
formula well agrees with the numerical results. In particular, in the limit of small defor-
mations, the deformation of circular and spherical droplets matches, thus lightweight
2D simulations can be used as a benchmark instead of more computationally-expensive
3D simulations. However, at the larger capillary number tested here, Ca = 0.187, the
different problem dimensionality becomes important: the shrinkage of the third axis
of the droplet plays an important role in the droplet deformation, leading to different
results between 2D and 3D cases. Also Taylor analytic formula starts to under-predict
experimental and numerical results at a similar capillary number: this formula was
obtained with the hypothesis that the deformed droplet is a prolate spheroid, with the
two minor axes of the same length. This hypothesis is not verified by numerical and
experimental data.
In the second part of the chapter, the effect of a soluble surfactant has been in-
vestigated. For the range of parameters tested here, the main contributions of the
surfactant to the droplet deformation are linked to the average surface tension reduc-
tion and to the accumulation of surfactant at the tips of the droplet: Taylor formula
well predicts the deformation of a surfactant-laden droplet when the effective capillary
number, Cae, is used (in the limit of small deformations). Conversely, Marangoni
stresses hinder the droplet deformation; their effect however, for the range of parame-
ters tested, is almost negligible. These results prove that Taylor formula can be used
to predict the steady-state deformation of surfactant-laden droplets in the limit of
small deformations; clearly, increasing the strength of the surfactant (e.g. increasing
its elasticity number) or the total amount of surfactant (e.g. the surfactant bulk con-
centration) enhances the surface tension reduction, thus reducing the range of validity
of Taylor formula for surfactant-laden droplets.
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The main effect of a dissolved surfactant is reducing surface tension with respect to a
clean (without surfactant) interface. Without any external forcing or perturbation, the
surfactant will homogeneously cover the entire interface available; in this case a uni-
form surface tension reduction will be observed. However, in most cases of interest the
flow field strongly interacts with the interface, deforming it and advecting surfactant
over it. When the surfactant concentration is perturbed from its uniform distribu-
tion over the interface, mainly two factors act to restore the homogenous distribution,
namely Marangoni stresses and surfactant diffusion. The latter factor, diffusion, is
generated by the entropy term in the surfactant chemical potential, Eq. (2.15), while
the former one, Marangoni stresses, originates from the local surface tension reduc-
tion operated by the surfactant. This surface tension reduction is determined by the
surfactant strength (the elasticity number, βs) and by the local surfactant concen-
tration. This effect is modelled here using the modified Langmuir equation of state,
Eq. (2.26), which also accounts for the surfactant saturation observed in experiments
[21, 71, 100, 149]. With the selected equation of state, the surface tension reduction
depends on two parameters, a global one (elasticity number) and a local one (sur-
factant concentration). Thus, a non-homogeneous surfactant concentration generates
a variable surface tension and, in turn, surface tension gradients over the interface.
Such surface tension gradients produce stresses tangential to the interface, which are
called Marangoni stresses. This stresses are directed as the surface tension gradient
(thus opposite to the surfactant concentration gradient), from regions characterized
by a lower surface tension (high surfactant concentration) to regions characterized by
a higher surface tension (low surfactant concentration). As Marangoni stresses orig-
inate only from surface tension gradients, local modifications of the surface tension
are needed for these stresses to manifest; thus, the need for a local change in surface
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Figure 5.1 – Simulation setup used to analyze the effects of a dissolved surfactant on binary
droplets interactions. Two circular droplets, d = 0.7, are placed at yc = π ∓ 0.5 and zc = ±0.25
(coordinates of the droplets center of mass at the beginning of the simulation). The offset in the
streamwise direction is ∆y = 1, while in the wall-normal direction is ∆z = 0.5. The two walls
move in opposite directions, generating a laminar shear flow in the channel, v(z).

tension, for instance through the addition of surfactant, as in this work, or with a
temperature-dependent surface tension.

In the following, the collision of two droplets will be simulated to illustrate the impor-
tance of surfactant (and Marangoni stresses) in preventing, or at least delaying, coa-
lescence. The surfactant dynamics (average surface tension reduction and Marangoni
stresses) will be presented and their effect on the droplets interaction will be explained.

5.1 Simulation setup

The setup adopted for this test case is reported in Fig. 5.1: two droplets, d = 0.7,
are brought into collision in a two-dimensional closed channel bounded by two walls
at z = ±1. The two solid walls move in opposite directions: the top wall moves
with velocity vw = +1, while the bottom wall moves with velocity vw = −1. At the
beginning of the simulation a linear velocity profile, v(z), is initialized in the channel;
the Reynolds number, calculated using the wall velocity as the reference velocity scale,
is Re = 0.5. Due to the different local velocity experienced, the two droplets will start
approaching: droplet A will move towards positive y direction, while droplet B will
move towards negative y direction.

The channel, with dimensions Ly×Lz = 2π×2, is discretized with Ny×Nz = 512×513
grid points. To properly resolve the interfacial layer a Cahn number Ch = 0.02
was selected for the present configuration. The phase field Péclet number was set
according to the scaling Peφ = 3/Ch = 150 [108, 183]. The capillary number was
set to Ca = 0.1. The capillary is calculated according to Eq. (2.128). The Péclet
number for the surfactant was set to Peψ = 100; the other surfactant parameters were
set to Pi = 1.35 and Ex = 0.117 [47]. The elasticity number, βs, and the surfactant
bulk concentration, ψb, are the two free parameters used to control and investigate
the surfactant-induced effects; the former determines the strength of the surfactant
(efficacy in reducing surface tension), while the latter quantifies the total amount of
surfactant available at the interface.
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Figure 5.2 – Map of the droplet-droplet interaction outcome. A filled dot identifies a coalescence
event, while an empty dot identifies a non-coalescence event. The clean case has also been reported
for reference (blue filled marker); this case corresponds to complete absence of surfactant (ψb = 0)
or to zero-strength surfactant (βs = 0). The cases that will be used in the following have been
labelled for reference: Clean, A, B, C, D.

At the beginning of the simulation two circular droplets with diameter d = 0.7 are
initialized at yc = π ∓ 0.5, zc = ±0.25 (mass center coordinates). Thus the offset
between the droplets is ∆y = 1, ∆z = 0.5. The phase field and surfactant concentra-
tion are initialized with their respective equilibrium profiles, Eq. (2.11) for the phase
field and Eq. (2.23) for the surfactant concentration. The droplets are characterized
by φ = +1, while the carrier flow by φ = −1. The initial flow field is a laminar shear
flow for the streamwise component, v(z) = z. The wall-normal velocity component is
initialized to zero.

5.2 Outcome of binary droplets interactions

The outcome of the droplet-droplet interactions has been reported as a function of the
surfactant strength, characterized with the elasticity number, and of the surfactant
bulk concentration. The outcomes from all the simulations, reported in Fig. 5.2, allow
to map coalescence (filled markers) and non-coalescence (empty markers) regions as
a function of the surfactant parameters. It is clear that either a stronger surfactant
(higher βs), either a larger surfactant concentration (higher ψb) decreases the likelihood
of a coalescence event. As can be seen from the outcome map, only the weakest
surfactant, βs = 0.125, is not able to prevent coalescence for any of the surfactant bulk
concentrations tested here. Increasing the surfactant strength, βs = 0.25, coalescence
can be prevented for high surfactant bulk concentrations, ψb > 7.5 × 10−3. Further
increasing the surfactant strength reduces the minimum surfactant bulk concentration
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needed to prevent coalescence: for 0.375 ≤ βs ≤ 0.675 coalescence is prevented for any
surfactant bulk concentration above ψb = 2.5 × 10−3 and for 0.75 ≤ βs ≤ 1.00 this
value decreases to ψb = 1.25× 10−3.
The map of the interaction outcomes, Fig. 5.2, shows that an increase in either the total
amount of surfactant (determined by the surfactant bulk concentration), either the
surfactant strength (set through the elasticity number) favors a non-coalescence event.
This result implies that the deformability of the interface is a key factor in determining
the outcome of the interaction: a more deformable interface (lower average surface
tension, determined by stronger surfactant effects) favors non-coalescence events. In
the following section a detailed description of the droplets interaction will be given,
particularly focusing on the mechanisms that prevent coalescence.

5.3 Interaction dynamics

The time evolution of two cases is reported in Fig. 5.3 and Fig. 5.4. Cases A and C
have been chosen to display two different outcomes: a coalescence (case A) and a non-
coalescence (case C). Case A is characterized by a lower amount of surfactant (lower
ψb) and by a weaker surfactant (lower βs). The strain rate Sx = (∂v/∂z + ∂w/∂y)/2
is reported in Fig. 5.3, while the local surfactant concentration over the interface is
reported in Fig. 5.4. The surfactant concentration is reported only at the interface
(φ = 0) to better highlight its dynamics; surfactant concentration in the bulk of the
phases is not reported as it is constant and equal to the surfactant bulk concentration.
Three different stages of the interaction process are reported: approaching, gap drain-
ing and final stage. At time t = 1.0 (approaching stage) the droplets are carried by
the imposed shear flow and move towards the channel centre, Fig. 5.3(a)-(b). During
this initial stage droplets are deformed by the shear flow and start to flatten due to the
presence of the other droplet; surfactant accumulates at the droplets tips, Fig. 5.4(a)-
(b). Later on, the draining stage starts: the liquid film that separates the droplets
is squeezed by the approaching interfaces and starts draining. This stage determines
the final outcome of the interaction: if the liquid film drains completely the attractive
short-range van der Waals forces make the interface merge [24, 30, 33, 57, 93, 176, 180]
and, thus, the droplets coalesce. Conversely, if the liquid film does not drain com-
pletely, the droplets slide one over the other, avoiding coalescence. The draining of
the liquid film can be appreciated from Fig. 5.3(c)-(d): high strain rate regions high-
light the carrier liquid being squeezed out from the gap between the approaching
interfaces. The draining of the gap also transports surfactant along the interface: the
surfactant is shifted out of the gap region, Fig. 5.4(c)-(d)-(e)-(f). Up to t = 2.0 there
is no appreciable difference between the cases; at about t = 3.0 a clear difference
between the strain rate distributions of the two cases can be observed. Starting from
t ≃ 3.0 the two cases strongly differentiate: droplets will coalesce in case A, while
they will slide over each other without merging for case C. The latter stages of the
gap draining phase are reported in Fig. 5.3(e)-(f). The negative peak in the strain
rate, dark blue region in Fig. 5.3(e), anticipates the coalescence outcome: the lower
pressure in this area draws the interfaces closer until they merge. This effect is not
seen for case C, where the gap is still draining (but at a lower rate with respect to case
A, lower magnitude of the strain rate), Fig. 5.3(f). The same coalescence mechanism
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Figure 5.3 – Time evolution of the droplets interaction. Time increases from top to bottom:
t = 1.0 (first row), t = 2.0 (second row), t = 3.0 (third row) and t = 4.0 (fourth row). The left
column, panels (a)-(c)-(e)-(g), refers to the case labelled as A (βs = 0.5 and ψb = 2.5 × 10−3),
while the right column, panels (b)-(d)-(f)-(h), refers to case C (βs = 1.0 and ψb = 5.0 × 10−3).
Two different outcomes are observed: a coalescence for case A and a non-coalescence for case C.
The interface, φ = 0, is marked with a white solid line; the colormap shows the local value of the
strain rate Sx = (∂v/∂z + ∂w/∂y)/2.
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Figure 5.4 – Time evolution of the surfactant concentration over the droplets interface, φ = 0,
during the interaction. Time increases from top to bottom: t = 1.0 (first row), t = 2.0 (second
row), t = 3.0 (third row) and t = 4.0 (fourth row). The left column, panels (a)-(c)-(e)-(g), refers
to the case labelled as A (βs = 0.5 and ψb = 2.5 × 10−3), while the right column, panels (b)-
(d)-(f)-(h), refers to case C (βs = 1.0 and ψb = 5.0 × 10−3). Case A is characterized by a lower
amount of surfactant (lower ψb) and by a weaker surfactant (lower βs) with respect to case C.
Surfactant accumulates at the droplets tips for both cases; after the coalescence (case A), surface
tension forces reshape the droplet and surfactant redistributes over the interface
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is observed in experimental works [55]: droplets coalesce once they slide over each
other and start to part away. Indeed, the lower pressure region that forms in the gap
draws the interfaces together, leading to a coalescence event. Cases A and C differ for
the relative strength of surfactant effects: in case A a weaker surfactant is employed
and the total amount of surfactant is lower. Thus, on average surface tension will be
lower and surface tension gradients will be higher for case C. These two effects prevent
the two droplets from coalescing. The increased interface deformability helps in main-
taining a thicker liquid film between the interfaces, so that the droplets can slide one
over the other, while the higher surface tension gradients result in stronger Marangoni
stresses. The draining of the liquid film generates a surface tension gradient along
the interface: the gap region is depleted of surfactant (high surface tension), which
accumulates outside the gap. This distribution generates a surface tension gradient
directed inward the gap and, in turn, Marangoni stresses. These tangential stresses
oppose the draining of the liquid film, thus allowing for a longer droplet-droplet inter-
action. Indeed, surfactant can drastically affect the interaction outcome by changing
the draining rate of the liquid film through an increased interfacial deformability and
Marangoni stresses [30]. In the following these two effects will be investigated and
quantified separately in two distinct sections.
Lastly, the final stage shows the outcome of the interaction: for case C the droplets
part away and are transported by the flow, Fig. 5.3(h) and Fig. 5.4(h). For case A,
after the droplets coalesced, the newly formed droplet reshapes, Fig. 5.3(g), and the
surfactant redistributes over the interface, Fig. 5.4(g). After an initial transient, this
droplet will reach a steady state deformation with peaks of surfactant concentration
at the droplet tips (not shown here).

5.3.1 Effect of interface deformability

In this section the effect of interface deformability on the outcome of binary droplets
interaction is investigated. The deformation parameter, D, has been computed over
time for the droplets; since the two droplets deform in the same way, only the defor-
mation parameter of one of them is reported. The deformation parameter is defined
as:

D =
L−B

L+B
, (5.1)

where L and B are respectively the major and minor axes of the droplet, see Fig. 2.10
for reference. The deformation parameter quantifies the macroscopic effect of sur-
factant: a lower surface tension increases the deformability of the interface, thus in-
creasing the drop deformation. The increased droplet deformability plays a key role
in determining whether the droplets will coalesce. The time evolution of the defor-
mation parameter for four surfactant-laden cases (A, B, C and D) and for the clean
case (Clean) is reported in Fig. 5.5(a); the five small panels on the top report a qual-
itative snapshot of the instantaneous system configuration at the marked time for a
non-coalescing case. In cases Clean and A, the droplets coalesce after the interaction;
once the droplets coalesced (filled dot) the deformation parameter is not anymore
computed.
In the initial stage, t < 1.5, all the cases evolve in a similar way: the initially circular
droplets, D = 0, start to deform and their deformation parameter increases. The value
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Figure 5.5 – Droplet deformation parameter, D, during the interaction; as the droplets evolve in
the same way, the deformation parameter of only one droplet is reported. A filled dot identifies a
coalescence event; after the coalescence the deformation parameter is not anymore computed. In
panel (a) results for different surfactant bulk concentrations and elasticity numbers at capillary
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(same effective capillary, Cae of the surfactant-laden case D). The top panels show a qualitative
snapshot of the system configuration for a non-coalescing couple at the marked time instant.
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of the deformation parameter is different among the various cases: a lower surface
tension (originated by stronger surfactant effects) leads to a higher deformation. At
t = t1 the droplets are close enough and start to interact; at this time the deformation
parameter reaches its maximum value. From the snapshot on top, the liquid film
dividing the droplets can be already identified. After t = t1 the droplet deformation
reduces until a minimum value is reached at t = t3; this reduction in the deformation
is due to the presence of the other droplet, which limits the deformation. Again, the
value of the deformation parameter is determined by the average surface tension over
the droplet interface: the Clean case (highest surface tension) is characterized by the
smallest value, while case D by the highest value. Indeed, increasing the elasticity
number or the surfactant bulk concentration reduces the average surface tension. The
interaction stage, t1 ≤ t ≤ t3, is crucial in determining the outcome of the interaction:
a higher deformation reduces the draining rate of the liquid film between the droplets,
thus prolonging the duration of the interaction before the eventual coalescence. For
cases B, C and D the time required for the complete draining of the liquid film is longer
than the interaction time, thus coalescence is avoided. For the Clean and A cases, the
draining time is lower than the interaction time and the droplets coalesce, filled circle
in Fig. 5.5(a). After t = t3 the droplets separate and the deformation parameter
increases until a new maximum value is reached at t ≃ t5; then, the deformation
decreases and reaches a steady-state value for t > 5 (not shown here).

The results presented suggest that the deformability of the interface is a key factor
in determining the outcome of the interaction. To further prove this observation an
additional simulation of a clean system is performed. In this latter cases a higher
capillary number is used: the capillary number chosen gives the same steady-state
droplet deformation of case D. Indeed, given the steady-state deformation for case
D, an equivalent capillary number for the clean case is calculated inverting Taylor
formula, Eq. (2.131). This equivalent capillary number, which accounts for a lower
averaged surface tension, is equal to Ca = 0.12 for a clean droplet which reaches the
same steady-state deformation of a surfactant-laden droplet with ψb = 1.0× 10−2 and
βs = 1.0. The time deformation of this latter case is reported in Fig. 5.5(b), together
with that of cases D and Clean at Ca = 0.1. It can be immediately noticed that the
higher capillary number (higher droplet deformability) prevents the two droplets from
coalescing: a similar behavior is observed for cases D and Clean at Ca = 0.12. A small
delay between the two deformations over time appears; this delay may be traced back
to the action of tangential stresses along the interface.

The time evolution of the deformation parameter is also in good agreement with pre-
vious experimental [55] and numerical [9, 141, 176] studies. Limited differences can be
observed during the initial approaching stage, as here a lower offset in the streamwise
direction was adopted, thus droplets start to interact earlier. This difference does
not affect the interaction and separation phases, which are similar to previous works.
This agreement with experiments and numerical studies proves the capabilities of the
proposed method in accurately reproducing the dynamics of droplet interaction.

In this section it was proven that the interface deformability alone can prevent droplets
coalescence; the increased deformability of the interface increases the time required for
a complete draining of the liquid film between the droplets. In the next section it will
be shown that the effect of surfactant is more complex than just an average surface
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Figure 5.6 – Detail of the interface position for case B at t = 2.5, panel (a), and at t = 3.0, panel
(b). Case B has been recomputed neglecting Marangoni stresses. The interface position for these
two cases is reported in black for the complete model and in red for the case without tangential
stresses. When tangential (Marangoni) stresses are neglected the draining of the liquid film is
faster and the two droplets are closer (coalescence is favored).

tension reduction, which can indeed be achieved with a higher capillary number.

5.3.2 Effect of tangential stresses at the interface

The surface force term can be split in two contributions as shown in Eq. (5.2): a
contribution normal to the interface, capillary stresses, and a contribution tangential
to the interface, Marangoni stresses. A detailed explanation of the various quantities
is reported in Sect. 2.2 and Sect. 2.3.

3√
8

Ch

We
∇ · [τ cfσ(ψ)] =

3√
8

Ch

We


 fσ(ψ)∇ · τ c︸ ︷︷ ︸
Capillary stresses

+ ∇fσ(ψ) · τ c︸ ︷︷ ︸
Marangoni stresses


 (5.2)

The contribution normal to the interface is common between surfactant-laden and
clean cases (for the latter case fσ is equal to 1); conversely, tangential stresses are
peculiar of surfactant-laden cases. In this section the importance of these tangen-
tial stresses (also called Marangoni stresses) is quantified: case B (ψb = 5.0 × 10−3,
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βs = 0.50) has been recomputed neglecting Marangoni stresses. This case was selected
as small variations in the surfactant properties change the outcome of the interaction:
a reduction in the elasticity number or in the total amount of surfactant shifts the
outcome of the interaction from the non-coalescence to the coalescence region. When
neglecting tangential stresses only part of the surfactant effect is deactivated: surface
tension still depends on the local surfactant concentration but surface tension gradi-
ents, even though are present, do not generate Marangoni stresses. Thus, this case is
different from a clean system with a lower, uniform surface tension.

The interaction outcome for case B is a non-coalescence; however, when neglect-
ing Marangoni stresses the droplets coalesce. This preliminary result suggests that
Marangoni stresses are an additional factor playing an important role in coalescence
prevention, together with the interface deformability. A detail of the interface position
in the interaction area (marked by the black box in the qualitative view on the right)
is reported in Fig. 5.6 at two different times. A black line is used for case B (complete
model), while a red line for case B recomputed without Marangoni stresses. It can be
noticed that the interfaces are closer when tangential stresses are neglected; this effect
is already visible at t = 2.5 and becomes clear later, at t = 3.0. This difference in the
interfacial position is an explicit indication of the higher draining rate occurring when
tangential stresses are neglected. To quantify the different draining rate between the
two cases, the strain rate Sx in the liquid film has been reported in Fig. 5.7. The
draining of the liquid film between the two approaching interfaces shifts surfactant
outside the gap region; the surfactant concentration along the interface is reported
with a grayscale colormap. A gradient of surfactant, generated by the draining of the
liquid film, can be observed: the interaction area (point B) is depleted of surfactant,
while outside of the gap surfactant concentration is higher (point A). This distribu-
tion of surfactant generates a surface tension gradient, which is directed along the
interface from point A (high surfactant concentration – low surface tension) to point
B (low surfactant concentration – high surface tension). Marangoni stresses, which
are directed as the surface tension gradient, thus oppose the draining of the liquid
film. This effect is highlighted by the stress distribution in Fig. 5.7: when tangential
stresses are considered, panel (a), stresses are lower, with a value closer to the mean
strain rate generated by the shear flow, Sx = 0.5. Conversely, when tangential stresses
are neglected, panel (b), the magnitude of the strain rate is higher (dark blue regions
corresponding to Sx ≤ −1 and dark red regions corresponding to Sx ≥ +1). The
stronger strain rate indicates a higher draining rate, which is not opposed by tangen-
tial stresses; due to the higher draining rate the time for the complete depletion of the
liquid film reduces, increasing the likelihood of a coalescence event.

The results presented so far indicate that the time required for the complete draining
of the liquid film is crucial in determining the outcome of the interaction. In partic-
ular, two main mechanisms affecting the draining time have been identified: (i) the
interfacial deformability and (ii) the presence of tangential stresses along the interface.
The first mechanism derives from a lower average surface tension (higher effective cap-
illary or Weber number) and it is present in both clean and surfactant-laden systems:
more deformable interfaces reduce the draining rate of the liquid film. The latter one,
however, is peculiar of surfactant-laden systems: the presence of a surfactant gradient
and, in turn, of Marangoni stresses directly hinders the outflow from the gap region,
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Figure 5.7 – Strain rate Sx distribution for case B, with Marangoni stresses, panel (a), and
without Marangoni stresses, panel (b). The surfactant concentration at the interface (contour line
φ = 0) is also reported. Tangential stresses hamper the draining of the liquid film and suppress the
formation of high strain rate magnitude regions. When these stresses are neglected, the draining
process is faster: regions of high strain rate magnitude are observed (panel (b), dark red and dark
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thus reducing the draining rate. These observations are in agreement with previous
experimental [30, 55, 93, 117, 169] and numerical [176] results for head-on and offset
droplets collisions.

5.4 Conclusions

In this chapter the effect of a dissolved surfactant on the outcome of binary droplets
interactions has been investigated and the main mechanisms preventing droplets coa-
lescence have been identified. In particular, it was proven that the interface deforma-
bility strongly affects the draining rate of the liquid film: a rigid interface enhances the
draining rate, while a more deformable interface is characterized by a higher drain-
ing time. This effect can be observed in both clean and surfactant-laden droplets:
a uniform, lower surface tension increases the interface deformability and helps in
preventing coalescence.
Conversely, the second mechanism, Marangoni stresses, is peculiar of surfactant-laden
systems, as it originates from a non-uniform surface tension over the interface. The
draining of the liquid film between the two interfaces generates a surfactant concen-
tration gradient, with the gap region depleted of surfactant; the consequent surface
tension gradient generates Marangoni stresses. These tangential stresses are directed
inside the gap, thus hampering the draining of the liquid film and consequently in-
creasing the draining time.
Finally, the presented results qualitatively agree with previous numerical and exper-
imental works, thus proving the capabilities of the numerical method in accurately
predicting and describing the interaction of binary droplets.
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In this chapter the dynamics of a large swarm of surfactant-laden droplets in turbulence
will be investigated. This problem is of high interest, as the accurate prediction of
momentum, heat and mass transfers through an interface is crucial in a wide range of
industrial and environmental applications and in nature [84, 119, 129]. Mathematical
models and empirical correlations, based on macroscopic observables, are often used to
estimate these transfer rates [36, 75, 80] and are usually tuned on experimental data to
improve the accuracy of their predictions. The development of numerical tools capable
of performing high-fidelity numerical simulations is thus highly desirable in order to
improve the accuracy of these models and correlations and to better understand the
physics underlying the dynamics of surfactant-laden droplets in turbulence.

The main focus of this chapter is to investigate the effects of a dissolved surfactant on
coalescence and breakage phenomena and on the resulting droplet size distribution.
The description of coalescence and breakage events is extremely challenging, as they
are characterized by a physics acting at many different scales: from the molecular
scale of the interface (order of nanometers), to the Kolmogorov scale and up to the
largest problem scales (order of meters). This wide range of scales, covering about
nine orders of magnitude, cannot be resolved, even with the help of modern super-
computing resources: currently, the range of scales that can be resolved covers three
to four orders of magnitude, from the large problem scale down to the smallest tur-
bulence scales. Indeed, the molecular-scale of the interface cannot be resolved and
has to be approximated on a much larger scale. Thus, the smaller scales involved in
topological modifications of the interface (i.e. coalescences and breakages in this work)
are smeared out on the smallest resolved scale. In the following paragraphs the dy-
namics of breakage and coalescence phenomena will be detailed, particularly focusing
on their multi-scale character. This description will be the starting ground to assess
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the reliability of the numerical description of topological changes of the interface.

From the physical viewpoint, a breakage event can be divided in several stages [114]:
(i) Thread formation, the shear stresses stretch the droplet and a ligament is formed;
(ii) Pinch-off, the thread elongates and capillary instabilities pinch-off the ligament
(neck formation); (iii) Thread breaking, the liquid thread breaks at the pinch-off and
the newly formed droplets separate. Upon separation, surface tension reshapes the
droplets and the threads are retracted. Overall, breakage is a very quick phenomenon
that can be well approximated without resolving the dynamics at the molecular scale;
there is evidence that the Navier-Stokes equations alone provide an adequate descrip-
tion of a breakage event [44]. In addition, the small time scale of a breakage limits the
impact of the approximation on the overall dynamics of the flow [60, 103, 104]. There-
fore, regardless of the methodology used, the description of breakages on turbulence-
resolved grids is considered to be rather accurate, although in the pinch-off region the
high curvature of the interface may not be perfectly resolved. Breakage events are
implicitly described in interface capturing methods [62, 69, 137], while interface track-
ing methods require suitable closure models to manage the connectivity of the marker
points [158, 159]. Fig. 6.1(a)-(d) shows the numerical simulation of a breakage event,
together with the computational grid and the length scale in wall units; panels (b)-(d)
report the different stages of the breakage. Although the grid resolution is sufficient
to resolve the Kolmogorov length scale of the turbulent flow (see Sect. 6.1), it is clear
from the time-sequence that the physical phenomena occur at length scales smaller
than the grid resolution. As discussed before, however, the breakage occurs on a very
short time scale, see Fig. 6.1(c)-(d), so that a rather good numerical representation of
this phenomenon is expected.

The dynamics of a coalescence event is more complex compared to that of a break-
age, it is influenced by phenomena occurring at very small length scales (order of the
molecular scale) and it occurs on larger time scales. From the physical viewpoint,
the coalescence process can be divided into the following stages [73]: (i) Approach,
the two droplets approach each other; (ii) Drainage, the thin liquid film between the
droplets starts to drain; (iii) Coalescence, small scale interactions lead to the rupture
of the thin liquid film and to the formation of a coalescence bridge; (iv) Reshaping,
surface tension forces reshape the droplet. Considering the small scales involved in
the film drainage and rupture, the description of a coalescence event in numerical
simulations is extremely challenging. In addition, the physical mechanisms driving
the film rupture are still being investigated [26, 125, 146], and a correct prediction
of the time required for the film rupture cannot be explicitly obtained [73]. There-
fore, a part of the physics involved in the coalescence process cannot be resolved or
included in the two-phase flow numerical simulations. Current numerical simulations
rely on different approaches to describe and/or model coalescence: closure models are
required in interface tracking methods [103, 104, 158], while coalescence is implicitly
handled in interface capturing methods, where two separate interfaces merge when
they are closer than the grid resolution [42, 130, 131]. The current literature stand-
point is that, regardless of the specific approach employed to describe coalescence,
numerical simulations fail to describe physical coalescence, with this inaccuracy re-
ferred to as numerical coalescence. For all interface capturing approaches, numerical
coalescence over-predicts physical coalescence, while numerical coalescence for the in-
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Nx × Ny × Nz = 2048 × 1024 × 1025) seems to suggest that it is possible to obtain
fairly consistent results only slightly influenced by the grid resolution. This fairly good
convergence of the results is achieved thanks also to the adoption of a proper scaling
between the mobility (Péclet number) and the thickness of the thin interfacial layer
[108, 182]. In particular, the coalescence and breakage rates are mildly influenced by
numerical coalescence: the rates obtained with the two grids differ by no more than
10%. In addition, the droplet size distributions computed on the two grids (coarse
and fine) almost overlap: the only appreciable difference is at small droplet equivalent
diameters (see Fig. 6.12), where the higher resolution of the finer grid allows to cap-
ture smaller droplets. The simulations here presented seem a fair approximation of the
two-phase flow system from the macroscopic point of view (e.g. dispersed phase mor-
phology, coalescence and breakage rates, surfactant distribution). However, it must
be underlined that a main shortcoming of these simulations – based on a continuum
description of the system – is that the molecular scales physics governing the film
drainage and rupture [73] cannot be simulated. Thus, these simulations cannot be
used to extract microscopic information on the film rupture and on the role played
by the surfactant molecules on such process. Clearly, the importance of including the
full physics (and the way in which it is modeled and included) cannot be estimated
a-priori on a quantitative basis, and this is still an important open research question.
In the following, first the simulation setup will be introduced (Sect. 6.1), then the dis-
tribution of surfactant over the interface of the droplets and the dispersed phase mor-
phology will be characterized in Sect. 6.2. In particular, the droplet size distribution
will be quantified and compared with previous theoretical scalings [51], experimental
observations [34] and numerical results [142].

6.1 Simulation setup

To investigate the dynamics of a swarm of surfactant-laden droplets a closed channel
configuration (no slip condition for the flow field at both walls) is adopted; the channel
has dimensions Lx × Ly × Lz = 4πh × 2πh × 2h, corresponding to L+

x × L+
y × L+

z =
3770×1885×600 wall units. In this chapter the wall units scaling system (denoted with
a + superscript) will be adopted; please refer to Appendix B for further details on this
scaling. The computational domain is discretized with Nx×Ny×Nz = 1024×512×513
grid points. The flow is driven by an imposed constant pressure gradient in the
streamwise (x) direction; all cases are performed at a constant shear Reynolds number,
Reτ = 300.
The Cahn number, setting the thickness of the interfacial layer, has been set according
to the grid resolution, Ch = 0.025. The phase field Péclet number has been set accord-
ing to the scaling Peφ = 1/Ch = 40 [108, 182], which guarantees the convergence to
the sharp interface limit for increasing grid resolution. Increasing the grid resolution
(and, thus, the computational cost) allows to reduce the value of the Cahn number
and, thus, smaller droplets can be described. However, the dynamics of the droplets
can be already captured with the selected grid resolution. Similarly, the penalty flux
parameter has been set according to the scaling proposed in Chap. 3: λ = 2.5 [96, 144].
Two different values of the Weber number have been investigated: We = 1.50 and
We = 3.00. These values are typical of water/oil mixtures [155].
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Figure 6.2 – Modified Langmuir EOS for all the elasticity numbers, βs, tested. The surface
tension reduction is stronger for higher elasticity numbers (stronger surfactants). According to ex-
perimental data, the minimum surface tension has been limited to fσ = 0.5 (thin dashed black line).
Indeed, experiments observed that surface tension never reduces below this threshold (roughly).

The Péclet number of the surfactant has been set to Peψ = 100; this value is rep-
resentative on nonionic and anionic surfactants in aqueous solutions [172]. The total
amount of surfactant is kept fixed in all cases, via the surfactant bulk concentration,
ψb = 0.01. The temperature-dependent parameter, Pi = 1.35, and the surfactant
solubility parameter, Ex = 0.117, have been chosen according to Engblom et al. [47].
The effect of these parameters has not been investigated here; it is expected that for
smaller values of Ex and/or higher values of Pi (stronger adsorption and diffusion,
respectively) surfactant is more uniformly distributed due to the enhanced diffusion.
Four different values of the elasticity number have been tested: βs = 0.50 (weaker
surfactant), βs = 1.00, βs = 2.00 and βs = 4.00 (stronger surfactant). The modified
Langmuir equation of state is reported in Fig. 6.2 for all the elasticity numbers tested.
In addition two clean cases (absence of surfactant) have also been performed. A total
of ten cases has been run: for each Weber number (We = 1.50 and We = 3.00) a
clean case and four surfactant-laden cases (βs = 0.50, 1.00, 2.00 and 4.00) have been
performed.

At the beginning of the simulation, a regular array of 256 spherical droplets with
diameter d = 0.4h (corresponding to d+ = 120 wall units) is initialized in a fully-
developed turbulent channel flow; this flow field is obtained from a preliminary DNS
of a single phase flow at Reτ = 300. The dispersed phase volume fraction is about 5.4%
of the total volume. The phase field and the surfactant concentration are initialized
with their respective equilibrium profiles: the phase field is constant in the bulk of the
phases (φ = +1 in the droplets and φ = −1 in the carrier fluid) and undergoes a smooth
transition across the thin interfacial layer. Similarly, the surfactant concentration is
uniform in the bulk of the two phases (ψ = ψb) and reaches its peak value at the
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interface (ψ = ψ0). At the beginning of the simulation, turbulent fluctuations of the
undisturbed flow field strongly perturb the phase field interfacial profile, leading to
a reduction of the mass of the dispersed phase. After this initial transient, during
which the flow field and the phase field couple together, the mass of each phase keeps
constant over time.
While the initial condition chosen for the phase field may seem unrealistic, as a swarm
of spherical droplets is suddenly appearing in a single phase flow field, it was proven
that the choice of the initial condition does not affect the steady-state results. Indeed,
different initial conditions, as for instance the injection of a liquid film at the channel
centre, were tested (not reported here): the same statistically steady-state results
(coalescence and breakage rates, number of droplets, droplet size distribution) were
obtained, indicating that memory of the initial condition is completely lost after an
initial transient. The chosen initial condition requires a slightly lower time to reach
a steady-state configuration; in addition, the very same initial condition was used in
previous works from our group [128, 134, 135]. Thus, to reduce the duration of the
transient and to better compare with previous works, the presented initial condition
(regular array of spherical droplets) has been chosen.

6.2 Results

The dynamics of the multiphase flow is first analyzed from a qualitative viewpoint,
visualizing the distribution and morphology of the dispersed phase and how the sur-
factant redistributes over the interface. The complex interplay among flow, surface
tension and surfactant, which are deeply intertwined, are then investigated. Stretch-
ing, breakage and merging of the interface of the droplets are indeed controlled by this
interplay, which will better illustrated in the following sections. Then, once laid a gen-
eral and qualitative picture of the phenomena involved, the qualitative observations
will be consolidated with more quantitative analyses. In particular, the surfactant
distribution over the interface will be characterized for the various cases (different
Weber and elasticity numbers). The analysis will then focus on the morphology of
the droplets: the evolution of the number of droplets over time will be investigated
and the breakage and coalescence rates will be calculated. The resulting droplet size
distribution is then computed and compared with the theoretical scaling proposed by
Garrett et al. [51].

6.2.1 Qualitative behavior of the multiphase flow

After the droplets are released in the channel (t+ = 0), each single droplet starts inter-
acting with the neighbouring droplets and with the turbulent flow field. During this
initial phase, the flow field, via the shear stresses, deforms the droplets and breakage
and coalescence events start to take place. At the same time the flow field and the
deformation (i.e. stretching, breaking and merging) of the interface redistribute the
surfactant over the interface. After this initial transient, memory of the initial condi-
tion (regular array of spherical droplets suddenly appearing in a single phase turbulent
flow) is completely lost, and the multiphase flow reaches a new statistically steady-
state configuration, shown in Fig. 6.3. This qualitative figure shows the instantaneous
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Figure 6.3 – Top view of the steady-state configuration (t+ = 3750) for six different cases. The
left column, panels (a)-(c)-(e), refers to We = 1.50, while the right column, panels (b)-(d)-(f ),
refers to We = 3.00. The first row, panels (a)-(b), refers to the clean cases, the middle row,
panels (c)-(d), refers to βs = 1.00 and the bottom row, panels (e)-(f ), refers to βs = 4.00. In
each panel, the interface of the droplets (iso-contour φ = 0) is colored in red (clean cases, top
row) or by the surfactant concentration (surfactant-laden cases, middle and bottom rows). In the
background, a x+ − y+ plane located at z+ = 0 (centre of the channel) shows the magnitude of
the velocity fluctuations, u′ · u′. The yellow box in panel (d) shows the sample droplet used in
figure 6.5.

position of the interface of the droplets (iso-contour φ = 0) at t+ = 3750 for six dif-
ferent cases; the left column refers to We = 1.50, the right column to We = 3.00,
while each row corresponds to a different surfactant strength (from top to bottom,
clean, βs = 1.00 and βs = 4.00). The interface is colored in red for the clean case (first
row), while, for the surfactant-laden cases (second and third rows), the surfactant con-
centration over the droplet interface is reported. The magnitude of the fluid velocity
fluctuations, u′ ·u′, is reported on the mid-plane (x+− y+ plane located at z+ = 0) of
the channel. Clearly, the Weber number and the elasticity number, both acting on the
surface tension, have a strong impact on the morphology of the dispersed phase: as the
surface tension decreases, the number of droplets increases and their size, on average,
consequently decreases. The lower surface tension weakens surface tension forces, thus
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favouring interface breakage and the chance of finding high curvature regions. The
surfactant concentration changes over the interface of the droplets; in particular larger
droplets exhibit a highly non-uniform distribution, while the surfactant concentration
on smaller droplets is more uniform. In addition, small regions exhibiting extreme
values of the surfactant concentrations (bright yellow/white regions) appear over the
droplet interface.

The flow field, represented with the magnitude of the velocity fluctuations at the
channel centre, shows minor modifications for different values of the Weber number or
of the elasticity number. These modifications can be mainly attributed to the different
local morphology of the dispersed phase (which originates from the values of We and
βs): as the surface tension decreases (higher We and/or βs), regions characterized by
high velocity fluctuations (darker area in the picture) are smaller and more fragmented.
This difference is better appreciated when comparing the two extreme cases, Fig. 6.3(a)
and Fig. 6.3(f ).

6.2.2 Shear stresses, Marangoni stresses and interface defor-

mation

As the flow field, the interface and the surfactant concentration are deeply intertwined
and they influence each other through complex mechanisms, it is worth to qualitatively
introduce these mechanisms and their effects, before starting a more quantitative anal-
ysis of the results. A qualitative scheme, reported in Fig. 6.4, will help in explaining
the interaction channels among flow field, interface and surfactant concentration. It is
clear that the contribution of each factor (flow, interface and surfactant) impacts the
others and, thus, it cannot be easily disentangled, due to the feedback from the other
factors.

The turbulent flow, and the associated shear stresses, deforms and eventually breaks
the interface (shear stresses, top to bottom-right arrow). In addition, the flow sweeps
surfactant along the interface, depleting some regions of surfactant and accumulating
it in others (shear stresses, top to bottom-left arrow). The surfactant-laden interface,
in turn, feeds back onto the flow field via capillary stresses (normal to the interface)
and Marangoni stresses (tangential to the interface) according to the local dispersed
phase morphology (i.e. local curvature) and surfactant concentration (Capillary and
Marangoni stresses, bottom to top arrows). The deformation of the interface (breaking,
merging, stretching and compression) favors the accumulation or dilution of surfactant
and thus leads to a change in the local surfactant concentration (local curvature,
right to left arrow). In addition, the interface curvature influences the adsorption
of surfactant from the bulk towards the interface and vice versa [45, 63]. Lastly,
surfactant modifies the local surface tension, thus changing the local deformability
of the interface (local surface tension change, left to right arrow), and the local shear
stress (via the action of Marangoni stresses). The stresses generated by the surfactant-
laden interface (capillary and Marangoni stresses) modify the local flow field and shear
stresses, which in turn affect the merging, breaking and stretching of the interface
and the surfactant distribution. For instance, Marangoni stresses help in preventing
coalescence, since they hinder the draining of the liquid film separating the droplets
[30, 145]. In a similar way, the modifications of the local flow field produced by





94 6. Breakage, coalescence and droplet size distribution

Marangoni stresses are crucial in the breakage of droplets [147] and in the pinch-off of
liquid threads [72].
The feedback loop shear stresses–surfactant concentration–Marangoni stresses is re-
ported in Fig. 6.5: the shear stresses are shown in panel (a), the surfactant concentra-
tion in panel (b) and Marangoni stresses in panel (c). The sample droplet is taken from
the case We = 3.00, βs = 1.00 at t+ = 3750 (yellow box in Fig. 6.3(d)). The shear
stresses, blue to red colormap in Fig. 6.5(a), and, in particular their component tan-
gential to the interface St (shown as unit-length vectors over the interface in the same
panel), advect surfactant over the droplet interface and deform the interface (which, as
was presented before, contributes to the local depletion/accumulation of surfactant).
The shear stress for an incompressible flow with constant viscosity is defined as:

Sx = τyz =
1

Reτ

(
∂v

∂z+
+

∂w

∂y+

)
, (6.1)
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+

∂w

∂x+

)
, (6.2)
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∂y+
+

∂v

∂x+

)
. (6.3)

This stress can be divided in a component normal to the interface, Sn, and one tan-
gential to the interface, St:

S = (S · n)n︸ ︷︷ ︸
Normal

+S− (S · n)n︸ ︷︷ ︸
Tangential

, (6.4)

where n = − ∇φ
|∇φ| is the unit vector normal to the interface (outward-pointing normal).

The generated non-uniform surfactant distribution, Fig. 6.5(b), generates a non-
uniform surface tension, which, in turn, introduces Marangoni stresses, reported as
unit-length vector in Fig. 6.5(c). Marangoni stresses are proportional to the surface
tension gradient (roughly speaking to the surfactant concentration, red to yellow col-
ormap in Fig. 6.5) and act to restore a uniform surface tension over the interface
by sweeping surfactant from high concentration regions (low surface tension, yellow)
towards low concentration regions (high surface tension, red), thus contrasting the
action of the tangential shear stresses St (right to left arrow, feedback onto the shear
stress).

6.2.3 Probability density function of interfacial surfactant con-

centration

In the previous section the effects of shear stresses, Marangoni stresses, adsorption/
desorption phenomena and interface deformation in transporting surfactant have been
introduced. To better characterize the generated surfactant distribution, the probabil-
ity density function (PDF) of the surfactant concentration at the interface, defined as
the iso-contour φ = 0, is computed. The PDF has been computed once the multiphase
system attained a steady-state configuration, t+ ≥ 2500 for all cases.
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At the lower Weber number, We = 1.50, the PDF are asymmetric and right-skewed:
stronger positive fluctuations in the surfactant concentration are more likely to occur,
while strong negative fluctuations rarely happen. As the surfactant strength increases
(higher elasticity number), the PDF becomes more asymmetric and the mean value
of the interfacial surfactant concentration shifts towards lower values. This shift can
be traced back to the increase of the total interfacial area, originating from a larger
number of droplets with a more deformable interface. This effect is more pronounced
for stronger surfactants (higher elasticity numbers), which indeed are more effective
in reducing surface tension: surfactant distributes over the droplets interface, thus a
larger interface extension reduces the average surfactant concentration. The different
cases (different elasticity numbers) require however a specific discussion: as will be
clarified in the following, the strongest surfactant case, βs = 4.00, requires a separate
analysis. For the other three cases (βs = 0.50, βs = 1.00 and βs = 2.00), the PDF nar-
rows about its peak as the elasticity number is increased. Indeed, Marangoni stresses,
acting to restore a uniform value of the surface tension, favor a more uniform surfac-
tant concentration over the interface. As reflected in the PDFs, Marangoni stresses
are more effective for stronger surfactants: the magnitude of Marangoni stresses is
proportional to the elasticity number. The positive skew of the PDFs is linked to
the boundedness of the surfactant concentration: the chemical potential of the sur-
factant concentration, Eq. (2.62), strictly bounds the surfactant concentration values
in ψ ∈ (0, 1). Thus, low values of the surfactant concentration are strongly penalized.
Turning to the strongest surfactant case, βs = 4.00, it can be observed how the PDF is
remarkably different from the previously described cases: the most probable value of
the PDF is lower (with respect to βs = 2.00) and the shape is more right-skewed. This
different behavior can be traced back to the limited effect of Marangoni stresses: the
surface tension is bounded (lower bound, see Eq. (2.26), and above a critical surfac-
tant concentration value, here referred as shutdown concentration ψs, surface tension
remains constant and the action of Marangoni stresses ceases. The shutdown concen-
tration, ψs, can be computed from the surface tension EOS by imposing fσ(ψs) = 0.5:

ψs(βs) = 1− e−0.5/βs . (6.5)

The resulting shutdown concentrations (ψs = 0.117 for βs = 4.00, ψs = 0.221 for
βs = 2.00 and ψs = 0.393 for βs = 1.00) have been reported in Fig. 6.6(a) with
thin dashed vertical lines (same colors as the corresponding PDF). The shutdown
concentration for the weakest surfactant (βs = 0.50) is not shown, since it exceeds the
plot limits. It can be seen from Fig. 6.6(a) that the shutdown of Marangoni stresses
affects only marginally the distribution of surfactant for βs = 2.00 and lower, while
most of the surfactant concentration values fall above the shutdown concentration for
βs = 4.00. Indeed, for this latter case, the shutdown occurs at concentrations lower
than the most probable value. Therefore, for the strongest surfactant case, surface
tension is constant for ψ ≥ 0.117 and Marangoni stresses vanish, thus eliminating
their feedback action on the shear stresses; this results in a wider and more asymmetric
PDF.
For the cases at We = 3.00, Fig. 6.6(b), the PDF of the surfactant concentration
follows a monotonic trend: large fluctuations in the surfactant concentration are less
frequent and the most probable value shifts towards lower concentrations for increasing
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Figure 6.6 – Probability density function (PDF) of interfacial surfactant concentration. Panel (a)
refers to We = 1.50 while panel (b) refers to We = 3.00. The different colors refer to βs = 0.50
(blue), βs = 1.00 (green), βs = 2.00 (yellow) and βs = 4.00 (red). The concentration at which the
shutdown of Marangoni stresses occurs (shutdown concentration, ψs) is reported with thin dashed
lines (same colors as before). In general, for higher elasticity numbers, the PDF becomes taller
and narrows around the most probable value. However, for the cases at βs = 4.00, the shutdown
of Marangoni stresses drastically affects the PDF shape. This modification is particularly evident
for βs = 4.00 and We = 1.50, red line in panel (a).

elasticity numbers. These two observations directly reflect the action of Marangoni
stresses, which favor a more uniform surfactant concentration. Interestingly, for the
cases here considered (We = 3.00), the shutdown of Marangoni stresses has a minor
impact on the shape of the PDF. Indeed, the higher Weber number (lower clean
reference surface tension) leads to a much larger total interfacial area, thus the average
concentration is lower. As a consequence, the resulting PDFs of these latter cases are
shifted towards lower concentrations and a smaller portion of the PDF is influenced by
the shutdown of Marangoni stresses. This minor impact of the shutdown of Marangoni
stresses is clearly reflected in the PDFs: as the elasticity number is increased, the PDFs
narrow and the amplitude of the PDFs peak continuously increases. However, for the
highest elasticity number (βs = 4.00), the effect of the shutdown is still visible and
the respective PDF is strongly skewed to the right. Indeed, for this latter case, the
shutdown concentration, ψs = 0.117, is slightly larger than the peak of the PDF.
Therefore, only the part located to the right of the PDF peak is influenced by the
shutdown. Finally, we can observe that for the two lower βs, the boundedness of the
surfactant concentration (ψ > 0) penalizes large negative fluctuations and affects the
left tail of the distribution. This results in a more asymmetric PDF, especially for the
lower elasticity numbers, as the PDF is wider (weaker restoring effect of Marangoni
stresses) and shifted towards lower concentrations (larger interfacial area).
The surface divergence of Marangoni stresses has been computed over the interface to
better characterize the dynamics of surfactant and the effect of Marangoni stresses.
In the following, to keep a more compact notation, Marangoni stresses are defined as
M:

M =
3√
8

Ch

We
∇fσ(ψ) · τ c . (6.6)

The surface divergence allows to identify sinks and sources over the interface: sinks are
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Figure 6.7 – Joint Probability Density Function (PDF) of the local surfactant concentration and
of the surface divergence of the Marangoni stress. A black dashed line marks the zero-surface
divergence. Colored dashed lines identify the shutdown surfactant concentration; for the cases
at βs = 0.50 the shutdown concentration is beyond the limits of the plot (ψs = 0.63). The
columns correspond respectively to the cases at We = 1.50 (left) and We = 3.00 (right); each
row correspond to a different elasticity number (increasing from top to bottom). The cases at the
highest elasticity number have not been reported due to the extremely low shutdown concentration.

characterized by a negative value of the surface divergence, while sources by a positive
value. The surface divergence of the Marangoni stress over the interface is calculated
as:

∇2D ·M = n · ∇ × (n×M) , (6.7)

with n being the unit-length vector normal to the interface. Here, the surface diver-
gence of Marangoni stresses has been correlated with the local surfactant distribution,
Fig. 6.7. In particular, it can be observed that sinks of Marangoni stresses well cor-
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relate with low surfactant concentration values, while sources with high surfactant
concentration values. This result indicates how shear stresses and interface defor-
mation dominate over Marangoni stresses in determining the surfactant distribution:
Marangoni stresses are generated by the surfactant distribution and have a limited ef-
fect in restoring a uniform surfactant distribution. The restoring effect of Marangoni
stresses can be appreciated for increasing values of the elasticity number: the range
of surfactant concentration values is narrowed for stronger surfactants. Then, for sur-
factant concentrations above the shutdown value surface tension keeps constant and
Marangoni stresses vanish.

6.2.4 Droplet size influence on the interfacial surfactant con-

centration

Once the general distribution of surfactant over the interface of the droplets has been
characterized, the second qualitative result obtained from Fig. 6.3 can be tackled:
surfactant is more uniformly distributed on smaller droplets. For this purpose, the
PDF of the surfactant concentration over the interface has been calculated separately
for each droplet and then sorted depending on the droplet size. For each droplet,
we compute the equivalent diameter, d+eq, as the diameter of an equivalent spherical
droplet with the same volume of the droplet considered:

d+eq =

(
6V +

π

)1/3

, (6.8)

where V + is the volume of the droplet.
For the sake of clarity, only the mean value, the 5th and 95th percentiles of the sur-
factant concentration over the droplet interface have been reported in Fig. 6.8; solid
lines identify the mean value, while dashed lines correspond to the percentiles (5th

percentile below the mean value and 95th percentile above the mean value). The usual
color scheme is adopted to distinguish among the various cases: βs = 0.50 (blue),
βs = 1.00 (green), βs = 2.00 (yellow) and βs = 4.00 (red).
Starting from the lower Weber number, We = 1.50 in Fig. 6.8(a), it can be noticed
that the mean surfactant concentration on the interface is not significantly influenced
by droplet size. This indicates that the mixing effect induced by the coalescence and
breakage events promotes a uniform surfactant distribution over the entire range of
droplet sizes. A slight trend for the mean surfactant concentration can be observed for
increasing elasticity numbers: as the elasticity number is increased (stronger surfac-
tant), the number of droplets increases and so does the total interfacial area, leading
to a slight reduction of the mean surfactant concentration. This result is in agreement
with the previous observation on the PDF of the surfactant concentration (Fig. 6.6):
the lower surface tension (stronger surfactant) increases the total interfacial area, thus
reducing the average surfactant concentration over the interface. While the droplet
size does not change the mean concentration of surfactant over the interface, a clear ef-
fect of the droplet size on the surfactant concentration fluctuations can be appreciated:
the 5th and 95th percentiles lines are closer to the mean value for smaller droplets.
This means that smaller droplets have a more uniform surfactant distribution over
their interface with respect to larger droplets, as observed in Fig. 6.3. This effect can
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Figure 6.8 – Influence of droplets size on surfactant concentration at the interface; thick solid
lines represent the mean surfactant concentration, while dashed lines represent the 5th and 95th

percentiles. Panel (a) refers to We = 1.50 while panel (b) refers to We = 3.00. The different
cases are marked with different colors: βs = 0.50 (blue), βs = 1.00 (green), βs = 2.00 (yellow) and
βs = 4.00 (red). The mean concentration is almost constant and is not affected by the droplet size;
conversely, the droplet size has an influence on the fluctuations in the surfactant concentration (as
indicated by the percentile lines) and smaller droplets exhibit a more uniform concentration. This
effect originates from Marangoni stresses, which are more effective on smaller droplets (smaller
length scale).

be traced back to Marangoni stresses, the magnitude of which is proportional to the
surface tension gradient. The surface tension gradient can be approximated as the
ratio of the surface tension variation, ∆σ, over the droplet equivalent diameter, here
used as a characteristic length scale of the droplet. It is important to note that, for
the higher elasticity number considered here (βs = 4.00), the shutdown of Marangoni
stresses has a remarkable effect on the positive fluctuations in the surfactant con-
centration: as Marangoni stresses vanish (surface tension is constant for surfactant
concentrations above the shutdown concentration), their restoring effect on the sur-
factant distribution ceases. Indeed, the trend of the 95th percentile line is lost for
the stronger surfactant (βs = 4.00), which is superposed to the 95th percentile line
of the case at βs = 2.00. Considering the 5th percentile lines, a similar trend can be
observed among all the cases; this trend is particularly marked for larger droplets,
d+eq > 100. This effect arises from the surfactant chemical potential, which strictly
bounds the surfactant concentration between 0 and 1: thus, extremely low values of
surfactant concentration are energetically unfavorable (high chemical potential) and
strong negative fluctuations are hindered.

The effect of the droplet size on the surfactant distribution becomes more pronounced
forWe = 3.00, Fig. 6.8(b). A decrease in the mean surfactant concentration is observed
for increasing elasticity numbers: the same total amount of surfactant distributes over
a larger surface (higher interfacial area). As observed for We = 1.50, Fig. 6.8(a),
the mean surfactant concentration does not depend on the droplet size, while the
amplitude of the fluctuations increases with the droplet size. In particular, a clear
trend is observed for the 95th percentile: as the elasticity number increases, Marangoni
stresses become stronger and extreme values of surfactant concentration are less likely
to occur. Due to the shutdown of Marangoni stresses this trend is not observed
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between the cases with βs = 2.00 and βs = 4.00: for this latter case surface tension
keeps constant above the shutdown concentration (ψs = 0.117) and, consequently, the
action of Marangoni stresses vanishes. As the equilibrium-restoring effect of Marangoni
stresses is partially lost, similar positive fluctuations of the surfactant concentration
are observed for the two stronger surfactants (βs = 2.00 and βs = 4.00). Also for
these cases, the boundedness of the surfactant chemical potential (which prevents
large negative fluctuations of the surfactant concentration), leads to a very similar
behavior for all the 5th percentile lines.

6.2.5 Time evolution of the number of droplets

The distribution of the surfactant over the droplets interface has direct consequences
on the dispersed phase morphology. In fact, the presence of surfactant produces a local
decrease of surface tension (whose amplitude depends on the local surfactant concen-
tration) and introduces Marangoni stresses, thus affecting the dynamics of coalescence
and breakage events and the resulting dispersed phase morphology [30, 98, 151]. To
characterize the dispersed phase morphology the time evolution of the number of
droplets, N(t+), over time is computed. The results, normalized by the initial number
of droplets N0 = 256 (same for all the cases), are shown in Fig. 6.9.

For the lower Weber number,We = 1.50, all cases evolve in a similar manner: a steady
decrease in the total number of droplets is observed down to about 40% of the initial
value. Then, the five cases start to depart one from each other: the effect of surfactant
and of its strength is clearly reflected in the number of droplets. The clean and weak
surfactant cases show a faster decrease in the number of droplets with respect to the
strong surfactant cases. Finally, at t+ ≃ 2500, a steady-state for the number of droplets
is reached, indicating that coalescence and breakage events balance out. The effect of
surface tension on the steady-state number of droplets is clear: the clean case has the
lowest number of droplets at the end of the simulation and, as the elasticity number is
increased, also the final number of droplets increases. On average stronger surfactants
are able to produce a higher number of smaller droplets in the channel. The different
number of droplets attained at steady-state can be linked to the maximum stable
diameter [61], which is determined by the competition between stabilizing effects (e.g.
surface tension) and destabilizing effects (e.g. turbulent fluctuations). Decreasing the
average surface tension over the interface (stronger surfactant) leads to a reduction in
the maximum stable diameter, thus to the formation of smaller droplets. The effect
of surfactant can be better appreciated in the inset, which shows the time-evolution
of the number of droplets at steady-state. With respect to the clean case, the final
number of droplets is increased by a factor ranging from 1.32 (βs = 0.50) up to 3.32
(βs = 4.00).

A remarkably different behavior is observed for the cases at We = 3.00, Fig. 6.9(b):
after an initial decrease (up to t+ = 300) in the number of droplets for all cases, a
marked increase is observed for the stronger surfactant cases. For these cases breakage
events outnumber coalescence events, thus increasing the total number of droplets:
surface tension forces are too weak to prevent breakage of the interface, with respect
to the cases at We = 1.50. After the initial transient stage, at about t+ = 2500,
the number of droplets reaches a statistically steady-state value, which increases with
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Figure 6.9 – Time evolution of the normalized number of droplets, N(t+)/N0. Panel (a) refers
to We = 1.50, while panel (b) refers to We = 3.00. Different colors distinguish the various cases:
clean (black), βs = 0.50 (blue), βs = 1.00 (green), βs = 2.00 (yellow) and βs = 4.00 (red). The
surfactant action can be clearly observed: increasing the elasticity number βs, the surface tension
reduction is larger and a higher number of droplets is found in the channel. At the lower Weber
number, We = 1.50, this effect can be better appreciated in the inset of panel (a).

the surfactant strength. In particular, the number of droplets in the clean and weak
surfactant cases (βs = 0.50 and βs = 1.00) reaches a steady-state value of about
N(t+) ≃ 0.5N0, while for the stronger surfactant (βs = 4.00) it reaches about N(t+) ≃
1.5N0. With respect to the clean case, the steady-state number of droplets is increased
by a factor ranging from 1.18 (βs = 0.50) to 3.16 (βs = 4.00). It is worth noting that
although the steady-state number of droplets strongly differs among the two Weber
numbers, ranging between 19 (clean case) and 63 (βs = 4.00) for We = 1.50 and
between 116 (clean case) and 366 (βs = 4.00) for We = 3.00, the increase in the
number of droplets with respect to the clean reference cases is similar: from a factor
of about 1.25 for the weakest surfactant (βs = 0.50) up to about 3.25 for the strongest
one (βs = 4.00).

6.2.6 Coalescence and breakage rates

The number of droplets, while still being an important information, does not give
any information on the actual number of coalescence or breakage events occurring,
but just on their balance. To obtain a better insight on the surfactant effects on
the morphology of the dispersed phase, the droplets population balance has been
considered. In particular, in all the cases presented here, the number of droplets
can be modified only by coalescence and breakage events [43, 92]; an overview of the
algorithm used to detect coalescence and breakage events is reported in Appendix A.
Hence, the following balance equation can be used to describe the time evolution of
the number of droplets:

dN(t+)

dt+
= Ṅc(t

+) + Ṅb(t
+) , (6.9)

where Ṅc(t
+) and Ṅb(t

+) are respectively the coalescence and the breakage rates, i.e.
the number of coalescence/breakage events occurring in a unitary time. Predictions of
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Figure 6.10 – Time evolution of the coalescence rate, Ṅc(t+), and of the breakage rate Ṅb(t
+).

The rates are shown non-normalized in panels (a)-(b) and normalized by the actual number of
droplets, N(t+), in panels (c)-(d). Breakage rates, as they increase the number of droplets, are
represented as a positive quantity, while coalescence rates, as they reduce the number of droplets,
are reported as a negative quantity. Panels (a) and (c) refer to We = 1.50 while panels (b)
and (d) refer to We = 3.00. In all the panels, the steady-state values are reported with thick
dashed lines. For both the Weber numbers considered, the addition of a soluble surfactant leads
to an increase (in magnitude) of both coalescence and breakage rates. This increase is larger when
stronger surfactants are considered (larger elasticity numbers, βs).

these rates are extremely difficult, as many different factors are involved in the com-
plex dynamics of interface breaking and merging [29, 97, 106, 160, 162]. The problem
further complicates when a soluble surfactant, which modifies the interfacial dynam-
ics, is added to the multiphase system. Indeed, as shown in previous investigations
performed in laminar flow conditions considering two equal size droplets, the presence
of a surfactant prevents (or at least delays) their coalescence [30, 47, 145, 176], but at
the same time it also promotes droplet breakage [10, 98].

Fig. 6.10 shows the time evolution of the coalescence and breakage rates for the dif-
ferent cases examined. The rates have been calculated considering the number of
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coalescence and breakage events, Nc and Nb, occurring in a time window ∆t+ = 90:

Ṅc(t
+) =

Nc
∆t+

, Ṅb(t
+) =

Nb
∆t+

. (6.10)

The coalescence and breakage rates are reported non-normalized, Eq. (6.10), in
Fig. 6.10(a)-(b) and normalized by the actual number of droplets, N(t+), in
Fig. 6.10(c)-(d).

For the cases at We = 1.50, Fig. 6.10, the coalescence rate is larger than the breakage
rate (in magnitude) during the initial transient. This results in a reduction of the
number of droplets, see Fig. 6.9(a). After reaching a peak value at t+ ≃ 600, the two
rates start to smoothly decrease until a steady-state value is reached for t+ > 2500,
after which the average coalescence and breakage rates (dashed lines) are equal (in
magnitude). Comparing the different cases, it can be noted how stronger surfactants
(larger βs) increase both breakage and coalescence rates. While the former effect
is expected (a lower average surface tension increases the likelihood of the interface
breaking), the latter effect is not as obvious. Indeed, previous works [30, 47, 145, 176]
showed that surfactant hinders the coalescence of two droplets, while here we observe
an increase of the coalescence rate for stronger surfactants. However, differently from
the previous works [30, 47, 145, 176], in the cases presented here, the average droplet
size and the number of droplets differ among the different cases. This difference influ-
ences the results obtained for the coalescence and breakage rates: stronger surfactants
(i.e. higher elasticity numbers) lead to the formation of a higher number of smaller
droplets which are less deformable and will more likely coalesce (faster drainage of
the thin liquid film separating the two droplets). In addition, the higher number of
droplets present in the channel increases the chances of droplets collision and of a sub-
sequent coalescence. Thus, the increase of the coalescence rate for increasing elasticity
numbers can be addressed to the different size of the droplets.

To remove the influence of the number of droplets in the coalescence and breakage
rates, the rates have been normalized by the actual number of droplets, Fig. 6.10(c). In
the initial stages, t+ < 1500, the time evolution of the non-normalized and normalized
rates is similar. However, differently from the non-normalized rates, for t+ > 1500,
the normalized rates reach a steady-state value. This suggests that the decrease of
both breakage and coalescence rates (non-normalized) is due to the lower number
of droplets present in the channel. Hence, while the coalescence and breakage rates
(non-normalized) can be directly linked to the population balance as they represent
the effective change in the number of droplets, the normalized rates give a more general
information on the surfactant effects on the coalescence and breakage rates.

For the higher Weber number (lower clean surface tension) a much clearer effect on the
coalescence and breakage rates can be observed, Fig. 6.10(b). In the initial transient,
both coalescence and breakage rates increase until they reach their peak value at about
t+ = 600. After reaching this peak, the coalescence rates are almost constant at their
steady-state value, while the breakage rates slightly decrease before reaching a steady-
state value. For the stronger surfactant (βs = 4.00), the breakage rate during the
initial stage of the simulation exceeds the coalescence rate; this feature is reflected in
the total number of droplets, Fig. 6.9(b), which for this case at steady-state is much
higher than the initial number of droplets, about 1.5N0. The surfactant strength has
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Figure 6.11 – Droplet size distribution (DSD) for We = 1.50, panel (a) and We = 3.00, panel
(b). The different colors refer to the clean case (black), βs = 1.00 (green) and βs = 4.00 (red).
For We = 1.50, the low number of droplets do not allow to obtain a clear trend; however, on
a qualitative basis, it can be observed that increasing the surfactant strength (i.e. the elasticity
number βs), the probability of finding smaller droplets increases. This trend becomes clearer for
the higher Weber number, We = 3.00: increasing the elasticity number βs, the presence of small
droplets is favored.

a clear effect on the rates: indeed, for larger elasticity numbers, the coalescence and
breakage rates are larger (in magnitude). This is a direct consequence of the higher
number of smaller droplets present in the channel: these smaller droplets will more
likely coalesce (smaller size) and at the same time will more likely undergo breakage
(lower surface tension).
Also for these cases, to remove the effect of the number of droplets in the coalescence
and breakage rates, the rates have been normalized by the actual number of droplets
present in the channel, Fig. 6.10(d). The trend observed are similar to those exhibited
by the non-normalized rates and, for higher elasticity numbers, the steady-state values
of the coalescence and breakage rates become larger (in magnitude); however, the
differences among the cases become smaller. This observation suggests that the higher
number of droplets present when larger elasticity numbers are considered produces an
amplification of the non-normalized rates. In addition, the peak in the breakage rate
exhibited by the two stronger surfactants (βs = 2.00 and βs = 4.00), becomes more
pronounced. This indicates that the strong reduction of the surface tension, induced
by the surfactant, strongly favors the breakage of the droplets.

6.2.7 Droplet size distribution

The addition of a soluble surfactant in the system, which modifies the droplet deforma-
bility (lower surface tension) and introduces Marangoni stresses, directly influences the
coalescence and breakage rates and as a consequence the resulting droplet size distri-
bution (DSD). The DSD is a fundamental tool, which has been extensively used in
the past to characterize the dispersed phase morphology; several empirical models for
the calculation of the DSD have been proposed in the past [7, 94, 168]. The DSDs
for all the different cases (clean and surfactant-laden) have been computed using the
droplet equivalent diameter as a measure of the droplet size. The distributions have
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been computed once the simulations reached a steady condition (t+ > 2500). The re-
sults are shown in Fig. 6.11; the two panels correspond to We = 1.50 and We = 3.00,
respectively panels (a) and (b). To better highlight the differences among the different
cases, only three cases are reported: clean (black), βs = 1.00 (green) and βs = 4.00
(red).

The low number of droplets at We = 1.50 does not allow to obtain a clear statistic
(especially for the clean case). However, a trend for increasing surfactant strength
can still be appreciated: smaller droplets are more likely to be found as the elasticity
number is increased. Indeed, for the stronger surfactant (βs = 4.00), the DSD peaks
for d+eq < 100 and falls almost to zero for larger droplet sizes. Conversely, for the clean
case there is a low probability of having very small droplets, d+eq < 50, and a much
higher probability of having larger droplets, 200 < d+eq < 500. This observation can be
directly linked to the average surface tension reduction produced by the surfactant:
for higher elasticity numbers (larger surface tension reduction), larger droplets are not
stable and undergo breakage and, as a consequence, the presence of smaller droplets is
favored. This finding is in agreement with the breakage rates, Fig. 6.10(a)-(c), which
increase when stronger surfactants are considered.

ForWe = 3.00, Fig. 6.11(b), a higher number of droplets is present and a much clearer
trend can be observed. In particular, all the DSDs exhibit a marked peak for small
droplet sizes, d+eq < 100; this peak shifts towards smaller diameters and increases its
value as the elasticity number is increased. Indeed, for the clean case the peak value
is at about d+eq ≃ 75, while it reduces to d+eq ≃ 50 for the two surfactant-laden cases,
with the stronger surfactant showing a higher peak value. The probability of having
larger droplet sizes, d+eq > 200, is extremely low, at least one order of magnitude lower
than the peak value. The effect of the elasticity number can be appreciated also for
the larger droplet sizes: a higher probability of finding larger droplets is observed for
the clean case and for βs = 1.00.

Overall, for both Weber numbers it has been observed that a higher surfactant strength
(and, thus, the respective higher surface tension reduction) favors the breakage of the
droplets, increasing the likelihood of finding smaller droplets.

6.2.8 Comparison with theoretical scaling

The droplet size distribution is an important quantity used to characterize the mor-
phology of a dispersed phase; indeed several models and scaling have been proposed
to predict it. Among these, the most commonly adopted distributions are: normal
[13, 25], log-normal [23, 101, 120], Rosin-Rammler [74], Weibull [14], upper limit equa-
tion [110] and power law [34, 35, 51, 142]. Although a universal agreement over several
decades has not been yet demonstrated, a reasonable number of experimental [34] and
numerical [142] works showed a good agreement with the power law scaling proposed
by Garrett et al. [51]. According to Garrett et al. [51], the DSD follows a −10/3 power
law scaling with the droplet diameter. Deane and Stokes [34] showed that this distri-
bution well described the DSD for droplet diameters larger than the relevant breakage
scale; this latter scale can be estimated as the droplet maximum stable diameter, com-
monly referred as the Hinze inviscid scale, d+H [61]. For the simulation setup considered
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are in good agreement with theoretical scaling, especially for the larger elasticity numbers (larger
number of samples). In addition, to show the effect of the grid resolution on the droplet size
distribution, the results obtained from a simulation at We = 3.00 and βs = 4.00 rerun on a finer
grid (refined twice in each direction, Nx × Ny × Nz = 2048 × 1024 × 1025) have been reported
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here, the Hinze inviscid scale can be computed as follows [61, 120, 128]:

d+H = 0.725

(
σ0
σav

We

Reτ

)−3/5

|εc|−2/5 , (6.11)

where the ratio σ0/σav is used to account for the average surface tension reduction
produced by the surfactant and εc is the turbulent dissipation at the channel centre.
Here the equation is used in its dimensionless form (wall units), refer to Appendix B
for further details. The turbulent dissipation depends on the distance from the wall;
however, since droplets are more likely to be found in the core region of the channel
[128, 135], the dissipation at the channel centre is used as a reference. From Eq. (6.11)
it can be noted how the Hinze inviscid scale reduces for increasing surfactant strengths
(lower average surface tension, σav).
The DSDs obtained from the larger Weber number, We = 3.00, have been reported
in a log-log plot and compared with the power law scaling proposed by Garrett et al.
[51] in Fig. 6.12. Results at the lower Weber number are not reported here, as the
low number of droplets does not constitute a sufficient statistical sample (especially
for the clean case); however, a good agreement (not reported here) is found for the
highest elasticity number, βs = 4.00 (highest number of droplets). In Fig. 6.12, a

thin black line identifies the theoretical scaling, d+eq
−10/3

, while thick lines identify
the different cases: clean (black), βs = 0.50 (blue), βs = 1.00 (green), βs = 2.00
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(yellow) and βs = 4.00 (red). The Hinze inviscid scales (maximum stable diameter of
the droplet) are reported with dashed vertical lines using the same color code of the
DSDs; as the elasticity number is increased, the average surface tension, σav, reduces,
thus decreasing the Hinze inviscid scale.
The resulting droplet size distributions are in good agreement with the power law
scaling proposed by Garrett et al. [51] for equivalent diameters larger than the Hinze
inviscid scale, d+eq > d+H . This latter observation seems to confirm the validity of the
scaling for droplets larger than the Hinze inviscid scale, as reported also by Deane and
Stokes [34], who analyzed the size distribution of bubbles in breaking ocean waves and
by Skartlien et al. [142], who analyzed the size distribution of droplets in surfactant-
laden liquid/liquid systems. The quality of the agreement between numerical results
and theoretical scaling improves for larger elasticity numbers and, specifically, for the
cases βs = 2.00 and βs = 4.00. Indeed, the considerably higher number of droplets
obtained for these cases leads to a smoother DSD over a wider range diameters. In ad-
dition, for larger elasticity numbers, the Hinze inviscid scale, d+H , shifts towards lower
values and the agreement can be observed for a wider range of droplets equivalent di-
ameters. Albeit the good agreement obtained between our results and the scaling pro-
posed by Garrett et al. [51], the data and the range of sizes available are not sufficient
to exclude other power law scalings with slightly different exponents [35]. Widening
the size span of the droplets would require simulations at a higher Reynolds number;
the Hinze inviscid scale is only marginally influenced by the Reynolds number, while
the maximum droplet size is roughly the total channel height (which is proportional
to the Reynolds number). Addressing this issue would require performing numerical
simulations with a much higher computational cost, which are not feasible with the
computational resources currently available. However, the impact of the grid resolu-
tion on coalescence and breakages (introduced at the beginning of this chapter) and
consequently on the resulting droplet size distribution has been addressed here: the
case We = 3.00, βs = 4.00 has been rerun on a finer grid (refined twice in each direc-
tion, Nx × Ny × Nz = 2048 × 1024 × 1025) and employing an halved Cahn number,
Ch = 0.012. Results of this latter simulation are shown using empty red circles in
Fig. 6.12. An excellent agreement can be observed comparing the results for the two
cases at βs = 4.00: the large diameters are not much influenced by the grid resolution,
while on the finer grid case more smaller droplets appear. Indeed, the simulation on
the refined grid better captures the dynamics of the smaller droplets (O(10) wall units
in size).

6.3 Conclusions

In this chapter the dynamics of a swarm of surfactant-laden deformable droplets in
wall-bounded turbulence has been presented, mainly focusing on the surfactant dis-
tribution and on the morphology of the droplets. A total of ten different cases has
been investigated: two different Weber numbers (We = 1.50 and We = 3.00) and five
different elasticity numbers (clean, βs = 0.50, βs = 1.00, βs = 2.00 and βs = 4.00).
Both the investigated parameters act on the surface tension: the Weber number uni-
formly changes the surface tension (clean, reference value), while the elasticity number
directly controls the strength of the surfactant (which locally affects surface tension).
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The complex interplay among flow, interface and surfactant has been described, show-
ing how these elements are deeply interconnected and feed back onto each other, see
Fig. 6.4 and Fig. 6.5. The flow field deforms the interface and advects the surfactant.
In turn, the interface feeds back onto the local flow field and modifies the surfac-
tant concentration, as it stretches, breaks and merges. Finally, the surfactant locally
modifies the surface tension, increasing the local deformability of the interface and
generating Marangoni stresses. These stresses (tangential to the interface) originate
from surface tension gradients (i.e. surfactant concentration gradients) and promote a
uniform surfactant distribution over the droplets interface. In particular, Marangoni
stresses are more effective on smaller droplets, as their magnitude roughly scales with
the inverse of the droplet length scale, and indeed the results of the numerical sim-
ulations show a more uniform surfactant concentration on smaller droplets. Surface
tension determines also the maximum stable size for a droplet: as surface tension
forces weaken, larger droplets become unstable and break. Indeed, as either the We-
ber number, either the elasticity number are increased, more and smaller droplets
are found in the channel: as the total volume fraction is kept constant among all the
simulations, the reduction of the droplet maximum stable size increases the total num-
ber of droplets. In addition, increasing the Weber number or the elasticity number
increases also the breakage and coalescence rates. While the former is expected, as
surface forces are weakened, the latter is, at first, counterintuitive. The increase in
the breakage rate leads to many smaller droplets, which are more likely to coalesce:
smaller droplets are less deformable and droplet-droplet collisions are more frequent
due to the higher number of droplets. Increases (in magnitude) of coalescence and
breakage rates become more pronounced for increasing Weber or elasticity numbers.
Finally, it has been shown that the resulting droplets size distribution roughly scales
with the inverse of the droplet volume. This observation is in agreement with previous
theoretical and computational works: the computed droplets size distribution follows
indeed the −10/3 theoretical power law scaling proposed by Garrett et al. [51], which
was also confirmed by experimental [34] and numerical [142] investigations.



7
Concluding remarks and future

developments

The dynamics of surfactant-laden droplets has been characterized throughout this
thesis using a two-order-parameter phase field method. A novel numerical approach
for the simulation of surfactant-laden interfaces has been presented, Chap. 2 and
Chap. 3. In particular, a correction term has also been added to mitigate some of
the well-known issues of the classical phase field approach (shrinkage, coarsening and
misrepresentation of surface tension and thermo-physical properties); this modified
approach has then been extensively tested.

The effects introduced by a dissolved surfactant has been investigated first in simpler
laminar cases, Chap. 4 and Chap. 5, and then in a more complex, turbulent case,
Chap. 6. The laminar cases allowed to separate and understand the various surfactant
effects in a controlled setup (deformation of a droplet in laminar shear flow and binary
droplets interactions in laminar flow). In particular, it was found that the average
surface tension reduction has a major role in determining the overall droplet deforma-
tion, with Marangoni stresses having a negligible contribution, Chap. 4. These latter
stresses, however, proved to be fundamental during the interaction of two droplets:
together with the average surface tension reduction (i.e. a more deformable interface),
Marangoni stresses avoid or, at least delay, the coalescence of the droplets, Chap. 5.
Indeed, Marangoni stresses, acting tangentially to the interface, reduce the draining
rate of the liquid film in between the two approaching interfaces, hindering coales-
cence. The surfactant distribution over the interface is then characterized in a more
complex setup: a wall-bounded fully-developed turbulent flow, Chap. 6. The distribu-
tion of surfactant over the interface is determined by several factors, among which the
flow (i.e., the shear stresses), the deformation, breaking and merging of the interface,
Marangoni stresses and surfactant diffusion. Marangoni stresses, in particular, favor
a uniform surfactant distribution as shown for increasing elasticity numbers (stronger
surfactants, i.e. higher surface tension gradients). In addition, the presence of a surfac-
tant phase strongly alters the morphology of the dispersed phase: the total number of
droplets increases (and, thus, reduces in size) for increasing surfactant strengths. The
reduced surface tension increases the likelihood of interface breaking (higher break-
age rate), thus generating a higher number of smaller droplets. These droplets will
more likely coalesce (many small and rather rigid droplets), hence the increase ob-
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served in the coalescence rates. After an initial transient, the number of droplets, and
thus the coalescence and breakage rates, reaches a stationary value, which is higher
for increasing surfactant strengths. The resulting droplet size distribution, computed
once the dispersed phase morphology has reached steady-state conditions, well agrees
with previous theoretical scalings [51], experimental measurements [34] and previous
numerical simulations [142].
The proposed numerical approach proved to be a powerful tool for the simulation
of multiphase flows laden with a fully soluble surfactant, and implicitly accounts for
physically-grounded topological modifications of the interface. The follow-up of this
thesis is the simulation of industrially-relevant surfactant-laden multiphase flows, as
for instance gas/liquid and high-viscosity oil/water multiphase flows. These mixtures
are characterized by high density and/or viscosity ratios between the two phases, thus
making their simulation more challenging. An additional improvement that will be
considered in the near future is the generalization of the solid wall-interface interac-
tions: in this thesis a static, fixed contact angle has been considered. This choice does
not affect anyhow the results presented, as the interface never reaches the solid wall.
Including a model for the contact angle dynamics would, however, allow to simulate
problems in which the wall is partially wet, as for instance a bubble layer lubricating
the solid wall. This setup has shown promising results in several engineering applica-
tions, such as lubricating layers of air bubbles or air films covering the hull of ships
to reduce the frictional drag [20, 113, 132, 163, 165, 167]. As a future perspective,
next-generation phase field approaches might include coalescence models to mitigate
numerical coalescences; while, on one hand, the rigorous thermodynamic foundation
of the method would be compromised when simulating coalescences, on the other hand
a well-tuned coalescence model would strongly reduce the influence of numerical co-
alescence at a reasonable computational cost. Another viable approach to improve
the simulation of interface coalescence could be the use of an Adaptive Mesh Refine-
ment (AMR) scheme to increase the grid resolution in the interfacial region. This
strategy, however, contrasts with the pseudo-spectral discretization, thus a different
spatial discretization method should be adopted. In addition, an AMR scheme would
increase the complexity of data handling and load balancing at simulation run time.
These two possibilities, alone or combined, would improve the description of coales-
cence and breakage and reduce the influence of numerical coalescence, while keeping
a fairly reasonable computational cost.



A
Detecting breakages and

coalescences

In the following an overview of the method used to detect coalescence and breakage
events will be briefly reviewed; Fig. A.2 shows a visual representation of the algorithm.
The input data needed are: the position of the center of mass of each droplet at the
current time step, xn, the velocity of the center of mass of each droplet at the current
time step, un, and the position of the center of mass of each droplet at the following
time step, xn+1. These quantities are calculated for each droplet i and are defined as:

xn =
1

V ni

∫

V n
i

xndV , (A.1)

un =
1

V ni

∫

V n
i

undV , (A.2)

xn+1 =
1

V n+1
i

∫

V n+1

i

xn+1dV , (A.3)

where the integral is computed over the volume Vi of each droplet. The apices n
and n + 1 identify respectively the current and the following time step; the elapsed
time between the two time steps is ∆T . In the first step the estimated position of
each droplet at the following time step is computed: xn+1

est = xn + ∆Tun. To better
explain the technique employed to detect translations, breakages and coalescences
some examples have been reported in Fig. A.1. For each droplet (estimated position),
the closest droplet at the following time step is found; at this step some droplets
at the following time step may be left out (they are not the closest droplet to any
estimated droplet position). This step corresponds to Fig. A.1(a): the estimated
position of droplet Tn is calculated (red transparent droplet) and the closest droplet
at the following time step is found out (droplet Tn+1). In the following stage breakage
and coalescence events have to be sorted out from these data.
A breakage is detected whenever a droplet in xn+1 has no parent droplet: according
to Fig. A.1(b) droplet Bn+1,2 has no parent droplet, thus it originated from a breakage
event. Once a breakage event is identified, the algorithm searches for the the closest
droplet to the droplet Bn+1,2 at time step n+ 1; in this case droplet Bn+1,1 is found.
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(a)

(b)

(c)

Tn Tn+1

Bn

Bn+1,1

Bn+1,2

Cn,1

Cn,2 Cn+1

Figure A.1 – Possible cases considered: panel (a) corresponds to a translation, panel (b) to a
breakage and panel (c) to a coalescence. Red droplets are at the current time step (n), while blue
droplets are at the following time step (n+ 1). Semi-transparent red droplets show the estimated
position, xn+1

est . Arrows show the trajectory of the droplets, ∆Tu.

It is then assumed that droplet Bn (whose estimated position is the closest to droplet
Bn+1,1) breaks apart into droplets Bn+1,1 and Bn+1,2.
Once all breakages have been detected, the algorithm looks for coalescence events.
A coalescence event is detected whenever two separate droplets at time step n are
assigned to the same droplet at time step n+1. In particular, referring to Fig. A.1(c)
droplets Cn,1 and Cn,2 are both assigned to droplet Cn+1, as it is the closest one to
their estimated position.
So far, only kinematic criteria have been used to determine the trajectory and eventual
interactions (coalescences and breakages) of each droplet. Once all the trajectories at
the present time step have been determined, the quality index and the balance are
computed. In particular, the quality index, Q, is initialized at the beginning of the
time step to the number of droplets at the current time step, Nn; every time volume
is not conserved (within a certain small threshold) in all the translation, breakages
and coalescences, the quality index is reduced by one. At the end of the time step, it
is normalized by Nn. Recalling the examples of Fig. A.1, three checks on the volume
conservation are performed depending on the type of event:





VTn = VTn+1
± ε for translations

VBn = VBn+1,1
+ VBn+1,2

± ε for breakages

VCn,1 + VCn,2 = VCn+1
± ε for coalescences

. (A.4)

To account for numerical errors that could occur in the calculation of the volume of
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Input data:

xn, un, xn+1

Calculate estimated position:

xn+1
est = xn +∆Tun

For each droplet in xn+1
est find the closest droplet

in xn+1 considering domain periodicity

Find translations

Find breakages

If droplet in xn+1 has no parent droplet in xn: breakage

Find coalescences

If two droplets in xn have the same child droplet in xn+1: coalescence

Check for volume conservation

Translation: V ni = V n+1
j

Breakage: V ni = V n+1
j + V n+1

k

Coalescence: V ni + V nj = V n+1
k

If volume does not matches reduce Q

Calculate Q and B

n
=
n
+

1

Figure A.2 – Flow chart of the method used to detect breakages and coalescences

each droplet (that would strongly reduce the quality index of the matching), a small
tolerance ε (of the order of few percents of the volume of the parent droplet) is used
when checking for volume conservation.
The second parameter controlling the quality of the calculated trajectories is the bal-
ance, B. The total number of droplets at each time step is known: Nn at the current
time step and Nn+1 at the following one. Once the number of breakage and coalescence
events is known the balance can be calculated as:

B = Nn+1 − (Nn +NB −NC) , (A.5)

where NB and NC are respectively the number of breakage and coalescence events.
The number of droplets at the current time step, Nn, is increased whenever a droplet
undergoes breakage into two droplets and is decreased whenever two droplets coalesce
into one droplet. Thus, considering these two parameters, a fair matching of the
trajectories is obtained with a quality index Q→ 1 and a balance B = 0. This means
that the volume is always matched (quality index never or rarely reduced) and no
droplet is left out (balance equal to zero).
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Here, only binary breakages and coalescences are considered; this assumption is not
particularly limiting, as binary breakages/coalescences have the highest probability of
occurrence [4, 6, 107]. This assumption is also confirmed by the simulations performed:
the quality index never reduces below 0.85 (so the volume is matched for at least 85%
of all the translation, breakage and coalescence events) and at most few droplets are
left unmatched (the balance is almost zero).



B
Wall units scaling system

The reference quantities for the wall units scaling system are:

x̃ =
ν

uτ
x+ , ũ = uτu

+ , t̃ =
ν

u2τ
t+ , φ̃ =

√
β

α
φ+ , ψ̃ = ψ+ , (B.1)

where the ˜ symbol denotes dimensional quantities, the + superscript denotes dimen-
sionless quantities (wall units) and ν = ηc/ρc is the kinematic viscosity.
The dimensional analysis from dimensional units to outer units (no superscript) has
been introduced in Sect. 2.4. From the dimensional analysis for outer and wall units,
the following relations can be obtained:

x+ = Reτx , u+ = u , t+ = Reτ t , φ+ = φ , ψ+ = ψ . (B.2)

In this thesis all results presented are either in outer units (no superscript), either in
wall units (+ superscript). Superscripts have been dropped for the velocity, the phase
field and the surfactant concentration as they have the same definition in both outer
and wall units (superscripts, however, are kept for both time and length scales).
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considérables mais continues et sur la théorie de la capillarité dans l’hypothèse
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