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“If you want to find the secrets of the universe,  

think in terms of energy, frequency and vibration." 
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I 

A B S T R A C T  

This thesis presents a comprehensive study on the design and development of a 

new inertial actuator for the active vibration control. This linear inertial transducer 

can be used to implement decentralised velocity feedback control loops to reduce 

flexural vibration of thin structures.  

Such active vibration control system is typically formed by an inertial actuator 

attached on one side of the structure and a collocated velocity sensor attached on the 

other side with a constant gain controller. This arrangement creates skyhook damping 

effect that can be effectively used to reduce the out-of-plane vibrations of the 

structure. To guarantee the stability and thus good control performance, the 

fundamental resonance frequency of the actuator must be as low as possible and 

lower than the fundamental resonance frequency of the hosting structure. This 

requirement imposes that the inertial actuator is composed by a heavy inertial mass 

and soft suspension. However, when the hosting structure is exposed to shocks, an 

actuator with heavy mass will suffer undesired stroke saturation effects, which may 

also lead to instability of the feedback loop.  

The new inertial actuator, presented in this study, is equipped with additional 

flywheel element, which is used to augment the inertia effect of the inertial mass 

without increasing the suspended weight. This additional inertia effect produced by 

the flywheel element improves the actuator robustness to shocks and simultaneously 

improves the stability of the velocity feedback loop. 

The first part of the thesis is focused on the theoretical analysis of vibration control 

using classical and four new configurations of the proposed flywheel electromagnetic 

actuator. The kinematic properties of the actuators and effectiveness of point velocity 

feedback loops are assessed based on mathematical simulations obtained from a 

lumped parameter model. Finally a parametric and scaling study presents main 

guidelines for designing flywheel prototypes.  

The second part of the thesis presents the design process and experimental tests of 

two flywheel prototypes. These two prototypes were designed based on a 

commercially available linear electromagnetic actuator. The electro-mechanical 

properties of the classical and flywheel configurations were compared with the 

mathematical simulation obtained from the simplified lumped parameter model.  



 

 

II 

The third part of the thesis presents the design and experimental results of a 

flywheel inertial prototype using a piezoelectric transducer. Compared to the 

electromagnetic flywheel actuator the piezoelectric flywheel actuator presents some 

interesting properties. This part of the thesis describes the advantages that would 

arise when implementing a velocity feedback loop with this type of transducer.  

The forth part of the thesis presents the experimental implementation of a point 

velocity feedback control unit with the electromagnetic flywheel actuator to reduce 

the flexural vibrations of a rectangular thin plate. The stability of the system is 

assessed based on the sensor-actuator open loop frequency response function, while 

the performance of the feedback loops is assessed based on the reduction of the total 

flexural kinetic energy of the plate.  

The last part of the thesis briefly presents the potential use of the flywheel 

prototype as a seismic transducer to harvest energy from the vibrating structure. 
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I N T R O D U C T I O N  

As it is well known, every mechanical element that has a specific mass and stiffness 

shows unique vibrational response when being exposes to time varying disturbance 

[1], [2]. Many mechanical structures with higher performance criteria and refined 

design specifications require a control of these disturbances [3]. In many cases, the 

traditional approach to reduce these vibrations by changing the mechanical 

properties of the structure is insufficient. At the same time, the constant technological 

growth of smart materials and power electronics give an opportunity to combine 

them in mechatronic systems for active vibration control. Hence, the combination of 

smart transducers and control electronics embedded in the hosting structure present 

many appealing advantages. Although in some cases, vibrational oscillations can be 

used for a specific purpose, like improvement of the technological processes (smart 

machine tools [4]), cavitation generation (ultrasonic transducers [5]), defect detection 

[6], [7], etc., in most cases they are undesired. The excessive vibrations in the 

mechanical systems are undesired mainly for three reasons:  

Fatigue effect on the structure – excessive vibrations may lead to wearing and 

accelerated failure of the components or the entire structure [8]–[10]. The excessive 

vibrations may cause delamination of the composite structures [11], [12].  

Comfort & health – the comfort improvement in the transportation vehicles. 

Reduction of noise and vibration in the interior cabin of the airplanes [13], [14], 

vibration reduction in the helicopters [15]–[17], reduction of noise and vibration 

generated by the ventilation and air supply systems [18], [19]. Also the improvement 

of personal protection for the humans exposed to vibration and noise generated by 

machines [20], [21].  

Operational conditions – everywhere where the high precision and small 

tolerances are required. Most common examples are the measuring equipment, 

surgical robots [22], large flexible structures [23], [24], machining process, etc. [25], 

[26]. 
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1.1  ACTIVE CONTROL  

Active control of noise and vibration can be achieved with many different 

methods. This part of the thesis describes the techniques that are used for designing 

smart structure for active control of noise and vibration. In principle, every 

mechatronic system for the noise and vibration control is built out of three 

fundamental components [27], [28]: 

- sensor (accelerometer, force cell, strain gauge, etc.), 

- actuator (linear actuator, torque motor, hydraulic cylinder, etc.), 

- control system and algorithm (feedforward, feedback, etc.). 

The final design of a specific active control system depends on several aspects that 

determine the different type of each component.  

 

1.1.1 Feedforward control 

Feedforward control is the primary algorithm of active noise and vibration control 

of tonal disturbances or stationary stochastic disturbances. This method strongly 

depends on the availability of the reference signal correlated to the primary 

disturbance source [29], [30]. In practice, the reference signal is sent and processed in 

an adaptive filter, where the filter coefficients are tuned to minimise the output error 

signal of the system. Finally, the output signal from the adaptive filter is applied back 

to the system via secondary sources. The principle of feedforward control operation 

is that the secondary source is driven by the adaptive filters to produce a signal that 

interferes with the primary disturbance source and cancels it out. Essentially, the 

control algorithm produces a signal equal magnitude and opposite phase to the 

disturbance source.  

As the coefficients of the adaptive filters are tuned to minimise the signal at the 

location of the error sensor the feedforward algorithm is considered as a local system. 

Thus, the algorithm does not guarantee that the global response is minimised or that 

in some areas the response is not amplified. Furthermore, the feedforward control 

provides good control performance for tonal or stationary stochastic disturbances 

that can be measured in advance. Beside of these drawbacks, the feedforward control 

strategy presents several advantages over the feedback systems. Unlike the feedback 

systems, the feedforward systems are more robust to phase lag effects in the control 
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system. Additionally, the use of the reference signal does not require the model of the 

system but only the adaptation process [23].  

Feedforward controllers are widely used in applications for which the reference 

signal can be obtained in advance to overcome any delays caused by the signal 

processing in the adaptive filter. Practically, the sensor must be placed far enough to 

provide enough early in time the reference signal, to guarantee the necessary 

processing delay of the controller.  

Often in case of periodic disturbance signals, instead of using the reference sensor 

the signal can be obtained directly from the machine that produces the disturbance, 

for example with a tachometer mounted on a rotating machine [29]. 

 

1.1.2 Feedback control  

A feedback control system relies on an error signal and control actuator such that 

the error signal is fed back to the actuator via a controller. In theory to implement an 

active control system, it is necessary to model exact inverse of the plant with the 

condition that both, the plant and the controller are unconditionally stable. 

Unfortunately, the properties of the plant change due to the external disturbances that 

are never known. Thus, the main four reasons for using the feedback control are: 

- unknown disturbances, 

- plant model uncertainties, 

- little knowledge of the system, 

- instability of the plant. 

The main difference that distinguish a feedback control architecture from a 

feedforward control architecture is that there is no need for a reference sensor to give 

enough in advance information about the primary disturbance. The feedback control 

is mainly used in systems where there are several disturbances or when the primary 

disturbance cannot be directly observed [29]. In order to benefit from feedback 

control, high feedback gains are normally required to obtain the inverse of the plant 

without the need of the exact model. However, the main limitation is the instability, 

which can be induced by high feedback gains mainly at high frequencies. For this 

reason, the feedback systems are principally suited for control in limited range of 

frequencies [31].  

One of the most commonly used technique for the active vibration control is the 

direct velocity feedback system [32]. This technique incorporates a collocated sensor-
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actuator pair to increase the effective damping in the system, while keeping the 

natural frequencies, of the controlled structure, substantially unchanged. The sensor-

actuator pair collocation arrangement guaranties observability and controllability of 

the system. Ideally the system is equipped with a velocity sensor collocated with a 

point force actuator or equivalently with an angular velocity sensor collocated with a 

torque motor. Several studies on the velocity feedback control applications can be 

found in following references [33], [34]. 

Recent studies has shown that when the control gains of velocity feedback loops 

are adjusted to minimise the kinetic energy of the controlled structure the power 

absorbed by feedback loops is then maximised [34]–[38]. Thus, the electromechanical 

transducers can be used to absorb power from the structure. The collocation and 

duality of the sensor and transducer facilitates the vibration energy harvesting, which 

instead of being wasted could be used to operate the control unit itself. In particular, 

it could be used to operate a local tuning device that sets the feedback control gain to 

reduce the overall vibration of the structure where it is mounted [39]. 

Several studies were performed on the active vibration control of lightly damped 

thin two-dimensional structures, where the inertial actuators were used to reduce the 

flexural deflections of the structure [33], [40]–[42]. Direct velocity feedback control is 

widely used to increase the damping effect in the system and to reduce the amplitude 

of the resonance peaks of the structure. However more complex, techniques can be 

used depending on the required control purpose, as for example reduction of sound 

radiation through the structure [27], [43].  

 

1.1.3 Noise and vibration active control applications 

Noise and vibration control is a challenging problem in many sectors of industry. 

Especially vehicles production sector focuses on the noise and vibration control. The 

studies on the noise and vibration control in the aircrafts started in the mid 40s 

however, the active control was not exploited until beginning of 80s both in propeller 

and in turbofan aircrafts [14]. Several studies were done on the active control starting 

from the ground tests to flight tests and finally to implementation on a commercial 

aircraft [13]. In the similarly period, the car industry started to take a particular look 

on an active suspension system. Several solutions were incorporated for the active 

suspension control using hydraulic systems and electromagnetic actuators [44]. 
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The wide area of interest in active control is presented in noise and vibration 

cancelation in the ventilation ducts. The decentralised feedback is used to reduce 

structure-borne noise radiated by the duct wall [18].  

 

1.2  TRANSDUCERS FOR VIBRA TION CONTROL  

This section presents a review of recent work on various transducers for active 

vibration control of thin flexural structures. Typically, in smart structures the 

electromechanical transducers are used, which work as electromechanical energy 

converters. Indeed transducers can transform vibration energy into electrical energy 

that is stored (energy harvesting) or dissipated via an electrical shunt [45]–[47]. 

Alternatively, the electrical energy can be transformed by transducers to produce 

motion or control forces (actuators) [28]. Electromechanical actuators present several 

advantages over other types of actuators, for example: 

- they are more ecological friendly than the hydraulic pistons that typically 

suffer from a leakage of the hydraulic fluids,  

- they are compact and easy to adapt in the smart structures,  

- they can be easily scalable to improve the performance of the vibration control 

system, 

- they require low maintenance, 

- they can be simultaneously used for energy harvesting applications, 

- they can be adopted in the harsh environments (do not freeze in low 

temperatures),  

- they are easy to control as the electrical signal can be simply modified and 

processed with dedicated electronics. 

There are two mayor types of electromechanical transducers commonly used in 

active vibration and noise control systems. First, the electromagnetic actuators that 

are based on the Lorenz force principle. Typically, they are used as proof mass 

actuators, where the inertial mass produces the so called sky hook force effect above 

the fundamental resonance frequency of the system. Second, the piezoelectric patches 

and stacks, which, thanks to the inverse piezoelectric effect produce relative 

displacement when the electrical field is applied to the electrodes. Typically, these 

type of transducers are used as reactive actuators in the form of patches attached to 

the thin flexural plates. Alternatively, they can also be used as stacks reacting between 

two mechanical components. 
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This section describes both types of transducers used in the active vibration and 

noise control systems. 

 

1.2.1 Electromagnetic transducers 

Electromagnetic (EM) inertial actuators also known as proof mass actuators or 

reaction mass actuators have been widely used to implement feedback control loops 

for the control of flexural vibrations of distributed structures [33], [48]–[65]. The 

classical proof mass actuators for feedback control systems [28], [66], [67] incorporate 

a voice coil actuator, which is composed by a cylindrical magnetic element, 

suspension system and a coil armature [68]. Typically, the magnetic element  

is mounted via soft springs in an inner cylindrical cut that hosts the coil. Figure 1.1 

shows two types of inertial actuator assembly commonly implemented in practical 

applications. In the first, the coil armature is rigidly fixed to the actuator base and the 

moving magnet is suspended to the actuator base via soft springs (Figure 1.1a). 

Instead, in the second, the magnet is joined to the actuator base while the coil 

armature is suspended to the base by soft springs (Figure 1.1b).  

 

 

Figure 1.1. Two types of inertial actuator assembly implemented in practical 

applications, with the coil armature rigidly fixed to the base (a), or with the magnet 

fixed to the base (b).  

 

In both configurations, when current is applied to the coil placed in the magnetic 

field generated by the permanent magnet both components experience the Lorentz 

force. The force effect produced between the coil and the magnet is proportional to 

the applied current, the magnetic flux and the wire length of the coil [69]. Thus, when 

current flows through the coil, a reactive force is produced between the coil and the 

magnet, which sets into relative motion both components. The force applied either to 
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the moving magnet or to the armature-coil is thus balanced by the inertia effect due 

to the acceleration experienced by the inertial mass elements. As a result, a net force 

is generated on the actuator base, which, at frequencies below the fundamental 

resonance frequency of the springs–inertial mass assembly, grows proportionally 

with frequency and is out of phase with the driving current, while at higher 

frequencies, is constant and in phase with the driving current [70]. Thus, when this 

actuator is used to implement a negative velocity feedback to mimic a sky-hook 

damper, at frequencies below the fundamental resonance frequency, the feedback 

loop essentially produces a positive velocity feedback effect that is a negative 

damping effect, which leads to instability. It is therefore vitally important the 

fundamental resonance frequency of the actuator is kept as low as possible and the 

amplitude of the resonance peak is also the minimum possible. However, this 

solution tends to increase the static displacement of the inertial mass, which, in 

presence of shocks, may hit the actuator end stops and trigger instability effects. This 

study is focused on a design of a new EM proof mass actuator with both low 

fundamental resonance frequency and low static deflection of the inertial mass. 

The proposed actuators are foreseen for several control applications. For example, 

vibro-acoustic control of thin lightweight panels of transportation vehicles (cars, 

trains, aircraft, etc.) and vibration control of relatively small scale machines (domestic 

appliances, car engines, manufacturing equipment and machines). Also, vibration 

control of heavy plate and beam framework structures of industrial plants and 

buildings, and seismic vibration of relatively large machineries (marine engines, 

agricultural machinery, industrial plants, etc.) [71], [72].  

The designed actuators could be used in the active vibration control systems, 

which are typically composed by a proof mass actuator and inertial accelerometer 

placed at the base footprint of the actuator. The integrated accelerometer signal  

is amplified with the operational amplifier and send to the proof mass actuator. 

Although the active control system works locally by reducing the vibrations of the 

structure, the global effects have influence on the feedback loop. Beside of measuring 

vibrations of the structure at the control position, the inertial sensor also detects 

accelerations of the entire structure. As discussed in the previous paragraph, to obtain 

the best control performance of the feedback loop at the control position, the error 

signals must be send to the proof mass actuator with highest stable gain. Thus, in case 

of any unexpected shocks or sudden fast movements of the hosting structure, the 

amplified error signal that is send to the proof mass actuator can exceed the working 
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limit conditions and thus destroy the vibration control system. Some of the examples 

of such situations are:  

 Turbulences and shocks during landing of the aircraft. 

 High tides of the rough sea hitting the ship hull. 

 Shocks during the spacecraft or satellite take off.  

 Bumpy road during driving a car. 

Thus, in practical applications the error signals should not be send to the proof mass 

actuator with the highest stable gain. 

Finally, despite the thesis considers a voice coil transducer, several other 

transduction technologies and materials could be employed. For instance, 

electrostatic transducers could be used, which however are more suited for 

microscopic systems due to very high operating voltages. Alternatively 

magnetostrictive or moving iron transducers could be directly employed [73]. 

However, the force reversibility in the voice coil actuators, considered in this study, 

is an advantage over the other transducer configurations and highly required in the 

feedback control systems.  

 

1.2.2 Piezoelectric transducers 

As mentioned in the previous paragraph, for feedback control systems the 

electromagnetic inertial actuator provides point force by means of inertial mass 

suspended on soft springs [56], [57]. However, this type of actuator presents several 

disadvantages. Firstly, the produced force strongly depends on the size and the 

weight of the inertial mass causing the actuator to be heavy and bulky. Several scaling 

studies show that the downsizing of the electromagnetic actuator reduces its ability 

to produce significant amount of control forces [54], [74]. Thus, this type of inertial 

actuator is not ideal for working in small and confined spaces. Secondly, the low 

fundamental resonance frequency and high static displacement of the suspended 

inertial mass causes velocity feedback loops with high control gains to go unstable in 

case of shocks and high movements of the hosting structure [75]. Finally, the magnetic 

flux generated by the electromagnetic transducer can propagate in ferrite materials of 

the hosting structure, like steel plates or bars and can interfere with the working 

conditions of the control electronics.  

An alternative group of transducers widely used for vibration control systems are 

piezoelectric transducers. Piezoelectric materials present several advantages over 
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electromagnetic transducers. The compact dimensions and high force density makes 

them perfect for use in the smart structures. Additionally, due to the capacitive 

electrical effect, they use much less power compared to the EM actuators, especially 

when they are driven with switching amplifiers. Several studies have been conducted 

on the switching amplifiers with power recovery system dedicated for the 

piezoelectric actuators. Vibration control system equipped with piezoelectric 

actuators driven by switching amplifiers could present very high efficiency [76], [77].  

Several studies were done on thin piezoelectric patch transducers that are bonded 

directly onto the surface of the controlled structure [78]–[81]. However compared to 

inertial actuators, piezoelectric patches require large surfaces to provide sufficient 

amount of control forces. Thus, these actuators are mainly dedicated to thin structures 

[79] rather than to large flexible systems as for example the truss structures. 

Alternatively, piezoelectric stack transducers connected to a proof mass can be 

used to form a point force inertial actuator. The main limitation of using these types 

of actuators to implement feedback control loops is their high fundamental resonance 

frequency, typically above several kHz [82]. As discussed before, it is crucial for the 

velocity feedback system that the fundamental resonance frequency of the inertial 

actuator is below the first resonance frequency of the hosting structure so that the 

inertial actuator could produce a constant forces effect, which is in phase with the 

driving signal.  

Another main disadvantage of piezoelectric stack actuators is their small stroke 

[83]. Hence, to use the piezoelectric materials for the inertial actuators they would 

require an amplification mechanism to generate the strokes necessary to produce 

significant force level. Several commercially available solutions were proposed to 

overcome this limitation.  

Amplified piezoelectric actuator present several appealing properties for the 

realisation of inertial actuators [25], [84]. This transducer can provide large 

displacements, and thus accelerations, of the proof mass, which are required to 

generate sufficient amount of base forces necessary for the implementation of velocity 

feedback control loops [77]. To meet the requirement of low resonance frequency, the 

actuator needs to be equipped with a heavy proof mass. However, this solution tends 

to increase the static displacement of the inertial mass. Hence, in case the actuator  

is exposed to shocks, the piezoelectric stack transducer would undergo large 

deformations, which may lead to cracks of the ceramics and eventually to instability 

of the control system.  
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This study is also focused on a design of a new piezoelectric proof mass actuator 

with both low fundamental resonance frequency and low static deflection of the 

inertial mass. 

 

1.2.3 Scaling of the transducers 

Small electromechanical transducers for smart structures present several 

advantages over the macroscale mechanisms. By integrating control circuits with 

sensors they can be used to form compact control system [85]. Additionally, different 

transduction technologies and materials can be employed for the implementation of 

feedback control system to reduce flexural vibrations in distributed structures. 

However, physical and mechanical properties of the materials determine which 

solution is more suited for a specific type of application. A proper scaling study of the 

transducer properties can improve the performance of the feedback control loops [54], 

[55].  

The main aim of this study is to increase the control force and minimise the total 

weight of the transducers. Different studies showed that decentralised multiple-input 

multiple-output (MIMO) control systems produce higher vibration reductions 

compared to single-input single-output (SISO) systems [33], [86]. Thus, the scaling 

study is crucial when multiple actuators are used on lightweight structures. Actuator 

scaling may improve the stability of the feedback loop by reducing the actuator static 

deflection and thus reducing stroke saturation effects, which may lead to instability 

when the system is affected by shocks or fast movements of the hosting structure. 

Thus, it is very important to take into consideration the scaling laws during the design 

process of the actuator [87], [88]. 

The biggest advantage of the velocity feedback control is that it requires little 

knowledge about the system. However, to improve its performance it is important to 

take a particular care about the scaling of the crucial mechanical and physical 

parameters. As for example transducer type, size, sensor-actuator pair sensitivity, 

maximum feedback gain signals, etc. The scale of the actuator also plays a key role on 

the selection of the transduction technology. For example, electrostatic transducers 

are better suited for small scale applications, while electro-magnetic transducers 

works better on large scale devices. An exhaustive overview of the principal scaling 

laws of electro-mechanical systems and of the principal transduction materials and 

technologies can be found in following references [74], [87]–[89]. 
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1.2.4 Vibration energy harvesting 

The inertial transducers besides of being used as actuators for the active vibration 

control applications can be also used as energy harvesters [39]. The two most popular 

transducers for the energy harvesting applications are the piezoelectric [47], [90] and 

electromagnetic transducers [46], [91]. The main purpose of vibration energy 

harvesting is to develop self-powered devices, which are capable of transforming 

mechanical energy into electrical energy using transducers, store the electrical energy 

in batteries and finally, to use the stored energy to power small electrical circuits.  

The vibration control systems can be easily adopted to harvest energy from 

ambient vibrations. The stored power can used to power the sensors or control 

circuits, which can be used for condition monitoring of the machine components, data 

transmission or secondary control operations. Moreover, besides of the harvested 

power used for the condition monitoring sensors, the vibration amplitude and thus 

generated by the transducer electrical power can be a good estimator of the machine 

components damage or wear. The sensor-transducer pair typically used for the active 

vibration control applications can be easily adopted for vibration energy harvesting. 

The sensor is used to detect tonal disturbances at the fundamental resonance 

frequency of the transducer where the vibration energy absorption can be maximised. 

Moreover, the ambient vibration energy is typically higher at lower frequencies. 

Thus, low fundamental resonance of the inertial transducer can improve the 

effectiveness of both, the vibration control loop by reducing the spillover effect and 

the vibration energy harvesting by operating at lower frequencies and maximising 

harvested power.  

The inertial transducers present several advantages for the vibration energy 

harvesting applications. The inertial transducers do not require additional structure 

react off. Can be compact and installed in the confined spaces where there is little 

access from outside. Finally, can operate in harsh environments [77].  

Although this thesis concentrates on the active vibration control applications, the 

final chapter shortly discusses the possible use of the designed flywheel inertial 

transducer for the vibration energy harvesting applications.  
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1.3  STABILITY 

To guarantee good performance of a control system requires knowledge, both 

about the plant response and about the disturbance. In particular one of the main 

aspects for the design and implementation velocity feedback control is the stability of 

the control loop [32], [92]. Open loop frequency response function (FRF) of the sensor-

actuator pair can be plotted in the complex plane to assess the system stability via the 

Nyquist criterion [40], [53], [68], [93], [94]. In general, a system is considered 

unconditionally stable if and only if all poles of the open loop transfer function is in 

the right half of the plane. The Nyquist stability criterion gives an information about 

the conditional stability and thus the maximum feedback control [23], [29], [95].  

When the inertial actuator is used to implement a negative velocity feedback, to 

reduce the flexural deflection of a thin plate structure the dynamic response and the 

static deflection of the proof mass transducer cause stability and control performance 

limitations. At frequencies below the fundamental resonance frequency of the 

transducer, the produced net force at the actuator base, grows proportionally with 

frequency and has opposite phase with the driving signal. Thus, the feedback loop 

essentially produces a positive velocity feedback effect that is a negative damping 

effect, which leads to instability. Only above the fundamental resonance frequency of 

the transducer, the produced net force at the actuator base is constant and in phase 

with the driving current. Therefore, when the inertial transducer is used to implement 

a direct velocity feedback, it is important that its fundamental resonance frequency is 

as low as possible. By reducing amplitude of the resonant response of the actuator 

and lowering its fundamental resonance frequency the poles in the left half of the 

complex plane of the sensor-actuator pair open loop FRF tend to be farther from the 

imaginary axis that defines the instability limit. Therefore higher stable control gains 

can be applied to the feedback system such that its performance is increased. 

Increasing inertial mass and lowering fundamental resonance tends to increase the 

static displacement of the inertial mass, which, in presence of shock, may hit the 

actuator end stops and trigger instability effects [75], [96]–[100]. Thus, one of the key 

parameters that characterises the inertial actuators for vibration control with negative 

velocity feedback control is the static deflection that defines the robustness and ability 

to withstand shocks. 

Several solutions have been proposed to improve the robustness of the inertial 

actuators for the negative velocity feedback control. A series of studies has been 
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performed to implement within the actuator either a relative displacement, or a 

relative velocity or a force feedback loop [101]–[104]. 

Alternatively, it was proposed to implement in the velocity feedback loop an active 

controller that would compensates the dynamics of the springs-inertial mass 

assembly [105], [106]. 

Another group of techniques for active vibration control are based on the positive 

position feedback [107], [108] as for example the modal positive position feedback 

[109], [110] that uses the positive feedback of the position signals with the first – order 

filters to reduce the vibrations of the undamped structures. Moreover, the 

combination the position and velocity feedback control was investigated [111]. The 

use blended velocity feedback performance and stability was investigation of the 

vibration attenuation in two degree of freedom system [112].  

An ideal solution would be to design of a new proof mass actuator with both low 

fundamental resonance frequency and low static deflection to improve stability of the 

feedback loops and robustness to shocks of the hosting structure. 

 

1.4  INERTER AND THE FLYWHEEL ELEMENT 

The first use of the flywheel element in the shock and impact reduction mechanism 

was presented in late 90s in a road barrier prototype called as energy accumulation 

and diffusion converter (EADC) [113]. The main feature of this barrier was the ability 

to absorb the impact of the approaching vehicle and convert it into rotational motion 

of the flywheels. The energy of the impact was converted, stored and slowly 

dissipated inside the spinning flywheels. The experimental tests showed the impact 

of the vehicle can be easily absorbed by the EADC mechanism without damaging car 

exterior bodywork. 

Another use of the flywheel element for the vibration control was presented with 

a new mechanical element called “inerter”, which derived directly from the electro-

mechanical analogy [114], [115]. The inerter was defined as a two terminal mechanical 

device with the property that the opposite and equal force applied to terminals is 

proportional to the relative acceleration between the terminals. The constant of 

proportionality that defined the inerter was called the inertance and it was 

characterised in mass units [kg]. The operation of the inerter was based on the 

mechanism that could transform the relative linear motion at the terminals into 

rotational motion of the flywheel element mounted inside the device. Therefore, the 
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inertance produced at the terminals of the device does not directly depends on the 

weight but on the flywheel moment of inertia.  

Two full size prototypes were build, where one of them was using the pinion-rack 

mechanism while the other the ballscrew mechanism to transform the linear motion 

into rotation of the flywheel [116], [117]. A practical solution for the formula one cars 

was built based on the inerter mechanism and it was named as J-damper [118]. The 

experimental tests of the prototypes showed several advantages of the inerter that are 

appealing for the vibration control applications. However, the fabricated prototypes 

typically are heavy, bulky and designed for large relative displacements, which 

exclude them for vibration control of large flexible structures [119].  

In recent year several studies have shown that inerter devices can improve the 

stability and the performance of the velocity feedback control loops [120], [121]. 

Extensive theoretical studies have been carried out on the implementation of the 

inerter in the tuned vibration absorbers [122]–[124], covering wide variety of 

applications. From the vibration control of several stories building [125], [126], bridge 

cables [127], beam structures [128], sculptures [129] to vehicle suspension systems 

[130]–[133]. Also some studies were dedicated to the energy harvesting using tuned 

mass-damper [134].  

However, these studies considered only an idealised inerter element, which 

neglects the weight of the components. Additionally, the stiffness and damping 

effects of the gearing mechanisms that convert axial relative motion at the terminals 

of the inerter into angular motion of the flywheels are also neglected. 

The inerter element present appealing properties for practical implementation in 

inertial actuators for the active vibration control application. The inerter can be used 

to increase the inertia of the proof mass and thus to lower fundamental resonance 

frequency of the actuator, while keeping low static deflection small, which is crucial 

in case of shocks of the hosting structure. 

 

1.5  SCOPE AND OBJECTIVE OF THE THESIS  

The objective of this thesis is to investigate the use of rotational inertial 

electromechanical actuators for the implementation of velocity feedback loops that 

control broadband vibration of thin plate and shell structures. In the proposed 

research, the actuator is used to produce constant force effect proportional to the local 

velocity at the control position. The control unit is equipped with a rotational element 
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that can be used to augment the inertia effect of the suspended mass element. This 

could improve the stability of velocity feedback loops by reducing the static deflection 

of the proof mass actuator and thus reducing stroke saturation effects in case of 

shocks or fast movements of the hosting structure. Additionally, by increasing the 

inertia effect, and thus lowering the fundamental resonance frequency of the control 

unit, the extent of the out-of-phase force excitation effect, which tends to destabilise 

the velocity feedback loops is reduced. This control unit should also be much more 

compact and lightweight than ordinary units with axial inertial actuators.  

Another advantage of using rotational element could be cost reduction of the 

typical linear actuator. In the classical configuration, the flexures or linear flexural 

bearings are relatively expensive to fabricate. Thus, the proposed solution could 

lower the costs of the control unit. 

 Furthermore, the collocation and duality of the sensor and actuator transducers 

facilitates the harvesting of vibration energy, which instead of being wasted can be 

used to operate the control unit itself. In particular, it can be used to operate a local 

tuning device that sets the feedback control gain to reduce the overall vibration of the 

structure where it is mounted. 

 

1.6  CONTRIBUTIONS OF THE THESIS  

The novel contributions of this thesis are: 

- A lumped parameter model of an inertial electromagnetic actuator equipped 

with a flywheel and gearing mechanism to transform axial to rotational 

motion.  

- Detailed guidelines for designing new inertial actuator that incorporates 

“inerter” element for the decentralised velocity feedback control on a thin 

structures.  

- A practical solution for transforming the oscillatory linear motion of classical 

inertial actuator into rotational motion of the flywheel element without play 

and backlash between the components. 

- A practical solution for suspending the flywheel element in an inertial actuator 

that could provide soft torsional motion while keeping the element rigidly in 

the axial directions. 
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- A summary on the practical possibility of using other actuation method in the 

inertial actuators rather than the commonly used electromagnetic effect for the 

decentralised velocity feedback applications.  

- Experimental validation of the stability and control performance of 

decentralised velocity feedback control on a thin rectangular panel with the 

inertial actuator, which incorporates the proposed flywheel element.  

- Theoretical and experimental investigation of using the inertial transducer 

with flywheel element for vibration energy harvesting.  

 

1.7  STRUCTURE OF THE THESIS  

The thesis is organised in seven chapters. 

Chapter two presents the theoretical analysis based on simulations results of active 

vibration control using classical and four configurations of the proposed flywheel 

electromagnetic actuator. Firstly, the electro-mechanical properties of the actuators 

are introduced. Secondly, the performance of the point velocity feedback loops using 

classical and four new flywheel actuators is assessed. A parametric and scaling study 

that gives basic guidelines for designing flywheel prototypes is presented in the final 

section of this chapter.  

Chapter three of the thesis presents the design process and experimental results of 

testing two flywheel prototypes. In this chapter, two mayor problems of flywheel 

integration in the compact linear actuators are investigated. Firstly, the design of a 

frictionless mechanism without backlash and wear that can be used to support the 

flywheel element is investigated. Secondly, the design of a mechanism that can 

transform the linear motion of the actuator into rotational motion of a flywheel 

element is presented. The two prototypes are designed based on a commercially 

available linear electromagnetic actuator. The electromechanical properties of the 

classical and flywheel configurations are compared based on measurements of the 

frequency response functions that characterise the inertial actuators. Then, the 

experimental results are contrasted with the numerical simulation obtained from a 

simplified lumped parameter model of the inertial actuators.  

Chapter four presents the design and experimental results performed on a 

flywheel inertial prototype using a piezoelectric stack actuator. The piezoelectric 

stack actuators present several advantages over the electromagnetic actuators that  

are briefly sumarised in this chapter. The electro-mechanical properties of the 
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fabricated prototype are measured and compared with numerical results obtained 

from a simplified lumped parameter model of the actuator.  

Chapter five of the thesis presents the experimental implementation of the velocity 

feedback control using a classical and the proposed flywheel actuator to reduce the 

flexural vibrations of the thin rectangular plate. The stability of the velocity feedback 

loops is assessed based on the actuator-sensor open loop frequency response function. 

Finally, the performance of the feedback loops is assessed based on the total flexural 

kinetic energy of the plate.  

Chapter six of the thesis presents a study on the effectiveness of the flywheel 

prototype for a vibration energy harvesting. The experimental results are contrasted 

with the numerical simulations for the inertial transducer connected to a purely 

resistive load. 

Chapter seven presents general conclusions of this thesis and presents new ideas 

for future work.  
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V E L O C I T Y  F E E D B A C K  W I T H  F L Y W H E E L  

A C T U A T O R  

This chapter presents the theoretical study on the use of electromagnetic actuators 

for the implementation of velocity feedback loops used to control the vibration of 

distributed flexural structures. The investigated actuators are based on a classical 

proof mass actuator designs with an additional inerter [114] element that increases 

the inertia effect of the proof mass. This chapter considers the effective weight and 

dynamics effects of an inerter element composed by a single flywheel, which is either 

pinned or hinged to the base mass or to the proof mass of the actuator. Four new 

flywheel proof mass actuators are presented and evaluated in his study. The aim of 

these new designs is twofold. Firstly, to lower the fundamental resonance frequency 

of the springs-proof mass system in such a way as to minimise the out-of-phase force 

excitation effect, which tends to destabilise the velocity feedback loop. Secondly, to 

reduce the static deflection of the proof mass actuator and thus reducing stroke 

saturation effects, which also lead to instability when the system is affected by shocks 

or fast movements of the hosting machine or flexible structure. This chapter also 

presents a simulation study on the stability and control performance properties when 

velocity feedback loops using the four proof mass actuators with flywheel element 

are implemented on a thin plate structure to reduce the flexural vibration at low 

frequencies. Finally, a parametric study is introduced to provide basic guidelines for 

the design and practical realisation of the proposed flywheel proof mass actuators 

and on the effective implementation of velocity feedback loop with these actuators. 

The aim of the scaling study is to improve the performance of the velocity feedback 

control loops, both by increasing the control force and by minimizing the total weight, 

which is crucial when multiple actuators are used on lightweight structures. Actuator 

scaling may improve the stability of the feedback loop by reducing the actuator static 

deflection and thus reducing stroke saturation effects, which may lead to instability 

when the system is affected by shocks or fast movements of the hosting structure. 

Thus, it is very important to take into consideration the scaling laws during the design 

process of the actuator 
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This chapter is structured in five sections. First section introduces the four 

proposed flywheel proof mass actuators and the lumped parameter models of the 

classical and proposed flywheel proof mass actuators. Section two introduces the 

lumped parameter model used to study the flexural response of a simply supported 

thin rectangular plate hosting structure, which is excited by an acoustic plane wave 

and is equipped with a velocity feedback loop using the classical and proposed 

flywheel inertial actuators. Section three introduces the mobility-impedance 

formulation used to study the response of the actuators and of the velocity feedback 

loops. Section four investigates the dynamic and kinematic properties of the classical 

and proposed flywheel proof mass actuators; i.e. the actuators base impedance, 

blocked force, proof mass stroke, electrical impedance. Section five contrasts the 

stability analyses of point velocity feedback loops using four new flywheel proof 

mass actuators. Section six presents the control performance of the implemented 

velocity feedback loops using either the classical or the proposed flywheel proof mass 

actuators. Finally, section seven presents a parametric study on the performance, 

static deflection and scaling of the inertial actuators.  

 

2.1  FLYWHEEL INERTIAL TRANSDUCERS  

The classical proof mass actuator considered in this study is formed by a 

cylindrical magnetic element with an inner cylindrical gap where a coil is housed [28], 

[31], [56], [67], [68]. The coil armature is firmly fixed to the base of the actuator.  

Instead, the magnet element is connected to the base via soft elastic springs. The new 

actuators, shown in Figure 2.1, are characterised by an additional flywheel element, 

which is either hinged or pinned by a soft torsional spring to the actuator base or to 

the proof mass of the actuator. The flywheel is also connected respectively to either 

the proof mass or the base of the actuator via a pinion-rack gear mechanism such that 

the small axial relative oscillation between the base and the moving proof mass of the 

actuator is converted into an angular oscillation of the flywheel.  

Although two configurations are presented in this study, several other 

configurations can be foreseen to hold the flywheel and to convert the axial 

oscillations between the base and proof mass into angular oscillations of the flywheel. 

For instance, if the flywheel element is hinged, a simple bushing-shaft or a ball 

bearing-shaft could be used. Instead, in the pinned case a flexible torsional shaft or 

flexural bearings could be used. The axial oscillations between the actuator base and 
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proof mass can be converted into angular oscillation of the flywheel with a pinion-

rack or a ball-screw gear system or, alternatively, with metal or plastic flexural hinges. 

The flywheel axis of rotation can be oriented in axial direction or transverse 

depending on the mechanism chosen to convert relative axial oscillations into 

rotational motion and the mounting solution chosen to hold the flywheel element.  

When dealing with the practical design and fabrication of the proposed flywheel 

actuators, the choice amongst the constructive solutions described above strongly 

depends on the scale of the actuator. For instance, with small scale actuators, which 

are therefore characterised by small strokes and small forces, it may be favourable to 

pin the flywheel to the base with flexible shafts or flexural bearings and to use flexural 

hinges with flexible linkages to convert the axial oscillations to angular oscillations of 

the flywheel element. Beside practical limitations due to the fabrication of 

miniaturised components, bushing-shaft and ball bearing-shaft assemblies are very 

sensitive to stick-slip non-linear phenomena while pinion-rack and ball-screw 

gearing systems are prone to non-linear gear-meshing effects, all of which may 

disrupt the correct functioning of the actuator. The non-linear effect can appear 

especially in the gearing mechanism when the backlash between the pinion element 

and the rack would be larger than the small relative oscillations between the actuator 

base and the proof mass. However, with large-scale actuators, which are 

characterised by large strokes such that stick-slip and gear-meshing effects are less 

important, a setup with bushing-shaft or a ball bearing assembly to hold the flywheel 

and pinion-rack or a ball-screw gearing systems to convert the axial to angular motion 

may be preferable, as presented in [116], [117], since flexible joints and linkages may 

give rise to undesirable non-linear elastic effects. In fact, the combination of large 

strokes and large forces could lead to fatigue damage of the flexural hinges.  

Figure 2.1 shows the lumped parameter models that have been used to describe 

the electro-mechanical response of the classical proof mass actuator (Figure 2.1a), 

which has been taken as a reference system, and the proposed four proof mass 

actuators, which are equipped with a flywheel hinged to the base (Figure 2.1b), 

pinned to the base (Figure 2.1c), hinged to the proof mass (Figure 2.1d) and pinned to 

the proof mass (Figure 2.1e). As shown in Figure 2.1a, the classical actuator is 

described with a proof mass 𝑀𝑎, which is connected to the base mass 𝑚𝑏 via a flexible 

mount modelled by a spring and a damper in parallel having stiffness 𝑘 and damping 

factor 𝑐 respectively. The coil – magnet transduction effect is modelled in terms of a 

reactive actuator, with transduction coefficient 𝜓𝑎 that produces a force 𝐹𝑎 

proportional to the current flowing in the coil 𝑖𝑎, and a voltage source 𝑢𝑎, with the 
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same transduction coefficient 𝜓𝑎, which produces the so called back electromotive 

force (BMF), 𝑢𝑏𝑚𝑓, proportional to the relative velocity between the proof mass and 

base mass elements �̇�𝑚 − �̇�𝑏. The proposed actuators shown in Figure 2.1b-e  

are based on the same model of the classical proof mass actuator. Where, the flywheel 

element mass 𝑚𝑤 is attached either to the base mass 𝑚𝑏 or to the proof mass 𝑀𝑤 such 

that 𝑀𝑤 + 𝑚𝑤 = 𝑀𝑎. The torsional spring (only for the pinned flywheel cases shown 

in Figure 2.1c and Figure 2.1e) is characterised with angular stiffness coefficient 𝑘𝑤 

and torsional damper (only for the hinged flywheel cases shown in Figure 2.1b and 

Figure 2.1d) is characterised with  angular damping coefficient 𝑐𝑤. Finally, the 

flywheel element is characterised by polar moment of inertia 𝐼𝑤 with the external 

radius 𝑅𝑤 of the flywheel and the radius 𝑟𝑤 of the pinion rack gear mechanism that 

converts the axial relative motion between the proof mass and base mass into angular 

motion of the flywheel.  

 

 

Figure 2.1. Schemes of the proof mass actuators (a) without flywheel (classical 

configuration), (b) with hinged flywheel attached to the case, (c) with pinned flywheel 

attached to the case, (d) with hinged flywheel attached to the proof mass, (e) with 

pinned flywheel attached to the proof mass (𝑀𝑎 = 𝑀𝑤 + 𝑚𝑤). 
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The parameters of the actuators, which are summarised in Table 2.1, were set with 

reference to the geometry and physical properties of the thin rectangular plate hosting 

structure considered in this study, which are summarised in Table 2.2. It was decided 

that the total mass of actuator has to be below 10% of the mass of the plate and, at the 

same time, the mass of the actuator case has to be less than 10% of the total actuator 

mass. Also it was decided that the combined proof mass 𝑀𝑤 and flywheel mass 𝑚𝑤 of 

the proposed actuators should correspond to the proof mass of the classical actuator, 

i.e. 𝑀𝑤 + 𝑚𝑤 = 𝑀𝑎. The stiffness of the proof mass axial suspension system  

was adjusted in such a way as to set the fundamental resonance frequency for the 

axial oscillations of the elastically suspended proof mass without flywheel element at 

about 20 Hz. The flywheel element is considered as a solid thin cylinder with outer 

radius 𝑅𝑤. The flywheel is either pinned or hinged to the actuator case or to the proof 

mass via a tiny shaft. Also, the flywheel is connected via an idealised gear mechanism 

characterised by a pinion gear of particularly small radius 𝑟𝑤, which magnifies the 

amplitude of the angular oscillation of the flywheel and thus its inertia effect. The 

electro–mechanical transduction coefficient has been chosen considering typical 

values of small scale coil–magnet transducers that can be found in practical 

applications [53], [54], [56], [57]. 

 

Table 2.1. Mechanical parameters of the proof mass actuators (𝑀𝑎 = 𝑀𝑤 + 𝑚𝑤). 

Parameter Value 

Case mass  𝑚𝑏 = 0.002 kg 

Proof mass classical actuator 𝑀𝑎 = 0.03 kg 

Proof mass proposed actuators 𝑀𝑤 = 0.02 kg 

Flywheel mass 𝑚𝑤 = 0.01 kg 

Axial stiffness 𝑘 = 470 Nm−1 

Axial damping ratio 𝜁 = 0.04 

Flywheel polar moment of inertia 𝐼𝑤 = 1.125 × 10−6 kgm2 

Flywheel radius 𝑅𝑤 = 0.015 m 

Flywheel pinion radius 𝑟𝑤 = 0.0015 m 

Torsional stiffness 𝑘𝑤 = 0.001 Nmrad−1 

Torsional damping ratio 𝜁𝑤 = 0.01 

Transduction coefficient  𝜓𝑎 = 2.6 NA−1 

Coil resistance 𝑅 = 2 Ω 

Coil inductance 𝐿 = 5 ∙ 10−4 H 
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Table 2.2. Mechanical parameters of the thin simply supported rectangular plate. 

Parameter Value 

Length 𝑙𝑥 = 0.414 m 

Width 𝑙𝑦 = 0.314 m 

Thickness ℎ = 0.001 m 

Density 𝜌 = 2720 kgm−3 

Elastic modulus 𝐸 = 71 × 109 Nm−2 

Poisson ratio 𝜈 = 0.33 

Damping ratio 𝜁𝑠 = 0.01 

Position of the actuator (𝑥𝑐 , 𝑦𝑐) = (0.166 m , 0.126 m) 

 

2.2  PLATE WITH THE VELOCITY FEEDBACK LO OP USING FLYWHEEL 

ACTUATOR 

In this study, the control performance of the velocity feedback loops using the 

classical and the proposed flywheel proof mass actuators are investigated considering 

the flexural response of a simply supported thin rectangular plate hosting structure, 

which, as shown in Figure 2.2a, is excited by an acoustic plane wave incident at 45° 

elevation and 45° azimuthal angles. A mobility–impedance [43], [68], [135]–[137] 

electro–mechanical model [33], [53], [57] has been assembled to derive the response 

of the plate with the feedback loop using the proof mass actuators. As shown in Figure 

2.2b, the system has been divided in four parts: the flexible plate, the base mass, the 

flexible mounting system with in parallel the coil–magnet transducer, the flywheel 

element, and the proof mass. Here 𝐹𝑐 and 𝐹𝑏 represent the forces exerted on the plate 

respectively by the bottom end of the flexible mounting system with in parallel the 

flywheel and coil–magnet transducer and by the base mass of the actuator whereas 

𝐹𝑚 represents the force produced on the proof mass by the top end of the flexible 

mounting system with in parallel the flywheel and coil–magnet transducer. Also, �̇�𝑐 

is the velocity of the plate at the control position and the velocity at the base end of 

the flexible mounting system with in parallel the coil–magnet transducer and it is 

equal to the velocity of the base mass of the actuator, i.e. �̇�𝑐 = �̇�𝑏. Finally �̇�𝑚 is the 

velocity of the actuator proof mass and the velocity at the top end of the flexible 

mounting system with in parallel the flywheel and coil–magnet transducer. A 

detailed view of the flywheel element is given in Figure 2.2c in which the outer radius 
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of the flywheel element is defined as 𝑅𝑤 and the pinion rack gear mechanism  

is characterised by inner radius 𝑟𝑤.  

 

 

Figure 2.2. Simply supported rectangular plate with a velocity feedback loop using 

the proposed flywheel proof mass actuator (a). Mobility model (b) and detailed view 

of the flywheel element (c). 

 

2.3  MATHEMATICAL MODEL  

This section presents a frequency domain analysis based on the complex 

amplitudes 𝑔(𝜔) of time–harmonic functions given in the form 𝑔(𝑡) =

𝑅𝑒{𝑔(𝜔) exp(𝑗𝜔𝑡) }, where 𝜔 is the circular frequency and 𝑗2 = (−1).  

Considering the lumped parameter model shown in Figure 2.2b, the complex 

velocities at the connecting points between these elements have been expressed with 

the following mobility relations: 

 �̇�𝑐 = 𝑌𝑐𝑐𝐹𝑐 + 𝑌𝑐𝑏𝐹𝑏 + 𝑌𝑐𝑝𝑝 , (2.1) 

where �̇�𝑐 is the complex velocity at the control position, 

 �̇�𝑚 = 𝑌𝑚𝐹𝑚 ,  (2.2) 

where �̇�𝑚 is the complex velocity of the proof mass, 

 �̇�𝑏 = 𝑌𝑏𝑐𝐹𝑐 + 𝑌𝑏𝑏𝐹𝑏 + 𝑌𝑏𝑝𝑝 , (2.3) 

where �̇�𝑏 is the complex velocity at the base position. The complex velocities at the 

connecting points can be rewritten and expressed with the following mobility matrix 

relation:  

 [

�̇�𝑐

�̇�𝑚

�̇�𝑏

] = [

𝑌𝑐𝑐 0 𝑌𝑐𝑏

0 𝑌𝑚 0
𝑌𝑏𝑐 0 𝑌𝑏𝑏

] [

𝐹𝑐

𝐹𝑚

𝐹𝑏

] + [

𝑌𝑐𝑝

0
𝑌𝑏𝑝

] 𝑝 , (2.4) 
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where: 

 𝑌𝑚 =
1

j𝜔𝑀𝑎
   ,    𝑌𝑚 =

1

j𝜔𝑀𝑤
   ,    𝑌𝑚 =

1

j𝜔(𝑀𝑤 + 𝑚𝑤)
 (2.5) 

are the mobilities respectively for the classical actuator (Figure 2.1a), for the actuators 

with the flywheel connected to the case (Figure 2.1b,c) and for the actuators with the 

flywheel connected to the proof mass (Figure 2.1d,e). Also, 𝑌𝑐𝑐 ,  𝑌𝑐𝑏 ,  𝑌𝑏𝑐 ,  𝑌𝑏𝑏 are point 

and transfer plate mobilities, which, considering two generic points r and s of the 

plate, can be calculated with following matrix expression [68], [136], [137]: 

 𝑌𝑟𝑠(𝜔) =
�̇�𝑟(𝜔)

𝑓𝑣(𝜔)
= 𝛟T(𝑥𝑟, 𝑦𝑟)𝛀(𝜔)𝛟(𝑥𝑠, 𝑦𝑠) , (2.6) 

where �̇�𝑟(𝜔) and 𝑓𝑣(𝜔) are the complex amplitudes of the time – harmonic transverse 

velocity and transverse force acting at positions (𝑥𝑟, 𝑦𝑟) and (𝑥𝑣 , 𝑦𝑣) respectively. Also 

𝛀(𝜔) is a diagonal matrix of elements given by [68]: 

 Ω𝑛(𝜔) =
j𝜔

[𝑚𝑠(𝜔n
2 + 2j𝜁𝑠𝜔n𝜔 − 𝜔2)]

 , (2.7) 

where 𝜁𝑠 is the damping ratio, 𝑚𝑠 = 𝑙𝑦𝑙𝑥ℎ𝜌 is the mass of the plate structure and 𝜔n 

is the n-th flexural natural frequency. For simply supported plates [15]: 

 ωn = (
𝐷

𝜌ℎ
)

1
2

[(
𝑛1𝜋

𝑙𝑥
)

2

+ (
𝑛2𝜋

𝑙𝑦
)

2

] , (2.8) 

where 𝐷 = 𝐸ℎ3 [12(1 − 𝜈2)]⁄ , 𝜌, 𝐸 and 𝜈 are respectively the bending stiffness per unit 

length, density, Young’s modulus of elasticity and Poisson ratio of the plate material, 

𝑙𝑥, 𝑙𝑦, ℎ, are the dimensions and thickness of the plate and 𝑛1, 𝑛2 are the two modal 

indices for the n-th mode. Instead, for clamped plates [136]: 

ωn = (
𝐷

𝜌ℎ
)

1
2

(
𝜋

𝑙𝑥
)

2

√𝐺𝑥𝑛
4 + 𝐺𝑦𝑛

4 (
𝑙𝑥

𝑙𝑦
)

4

+ 2 (
𝑙𝑥

𝑙𝑦
)

2

[𝜈𝐻𝑥𝑛𝐻𝑦𝑛 + (1 − 𝜈)𝐽𝑥𝑛𝐽𝑦𝑛] , (2.9) 

where for first flexural natural frequency 𝐺1 = 1.506, 𝐻1 = 1.248 and 𝐽1 = 1.248. For 

the n-th mode the constants were obtained with the following expressions 𝐺𝑛 = 𝑛 +

1 2⁄ , 𝐻𝑛 = (𝑛 + 1 2⁄ )2(1 − 4 (2𝑛 + 1)𝜋⁄ ) and 𝐽𝑛 = (𝑛 + 1 2⁄ )2(1 − 4 (2𝑛 + 1)𝜋⁄ ). 

Finally 𝛟(𝑥, 𝑦) is a column vector with the flexural modal amplitudes at a given point, 

which, for the simply supported plate have been taken equal to [68]: 

 𝜙n(𝑥, 𝑦) = 2sin (
𝑛1𝜋𝑥

𝑙𝑥
) sin (

𝑛2𝜋𝑦

𝑙𝑦
) . (2.10) 
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In this study all natural frequencies up to 1.3 kHz and the respective natural modes 

have been used in the plate mobility expressions. The elements 𝑌𝑐𝑝, 𝑌𝑏𝑝 are transfer 

mobilities between the point c or b and the distributed pressure excitation produced 

by the acoustic plane wave impinging into the panel at elevation and azimuthal 

angles α=45° and β=45°, which, as discussed in reference [136] are given by: 

 𝑌𝑟𝑝(𝜔) =
�̇�𝑟(𝜔)

𝑝(𝜔)
= 𝛟T(𝑥𝑟, 𝑦𝑟)𝛀(𝜔)𝚽(𝜔) , (2.11) 

where �̇�𝑟(𝜔) and 𝑝(𝜔) are the complex amplitudes of the time – harmonic transverse 

velocity and acoustic sound pressure. Also, 𝚽(𝜔) is the complex vector with the 

modal excitation terms due to the incident plane wave, which are given by [15], [138]: 

 Φ𝑛(𝜔) = ∫ ∫ 𝜙n(𝑥, 𝑦)𝑝𝑎(𝑥, 𝑦, 𝜔)𝑑𝑥𝑑𝑦
𝑙𝑦

0

𝑙𝑥

0

 , (2.12) 

where, 𝑝𝑎(𝑥, 𝑦, 𝜔) = exp[−j(𝑘𝑥𝑥 + 𝑘𝑦𝑦)], is the complex pressure exerted on the plate 

surface by a unit amplitude incident acoustic plane wave with complex amplitude 

𝑝(𝜔). Here 𝑘𝑥 = 𝑘0 sin(α) cos(β) and 𝑘𝑦 = 𝑘0 sin(𝛼) sin(𝛽) are the flexural 

wavenumbers in x and y directions, where 𝑘0 = 𝜔 𝑐0⁄  is the acoustic wave number 

and where 𝑐0 is the speed of sound propagation in air. The integral in Equation (2.12) 

leads to the expression given by [15], [139]: 

 Φ𝑛(𝜔) = 4𝐼𝑛1𝐼𝑛2𝑙𝑥𝑙𝑦 , (2.13) 

where, if 𝑛1𝜋 ≠ ±(𝜔𝑙𝑥/𝑐0) sin𝛼 cos𝛽 and 𝑛2𝜋 ≠ ±(𝜔𝑙𝑦/𝑐0) sin𝛼 sin𝛽 the 𝐼𝑛1 and 𝐼𝑛2 

vales are given by: 

𝐼𝑛1 =
𝑛1𝜋[1 − (−1)𝑛1e−j(𝜔𝑙𝑥/𝑐0)sin(α)cos(𝛽)]

(𝑛1𝜋)2 − [(𝜔𝑙𝑥/𝑐0) sin(𝛼) cos(𝛽)]2
 , 

𝐼𝑛2 =
𝑛2𝜋 [1 − (−1)𝑛1e−j(𝜔𝑙𝑦/𝑐0)sin(𝛼)sin(𝛽)]

(𝑛2𝜋)2 − [(𝜔𝑙𝑦/𝑐0)sin(𝛼)sin(𝛽)]
2  

(2.14) 

and, if 𝑛1𝜋 = ±(𝜔𝑙𝑥/𝑐0) sin𝛼 cos𝛽 and 𝑛2𝜋 = ±(𝜔𝑙𝑦/𝑐0) sin𝛼 sin𝛽 the 𝐼𝑛1 and 𝐼𝑛2 

vales are given by: 

 𝐼𝑛1 = (j/2 )𝑠𝑔𝑛(sin𝛼 cos𝛽)    and    𝐼𝑛2 = (j/2 )𝑠𝑔𝑛(sin𝛼 sin𝛽) . (2.15) 

To simplify the formulation, Equation (2.4) is rewritten in the following compact 

form: 

 �̇� = 𝐘𝐟 + 𝐘𝑝𝑝 . (2.16) 



 

 

28 

Considering the lumped parameter model shown in Figure 2.2b, the complex forces 

at the connecting points between the elements forming the system have been 

expressed with the following mobility relations: 

 𝐹𝑐 = −𝑍𝑎�̇�𝑐 + 𝑍𝑎�̇�𝑚 + 𝜓𝑎𝑖𝑎 , (2.17) 

where 𝐹𝑐 is the complex force acting at the control position, 

 𝐹𝑚 = 𝑍𝑎�̇�𝑐 − 𝑍𝑎�̇�𝑚 − 𝜓𝑎𝑖𝑎 , (2.18) 

where 𝐹𝑚 is the complex force acting on the proof mass, 

 𝐹𝑏 = −𝑍𝑏�̇�𝑏 , (2.19) 

where 𝐹𝑏 is the complex force acting at the base position. The complex forces at the 

connecting points between the elements forming the system at hand shown in Figure 

2.2b, have been expressed with the following impedance matrix relation: 

 [

𝐹𝑐

𝐹𝑚

𝐹𝑏

] = − [

𝑍𝑎 −𝑍𝑎 0
−𝑍𝑎 𝑍𝑎 0

0 0 𝑍𝑏

] [

�̇�𝑐

�̇�𝑚

�̇�𝑏

] + [
𝜓𝑎

−𝜓𝑎

0

] 𝑖𝑎  , (2.20) 

where: 

 𝑍𝑏 = j𝜔𝑚𝑏   ,   𝑍𝑏 = j𝜔(𝑚𝑏 + 𝑚𝑤)   ,   𝑍𝑏 = j𝜔𝑚𝑏 (2.21) 

are the impedances respectively for the classical actuator (Figure 2.1a), for the 

actuators with the flywheel connected to the case (Figure 2.1b,c) and for the actuators 

with the flywheel connected to the proof mass (Figure 2.1d,e). Also the actuator 

impedance 𝑍𝑎 depends on the type of the actuator and can be defined as follows: 

 𝑍𝑎 = 𝑐 +
𝑘

j𝜔
   ,    𝑍a = 𝑐 +

𝑘

j𝜔
+ j𝜔

𝐼𝑤

𝑟𝑤
2

+
𝑐𝑤

𝑟𝑤
2

   ,    𝑍𝑎 = 𝑐 +
𝑘

j𝜔
+ j𝜔

𝐼𝑤

𝑟𝑤
2

+
𝑘𝑤

j𝜔𝑟𝑤
2
 (2.22) 

respectively for the classical actuator (Figure 2.1a), for the hinged flywheel actuator 

(Figure 2.1b,d) and for the pinned flywheel actuator (Figure 2.1c,e). In these 

expressions 𝑘 and 𝑐 are the axial stiffness and damping coefficient of the proof mass 

suspension. The damping coefficients of the proof mass suspension are calculated 

with the assumption that the damping ratio is constant for all configurations of the 

inertial actuators. Thus, for the classical proof mass actuator the damping coefficient 

is calculated with the following formula 𝑐 = 2𝜁√𝑘𝑀𝑎. For the hinged configuration 

with the flywheel connected to the case the damping coefficient is calculated with the 

following formula 𝑐 = 2𝜁√𝑘(𝑀𝑤 + 𝐼𝑤/𝑟𝑤
2), while for the pinned configuration with 

the following formula 𝑐 = 2𝜁√(𝑘 + 𝑘𝑤/𝑟𝑤
2)(𝑀𝑤 + 𝐼𝑤/𝑟𝑤

2). For the hinged 

configuration with the flywheel connected to the proof mass the damping coefficient 
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is given with the following formula 𝑐 = 2𝜁√𝑘(𝑀𝑤 + 𝑚𝑤 + 𝐼𝑤/𝑟𝑤
2), while for the 

pinned configuration with the flywheel connected to the proof mass is given by 𝑐 =

2𝜁√(𝑘 + 𝑘𝑤/𝑟𝑤
2)(𝑀𝑤 + 𝑚𝑤 + 𝐼𝑤/𝑟𝑤

2). The 𝑘𝑤 and 𝑐𝑤 are the torsional stiffness and 

damping coefficient of the flywheel shaft, where the torsional damping is given by 

𝑐𝑤 = 2𝜁𝑤𝑟𝑤
2√𝑘(𝑀𝑤 + 𝑚𝑤 + 𝐼𝑤/𝑟𝑤

2). The 𝐼𝑤 = 1

2
𝑚𝑤𝑅𝑤

2  is the polar moment of inertia of 

the flywheel disk and, as shown in Figure 2.2c, 𝑅𝑤 and 𝑟𝑤 are respectively the external 

radius of the flywheel and the radius of the pinion rack gear mechanism. The 

transduction coefficient of the coil–magnet is given by 𝜓𝑎, as specified in Table 2.1. 

For simplicity, Equation (2.20) has also been rewritten in the following compact form: 

 𝐟 = −𝐙�̇� + 𝛙𝑖𝑎 . (2.23) 

The complex voltage at the terminals of the coil shown in Figure 2.2b, have been 

expressed with the following impedance relation: 

 𝑢𝑎 = 𝑍𝑒𝑖𝑎 + 𝜓
𝑎

�̇�𝑐 − 𝜓
𝑎

�̇�𝑚 , (2.24) 

where 𝑍𝑒 is the coil electrical impedance given by: 

 𝑍𝑒 = 𝑗𝜔𝐿 + 𝑅 (2.25) 

and has also been rewritten in the following compact form: 

 𝑢𝑎 = 𝑍𝑒𝑖𝑎 + 𝛙T�̇� . (2.26) 

After substitution of Equation (2.23) into Equation (2.16), the vector with velocities 

for the current driven actuator results: 

 �̇� = 𝐪𝑖𝑎𝑖𝑎 + 𝐪𝑖𝑝𝑝 , (2.27) 

where: 

 𝐪𝑖𝑎 = (𝐈 + 𝐘𝐙)−1𝐘𝛙     ,     𝐪𝑖𝑝 = (𝐈 + 𝐘𝐙)−1𝐘𝑝 , (2.28) 

and I is a 3×3 identity matrix. Instead, rewriting Equation (2.26) and substituting it to 

Equation (2.27) the complex velocity is given: 

 �̇� = 𝐪𝑢𝑎𝑢𝑎 + 𝐪𝑢𝑝𝑝 , (2.29) 

where: 

 𝐪
𝑢𝑎

= (𝐈 + 𝐪
𝑖𝑎

1

𝑍𝑒
𝛙T)

−𝟏

𝐪
𝑖𝑎

1

𝑍𝑒
    ,     𝐪

𝑢𝑝
= (𝐈 + 𝐪

𝑖𝑎

1

𝑍𝑒
𝛙T)

−𝟏

𝐪
𝑖𝑝

 . (2.30) 
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The complex velocity at the control position can be expressed in terms of the complex 

amplitude of the incident wave 𝑝(𝜔) and the complex amplitude of the current fed to 

the actuator 𝑖(𝜔) with the following algebraic expression: 

 �̇�𝑐 = 𝐺𝑐𝑎𝑖𝑎 + 𝐺𝑐𝑝𝑝 , (2.31) 

where: 

 𝐺𝑐𝑎 = 𝐭𝑎𝐪𝑖𝑎     ,     𝐺𝑐𝑝 = 𝐭𝑎𝐪𝑖𝑝 (2.32) 

and 𝐭𝑎 = ⌊1 0 0⌋. Here the 𝐺𝑐𝑎 is the open loop sensor – actuator frequency 

response function (FRF) for the current driven actuator, which is used later on to 

assess the stability of the feedback loops using the Nyquist criterion.  

Simultaneously, the complex velocity at the control position can be also expressed 

in terms of the complex amplitude of the voltage applied to the actuator 𝑢(𝜔) with 

the following algebraic expression: 

 �̇�𝑐 = 𝐺𝑐𝑢𝑢𝑎 + 𝐺𝑢𝑝𝑝 , (2.33) 

where: 

 𝐺𝑐𝑢 = 𝐭𝑎𝐪𝑢𝑎     ,     𝐺𝑢𝑝 = 𝐭𝑎𝐪𝑢𝑝 . (2.34) 

Also in this case the 𝐺𝑐𝑢 is the open loop sensor – actuator frequency response 

function (FRF), which is used later on to assess the stability of the feedback loops, 

however in this case for voltage driven inertial actuator. 

When the negative velocity feedback control loop implements a constant gain 𝑔𝑐 

with a power amplifier, a fixed current signal 𝑖𝑎 proportional to the error velocity 

signal �̇�𝑐 is fed to the actuator coil, such that: 

 𝑖𝑎 = −𝑔𝑐�̇�𝑐 . (2.35) 

Instead, when the negative velocity feedback control loop for the voltage driven 

actuator is implemented the error velocity signal �̇�𝑐 is fed to the actuator coil with a 

constant gain 𝑔𝑐, such that: 

 𝑢𝑎 = −𝑔𝑐�̇�𝑐 . (2.36) 

Therefore, substituting Equation (2.35) into Equation (2.31) the closed loop response 

at the control position for the current driven actuator is given by the following 

expression: 

 �̇�𝑐 = 𝐺𝑐𝑙𝑖𝑝 , (2.37) 

where: 
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 𝐺𝑐𝑙𝑖 =
𝐺𝑐𝑝

1 + 𝑔𝑐𝐺𝑐𝑎
 . (2.38) 

However, substituting Equation (2.36) into Equation (2.33), the closed loop response 

at the control position for the voltage driven actuator is given by the following 

expression: 

 �̇�𝑐 = 𝐺𝑐𝑙𝑢𝑝 , (2.39) 

where: 

 𝐺𝑐𝑙𝑢 =
𝐺𝑢𝑝

1 + 𝑔𝑐𝐺𝑐𝑢
 . (2.40) 

The time–averaged total flexural kinetic energy, which for brevity will be referred as 

kinetic energy in the remaining part of the article, is used to evaluate the flexural 

response of the plate without and with feedback loops. For time–harmonic vibrations, 

the time–averaged kinetic energy is given by the following formula: 

 𝐾𝐸(𝑡) = lim
𝑇→∞

1

𝑇

1

2
∫ ∫ 𝜌ℎ�̇�2(𝑥, 𝑦, 𝑡)dA

𝐴
𝑑𝑡

𝑇
=

1

4
∫ 𝜌ℎ|�̇�(𝑥, 𝑦, 𝜔)|2dA

𝐴
 ,  (2.41) 

where A is the area of the plate. Also, the complex velocity of the plate �̇�(𝑥, 𝑦, 𝜔) can 

be derived from the following expression: 

 �̇�(𝑥, 𝑦, 𝜔) = 𝛟T(𝑥𝑟, 𝑦𝑟)[𝐚𝑐(𝜔) 𝟎  𝐚𝑏(𝜔)]𝐟(𝜔) + 𝛟T(𝑥𝑟, 𝑦𝑟)𝐚𝑝(𝜔)𝑝(𝜔) . (2.42) 

Here 0 is a n×1 vector of zeros, and 

 𝐚𝑐(𝜔) = 𝛀(𝜔)𝛟(𝑥𝑐 , 𝑦𝑐) ,  𝐚𝑏(𝜔) = 𝛀(𝜔)𝛟(𝑥𝑏 , 𝑦𝑏) ,  𝐚𝑝(𝜔) = 𝛀(𝜔)𝚽(𝜔), (2.43) 

where the elements in the 𝚽(𝜔) vector are defined in Equation (2.13) for the plane 

acoustic wave excitation. Instead for the point force excitation the: 

 𝐚𝑝(𝜔) = 𝛀(𝜔)𝛟(𝑥𝑝, 𝑦𝑝) , (2.44) 

where the (𝑥𝑝, 𝑦𝑝) is the position of the primary force that excites the plate.  

The complex vector with the junction forces 𝐟 in Equation (2.42) for the current 

driven actuator can be derived with the following steps: first, Equation (2.37) is 

substituted in Equation (2.35); second, the resulting equation is substituted in 

Equation (2.27), third the resulting equation is substituted into Equation (2.23), so 

that: 

 𝐟 = (𝐙𝐪𝑖𝑎𝑔𝑐𝐺𝑐𝑙𝑖 − 𝐙𝐪𝑖𝑝 − 𝛙𝑔𝑐𝐺𝑐𝑙𝑖)𝑝 . (2.45) 

Instead the complex vector with the junction forces 𝐟 in Equation (2.42) for the voltage 

driven actuator can be derived with the following steps: first, Equation (2.39) is 
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substituted in Equation (2.36); second, the resulting equation is substituted in 

Equation (2.29), third the resulting equation and rewritten Equation (2.26) are 

substituted into Equation (2.23), so that: 

 𝐟 = ((𝐙 + 𝛙
1

𝑍𝑒
𝛙T) (𝐪𝑢𝑎𝑔𝑐𝐺𝑐𝑙𝑢 − 𝐪𝑢𝑝) − 𝛙

1

𝑍𝑒
𝑔𝑐𝐺𝑐𝑙𝑢) 𝑝 . (2.46) 

Substitution of Equation (2.45) into Equation (2.42) gives: 

 �̇�(𝑥, 𝑦, 𝜔) = 𝛟T(𝑥, 𝑦)𝐚𝑐𝑏(𝜔)𝑝(𝜔) + 𝛟T(𝑥, 𝑦)𝐚𝑝(𝜔)𝑝(𝜔), (2.47) 

where for the current driven actuator: 

 𝐚𝑐𝑏 = [𝐚𝑐(𝜔) 𝟎  𝐚𝑏(𝜔)](𝐙𝐪𝑎𝑔𝑐𝐺𝑐𝑙 − 𝐙𝐪𝑝 − 𝛙𝑔𝑐𝐺𝑐𝑙) , (2.48) 

while for the voltage driven actuator: 

 𝐚𝑐𝑏 = [𝐚𝑐(𝜔) 𝟎  𝐚𝑏(𝜔)] ((𝐙 + 𝛙
1

𝑍𝑒
𝛙T) (𝐪𝑢𝑎𝑔𝑐𝐺𝑐𝑙𝑢 − 𝐪𝑢𝑝) − 𝛙

1

𝑍𝑒
𝑔𝑐𝐺𝑐𝑙𝑢).  (2.49) 

Thus, recalling that for the flexural natural modes given above the following 

orthogonality properties holds, ∫ ϕ𝑛
2

𝐴
(𝑥, 𝑦)𝑑𝐴 = 𝐴 and ∫ ϕ𝑛(𝑥, 𝑦)ϕ𝑚≠𝑛(𝑥, 𝑦)

𝐴
𝑑𝐴 = 0 

the kinetic energy of the plate with the passive effects of the flywheel proof mass 

actuator and the active effects of the velocity feedback loop is given by: 

 𝐾𝐸(𝜔) =
1

4
𝑀𝑝[𝐚𝑝 + 𝐚𝑐𝑏]

H
[𝐚𝑝 + 𝐚𝑐𝑏]|𝑝|2 . (2.50) 

where 𝑝 is pressure for the plane acoustic wave excitation or force for point force 

excitation. The kinetic energy for the plate with the feedback loop open can be derived 

after setting 𝑔𝑐 = 0 in the expression for the vector 𝐚𝑐𝑏. Also the kinetic energy for the 

plain plate without proof mass actuator can be derived by setting 𝐚𝑐𝑏 = 𝟎. 

 

2.4  DYNAMIC CHARACTERIST ICS OF THE PROPOSED ACTUATORS 

This section investigates the dynamic and kinematic properties of the classical and 

four proposed flywheel proof mass actuators. The mathematical derivation is given 

for each principal electromechanical property. The equations are used to obtain the 

typical properties of the inertial actuators used in active vibration control applications 

based on the frequency response functions (FRF) of the base impedance, the actuators 

blocked force per unit driving current, the actuators transduction FRF, the actuators 

blocked force per unit applied voltage, the electrical impedance and the actuators 

proof mass stroke per unit driving current. The base impedance FRF is used to 
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characterise the mechanical components of the inertial actuators. The parameters of 

the mechanical components can be used to calculate the inertial mass static deflection, 

which is a principal parameter used to assess the actuator robustness in case of 

shocks. The blocked force FRFs define the extent of the force generated at the actuator 

base per unit driving signal (current or voltage). The electrical impedance FRF is used 

to characterise the electrical components of the inertial actuators. Finally, the actuator 

stroke defines the maximum displacement of the inertial mass per unit driving signal. 

 

2.4.1 Base impedance 

The base impedance of the open loop actuators is given by 𝑍𝑓�̇�(𝜔) = 𝐹𝑖 �̇�𝑐⁄ |𝑖𝑎=0, 

where 𝐹𝑖 = −(𝐹𝑏 + 𝐹𝑐). Assuming 𝑖𝑎 = 0 and 𝑝 = 0, the following impedance and 

mobility equations can be extracted from Equation (2.20) and Equation (2.4):  

𝐹𝑐 = −𝑍𝑎�̇�𝑐 + 𝑍𝑎�̇�𝑚, 𝐹𝑚 = 𝑍𝑎�̇�𝑐−𝑍𝑎�̇�𝑚, 𝐹𝑏 = −𝑍𝑏�̇�𝑐 and �̇�𝑚 = 𝑌𝑚𝐹𝑚, which can be 

combined to give the following expression for the actuator base impedance: 

 𝑍𝑓�̇� =
−𝐹𝑖

�̇�𝑐
|

𝑖𝑎=0

=
 𝑍𝑏 +  𝑍𝑏𝑌𝑚𝑍𝑎 + 𝑍𝑎

1 + 𝑌𝑚𝑍𝑎
 . (2.51) 

Table 2.3 gives the natural frequencies and the fundamental resonance frequency 

and antiresonance frequencies that characterise the dynamic response of the classical 

and four proposed flywheel proof mass actuators obtained from base impedance 

simulations.  

The Bode plots in Figure 2.3 show the base impedance FRFs of the classical and the 

four proposed proof mass actuators. The solid blue lines in the two plots are for the 

classical proof mass actuator. Plot (a) shows the base impedance of the actuators with 

the flywheel either hinged (dashed black lines) or pinned (dashed-dotted red lines) 

to the base of the actuator while plot (b) shows the base impedance of the actuators 

with the flywheel either hinged (dashed black lines) or pinned (dashed-dotted red 

lines) to the proof mass of the actuator. 

The base impedance of the classical proof mass actuator (solid blue lines in Figure 

2.3a,b) has low and high frequency asymptotes characterised by a modulus that rises 

proportionally to frequency with phase equal to +90°, which are spaced out by a 

resonance peak, at about 19.90 Hz, and an antiresonance low, at about 79.9 Hz. The 

resonance peak occurs in the vicinity of the fundamental natural frequency of the 

actuator, i.e. 19.92 Hz as given in Table 2.3. The resonance peak and antiresonance 

low are connected by a segment that decreases proportionally to frequency and has 
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phase equal to -90°. These features indicate that the base impedance is characterised 

by low and high frequency mass-laws, as given in Table 2.4, connected via a stiffness 

law, given by 𝑍 ≅ 𝑘 (j𝜔)⁄ . The amplitude of the resonance peak with reference to the 

low frequency mass asymptote and the stiffness asymptote is controlled by the 

damping of the mounting system and is given by 1 (2𝜁√1 − 𝜁2)⁄ , thus about 22 dB. 

These properties indicate that, at low frequencies, below 19.90 Hz, the case and proof 

masses oscillate together as a solid body and produce an overall mass–impedance 

effect. At higher frequencies, the proof mass is characterised by little oscillations and 

behaves like a seismic reference system such that in the frequency range between 

19.90 Hz and 79.9 Hz, the elastic suspension of the proof mass controls the actuator 

base dynamics and produces a sky-hook stiffness–impedance effect. At frequencies 

above 79.9 Hz, the case controls the actuator base dynamics and produces a base 

mass–impedance effect. 

 

Table 2.3. Characteristic natural, resonance and antiresonance frequencies of the 

actuators (the values are given with two decimal digits merely to highlight the 

difference between natural and resonance frequency values). 

Actuator 

configuration 

Natural frequency 𝝎𝒏 

[Hz] 

Resonance 

frequency 𝝎𝒓 

[Hz] 

Antiresonacne 

frequency 𝝎𝒂 

[Hz] 

Classical 

configuration 
𝜔𝑛 = √

𝑘

𝑀𝑎
= 19.92 19.90 79.9 

Flywheel hinged 

to the base  
𝜔𝑛 = √

𝑘

(𝑀𝑤+
𝐼𝑤

𝑟𝑤
2  )

= 4.79 4.78 5.0 

Flywheel pinned 

to the base 
𝜔𝑛 = √

𝑘+
𝑘𝑤

𝑟𝑤
2

(𝑀𝑤+
𝐼𝑤

𝑟𝑤
2 )

= 6.67 6.67 6.9 

Flywheel hinged 

to the proof mass 
𝜔𝑛 = √

𝑘

(𝑀𝑤+𝑚𝑤+
𝐼𝑤

𝑟𝑤
2  )

= 4.74 4.73 5.0 

Flywheel hinged 

to the proof mass 
𝜔𝑛 = √

𝑘+
𝑘𝑤

𝑟𝑤
2

(𝑀𝑤+𝑚𝑤+
𝐼𝑤

𝑟𝑤
2  )

= 6.61 6.60 6.9 
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Table 2.4 provides low-frequency and high-frequency asymptotic expressions of 

the base impedance for the classical and four proposed flywheel proof mass actuators. 

 

Table 2.4. Low-frequency and high-frequency asymptotic expressions of the base 

impedance. 

Actuator 

configuration 

Base impedance 

 𝒁𝒇�̇� for 𝝎 < 𝝎𝒓 

Base impedance 

 𝒁𝒇�̇� for 𝝎 > 𝝎𝒓 

Classical 

configuration 
~j𝜔(𝑀𝑎 + 𝑚𝑏) ~j𝜔𝑚𝑏 

Flywheel hinged 

to the base  
~j𝜔(𝑀𝑤 + 𝑚𝑤 + 𝑚𝑏)  ~j𝜔(𝑚𝑏 + 𝑚𝑤 +

𝐼𝑤 𝑟𝑤
2⁄

1 +
𝐼𝑤

𝑟𝑤
2

1
𝑀𝑤

) 

Flywheel pinned 

to the base 
~j𝜔(𝑀𝑤 + 𝑚𝑤 + 𝑚𝑏) ~j𝜔(𝑚𝑏 + 𝑚𝑤 +

𝐼𝑤 𝑟𝑤
2⁄

1 +
𝐼𝑤

𝑟𝑤
2

1
𝑀𝑤

) 

Flywheel hinged 

to the proof mass 
~j𝜔(𝑀𝑤 + 𝑚𝑤 + 𝑚𝑏) ~j𝜔(𝑚𝑏 +

𝐼𝑤 𝑟𝑤
2⁄

1 +
𝐼𝑤

𝑟𝑤
2

1
𝑀𝑤

) 

Flywheel hinged 

to the proof mass 
~j𝜔(𝑀𝑤 + 𝑚𝑤 + 𝑚𝑏) ~j𝜔(𝑚𝑏 +

𝐼𝑤 𝑟𝑤
2⁄

1 +
𝐼𝑤

𝑟𝑤
2

1
𝑀𝑤

) 

 

The base impedance of the proposed actuator with the flywheel hinged to the case 

(dashed black line in Figure 2.3a) shows a similar spectrum as that of the classical 

proof mass actuator, although it is characterised by significant scaling effects. In fact, 

although, the low frequencies mass-law is still given by overall mass–impedance 

effect, the higher frequencies mass law is about 24 dB greater than that of the classical 

proof mass actuator. At higher frequencies, the mass–impedance effect is controlled 

by the axial inertia effects produced by the base mass, by the mass of the flywheel and 

by the polar moment of inertia of the flywheel, as given in Table 2.4. The additional 

inertia effect produced by the angular oscillation of the flywheel also diminishes the 

fundamental natural frequency of the actuator to 4.79 Hz, as given in Table 2.3. Thus 

the resonance peak occurs at about 4.78 Hz while the antiresonance low occurs only 

at a slightly higher frequency of about 5 Hz. The vicinity between the resonance peak 

and antiresonance low essentially cancels the sky-hook stiffness effect in between the 
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resonance and antiresonance frequency and also significantly lowers the amplitudes 

of the resonance peak and antiresonance low. If rather than being hinged, the 

flywheel is pinned with a torsional spring to the actuator case (dashed-dotted red line 

in Figure 2.3a), the spectrum of the base impedance varies by little. The torsional 

spring slightly increases the fundamental natural frequency of the actuator, which 

becomes 6.67 Hz, as given in Table 2.3. As a result the resonance peak and 

antiresonance low occurs at about 6.67 Hz and 6.9 Hz respectively and thus the 

amplitudes of the resonance peak and antiresonance low are somewhat more marked.  

 

 

Figure 2.3. Base impedance for the actuator with flywheel attached to base (a) and 

flywheel attached to proof mass (b). Classical configuration (Solid blue lines). Hinged 

flywheel actuator (dashed black lines). Pinned flywheel actuator (dashed-dotted red 

lines). 

 

The base impedance of the proposed actuator with the flywheel hinged to the 

proof mass (dashed black line in Figure 2.3b) shows similar asymptotic behaviour to 

those found when the flywheel is hinged to the actuator case. However, in this 

circumstance, the fundamental natural frequency of the actuator is slightly lowered 

since it is affected also by the additional inertia effect produced by the axial oscillation 

of the flywheel and becomes 4.74 Hz, as given in Table 2.3. Thus, the resonance peak 

and antiresonance low occurs at slightly lower frequencies, i.e. about 4.73 Hz and  

5 Hz respectively, as given in Table 2.3. The low frequencies mass-law is given by 

overall mass-impedance effect, while the higher frequencies mass law is about 23 dB 
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greater than that of the classical proof mass actuator, since it is controlled by the axial 

inertia effects produced by the mass of the case and by the polar moment of inertia of 

the flywheel, as given in Table 2.4. As a result, the resonance peak and antiresonance 

low are slightly more marked than those of the proposed actuator with the flywheel 

hinged to the case. Also for this configuration, if rather than being hinged, the 

flywheel is pinned with a torsional spring to the actuator proof mass (dashed-dotted 

red line in Figure 2.3b), the spectrum of the base impedance varies by little. Again, 

the torsional spring slightly increases the fundamental natural frequency of the 

actuator, to 6.61 Hz, as given in Table 2.3. While the resonance peak and antiresonance 

low occurs at about 6.60 Hz and 6.9 Hz respectively so that the amplitudes of the 

resonance peak and antiresonance low are slightly more marked. 

 

2.4.2 Blocked force per unit current fed to the actuator 

The blocked force produced by the actuators per unit current fed to the actuators 

is given by 𝑇𝑓𝑖 = 𝐹𝑐 𝑖𝑎⁄ |�̇�𝑐=0. In this case, assuming �̇�𝑐 = 0 and 𝑝 = 0, the following 

impedance and mobility equations can be derived from Equation (2.20) and Equation 

(2.4): 𝐹𝑐 = 𝑍𝑎�̇�𝑚 + 𝜓
𝑎

𝑖𝑎, 𝐹𝑚 = −𝑍𝑎�̇�𝑚 − 𝜓
𝑎

𝑖𝑎 and �̇�𝑚 = 𝑌𝑚𝐹𝑚, which can be 

combined to give the following expression of the blocked force per unit current fed 

to the actuator: 

 𝑇𝑓𝑖 =
𝐹𝑐

𝑖𝑎
|

�̇�𝑐=0

=
𝜓𝑎

1 + 𝑌𝑚𝑍𝑎
 . (2.52) 

Table 2.5 provide low-frequency and high-frequency asymptotic expressions of 

the blocked force per unit current fed to the classical and four proposed flywheel 

proof mass actuators. 

The Bode plots in Figure 2.4 show the blocked force per unit current fed to the 

classical and the four proposed proof mass actuators. The solid blue lines in the two 

plots are for the classical proof mass actuator. Plot (a) shows the blocked force of the 

actuators with the flywheel either hinged (dashed black lines) or pinned (dashed-

dotted red lines) to the base of the actuator while plot (b) shows the blocked force of 

the actuators with the flywheel either hinged (dashed black lines) or pinned (dashed-

dotted red lines) to the proof mass of the actuator.  

The amplitude of the blocked force per unit current fed to the classical proof mass 

actuator at low frequencies rises proportionally to 𝜔2, as given by asymptote in Table 

2.5 and is characterised by phase equal to +180°. In other words, it has opposite phase 
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than that of the driving current signal fed to the actuator coil. The amplitude reaches 

a peak value at the resonance frequency of the actuator at 19.90 Hz, as given in Table 

2.3 and then it settle to a constant value. Around the resonance frequency, the phase 

undergoes a -180° lag such that, at higher frequencies, the blocked force produced by 

the actuator is in phase with the driving current signal 𝑖𝑎 and is equal to actuator 

transduction coefficient as given in Table 2.5. 

 

Table 2.5. Low-frequency and high-frequency asymptotic expressions of the blocked 

force per unit current fed to the actuators. 

Actuator 

configuration 

Blocked force 

 𝑻𝒇𝒊 for 𝝎 < 𝝎𝒓 

Blocked force  

 𝑻𝒇𝒊 for 𝝎 > 𝝎𝒓 

Classical 

configuration 
~(j𝜔)2

𝜓𝑎𝑀𝑎

𝑘
 ~𝜓𝑎 

Flywheel hinged 

to the base  
~(j𝜔)2

𝜓𝑎𝑀𝑤

𝑘
 ~ 𝜓𝑎 (1 +

𝐼𝑤

𝑀𝑤𝑟𝑤
2

)⁄  

Flywheel pinned 

to the base 
~(j𝜔)2

𝜓𝑎𝑀𝑤

𝑘 + 𝑘𝑤 𝑟𝑤
2⁄
 ~ 𝜓𝑎 (1 +

𝐼𝑤

𝑀𝑤𝑟𝑤
2

)⁄  

Flywheel hinged 

to the proof mass 
~(j𝜔)2

𝜓𝑎(𝑀𝑤 + 𝑚𝑤)

𝑘
 ~ 𝜓𝑎 (1 +

𝐼𝑤

(𝑀𝑤+𝑚𝑤)𝑟𝑤
2)⁄  

Flywheel hinged 

to the proof mass 
~(j𝜔)2

𝜓𝑎(𝑀𝑤 + 𝑚𝑤)

𝑘 + 𝑘𝑤 𝑟𝑤
2⁄

 ~ 𝜓𝑎 (1 +
𝐼𝑤

(𝑀𝑤+𝑚𝑤)𝑟𝑤
2)⁄  

 

The blocked force produced by the proposed actuator with the flywheel hinged to 

the case (dashed black line in Figure 2.4a) shows similar asymptotic behaviours as the 

classical proof mass actuator, although the resonance peak occurs at a much lower 

resonance frequency of 4.78 Hz as given in Table 2.3. At higher frequencies, the 

constant force effect per unit driving current signal is about 28.3 dB lower and it 

settles to a constant value as defined by an asymptote, in Table 2.5. Thus the presence 

of the flywheel component lowers the cut off resonance frequency above which the 

actuator produces a constant force in phase with the driving current signal but also 

reduces the amplitude of the force by a factor 1 (1 + 𝐼𝑤 𝑀𝑤𝑟𝑤
2⁄ )⁄ . If rather than being 

hinged, the flywheel is pinned with a torsional spring to the actuator case (dashed-

dotted red line in Figure 2.4a), the spectrum of the blocked force per unit current fed 

to the actuator varies by little. The cut off resonance frequency occurs at a slightly 
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higher frequency of 6.67 Hz, as given in Table 2.3 while the constant force produced 

at higher frequencies is still defined by the same asymptote, as given in Table 2.5. 

The blocked forces produced by the proposed actuators with the flywheel hinged 

to the proof mass (dashed black line in Figure 2.4b) shows similar asymptotic effects 

to those found with the flywheel hinged to the actuator case. In this circumstance, the 

cut off resonance frequency occurs at a slightly lower value of 4.73 Hz, as given in 

Table 2.3 and the constant force produced at higher frequencies is slightly higher, as 

given in Table 2.5. If rather than being hinged, the flywheel is pinned with a torsional 

spring to the actuator proof mass (dashed-dotted red line in Figure 2.4b), the 

spectrum of the blocked force varies by little since the cut off resonance frequency 

occurs at slightly higher frequency of 6.60 Hz, as given in Table 2.3. However, the 

constant force produced at higher frequencies remains defined by the same 

asymptote, as given in Table 2.5. 

 

 

Figure 2.4. Blocked force per unit current fed to the actuator with flywheel attached 

to base (a) and flywheel attached to proof mass (b). Classical configuration (Solid blue 

lines). Hinged flywheel actuator (dashed black lines). Pinned flywheel actuator 

(dashed-dotted red lines). 

 

2.4.3 Transduction FRF 

The actuators transduction FRF is given by 𝑇𝑢�̇� = 𝑢𝑎 �̇�𝑐⁄ |𝑖𝑎=0. In this case, 

assuming 𝑖𝑎 = 0 and 𝑝 = 0, the following impedance and mobility equations can be 
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derived from Equation (2.4), Equation (2.20) and Equation (2.24): �̇�𝑚 = 𝑌𝑚𝐹𝑚,  

𝐹𝑐 = −𝑍𝑎�̇�𝑐 + 𝑍𝑎�̇�𝑚, 𝐹𝑚 = 𝑍𝑎�̇�𝑐−𝑍𝑎�̇�𝑚, 𝐹𝑏 = −𝑍𝑏�̇�𝑐 and 𝑢𝑎 = 𝜓
𝑎

�̇�𝑐 − 𝜓
𝑎

�̇�𝑚, which 

can be combined to give the following expression of the actuator transduction FRF: 

 𝑇𝑢�̇� =
−𝑢𝑎

�̇�𝑐
|

𝑖𝑎=0

=
−𝜓𝑎

1 + 𝑌𝑚𝑍𝑎
 (2.53) 

It is important to note that the expression obtained for the actuator transduction 

FRF 𝑇𝑢�̇� in Equation (2.53), is bound to be equal to the expression obtained for the 

blocked force per unit current fed to the coil of the actuator obtained in Equation 

(2.52). Thus, the low-frequency and high-frequency asymptotic expressions of the 

blocked force per unit current fed to the classical and four proposed flywheel proof 

mass actuators given in Table 2.5 can be also used for the actuator transduction FRF. 

The negative sign in Equation (2.53) indicates that the generated voltage has opposite 

direction to the direction defined in the Figure 2.2b.  

The Bode plots in Figure 2.5 show the actuator transduction FRF of the classical 

and the four proposed proof mass actuators. The solid blue lines in the two plots are 

for the classical proof mass actuator. Plot (a) shows the transduction FRF of the 

actuators with the flywheel either hinged (dashed black lines) or pinned (dashed-

dotted red lines) to the base of the actuator while plot (b) shows the transduction FRF 

of the actuators with the flywheel either hinged (dashed black lines) or pinned 

(dashed-dotted red lines) to the proof mass of the actuator.  

The amplitude of the classical proof mass actuator transduction FRF at low 

frequencies rises proportionally to 𝜔2, as given in Table 2.5 and is characterised by 

phase equal to 0°. The amplitude reaches a peak value at the resonance frequency of 

the actuator at 19.90 Hz, as given in Table 2.3 and then it settle to a constant value. 

Around the resonance frequency, the phase undergoes a lag such that, at higher 

frequencies is equal to -180°, and the amplitude is equal to actuator transduction 

coefficient as given in Table 2.5. 

The transduction FRFs of the proposed actuator with the flywheel hinged to the 

case (dashed black line in Figure 2.5a) shows similar asymptotic behaviours as the 

classical proof mass actuator, with the resonance peak that occurs at a much lower 

resonance frequency of 4.78 Hz as given in Table 2.3. At higher frequencies, the 

produced voltage per unit velocity of excitation is about 28 dB lower and it settles to 

a constant value as given in Table 2.5. The presence of the flywheel component 

reduces the amplitude of the produced voltage above the actuator resonance 

frequency. If rather than being hinged, the flywheel is pinned with a torsional spring 
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to the actuator case (dashed-dotted red line in Figure 2.5a), the spectrum of the 

actuator transduction FRF varies by little. The cut off resonance frequency occurs at a 

slightly higher frequency of 6.67 Hz, as given in Table 2.3 while the produced constant 

voltage at higher frequencies is still defined by the same asymptote, as given in  

Table 2.5. 

The transduction FRF of the actuators with the flywheel hinged to the proof mass 

(dashed black line in Figure 2.5b) shows similar asymptotic effects to those found 

with the flywheel hinged to the actuator case. The cut off resonance frequency occurs 

at a slightly lower value of 4.73 Hz, as given in Table 2.3 and the constant force 

produced at higher frequencies is slightly higher, as given in Table 2.5 but it is still 

about 25 dB lower compared to the classical proof mass actuator. For the pinned 

flywheel with a torsional spring attached to the actuator proof mass (dashed-dotted 

red line in Figure 2.5b), the spectrum of the transduction FRF varies by little since the 

cut off resonance frequency occurs at slightly higher frequency of 6.60 Hz. The 

constant voltage effect produced at higher frequencies remains defined by the same 

asymptote, as given in Table 2.5. 

 

 

Figure 2.5. Actuator transduction FRF with flywheel attached to case (a) and flywheel 

attached to proof mass (b). Classical configuration (Solid blue lines). Hinged flywheel 

actuator (dashed black lines). Pinned flywheel actuator (dashed-dotted red lines). 
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2.4.4 Blocked force per unit voltage applied to the actuator 

The produced blocked force per unit voltage applied to the actuators is given by 

𝑇𝑓𝑢 = 𝐹𝑐 𝑢𝑎⁄ |�̇�𝑐=0. In this case, assuming �̇�𝑐 = 0 and 𝑝 = 0, the following impedance 

and mobility equations can be derived from Equation (2.4), Equation (2.20) and 

Equation (2.24): �̇�𝑚 = 𝑌𝑚𝐹𝑚, 𝐹𝑐 = 𝑍𝑎�̇�𝑚 + 𝜓
𝑎

𝑖𝑎, 𝐹𝑚 = −𝑍𝑎�̇�𝑚 − 𝜓
𝑎

𝑖𝑎 and  

𝑢𝑎 = 𝑍𝑒𝑖𝑎 − 𝜓
𝑎

�̇�𝑚, which can be combined to give the following expression for the 

blocked force per unit voltage applied to the actuator: 

 𝑇𝑓𝑢 =
𝐹𝑐

𝑢𝑎
|
�̇�𝑐=0

=
𝜓𝑎

 𝑍𝑒 + 𝑍𝑒𝑌𝑚𝑍𝑎 +  𝑌𝑚𝜓𝑎
2 . (2.54) 

Table 2.6 provide low-frequency and high-frequency asymptotic expressions of 

the blocked force per unit voltage applied to the classical and four proposed flywheel 

proof mass actuators. 

 

Table 2.6. Low-frequency and high-frequency asymptotic expressions of the blocked 

force per unit voltage applied to the actuators. 

Actuator 

configuration 

Blocked force 

 𝑻𝒇𝒖 for 𝝎 < 𝝎𝒓 

Blocked force  

 𝑻𝒇𝒖 for 𝝎 > 𝝎𝒓 

Classical 

configuration 
~(j𝜔)2

𝜓𝑎𝑀𝑎

𝑘𝑅
 ~

𝜓𝑎

(𝑅 + 𝑗𝜔𝐿)
 

Flywheel hinged 

to the base  
~(j𝜔)2

𝜓𝑎𝑀𝑤

𝑘𝑅
 

~
𝜓𝑎

(1 +
𝐼𝑤

𝑀𝑤𝑟𝑤
2)(𝑅 + 𝑗𝜔𝐿)

 

Flywheel pinned 

to the base 
~(j𝜔)2

𝜓𝑎𝑀𝑤

(𝑘 + 𝑘𝑤 𝑟𝑤
2⁄ )𝑅

 

𝜓𝑎

(1 +
𝐼𝑤

𝑀𝑤𝑟𝑤
2)(𝑅 + 𝑗𝜔𝐿)

 

Flywheel hinged 

to the proof mass 
~(j𝜔)2

𝜓𝑎(𝑀𝑤 + 𝑚𝑤)

𝑘𝑅
 

~
𝜓𝑎

(1 +
𝐼𝑤

(𝑀𝑤 + 𝑚𝑤)𝑟𝑤
2)(𝑅 + 𝑗𝜔𝐿)

 

Flywheel hinged 

to the proof mass 
~(j𝜔)2

𝜓𝑎(𝑀𝑤 + 𝑚𝑤)

(𝑘 + 𝑘𝑤 𝑟𝑤
2⁄ )𝑅

 
~

𝜓𝑎

(1 +
𝐼𝑤

(𝑀𝑤 + 𝑚𝑤)𝑟𝑤
2)(𝑅 + 𝑗𝜔𝐿)

 

 

The Bode plots in Figure 2.6 show the blocked force per unit voltage applied to the 

the classical and the four proposed proof mass actuators. The solid blue lines in the 
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two plots are for the classical proof mass actuator. Plot (a) shows the blocked force of 

the actuators with the flywheel either hinged (dashed black lines) or pinned (dashed-

dotted red lines) to the base of the actuator while plot (b) shows the blocked force of 

the actuators with the flywheel either hinged (dashed black lines) or pinned (dashed-

dotted red lines) to the proof mass of the actuator.  

The amplitude of the blocked force produced by the classical proof mass actuator 

at low frequencies rises proportionally to 𝜔2 as given by asymptote in Table 2.6 and 

is characterised by phase equal to +180°. The amplitude reaches a highly damped 

peak value at the resonance frequency of the actuator at 19.90 Hz and then it settle to 

a constant value as given in Table 2.6. Compared to the blocked force for the unit 

current fed to the actuator, the blocked force for the voltage signal presents highly 

damped resonance peaks. The resistive effect of the coil rounds off the peaks at the 

resonance frequency of the actuator. Around the resonance frequency, the phase 

undergoes a smooth -180° lag such that, at higher frequencies, the blocked force 

produced by the actuator is in phase with the voltage signal. At higher frequencies, 

the inductive effect of the actuator coil starts to take more important role and thus 

making the produced blocked force to drop with frequency. At the same time, the 

phase undergoes additional lag such that, at higher frequencies, the produced by the 

actuator blocked force starts to be out phase with the voltage signal. 

The blocked force produced by the proposed actuator with the flywheel hinged to 

the case (dashed black line in Figure 2.6a) shows similar asymptotic behaviours as the 

classical proof mass actuator, although the resonance peak occurs at a much lower 

resonance frequency of 4.78 Hz, as given in Table 2.3. The constant force effect per 

unit voltage signal is about 29 dB lower due to the axial inertia effect produced by the 

flywheel as given in Table 2.6. If rather than being hinged, the flywheel is pinned with 

a torsional spring to the actuator case (dashed-dotted red line in Figure 2.6a), the 

spectrum of the blocked force per unit voltage applied to the actuator varies by little. 

The cut off resonance frequency occurs at a slightly higher frequency of 6.67 Hz, as 

given in Table 2.3 while the constant force produced at higher frequencies is still given 

by the same asymptote as given in Table 2.6. 

The blocked forces produced by the proposed actuators with the flywheel hinged 

to the proof mass (dashed black line in Figure 2.6b) shows similar asymptotic effects 

to those found with the flywheel hinged to the actuator case. In this circumstance, the 

cut off resonance frequency occurs at a slightly lower value of 4.73 Hz as given in 

Table 2.3. The constant force produced at higher frequencies is slightly higher as given 

by an asymptote in Table 2.6 but is still about 25 dB lower compared to the classical 
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proof mass actuator. If rather than being hinged, the flywheel is pinned with a 

torsional spring to the actuator proof mass (dashed-dotted red line in Figure 2.6b), 

the spectrum of the blocked force varies by little since the cut off resonance frequency 

occurs at slightly higher frequency of 6.60 Hz as given in Table 2.3. The constant force 

produced at higher frequencies remains equal as given by an asymptote in Table 2.6. 

 

 

Figure 2.6. Blocked force per unit voltage applied to the actuator with flywheel 

attached to base (a) and flywheel attached to proof mass (b). Classical configuration 

(Solid blue lines). Hinged flywheel actuator (dashed black lines). Pinned flywheel 

actuator (dashed-dotted red lines). 

 

2.4.5 Electrical impedance 

The electrical impedance of the actuators is given by 𝑍𝑢𝑖 = 𝑢𝑎 𝑖𝑎⁄ |�̇�𝑐=0. In this case, 

assuming �̇�𝑐 = 0 and 𝑝 = 0, the following impedance and mobility equations can be 

derived from Equation (2.4), Equation (2.20) and Equation (2.24): �̇�𝑚 = 𝑌𝑚𝐹𝑚,  

𝐹𝑐 = 𝑍𝑎�̇�𝑚 + 𝜓
𝑎

𝑖𝑎, 𝐹𝑚 = −𝑍𝑎�̇�𝑚 − 𝜓
𝑎

𝑖𝑎 and 𝑢𝑎 = 𝑍𝑒𝑖𝑎 − 𝜓
𝑎

�̇�𝑚, which can be 

combined to give the following expression for the actuator electrical impedance: 

 𝑍𝑢𝑖 =
𝑢𝑎

𝑖𝑎
|

�̇�𝑐=0

=
 𝑍𝑒 + 𝑍𝑒𝑌𝑚𝑍𝑎 +  𝑌𝑚𝜓𝑎

2

1 + 𝑌𝑚𝑍𝑎
 . (2.55) 

The Bode plots in Figure 2.7 show electrical impedance FRFs of the classical and 

the four proposed proof mass actuators. The solid blue lines in the two plots are for 
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the classical proof mass actuator. Plot (a) shows the electrical impedance of the 

actuators with the flywheel either hinged (dashed black lines) or pinned (dashed-

dotted red lines) to the base of the actuator while Plot (b) shows the electrical 

impedance of the actuators with the flywheel either hinged (dashed black lines) or 

pinned (dashed-dotted red lines) to the proof mass of the actuator.  

At low frequencies, the amplitude of the electrical impedance for the classical 

proof mass actuator is characterised by the constant value equal to coil resistance, 

with the phase equal to 0°. The amplitude reaches a peak value equal to 27.8 dB at the 

resonance frequency of the actuator at 19.90 Hz, as given in Table 2.3 and it drops to 

a constant value equal to coil resistance. Below the resonance frequency, the phase 

slowly increases and then undergoes almost -180° lag at the actuator resonance 

frequency. Above the resonance frequency, the phase slowly increases to a constant 

value equal to 0°. At higher frequencies, the inductive effect of the actuator coil starts 

to take more important role making the electrical impedance amplitude and phase 

rise with frequency.  

The electrical impedance of the proposed actuator with the flywheel hinged to the 

case (dashed black line in Figure 2.7a) shows similar asymptotic behaviours as the 

classical proof mass actuator, although the resonance peak occurs at a much lower 

resonance frequency of 4.78 Hz, as given in Table 2.3 and with much lower amplitude 

equal to 16 dB. Thus the presence of the flywheel component lowers the resonance 

frequency and increases the damping effect as given in Equation (2.22). When the 

flywheel is pinned with a torsional spring to the actuator case (dashed-dotted red line 

in Figure 2.7a), the spectrum of the electrical impedance varies by little. The resonance 

frequency occurs at a slightly higher frequency of 6.67 Hz with amplitude equal to 

15.4 dB. 

The electrical impedance of the flywheel hinged to the proof mass (dashed black 

line in Figure 2.7b) shows similar asymptotic effects to those found with the flywheel 

hinged to the actuator case. The resonance frequency occurs at 4.73 Hz with the 

amplitude equal to 16 dB. If rather than being hinged, the flywheel is pinned with a 

torsional spring to the actuator proof mass (dashed-dotted red line in Figure 2.7b), 

the spectrum of the electrical impedance shows that the resonance frequency occurs 

at 6.60 Hz with the amplitude equal to 15.3 dB. 

The classical and the four proposed proof mass actuator configurations are based 

on the same electrical circuit, thus the low and high frequency asymptotes are equal 

to the each other. 
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Figure 2.7. Electrical impedance of the actuator with flywheel attached to base (a) and 

flywheel attached to proof mass (b). Classical configuration (Solid blue lines). Hinged 

flywheel actuator (dashed black lines). Pinned flywheel actuator (dashed-dotted red 

lines).  

 

2.4.6 Proof mass stroke 

The stroke of the actuators proof mass per unit current fed to the actuators is given 

by 𝑇Δ𝑤𝑖 = Δ𝑤 𝑖𝑎⁄ |𝑤𝑐=0, where Δw = 𝑤𝑚 − 𝑤𝑐. Assuming 𝑤𝑐 = 0 and 𝑝 = 0, the 

following impedance and mobility equations can be derived from Equation (2.4), 

Equation (2.20): �̇�𝑚 = 𝑌𝑚𝐹𝑚, 𝐹𝑐 = 𝑍𝑎�̇�𝑚 + 𝜓
𝑎

𝑖𝑎, 𝐹𝑚 = −𝑍𝑎�̇�𝑚 − 𝜓
𝑎

𝑖𝑎 and  

𝑢𝑎 = 𝑍𝑒𝑖𝑎 − 𝜓
𝑎

�̇�𝑚, which can be combined to give the following expression of the 

actuator for the stroke per unit current fed to the actuator: 

 𝑇Δ𝑤𝑖 =
Δ𝑤

𝑖𝑎
|
𝑤𝑐=0

= −
1

𝑗𝜔

𝑌𝑚𝜓𝑎

1 + 𝑌𝑚𝑍𝑎
 . (2.56) 

Rewriting Equation (2.52) and substituting it to Equation (2.56) the blocked force 

produced by the actuators is given by: 

 𝐹𝑐 = −
1

𝑗𝜔

Δ𝑤

𝑌𝑚

 . (2.57) 

The obtained equation highlights that the produced force is proportional to the 

stroke of the inertial actuator. Thus, to maximise the control force produced by the 

proof mass actuator the designed transducer should move with large strokes.  
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Table 2.7 provide low-frequency and high-frequency asymptotic expressions of 

the proof mass stroke per unit current fed to the classical and four proposed flywheel 

proof mass actuators. 

 

Table 2.7. Low-frequency and high-frequency asymptotic expressions of the proof 

mass stroke per unit current fed to the actuators. 

Actuator 

configuration 

Stroke 

𝑻𝚫𝒘𝒊 for 𝝎 < 𝝎𝒓 

Stroke 

𝑻𝚫𝒘𝒊 for 𝝎 > 𝝎𝒓 

Classical 

configuration 
~

𝜓𝑎

𝑘
 ~

1

(𝑗𝜔)2 

𝜓𝑎

𝑀𝑎
 

Flywheel hinged 

to the base  
~

𝜓𝑎

𝑘
 ~

1

(𝑗𝜔)2 

𝜓𝑎

𝑀𝑤 + 𝐼𝑤 𝑟𝑤
2⁄
 

Flywheel pinned 

to the base 
~

𝜓𝑎

𝑘 +
𝑘𝑤

𝑟𝑤
2

 ~
1

(𝑗𝜔)2 

𝜓𝑎

𝑀𝑤 + 𝐼𝑤 𝑟𝑤
2⁄
 

Flywheel hinged 

to the proof mass 
~

𝜓𝑎

𝑘
 ~

1

(𝑗𝜔)2 

𝜓𝑎

𝑀𝑤 + 𝑚𝑤 + 𝐼𝑤 𝑟𝑤
2⁄
 

Flywheel hinged 

to the proof mass 
~

𝜓𝑎

𝑘 +
𝑘𝑤

𝑟𝑤
2

 ~
1

(𝑗𝜔)2 

𝜓𝑎

𝑀𝑤 + 𝑚𝑤 + 𝐼𝑤 𝑟𝑤
2⁄
 

 

The Bode plots in Figure 2.8 show the proof mass stroke per unit current fed to the 

classical and the four proposed proof mass actuators. The solid blue lines in the two 

plots are for the classical proof mass actuator. Plot (a) shows the stroke of the 

actuators with the flywheel either hinged (dashed black lines) or pinned (dashed-

dotted red lines) to the base of the actuator while Plot (b) shows the stroke of the 

actuators with the flywheel either hinged (dashed black lines) or pinned (dashed-

dotted red lines) to the proof mass of the actuator.  

At low frequencies the proof mass stroke of the classical actuator (blue lines in 

Figure 2.8a,b) is characterised by a constant amplitude, as given in Table 2.7, which 

grows to a peak value at the fundamental resonance frequency at about 19.90 Hz, and 

then drops at a rate proportional to 1 𝜔2⁄ , as given in Table 2.7. The actuators with 

the flywheel hinged to either the case (dashed black line in Figure 2.8a) or to the proof 

mass (dashed black line in Figure 2.8b) are characterised by the same stroke at low 

frequencies. The cut off resonance frequencies where the stroke peaks and then drops, 
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are instead much lower and occur respectively at 4.78 Hz and 4.73 Hz as given in 

Table 2.3. The actuators with the flywheel pinned to either the case (dash-dotted red 

line in Figure 2.8a) or to the proof mass (dash-dotted red in Figure 2.8b) are instead 

characterised by a smaller low frequency stroke, as given in Table 2.7. This is due to 

the additional stiffness effect produced by the torsional spring used to pin the 

flywheel. The cut off resonance frequencies where the stroke peaks and then drops 

occurs in these two cases respectively at 6.67 Hz and 6.60 Hz, as given in Table 2.3. 

The peak strokes of the proposed actuators are 2 to 6 dB lower than the peak stroke 

of the classical actuator. 

 

 

Figure 2.8. Proof mass stroke per unit driving current for the actuator with flywheel 

attached to base (a) and flywheel attached to proof mass (b). Classical configuration 

(Solid blue lines). Hinged flywheel actuator (dashed black lines). Pinned flywheel 

actuator (dashed-dotted red lines). 

 

2.5  OPEN LOOP STABILITY ANALYSIS  

The stability of the velocity feedback loops using the classical and the four 

proposed flywheel proof mass actuators is assessed using the Nyquist criterion [29], 

[95]. Figure 2.9 shows the Bode plots while Figure 2.10 shows the Nyquist plots of the 

open loop sensor – actuator FRFs, which are given by 𝐺𝑐𝑎 as specified in Equation 

(2.32). The solid blue lines in the two plots of Figure 2.9 are for the feedback loop with 

the classical proof mass actuator. The plots in Figure 2.9a consider the feedback loop 
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with the flywheel either hinged (dashed black lines) or pinned (dashed-dotted red 

lines) to the base of the actuator while the plots in Figure 2.9b consider the feedback 

loop with the flywheel either hinged (dashed lines) or pinned (dashed-dotted lines) 

to the proof mass of the actuator.  

Considering first the Bode plot for the classical actuator (solid blue lines), it is 

noted that the amplitude is characterised by a resonance peak at about 19.9 Hz, which 

is due to the fundamental resonance of the proof mass actuator, and then a sequence 

of sharp resonance peaks and narrow antiresonance lows pairs. The phase plot is 

characterised by a -180° phase lag at the fundamental resonance frequency and then 

a sequence of -180° phase lag and +180° phase lead for each resonance peak and 

antiresonance low pair. 

Thus, except for the first resonance peak and -180° phase lag, the open loop sensor–

actuator FRF shows the typical Bode plot for collocated point velocity sensor and 

point force actuator pairs [86], [138]. The Bode plots of the open loop frequency 

response function with the flywheel hinged either to the base or proof mass (dashed 

black lines) present similar features, except three main differences. Firstly, the 

fundamental resonance peak and -180° phase lag are moved to a much lower 

resonance frequency of about 4.7 Hz. Secondly, the fundamental resonance peak has 

now a much lower amplitude than that obtained when the classical proof mass 

actuator is employed. Finally, above about 200 Hz, the sequence of resonance peaks 

and antiresonance lows pairs tends to smoothen rapidly as the frequency rises. 

These effects are due to the additional inertia offered by the flywheel, which 

reduces the fundamental natural frequency of the actuator. Also, because of the 

gearing mechanism, the flywheel produces primarily a relative inertia effect, thus no 

matter whether it is fixed to the case or to the proof mass of the actuator, the net result 

is an additional inertia effect on the plate at the control point so that the sensor–

actuator open loop FRF presents a smoothened spectrum at frequencies above  

200 Hz. The Bode plots of the open loop FRF with the flywheel pinned either to the 

case or to the proof mass (dash-dotted red lines) present very similar features to those 

found for the hinged flywheel element, except that the resonance peak for the 

fundamental resonance frequency of the actuator occurs at about 6.6 Hz. This is due 

to the fact that the pinned shaft introduces an additional stiffness effect that rises a 

little the fundamental natural frequency of the proof mass compared to the hinged 

configuration. 
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Figure 2.9. Open loop sensor–actuator FRFs for the actuator with flywheel attached 

to base (a) and flywheel attached to proof mass (b). Classical configuration (Solid blue 

lines). Hinged flywheel actuator (dashed black lines). Pinned flywheel actuator 

(dashed-dotted dotted red lines). 

 

The Nyquist plots in Figure 2.10 confirm the analysis presented with the Bode 

plots. Figure 2.10a highlights that the Nyquist diagram for the feedback loop with the 

classical proof mass actuator is characterised by a circle in the real negative quadrants 

centred along the real axis, which is due to the resonance peak of the fundamental 

natural frequency, and then a series of progressively smaller circles in the real positive 

quadrants, centred along the real axis. The circle on the left hand quadrants indicates 

that the feedback loop is only conditionally stable. More precisely the stability gain 

margin is about 10 dB. The Nyquist plots for the feedback loops with the flywheel 

either hinged (Figure 2.10b, d) or pinned (Figure 2.10c, e) to either the case (Figure 

2.10b, c) or proof mass (Figure 2.10d, e) show similar characteristics than those found 

for the feedback loop with the classical proof mass actuator apart from a very 

important detail: in all four cases, the circle in the real negative quadrants is much 

smaller than that found for the feedback loop with the classical proof mass actuator. 

Thus, the feedback loops with the proposed actuators are characterised by much 

higher gain margins, which reach the limit of about 31 dB for the hinged 

configurations and about 27 dB for the pinned configurations. 
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Figure 2.10. Nyquist plots of the open loop sensor – actuator FRFs. (a) Classical 

configuration, (b) Hinged flywheel attached to case, (c) Pinned flywheel attached to 

case, (d) Hinged flywheel attached to proof mass, (e) Pinned flywheel attached to 

proof mass. The plots have been normalised such that the largest circle in the real 

positive quadrants has unit diameter. 

 

2.6  CONTROL PERFORMANCE  

The performance of the feedback loops with the proposed flywheel actuators has 

been assessed considering the total flexural kinetic energy of the hosting plate as 

defined in Equation (2.50). The two plots in Figure 2.11 show the 3 Hz – 1 kHz spectra 

of the kinetic energy per unit acoustic excitation for the plate without proof mass 
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actuator, for the plate with open loop proof mass actuator and for the plate with the 

closed loop feedback control systems using the proof mass actuator without flywheel 

and with the flywheel either hinged or pinned to the case (Figure 2.11a) and to the 

proof mass (Figure 2.11b) of the actuator. The feedback loops implement stable gains 

with gain margin of about 2 dB.  

The kinetic energy spectrum for the plain plate (dotted green lines), is 

characterised by a dominant resonance peak at about 40 Hz, which is due to the 

fundamental flexural natural mode of the plate. Above this resonance frequency, the 

spectrum rapidly rolls off following a typical mass law for acoustic excitations [68]. 

The fundamental resonance peak is followed by other sharp peaks due to flexural 

modes of the plate with one or both indices even, which are effectively excited by 

acoustic waves [15], [68], [138].  

 

 

Figure 2.11. Total flexural kinetic energy per unit acoustic excitation of the plate 

without proof mass actuator (dotted green lines), for the plate with open loop proof 

mass actuator (thick dotted magenta line) and for the plate with the closed loop 

feedback control systems using the proof mass actuator without flywheel (solid blue 

lines) and with the flywheel either hinged (dashed black lines) or pinned (dashed-

dotted red lines) to the case (plot a) and to the proof mass (plot b) of the actuator. 

 

When the classical proof mass actuator is mounted to the plate (thick dotted 

magenta lines), the amplitude of the resonance peak of the fundamental mode is 

rounded off by about 11 dB. At higher frequencies the actuator produces much 

smaller effects, which are negligible. When for the same actuator the feedback loop is 

closed (solid blue line), with a 2 dB signal gain margin, an additional 22 dB vibration 

reduction is noticed at the fundamental resonance frequency. Instead, when the 

feedback loops using the proposed proof mass actuator with the flywheel is 
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implemented an additional 39 dB for pinned (dashed-dotted red lines) and 48 dB for 

hinged (dashed black lines) either to the case (plot a) or to the proof mass (plot b) 

vibration reduction is noticed at the fundamental resonance frequency. This is 

principally due to the improved stability properties of the control loops with these 

actuators that can implement a much larger feedback control gain. The two plots 

clearly show that the feedback loop with the classical proof mass actuator also 

generates a rather high control spillover effect at the fundamental resonance 

frequency of the actuator at about 19.9 Hz. In contrast, the feedback loops using the 

proposed actuators, produce much smaller control spillover effect at the fundamental 

resonances at about 4.7 and 6.6 Hz. 

To better asses the effectiveness of the proposed control systems, the 1 Hz to 1 kHz 

frequency averaged plate kinetic energy reduction is considered. The reductions are 

normalised with reference to the frequency averaged kinetic energy of the plate with 

open loop control systems. Figure 2.12 shows the reduction of the frequency average 

kinetic energy when the feedback loops are closed with increasing feedback control 

gains. The solid blue lines in the two plots indicate that the feedback loop with the 

classical proof mass actuator produces up to about 10 dB reduction of the frequency 

averaged kinetic energy when the maximum stable gain is implemented as marked 

with blue circles in Figure 2.12. Alternatively, the feedback loops using the proof mass 

actuator with the flywheel hinged (dashed black lines) either to the base (Figure 2.12a) 

or to the proof mass (Figure 2.12b) can implement much larger feedback control gains, 

as shown in Figure 2.10, such that the frequency averaged kinetic energy of the plate 

is reduced by up to 21 dB, as marked with black circles in Figure 2.12. The feedback 

loops using the proof mass actuator with the flywheel pinned (dashed-dotted red 

lines) either to the base (Figure 2.12a) or to the proof mass (Figure 2.12b) can 

implement slightly lower feedback control gains compared to hinged configuration, 

such that the frequency averaged kinetic energy of the plate is reduced by 19 dB as 

marked with red circles in Figure 2.12. It should be emphasised that the improved 

control performance are obtained thanks to the possibility of implementing about  

20 dB higher control gains, that is about one order of magnitude higher control 

signals. Thus, it is important the scale of the actuator, and in particular the scale of 

the coil, can withstand the high current signals that would be fed to the coil when the 

maximum feedback control gains are implemented [54], [55], [87]. 

Figure 2.12 also shows the predicted frequency average kinetic energy when the 

feedback loops are closed with increasing feedback control gains above the stability 

gain margins. The dotted blue lines in the two plots indicate that the feedback loop 
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with the classical proof mass actuator could produces up to about 20 dB reduction of 

the frequency kinetic energy when the feedback loops would allow implementing  

29 dB signal gain. Instead, the feedback loops using the proof mass actuator with the 

flywheel either hinged (dotted black lines) or pinned (dotted red lines) to the base 

(Figure 2.12a) or to the proof mass (Figure 2.12b) could produces up to about 22 dB 

reduction of the frequency kinetic energy when the feedback loops would allow 

implementing 37 dB signal gain.  

Figure 2.12 shows that implementing high signal gains lead to drop of the feedback 

loop effectiveness and control performance. High signal gains lead to the pinning 

effect of the rectangular plate at the control position. Thus, the implemented feedback 

loops generate additional pinning point, which instead of reducing vibrations of the 

structure change its dynamics.  

 

 

Figure 2.12. Reductions of the 1 Hz – 1 kHz frequency averaged kinetic energy 

produced by the feedback loops using either the classical inertial actuator (solid blue 

lines) or the proposed proof mass actuators with the flywheel either hinged (dashed 

black lines) or pinned (dashed-dotted red lines) to the case (plot a) and to the proof 

mass (plot b) of the actuator. The doted lines show predicted frequency averaged 

kinetic energy produced by the feedback loops using the inertial actuators.  
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2.7  PARAMETRIC STUDY  

The parametric study presented in this paragraph investigates several aspects of 

influence of the flywheel element on the performance and the static deflection of the 

inertial transducer. In the last part of this paragraph, the scaling study investigates 

how size influences the design of the proposed flywheel proof mass actuators in order 

to have feedback loops with high gain margins and thus high vibration control effects. 

 

2.7.1 Performance 

The simulation results presented in the previous two sections have shown that 

adding the flywheel element in the proof mass actuator increases the stability gain 

margin of the feedback loop and consequently the control effectiveness of the 

feedback loop. The flywheel introduces an additional inertia effect which is 

proportional to the relative acceleration of the proof mass with reference to the case 

of the actuator. As reported in Equation (2.22), this inertia effect is given by 𝐼𝑤/𝑟𝑤
2, 

where 𝐼𝑤 = 1

2
𝑚𝑤𝑅𝑤

2 . Thus it depends on the mass of the flywheel, 𝑚𝑤, the external 

radius of the flywheel 𝑅𝑤 and the radius 𝑟𝑤 of the pinion rack gear mechanism. A 

parametric study is therefore introduced to assess how the control effectiveness of the 

feedback loops using the four proposed actuators vary with the mass and the 

geometry of the flywheel. The maximum reduction of the frequency averaged kinetic 

energy considered in previous section is plotted with reference to the radius ratio 

𝑅𝑤 𝑟𝑤⁄  and with reference to the mass ratio 𝑚𝑤 𝑀𝑎⁄ . The four plots in Figure 2.13 show 

that with all flywheel proof mass actuators considered in this study, the control 

performance of the feedback loops improve as the ratio 𝑅𝑤 𝑟𝑤⁄  and the ratio 𝑚𝑤 𝑀𝑎⁄  

increases. In other words, the performance of the feedback loop improves as the 

inertia of the flywheel is augmented by either increasing the outer radius of the 

flywheel 𝑅𝑤 or by magnifying the conversion of the axial stroke into the angular 

oscillation of the flywheel, i.e. by reducing the radius 𝑟𝑤 of the pinion rack gear 

mechanism. Also the performance of the feedback loops improves when the balance 

between the masses 𝑀𝑤 and 𝑚𝑤, whose sum is assumed constant, i.e. 𝑀𝑤 + 𝑚𝑤 = 𝑀𝑎, 

is shifted towards the mass 𝑚𝑤 of the flywheel element. 
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Figure 2.13. Maximum reductions of the 20 Hz – 1 kHz frequency averaged kinetic 

energy produced by the feedback loops using the proposed actuators with the 

flywheel either hinged (a) or pinned (b) to the case of the actuator or the flywheel 

either hinged (c) or pinned (d) to the proof mass of the actuator. 

 

2.7.2 Static deflection 

As discussed in the introduction, to improve the stability, and thus control 

performance of feedback loops with proof mass actuators, the fundamental natural 

frequency of the actuator has to be kept the lowest possible. However, this condition 

contrasts with the need of limiting the static displacement of the actuator proof mass 

to allow for a correct operation of the actuator also in presence of shocks or fast 

movements of the hosting structure, which could cause undesired stroke saturation 

effects that would lead to instability of the feedback loops.  

Considering the models in Figure 2.1, the static deflection is given by: 

 𝛿 =
𝜎𝑀𝑎

𝑘
   (2.58) 

for the classical configuration (Figure 2.1a), where 𝜎 is the nominal gravitational 

acceleration. Also, the static deflections for the actuator with the flywheel hinged 

(Figure 2.1b) or pinned (Figure 2.1c) to the case are given respectively by: 

 
𝛿 =

𝜎𝑀𝑤

𝑘
   ,    𝛿 =

𝜎𝑀𝑤

𝑘 +
𝑘𝑤

𝑟𝑤
2

 
(2.59) 
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and the static deflections for the actuator with the flywheel hinged (Figure 2.1d) or 

pinned (Figure 2.1e) to proof mass are given respectively by: 

 
𝛿 =

𝜎(𝑀𝑤 + 𝑚𝑤)

𝑘
   ,    𝛿 =

𝜎(𝑀𝑤 + 𝑚𝑤)

𝑘 +
𝑘𝑤

𝑟𝑤
2

 . 
(2.60) 

Figure 2.14 shows how the static deflection varies with reference to the radius ratio 

𝑅𝑤 𝑟𝑤⁄  and with reference to the mass ratio 𝑚𝑤 𝑀𝑎⁄ . When the flywheel is hinged to 

the base, Figure 2.14a shows that the static deflection tends to diminish as the balance 

of the actuator mass 𝑀𝑤 + 𝑚𝑤 = 𝑀𝑎 is shifted towards the flywheel element 𝑚𝑤. Yet 

the static deflection does not vary with the radius ratio 𝑅𝑤 𝑟𝑤⁄  that controls the 

rotational inertia effect of the flywheel. In fact, the rotational inertia of the flywheel 

does not contribute to the weight of the proof mass and thus does not produce effects 

on the static deflection. If instead the flywheel is elastically pinned to the base, as 

shown in Figure 2.14b, the radius ratio 𝑅𝑤 𝑟𝑤⁄  influences the static deflection. This is 

because the radius 𝑟𝑤 of the pinion rack gear mechanism affects the axial stiffness 

effect produced by the torsional stiffness of the shaft used to pin the flywheel to the 

actuator base. 

 

 

Figure 2.14. Static deflection of the actuator with the flywheel either hinged (a) or 

pinned (b) to the case of the actuator or the flywheel either hinged (c) or pinned (d) 

to the proof mass of the actuator. 
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When the flywheel is hinged to the proof mass, Figure 2.14c shows that the static 

deflection does not depend on the balance of the actuator inertial mass since, both the 

proof mass 𝑀𝑤 and the flywheel mass 𝑚𝑤 contribute to the total weight of the 

suspended components, which influences the static deflection. As seen for the 

previous two configurations, also in this case the static deflection does not vary with 

the radius ratio 𝑅𝑤 𝑟𝑤⁄ , since it controls the rotational inertia effect of the flywheel 

only. However, if the flywheel is elastically pinned to the case, as shown in Figure 

2.14d the radius ratio 𝑅𝑤 𝑟𝑤⁄  influences the static deflection since the radius 𝑟𝑤 of the 

pinion rack gear mechanism affects the axial stiffness effect produced by the torsional 

stiffness of the shaft used to pin the flywheel to the actuator case. 

In summary the plots in Figure 2.14 suggest that, to reduce the static deflection, it 

is preferable that the flywheel is hinged or pinned to the case of the actuator and the 

balance of the actuator mass 𝑀𝑤 + 𝑚𝑤 = 𝑀𝑎 is shifted towards the flywheel element, 

i.e. towards 𝑚𝑤. Also, when the flywheel is pinned, with a shaft of given stiffness, 

either to the case or proof mass of the actuator, the static deflection tends to decrease 

as the radius 𝑟𝑤 of the pinion rack gear mechanism is lowered, i.e. as the conversion 

factor between axial and angular motions is increased. 

 

2.7.3 Scaling study 

The scaling study presented in this section investigates how size influences the 

design of the proposed flywheel proof mass actuators in order to have feedback loops 

with high gain margins and thus high vibration control effects. Following the scaling 

study presented in references [54], [55], the scaling laws of the proof mass actuators 

mechanical and electrical properties are first revised. The scaling laws for the 

mechanical parameters of the actuators are then introduced. As presented in 

references [74], [140] the scaling laws are defined with the [𝐿𝑛] notation, where n 

identifies the power of the linear dimension 𝐿. The scaling study presented here 

considers an isometric (or isomorphic) scaling, which preserves the aspect ratio and 

geometric integrity of the actuator components [74], [87], [89]. 

The scaling laws for the inertia, stiffness and damping properties of the principal 

components of the classical and proposed proof mass actuators are derived in this 

section in view of the lumped parameter models shown in Figure 2.1. The first 

parameter analysed, of the actuator physical properties, is the suspended inertial 

mass. The linear inertia effects depend on the mass of the actuator components, that 
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is the mass of the elastically suspended magnetic element 𝑀𝑎 or 𝑀𝑤, the mass of the 

case 𝑚𝑏 and the mass of the flywheel 𝑚𝑤, which are all proportional to the material 

density and volume of the components, so that: 

 𝑀𝑎 ∝ [𝐿3]   ,   𝑀𝑤 ∝ [𝐿3]   ,   𝑚𝑏 ∝ [𝐿3]  , 𝑚𝑤 ∝ [𝐿3] . (2.61) 

The angular inertial effect produced by the rotation of the flywheel is instead 

proportional to the polar moment of inertia of the flywheel, which for a disc element 

is given by 𝐼𝑤 = 1

2
𝑚𝑤𝑅𝑤

2 , where 𝑅𝑤 is the external flywheel radius. Thus, the flywheel 

angular inertia effect scales with: 

 𝐼𝑤 =
1

2
𝑚𝑤𝑅𝑤

2 ∝ [𝐿5] . (2.62) 

Instead, the flywheel axial inertia effect scales with: 

 
𝐼𝑤

𝑟𝑤
2

∝ [𝐿3] , (2.63) 

where 𝑟𝑤 is the radius of the pinion-rack gear mechanism. As can be found in 

reference [140], the axial and torsional stiffness of the springs holding the proof mass 

and flywheel elements depends on the length of the elastic element (spiral metal 

sheet, metal coil, tiny shaft, etc.): 

 𝑘 ∝ [𝐿1]   ,    
𝑘𝑤

𝑟𝑤
2

∝ [𝐿1] . (2.64) 

The principal damping mechanism is given by the viscous damping effect produced 

by the air flow in the gap between the magnet and the coil. Considering the axial and 

torsional damping of the suspension system as presented in previous work [74] this 

parameter scales with the following factor: 

 𝑐 ∝ [𝐿1]   ,   
𝑐𝑤

𝑟𝑤
2

∝ [𝐿1] . (2.65) 

The first parameter analysed, of the actuator mechanical properties, is the static 

deflection of the proof mass, which for the classical actuator (Figure 2.1a) is given by: 

 𝛿 =
𝜎𝑀𝑎

𝑘
∝ [𝐿2] , (2.66) 

where 𝜎 is the nominal gravitational acceleration. Also, the static deflections for the 

actuator with the flywheel hinged to either the case (Figure 2.1b) or proof mass 

(Figure 2.1d) are given respectively by: 

 𝛿 =
𝜎𝑀𝑤

𝑘
∝ [𝐿2]      ,      𝛿 =

𝜎(𝑀𝑤 + 𝑚𝑤)

𝑘
∝ [𝐿2] (2.67) 
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and the static deflections for the actuator with the flywheel pinned to either the case 

(Figure 2.1c) or proof mass (Figure 2.1e) are given respectively by: 

 
𝛿 =

𝜎𝑀𝑤

𝑘 +
𝑘𝑤

𝑟𝑤
2

∝ [𝐿2]      ,      𝛿 =
𝜎(𝑀𝑤 + 𝑚𝑤)

𝑘 +
𝑘𝑤

𝑟𝑤
2

∝ [𝐿2] . 
(2.68) 

Thus, in all cases, the static deflection of the proof mass scales proportionally to 𝐿2. 

Also, it is noticed that the design with the pinned flywheel could reduce the static 

displacement, particularly when the flywheel is pinned to the case of the actuator. 

The damping ratio for the classical actuator (Figure 2.1a) is given by: 

 𝜁 =
𝑐

2√𝑘𝑀𝑎

∝ [𝐿−1] . (2.69) 

Also, the damping ratio of the actuator with the flywheel hinged to either the case 

(Figure 2.1b) or proof mass (Figure 2.1d) are given respectively by: 

𝜁 =
𝑐

2√𝑘 (𝑀𝑤 +
𝐼𝑤

𝑟𝑤
2 )

∝ [𝐿−1]      ,      𝜁 =
𝑐

2√𝑘 (𝑀𝑤 + 𝑚𝑤 +
𝐼𝑤

𝑟𝑤
2 )

∝ [𝐿−1] 
(2.70) 

and the damping ratio of the actuator with the flywheel pinned to either the case 

(Figure 2.1c) or proof mass (Figure 2.1e) are given respectively by: 

 

𝜁 =
𝑐

2√(𝑘 +
𝑘𝑤

𝑟𝑤
2 ) (𝑀𝑤 +

𝐼𝑤

𝑟𝑤
2 )

∝ [𝐿−1]   , 

𝜁 =
𝑐

2√(𝑘 +
𝑘𝑤

𝑟𝑤
2 ) (𝑀𝑤 + 𝑚𝑤 +

𝐼𝑤

𝑟𝑤
2 )

∝ [𝐿−1] 

(2.71) 

Thus, in all cases, the damping ratio scales proportionally to 𝐿−1. The fundamental 

natural frequency of the classical actuator (Figure 2.1a) is given by: 

 𝜔𝑛 = √
𝑘

𝑀𝑎
∝ [𝐿−1] . (2.72) 

Also, for the actuator with the flywheel hinged to either the case (Figure 2.1b) or the 

proof mass (Figure 2.1d) they are given respectively by: 

 𝜔𝑛 = √

𝑘

𝑀𝑤 +
𝐼𝑤

𝑟𝑤
2

∝ [𝐿−1]      ,      𝜔𝑛 = √

𝑘

𝑀𝑤 + 𝑚𝑤 +
𝐼𝑤

𝑟𝑤
2

∝ [𝐿−1] (2.73) 
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and for the actuator with the flywheel pinned to either the case (Figure 2.1c) or the 

proof mass (Figure 2.1e) they are given respectively by: 

 𝜔𝑛 = √
𝑘 +

𝑘𝑤

𝑟𝑤
2

𝑀𝑤 +
𝐼𝑤

𝑟𝑤
2

∝ [𝐿−1]      ,      𝜔𝑛 = √
𝑘 +

𝑘𝑤

𝑟𝑤
2

𝑀𝑤 + 𝑚𝑤 +
𝐼𝑤

𝑟𝑤
2

∝ [𝐿−1] . (2.74) 

These expressions show that the natural frequencies for the five actuator 

configurations scales proportionally to 𝐿−1. Also, it is noticed that the designs with 

the flywheel pulls down the natural frequency, particularly when the flywheel is 

hinged to the proof mass. In general it can be concluded that on one hand, to reduce 

the static displacement, configurations (b) and (c) shown in Figure 2.1 would be 

preferable, since the flywheel would not increase the amount of suspended mass and 

actually, for configuration (c), the additional torsional pinning spring would increase 

the stiffness holding the suspended mass, as shown in Equation (2.68). On the other 

hand, to reduce the fundamental natural frequency of the actuator, configurations (d) 

and (e) shown in Figure 2.1 would be preferable, since the inertia of the proof mass 

would be enhanced by the linear and angular inertia of the flywheel. Possibly the best 

compromise that would guarantee a reduction of both the static displacement and the 

fundamental natural frequency of the actuator is given by configuration (c) shown in 

Figure 2.1, which actually uses the more practical torsional pinning spring to fix the 

flywheel. The equations derived above and Equations (2.62) and (2.63) also highlight 

that it is important the ratio between the radius of the flywheel 𝑅𝑤 and the radius of 

the pinion-rack gear mechanism 𝑟𝑤 should be as high as possible to guarantee the 

highest angular inertia effect 𝐼𝑤 with the smaller linear inertia 𝑚𝑤 penalty.  

As discussed in references [54], [55], [87], [88], the scaling laws of the force 

generated by the moving magnet actuators, can be considered based on three major 

cases: a) constant current density in the coil, b) constant heat dissipation rate, c) 

constant temperature rise across the winding. The scaling factors for the three cases 

are summarised in the Table 2.8. 

 

Table 2.8. Scaling laws for coil-magnet actuator transduction effect. 

Transduction hypothesis Actuation force 𝑭𝒂 scaling law 

Constant current density [𝐿3] 

Constant heat dissipation rate [𝐿2.5] 

Constant temperature rise [𝐿2] 
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In many practical cases, the constant temperature assumption is employed since 

the coil winding overheating problem typically limits the actuation force produced 

by the transducer. In this case, the generated force is given by: 

 𝐹𝑎 = −𝐵𝑙𝑖𝑎 ∝ [𝐿2] , (2.75) 

where 𝐵 is the magnetic field in the gap where the coil is housed and 𝑙 is the length 

of the winding. For a given material of the coil winding, the law of heat conduction is 

given by: 

 �̇� = 𝑡𝑐𝐴𝑠

𝑑𝑇

𝑑𝑧
 , (2.76) 

where �̇� is a heat power dissipation, 𝑡𝑐 is the thermal conductivity, 𝐴𝑠 is the total area 

of conductor, T is the temperature and 𝑧 is the normal to the surface 𝐴𝑠 of heat flow. 

Additionally it is known that: 

 �̇� = 𝑅𝑖𝑎
2 , (2.77) 

where 𝑅 is the conductor resistance and 𝑖𝑎 is the actuator driving current. Substituting 

Equation (2.76) into Equation (2.77) for the assumption that the heat rise Δ𝑇 is kept 

constant, the actuator driving current is given by: 

 𝑖𝑎 = √
1

𝑅
𝑡𝑐𝐴𝑠

𝑑𝑇

𝑑𝑧
∝  [𝐿1] . (2.78) 

Thus, assuming constant temperature in the coil, the current flow in the coil scales 

proportional to 𝐿1. Also according to Equation (2.75) the force generated by the 

transducer scales proportionally to 𝐿2.  

Figure 2.15 shows the graphical representation of the scaling laws for the physical 

properties (Figure 2.15a) and mechanical parameters (Figure 2.15b) of the flywheel 

proof mass actuators. In general, it can be concluded that when the actuator is down-

scaled the fundamental natural frequency and damping ratio tend to rise, the static 

displacement and the actuation force tend to decrease. Thus, there is no univocal 

conclusion on the best scaling law for a coil-magnet proof mass actuator, which 

ideally should be characterised by low fundamental natural frequency, high damping 

ratio, low static displacement and high actuation force. Nevertheless, it could be 

agreed that, since the flywheel element tends to increase the inertia effect, and thus to 

reduce the fundamental natural frequency, without affecting the static displacement, 

the proposed flywheel proof mass actuators are better suited than the classical proof 

mass actuators for the implementation of small scale control units. 
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Figure 2.15. Scaling laws for the physical properties (a) and mechanical parameters 

(b) of a flywheel proof mass actuator. Flywheel angular inertia 𝐼𝑤, Mass of the 

actuator 𝑀𝑎, Flywheel axial inertia 𝐼𝑤/𝑟𝑤
2, Stiffness 𝑘, Damping coefficient 𝑐, Torsional 

stiffness 𝑘𝑤/𝑟𝑤
2, Torsional damping 𝑐𝑤/𝑟𝑤

2, Electromagnetic force 𝐹𝑎, Actuator static 

displacement 𝛿, Driving current 𝑖𝑎, Damping ratio 𝜁, Fundamental natural frequency 

𝜔𝑛. 

 

From a practical point of view it is worth to point out that the downscaling of the 

actuators is not always simple and straightforward task, since external forces that can 

be neglected at macroscale may become dominant at the microscale level. The 

frictional loads and stick-slip phenomena mainly determine the type of the flywheel 

actuator configuration that can be used depending the size of the actuator. As it was 

shown in previous section, the highest control performance can be obtained for the 

hinged configuration of the flywheel proof mass actuator. This configuration can be 

efficiently used when the actuator is exposed to relatively high displacement of the 

vibrating structure and when the stiction effect between the surfaces can be neglected. 

The pinned configuration is more appealing for the micro actuators in which the 

flexural hinges are used for motion conversion and where the dominant frictional 

loads are no longer a problem. 

 

2.8  CHAPTER SUMMARY 

This chapter has presented a new inertial electrodynamic actuator with a flywheel 

element for velocity feedback control loops on flexible structures. Four different 

configurations have been considered where the flywheel is either hinged or pinned 

to either the proof mass or the case of the actuator. The study has introduced a lumped 
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parameter model and an impedance – mobility electromechanical formulation for the 

operation of the velocity feedback loop.  

The kinetic and kinematic response of the classical and four proposed flywheel 

proof mass actuators were first investigated considering spectra of six 

electromechanical properties. The actuators were compared based on FRFs of the base 

impedance, the actuators blocked force per unit driving current, the actuators 

transduction FRF, the actuators blocked force per unit applied voltage, the electrical 

impedance and the actuators proof mass stroke per unit driving current.  

The base impedance study has shown that a classical proof mass actuator is 

characterised by low and high frequencies mass–impedances proportional 

respectively to the total and the case mass of the actuator, which are connected via a 

resonance peak and antiresonance low linked by a stiffness–impedance segment. The 

actuators with the flywheel element present a similar impedance spectrum although 

the high frequency mass–impedance is in this case nearly equal to the low frequency 

mass–impedance. In addition, the amplitude of the resonance peak and antiresonance 

low are much smaller as the resonance and antiresonance frequencies are moved to 

lower frequencies and are much closer to each other. Thus, the proposed flywheel 

actuators are characterised by a constant mass–impedance effect in the whole 

frequency range except a very small band delimited by the fundamental resonance 

and antiresonance frequencies of the actuator.  

The blocked force per unit current fed to the actuator has highlighted that when 

the actuator with the flywheel element is used, the additional inertia effect produced 

by the oscillations of the flywheel tends to lower the low frequency range where the 

produced force is out of phase with the driving current. However, the axial inertia 

effect produced by the flywheel element also lowers the constant force effect 

produced above fundamental resonance frequency of the actuator. 

The transduction FRF is characterised with the equal expression to the blocked 

force per unit current fed to the transducers. Thus, the low-frequency and high-

frequency asymptotic expressions of the blocked force per unit current fed to the 

classical and four proposed flywheel proof mass actuators can be also used for the 

characterisation of the actuator transduction FRF. 

The blocked force per unit voltage applied to the actuator has highlighted that the 

electrical impedance of the coil rounds off the peaks at the fundamental resonance 

frequencies of the actuators. Additionally, the inductive effect of the actuator coil 

starts to take important role at higher frequencies making the produced blocked force 

drop with frequency.  
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The results of the electrical impedance showed that the fundamental resonance 

frequency of the transducers could be lowered both in frequency and amplitude with 

the axial inertia effect produced by the flywheel element. 

 Finally, the stroke study has shown that, at low frequencies below the 

fundamental resonance frequency of the actuators, the proof mass stroke of the 

actuators with the flywheel hinged to either the actuator base or actuator proof mass 

is the same as that of the classical actuator and it is controlled by the axial stiffness of 

the suspension system. Alternatively, the proof mass stroke of the actuators with the 

flywheel pinned to either the actuator case or actuator proof mass is smaller since it 

is controlled by a higher stiffness effect due to the axial stiffness of the suspension 

system and the torsional stiffness acting on the flywheel.  

The stability and control performance of velocity feedback loops using classical 

and four proposed flywheel proof mass actuators was considered assuming that the 

control loops operate on a thin rectangular panel excited by an acoustic plane wave. 

The stability analysis has shown that for all configurations of the actuator, the 

addition of the flywheel element increases the gain margin of the feedback loop 

without any increase of the actuator mass. As a result, the feedback loops using the 

proposed proof mass actuators with the flywheel element are characterised by 

improved control performance. More specifically, the maximum vibration reduction 

produced by a feedback loop with a classical actuator is about 10 dB while the 

maximum vibration reductions produced by the feedback loops with the proposed 

flywheel actuators is about 21 dB. Results showed that the actuators equipped with 

the flywheel element attached either to base or to proof mass present similar control 

performance. However, slightly higher reductions were obtained when the flywheel 

was attached to the proof mass. The control performance study has highlighted that 

when the actuator with the flywheel element is used to implement a velocity 

feedback, the additional inertia effect produced by the flywheel element tends to 

lower the low frequency range where the destabilising positive feedback effect occurs.  

The parametric study has also been introduced to investigate both the vibration 

control performance of the feedback loops with the proposed actuators and the static 

deflection of the proposed actuators, which influence the robustness of the control 

system. The study has shown that both vibration control effectiveness and static 

deflection are improved when the balance of the actuator mass 𝑀𝑤 + 𝑚𝑤 = 𝑀𝑎 is 

shifted towards the mass 𝑚𝑤 of the flywheel element. Secondly, when the radius of 

the flywheel 𝑅𝑤 and thus polar moment of inertia of the flywheel, is increased. Finally 
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when the radius 𝑟𝑤 of the pinion rack gear mechanism for the conversion of the axial 

stroke into the angular oscillation of the flywheel is reduced. 

The parametric study presented in this chapter suggests a new configuration of the 

proof mass actuator, where the inertial mass of the actuator 𝑀𝑎 = 𝑀𝑤 + 𝑚𝑤 is 

primarily allocated to the flywheel mass 𝑚𝑤 and the proof mass 𝑀𝑤 is reduced to the 

minimum compatibly with the construction constraints. The improved control 

performance was obtained thanks to the possibility of implementing higher control 

gains. Thus, it is important to scale the electromechanical components of the actuator 

that could withstand the high current signals that would be fed to the coil when the 

maximum feedback control gains are implemented. 

The scaling study has considered a linear model of the actuator, which does not 

take into account the typical nonlinear effects of friction in the hinge joint and the 

nonlinear effects that arise for the gear meshing in the pinion rack mechanism used 

to convert the axial oscillations of the proof mass into angular oscillations of the 

flywheel. Nevertheless, the study has shown that there is no univocal conclusion on 

the best scaling law for a coil-magnet proof mass actuator. For instance to obtain low 

fundamental natural frequency and large control forces the actuator should be up-

scaled. Alternatively, to have low static displacement, the actuator should be down-

scaled. Nevertheless, the study has shown that the proposed flywheel element could 

be used to effectively reduce the fundamental natural frequency of the actuator 

allowing then the use of small-scale devices. 
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F L Y W H E E L  C O I L  M A G N E T  T R A N S D U C E R  

This chapter presents the mechanical design and characterisation of 

electromagnetic proof mass actuators equipped with two different flywheel elements. 

Both prototypes are based on a standard and commercially available coil magnet 

linear transducer. In both configurations, the flywheel element is mounted in parallel 

with the actuator suspension spring and connects the magnet with coil armature. 

Thus, the relative axial motion between the inner magnet and exterior armature coil 

element produces the rotational motion of the flywheel element. Furthermore, the 

prototypes are designed to have similar physical characteristics to the configurations 

presented in the analytical study of the previous chapter.  

In the first configuration, the classical coil-magnet transducer is equipped with a 

flywheel element designed in from of a balanced beam (rocker arm) having lumped 

masses at the ends, which produces the desired rotational inertia effect. The flywheel 

element is designed in such a way as to allow changes in the position of the lumped 

masses that control the rotational inertia. The first prototype uses hinges, similarly to 

the configuration presented in the analytical study of the previous chapter. Thus, in 

this chapter the first prototype of the flywheel inertial actuator is called “hinged 

configuration”. The linear motion of the actuator is converted into a rotation of the 

flywheel by hinging one side of the rocker arm to a pin connected to the inner magnet, 

while the other side to a bracket fixed to the external coil armature. The bracket and 

the rocker arm was designed with four different hinging points, so that the conversion 

offset from axial to rotational motion could be changed and thus the rotational inertia 

effect can be modified. 

The second prototype is equipped with a round flywheel element with dimensions 

optimised in such a way as to minimise weight and to maximise polar moment of 

inertia. Compared to the first prototype, this configuration adopted the pivot bearings 

in order to minimise stick-slip effects and reduce the backlash effects between the 

moving components. The flywheel element is attached via two flexural bearings to 

the bracket fixed to the external coil armature. The linear motion of the actuator  

is converted into a rotation of the flywheel by a pushing pin link attached to the inner 
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magnet and the third pivot bearings that was mounted on one of the flywheel arms. 

The frictionless flexural bearings used in this prototype can be modelled as a torsional 

springs, similarly to the second configuration presented in the analytical study of the 

previous chapter. Thus, in this chapter the second prototype of the flywheel inertial 

actuator is called “pinned configuration”. 

The first part of this chapter presents a detailed design of the flywheel prototypes. 

Selection of the components and assembly process is described in order to clarify the 

operation of each prototype. The second part of this chapter presents the 

characterisation of the electromechanical properties. Also, the experimental tests 

carried out on a new prototypes are compared with the simulation results based on 

the lumped parameter models. The mathematical formulations of the 

electromechanical model presented in the previous chapter are used to obtain the 

simulation results that are contrasted with experimental results. Additionally, the 

results for both flywheel prototypes are compared with the results for the classical 

coil magnet linear actuator having equal mass as two flywheel actuator prototypes.  

 

3.1  ELECTROMAGNETIC TRANSDUCER  

The electromagnetic (EM) transducer presented in Figure 3.1, described as 

reference or classical configuration in the remaining part of this document, was used 

as a base for designing two flywheel prototypes. The EM transducer produced by 

H2W Technologies (NCM02-17-035-2F) shown in Figure 3.1a, can be used either as an 

actuator or as an energy harvester. It was decided to use this actuator for building the 

prototypes mainly due to the availability, which did not require any additional 

purchasing and shipment delay. Moreover, the actuator showed favourable 

properties for the active vibration control applications, which are high damping 

coefficient and large stroke without hard end-stops. The symmetric arrangement of 

the transducer is ideal for designing new prototypes. The transducer provides easy 

access and connections from both sides (top and bottom shown in Figure 3.1) to the 

magnet element and to the external coil armature, which can be used as an inertial 

mass. Three symmetrically distributed tapped holes on both sides of the coil armature 

and one in the centre of the magnet element enable to integrate additional elements 

in the transducer to build a new prototype. Moreover, the tapped holes on both ends 

allow to use this actuator either as an inertial or as a reactive transducer.  
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The transducer is designed with a cylindrical magnetic element placed in the 

centre of the round coil armature as shown with the schematic section view in Figure 

3.1b. The magnet is suspended with two flexural axial springs that are attached to 

both sides of the coil armature. The two springs are characterised by soft axial 

stiffness and comparatively much higher transverse stiffness. The springs allow this 

transducer to work in axial oscillatory motion, so that it can move as a balanced spring 

mass system. The damping effect in this actuator is created by the eddy currents 

generated between the magnet and the metal armature around the external coil and 

by the air damping that develops in the gap between the coil and the magnet. The 

design allows to us this actuator either as a moving magnet or as a moving coil 

armature actuator. However, from the practical point of view, the actuator is used as 

a moving coil actuator due to heavier inertial mass (lower fundamental resonance 

frequency) and attachment simplicity to a hosting structure as it requires only one 

screw. Design studies of a similar electromagnetic actuator can be found in references 

[141]–[143] for example. 

 

   

Figure 3.1. Coil magnet transducer. Picture (a) and schematic section view (b). 

 

The actuator presented in Figure 3.1 can be easily adopted for prototypes thanks 

to three 4-40 threaded holes on each sides of the coil armature that can be used to 

attach the bracket support for the flywheel prototype. The electromechanical 

properties of the actuator are summarised in Table 3.1. The electromechanical 

properties of the EM transducer were obtained from the producer datasheet [144]. 

 

 

(a) (b) 
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Table 3.1. Electromechanical properties of the transducer [144]. 

Parameter Value 

Stroke 5.6 mm 

Magnet Mass 115 g 

Total Mass 300 g 

Resistance at 20°C 22 Ω 

Inductance at 20°C 4.35 mH 

Force Constant 22.5 N/A 

Back EMF 22.5 V/m/s 

Force at 100% Duty 15.6 N 

Power at 100% Duty 11.0 W 

Current at 100% Duty 0.70 A 

 

3.2  HINGED CONFIGURATION OF THE FLYWHEEL TRANSDUCER 

The first prototype considered here is based on the hinged configuration. Figure 

3.2 shows the computer added design (CAD) view of the hinged configuration of the 

flywheel transducer. Rendered view is shown in Figure 3.2a while the schematic view 

is shown in Figure 3.2b. The analytical study presented in the previous chapter 

showed that the actuators used in the velocity feedback control system present better 

performance when the flywheel element is attached to the inertial mass. Thus, the 

hinged prototype is designed with the flywheel support that is attached to the heavier 

coil armature of the reference actuator, which is presented in Figure 3.1. The flywheel 

element was designed with rocker arm having several holes at both ends. The holes 

are used to attach the lumped masses that increase the inertia of the rocker arm as 

they are fixed further apart from the centre point of rotation. The position of the 

masses can be easily shifted to change the polar moment of inertia of the flywheel 

element. A special bracket was designed to hold the rocker arm element that  

is connected to a coil armature with three 4-40UNC screws. The linear motion of the 

actuator is converted into a rotation of the rocker arm by hinging one side of the arm 

to a bracket and the other side to a yoke that is attached to the inner magnet. For both 

connections two screws are used that act as pins. The bracket and the rocker arm was 

designed with four additional holes that are used to change the position of the pin 

and to change the hinging points. By changing the position of the pin, the relative 

offset between the axis of the actuator linear motion and axis of the flywheel 
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rotational motion is shifted. This parameter has influence on the axial inertia effect 

produced by the rocker arm element and corresponds to the small radius defined 

with 𝑟𝑤 symbol in the theoretical study of the previous chapter. The fabricated 

components were made of aluminium while the pins and screws for the masses were 

made of steel. The physical properties of the hinged inertial transducer with the 

flywheel element are summarised in Table 3.2. The technical drawings of the 

manufactured components for hinged EM flywheel prototype are presented in 

appendix A.  

 

 

 

Figure 3.2. Design view of the hinged configuration of the flywheel prototype. 

Rendered view (a) and schematic view (b). 

 

Table 3.2. Physical properties of the hinged flywheel inertial actuator. 

Parameter Value 

Inertial mass 0.205 kg 

Case mass 0.117 kg 

Flywheel mass with 2 ballasts 0.021 kg 

Flywheel mass with 4 ballasts 0.033 kg 

Torsional damping ratio 0.005 

Hinged flywheel inertia value  Depends on the ballast position 

4 Offset values 17, 13, 9, 5 mm  

Axial flywheel mass effects Vary 

 

(a) (b) 
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3.2.1 Hinged configuration: rocker arm design 

The design of the hinged configuration started from the rocker arm element. Figure 

3.3 shows the designed rocker arm element for the hinged configuration of the inertial 

actuator. The flywheel element was designed in a form of a rocker arm out of a long 

beam. Several connecting holes were designed in the rocker arm. The six holes at both 

ends are used to attach the lumped masses in a form of ballasts that increase the polar 

moment of inertia of the rocker arm. Five holes for the pins were designed on the 

front-left side of the rocker arm. Particular attention was given to the flywheel centre 

of gravity. Figure 3.3 shows the location of the flywheel centre of gravity when four 

lumped masses are attached to the rocker arm. In order to obtain the centre of gravity 

that intersects the axis of the central hole, the two additional holes were designed on 

the front-right side of the rocker arm. 

The offset from the flywheel centre point (defined with the black-white circle) for 

each axis direction is:  

X = 0.000 mm (red arrow in the drawing) 

Y = 0.000 mm (green arrow in the drawing) 

Z = 0.000 mm (blue arrow in the drawing) 

 

 

Figure 3.3. Flywheel element of the hinged configuration with marked centre of 

gravity.  

 

The rocker arm was designed to be equipped either with two or with four ballasts. 

However, to ensure that the flywheel centre of gravity always intersects the axis of 

the central hole, the ballasts must be equally distributed along the rocker arm. 

Additionally, the ballasts must be placed on the opposite sides of the rocker arm. The 

mass distribution of the ballasts must be mirrored with respect to the XY surfaces 

shown in Figure 3.3. To prevent mistakes while mounting the flywheel element in the 
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brackets and yoke the rocker arm was designed with just one ø2.7 mm hole for the 

M2.5. This ensures that the centre of gravity of the flywheel element is always 

attached to the inertial mass of the actuator via the bracket. 

 

3.2.2 Assembly process of the hinged prototype 

The assembly process of the hinged rocker arm prototype is presented in order to 

clarify the structure of the prototype. Figure 3.4 shows the exploded view of an 

actuator with numbered parts. The exploded view is shown to demonstrate the 

principal concept and the mechanism of transforming linear motion of the actuator 

into rotational motion of the cker arm element. The assembly process of the hinged 

configuration of the flywheel prototype is performed in several steps.  

Firstly, the bracket (No. 1) needs to be attached to the actuator (No. 2) with three 

4-40UNC screws (No. 3). Then the yoke (No. 12) should be attached to the central 

connector of the actuator (No. 2) with the additional 4-40UNC screw (No. 4). The two 

holes in the fins of the yoke (No. 12) must be concentric and aligned with the holes of 

the bracket (No. 1). Then the rocker arm (No. 5) can be placed between the fins of the 

yoke (No. 12). When the rocker arm are placed in the position the M2x0.4 screw (No. 

7) can be pushed through the ø4.2 mm hole of the bracket (No. 1) and should go 

through the hole of the yoke (No. 12) and one of four ø2.2 mm holes in the rocker arm 

(No. 5). The M2 screw (No. 7) should be pushed all the way through and slightly tight 

with the M2 nut (No. 13) on the other side of the yoke (No. 12). After that, the M2.5 

screw (No. 11) can be used to attach the rocker arm (No. 5) with the bracket (No. 1). 

To connect both components one of the four ø2.7mm holes in the bracket (No. 1) and 

one ø2.7mm hole in rocker arm (No. 5) should be used. Finally, the screw should be 

blocked (No. 11) with M2.5 nut (No. 8). To create sufficient polar moment of inertia 

the ballasts (No. 16) that act as a lumped masses should be attached to the rocker arm 

(No. 5). In total four ballast were fabricated, allowing to attach two of them on each 

side of the rocker arm. The M2.5 screws (No. 10) and M2.5 nuts (No. 9) are used to 

attach the ballasts (No. 16) to the rocker arm (No. 5). The lumped masses must be 

attached on each side of the rocker arm with the same distance to the centre of the 

rocker arm. This ensures that the flywheel centre of the gravity intersects the axis of 

rotation defined with the M2.5 screw (No. 11). With the configuration, the mass of the 

flywheel element is supported by the M2.5 screw (No. 11) that is attached to the 

bracket (No. 1) and to the inertial mass of the actuator (external coil aramature).  
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The advantage of the hinged configuration is that the relative distance between the 

hinges can be easily changed and thus the produced axial inertia effect can be easily 

modified.  

  

Figure 3.4. Exploded view of the designed hinged configuration of the flywheel 

prototype. 

 

3.2.3 Backlash and play cancelation 

After first assembly of the hinged prototype, it was observed that the screws, 

which are used as pins, do not ensure proper contact between the elements. The play 

between the pin and the bushing in the bracket was too big to create rotational motion 

of the rocker arm element. In order to improve the performance and establish tight 

connection between the pins and the bushings, the two screws were wrapped with 

aluminium tape, as shown in the Figure 3.5. This additional aluminium tape reduced 

nonlinearities and cancelled backlash and play between components. The 

preliminary tests showed that the pins with aluminium tape present sufficient 
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performance to transform the linear motion of the actuator into rotational motion of 

the flywheel element. It was also observed that the flywheel mechanism was working 

better and smoothly when the pins were dry, rather than when a small amount of 

lubricant was used.  

 

 

Figure 3.5. Screws used as a shafts wrapped with the aluminum tape. 

 

3.3  PINNED CONFIGURATION OF THE  FLYWHEEL TRANSDUCER 

The second prototype of the flywheel inertial actuator presented in Figure 3.6 is 

based on the pinned configuration. Rendered view is shown in Figure 3.6a while the 

schematic view is shown in Figure 3.6b. The physical properties of the designed 

pinned inertial actuator with the flywheel element are summarised in Table 3.3. The 

analytical study presented in the previous chapter showed that a velocity feedback 

control loop presents better control performance when the flywheel element of the 

actuator is attached to the inertial mass. Thus, also the pinned prototype was 

designed with the flywheel element attached to the heavier coil armature of the 

reference actuator, which is presented in Figure 3.1. The flywheel element was 

designed in a form of a round wheel with dimensions optimised in such a way as to 

minimise weight and to maximise the polar moment of inertia. Compared to the 

hinged prototype, this configuration adopted the flexural bearings in order to 

minimise backlash and the play between the components. Additionally, the pivot 

bearings reduced the stick-slip effects between the pins and bushings when the 

actuator was performing small amplitude oscillations. The flywheel element is 

supported by two flexural bearings attached to the bracket mounted on the external 

coil armature of the inertial actuator. The linear motion of the actuator is converted 

into a rotation of the flywheel by a pushing pin attached to the inner magnet. In the 

preliminary design, the pushing pin was designed with the flexural hinge that 
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transforms the linear motion of the actuator into rotational motion of the flywheel 

element. However, the first tests showed that the fabricated pushing pin did not 

present the necessary flexibility. Thus, a different pushing pin was fabricated that was 

equipped with a flexural bearing. On the one side, the pushing pin was attached to 

the inner magnet of the actuator while on the other side via frictionless pivot bearing 

to the one of the flywheel arms. The distance between the horizontal flywheel axis of 

rotation to the vertical axis of the actuator linear motion was defined as a offset value. 

This parameter has direct influence on the axial inertia effect produced by the 

flywheel element and corresponds to a small radius defined with 𝑟𝑤 symbol in the 

theoretical study of the previous chapter. The fabricated components were made of 

aluminium. The three frictionless flexural bearings used in this prototype can be 

modelled as a torsional springs, similarly to the second configuration presented in the 

analytical study of the previous chapter. Thus, in this remaining part of this document 

the second prototype is called the pinned configuration. The technical drawings of 

the manufactured components for pinned EM flywheel prototype are presented in 

appendix A. 

 

      

Figure 3.6. Design view of the pinned configuration of the flywheel prototype. 

Rendered view (a) and schematic view (b). 

 

 

 

(a) (b) 
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Table 3.3. Physical properties of the pinned flywheel inertial actuator. 

Parameter Value 

Inertial mass 0.227 kg 

Case mass 0.117 kg 

Flywheel mass 0.019 kg 

Torsional stiffness 0.003 Nmrad−1 

Flywheel inertia  6.8 ∙ 10−6 kgm2 

Pushing pin offset  𝑟𝑤 = 6.4 mm 

Axial flywheel mass effect 0.166 kg 

 

3.3.1 Pinned configuration: flywheel element design 

The designed flywheel element for the pinned prototype is presented in Figure 3.7. 

The dimensions of the flywheel element were chosen based on results of the scaling 

study presented in previous chapter. More specifically, the dimensions of the 

flywheel element were optimised in such a way as to minimise weight and to 

maximise the polar moment of inertia. A particular emphasis was given to obtain the 

centre of flywheel gravity exactly in the centre of the flywheel hole where the 

supporting flexural bearings are mounted. Figure 3.7 shows the centre of gravity 

offset from the flywheel central point (defined with the black-white circle) for each 

axis direction:  

X = 0.002 mm (red arrow in the drawing) 

Y = 0.001 mm (green arrow in the drawing) 

Z =-0.003 mm (blue arrow in the drawing) 

The flywheel was designed with two groves in the external ring. The bottom grove 

was designed for the pushing pin that had to be placed as close as possible to the 

flywheel centre of gravity. Instead, the top grove was designed to counterbalance the 

bottom grove and to equilibrate the flywheel centre of gravity. The two tenons on the 

top and left arm of the flywheel element were designed as connectors for the pushing 

pin. Finally, the small grove on the right arm of the flywheel element was designed 

to prevent contact between the moving parts of the pushing pin and the flywheel 

element. 

 Based on the designed flywheel element, the dimensions of the bracket support 

for the actuator was also optimised. The flywheel was fabricated out of aluminium 

with total mass of 19g. The previsioned polar moment of inertia over the Z axis (blue 
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arrow in the drawing) with CAD software equals 6.8 ∙ 10−6 kgm2. The dimensions of 

the pinned flywheel prototype components are presented in the detailed drawings 

attached in annex 4.  

 

 

Figure 3.7. Flywheel element of the pinned configuration with marked centre of 

gravity. 

 

3.3.2 Flexural rotational bearing 

One of the key problems in designing small oscillatory mechanisms is backlash 

and play between the components, especially when the tolerances between the parts 

are much greater than the oscillation amplitude. In such case, the motion of the 

actuator is not transmitted to the other component but it is dissipated in the backlash. 

Additionally, the classical parts typically suffer from the wear effects and introduce 

additional friction. Due to these constraints, the typical mechanisms as ball bearings 

or hinges should be avoided in the design of the pinned configuration. Additionally 

the flywheel is designed to perform rotational oscillations with small angles of 

rotation. In case of small displacements and harmonic oscillations, the standard 

mechanisms introduce nonlinear friction effect (stick-slip) that can disrupt proper 

operation of the system.  

One of the solutions to the described problem is to use monolithic structure with 

compliant joints. The structure could be fabricated as a one single element with local 

flexural hinges that could provide rotational motion of the flywheel. However, this 

technique requires high precision machining typically based on Electrical Discharge 

Machining (EDM). Furthermore, the components need to be fabricated out of special 

materials that are strong, flexible and typically expensive.  
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Another solution is to use commercially available components that could provide 

required rotational motion. It was decided to use flexural bearings presented in 

Figure 3.8 that are the cylindrical, limited rotational pivots, with a high radial and 

axial stiffness with relatively low torsional spring rates. Depending on the torsional 

spring stiffness, the angle of deflection could be reach up 30°. Two companies were 

found that provide the flexural bearings:  

- Riverhawk Company with the product called the pivot bearing [145] 

- C-Flex Bearing Co. with the product called the C-Flex bearing [146] 

Both companies are specialized in manufacturing flexural bearings. 

 

Figure 3.8. Flexural bearings used in the pinned configuration of the flywheel 

prototype [145].  

 

The minimum torsional stiffness of the flexural bearings is 0.003 Nm/rad, which is 

similar to the value of 0.001 Nm/rad used in the analytical study presented in the 

previous chapter. The bearing itself is build out of two stainless steel sleeves held in 

position by three leaf springs on two planes. There is no contact between the sleeves 

eliminating friction and wear effects of the parts. Additionally, the bearings do not 

require any lubrication making it low maintenance mechanisms. The three leaf 

springs allow for the pivotal motion, while maintaining the self centring effect. The 

external diameter of the bearings is 1/8in (3.175mm) with total length of a 0.2in 

(5.08mm). The miniature size of the bearing allows to used them in the compact 

mechanisms.  

 

3.3.3 Pushing pin 

The second challenge in the development of the pinned prototype is to design a 

mechanism that could transform linear motion of the actuator into rotation of the 

flywheel element. The pinion rack mechanism, commonly used in inerters and 

considered in the theoretical study of the previous chapter, was rejected in the design 
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of the pinned prototype. The pinion rack mechanism could be implemented in cases 

characterised by large relative displacement. However, the small oscillations of the 

inertial actuator in the prototype considered here could be easily dissipated between 

the connections of the gearing mechanism components.  

The first solution of the pushing pin, shown in Figure 3.9, was based on the concept 

of flexural hinges. Figure 3.9 shows the pushing pin optimisation stages from the 

conceptual idea to the final solution, while Figure 3.10a shows the pushing pin 

assembled in the flywheel element of the pinned prototype. The pushing pin 

optimisation process was done using the FEM software based on several parameters. 

The key parameters were the actuator maximum static deflection, the flywheel angle 

of rotation and the component manufacturing. The optimisation process was done in 

several steps by changing the geometrical properties of the pushing pin and 

compering the key parameters. The optimisation study showed that with reduction 

of the flexural hinge thickness the ability of the pushing pin to transform the linear 

motion into rotation increased. However, the minimum thickness of the flexural 

hinge was limited by the manufacturing feasibility of the component. In the final 

solution, it was decided to use aluminium to reduce costs and facilitate the fabrication 

process. However, to improve the performance of the designed pushing pin it is 

strongly recommended to fabricate it out of APX4 high strength stainless steel 

(commonly designated as X4CrNiMo16.5.1).  

  

    

Figure 3.9. Pushing pin optimisation stages from the conceptual idea (left hand side) 

to the final solution (right hand side).  

 

The preliminary tests of the pinned flywheel prototype showed that the fabricated 

pushing pin (Figure 3.10a) did not demonstrate the required flexibility. After 

examination, it was observed that the pushing pin was fabricated with flexural hinge 

that was much thicker and above tolerances previsioned in the design. Thus, a 

different pushing pin was fabricated that could be equipped with a flexural bearing 

as shown in Figure 3.10b. In this design, the pivot bearing is used as a flexural hinge 
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that can transmit the linear motion of the actuator into rotation of the flywheel. One 

side of the pushing pin was attached to the inner magnet of the actuator while the 

other side was attached to the right arm of the flywheel via frictionless pivot bearing.  

 

       

Figure 3.10. Pinned configuration flywheel elements with the two different pushing 

pins. Pushing pin based on the flexural hinge (a), Pushing pin design with third pivot 

bearing (b). 

 

The distance between the horizontal flywheel axis of rotation to the vertical axis of 

the actuator linear motion was defined as a offset value. This parameter has a direct 

influence on the axial inertia effect produced by the flywheel element and 

corresponds to a small radius defined with 𝑟𝑤 symbol in the theoretical study of the 

previous chapter.  

 

3.3.4 Assembly process of the pinned prototype 

The assembly process of the pinned flywheel prototype is described to clarify the 

construction of the prototype. Figure 3.12 shows the exploded CAD view of an 

actuator with numbered parts. The exploded view is shown to demonstrate the 

principal concept and the mechanism used to transform the linear motion of the 

actuator into rotation of the flywheel element. The assembly process of the pinned 

configuration of the flywheel prototype is performed in several steps.  

Firstly, the flexural bearings (No. 2) should be glued in the central hole of the 

flywheel element (No. 1) with a small amount of epoxy glue. It is recommended to 

take a particular care while gluing the components especially, to prevent the situation 

when the glue might penetrate between the sleeves and leaf springs of the flexural 

bearings. After placing the two flexural bearings in the hole, the distances should be 

(a) (b) 
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adjusted so that both of them equally stick out of the flywheel element. The flexural 

bearings must be rotated as shown in the Figure 3.11. Before proceeding to the next 

phase, it is recommended to wait until the glue dries.  

 

   

Figure 3.11. Position of the flexural bearings in the flywheel and sleeve. 

 

The third flexural bearing (No. 12) should be also glued to the right, horizontal 

arm of the flywheel element. The third flexural bearing (No. 12) should be placed in 

the machined grove of the flywheel arm. The other side of the flexural bearing should 

be glued to pushing pin (No. 6) as shown in Figure 3.12.  

While the glue dries, the fabricated connector (No. 5) can be attached to the central 

hole in the actuator (No. 8). Then the bracket (No. 7) can be attached to the actuator 

(No. 8) with three 4-40UNC screws (No. 9). Only after ensuring that the epoxy glue 

has dried, the sleeves (No. 4) can be mounted on both flexural bearings (No. 2). The 

sleeves should be pushed not more than a half of the flexural bearing length, to enable 

the rotational motion of the bearings. Then, the assembled flywheel (No. 1) can be 

placed in the bracket (No. 7). The sleeves (No. 4), attached to the flexural bearings 

(No. 2) and flywheel (No. 1), should be placed in the rounded grooves of the bracket 

(No. 7) as shown in Figure 3.12. The sleeves (No. 4) should be rotated in such a way 

that the extrusions in the sleeves (No. 4) are aligned with the top surface of the bracket 

(No. 7). It is recommended to take a particular care while rotating the sleeves (No. 4), 

in order to not twist or damage the flexural bearings (No. 2). Using measuring gauge 

the assembled flywheel (No. 1) should be centred in the bracket (No. 7) so that both 

components are distanced by 1.5mm from each other, from both sides.  

Then, the sleeves (No. 4) can be attached to the support (No. 7) with two clamps 

(No. 3) by using four M2 screws (No. 11). The sleeves (No. 4) with the extrusions were 

designed to be squeezed and to compressed the flexural bearings (No. 2) providing 

tight connection.  

Finally, the pushing pin (No. 6) can be attached with the actuator (No. 8) via a 

connector (No. 5) and small M2 screw (No. 10). After mounting all the components it 
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is recommended to check the position of all the components and tightening of the 

screws. 

 

Figure 3.12. Pinned configuration of the flywheel prototype. 

 

3.4  ELECTROMECHANICAL PR OPERTIES  

This section investigates the electromechanical properties of the classical and two 

prototypes by analysing the actuators base impedance, the actuators blocked force 

per unit driving current, the actuators blocked force per unit applied voltage, the 

transduction coefficient and the actuators electrical impedance. The simulation 

results based on lumped parameter models of the classical and two prototypes are 

contrasted with measurement results. The mathematical derivation of each principal 

electromechanical property is given in the section 2.4 of the previous chapter. 
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3.4.1 Characterisation of the actuators 

This section presents the lumped parameter models, used to derive the 

electromechanical properties of the classical and two prototypes of the flywheel 

inertial actuators. The classical inertial actuator considered in this study is made with 

the coil–magnet linear transducer as shown in Figure 3.13a. The electromechanical 

response has been studied with the lumped elements model shown in Figure 3.13e. 

The transducer is based on the classical configuration formed by an inner round 

magnet and an outer cylindrical coil armature as described in details in section 3.1 of 

this chapter. The lighter inner magnet is attached to the structure and acts as a base 

mass 𝑚𝑏. Instead, the external and heavier coil armature acts as a inertial mass 𝑀𝑎, 

which is suspended to the inner element via two flexural springs of stiffness 𝑘 and 

damping 𝑐 as depicted schematically in Figure 3.13e. The electromagnetic effect that 

produces a pair of reactive forces 𝐹𝑎 between the base mass (magnet) and inertial mass 

(coil) of the actuator is modelled in terms of transduction coefficient 𝜓𝑎 and current 

𝑖𝑎 flowing in the coil. The voltage 𝑢𝑎 applied at the electrical terminals of the actuator 

is proportional to the coil resistance 𝑅, inductance 𝐿 and back electromotive force 

𝑢𝑏𝑚𝑓 that is proportional to the relative velocity �̇�𝑚 − �̇�𝑏 between the inertial mass 

and the base mass of the actuator.  

Figure 3.13b presents the classical configuration with the same inertial mass as that 

of the flywheel prototypes. This configuration was used to compare the properties 

and performance of the classical inertial actuator with the fabricated prototypes. To 

obtain the best similarity to the fabricated prototypes the classical configuration with 

the same inertial mass was based on the pinned prototype of the flywheel inertial 

actuator. The flywheel and the supporting bracket was attached to the inertial mass. 

The pushing pin was disconnected from the base mass to deactivate the axial inertia 

effect produced by the flywheel element. Figure 3.13b shows the picture while Figure 

3.13f lumped elements model of the classical actuator configuration with the same 

inertial mass as the flywheel prototypes with disconnected pushing pin. The flywheel 

element was firmly attached to the supporting bracket to prevent any undesired 

rotational motion that could induce additional dynamics during measurements. The 

lumped parameter model for this configuration is characterised with the same 

elements as for the classical configuration. The total inertial mass is equal to the sum 

of proof mass 𝑀𝑎 and flywheel mass 𝑚𝑤.  

The first porotype, which will be referred in the remaining part as the hinged 

flywheel inertial actuator is shown in Figure 3.13c, with the lumped elements model 
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shown in Figure 3.13g. The prototype was based on classical actuator and equipped 

with a rocker arm having lumped masses symmetrically located at the ends ensuring 

that its mass centre is in line with the axis of rotation and that the rocker arm works 

as a flywheel element. The produced rotational inertial effect is proportional to the 

relative axial motion between the base mass (magnet) and inertial mass (coil) of the 

actuator. The additional relative inertia effect, which, as depicted in Figure 3.13g, is 

modelled with a flywheel element connected in parallel with the suspension spring 

and damper elements. This element is characterised by a mass 𝑚𝑤, which adds to the 

inertial mass 𝑀𝑎, and by a polar moment of inertia 𝐼𝑤. Considering mathematical 

model given in section 2.3 of the previous chapter the symbols for the inertial masses 

are equal 𝑀𝑎 = 𝑀𝑤. The rotational motion of the rocker arm is guaranteed by a pair 

of hinged joints. The first hinge connects the inner cylindrical magnet with the rocker 

arm, while the second hinge connects the rocker arm with the external coil armature 

element. The aluminium bracket attached to the coil armature element was designed 

with several hinging points, so that the axial inertia effect produced by the flywheel 

𝐼𝑤 𝑟𝑤
2⁄  can be varied by changing the conversion offset 𝑟𝑤 from axial to rotational 

motion. The hinges produce a rotational damping effect 𝑐𝑤, which is also converted 

into axial damping given by 𝑐w 𝑟𝑤
2⁄ .  

The second porotype, which will be referred in the remaining part as the pinned 

flywheel inertial actuator is shown in Figure 3.13d, with the lumped elements model 

shown in Figure 3.13h. The additional flywheel element was designed in the form of 

a round wheel with polar moment of inertia 𝐼𝑤 and mass 𝑚𝑤 that adds to the inertial 

mass 𝑀𝑎. Considering mathematical model given in section 2.3 of the previous 

chapter the symbols for the inertial masses are equal 𝑀𝑎 = 𝑀𝑤. As can be seen in 

Figure 3.13d, the shape and the dimensions of the flywheel element were optimised 

to minimise weight and to maximise the polar moment of inertia. The rotational 

inertial effect produced by the flywheel element is proportional to the relative axial 

motion between the base mass and inertial mass of the actuator and is transferred 

with tree frictionless pivot bearings of torsional stiffness 𝑘𝑤 to the flywheel element. 

The flywheel element is suspended via two flexural bearings to the designed bracket 

attached to the coil armature. The third frictionless pivot bearing connects the 

flywheel element with the case of the actuator via designed pushing pin mounted 

with an offset 𝑟𝑤 from the flywheel horizontal axis of rotation, which was set to 

intersect the vertical axis of the transducer to keep the whole system in balance. 
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Figure 3.13. Pictures (a,b,c,d) and schemes (e,f,g,h) of the tested classical (a,e), classical 

with the same inertial mass as that of the flywheel configuration (b,f), the hinged 

flywheel inertial actuator (c,g) and the pinned flywheel inertial actuator (d,h).  

 

The physical properties of the classical coil-magnet actuator and two flywheel 

actuator prototypes are summarised in Table 3.4. The table specifies the equivalent 

axial inertia 𝐼𝑤 𝑟𝑤
2⁄  effects of the rocker arm and the flywheel element with reference 

to the tree offsets 𝑟𝑤 for the hinged configuration and pushing pin offset 𝑟𝑤 for the 

pinned configuration of the actuator. 
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Table 3.4. Mechanical parameters of the classical and flywheel inertial actuators. 

Parameter Value 

Proof mass / Coil mass 𝑀𝑎 = 0.185 kg 

Case mass / Magnet mass 𝑚𝑏 = 0.115 kg 

Hinged flywheel mass system 𝑚𝑤 = 0.048 kg 

Pinned flywheel mass system 𝑚𝑤 = 0.045 kg 

Axial stiffness 𝑘 = 2950 Nm−1 

Torsional stiffness 𝑘𝑤 = 0.003 Nmrad−1 

Damping ratio 𝜁 = 0.2 

Torsional damping ratio 𝜁𝑤 = 0.005 

Hinged flywheel inertia values  

𝐼𝑤1 = 74 ∙ 10−6 kgm2 

𝐼𝑤2 = 70 ∙ 10−6 kgm2 

𝐼𝑤3 = 67 ∙ 10−6 kgm2 

𝐼𝑤4 = 65 ∙ 10−6 kgm2 

Hinged offset values 

𝑟𝑤1 = 17 mm 

𝑟𝑤2 = 13 mm 

𝑟𝑤3 = 9 mm 

𝑟𝑤4 = 5 mm 

Axial hinged flywheel mass effects 

𝐼𝑤1 𝑟𝑤1
2⁄ = 0.256 kg 

𝐼𝑤2 𝑟𝑤3
2⁄ = 0.415 kg 

𝐼𝑤3 𝑟𝑤3
2⁄ = 0.831 kg 

𝐼𝑤4 𝑟𝑤4
2⁄ = 2.618 kg 

Pinned flywheel inertia value  𝐼𝑤 = 6.8 ∙ 10−6 kgm2 

Pinned pushing pin offset values 𝑟𝑤 = 6.4 mm 

Axial pinned flywheel mass effect 
𝐼𝑤

𝑟𝑤
2

= 0.166 kg 

Coil resistance 𝑅 = 22.5 Ω 

Coil inductance 𝐿 = 4.35 ∙ 10−3 H 

Transduction coefficient  𝜓𝑎 = 22.5 NA−1 
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3.4.2 Actuator mathematical model 

The mathematical derivation of the principal electromechanical property was 

given in section 2.4 of the previous chapter. However, after preliminary tests the 

damping coefficients used in the simulations for each EM transducer had to be adjust. 

Thus, the following section presents the mathematical derivation of the damping 

values used in the actuator impedance 𝑍𝑎 given in Equation (2.22).  

The damping coefficient of the proof mass suspension for the classical 

configuration was calculated with the following formula: 

 𝑐 = 2𝜁√𝑘𝑀𝑎 . (3.1) 

The same formula was used for the classical actuator with the same inertial mass as 

the flywheel configuration. 

 𝑐 = 2𝜁√𝑘(𝑀𝑎 + 𝑚𝑤) . (3.2) 

The damping coefficient of the proof mass suspension for the hinged configuration 

was calculated with the following formula: 

 𝑐 = 2𝜁√𝑘 (𝑀𝑎 +
𝐼𝑤

𝑟𝑤
2

+ 𝑚𝑤) , (3.3) 

while for torsional damping with the following: 

 𝑐𝑤 = 2𝜁𝑟𝑤
2√𝑘 (𝑀𝑎 +

𝐼𝑤

𝑟𝑤
2

+ 𝑚𝑤) . (3.4) 

Finally the damping coefficient of the proof mass suspension for the the pinned 

configuration was calculated with the following formula: 

 𝑐 = 2√(𝑘 +
𝑘𝑤

𝑟𝑤
2

) (𝑀𝑎 + 𝑚𝑤) . (3.5) 

This result indicates that, although the axial mass effect produced by the flywheel 

element reduces the fundamental resonance frequency of the transducer, it does not 

influence the mechanical damping, which, actually, plays a key role in energy 

harvesting applications.  
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3.4.3 Base impedance  

Figure 3.14 shows scheme (Figure 3.14a) and picture (Figure 3.14b) of the base 

impedance test setup. The tested actuators were mounted on a shaker as shown in 

Figure 3.14b. The shaker was excited with a sine logarithmic sweep signal up to 

100Hz. Two parameters were measured simultaneously during tests using signal 

analyser. Input channel A measured force excreted to the actuator base while input 

channel B measured the base acceleration. The shaker amplifier was used to drive the 

shaker with required excitation signal. As shown in Figure 3.14b, the impedance head 

mounted between shaker and the actuator was used to measure force and 

acceleration. Appendix D lists all the equipment used in the measurements of the 

transducer elecromechanical properties. 

 

   

Figure 3.14. Scheme (a) and picture (b) of the base impedance test setup. 

 

The Bode plots in Figure 3.15 show the base impedance FRFs of the classical, 

classical with the same inertial mass as the flywheel configuration and hinged and 

pinned configurations of the flywheel inertial actuators as given in Equation (2.51). 

The figure is organised in two columns where, the left column shows the modulus 

diagrams while the right column shows the phase diagrams of the mechanical base 

impedance. The solid blue lines in the diagrams present the measurement results, 

while the dashed-dotted red lines present the simulation results. Plot (a) shows the 

base impedance for the classical actuator. Plot (b) shows the base impedance for the 

(a) (b) 
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classical actuator with the same inertial mass as the flywheel configuration. Plots (c-

f) show the base impedance for the hinged flywheel inertial actuator with increasing 

value of the equivalent axial inertia 𝐼𝑤 𝑟𝑤
2⁄  effect of the rocker arm (𝐼𝑤1/(𝑟𝑤1

2  ) <

𝐼𝑤2/(𝑟𝑤2
2  ) < 𝐼𝑤3/(𝑟𝑤3

2  ) < 𝐼𝑤4/(𝑟𝑤4
2  )). The bottom plot (g) shows the base impedance 

for the pinned flywheel inertial actuator.  

The modulus of the base impedance for the classical configuration shown in left 

diagram of the Figure 3.15a is characterised by low and high frequencies asymptotic 

mass behaviours separated by a resonance peak and antiresonance through. The 

resonance peak appears at about the fundamental resonance frequency of 20 Hz while 

the antiresonance through at about 35 Hz. Between the resonance peak and 

antiresonance through the actuator produces a sky-hook stiffness effect. The low 

frequency asymptote is proportional to the total mass (𝑀𝑎 + 𝑚𝑏) while the high 

frequency asymptote is proportional to base mass (𝑚𝑏) of the inertial actuator. The 

phase of the base impedance for the classical configuration showed in the right 

diagram of the Figure 3.15a is characterised by the two shifts. The damping of the 

inertial mass suspension system controls the amplitude and the phase shift at the 

resonance peak. At the resonance peak the base impedance phase shifts from +90° to 

around 0° while at the antiresonance the phase shifts back from 0° to +90°. The 

measured base impedance for the classical configuration agree well with the 

simulated values. 

The base impedances for the classical configuration with the same inertial mass as 

the flywheel configuration is shown in Figure 3.15b. The modulus of the base 

impedance shown in the left diagram presents almost identical characteristic to the 

classical configuration. However, there are two major differences that are due to the 

heavier inertial mass. Firstly, the resonance peak appears at slightly lower frequency 

of about 18 Hz and has higher amplitude. Secondly, the low frequency asymptote is 

slightly increased and is proportional to the total mass (𝑀𝑎 + 𝑚𝑏 + 𝑚𝑤) of the inertial 

actuator. The high frequency asymptote remained proportional to base mass (𝑚𝑏). 

The phase of the base impedance shows the phase shifts from +90° to around -10° at 

the resonance frequency. This shows that the damping coefficient of the suspension 

system of the classical configuration with the same inertial mass as the flywheel 

configuration is the same as for the classical configuration. The measured base 

impedance agree well with the simulated values. 

The base impedance for the first prototype of the flywheel inertial actuator shown 

in Figure 3.15c-f present similar characteristics to that of the classical configurations, 

with small differences. Firstly, the axial inertia effect 𝐼𝑤 𝑟𝑤
2⁄  produced by the hinged 
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rocker arm shifts the fundamental resonance frequency to a lower value with a 

progressively smaller offset values 𝑟𝑤. Thus, the fundamental resonance frequency is 

moved to about 12 Hz (Figure 3.15c) for the first value of the inertia effect 𝐼𝑤1 𝑟𝑤1
2⁄ , to 

about 10 Hz (Figure 3.15d) for the second value of the inertia effect 𝐼𝑤2 𝑟𝑤2
2⁄ , to about 

8.5 Hz (Figure 3.15e) for the third value of the inertia effect 𝐼𝑤3 𝑟𝑤3
2⁄  and to about  

5.5 Hz (Figure 3.15f) for the fourth value of the inertia effect 𝐼𝑤4 𝑟𝑤4
2⁄ . Consequently, 

the antiresonance through is also influenced by the axial inertia effect produced by 

the hinged rocker arm. The antiresonance through is moved to about 16.5 Hz (Figure 

3.15c) for the first value of the inertia effect 𝐼𝑤1 𝑟𝑤1
2⁄ , to about 13.5 Hz (Figure 3.15d) 

for the second value of the inertia effect 𝐼𝑤2 𝑟𝑤2
2⁄ , to about 10 Hz (Figure 3.15e) for the 

third value of the inertia effect 𝐼𝑤3 𝑟𝑤3
2⁄  and to about 6.5 Hz (Figure 3.15f) for the fourth 

value of the inertia effect 𝐼𝑤4 𝑟𝑤4
2⁄ . The vicinity of the resonance peak and 

antiresonance through almost completely cancels the sky-hook stiffness effect. 

Secondly, the amplitude of the higher frequency asymptotic mass behaviour is 

progressively increased as the equivalent axial inertia 𝐼𝑤 𝑟𝑤
2⁄  effect of the rocker arm 

is increased (
𝐼𝑤1

𝑟𝑤1
2 <

𝐼𝑤2

𝑟𝑤2
2 <

𝐼𝑤3

𝑟𝑤3
2 <

𝐼𝑤4

𝑟𝑤4
2 ) with the following relation 𝑚𝑏 + 𝐼𝑤 𝑟𝑤

2⁄ . Compared 

to the classical configuration also the amplitude of the lower frequency asymptotic 

mass behaviour is increased. However, in this case, it is not because of the axial inertia 

effect, but because of the additional mass of the flywheel mechanism that can be 

defined with the following relation 𝑀𝑎 + 𝑚𝑤 + 𝑚𝑏. Finally, the internal damping 

effect in the inertial actuator is also increased, such that the resonance peak and 

antiresonance through are progressively rounded. The increase of the internal 

damping effect can be also observed in the phase diagrams of the base impedance 

FRFs. The phase presented in the right diagrams of the Figure 3.15c-f show a shift 

between +90° to around +44° for the first value of the inertia effect 𝐼𝑤1 𝑟𝑤1
2⁄ , a shift 

between +90° to around +55° for the second value of the inertia effect 𝐼𝑤2 𝑟𝑤2
2⁄ , a shift 

between +90° to around +69° for the third value of the inertia effect 𝐼𝑤3 𝑟𝑤3
2⁄ , and a 

shift between +90° to around +82° for the fourth value of the inertia effect 𝐼𝑤4 𝑟𝑤4
2⁄ . The 

experimental results align well with the simulated base impedance FRFs for all 

configurations except the last one. For the highest value of equivalent relative axial 

inertia effect 𝐼𝑤4/𝑟𝑤4
2  (Figure 3.15f) the simulation result gives lower actuator 

resonance frequency compared to the experiment. Additionally, with the increase of 

the axial inertia effect the phase starts to drop compared to the simulation value, 

especially for the two configurations shown in Figure 3.15d and in Figure 3.15f. It is 
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assumed that this effect is linked to the backlash effect in the hinged joints of the 

rocker arm. 

The base impedances for the second prototype of the flywheel inertial actuator 

shown in Figure 3.15g presents similar characteristics to the classical configuration 

and the first configuration, which is equipped with the rocker arm. Also in this case 

the flywheel element shifts the fundamental resonance peak to a lower value at about 

14 Hz while the antiresonance low at about 20 Hz. The phase shown in the right hand 

side diagram of the Figure 3.15g shifts between +90° to around +15°. Compared to the 

classical configuration, the asymptotes below resonance frequency and above 

antiresonance low are slightly higher. This is due to the fact that, below the 

fundamental resonance frequency the flywheel element increments the total mass of 

the transducer to 𝑀𝑎 + 𝑚𝑏 + 𝑚𝑤, while above the antiresonance frequency the 

flywheel increase the seismic mass effect to 𝑚𝑏 + 𝐼𝑤/𝑟𝑤
2. The experimental results for 

the pinned configuration of the flywheel inertial actuator align very well with the 

simulated base impedance FRF and are better compared to the rocker arm 

configuration due to the use of the flexural bearings that minimise the backlash effects 

and provide smoother operation. 
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Figure 3.15. Actuator base impedance for the classical configuration (a), classical with 

the same inertial mass as that of the flywheel configuration (b), hinged flywheel 

element actuator with the increasing axial inertia values 𝐼𝑤1 𝑟𝑤1
2⁄  (c), 𝐼𝑤2 𝑟𝑤2

2⁄  (d), 

𝐼𝑤3 𝑟𝑤3
2⁄  (e), 𝐼𝑤4 𝑟𝑤4

2⁄  (f) and pinned flywheel element (g). Comparison of the 

experimental results (solid blue lines) with the numerical simulations (dashed-dotted 

red lines). 
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Additional tests of the base impedances for the first prototype of the flywheel 

inertial actuator with the highest axial inertia value 𝐼𝑤4 𝑟𝑤4
2⁄  were performed. During 

these tests, it was observed that the angular position of the M2 screw (No. 7 shaft in 

Figure 3.4) plays an important influence on the resonance frequency of the actuator 

and additional modes that appears between 50Hz and 100Hz. Results presented in 

Figure 3.16 show the magnitude and phase of the actuator base impedance for four 

angular position of the M2 screw. Based on results it can be concluded that the 

dynamics of the hinged flywheel inertial actuator prototype with the rocker arm is 

strongly influenced by the backlash between the shaft and the bushing in the 

prototype. 

 

 

Figure 3.16. Actuator base impedance for hinged flywheel element with the highest 

axial inertia value 𝐼𝑤4 𝑟𝑤4
2⁄ . Comparison of the M2 screw four different angle positions 

(0° solid blue lines, 90° dashed-dotted red lines, 180° dashed yellow lines, 270° dotted 

black lines). 
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3.4.4 Blocked force current driven 

Figure 3.20 shows scheme (Figure 3.20a) and picture (Figure 3.20b) of the blocked 

force test setup for the current driven inertial actuator. During tests, the actuator was 

attached to a rigid base via a force cell as shown in Figure 3.20b. Two parameters were 

measured during tests using signal analyser. Channel input A measured force 

excreted to the actuator base while input B measured the current fed to the actuator. 

The quad amplifier was used to drive the EM actuators. Appendix D lists all the 

equipment used in the measurements of the transducer elecromechanical properties. 

 

 

Figure 3.17. Scheme (a) and picture (b) of the blocked force per unit current fed to 

the actuator test setup. 

 

The Bode plots in Figure 3.18 present the FRFs of the blocked force produced by 

the actuators per unit current fed to the classical, classical with the same inertial mass 

as the flywheel configuration, hinged and pinned configuration of the flywheel 

inertial actuators as given in Equation (2.52). The figure is organised in two columns 

where, the left column shows the modulus diagrams while the right column shows 

the phase diagrams of the actuator blocked force. The solid blue lines in the diagrams 

present the measurement results, while the dashed-dotted red lines present the 

simulation results. Plot (a) shows the blocked force of the classical actuator. Plot (b) 

shows the blocked force for the classical actuator with the same inertial mass as the 

flywheel configuration. Plots (c-f) show the blocked force of the hinged flywheel 

inertial actuator with increasing value of the equivalent axial inertia 𝐼𝑤 ⁄ (𝑟𝑤
2) effect 

(a) (b) 
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of the rocker arm (𝐼𝑤1/(𝑟𝑤1
2  ) < 𝐼𝑤2/(𝑟𝑤2

2  ) < 𝐼𝑤3/(𝑟𝑤3
2  )) < 𝐼𝑤4/(𝑟𝑤4

2  )). Bottom plot (g) 

shows the blocked force for the pinned flywheel inertial actuator 

The blocked force produced by the classical configuration of the inertial actuator 

is shown in Figure 3.18a. At low frequencies, the produced force rises proportionally 

to 𝜔2 and is out of phase with the driving current signal fed to the actuator coil, which 

is characterised by phase equal to 180°. Thus, the produced force is out of phase with 

the driving signal below fundamental resonance frequency of the actuator. The 

amplitude reaches a peak value at the resonance frequency of the actuator at about  

21 Hz with the phase shift that undergoes a -180° lag such that it equal to 0°. At higher 

frequencies, the blocked force produced at the base of the actuator settles to a constant 

value that is equal to the actuator transduction coefficient 𝜓𝑎 that is 27dB and is in 

phase with the driving current signal 𝑖𝑎. Thus, the investigated inertial actuator 

produces the desired constant force excitation effect, which is in phase with the 

driving signal at frequencies above its fundamental resonance frequency. The 

principal features of the measured blocked force for the classical configuration agree 

well those obtained from simulations.  

The blocked force produced by the classical actuator with the same inertial mass 

as that of the flywheel configuration is shown in Figure 3.18b. The modulus and the 

phase diagram presents almost identical characteristic compared to the classical 

configuration. However, for this configuration the amplitude reaches a peak value at 

slightly lower frequency, which is at about 19 Hz. Also for this configuration, the 

measured blocked force agrees well with the simulation results. 

The blocked force for the first prototype of the flywheel inertial actuator equipped 

with the rocker arm is shown in Figure 3.18c-f. The features found for the first 

prototype present similarity to the classical configuration, however with an 

increasingly smaller offset that is higher equivalent relative axial inertia effect of the 

rocking arm 𝐼𝑤 𝑟𝑤
2⁄ , the resonance peak is progressively smoothened and brought 

down in frequency. Thus, the fundamental resonance frequency is moved to about  

13 Hz (Figure 3.18c) for the first value of the inertia effect 𝐼𝑤1 𝑟𝑤1
2⁄ , to about 11 Hz 

(Figure 3.18d) for the second value of the inertia effect 𝐼𝑤2 𝑟𝑤2
2⁄ , to about 9 Hz (Figure 

3.18e) for the third value of the inertia effect 𝐼𝑤3 𝑟𝑤3
2⁄  and to about 5 Hz (Figure 3.18f) 

for the fourth value of the inertia effect 𝐼𝑤4 𝑟𝑤4
2⁄ . At higher frequencies, the produced 

blocked forces settle to progressively lower constant values. It settles at about 21 dB 

for the first value of the inertia effect, at about 18 dB for the second value of the inertia 

effect, at about 14 dB for the third value of the inertia effect and at about 5 dB for the 

fourth value of the inertia effect. The measured blocked force for the flywheel inertial  



 

Flywheel Coil Magnet Transducer 

97 

 

Figure 3.18. Blocked force per unit current fed to the actuator for the classical 

configuration (a), classical with the same inertial mass as that of the flywheel 

configuration (b), with the hinged flywheel element with the increasing axial inertia 

values 𝐼𝑤1 𝑟𝑤1
2⁄  (c), 𝐼𝑤2 𝑟𝑤2

2⁄  (d), 𝐼𝑤3 𝑟𝑤3
2⁄  (e), 𝐼𝑤4 𝑟𝑤4

2⁄  (f) and with the pinned flywheel 

element (g). Comparison of the experimental results (solid blue lines) with the 

numerical simulations (dashed-dotted red lines). 
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actuator equipped with the rocker arm agree well with that obtained with 

simulations. However, at about 50 Hz an additional peak appears for all four 

configurations, which should not depend on the axial inertia effect 𝐼𝑤 𝑟𝑤
2⁄ . Most likely, 

it is a rocking effect of the suspended mass that was aggravated during measurements 

when the base mass of the actuator was rigidly fixed. For the third axial inertia effect 

𝐼𝑤3 𝑟𝑤3
2⁄  value of the flywheel an additional through appears at about 90 Hz that could 

be caused by the dynamics of the rocker arm. At higher frequencies for the fourth 

axial inertia effect 𝐼𝑤4 𝑟𝑤4
2⁄  value (Figure 3.18f) the phase of the blocked force drifts 

causing the produced force to be out of phase with the driving current.  

The blocked force for the second prototype of the inertial actuator equipped with 

the flywheel element is shown in Figure 3.18g. The blocked force is characterised by 

a similar FRF compared to the classical configuration except that the fundamental 

resonance peak occurs at lower frequency that is at about 14 Hz and that the 

amplitude at the peak is about 2.5 dB lower. The measured blocked force for the 

pinned flywheel inertial actuator agree with simulations compared to the hinged 

flywheel inertial actuator equipped with rocker arm. There two additional peaks that 

appear at 40 Hz and at 60 Hz, which could be due to the test setup used for the 

measurement and due to dynamics of flywheel mechanism. 

 

3.4.5 Blocked force voltage driven  

Figure 3.24 shows scheme (Figure 3.24a) and picture (Figure 3.24b) of the blocked 

force per unit voltage applied to the actuator test setup. During tests, the actuator was 

attached to a rigid base via a force cell as shown in Figure 3.24b. Two parameters were 

measured during tests using signal analyser. Input channel A measured force 

excreted to the actuator base while input channel B measured applied voltage to the 

actuator. The quad amplifier was used to drive the EM actuator. Appendix D lists all 

the equipment used in the measurements of the transducer elecromechanical 

properties. 
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Figure 3.19. Scheme (a) and picture (b) of the blocked force per unit voltage applied 

to the actuator test setup. 

 

The Bode plots in Figure 3.20 present the FRFs of the blocked force produced by 

the actuators per unit voltage applied to the classical, classical with the same inertial 

mass as the flywheel configuration, hinged and pinned configurations of the flywheel 

inertial actuators as given in Equation (2.54). The figure is organised in two columns 

where, the left column shows the modulus diagrams while the right column shows 

the phase diagrams of the blocked force. The solid blue lines in the diagrams present 

the measurement results, while the dashed-dotted red lines present the simulation 

results. Plot (a) shows the blocked force of the classical actuator. Plot (b) shows the 

blocked force for the classical actuator with the same inertial mass as the flywheel 

configuration. Plots (c-f) show the blocked force of the hinged flywheel inertial 

actuator with increasing value of the equivalent axial inertia 𝐼𝑤 ⁄ (𝑟𝑤
2) effect of the 

rocker arm (𝐼𝑤1/(𝑟𝑤1
2  ) < 𝐼𝑤2/(𝑟𝑤2

2  ) < 𝐼𝑤3/(𝑟𝑤3
2  ) < 𝐼𝑤4/(𝑟𝑤4

2  )). Bottom plot (g) shows 

the blocked force for the pinned flywheel inertial actuator. 

The blocked force produced by the classical configuration of the inertial actuator 

is shown in Figure 3.20a. At low frequencies, the produced force rises proportionally 

to 𝜔2 and is out of phase with the voltage signal applied at the electrical terminals of 

the actuator coil, which is characterised by phase equal to 180°. Thus, the produced 

force is out of phase with the voltage signal below fundamental resonance frequency 

of the actuator, similarly as for the produced blocked force per unit current. Around 

the fundamental resonance frequency of the actuator, the blocked force passes a 

transient mode to reach constant value of around 0dB at higher frequencies. The well 

visible peak at the fundamental resonance frequency of the actuator observed for the 

(b) (a) 
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blocked force produced per unit current is rounded off for the voltage driven 

actuator. This behaviour is caused by the electrical properties of the transducer coil, 

mainly the resistance, which increases the internal damping effect. Additionally, at 

the fundamental resonance frequency the phase shifts and undergoes a -180° lag such 

that it equal 0° at higher frequencies. The classical inertial actuator can produce the 

constant force effect at frequencies above its fundamental resonance frequency that is 

in phase with the applied voltage signal. The measured blocked force for the classical 

configuration agrees well with simulations results, although the measured results are 

slightly higher in the amplitude compared to the simulation results.  

The blocked force produced by the classical actuator with the same inertial mass 

as the flywheel configuration is shown in Figure 3.20b. The modulus and the phase 

diagram presents nearly identical characteristic compared to the classical 

configuration. For this configuration, the amplitude reaches a peak value at slightly 

lower frequency, which is at about 19 Hz. Also for this configuration, the measured 

blocked force agrees well with the simulation results.  

The blocked force for the first prototype of the flywheel inertial actuator equipped 

with the rocker arm is shown in Figure 3.20c-f. The blocked force of the first prototype 

presents similar characteristic to the classical configuration. With higher equivalent 

relative axial inertia effect of the rocking arm 𝐼𝑤 𝑟𝑤
2⁄ , the resonance peak is shifted 

down in frequency. The fundamental resonance frequency is moved to about 13 Hz 

(Figure 3.20c) for the first value of the inertia effect 𝐼𝑤1 𝑟𝑤1
2⁄ , to about 11 Hz (Figure 

3.20d) for the second value of the inertia effect 𝐼𝑤2 𝑟𝑤2
2⁄ , to about 9 Hz (Figure 3.20e) 

for the third value of the inertia effect 𝐼𝑤3 𝑟𝑤3
2⁄  and to about 5 Hz (Figure 3.20f) for the 

fourth value of the inertia effect 𝐼𝑤4 𝑟𝑤4
2⁄ . At higher frequencies, the produced blocked 

force settles to lowered values. It settles at about -6 dB for the first value of the inertia 

effect, at about -8 dB for the second value of the inertia effect, at about -13 dB for the 

third value of the inertia effect and at about -22 dB for the fourth value of the inertia 

effect. The measured blocked forces for the flywheel inertial actuator equipped with 

the rocker arm agree well with that obtained with simulations. A slight overshoot of 

the blocked force is observed above fundamental resonance frequency of the actuator 

for the higher axial inertia value of the flywheel element. For all four configurations, 

an additional peak appears at about 50 Hz and it can be assumed that it does not 

depend on the axial inertia effect 𝐼𝑤 𝑟𝑤
2⁄ . Most probably, it is a rocking effect of the 

suspended mass that was aggravated during measurements when the base mass of 

the actuator was rigidly fixed. At higher frequencies for the fourth axial inertia effect  
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Figure 3.20. Blocked force per unit voltage applied to the actuator for the classical 

configuration (a), classical with the same inertial mass as that of the flywheel 

configuration (b), with the hinged flywheel element with the increasing axial inertia 

values 𝐼𝑤1 𝑟𝑤1
2⁄  (c), 𝐼𝑤2 𝑟𝑤2

2⁄  (d), 𝐼𝑤3 𝑟𝑤3
2⁄  (e), 𝐼𝑤4 𝑟𝑤4

2⁄  (f) and with the pinned flywheel 

element (g). Comparison of the experimental results (solid blue lines) with the 

numerical simulations (dashed-dotted red lines). 
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𝐼𝑤4 𝑟𝑤4
2⁄  value (Figure 3.20f) the phase of the blocked force drifts causing the produced 

force to be out of phase with the applied voltage. 

The blocked force for the second prototype of the inertial actuator equipped with 

the flywheel element is shown in Figure 3.20g. The produced blocked force is 

characterised by a similar FRF to the classical configuration except that the 

fundamental resonance of the actuator is shifted to a lower frequency that is at about 

14 Hz. The produced blocked force settles at about -4 dB above fundamental 

resonance frequency of the actuator. The measured blocked force for the pinned 

flywheel inertial actuator agrees well with simulations compared to the hinged 

flywheel inertial actuator equipped with rocker arm. The two additional peaks that 

appear at 40 Hz and at 60 Hz may be due to the test setup used for the measurement 

and due to dynamics of flywheel mechanism. 

 

3.4.6 Transduction FRF 

Figure 3.21 shows the scheme (Figure 3.21a) and picture (Figure 3.21b) of the 

transduction FRF test setup. The tested transducers were mounted on the shaker. Two 

parameters were measured during tests using signal analyser. Input channel A 

measured voltage at the electrical terminals of the transducer, while input channel B 

measured the base acceleration. The shaker amplifier was used to drive the shaker 

with a sine logarithmic sweep excitation up to 100Hz. Appendix D lists all the 

equipment used in the measurements of the transducer elecromechanical properties. 

The Bode plots in Figure 3.22 present the transduction coefficient FRFs of the 

classical, classical with the same inertial mass as the flywheel configuration, hinged 

and pinned flywheel configurations of the inertial actuators as given in Equation 

(2.53). According to Equation (2.53) the transduction coefficient should be equal to 

the blocked force 𝑇𝑓𝑖 produced by the actuators per unit current. The figure is 

organised in two columns where, the left column shows the modulus diagrams while 

the right column shows the phase diagrams of the transduction coefficient FRFs. The 

solid blue lines in the diagrams present the measurement results, while the dashed-

dotted red lines present the simulation results. Plot (a) shows the transduction 

coefficient of the classical actuator. Plot (b) shows the blocked force for the classical 

actuator with the same inertial mass as the flywheel configuration. Plots (c-f) show 

the transduction coefficient FRFs of the hinged flywheel inertial actuator with 

increasing value of the equivalent axial inertia 𝐼𝑤 ⁄ (𝑟𝑤
2) effect of the rocker arm 
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(𝐼𝑤1/(𝑟𝑤1
2  ) < 𝐼𝑤2/(𝑟𝑤2

2  ) < 𝐼𝑤3/(𝑟𝑤3
2  ) < 𝐼𝑤4/(𝑟𝑤4

2 )). Bottom plot (g) shows the 

transduction coefficient FRF for the pinned flywheel inertial actuator. 

 

  

Figure 3.21. Scheme (a) and picture (b) of the transduction coefficient FRF test setup. 

 

The transduction coefficient FRF of the classical inertial actuator shown in Figure 

3.22a is almost identical to the results obtained for the blocked force produced per 

unit current fed to the actuator. At low frequency, the generated voltage rises 

proportionally to 𝜔2 and is out of phase with the unit velocity of excitation. The 

amplitude reaches a peak value at the resonance frequency of the actuator at about  

21 Hz with the phase shift that undergoes a -180° lag. At higher frequencies, the 

generated voltage settles to a constant value that is equal to the actuator transduction 

coefficient 𝜓𝑎 that is 27dB. The measured transduction coefficient FRF agrees well 

with the simulations.  

The transduction coefficient FRF of the classical actuator with the same inertial 

mass as the flywheel configuration is shown in Figure 3.22b. The results present 

similar characteristic to the classical configuration with one difference. Compared to 

the classical configuration, the amplitude reaches a peak value at slightly lower 

frequency, which is at about 19 Hz. The measured transduction coefficient FRF agrees 

well with the simulation results. 

(a) (b) 
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The transduction coefficient FRFs for the first prototype of the inertial actuator 

equipped with the rocker arm are shown in Figure 3.22c-f. As expected the 

transduction FRF is similar to the blocked force FRF. Also in this case, with the smaller 

offset 𝑟𝑤, that is the higher equivalent relative axial inertia effect of the rocking arm 

𝐼𝑤 ⁄ (𝑟𝑤
2), the resonance peak is progressively smoothened and brought down in 

frequency. The fundamental resonance frequency is moved to about 13 Hz (Figure 

3.22c) for the first value of the inertia effect 𝐼𝑤1 𝑟𝑤1
2⁄ , to about 11 Hz (Figure 3.22d) for 

the second value of the inertia effect 𝐼𝑤2 𝑟𝑤2
2⁄ , to about 9 Hz (Figure 3.22e) for the third 

value of the inertia effect 𝐼𝑤3 𝑟𝑤3
2⁄  and to about 5 Hz (Figure 3.22f) for the fourth value 

of the inertia effect 𝐼𝑤4 𝑟𝑤4
2⁄ . Furthermore, at higher frequencies the transduction 

coefficient FRFs settle to a progressively lowered constant value. It settles at about  

21 dB for the first value of the inertia effect, at about 18 dB for the second value of the 

inertia effect, at about 14 dB for the third value of the inertia effect and at about 5 dB 

for the fourth value of the inertia effect. The measured transduction coefficients for 

the hinged flywheel inertial actuator equipped with the rocker arm agree well with 

the expected properties obtained with simulations. However for the third (Figure 

3.22e) and fourth (Figure 3.22f) values of the inertia the transduction coefficient FRF 

does not settle to a constant value at higher frequencies. Above about 20 Hz the 

characteristics starts to rise in amplitude and settles to a value of the classical inertia 

actuator that is at about 27 dB. Most probably, this is due to the backlash in the hinged 

joints that is greater than the relative motion of the base and inertial mass of the 

actuator at higher frequencies. Above about 20 Hz the small relative movements start 

to be dissipated in the hinged joints rather than transferred via flywheel element, 

which means that the prototype starts to behave just like a classical configuration. The 

additional peak that appeared for all four configurations at about 50Hz in the blocked 

force measurements (Figure 3.18) is not visible with the transduction coefficient 

measurements because the actuator base mass is not rigidly fixed but excited. 

The transduction coefficient FRF for the second prototype of the flywheel inertial 

actuator is shown in Figure 3.22g. The transduction coefficient FRF is characterised 

by a fundamental resonance frequency at about 14 Hz and with amplitude at the peak 

2.5 dB lower compared to the classical configuration. The measured transduction 

coefficient FRF for the pinned flywheel inertial actuator agree well with simulations 

and align far better compared to the results obtained for the hinged configuration of 

the flywheel inertial actuator. The measurements show additional peak that appears 

at about 40 Hz, which most likely is caused by the dynamics of flywheel mechanism. 
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Figure 3.22. Actuator transduction coefficient for the classical configuration (a), 

classical with the same inertial mass as that of the flywheel configuration (b), with the 

hinged flywheel element with the increasing axial inertia values 𝐼𝑤1 𝑟𝑤1
2⁄  (c), 𝐼𝑤2 𝑟𝑤2

2⁄  

(d), 𝐼𝑤3 𝑟𝑤3
2⁄  (e), 𝐼𝑤4 𝑟𝑤4

2⁄  (f) and with the pinned flywheel element (g). Comparison of 

the experimental results (solid blue lines) with the numerical simulations (dashed-

dotted red lines). 
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3.4.7 Electrical impedance 

Figure 3.23 shows the scheme (Figure 3.23a) and picture (Figure 3.23b) of the base 

impedance test setup. The tested actuators were attached to a rigid base. Two 

parameters were measured during tests using signal analyser. Input channel A 

measured voltage at the electrical terminals of the actuator while input B measured 

current fed to the actuator. The quad amplifier was used to drive the EM actuators. 

Appendix D lists all the equipment used in the measurements of the transducer 

elecromechanical properties. 

 

 

Figure 3.23. Scheme (a) and picture (b) of the electrical impedance test setup. 

 

The Bode plots in Figure 3.24 present the electrical impedance FRFs of the classical, 

classical with the same inertial mass as the flywheel configuration, hinged and pinned 

flywheel configurations of the inertial actuators as given in Equation (2.55). The figure 

is organised in two columns where, the left column shows the modulus diagrams 

while the right column shows the phase diagrams. The solid blue lines in the 

diagrams present the measurement results, while the dashed-dotted red lines present 

the simulation results. Plot (a) shows the electrical impedance FRF of the classical 

actuator. Plot (b) shows the electrical impedance of the classical actuator with the 

same inertial mass as the flywheel configuration. Plots (c-f) show the electrical 

impedance FRFs of the hinged flywheel inertial actuator with increasing value of the 

equivalent axial inertia 𝐼𝑤 ⁄ (𝑟𝑤
2) effect of the rocker arm (𝐼𝑤1/(𝑟𝑤1

2  ) < 𝐼𝑤2/(𝑟𝑤2
2  ) <

𝐼𝑤3/(𝑟𝑤3
2  ) < 𝐼𝑤4/(𝑟𝑤4

2  )). Bottom plot (g) shows the electrical impedance FRF for the 

pinned flywheel inertial actuator.  

(a) (b) 
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The modulus of the electrical impedance for the classical configuration showed in 

left diagram of the Figure 3.24a is characterised by a low and high frequencies purely 

resistive behaviours separated by a resonance peak. The mechanical effect of the 

inertial mass is relevant only around the fundamental resonance frequency of the 

classical actuator that appears at about 20 Hz. At low frequencies, the spectrum is 

characterised by a constant value of about 27.5 dB that is equal to the coil resistance 

and the phase equal to zero meaning that the applied at the terminals of the actuator 

voltage is in phase with the driving current. At the fundamental resonance frequency 

the actuator electrical impedance reaches nearly 38 dB and the phase undergoes a 

shift from about +32° to -32°, which is due to the electro-mechanical effect of the 

inertial mass. Above the fundamental resonance frequency of the actuator the 

spectrum is still characterised by resistive behaviour of the coil. However, at higher 

frequencies the inductance of the coil starts to play more important role due to the 

frequency dependence of this parameter as shown in Equation (2.25). The measured 

electrical impedance for the classical configuration agree well with the previsioned 

properties obtained with simulations. 

The electrical impedance FRF of the classical actuator with the same inertial mass 

as the flywheel configuration is shown in Figure 3.24b. The results present similar 

characteristic to the classical configuration with one difference. Compared to the 

classical configuration, the electrical impedance reaches amplitude peak at slightly 

lower frequency, which is at about 18 Hz. The measured electrical impedance FRF 

agrees well with the simulation results. 

The electrical impedances for the first prototype of the flywheel inertial actuator 

shown in Figure 3.24c-f present similar characteristic to that of the classical 

configuration. The axial inertia effect produced by the hinged rocker arm shifts the 

fundamental resonance frequency to a lower value with progressively smaller offset 

values. Thus, the fundamental resonance frequency is moved to about 12 Hz (Figure 

3.24c) for the first value of the inertia effect 𝐼𝑤1 𝑟𝑤1
2⁄ , to about 10.5 Hz (Figure 3.24d) 

for the second value of the inertia effect 𝐼𝑤2 𝑟𝑤2
2⁄ , to about 8.5 Hz (Figure 3.24e) for the 

third value of the inertia effect 𝐼𝑤3 𝑟𝑤3
2⁄  and to about 5 Hz (Figure 3.24f) for the fourth 

value of the inertia effect 𝐼𝑤4 𝑟𝑤4
2⁄ . The internal damping effect is also increased, such 

that the resonance peaks are progressively rounded and the phase shifts between 

smaller values. For the first value of the inertia effect the modulus reaches about  

35 dB with the phase shift from about +24° to -24°. For the second value of the inertia 

effect the modulus reaches about 34 dB with the phase shift from about +22° to -22°. 

For the third value of the inertia effect 𝐼𝑤3 𝑟𝑤3
2⁄  the modulus reaches about 33 dB with  
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Figure 3.24. Actuator electrical impedance for the classical configuration (a), classical 

with the same inertial mass as that of the flywheel configuration (b), with the hinged 

flywheel element with the increasing axial inertia values 𝐼𝑤1 𝑟𝑤1
2⁄  (c), 𝐼𝑤2 𝑟𝑤2

2⁄  (d), 

𝐼𝑤3 𝑟𝑤3
2⁄  (e), 𝐼𝑤4 𝑟𝑤4

2⁄  (f) and with the pinned flywheel element (g). Comparison of the 

experimental results (solid blue lines) with the numerical simulations (dashed-dotted 

red lines). 
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the phase shift from about +19° to -19°. For the fourth value of the inertia effect 𝐼𝑤4 𝑟𝑤4
2⁄  

the modulus reaches about 31 dB with the phase shift from about +13° to -13°. The 

measured electrical impedance FRF for the flywheel inertial actuator equipped with 

the rocker arm agree well with the previsioned properties obtained with simulations. 

For the second value of the inertia effect (Figure 3.24d) the measured amplitude does 

not reaches the previsioned with simulations value.  

The electrical impedances for the second prototype of the flywheel inertial actuator 

shown in Figure 3.24g presents similar characteristic to that of the classical 

configuration. The produced inertia effect of the flywheel element shifts the 

fundamental resonance peak to about 14 Hz with the maximum amplitude of about 

37 dB. The phase shown in the right diagram of the Figure 3.24g shifts between +30° 

to around -30°. The experimental results for the pinned configuration of the flywheel 

inertial actuator align well with the numerical results. There is small additional peak 

that appears at about 40 Hz, which was also observed in the measurement results 

obtained with the other tests. 

 

3.5  STATIC DEFLECTION  STUDY 

One of the key parameters used to characterise an inertial actuator for active 

vibration control is the static deflection. The static displacement of the springs-coil 

assembly defines the robustness of the actuator to shocks that may cause stability and 

control performance limitations. Figure 3.25 shows the comparison of the calculated 

static deflection of the classical actuator and two prototypes with previsioned 

simulation. The results are normalised to the static deflection of the classical 

configuration defined in Equation (2.58) with respect to its natural frequency for the 

classical actuator (blue dot), for the classical configuration with the same inertial mass 

as that of the flywheel configuration (magenta diamond), for the hinged flywheel 

inertial actuator with increasing value of the equivalent axial inertia effect 𝐼𝑤 ⁄ (𝑟𝑤
2) 

of the rocker arm (red crosses) and for the pinned flywheel inertial actuator (black 

square). The solid blue line shown in the Figure 3.25 presents the simulated static 

deflection of the classical configuration for the increasing weight of the inertial mass 

for the given stiffness value specified in Table 3.4.  

The normalised static deflection of the classical inertial actuator is equal to one at 

its natural frequency that is at about 20 Hz. The solid blue line shows the simulated 

increase of the static deflection (inertial mass weight increase for given stiffness) with 



 

 

110 

reduction of the natural frequency for the classical inertial actuator. Thus, the static 

deflection for the classical actuator with the same inertial mass as the flywheel 

configuration shown in Figure 3.25 (magenta diamond) aligns with the previsioned 

solid blue line. 

Considering the hinged configuration of the flywheel actuator, the normalised 

static deflection has increased to about 1.2 for all tree vales of the inertia effect 𝐼𝑤 𝑟𝑤
2⁄ . 

In this case the increase of the static deflection does not depend on the flywheel inertia 

but is caused by the additional mass of flywheel itself and its support, which was 

attached to the inertial mass. The static deflection of the hinged flywheel actuator with 

the highest value of the inertia effect is nearly five times smaller compared to the 

classical configuration.  

 

 

Figure 3.25. Normalised static deflection with respect to actuator natural frequency 

for the classical configuration (blue dot), classical configuration with the same inertial 

mass as that of the flywheel configuration (magenta diamond) with the hinged 

flywheel element (red crosses) and with the pinned flywheel element (black square). 

Solid blue line presents previsioned static deflection for diminishing natural 

frequency (increasing weight for given stiffness) of the inertial mass of the classical 

configuration. 

 

The results for the pinned configuration of the flywheel inertial actuator show that 

the normalised static deflection has increased to 1.1. Although the flywheel element 

in the pinned configuration has the same mass as in the hinged configuration the 

static deflection is reduced due to the additional torsional bearings that increase the 
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stiffness of the actuator suspension system. Comparing the results with the 

simulations of the classical actuator the static deflection was reduced nearly twice 

with the pinned configuration of the flywheel inertial actuator.  

The results shown in Figure 3.25 clearly demonstrate that the static deflection of 

the inertial actuators does not depend on the inertia effect 𝐼𝑤 𝑟𝑤
2⁄  produced by the 

flywheel element. Also, it shows that the flywheel configurations can increase the 

robustness to shocks of the active vibration control system by reducing the static 

deflection of the inertial actuators. 

 

3.6  CHAPTER SUMMARY 

This chapter has presented the EM actuator that was used as a base for designing 

two different flywheel prototypes. The first prototype was designed with hinged 

mechanism while the second prototype with the pinned flywheel element 

analogously to the theoretical study presented in the second chapter. The flywheel 

element of the hinged configuration was designed in a form of a rocker arm with four 

lumped masses. The rocker arm was designed with several holes that allowed 

changing the position of the lumped masses and thus changing the moment of inertia 

produced by the flywheel element. The pinned configuration was equipped with the 

flywheel element designed in a form of a wheel. The shape of the flywheel element 

was optimised to maximise the polar moment of inertia and minimise the total 

weight. The flexural bearings were used to minimise the backlash between the 

components and to avoid any nonlinear effects (stick-slip effect). 

The first part of this chapter described in details both fabricated prototypes. The 

design and assembly process of each prototype was also described. A particular 

emphasis was given to the description of the mechanisms used to transform linear 

motion of the actuator into rotation of the flywheel element.  

The second part of this chapter has presented experimental and simulation results 

on the FRFs that characterise the electromechanical response of the flywheel inertial 

actuators. The study has considered the actuators base impedance, the actuators 

blocked force per unit driving current, the actuators blocked force per unit applied 

voltage, the transduction FRF and the actuators electrical impedance. The measured 

FRFs were taken on a classical coil-magnet inertial actuator, classical inertial actuator 

with the same inertial mass as the flywheel configuration, on the hinged prototype 

inertial actuator equipped with a rocker arm designed to produce a variable flywheel 
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inertia effect and on the pinned prototype. The simulated FRFs were derived from a 

lumped parameter model defined in the theoretical study presented in the second 

chapter.  

The experimental study has shown reasonably good agreement between the 

measured and simulated FRFs. In addition, it has confirmed that the rotational inertia 

effect of the flywheel element tends to reduce the resonance frequency and the 

amplitude of the fundamental resonance peak that characterise the response of the 

actuator. After testing various flywheel configurations of the hinged prototype it was 

observed that the surfaces of the shafts covered with the aluminium tape have visible 

wear effect. This wear effect on both shafts used in the hinged prototype is shown in 

the Figure 3.26. The experimental results of the hinged configuration showed that the 

play and backlash effect between the components introduces nonlinearities in the 

dynamics of the actuator. The hinged configuration does not fulfil the requirement of 

an inertial actuator to implement more stable and robust velocity feedback loops to 

control the vibration of flexible structures.  

 

 

Figure 3.26. Screws used as shafts in the hinged prototype with visible wear effect. 

 

The static deflection study has demonstrated that the flywheel element can be used 

to reduce the fundamental resonance frequency of the transducer without increasing 

the inertial mass. Thus, the flywheel element can improve stability and robustness to 

shocks of the implemented velocity feedback loops both by lowering the feedback 

control spillover effect at the fundamental resonance frequency of the actuator and 

without increasing the static deflection of the transducer. 

The designed flywheel prototypes are much heavier compared to the 

configurations analysed in the theoretical study. Thus, to implement a velocity 

feedback loops with the fabricated inertial actuators a specific test structure need to 

be build. To compare the theoretical study with the experimental results it is required 

to design a new setup with a simply supported plate, in which the weight of the 

inertial actuators would be around 10% of the host structure mass.  
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F L Y W H E E L  P I E Z O E L E C T R I C  T R A N S D U C E R  

This chapter presents the experimental tests carried out on a new proof mass 

piezoelectric actuator equipped with a flywheel element for the implementation of 

decentralised velocity feedback loops for vibration control of large flexible structures. 

The measured frequency response functions that characterise the electromechanical 

responses of the flywheel inertial actuator are contrasted with simulation results 

obtained from a simplified mathematical model and compared with those of a 

classical proof mass actuator.  

The first part of this chapter presents the detailed design of the flywheel 

piezoelectric actuator. The selection of the components and assembly process is 

described in details. The second part of this chapter presents the classical and 

flywheel piezoelectric proof mass actuator that can be used in the active vibration 

control applications. A new mathematical formulation is used to derive the FRFs that 

characterise the electromechanical properties of both configurations. The simulated 

FRFs of actuator base impedance, blocked force and electrical admittance are 

contrasted with the experimental results. 

 

4.1  PIEZOELECTRIC TRANSDUCER  

The piezoelectric transducer presented in Figure 4.1, was used as a base for 

designing the flywheel inertial actuator. The amplified piezoelectric transducer 

produced by Cedrat Technologies (APA900M)[83] is built with piezoelectric stack 

actuators mounted in the oval shell. The transducer uses two 5x5x20mm3 PZT (Lead 

Zirconate Titanate) stacks that are installed in the metal shell, which is used to 

mechanically amplify the produced displacement. When a voltage is applied to the 

transducer, the piezo stacks start to expand in the direction of the longest edge, 

proportionally to the applied signal. The expanding piezo stacks push on the longer 

sides of the shell causing the shell to contract in the direction of the shorter edge. 

Thus, the amplified piezoelectric transducer works as a pulling actuator. The ratio 
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between the shell deformation in longer axis to the deformation in shorter axis is 

called the transducer displacement amplification ratio and for the presented actuator 

is equal to 21. This type of transducer works with low voltage piezeoelectric stack 

actuators (-20V ÷ 150V) and can provide 850µm of stroke. The transducer can be used 

either for energy harvesting applications or as an actuator.  

 

 

Figure 4.1. Amplified piezoelectric transducer. 

 

The amplified piezoelectric transducer was used as a base for building a prototype 

flywheel actuator due to flat surfaces and M2.5 holes on the both mechanical 

terminals of the metal shell. The physical properties of the actuator are summarised 

in Table 4.1. The electromechanical properties of the amplified piezoelectric 

transducer were obtained from the producer datasheet [83]. 

 

Table 4.1. Physical properties of the transducer [83]. 

Parameter Value 

Stroke 850µm 

Total Mass 18 g 

Resonance frequency (free-free) 969 Hz 

Resonance frequency (blocked-free) 225 Hz 

Stiffness 25600 N/m 

Blocked force 11.8 N 

Capacitance 2.25 µF 

High 10 mm 

Length 49 mm 

Width  10 mm 

 

The amplified piezoelectric transducer presented in Figure 4.1 can be used to 

implement a velocity feedback loop to reduce the flexural vibration of flexible 
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structures. However, to produce a constant force effect at the control position in the 

low frequency range the actuator should be equipped with a large inertial mass. 

However, in case the actuator is exposed to shocks, the metal shell of the piezoelectric 

transducer undergoes large deformations, which may lead to cracks of the piezo stack 

and eventually to instability of the control system. Thus, it was decided to equip this 

actuator with the flywheel element that can improve the robustness of the control 

system to shocks and large disturbances by producing an apparent mass effect 

without increasing the inertial mass.  

 

4.2  FLYWHEEL PIEZOELECTRI C INERTIAL ACTUATOR 

The flywheel piezoelectric prototype was developed from the experience obtained 

during design of the two flywheel electromagnetic inertial actuators. The designed 

piezoelectric prototype is presented in Figure 4.2. Rendered view is shown in Figure 

4.2a while the schematic view is shown in Figure 4.2b. The physical properties of the 

designed flywheel piezoelectric actuator are summarised in Table 4.2. The designed 

inertial actuator was based on the commercially available amplified piezoelectric 

transducer. In contrast to electromagnetic prototypes, the piezoelectric configuration 

was designed with the flywheel element attached to the base of the actuator. The 

flywheel element was designed in a form of a beam with lumped masses at both ends. 

A special yoke bracket is used to support the flywheel element and to connect it with 

the base of the piezoelectric actuator. The flywheel element was designed with a fixed 

value of the polar moment of inertia. Most of the fabricated components were made 

of aluminium. However, the lumped masses were made out of heavier brass to 

increase the moment of inertia produced by the flywheel element. The linear motion 

of the actuator is converted into a rotation of the flywheel by four pivot bearings. Two 

flexural bearings, one on each side, connect the flywheel element with the yoke 

bracket. Other two pivot bearings, also one on each side, connect the top output of 

the piezoelectric actuator via a special connector. The distance between the pair of the 

flexural bearings is the flywheel offset value. This parameter influences the axial 

inertia effect produced by the flywheel element and corresponds to a small radius 

defined with 𝑟𝑤 symbol in the theoretical study. The technical drawings of the 

manufactured components for piezoelectric flywheel prototype are presented in 

appendix B. 
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Figure 4.2. Design view of the flywheel piezoelectric inertial actuator. Rendered 

view (a) and schematic view (b). 

 

Table 4.2. Physical properties of the piezoelectric flywheel inertial actuator. 

Parameter Value 

Inertial mass 0.013 kg 

Case mass 0.011 kg 

Flywheel mass  0.024 kg 

Torsional stiffness 0.003 Nmrad−1 

Flywheel inertia  25.5 ∙ 10−6 kgm2 

Pushing pin offset  𝑟𝑤 = 5 mm 

Axial flywheel mass effect 1.02 kg 

 

4.2.1 Flywheel element  

The designed flywheel element for the piezoelectric inertial actuator is shown in 

Figure 4.3. The flywheel element was composed of a beam with two lumped masses 

attached at both ends. The rectangular chassis was made out of aluminium, while the 

lumped masses were made out of heavier brass to increase the moment of inertia 

produced by the flywheel element. The lumped masses are attached to the 

rectangular chassis with four M2.5 socked head cap screws. The dimensions of the 

flywheel element were optimised in such a way as to maximise the polar moment of 

(a) 

(b) 
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inertia and to sustain the compact dimensions of the inertial actuator. Thus, the length 

of the flywheel element slightly exceeds the length of the amplified piezoelectric 

actuator. The weight of the lumped masses was chosen such that the axial inertia 

effect produced by the flywheel element could reduce the fundamental resonance 

frequency of the actuator to about 20Hz. This fundamental resonance frequency was 

chosen so that the piezoelectric inertial actuator could be compared with the 

electromagnetic configuration described in the previous chapter. Additionally, the 

dimensions and thus the weight of the lumped masses were chosen such that the 

centre of flywheel gravity would coincide with the axis defined by two holes where 

the supporting flexural bearings would be mounted. Figure 4.3 shows the flywheel 

centre of gravity offset from the axis defined by two holes (defined with the black-

white circle) for each specific direction: 

X = 0.006 mm (red arrow in the drawing) 

Y = 0.000 mm (green arrow in the drawing) 

Z =0.000 mm (blue arrow in the drawing) 

The two holes that coincide with the flywheel centre of gravity are connected to 

the yoke bracket via two flexural bearings, while the yoke bracket is connected with 

the base of the piezoelectric actuator. Thus, in this configuration the mass of the 

flywheel element is attached to the base mass of the piezoelectric actuator. The other 

two holes are connected to the top part of the piezoelectric actuator via special 

connector and are distanced by 5mm from the holes used for flywheel support. The 

flywheel element was designed with the fixed value of the polar moment of inertia. 

With the total mass of 24 g, the axial inertia effect produced by the flywheel element 

is equal to 1.02 kg.  

 

 

Figure 4.3. Flywheel element with marked centre of gravity. 
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4.2.2 Assembly process 

The assembly process of the flywheel piezoelectric actuator is presented to clarify 

the development of the prototype. Figure 4.4 shows the exploded CAD view of an 

actuator with numbered parts. The assembly process of the flywheel piezoelectric 

actuator is performed in several steps.  

Firstly, the APA900M actuator (No. 2) should be glued with the yoke bracket (No. 

1). A small grove in the base of the yoke (No. 1) was machined to match exactly the 

flat surface of the actuator mechanical terminal (No. 2). After placing small amount 

of glue on the flat surface of the mechanical terminal (No. 2) the actuator can be placed 

in the grove of the yoke (No. 1). At the same time, the special connector (No. 3) can 

be glued to the top flat surface of the actuator mechanical terminal (No. 2). The special 

connector (No. 3) was also fabricated with the small grove on the bottom surfaces. 

The M2.5 screw (No. 6) should be used to position the connector (No. 3) on the top 

flat surface of the actuator mechanical terminal (No. 2). Before proceeding to the next 

phase, it is recommended to wait until the glue dries. 

The second step is to attach the chassis (No. 7) to the yoke bracket (No. 1). In order 

to perform this operation the chassis should be placed between the yoke bracket (No. 

1) and the connector (No. 3) so that the holes would coincide. A small amount of glue 

should be placed on the external, round surfaces of the flexural bearings (No. 4) and 

then both of them can be pushed through the holes of the yoke bracket (No. 1) and 

the chassis (No. 7). The flexural bearings (No. 4) that connect the chassis (No. 7) with 

the actuator connector (No. 3) should be installed exactly in the same way. It is 

recommended to take a particular care while gluing the components to prevent the 

situation when the glue might penetrate between the sleeves or leaf springs of the 

flexural bearings.  

Finally, the two lumped masses can be attached to chassis. The heavier and bigger 

mass (No. 8) should be attached on the side where the flywheel is attached to the yoke 

brackets. The smaller and lighter mass (No. 9) should be attached closer to the side 

where the flywheel is attached to the actuator.  

The bottom connector is only used to connect the actuator with the measurement 

equipment (No. 5).  
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Figure 4.4. Exploded view of the designed flywheel piezoelectric inertial actuator. 

 

4.3  ACTUATORS DESCRIPTIO N 

This section describes the classical and the flywheel proof mass actuators equipped 

with the amplified piezoelectric stack actuators. Also, it presents the lumped 

parameter models used to derive the electromechanical frequency response functions 

that characterise the two actuators. The classical proof mass actuator considered in 

this study is made with the amplified piezoelectric transducer connected to an inertial 

mass. This reference proof mass actuator is shown in Figure 4.5a with the lumped 

element model shown in Figure 4.5c. The classical configuration shown in Figure 4.5a, 

was equipped with a square metal block that was attached to one end of the 

transducer to act as a inertial mass 𝑀𝑎. The bottom part of the shell with piezo stacks 

that is attached to the structure act as a base mass 𝑚𝑏. The stiffness k and damping c 

of the metal shell are modelled with the spring and dashpot as depicted schematically 

in Figure 4.5c. The electromechanical effect that produces a pair of reactive forces 𝐹𝑎 

between the base mass and proof mass of the actuator is modelled in terms of 
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transduction coefficient 𝜓𝑝𝑧𝑡, and voltage 𝑢𝑎 applied at the electrical terminals of the 

actuator. The applied voltage 𝑢𝑎 and the current 𝑖𝑎 flowing in the circuit is 

proportional to the capacitance 𝐶𝑝𝑧𝑡 of the piezo stacks. The direct piezoelectric effect 

produces a voltage 𝑢𝑝𝑧𝑡, which is proportional to the relative displacement 𝑤𝑚-𝑤𝑏 

between the proof mass and the base mass of the actuator. 

 

 

Figure 4.5. Pictures (a,b) and schemes (c,d) of the tested classical (a,c) and the flywheel 

inertial actuator (b,d). 

 

The flywheel porotype is shown in Figure 4.5b, with the lumped parameter model 

shown in Figure 4.5d. The additional flywheel element was designed in the form of a 

beam with two ballasts placed at the far ends of the arm. As can be seen in Figure 

4.5b, the shape and the dimensions of the flywheel element were optimised to 

minimise weight and to maximise the produced polar moment of inertia 𝐼𝑤. The 

ballasts were designed to ensure that the flywheel centre of gravity is in line with the 

axis of rotation in the designed bracket support and that the flywheel mass 𝑚𝑤 adds 

to the base mass 𝑚𝑏 of the actuator. The produced rotational inertial effect is 

proportional to the relative axial motion between the base mass 𝑚𝑏 and proof mass 

𝑀𝑤 of the actuator and is transferred with four frictionless pivot bearings of torsional 

stiffness 𝑘𝑤 to the flywheel element. The flywheel element is suspended with two 

flexural bearings to the designed bracket attached to the base. The other two 

frictionless pivot bearings connect flywheel element to the top end of the amplified 
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piezoelectric transducer. The distance between the bearing axis of rotation installed 

in the brackets and the bearing axis of rotation mounted to the top end of the 

transducer is the flywheel offset 𝑟𝑤 as depicted in Figure 4.5d. 

The physical properties of the classical piezoelectric actuator and the flywheel 

prototype are summarised in Table 4.3. The table specifies the axial inertia 𝐼𝑤 ⁄ (𝑟𝑤
2) 

effect that defines the equivalent inertial mass that would be required to reduce the 

fundamental resonance frequency of the actuator to the same value as in the flywheel 

prototype without using the flywheel element. 

 

Table 4.3. Mechanical parameters of the piezoelectric inertial actuators. 

Parameter Value 

Inertial mass of the classical actuator 𝑀𝑎 = 0.039 kg 

Inertial mass of the flywheel actuator 𝑀𝑤 = 0.013 kg 

Base mass 𝑚𝑏 = 0.011 kg 

Flywheel mass 𝑚𝑤 = 0.030 kg 

Total mass of the classical actuator 𝑀𝑎 + 𝑚𝑏 = 0.050 kg 

Total mass of the flywheel actuator 𝑀𝑤 + 𝑚𝑤 + 𝑚𝑏 = 0.054 kg 

Axial stiffness 𝑘 = 25600 Nm−1 

Torsional stiffness 𝑘𝑤 = 0.012 Nmrad−1 

Damping ratio of the classical actuator 𝜁 = 0.0065 

Damping ratio of the flywheel actuator 𝜁 = 0.01 

Flywheel inertia value 𝐼𝑤 = 2.55 × 10−5 kgm2 

Flywheel offset value 𝑟𝑤 = 0.005 m 

Axial mass effect of the flywheel 𝐼𝑤/𝑟𝑤
2 = 1.02 kg 

Piezo stacks capacitance 𝐶𝑝𝑧𝑡 = 2.25 μF 

Transduction coefficient 𝜓𝑝𝑧𝑡 = 0.075 NV−1 

 

4.4  MATHEMATICAL MODEL  

This section presents the mathematical equations based on mobility–impedance 

formulation [136] used to derive the frequency response functions (FRFs) for the base 

impedance, electrical admittance and blocked force that characterise the 

electromechanical response of the classical (Figure 4.5a,c) and flywheel (Figure 

4.5b,d) inertial actuators. The piezoelectric inertial actuator studied in this chapter has 

different electromechanical properties compared to the EM actuator. Thus, a slightly 
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different mathematical model was derived for the actuators investigated in this 

chapter. 

Considering the lumped parameter models of the classical (Figure 4.5c) and 

flywheel (Figure 4.5d) inertial actuators, the complex force at the base of the 

transducer is given with the following impedance relation: 

 𝐹𝑏 = −𝑍𝑏�̇�𝑏 − 𝑍𝑎�̇�𝑏 + 𝑍𝑎�̇�𝑚 − 𝐹𝑎  , (4.1) 

where 𝑍𝑏 is the base mass impedance for the classical (Figure 4.5a) and for the 

flywheel inertial actuator (Figure 4.5b) given respectively by: 

 𝑍𝑏 = 𝑗𝜔𝑚𝑏   ,    𝑍𝑏 = 𝑗𝜔(𝑚𝑏 + 𝑚𝑤) . (4.2) 

Also 𝑍𝑎 are the transducer suspension system impedances for the classical and 

proposed flywheel inertial transducer given respectively by: 

 𝑍𝑎 = 𝑐 +
𝑘

𝑗𝜔
    ,    𝑍𝑎 = 𝑐 +

𝑘

𝑗𝜔
+ 𝑗𝜔

𝐼𝑤

𝑟𝑤
2

+
𝑘𝑤

𝑗𝜔𝑟𝑤
2

 , (4.3) 

where the damping is defined as 𝑐 = 𝜁2√𝑀𝑎𝑘 for the classical actuator and 𝑐 =

𝜁2√(𝑀𝑎 +  𝐼𝑤 𝑟𝑤
2⁄ )(𝑘 + 𝑘𝑤 𝑟𝑤

2⁄ ) for the flywheel actuator. The force generated by the 

piezoelectric stack is given by: 

 𝐹𝑎 = 𝜓𝑝𝑧𝑡𝑍𝑒𝑖𝑎  , (4.4) 

where 𝑍𝑒 is the electrical impedance of the piezoelectric stack given by: 

 𝑍𝑒 =
𝐶𝑝𝑧𝑡

𝑗𝜔
 . (4.5) 

The complex force acting on the inertial mass of the transducers can be expressed 

with the following impedance relation: 

 𝐹𝑚 = 𝑍𝑎�̇�𝑏 − 𝑍𝑎�̇�𝑚 + 𝐹𝑎  . (4.6) 

The complex velocity of the inertial mass is given by the following mobility relation: 

 �̇�𝑚 = 𝑌𝑚𝐹𝑚 , (4.7) 

where 𝑌𝑚 is the inertial mass mobility for the classical (Figure 4.5a) and for the 

flywheel inertial actuator (Figure 4.5b) given respectively by: 

 𝑌𝑚 =
1

𝑗𝜔𝑀𝑎
   ,    𝑌𝑚 =

1

𝑗𝜔(𝑀𝑤)
 . (4.8) 

Finally, the complex voltage at the terminals of the piezoelectric transducer is given 

by: 



 

Flywheel Piezoelectric Transducer 

123 

 𝑢𝑎 = 𝑍𝑒𝑖𝑎 + 𝑍𝑒𝜓𝑝𝑧𝑡�̇�𝑏 − 𝑍𝑒𝜓𝑝𝑧𝑡�̇�𝑚 . (4.9) 

Substituting Equation (4.4) into Equation (4.6) and then the resulting equation into 

Equation (4.7) the velocity of the inertial mass is given by: 

 �̇�𝑚 =
𝑌𝑚𝑍𝑎

1 + 𝑌𝑚𝑍𝑎
�̇�𝑏 +

𝑌𝑚𝑍𝑒𝜓𝑝𝑧𝑡

1 + 𝑌𝑚𝑍𝑎
𝑖𝑎  . (4.10) 

Substituting Equation (4.4) and Equation (4.10) into Equation (4.1) the force acting at 

the base mass is given by: 

 𝐹𝑏 = −
 𝑍𝑏 +  𝑍𝑏𝑌𝑚𝑍𝑎 + 𝑍𝑎

1 + 𝑌𝑚𝑍𝑎
�̇�𝑏 −

𝑍𝑒𝜓𝑝𝑧𝑡

1 + 𝑌𝑚𝑍𝑎
𝑖�̇�  , (4.11) 

where 

 𝑍𝑓�̇� =
−𝐹𝑏

�̇�𝑏
|

𝑖𝑎=0

= 𝑍𝑏 +
𝑍𝑎

1 + 𝑌𝑚𝑍𝑎
 (4.12) 

is the mechanical impedance of the open circuit transducer and 

 𝑇𝑓𝑖 =
𝐹𝑏

𝑖𝑎
|

�̇�𝑏=0

= −
𝑍𝑒𝜓𝑝𝑧𝑡

1 + 𝑌𝑚𝑍𝑎
 (4.13) 

is the electromechanical coupling coefficient, which gives the produced force per unit 

current for the transducer with the blocked base. Substituting Equation (4.10) into 

Equation (4.9) the driving current of the piezoelectric transducers is given by: 

 𝑖𝑎 =
1 + 𝑌𝑚𝑍𝑎

𝑍𝑒 + 𝑍𝑒𝑌𝑚𝑍𝑎 − 𝑍𝑒𝜓𝑝𝑧𝑡𝑌𝑚𝑍𝑒𝜓𝑝𝑧𝑡
𝑢𝑎 −

𝜓𝑝𝑧𝑡

1 + 𝑌𝑚𝑍𝑎 − 𝜓𝑝𝑧𝑡𝑌𝑚𝑍𝑒𝜓𝑝𝑧𝑡
�̇�𝑏 , (4.14) 

where 

 𝑌𝑖𝑢 =
𝑖𝑎

𝑢𝑎
|
�̇�𝑏=0

=
1 + 𝑌𝑚𝑍𝑎

𝑍𝑒 + 𝑍𝑒𝑌𝑚𝑍𝑎 − 𝑍𝑒𝜓𝑝𝑧𝑡𝑌𝑚𝑍𝑒𝜓𝑝𝑧𝑡
 (4.15) 

is the electrical admittance of the transducer with the blocked base. Substituting 

Equation (4.14) into Equation (4.11)the force acting at the base mass is given by: 

𝐹𝑏 = (−𝑍𝑏 −
𝑍𝑎

1 + 𝑌𝑚𝑍𝑎
+

𝑍𝑒𝜓𝑝𝑧𝑡𝜓𝑝𝑧𝑡

(1 + 𝑌𝑚𝑍𝑎)(1 + 𝑌𝑚𝑍𝑎 − 𝜓𝑝𝑧𝑡𝑌𝑚𝑍𝑎)
) �̇�𝑏

−
𝜓𝑎

1 + 𝑌𝑚𝑍𝑎 − 𝜓𝑝𝑧𝑡𝑌𝑚𝑍𝑒𝜓𝑝𝑧𝑡
𝑢𝑎  , 

(4.16) 

where 
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 𝑍𝑓�̇� =
−𝐹𝑏

�̇�𝑏
|
𝑢𝑎=0

= 𝑍𝑏 +
𝑍𝑎

1 + 𝑌𝑚𝑍𝑎
−

𝑍𝑒𝜓𝑝𝑧𝑡𝜓𝑝𝑧𝑡

(1 + 𝑌𝑚𝑍𝑎)(1 + 𝑌𝑚𝑍𝑎 − 𝜓𝑝𝑧𝑡𝑌𝑚𝑍𝑎)
 (4.17) 

is the mechanical impedance of the short circuit transducer and 

 𝑇𝑓𝑖 =
𝐹𝑏

𝑢𝑎
|

�̇�𝑏=0

=
−𝜓𝑝𝑧𝑡

1 + 𝑌𝑚𝑍𝑎 − 𝜓𝑝𝑧𝑡𝑌𝑚𝑍𝑒𝜓𝑝𝑧𝑡
 (4.18) 

is the electromechanical coupling coefficient, which gives the produced force per unit 

voltage applied to the transducer with the blocked base. 

 

4.5  EXPERIMENTAL TESTS  

The following subsections contrast the measured and simulated base impedance, 

blocked force and electrical admittance of the classical and flywheel piezoelectric 

actuators. The FRFs are depicted in form of matrix of plots where the left hand side 

plots show the measured (solid blue lines) and simulated (dash-dotted red lines) 

results of the classical actuators while the right hand side plots show the measured 

(solid blue lines) and simulated (dash-dotted red lines) results of the flywheel 

actuator. 

 

4.5.1 Mechanical impedance of the open circuit transducer 

Figure 4.6 shows scheme (Figure 4.6a) and picture (Figure 4.6b) of the base 

impedance test setup. The electrical terminals of the inertial actuators were in the 

open circuit configuration during tests. The tested actuators were mounted on a 

shaker as shown in Figure 4.6b. The shaker was excited with a sine logarithmic sweep 

signal up to 1kHz. Two parameters were measured during tests using signal analyser. 

Input channel A measured force excreted to the actuator base while input channel B 

measured the base acceleration. As shown in Figure 4.6b, the impedance head 

mounted between shaker and the actuator measured simultaneously force and 

acceleration. The shaker amplifier was used to drive the shaker with required 

excitation signal. Appendix D lists equipment used in the measurements of the 

transducer elecromechanical properties. 
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Figure 4.6. Scheme (a) and picture (b) of the base impedance test with the actuator 

electrical terminals in open circuit. 

 

The Bode plots in Figure 4.7 show the base impedance FRFs of the open circuit 

classical and flywheel configurations of the proof mass actuators as given in Equation 

(4.12). The plots in Figure 4.7a show the results for the classical configuration while 

the plots in Figure 4.7b show the results for the flywheel configuration. 

The base impedance of the open circuit classical actuator simulation shown in the 

modulus plot of Figure 4.7a is characterised by low and high frequency mass-laws 

separated by a resonance peak and an antiresonance low. The resonance peak of the 

classical actuator is at about 129Hz while the antiresonance low at about 275Hz. The 

low frequency asymptote is proportional to the total mass (𝑀𝑎 + 𝑚𝑏) while the high 

frequency asymptote is proportional to base mass (𝑚𝑏) of the proof mass actuator. 

The phase of the base impedance shown in lower plot of Figure 4.7a is characterised 

by two shifts. At resonance frequency of about 129Hz, the base impedance phase 

shifts from +90° to -90° whereas at antiresonance frequency of about 275Hz, the phase 

shifts back from -90° to +90°. The full phase shift (+90° to -90°) and sharp resonance 

peak and antiresonance low indicates that the classical piezoelectric actuator is lightly 

dampened and thus is characterised by a high quality factor (𝑄 = 1 2𝜁⁄ ). The 

measured base impedances of the open circuit classical configuration agree well with 

the simulated value. However, the antiresonance low is pushed to lower value of  

236 Hz due to the additional peak that appears at about 290 Hz. Most probably, the 

additional peak is caused by a higher flexible mode of the ceramics installed in the 

shell. 

The base impedances of the open circuit flywheel prototype shown in Figure 4.7b 

presents similar characteristic to the classical configuration, apart from small 

(a) (b) 
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differences. Firstly, the flywheel axial inertia effect (𝐼𝑤 𝑟𝑤
2⁄ ) shifts the fundamental 

resonance frequency to a lower value at about 25 Hz while the antiresonance low at 

about 25.5 Hz. The sky-hook stiffness effect in between the resonance and 

antiresonance frequency is nearly cancelled. Secondly, the amplitude of the higher 

frequency asymptotic mass behaviour is increased because of the additional axial 

inertia effect (𝑚𝑏 + 𝑚𝑤 + 𝐼𝑤 𝑟𝑤
2⁄ ) produced by the flywheel element. However, the 

amplitude of the lower frequency asymptotic mass behaviour has not changed 

because the classical and flywheel actuators have nearly equal weight. Finally, the 

internal damping effect in the inertial actuator is also increased, such that the 

resonance peak and antiresonance through are rounded. The increase of the internal 

damping effect is also observed in the phase diagrams. The phase presented in the 

lower diagram of Figure 4.7b shifts only by couple of degrees between +90° to around 

+81°. The experimental results align well with the simulated open circuit base 

impedance FRF. Exactly as for the classical configuration, also for the flywheel 

prototype there is an additional peak that appears at about 290 Hz. In the 

experimental results there are two additional peaks that appear at 680 Hz and 780 Hz. 

Most probably, the dynamics of the flywheel mechanism causes these peaks. 

 

 

Figure 4.7. Base impedance of the actuators with the electrical terminals in open 

circuit: (a) classical configuration, (b) flywheel prototype. Experimental results (solid 

blue lines) and numerical simulations (dashed-dotted red lines). 
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4.5.2 Mechanical impedance of the short circuit transducer 

Figure 4.8 shows scheme (Figure 4.8a) and picture (Figure 4.8b) of the base 

impedance test setup with the actuator electrical terminals in short circuit. The tested 

actuators were mounted on a shaker as shown in Figure 4.8b. The shaker was excited 

with a sine logarithmic sweep signal up to 1kHz. Two parameters were measured 

simultaneously during tests using signal analyser. As shown in Figure 4.8b, the 

impedance head mounted between shaker and the actuator measured simultaneously 

force and acceleration. Input channel A measured force excreted to the actuator base 

while input channel B measured the base acceleration. The shaker amplifier was used 

to drive the shaker with required excitation signal. Appendix D lists equipment used 

in the measurements of the transducer elecromechanical properties. 

 

 

Figure 4.8. Scheme (a) and picture (b) of the base impedance test with the actuator 

electrical terminals in short circuit. 

 

The Bode plots in Figure 4.9 show the base impedance FRFs of the short circuit 

classical and flywheel configuration of the proof mass actuators as given in Equation 

(4.17). The plots in Figure 4.9a show the results for the classical configuration while 

the plots in Figure 4.9b show the results for the flywheel configuration.  

The base impedance of the short circuit classical actuator shown in Figure 4.9a 

presents similar characteristics to the results obtained for the open circuit transducer. 

The main difference is that the resonance peak and antiresonance low are shifted to 

lower frequencies. Since the piezo ceramics is a dielectric medium, the strains and 

stresses in the material are strongly related to the electrical field. The free flow of 

electrons and lack of the generated electrical field in the short circuit configuration 

(a) (b) 
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makes the ceramics slightly softer compared to the configuration with open circuit. 

The resonance peak of the classical actuator is at about the fundamental resonance 

frequency of 123 Hz while the antiresonance low at about 261 Hz. The phase of the 

base impedance shown in phase plot of Figure 4.9a is characterised by the shift from 

+90° to -90° at the resonance frequency and a shift from -90° to +90° at the 

antiresonance frequency. The measured base impedances of the closed circuit 

classical configuration agree well with the simulated value. As found for the base 

impedance with the open circuit transducer, also here the antiresonance low is 

pushed to a lower value of 224 Hz due to the additional peak that appears at about 

290 Hz.  

 

Figure 4.9. Base impedance of the actuators with the electrical terminals in short 

circuit: (a) classical configuration, (b) flywheel prototype. Experimental results (solid 

blue lines) and numerical simulations (dashed-dotted red lines). 

 

The base impedances of the short circuit flywheel prototype shown in Figure 4.9b 

presents similar characteristics to those obtained for the transducer in open circuit. 

The flywheel axial inertia effect (𝐼𝑤 𝑟𝑤
2⁄ ) shifts the fundamental resonance frequency 

to about 24 Hz and the antiresonance low to about 24.5Hz. The amplitude at the 

resonance peak is nearly the same as for the open circuit configuration with the shift 

form +90° to around +81° as shown in lower plot of Figure 2b. The experimental 

results align well with the simulated short circuit base impedance FRF. Also in this 
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case there is an additional peak that appears at about 290 Hz. The experimental results 

show two additional peaks that appear at about 690 Hz and 810 Hz caused by the 

higher dynamics of the flywheel mechanism. 

 

4.5.3 Blocked force for current driven actuator 

Figure 4.10 shows the scheme (Figure 4.10a) and picture (Figure 4.10b) of the 

blocked force test setup for the current driven inertial actuator. During tests, the 

actuator was attached to a rigid base via a force cell as shown in Figure 4.10b. Two 

parameters were measured during tests using signal analyser. Channel input A 

measured force excreted to the actuator base while input B measured the current fed 

to the actuator. The T-500 amplifier was used to drive the piezoelectric actuators. 

Appendix D lists all the equipment used in the measurements of the transducer 

elecromechanical properties. 

 

  

 

Figure 4.10. Scheme (a) and picture (b) of the blocked force per unit current fed to 

the actuator test setup. 

 

(b) 

(a) 
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The Bode plots in Figure 4.11 show the blocked force FRFs per unit current fed to 

the classical and flywheel configurations of the proof mass actuators as given in 

Equation (4.13). The plots in Figure 4.11a show the results for the classical 

configuration while the plots in Figure 4.11b show the results for the flywheel 

configuration. 

Considering first the bode plot shown in Figure 4.11a for the classical transducer, 

at low frequencies the blocked force per unit current fed to the transducer rises 

proportionally with frequency and has phase -90°. At the resonance peak, the blocked 

force effect reaches maximum value and undergoes a -180° lag as show in the phase 

plot of Figure 4.11a. The resonance peak of the classical actuator is at about 129 Hz, 

as found for the base impedance measurement assuming open circuit transducer. At 

frequencies above the resonance peak, the blocked force drops proportionally with 

frequency. The measured blocked force per unit current fed to the actuator of the 

classical configuration agree well with the simulated value. Also with the blocked 

force measurements, an additional peak appears at about 290 Hz. 

The blocked force per unit current fed to the flywheel prototype shown in Figure 

4.11b presents similar characteristic to the classical configuration. The flywheel 

element axial inertia effect (𝐼𝑤 ⁄ (𝑟𝑤
2)) shifts the fundamental resonance frequency to 

a lower value of about 25 Hz, similarly to the result for the base impedance assuming 

open circuit transducer. In comparison to the classical configuration, the blocked 

force is reduced by about 30 dB at the resonance peak and by about 40 dB at 

frequencies above the resonance peak. Because of this reduction, the additional peak 

that appears at 290 Hz seems to be much sharper compared to the results for the 

classical configuration. However, in both measurement the peak at 290 Hz has similar 

amplitude. The additional dynamics of the flywheel element appear at 680 Hz and at 

740 Hz as for the base impedance measurements. 
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Figure 4.11. Blocked force for current driven actuators: (a) classical configuration, (b) 

flywheel prototype. Experimental results (solid blue lines) and numerical simulations 

(dashed-dotted red lines). 

 

4.5.4 Blocked force for voltage driven actuator 

Figure 4.12 shows scheme (Figure 4.12a) and picture (Figure 4.12b) of the blocked 

force per unit applied voltage applied to the actuator test setup. During tests, the 

actuator was attached to a rigid base via a force cell as shown in Figure 4.12b. Two 

parameters were measured during tests using signal analyser. Input channel A 

measured force excreted to the actuator base while input channel B measured applied 

voltage to the actuator. The T-500 amplifier was used to drive the piezoelectric 

actuators. Appendix D lists equipment used in the measurements of the transducer 

elecromechanical properties. 
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Figure 4.12. Scheme (a) and picture (b) of the blocked force per unit voltage applied 

to the actuator test setup. 

 

The Bode plots in Figure 4.13 show the blocked force per unit voltage fed to the 

classical and flywheel configurations of the proof mass actuator as given in Equation 

(4.18). The plots in Figure 4.13a show the results for the classical configuration while 

the plots in Figure 4.13b show the results for the flywheel configuration. 

Considering the plot for the classical transducer, at low frequencies the blocked 

force per unit voltage applied to the transducer rises proportionally with frequency 

and has phase at 0°. At the resonance peak, the blocked force effect reaches maximum 

value and undergoes a -180° lag. The fundamental resonance peak is at about 122 Hz, 

as found in the measured base impedance FRF for the short circuit transducer. At 

frequencies above the resonance peak, the blocked force approximates to a constant 

value equal to the transduction coefficient 𝜓𝑝𝑧𝑡 of the transducer. As mentioned in 

the actuator description, the amplified piezoelectric transducer works as a pulling 

actuator thus the phase is opposite to the applied voltage signal. The measured 

blocked force per unit voltage applied to the actuator of the classical configuration 

agrees well with the simulation results. An additional peak appears at about 290 Hz 

as found in the measurements of the previous electromechanical properties. 

(b) 

(a) 
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Figure 4.13. Blocked force for voltage driven actuators: (a) classical configuration, (b) 

flywheel prototype. Experimental results (solid blue lines) and numerical simulations 

(dashed-dotted red lines). 

 

The blocked force per unit voltage fed to the flywheel prototype shown in Figure 

4.13b presents similar characteristic to that of the classical configuration. The flywheel 

axial inertia effect (𝐼𝑤 ⁄ (𝑟𝑤
2)) shifts the fundamental resonance frequency to a lower 

value at about 24 Hz, as found for the base impedance FRF of the short circuit 

transducer. Compared to that of the classical configuration, the blocked force is 

reduced also in amplitude by about 40 dB. The additional peak above the 

fundamental resonance frequency appears at about 290 Hz and has similar amplitude 

compared to that of the classical configuration. The higher order dynamic effects of 

the flywheel element appear at 670 Hz and 730 Hz. Thus, these effects limit the 

frequency range for the active vibration control system. 

The FRFs presented in this and previous subsections suggest that when the 

actuator is driven with constant current, the point force produced above the 

fundamental resonance frequency of the actuator tends to decrease with frequency. 

In contrast, when the actuator is driven with constant voltage, the point force 

produced by the inertial actuator above the fundamental resonance frequency of the 

actuator remains constant with frequency. Thus, for the implementation of a uniform 

velocity feedback control, it is preferable to implement voltage driven control. 
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4.5.5 Electrical admittance  

Figure 4.14 shows scheme (Figure 4.14a) and picture (Figure 4.14b) of the electrical 

admittance test setup. The tested actuators were attached to a rigid base. Two 

parameters were measured during tests using signal analyser. Input channel A 

measured voltage at the electrical terminals of the actuator while input B measured 

current fed to the actuator. The T-500 amplifier was used to drive the piezoelectric 

actuators. Appendix D lists all the equipment used in the measurements of the 

transducer elecromechanical properties. 

 

 

Figure 4.14. Scheme (a) and picture (b) of the electrical admittance test setup. 

 

The Bode plots in Figure 4.15 show the electrical admittance of the classical and 

flywheel proof mass actuators as given in Equation (4.15). The plots in Figure 4.15a 

show the results for the classical configuration while the plots in Figure 4.15b show 

the results for the flywheel configuration 

The Bode plot of the electrical admittance FRF for the classical configuration 

shown in Figure 4.15a is characterised by low and high frequency asymptotes with 

phase at +90° separated by a sharp peak and antiresonace low where the phase shifts 

(a) 

(b) 
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from +90° to about -70° and finally returns to +90°. The sharp resonance peak is at 

about 122 Hz that is resonance frequency of the short circuit transducer. The 

aniresonance low is at about 129 Hz that is the resonance frequency of the open circuit 

transducer. The low and high frequency asymptotes rise proportionally to the 

transducer piezo capacitance. At the resonance frequencies of the transducer, the 

electrical admittance has phase equal to 0°, that is the driving current is in phase with 

the voltage. The measured electrical admittance of the classical configuration agrees 

well with the simulation results. 

 

 

Figure 4.15. Electrical admittance of (a) classical configuration and (b) flywheel 

prototype. Experimental results (solid blue lines) and numerical simulations (dashed-

dotted red lines). 

 

The electrical admittance of the flywheel prototype shown in Figure 4.15b is very 

similar to the classical configuration, since the two transducers are made with 

identical piezo component. The principal difference remains in the lower resonance 

frequency due to the additional mass effect produced by the flywheel axial inertia 

effect (𝐼𝑤 ⁄ (𝑟𝑤
2)). The sharp resonance peak at about 24 Hz is the resonance frequency 

of the short circuit transducer, while the aniresonance low at about 25 Hz is the 

resonance frequency of the open circuit transducer. The phase falls from +90° to about 

-45° at the resonance frequency and finally returns to +90° at the aniresonance 

frequency. The measured electrical admittance of the flywheel configuration agrees 
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well with the simulation results. The numerical and experimental results show that 

for the given driving voltage the transducers require higher currents at high 

frequencies. Thus to control the vibrations at high frequencies this type of inertial 

actuator requires amplifier that can provide large power. 

 

4.6  CHAPTER CONCLUSIONS 

This chapter has presented simulation and experimental results that characterise 

the electromechanical FRFs of a classical and flywheel piezoelectric proof mass 

actuator, which can be used to implement a velocity feedback loop to reduce the 

flexural vibration of large flexible structures. The study has considered the 

mechanical base impedance, the blocked force and the electrical admittance FRFs. The 

experimental testes were matched with numerical results derived from a new lumped 

parameter model, which included a dedicated flywheel element connected to the 

piezoelectric transducer. The results for the flywheel configuration were compared 

with those obtained for an amplified piezoelectric transducer equipped with 

additional inertial mass element. 

The results have shown reasonably good agreement between the measured and 

simulated FRFs, both for the classical and the flywheel proof mass actuators. The 

results show that the flywheel element can be used to reduce the fundamental 

resonance frequency of the actuator without increasing the total weight of the 

suspended mass. Moreover, the flywheel element can be optimised to obtain compact 

shape and dimensions. 

The blocked force study has shown that the piezoelectric actuators should not be 

used in velocity feedback system where the actuator is driven with a current signal. 

In this case, above the transducer fundamental resonance frequency, the produced 

blocked force per unit current fed to the actuator decrees causing the control system 

to be less effective at higher frequencies. Instead, the piezoelectric actuator should be 

driven with a voltage signal.  

The electrical admittance study has shown that the actuators can be used in a wide 

frequency range. However, for the voltage driven actuator the required current rises 

proportionally to the piezo capacitance and driving frequency. Thus, to efficiently 

control the structure at higher frequencies the inertial actuators would require 

amplifiers that can provide high power.  
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This chapter has also presented the advantages of the piezoelectric proof mass 

actuator over the classical electromagnetic solution used in active vibration control 

systems. The piezoelectric actuators can be more compact and do not generate 

magnetic flux. Piezoelectric actuators with switching amplifiers present very high 

efficiency and use less power compared to the electromagnetic actuators. 

Additionally, the capacitive effect of the piezoelectric material can be used in power 

recovery systems of the switching amplifiers. This system could be easily 

reconfigured for the energy harvesting applications of the vibration structures. 

Compared to piezoelectric patches, the amplified piezoelectric transducer considered 

in this study provides higher displacements that can be efficiently used to produce 

large point forces via the oscillations of the inertial mass.  

The experimental results obtained with the prototype actuator have shown that 

the flywheel element induces additional dynamic in the actuator. Thus, a velocity 

feedback loop with the proposed flywheel piezoelectric actuator could be 

implemented in narrow and low frequency band. 
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A C T I V E  V I B R A T I O N  C O N T R O L   

This section presents the test setup and models used to evaluate the stability and 

control performance of a velocity feedback loop implemented on thin rectangular 

plate using inertial EM actuators. The stability and control performance of the control 

system is assessed using the classical, classical with the same inertial mass as the 

flywheel configuration and the pinned configuration of the flywheel inertial actuator. 

The results presented in the previous chapters for the electromechanical properties of 

the inertial actuators showed that the flexural bearings used in the pinned 

configuration minimise the nonlinear effects and reduce the backlash effects that 

could introduce stability issues. Thus, the hinged configuration of the flywheel 

inertial actuator was excluded from this study.  

  

5.1  EXPERIMENTAL SETUP  

A special experimental setup was designed to test the velocity feedback loops with 

the inertial EM actuators. Figure 5.1 shows the fabricated test setup with a supported 

rectangular plate. The structure was designed for multipurpose use and can be 

adapted for measurements in horizontal and vertical orientations. The base of the test 

setup was fabricated out of concrete material sealed in a metal frame. Heavy base 

prevents the setup from any undesired oscillations during measurements by lowering 

the amplitude of the rigid body modes. A multipurpose aluminium profile was 

immersed in the concrete base and can be used to attach various equipment. The 

chassis attached to the concrete base was designed with triangle sidewalls to reduce 

the vibrations in parallel direction to the out-of-plane axis of the plate. The 

construction of the chassis allows to approach the plate from both sides. A T-slot 

support was mounted inside the chassis, which is used to attach the excitation 

shakers. The level at which the T-slot support is mounted can be easily changed 

allowing to define any excitation position over the surface of the plate. Finally, the 

investigated plate is mounted between top and bottom frames that are attached to the 
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chassis. A large number of M10 bolts guarantee that the clamping force is evenly 

distributed. A thin layer of soldering wire was distributed between the frame and the 

steel plate to mimic a simply supported boundary condition. However, the 

preliminary tests showed that the simulation results match better the experimental 

results when the natural frequencies of the plate are calculated for the clamped 

boundary condition as given in Equation (2.9). The technical drawings of the 

manufactured structure used for implementation of the active control system are 

presented in appendix C. 

 

Figure 5.1. Test setup with a rectangular plate for the implementation of the velocity 

feedback loop system with inertial actuators. 

 

The picture and schematic model of the velocity feedback loop system 

implemented on the rectangular plate is shown in the Figure 5.2. The tested actuator 

is attached on one side of the rectangular panel. The panel is excited by a point force 

produced by a shaker located on the other side of the panel. The error signal is 

measured with a small accelerometer sensor that is attached on the same side of the 

panel as the shaker, exactly underneath the actuator position. The mechanical 

properties of the rectangular panel and location of the actuator and primary force are 

specified in Table 5.1.  
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Figure 5.2. Picture (a) and scheme (b) of a rectangular plate with a velocity feedback 

control loop system using the inertial actuators. The picture clearly shows the shaker 

used to excite the plate with point force and the control inertial actuator attached to 

the plate. The small accelerometer sensor was installed on the shaker side as shown 

in the scheme (b). 

 

Table 5.1. Mechanical parameters of the thin rectangular plate used for the 

inmplemantation of the velocity feedback control system. 

Parameter Value 

Length 𝑙𝑥 = 0.668 m 

Width 𝑙𝑦 = 0.444 m 

Thickness ℎ = 0.00137 m 

Mass density 𝜌 = 8200 kgm−3 

Elastic modulus 𝐸 = 210 × 109 Nm−2 

Poisson ratio 𝜈 = 0.31 

Damping ratio 𝜁𝑠 = 0.0035 

Position of the actuator (𝑥𝑐 , 𝑦𝑐) = (0.234 m , 0.178 m) 

Position of the primary force  (𝑥𝑝, 𝑦𝑝) = (0.433m , 0.157 m) 

 

The velocity feedback control loop was implement with an analogue conditioner 

that filters and integrates the signal obtained from the accelerometer. The output 

velocity signal is send back to the actuator via a voltage operational amplifier that 

also increases the gain of the error signal. The stability of the velocity feedback loops 

using the classical configuration, the classical with the same inertial mass as the 

flywheel configuration and the pinned flywheel inertial actuator is assessed using the 

Nyquist criterion based on the open loop sensor – actuator frequency response 

function. The performance of the feedback loops has been assessed considering the 

velocity at the control position and the total flexural kinetic energy of the hosting 

plate. The experimental results are compared with numerical simulations obtained 
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from the lumped parameter model of the actuators located on the rectangular panel 

derived in chapter two of this thesis. 

 

5.2  OPEN LOOP STABILITY ANALYSIS FOR THE CURRENT DRIVEN 

ACTUATOR 

Figure 5.3 shows scheme (Figure 5.3a) and picture (Figure 5.3b) of the open loop 

sensor – actuator FRF test setup for the current driven inertial actuator. During tests, 

the actuator was attached to a rectangular plate as show in Figure 5.3b. Two 

parameters were measured during tests using signal analyser. Input channel A 

measured acceleration at the base footprint of the actuator while input channel B 

measured current fed to the actuator. The quad amplifier was used to drive the  

 

 

 

Figure 5.3. Scheme (a) and picture (b) of the open loop sensor – actuator FRF test 

setup for the current driven inertial actuator. 

(a) 

(b) 
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actuator with a 1kHz random excitation signal generated by the signal analyser. 

Appendix D lists all the equipment used in the measurements. 

The stability of the velocity feedback loops using the classical, classical with the 

same inertial mass as the flywheel configuration and the pinned flywheel inertial 

actuator is assessed using the Nyquist criterion. Figure 5.4 shows the Bode diagram 

of the open loop sensor – actuator frequency response function for the classical 

actuator. The top plot in Figure 5.4 shows the modulus diagram while the bottom plot 

shows the phase diagram of the actuator open loop FRF for the current driven 

classical actuator. The solid blue lines in the plots present the measurement results, 

while the dashed-dotted red lines present the simulation results of the open loop 

sensor – actuator FRF which is given by 𝐺𝑐𝑎 as specified in Equation (2.32). 

The modulus plot for the classical actuator is characterised by a resonance peak at 

about 19 Hz with amplitude of -15.7 dB, which is due to the fundamental resonance 

of the inertial actuator, and then a sequence of sharp resonance peaks and narrow 

antiresonance lows pairs. The phase plot is characterised by a -180° phase lag at the 

fundamental resonance frequency of the actuator and then a sequence of -180° phase 

lag and +180° phase lead for each resonance peak and antiresonance low pair due to 

the response of the plate. The experimental results (solid blue lines) for the classical 

configuration of the inertial actuator align well with the numerical results (dashed-

dotted red lines). The mathematical model predicts well the resonance peak and the 

phase shift due to dynamics of the inertial actuator. Furthermore, most of the 

resonance peaks and antiresonance lows pairs due to dynamics of the plate aligns 

well with the measurement. A small difference in the amplitude and frequency can 

be observed at higher frequencies, mainly between 400 Hz and 600 Hz. The simulated 

phase of the open loop sensor–actuator FRF for the current driven classical actuator 

aligns well with measurement. However, the measured phase starts slowly to decay 

at higher frequencies. Most probably, this is caused by the electrical properties of the 

measurement setup that were neglected in the simulations. 
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Figure 5.4. Open loop sensor–actuator FRFs for the current driven classical inertial 

actuator. Experimental results (solid blue lines) and numerical simulations (dashed-

dotted red lines). 

 

Figure 5.5 shows the Bode diagram of the open loop sensor – actuator FRF for the 

current driven classical actuator with the same inertial mass as the flywheel 

configuration. The modulus and phase diagrams present almost identical 

characteristic to those of the classical configuration. However, due to the heavier 

inertial mass, the resonance peak at the fundamental resonance of the inertial actuator 

appears at slightly lower frequency of about 17 Hz and has slightly lower amplitude 

of -16.3 dB. The sequence of sharp resonance peaks and narrow antiresonance lows 

pairs in the modulus diagram with the sequence of -180° phase lag and +180° phase 

lead in the phase diagram is almost identical as for the classical configuration. The 

experimental results (solid blue lines) align well with the numerical results (dashed-

dotted red lines) also for this configuration of the inertial actuator. The additional 

peaks in the modulus diagram between 50 Hz and 60 Hz in measurements are caused 

by the increased mass attached to the inertial actuator. Most probably, due to the 

heavier inertial mass the higher order mode that appeared at 70 Hz for the classical 

inertial actuator (Figure 5.4) is shifted to lower frequency. Also for the classical 

actuator with the same inertial mass as the flywheel configuration a small difference 

in the amplitude and frequency can be observed between 400 Hz and 600 Hz. The 

simulated phase of the open loop sensor–actuator FRF aligns well with the measured 
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one. The measured phase starts slowly to decay at higher frequencies also for open 

loop sensor–actuator FRF of the classical actuator with the same inertial mass as the 

flywheel configuration.  

 

 

Figure 5.5. Open loop sensor–actuator FRFs for the current driven classical 

configuration with the same inertial mass as that of the flywheel configurations. 

Experimental results (solid blue lines) and numerical simulations (dashed-dotted red 

lines). 

 

Figure 5.6 shows the open loop sensor – actuator FRF for the pinned configuration 

of the flywheel inertial actuator. The modulus and phase diagrams clearly show that 

the inertia effect of the flywheel element shifts the resonance peak of the fundamental 

resonance of the inertial actuator to lower frequency of about 13 Hz and to lower 

amplitude of -22.1 dB. The experimental results (solid blue lines) for the flywheel 

configuration of the inertial actuator align with the numerical results (dashed-dotted 

red lines) mainly at lower frequenices. The additional resonance of the actuator at 

about 210 Hz causes the phase shift from 90° to about 190°. Although additional 

dynamics of the actuator can cause instability in the velocity feedback loop, this 

resonance has much lower amplitude of -28 dB compared to the fundamental 

resonance of the inertial actuator. Thus, the stability limit of the feedback control 

system can be considered based on the fundamental resonance frequency of the 

flywheel inertial actuator. Another mayor difference between the measurement and 
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simulation results are the rapidly smoothen resonance peaks and antiresonance lows 

above 300 Hz, both in modulus and phase diagrams. The measured resonance peaks 

and antiresonance lows show similar amplitudes compared to those found in the 

other configurations of the inertial actuators. Thus, it can be assumed that the 

influence of the inertia effect of the flywheel element is diminished at higher 

frequencies or that the dynamics of the plate is slightly different from the one 

predicted with simulations. Considering the phase diagram, the measured phase 

starts to decay at higher frequencies due to the electrical properties of the 

measurement setup that were neglected in the simulations. 

 

 

Figure 5.6. Open loop sensor–actuator FRFs for the current driven pinned 

configuration of the flywheel inertial actuator. Experimental results (solid blue lines) 

and numerical simulations (dashed-dotted red lines). 

 

The stability of the velocity feedback loops using the classical and the pinned 

flywheel inertial actuator is assessed using the Nyquist criterion. Figure 5.7 shows the 

Nyquist plots of the open loop sensor – actuator FRF for the three configurations of 

the inertial actuator. Figure 5.7a shows the results for the classical configuration. 

Figure 5.7b shows the results for the classical actuator with the same inertial mass as 

the flywheel configuration. Finally, Figure 5.7c shows the results for the pinned 

configuration of the flywheel inertial actuator. The solid blue lines in the plots present 
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the measurement results, while the dashed-dotted red lines present the simulation 

results.  

The Nyquist diagram for the open loop FRF with the current driven classical 

inertial actuator is characterised by a circle in the real negative quadrants, which is 

due to the resonance peak of the fundamental natural frequency, whereas the 

progressively smaller circles in the real positive quadrants are due to the resonance 

peaks and antiresonance lows of the plate. The circles in the real negative and positive 

quadrants are not centred along the axis due to high damping ratio of the inertial 

actuator that slightly shifts the pattern. The circle in the left hand side quadrants 

indicates that the feedback loop is only conditionally stable with maximum signal 

gain margin of about 16 dB. The experimental results (solid blue lines) align well with 

the numerical results (dashed-dotted red lines) mainly for the first and second 

resonance peaks. Thus, the performance of the velocity feedback loops for the current 

driven inertial actuator can be assessed with following approximation  

20 log10(1 + 𝛿𝑛 𝛿𝑎⁄ ), proposed by Aoki et al. [147]–[149], where the 𝛿𝑛 and 𝛿𝑎 are the 

real values of the open loop sensor-actuator FRF for the nth resonance peak of the plate 

and resonance peak at the fundamental resonance of the inertial actuator as shown in 

Figure 5.7. Therefore, the maximum reduction of the first resonance peak of the plate 

with the classical inertial actuator can reach 23 dB.  

The Nyquist plot for the classical actuator with the same inertial mass as the 

flywheel configuration shown in Figure 5.7b presents similar characteristic to the 

classical configuration. The circle in the left hand side quadrants indicates that 

stability gain margin is about 17 dB. The experimental results (solid blue lines) align 

well with the numerical results (dashed-dotted red lines) also for this configuration 

of the inertial actuator. This analysis shows that the maximum reduction of the first 

resonance peak of the plate with this configuartion of the inertial actuator can reach 

23.4 dB. 
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Figure 5.7. Nyquist plots of the open loop sensor – actuator FRFs for the current 

driven actuators. (a) Classical actuator, (b) classical configuration with the same 

inertial mass as the flywheel configuration, (c) pinned configuration of the flywheel 

inertial actuator. Experimental results (solid blue lines) and numerical simulations 

(dashed-dotted red lines). 
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The Nyquist plot for the pinned configuration of the flywheel inertial actuator 

shown in Figure 5.7c presents similar characteristic to the previous two 

configurations. However, the inertia effect produced by the flywheel element has 

significantly increased the stability of the feedback loop. Thus, the stability gain 

margin is about 21.5 dB. The experimental results (solid blue lines) align well with 

the numerical results (dashed-dotted red lines). As shown in Figure 5.6 for the open 

loop sensor – actuator FRF, an additional resonance of the actuator creates a second 

circle in the left hand quadrants. The second circle is much smaller compared to the 

one for the resonance peak of the actuator fundamental natural frequency and does 

not threaten stability of the velocity feedback loop. The assesed performance for the 

flywheel inertial actuator shows that the maximum reduction of the first resonance 

peak of the plate can reach up to 30.7 dB. 

 

5.3  OPEN LOOP STABILITY ANALYSIS  FOR THE VOL TAGE DRIVEN 

ACTUATOR 

Although electromagnetic actuators are typically driven with current amplifiers, 

they can also be used with voltage amplifiers that are generally more easily available. 

The results presented in paragraph 3 show that the inertial actuators used in the 

experiments can produce constant force effect while being driven either with current 

or voltage signals. Therefore, the stability of the velocity feedback loops is assessed 

also for the voltage driven inertial actuators.  

Figure 5.8 shows scheme (Figure 5.8a) and picture (Figure 5.8b) of the open loop 

sensor – actuator FRF test setup for the voltage driven inertial actuator. During tests, 

the actuator was attached to a rectangular plate as show in Figure 5.8b. Two 

parameters were measured during tests using signal analyser. Input channel A 

measured acceleration at the base footprint of the actuator while input channel B 

measured voltage applied to the inertial actuator. The quad amplifier was used to 

drive the actuator with a 1kHz random excitation signal generated by the signal 

analyser. Appendix D lists all the equipment used in the measurements. 
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Figure 5.8. Scheme (a) and picture (b) of the open loop sensor – actuator FRF test 

setup for the voltage driven inertial actuator. 

 

Figure 5.9 shows the Bode diagram of the open loop sensor – actuator FRF for the 

voltage driven classical inertial actuator. The solid blue lines in the plots present the 

measurement results, while the dashed-dotted red lines present the simulation results 

of the open loop sensor – actuator FRF which is given by 𝐺𝑐𝑢 as specified in Equation 

(2.34). The modulus plot is characterised by a heavily damped resonance peak at the 

fundamental resonance of the inertial actuator and then a sequence of rounded 

resonance peaks and antiresonance lows pairs. The resonance peaks are rounded off 

by the resistive effect in the transducer coil as specified in Equation (2.24). The phase 

plot is characterised by a -180° phase lag at the fundamental resonance frequency of 

the actuator and then a sequence of -180° phase lag and +180° phase lead for each 

resonance peak and antiresonance low pair of the plate. The experimental result (solid 

blue lines) for the classical configuration of the inertial actuator aligns with the 

numerical result (dashed-dotted red lines). The mathematical model predicts well the 

(b) 

(a) 
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resonance peak with the phase shift of the inertial actuator and most of the resonance 

peaks and antiresonance lows pairs due to dynamics of the plate. A small difference 

in amplitude and frequency between the numerical and measurement results can be 

observed between 400 Hz and 600 Hz, as noticed with the open loop sensor-actuator 

FRF for the current driven actuator. The simulated phase of the open loop sensor–

actuator FRF for the voltage driven classical actuator aligns well with the measured 

one. The measured phase starts to decay at higher frequencies due to the electrical 

inductance of actuator coil, as predicted in numerical results.  

 

 

Figure 5.9. Open loop sensor–actuator FRFs for the voltage driven classical inertial 

actuator. Experimental results (solid blue lines) and numerical simulations (dashed-

dotted red lines). 

 

Figure 5.10 shows the Bode diagram of open loop sensor–actuator FRFs for the 

voltage driven classical actuator with the same inertial mass as the flywheel 

configuration. The modulus and phase diagrams present almost identical 

characteristics to the classical configuration. Slightly heavier inertial mass shifts the 

fundamental resonance of the inertial actuator to a hardly noticeable lower frequency. 

The sequence of rounded off resonance peaks and narrow antiresonance lows pairs 

in the modulus diagram with the sequence of -180° phase lag and +180° phase lead in 

the phase diagram is almost identical as for the classical configuration. The 

experimental results (solid blue lines) align well with the numerical results (dashed-
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dotted red lines) also for this configuration of the inertial actuator. The classical 

actuator with the same inertial mass as the flywheel configuration presents a small 

difference in the amplitude and frequency between 400 Hz and 600 Hz. The simulated 

phase of the open loop sensor–actuator FRF aligns well with the measured one.  

 

 

Figure 5.10. Open loop sensor–actuator FRFs for the voltage driven classical 

configuration with the same inertial mass as that of the flywheel configuration. 

Experimental results (solid blue lines) and numerical simulations (dashed-dotted red 

lines). 

 

Figure 5.11 shows the results for the pinned configuration of the flywheel inertial 

actuator. The inertia effect of the flywheel element shifts the resonance peak at the 

fundamental resonance of the inertial actuator to lower frequency. The experimental 

results (solid blue lines) for the flywheel configuration of the inertial actuator align 

well with the numerical results (dashed-dotted red lines) mainly at lower frequenices. 

Similarly to the open loop sensor-actuator for the current driven actuator there is an 

additional resonance of the actuator at about 210 Hz that causes the phase to shift 

from 70° to about 170°. However, the actuator additional dynamics produces lower 

fundamental resonance peak compared to the peak of fundamental resonance 

frequency of the inertial actuator. Another mayor difference between the 

measurement and simulation results are the rapidly smoothen resonance peaks and 

antiresonance lows above 300 Hz, both visible in the modulus and the phase 
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diagrams. This effect is very similar to the one visible for the open loop sensor-

actuator for the current driven actuator. Considering the phase diagram, the 

measured phase starts to decay at higher frequencies due to the electrical properties 

of the actuator coil that were predicted in the simulations. 

 

 

Figure 5.11. Open loop sensor–actuator FRFs for the voltage driven pinned 

configuration of the flywheel inertial actuator. Experimental results (solid blue lines) 

and numerical simulations (dashed-dotted red lines). 

 

The stability of the velocity feedback loops using the classical, classical 

configuration with the same inertial mass as the flywheel configuration and the 

pinned flywheel inertial actuator is assessed using the Nyquist criterion. Figure 5.12 

shows the Nyquist plots of the open loop sensor – actuator FRF for the three 

configurations of the inertial actuator. Figure 5.12a shows the results for the classical 

configuration. Figure 5.12b shows the results for the classical actuator with the same 

inertial mass as the flywheel configuration. Figure 5.12c shows the results for the 

pinned configuration of the flywheel inertial actuator. The solid blue lines in the plots 

present the measurement results, while the dashed-dotted red lines present the 

simulation results.  

The Nyquist diagram for the open loop sensor-actuator FRF with the voltage 

driven classical inertial actuator is characterised by a small circle in the real negative 

quadrants, which is due to the fundamental resonance frequency of the actuator, 
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while the progressively smaller circles in the real positive quadrants are due to the 

resonance peaks and antiresonance lows of the plate. The circles are not centred along 

the axis due to high damping ratio of the inertial actuator that shifts the pattern. The 

small circle in the left hand side quadrants indicates that the feedback loop is only 

conditionally stable with maximum signal gain margin of about 54 dB. The 

experimental results (solid blue lines) align well with the numerical results (dashed-

dotted red lines). As done for the current driven actuator, the performance of the 

velocity feedback loops with the voltage driven inertial actuator can be assessed with 

the approximation 20 log10(1 + 𝛿𝑛 𝛿𝑎⁄ ) [147]–[149], where the 𝛿𝑛 and 𝛿𝑎 are the real 

values of the open loop sensor-actuator FRF for the nth resonance peak of the plate 

and resonance peak at the fundamental resonance of the inertial actuator as shown in 

Figure 5.12. In this case, the maximum reduction of the first resonance peak of the 

plate with the classical inertial actuator can reach 23.8 dB.  

The Nyquist plot for the classical actuator with the same inertial mass as the 

flywheel configuration shown in Figure 5.12b presents similar characteristic to the 

classical configuration. The circle in the left hand quadrants indicates that the stability 

gain margin is about 55 dB. The experimental results (solid blue lines) align well with 

the numerical results (dashed-dotted red lines) also for this configuration of the 

inertial actuator. The assesed performance shows that the maximum reduction of the 

first resonance peak of the plate with this configuartion of the inertial actuator can 

reach 24.3 dB. 

The Nyquist plot for the pinned inertial actuator shown in Figure 5.12c presents 

similar characteristic to the previous two configurations. However, the inertia effect 

produced by the flywheel element has significantly increased the stability of the 

feedback loop. Indeed, the stability gain margin is now about 59 dB. The experimental 

results (solid blue lines) obtained for the flywheel inertial actuator align well with the 

numerical results (dashed-dotted red lines). As shown in Figure 5.11 of the open loop 

sensor – actuator FRF, an additional resonance effect of the actuator creates a second 

circle in the left hand quadrants. The second circle is much smaller compared to the 

one for the resonance peak of the fundamental resonance frequency of the actuator 

and does not threaten the stability of the velocity feedback loop. The assesed 

performance for the flywheel inertial actuator shows that the maximum reduction of 

the first resonance peak of the plate can reach up to 32.8 dB. 
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Figure 5.12. Nyquist plots of the open loop sensor – actuator FRFs for the voltage 

driven actuators. (a) Classical actuator, (b) classical configuration with the same 

inertial mass as the flywheel configuration, (c) pinned configuration of the flywheel 

inertial actuator. Experimental results (solid blue lines) and numerical simulations 

(dashed-dotted red lines). 
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5.4  PERFORMANCE 

The control performance of the velocity feedback loops with the classical, classical 

configuration with the same inertial mass as the flywheel configuration and the 

pinned configuration of the flywheel inertial actuator is assessed by plotting the 

velocity reductions generated at the control position and the total flexural kinetic 

energy of the rectangular plate.  

Figure 5.13 shows the scheme (Figure 5.13a) and the picture (Figure 5.13b) of the 

closed loop sensor – actuator test setup for the voltage driven inertial actuator. During 

tests, the actuator was attached to a thin rectangular plate as shown in Figure 5.13b. 

Two parameters were measured during tests using signal analyser. Input channel A 

measured excitation force while input channel B measured acceleration at the base 

footprint of the inertial actuator. A dedicated shaker amplifier was used to drive the 

shaker with a 1kHz random excitation signal generated by the signal analyser. The 

quad amplifier was used to drive the actuator with a velocity signal obtained from 

the accelerometer mounted at the base footprint of the inertial actuator. A signal 

conditioner was used to integrate the acceleration and to obtain the velocity signal. 

Appendix D lists all the equipment used in the measurements. 
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Figure 5.13. Scheme (a) and picture (b) of the closed loop sensor – actuator test setup 

for the voltage driven inertial actuator. 

 

Figure 5.14 shows the control performance of the velocity feedback loops at the 

control position of the rectangular plate per unit force excitation for different control 

gains applied to the actuators. The figure is organised in two columns where, the left 

column shows the simulation results (plots a-c) given by Equation (2.39) while the 

right column shows the measurement results (plots d-f).  

(a) 

(b) 
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Figure 5.14 shows the control velocity signal per unit primary force excitation 

considering the plain plate (dotted green lines), the plate equipped with open loop 

inertial actuator (dashed brown lines) the plate equipped with the feedback loop 

using voltage driven inertial actuator with 10 dB signal gain margin (dashed-dotted 

magenta lines) and the plate equipped with the feedback loop with maximum signal 

gain that guarantee stability applied to the control actuator (solid lines). To extinguish 

three configurations of the inertial actuators shown in Figure 5.14, the blue lines 

present the classical inertial actuator, the black lines present the classical 

configuration with the same inertial mass as the flywheel configuration and the red 

lines present the pinned flywheel inertial actuator.  

The spectrum of the plane plate flexural response at the control position (dotted 

green lines) is characterised by fundamental resonance peak at about 43 Hz and then 

a sequence of progressively smaller in amplitude sharp resonance peaks. The 

numerical results for the plain plate shown in left hand plots of Figure 5.14 

correspond quite well to the experimental results shown in right hand plots of Figure 

5.14. The amplitude of the plate resonance peak starts to diminish with the increase 

of the frequency with numerical results (plots a-c), while in the experimental results 

(plots d-f), the amplitude of the plate resonance peaks stay relatively equal in entire 

measured band. 

When the classical inertial actuator (plots a, d), classical configuration with the 

same inertial mass as the flywheel configuration (plots b, e) or flywheel inertial 

actuator (plots c, f) is mounted to the plate (dashed brown lines), the amplitudes of 

the sharp resonance peaks are rounded off. The mass of the inertial actuators shifts 

the fundamental resonance peak of the plate to a slightly lower frequency. The 

numerical results (plots a, b, c) for the plate equipped with open loop inertial 

actuators present slightly higher reductions of the plate fundamental resonance peak 

compared to measurements (plots d, e, f). The experimental results show that the 

fundamental resonance peak of the plate is rounded off by about 11.9 dB with the 

classical inertial actuator, by about 12 dB with the classical configuration with the 

same inertial mass as the flywheel configuration and by about 6.4 dB with the 

flywheel configuration.  

When the velocity feedback loops are implemented with 10 dB control gain 

margins (dashed-dotted magenta lines), to ensure stability and robustness in case of 

shocks of the hosting structure, the control loops produce higher vibration reductions. 

Experimental results show that when the feedback loops with 10 dB control gain 

margins are implemented the plate fundamental resonance peak is rounded off by 
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about 32.1 dB with the classical inertial actuator, by about 33.6 dB with the classical 

configuration with the same inertial mass as the flywheel configuration and by about 

31.3 dB with the flywheel configuration. The numerical (plots a, b, c) and 

experimental (plots d, e, f) results show that the velocity feedback loops also generate 

small control spillover effect around the fundamental resonance frequency of the 

actuators. The control spillover for the classical inertial actuator has amplitude of 

about -45.7 dB, for the classical configuration with the same inertial mass as the 

flywheel configuration has amplitude of about -48.8 dB while for the flywheel 

configuration has amplitude of about -53.3 dB. 

When the velocity feedback loops are implemented with maximum control gain 

that guarantee stability (solid lines) the control loops produce high vibration 

reductions. Experimental results show that when the feedback loops with maximum 

signal gain that guarantee stability are implemented the plate fundamental resonance 

peak is rounded off by about 40.6 dB with the classical inertial actuator, by about 40.4 

dB with the classical configuration with the same inertial mass as the flywheel 

configuration and by about 39.8 dB with the flywheel configuration. The numerical 

(plots a, b, c) and experimental (plots d, e, f) results show that the velocity feedback 

loops also generate high control spillover effect at the fundamental resonance 

frequency of the actuators. 
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Figure 5.14. Velocity at the control position per unit force excitation of the plate with 

different signal gains applied to the actuators. Simulation results (plots a, b, c) 

compared with measurements (plots d, e, f). Plate without inertial actuator (dotted 

green lines). Plate with the feedback control loop using voltage driven classical 

inertial actuator (plots a, d), classical configuration with the same inertial mass as the 

flywheel configuration (plots b, e) and flywheel inertial actuator (plots c, f). Plate with 

open loop inertial actuator (dashed brown lines). Plate with the feedback control 

systems using voltage driven inertial actuator with 10 dB signal gain margin (dashed-

dotted magenta lines) and with maximum signal gain that guarantee stability applied 

to the control actuators (solid lines).  



 

Active Vibration Control 

161 

Figure 5.15 shows the control velocity signal per unit primary force excitation 

considering the plain plate (dotted green lines) and the plate equipped with the 

feedback loop with maximum signal gain that guarantee stability using classical 

actuator (solid blue line), classical configuration with the same inertial mass as the 

flywheel configuration (dashed black lines) and the pinned flywheel inertial actuator 

(dashed-dotted red lines). The simulation results (Figure 5.15a) are compared with 

the measurements (Figure 5.15b). The velocity feedback loops are implemented with 

maximum signal gains that guarantee stability, which were defined using open loop 

FRFs presented in paragraph 5.3. 

When the velocity feedback loops are implemented with maximum control gains 

that ensure stability using the inertial actuators the response at the control position is 

characterised by rounded off plate resonance peaks. However, both plots show that 

the velocity feedback loops also generate quite high control spillover effect around 

the fundamental resonance frequency of the actuators. Thus, for the classical 

configuration of the inertial actuator the spillover effect appears at about 20 Hz, for 

the classical configuration with the same inertial mass as the flywheel configuration 

at about 18 Hz, while for the pinned flywheel inertial actuator at about 15 Hz. The 

spillover effect produced by the flywheel configuration has lower amplitude by about 

3 dB compared to the other two configurations. The simulation results show that all 

three configurations produce similar vibration control performance at low 

frequencies and round off the fundamental resonance peak of the plate by about  

48 dB. However, above around 500 Hz the flywheel configuration produces higher 

reductions compared to other two configurations. The measurement results present 

similar characteristic to the numerical results given by Equation (2.39). The 

fundamental resonance frequency of the plate is rounded off by about 40 dB by all 

three configurations. Measurement results also show that the flywheel configuration 

produces much smaller control effect at lower frequencies compared to other two 

configurations. However, between 200 Hz and 800 Hz the control performance of the 

flywheel configuration is much greater compared to the other two configurations. 

Additionally, both plots clearly show the pinning effect of the plate at the control 

position due to the high feedback gains applied to the actuators. The first pinning 

effect appears at about 60 Hz, while the second at about 130 Hz, which as discussed 

in chapter 2.6 may limit the control performance of the velocity feedback control loop.  
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Figure 5.15. Velocity at the control position per unit force excitation of the plate with 

maximum signal gain that guarantee stability applied to the control actuators. Plate 

without inertial actuator (dotted green lines) and for the plate with the feedback 

control systems using voltage driven classical inertial actuator (solid blue lines), 

classical configuration with the same inertial mass as the flywheel configuration 

(dashed black lines) and with the flywheel inertial actuator (dashed-dotted red lines). 

Simulation results (plot a) compared with measurements (plot b). 

 

The performance of the velocity feedback loops with the classical, classical 

configuration with the same inertial mass as the flywheel configuration and the 

pinned configuration of the flywheel inertial actuator is also assessed considering the 

total flexural kinetic energy of the rectangular plate.  

Figure 5.16 shows the scheme (Figure 5.16a) and the picture (Figure 5.16b) of the 

laser vibrometer closed loop sensor – actuator test setup. During tests, the actuator 

was attached to a thin rectangular plate as shown in Figure 5.16b. The velocity of the 

panel was measured at 186 (17x11 grid mesh) evenly distributed points using laser 

vibrometer. The reference input channel measured the excitation force generated by 

the shaker. The shaker amplifier was used to drive the shaker with a 1kHz pseudo 

random excitation signal generated by the laser vibrometer. The quad amplifier was 

used to drive the actuator with a velocity signal obtained from the accelerometer 

mounted at the base footprint of the inertial actuator. A signal conditioner was used 

to integrate the acceleration and to obtain the velocity signal. Appendix D lists all the 

equipment used in the measurements. 

 



 

Active Vibration Control 

163 

 

 

Figure 5.16. Scheme (a) and picture (b) of the laser vibrometer closed loop sensor – 

actuator test setup. 

 

Figure 5.17 shows the total flexural kinetic energy of the plate per unit force 

excitation for different control gains applied to the actuators. The figure is organised 

in two columns where, the left column shows the simulation results (plots a-c) given 

by Equation (2.50) while the right column shows the measurement results (plots d-f). 

(a) 

(b) 
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Figure 5.17 shows the total flexural kinetic energy per unit primary force excitation 

considering the plain plate (dotted green lines), the plate equipped with open loop 

inertial actuator (dashed brown lines) the plate equipped with the feedback loop 

using voltage driven inertial actuator with 10 dB signal gain margin (dashed-dotted 

magenta lines) and the plate equipped with the feedback loop with maximum signal 

gain that guarantee stability applied to the control actuator (solid lines).  

The spectrum of the total flexural kinetic energy of the plain plate (dotted green 

lines) is characterised by a sharp resonance peak at about 44 Hz, which is due to the 

fundamental natural mode of the plate followed by other peaks due to flexural modes 

of the plate. The numerical results for the plate shown in left hand plots of Figure 5.17 

correspond quite well to the experimental results shown in right hand plots of Figure 

5.17. However, the measurement results show that up to 200 Hz the amplitude of the 

plate resonance peaks stay relatively equal.  

When the classical inertial actuator (plots a, d), classical configuration with the 

same inertial mass as the flywheel configuration (plots b, e) or flywheel inertial 

actuator (plots c, f) is mounted to the plate (dashed brown lines), the amplitudes of 

the sharp resonance peaks are rounded off. Similarly to the results obtained at the 

control position, the mass of the inertial actuators shifts the fundamental resonance 

peak of the plate to a slightly lower frequency. Also, the numerical results (plots a, b, 

c) for the plate equipped with open loop inertial actuators present slightly higher 

reductions compared to the experimental results (plots d, e, f). The experimental 

results show that the fundamental resonance peak of the plate is rounded off by about 

41.2 dB with the classical inertial actuator, by about 42.2 dB with the classical 

configuration with the same inertial mass as the flywheel configuration and by about 

33.3 dB with the flywheel configuration.  

When the velocity feedback loops are implemented with 10 dB control gain 

margins (dashed-dotted magenta lines), to ensure stability and robustness in case of 

shock of the hosting structure, the control loops produce higher vibration reductions. 

Experimental results show that when the feedback loops with 10 dB control gain 

margins are implemented the plate fundamental resonance peak is rounded off by 

about 79.3 dB with the classical inertial actuator, by about 78 dB with the classical 

configuration with the same inertial mass as the flywheel configuration and by about 

79.5 dB with the flywheel configuration. The numerical (plots a, b, c) and 

experimental (plots d, e, f) results show that the velocity feedback loops also generate 

small control spillover effect around the fundamental resonance frequency of the 

actuators.  
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Figure 5.17. Total flexural kinetic energy per unit force excitation of the plate with 

different signal gains applied to the actuators. Simulation results (plots a, b, c) 

compared with measurements (plots d, e, f). Plate without inertial actuator (dotted 

green lines). Plate with the feedback control loop using voltage driven classical 

inertial actuator (plots a, d), classical configuration with the same inertial mass as the 

flywheel configuration (plots b, e) and flywheel inertial actuator (plots c, f). Plate with 

open loop inertial actuator (dashed brown lines). Plate with the feedback control 

systems using voltage driven inertial actuator with 10 dB signal gain margin (dashed-

dotted magenta lines) and with maximum signal gain that guarantee stability applied 

to the control actuators (solid lines). 
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When the velocity feedback loops are implemented with maximum control gain 

that guarantee stability (solid lines) the control loops produce higher vibration 

reductions. The numerical (plots a, b, c) and experimental (plots d, e, f) results show 

that the velocity feedback loops also generate high control spillover effect at the 

fundamental resonance frequency of the actuators. Results show that the velocity 

feedback loops with the maximum control gains and with 10 dB control gain margins 

produce similar reductions of the plate fundamental resonance peak. Similarly to the 

results obtained at the control position, the high feedback gains applied to the control 

actuators cause the pinning effect of the plate that can be observed with a peak at 

about 70 Hz , which as discussed in chapter 2.6 may limit the control performance of 

the velocity feedback control loop. 

Figure 5.18 shows the total flexural kinetic energy of the panel per unit force 

excitation considering the plain plate (dotted green lines) and the plate equipped with 

the feedback loop with maximum signal gain that guarantee stability using classical 

actuator (solid blue line), classical configuration with the same inertial mass as the 

flywheel configuration (dashed black lines) and the pinned flywheel inertial actuator 

(dashed-dotted red lines). The simulation results (Figure 5.18a) are compared with 

the measurements (Figure 5.18b). The velocity feedback loops are implemented with 

maximum signal gains that guarantee stability, which were defined using open loop 

FRFs presented in paragraph 5.3. 

Considering the kinetic energy of the plate when the velocity feedback loops are 

implemented with maximum control gains that ensure stability using the inertial 

actuators the spectra are characterised by rounded off plate resonance peaks. The 

spectra also show that the velocity feedback loops generate high control spillover 

effects around the fundamental resonance frequency of the actuators, as observed in 

Figure 5.15. However, the kinetic energy spectrum shows that when the feedback 

loops with flywheel configuration is implemented the spillover effect is about 20 dB 

lower compared to classical configuration and about 13 dB lower compared to the 

classical configuration with the same inertial mass as the flywheel actuator. The 

simulation results show that all three velocity feedback loops produce similar 

vibration control performance in the entire frequency band. The feedback loops 

round off the two resonance peaks of plate by about 77 dB and by about 57 dB (Figure 

5.18a). The measured spectra of the total flexural kinetic energy present slightly 

different characteristics to the simulated ones. For instance, the first two resonance 

peaks are rounded off by about 79 dB and by about 60 dB (Figure 5.18b). Similarly to 

the results obtained at the control position, the measured performance of the velocity 
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feedback loops with flywheel actuator is worse at lower frequencies compared to 

other two configurations. However, the control performance of the flywheel 

configuration is much greater compared to other configurations above 500 Hz.  

 

 

Figure 5.18. Total flexural kinetic energy per unit force excitation of the plate with 

maximum signal gain. Without inertial actuator (dotted green lines) and for the plate 

with the closed loop feedback control systems using voltage driven classical inertial 

actuator without flywheel (solid blue lines), classical configuration with the same 

inertial mass as the flywheel configuration (dashed black lines) and with the flywheel 

inertial actuator (dashed-dotted red lines). Simulation results (plot a) compared with 

measurements (plot b). 

 

5.5  FREQUENCY AVERAGED A NALYSIS  

The plate flexural kinetic energy vibration control effect presented in the previous 

paragraph showed the velocity feedback loops implemented only with maximum 

control gains that ensure stability. To better asses the effectiveness of the proposed 

control systems, the 10 Hz to 1 kHz frequency averaged plate kinetic energy reduction 

is considered with reference to increasingly higher feedback control gains. The 

reductions of the frequency averaged flexural kinetic energy of the plate equipped 

with the feedback control units are normalised with reference to the frequency 

averaged kinetic energy of the plain rectangular plate. Figure 5.19 shows reduction of 

the frequency average kinetic energy when the feedback loops are implemented using 

the classical (solid blue line), classical configuration that have the same inertial mass 

as the flywheel configuration (dashed black line) and the flywheel inertial actuator 

(dashed-dotted red line). The results show the frequency averaged plate kinetic 
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energy reduction with increasing feedback control gains up to maximum control gain 

that guarantees stability. Figure 5.19 shows point with performance for the 10 dB 

signal margin that should be used in practical applications to improve stability and 

robustness of the feedback loops in case of shocks of the hosting structure. Figure 5.19 

shows only experimental results due to the slight variation between the measured 

and numerical results as discussed for the results shown in Figure 5.15 and Figure 

5.18 .  

 

 

Figure 5.19. Reductions of the 10 Hz – 1 kHz frequency averaged kinetic energy 

produced by the feedback loops using either the voltage driven classical inertial 

actuator without flywheel (solid blue lines), classical configuration with the same 

inertial mass as the flywheel configuration (dashed black lines) and with the flywheel 

inertial actuator (dashed-dotted red lines). 

 

Considering first the classical configuration (solid blue line), the results show that 

the feedback loop with the inertial actuator produces up to 15.4 dB reduction of the 

frequency averaged kinetic energy with a maximum control gain of 54 dB. However, 

the maximum stable gain does not produces maximum control performance, which 

as discussed in chapter 2.6 is due to the pinning effect produced by the velocity 

feedback control loop. When the velocity feedback loop is implemented with a 10 dB 

signal gain margin the classical inertial actuator produces up to 14.9 dB reduction.  

 The performance of the velocity feedback loop is slightly better when the classical 

configuration that has the same inertial mass as the flywheel configuration is used. 

Considering the dashed black line, when the velocity feedback loop is implemented 

the inertial actuator produces up to 15.6 dB reduction. Then, when the velocity 
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feedback loop is implemented with a 10 dB signal gain margin this inertial actuator 

produces 14.5 dB reduction. Finally, the feedback loop with the flywheel inertial 

actuator (dashed-dotted red lines) can implement much larger feedback control gains 

(up to 59dB) such that the frequency averaged kinetic energy of the plate is reduced 

by up to 15.9 dB. Similarly to the previous configurations, when the velocity feedback 

loop is implemented with a 10 dB signal gain margin the flywheel configuration of 

the inertial actuator produces about 15.4 dB reduction. The improved control 

performance are obtained thanks to the possibility of implementing about 5.6 dB 

higher control gains. 

 

5.6  CHAPTER CONCLUSIONS  

This chapter has investigated the use of flywheel inertial actuator for the 

implementation of velocity feedback loop independent units that can be used to 

control the broadband vibration of thin structures. Experimental results were 

obtained based on the tests carried out on a rectangular panel test rig and have been 

contrasted with simulations. The stability and control performance of velocity 

feedback loops were considered using classical inertial actuator, classical inertial 

actuator with the same inertial mass as the flywheel actuator and pinned flywheel 

inertial actuator.  

The stability of the velocity feedback loops has been assessed using the Nyquist 

criterion based on the open loop sensor – actuator FRFs for the current and voltage 

driven transducers. The stability analysis has shown that the actuator with additional 

flywheel element has much higher gain margin of the feedback loop with the classical 

configurations. Moreover, comparing the classical actuator with the same inertial 

mass as the flywheel configuration and the pinned flywheel prototype, the gain 

margin results increased without any increment of the actuator proof mass. The 

actuators driven with a current signal have reached maximum signal gain margin of 

16 dB for the reference configuration, 17 dB for the classical actuator with the same 

inertial mass as the flywheel configuration and 21.5 dB for the flywheel prototype. 

Instead, the actuators driven with the voltage signal have reached the maximum 

signal gain margin of 54 dB for the classical inertial actuator, 55 dB for the classical 

actuator with the same inertial mass as the flywheel configuration and 59 dB for the 

flywheel prototype. Both for the current and voltage driven inertial actuators, the 

experimental testes matched well the numerical results.  
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The performance of the feedback loops has been assessed considering the velocity 

at the control position and the total flexural kinetic energy of the hosting structure. 

The experimental results have been compared with the numerical simulations 

obtained from the lumped parameter model of the actuators located on the 

rectangular panel derived in chapter two of this thesis. Result showed that the 

feedback loops using the flywheel inertial actuators are characterised by a slightly 

better control performance thanks to increased signal gain margins.  

The experimental results presented in this chapter confirmed the simulation study. 

The flywheel inertial actuators can improve the control performance of the velocity 

feedback loops to reduce the broadband vibration of thin plate. 
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E N E R G Y  H A R V E S T I N G  

This chapter presents the study on the energy harvesting with the inertial EM 

transducers. The mathematical formulation for the power harvested per unit base 

excitation is derived for a classical, classical with the same inertial mass as the 

flywheel configuration and flywheel inertial transducer. Finally, both simulation and 

experimental results of the energy harvesting effects are presented for three inertial 

transducers connected to a purely resistive load. 

This chapter introduces a new flywheel coil–magnet proof mass transducer for 

vibration energy harvesting. The seismic transducer includes an additional flywheel 

element that produces three effects on the elastically suspended proof mass: firstly, it 

lowers the fundamental resonance frequency, secondly it lowers the static 

displacement and thirdly it lowers the mechanical damping effect. The combination 

of all three effects is beneficial for vibration energy harvesting applications. In fact, 

having a low resonance frequency transducer facilitates the tuning of the harvester to 

a low frequency band where ambient vibration energy is normally higher. Also, 

having a low static displacement of the proof mass element allows the construction 

of a device robust to shocks and fast movements despite it has a low fundamental 

resonance frequency. Finally, having a low internal mechanical damping leaves more 

energy for the conversion to electrical energy. The chapter presents both simulations 

and experimental results that contrast the principal electro-mechanical properties and 

the energy harvesting effects of classical and proposed flywheel coil–magnet proof 

mass transducers connected to a purely resistive load. 

Simulated frequency response functions (FRFs) are contrasted with measured 

FRFs taken on a classical coil-magnet proof mass transducer and on a prototype coil-

magnet proof mass transducer equipped with a flywheel element.  
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6.1  MATHEMATICAL MODEL F OR ENERGY HARVESTING  

This section presents the mathematical formulation used to derive the power 

harvested per unit base excitation with the classical, with the classical having the 

same inertial mass as the flywheel configuration and with the proposed flywheel 

inertial transducer. The frequency domain formulations presented in this section 

consider the complex amplitudes of time–harmonic functions as defined in chapter 

two.  

To harvest vibration energy, the EM transducers presented in Figure 3.13 are 

connected to an electrical impedance 𝑍ℎ at the terminals of the coil. Considering the 

lumped parameter models shown in Figure 3.13e, f, h, the voltage across two 

terminals 𝑢𝑎 is equal to: 

 𝑢𝑎 = −𝑍𝐻𝑖𝑎  , (6.1) 

since 𝑖𝑎 is defined to flow onto the transducer. The complex velocity at the proof mass 

can be derived from Equation (2.4) and is given by:  

 �̇�𝑚 = 𝑌𝑚𝐹𝑚 , (6.2) 

while the complex force at the proof mass can be derived from Equation (2.20) and is 

given by: 

 𝐹𝑚 = 𝑍𝑎�̇�𝑐−𝑍𝑎�̇�𝑚 + 𝜓
𝑎

𝑖𝑎 . (6.3) 

After substitution of Equation (6.2) into Equation (6.3), the complex velocity at the 

proof mass for the current driven actuator results: 

 �̇�𝑚 =
𝑌𝑚𝑍𝑎

1 + 𝑌𝑚𝑍𝑎
�̇�𝑐 −

𝑌𝑚𝜓𝑎

1 + 𝑌𝑚𝑍𝑎
𝑖𝑎  . (6.4) 

Substituting Equation (6.4) into Equation (2.24), the complex voltage at the 

terminals of the coil is given by: 

 𝑢𝑎 = −𝑇𝑢�̇��̇�𝑐 + 𝑍𝑢𝑖𝑖𝑎  , (6.5) 

where 𝑇𝑢�̇� is the actuators transduction FRF given in Equation (2.53) while the 𝑍𝑢𝑖 is 

the actuators electrical impedance given in Equation (2.55). Substituting Equation 

(6.1) into Equation (6.7), the generated current at the terminals of the coil is given: 

 𝑖𝑎 =
𝑇𝑢�̇�

𝑍ℎ + 𝑍𝑢𝑖
�̇�𝑐  . (6.6) 

When the electromagnetic transducer is exposed to harmonic vibrations, the time 

averaged harvested power is given by: 
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 �̅�𝐻 =
1

2
𝑅𝑒{𝑖𝑎

∗ 𝑢𝑎} (6.7) 

and using Equation (6.1) and Equation (6.10) the harvested power results: 

 �̅�𝐻 =
1

2
Re(𝑍𝐻) |

𝑇𝑢�̇�

𝑍𝐻 + 𝑍𝑢𝑖
�̇�𝑐|

2

 . (6.8) 

Now, assuming a purely resistive electrical load, i.e. 𝑍𝐻 = 𝑅𝐻, and recalling the 

expressions given in Equation (2.53) and Equation (2.55) the harvested power can be 

rewritten in the following form: 

 �̅�𝐻 =
1

2
𝑅𝐻 |

𝜓𝑎

𝑅𝐻 + 𝑍𝑒 + (𝑅𝐻 + 𝑍𝑒)𝑌𝑚𝑍𝑎 + 𝑌𝑚𝜓𝑎
2|

2

|�̇�𝑐|2 . (6.9) 

This equation indicates how both the electrical and mechanical parameters of the 

harvester influence the energy harvesting with either the classical or the proposed 

flywheel proof mass transducer. This study is indeed focused on the use of the 

additional flywheel element in the proof mass transducer to increase the energy 

harvesting of classical proof mass actuators. 

  

6.2  ENERGY HARVESTING CO MPARISON  

A key factor that determines the harvested power from a coil–magnet proof mass 

transducer connected to a purely resistive load is the internal losses in the transducer, 

which is mechanical damping and electrical dissipation. The mechanical damping is 

primarily due to the eddy current effect between the magnet and the steel coil 

armature. The electrical losses are instead generated by the resistive effect of the coil. 

While the electrical losses can be easily modelled considering the resistance of the 

coil, the mechanical dissipation is somewhat more complex to handle. This is 

particularly the case with the proposed proof mass transducer comprising the 

flywheel element, which is both pinned to the case and connected to the moving coil-

armature component via flexural bearings. Thus, a preliminary experimental study 

was put in place to identify the most appropriate expression for the critical damping 

to be used in a classical viscous damping model. The power harvested per unit base 

acceleration was therefore measured with the pinned flywheel proof mass transducer 

connected to a purely resistive load 𝑍𝐻=68 Ω.  

Figure 6.1 shows the scheme (Figure 6.1a) and the picture (Figure 6.1b) of the 

energy harvesting test setup. The actuator mounted on the shaker was excited with a 
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random excitation signal up to 40 Hz. Two parameters were measured during tests 

using signal analyser. Input channel A measured base acceleration measured, input 

channel B current flowing in the variable resistor while input channel C measured 

voltage generated by the actuator at the terminals of the variable resistor. The shaker 

amplifier was used to drive the shaker with required excitation signal generated by 

the signal analyser. Appendix D lists all the equipment used in the measurements. 

 

 

Figure 6.1. Scheme (a) and picture (b) of the energy harvesting test setup. 

 

The solid blue lines in plots a-c of Figure 6.2 show the spectra of the measured 

power harvested. The dash-dotted red lines in the same plots a-c of Figure 6.2 show 

the power harvested simulated using Equation (6.9), where the damping term 𝑐 in the 

mechanical impedance 𝑍𝑎 has been taken equal to: 

 𝑐 = 𝜁𝑐𝑐 (6.10) 

considering a damping ratio equal to ζ=0.2. Plot a shows the simulated power 

harvested assuming the critical damping is derived from the classical definition given 

for the inerter transducers: 

(a) (b) 
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 𝑐𝑐 = 2√(𝑘 +
𝑘𝑤

𝑟𝑤
2

) (𝑀𝑎 +
𝐼𝑤

𝑟𝑤
2

+ 𝑚𝑤) . (6.11) 

Alternatively, plot b shows the simulated power harvested assuming the critical 

damping is equal to that for the proof mass transducer without flywheel: 

 𝑐𝑐 = 2√𝑘𝑀𝑎  . (6.12) 

Finally, plot c shows the simulated power harvested assuming the critical damping 

is given by: 

 𝑐𝑐 = 2√(𝑘 +
𝑘𝑤

𝑟𝑤
2

) (𝑀𝑎 + 𝑚𝑤) . (6.13) 

 

 

Figure 6.2. Frequency response function of the harvested power to a resistive load 

𝑍𝐻 = 68𝛺 for the flywheel proof mass transducer with the constant damping ratio (a), 

with the constant damping coefficient (b), with the optimal damping (c). 

Experimental results (blue lines). Simulations (dashed-dotted red lines). 

 

Contrasting the results plotted in Figure 6.2a-c it is noted that the expression for 

the critical damping given in Equation (6.13) is the most appropriate to derive the 

damping factor to be used in the calculus of the mechanical impedance 𝑍𝑎 in order to 

derive correctly the energy harvested with Equation (6.9). This result indicates that, 

although the axial inertia effect produced by the flywheel element (𝐼𝑤 ⁄ (𝑟𝑤
2)) reduces 

the fundamental resonance frequency of the transducer, it does not influence the 

mechanical damping, which, as discussed above, plays a key role in the disposal of 

the absorbed mechanical vibration energy to electrical energy, which is then 

harvested. 
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Having established the correct model for the mechanical damping, the measured 

results (solid blue lines) of energy harvested is contrasted with the simulated (dash-

dotted red lines). The energy harvested with the classical inertial transducer (Figure 

3.13a), classical with the same inertial mass as the flywheel configuration (Figure 

3.13b) and with the proposed flywheel inertial transducer (Figure 3.13c) are shown 

respectively in Figure 6.3. Since the three transducers are characterised by different 

mechanical damping factors, the maximum energy harvesting at the resonance 

frequency is obtained with different resistive loads. The result in Figure 6.3a shows 

that maximum power can be harvested by applying to the classical proof mass 

transducer a resistive load of 𝑅𝐻 = 75 Ω. Alternatively, the result in Figure 6.3c shows 

that maximum power can be harvested by applying to the proposed flywheel proof 

mass transducer a resistive load of 𝑅𝐻 = 68 Ω. 

The two plots clearly show that the simulation results agree well with the 

experimental tests carried out either with the classical configuration (Figure 6.3a), 

classical with the same inertial mass as the flywheel configuration (Figure 6.3b) and 

with the pinned flywheel inertial transducer (Figure 6.3c).  

 

 

Figure 6.3. Maximum harvested power at the resonance frequency with varying 

resistive load 𝑍ℎ for the classical transducer (a), and classical with the same inertial 

mass as the flywheel configuration (b) and pinned flywheel prototype (c). 

Experimental results (solid blue lines). Simulations (dashed-dotted red lines). 

 

6.3  CHAPTER CONCLUSIONS  

This chapter has investigated the use of the inertial EM transducers for energy 

harvesting applications. The experimental testes were successfully matched with 

numerical results obtained from a lumped parameter scheme, which included a 
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specific model for the damping coefficient of the flywheel inertial transducer. The 

results for the new configuration were compared with those obtained with a classical 

coil-magnet proof mass transducer and a classical transducer with the same inertial 

mass as the flywheel configuration.  

The results of the energy harvesting have shown that the flywheel element reduces 

the fundamental resonance frequency of the actuator without significantly increasing 

the total mass of the transducer and without increasing the damping coefficient of the 

transducer. Moreover, the simulation and experimental results have shown that the 

flywheel transducer increases the harvested energy by about 30% compared to the 

reference configuration. However, compared to the classical transducer with the same 

inertial mass as the flywheel configuration the fabricated prototype presented lower 

energy harvesting performance by about 25%. It is worth to emphasise that 

transducers used in this study are characterised with high damping, which is 

disadvantageous for the energy harvesting applications. Thus, it may be possible that 

a proper design of the new transducer may lead to a device with even higher energy 

harvesting capabilities. 
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S U M M A R Y  

This chapter summarises the work presented in this thesis and gives suggestions 

for the future work.  

 

7.1  CONCLUSIONS 

The objective of this study was to investigate and develop a new inertial 

electromechanical transducer for the implementation of velocity feedback loops that 

control the broadband vibration of distributed structures. The idea for the new 

transducers was based on the inerter element that has been used to augment the 

inertia effect by using a rotational mass element. A comprehensive theoretical study 

has been performed to assess the benefits of using the proposed actuators for the 

velocity feedback control applications. Three new prototypes with the flywheel 

element have been designed and fabricated. The prototypes were analysed based on 

typical electromechanical FRFs of inertial actuators. Finally, the stability and 

performance of the velocity feedback loops with the fabricated prototype has been 

assessed. The experimental results have been compared with the these obtained for a 

classical inertial actuator used for the active vibration control applications.  

 

Chapter two has presented simulation results for the new inertial electrodynamic 

actuator with a flywheel element for velocity feedback control loops on flexible 

structures. Four different configurations have been considered where the flywheel is 

either hinged or pinned to either the proof mass or the case of the actuator. The study 

has introduced a lumped parameter model and an impedance – mobility 

electromechanical formulation for the operation of the feedback loop. The kinetic and 

kinematic response of the classical and four proposed flywheel proof mass actuators 

were first investigated considering spectra of six electromechanical FRFs. The 

stability and control performance of velocity feedback loops using the classical and 

four proposed flywheel actuator was considered assuming the control loops operate 
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on a thin rectangular panel excited by an acoustic plane wave. The performance of 

the point velocity feedback loops have been assessed based on the total flexural 

kinetic energy of the panel. Finally, a parametric and scaling study was introduced to 

give basic guidelines for designing flywheel prototypes. 

The theoretical study presented in this chapter has shown that the inertial 

transducers could be equipped with the flywheel element that has one mechanical 

terminal attached to the base mass while to other mechanical terminal to the proof 

mass of the inertial transducer. The simulated electromechanical FRFs of the 

proposed flywheel inertial actuators have shown that the fundamental resonance 

frequency of the transducer can be lowered with the axial inertia effect produced by 

the flywheel element. The simulated blocked force FRFs per unit current fed to the 

proposed flywheel actuators has shown that with the increase of the axial inertia 

effect produced by the flywheel element the constant force effect at frequencies above 

the fundamental resonance frequency of the actuator diminishes. Thus to obtain the 

same vale of control force as the classical inertial actuator, the proposed flywheel 

inertial actuators need to be fed with much higher control signals. This result showed 

that it is important to scale the electromechanical components of the actuator that 

could withstand the high current signals that would be fed to the coil when the 

maximum feedback control gains are implemented. The stability analysis has shown 

that for all configurations of the actuator, the addition of the flywheel element 

increases the gain margin of the feedback loop without any increase of a total mass of 

the actuator. As a result the feedback loops using the proposed proof mass actuators 

with the flywheel element were characterised by improved control performance 

thanks to the possibility of implementing higher control gains. Results showed that 

the actuators equipped with the flywheel element attached either to base or to proof 

mass present similar control performance. However, slightly higher reductions were 

obtained when the flywheel was attached to the proof mass. The control performance 

study has highlighted that when the actuator with the flywheel element is used to 

implement a velocity feedback, the additional inertia effect produced by the flywheel 

element tends to lower the low frequency range where the destabilising positive 

feedback effect occurs. The parametric and scaling study presented in this chapter has 

shown that the control performance and rebusteness to shocks of the velocity 

feedback control loops can be improved when the inertial mass is shifted twoards the 

flywheel element. Also the static deflection of the inertial actuator can be improved 

when the radius of the gear mechanism that transforms the axial oscillations of the 

proof mass into angular oscillations of the flywheel is reduced. Finally, the scaling 
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study has shown that the proposed flywheel element could be used to effectively 

reduce the fundamental natural frequency of the actuator allowing then the use of 

small scale devices. 

 

Chapter three has presented the design of two flywheel electromagnetic inertial 

actuators. The prototypes were designed based on a commercially available linear 

electromagnetic actuator. The first prototype was designed with a hinged while the 

second prototype with the pinned flywheel element analogously to the theoretical 

study presented in chapter two. The flywheel element of the hinged configuration 

was designed in a form of a rocker arm with four lumped masses. The pinned 

configuration was equipped with the flywheel element designed in a form of a wheel. 

The shape of the flywheel element was optimised to maximise the polar moment of 

inertia and minimise the total weight. The flexural bearings were used to minimise 

the backlash between the components and to avoid any nonlinear effects caused by 

stick-slip effect. The dynamic response of the classical and two flywheel prototypes 

were investigated considering spectra of electromechanical FRFs. The properties of 

the classical and flywheel configurations were also compared with the mathematical 

simulation obtained from the simplified lumped parameter model. 

The study presented in this chapter has shown that it is vitally important for a 

flywheel inertial actuator to design a proper mechanism that can transform the axial 

oscillations of the inertial mass into angular oscillations of the flywheel. Also the 

suspension system of the flywheel element should be designed with soft torsional 

spring that has comparatively much higher axial stiffness. The design of both 

elements should be done with flexural hinges to minimise the nonlinear effects caused 

by the backlash or stick-slip effect. The experimental test results of both prototypes 

have confirmed the expected dynamics of the flywheel element that were previsioned 

in chapter two. The electromechanical properties of the flywheel prototypes assessed 

based on simulation and experimental results have shown that the fundamental 

resonance frequency of transducers can be reduced with the axial inertia effect 

produced by the flywheel element. The experimental results of the hinged 

configuration showed that the play and backlash effect between the components 

introduces nonlinearities in the dynamics of the transducer. Hence, the hinged 

configuration did not fulfil the requirement of an inertial actuator to implement more 

stable and robust velocity feedback loop. Finally, the static deflection study has 

demonstrated that the flywheel element can be used to reduce the fundamental 

resonance frequency of the transducer without increasing the inertial mass. Thus, the 



 

 

182 

flywheel element can improve stability and robustness to shocks of the implemented 

velocity feedback loops by lowering the spillover effect at the fundamental resonance 

frequency of the actuator without increasing the static deflection of the actuator. 

 

Chapter four has presented a new piezoelectric actuator that can be used to 

implement a velocity feedback loop to reduce the flexural vibration of large flexible 

structures. The new actuator was designed with a long beam flywheel element 

suspended with flexural bearings. The developed control unit was more compact and 

lightweight than ordinary unit with axial inertial mass. The electromechanical 

properties of a classical and flywheel prototype were assessed based on the 

simulation and experimental results of the actuators FRFs. The study has considered 

the mechanical base impedance, the blocked force and the electrical admittance FRFs. 

The experimental testes were matched with numerical results derived from a new 

lumped parameter model for the piezoelectric inertial actuator.  

The study presented in this chapter has confirmed that the axial inertia effect 

produced by the flywheel element can be used to reduce the fundamental resonance 

frequency of the actuator without increasing the inertial mass. However, the flywheel 

element with high axial inertia effect can also reduce the higher resonance frequencies 

of the inertial actuators and induce additional dynamics. The study has also showed 

that the flywheel piezoelectric stack actuator could be a good alternative to 

electromagnetic actuators or piezo patches in the active vibration control applications. 

The electromechanical properties of the flywheel prototype assessed based on 

simulation and experimental results have shown that when the actuator is driven 

with constant current, the point force produced by the inertial actuator above the 

fundamental resonance frequency of the actuator tends to decrease with frequency. 

In contrast, when the actuator is driven with constant voltage, the point force 

produced by the inertial actuator above the fundamental resonance frequency of the 

actuator remains constant with frequency. Thus, for the implementation of a uniform 

velocity feedback control with the flywheel piezoelectric actuator it is preferable to 

implement voltage driven control, contrary to the current driven control for the 

electromagnetic actuator. The study has also shown that for the voltage driven 

piezoelectric actuator the required current rises proportionally to the piezo 

capacitance and driving frequency. Thus, to efficiently control the structure at higher 

frequencies the inertial actuators would require amplifiers that can provide high 

power. The switching topology of the amplifiers would be more preferable compared 
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to the linear amplifiers because of their high efficient thanks to the power recovery 

system when driving piezoelectric actuators. 

 

Chapter five has presented the test setup with a supported plate to implement the 

velocity feedback loops with the proposed flywheel inertial actuators. The setup has 

been used to evaluate the stability and control performance of the velocity feedback 

loop implemented on thin rectangular plate using electromagnetic inertial actuators. 

The stability and control performance has been assessed for the feedback loops using 

the classical, classical with the same inertial mass as the flywheel configuration and 

the pinned configuration of the flywheel inertial actuator. The stability of the velocity 

feedback loops has been assessed both for voltage and current driven inertial 

actuators. The performance of the feedback loops has been assessed considering the 

velocity at the control position and the total flexural kinetic energy of the hosting 

structure. Finally, the performance of the velocity feedback loops using three 

configurations of the inertial actuator have been compared based on the frequency 

averaged plate kinetic energy reduction.  

The experimental results presented in this chapter confirmed the that the flywheel 

inertial actuators can improve the control performance of the velocity feedback loops 

to reduce the broadband vibration of thin plate. The experimental tests of the velocity 

feedback loop stability and control performance have confirmed the expected results 

previsioned in the theoretical study presented in chapter two. The stability study 

presented in this chapter has shown that the actuator with additional flywheel 

element has much higher gain margin of the feedback loop compared to the classical 

configurations. The performance study has shown that the feedback loops using the 

flywheel inertial actuators are characterised by a slightly better control performance 

thanks to increased signal gain margins. This is a rather important results, 

particularly in view of the fact that the proposed flywheel actuator is characterised 

by much smaller static displacements and thus can be also used in presence of large 

shock effects due to undesired persistent excitations.  

 

Chapter six has investigated the possibility of using the proposed flywheel inertial 

transducer for energy harvesting applications. Both simulation and experimental 

results of energy harvesting with the classical, classical with the same inertial mass as 

the flywheel configuration and proposed pinned flywheel electromagnetic 

transducer connected to a purely resistive load have been presented.  
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The experimental results presented in this chapter have shown that the flywheel 

element reduces the fundamental resonance frequency of the actuator without 

significantly increasing the total mass of the transducer and without increasing the 

damping coefficient of the transducer. Although, the flywheel element reduces the 

fundamental resonance frequency of the transducer where ambient vibration 

amplitudes are normally higher and more preferable for the energy harvesting 

applications, the tested prototype presented lower energy harvesting performance 

compared to the classical configuration with the same inertial mass as the flywheel 

prototype. Experimental results have shown that the pinned flywheel prototype 

presented lower energy harvesting performance by about 25% compared to the 

classical transducer with the same inertial mass as the flywheel configuration. It is 

worth to point out that the electromagnetic transducer used in this study was 

characterised by high damping value which is disadvantageous for the energy 

harvesting applications. Thus, a proper design of the new transducer could lead to a 

device with even higher energy harvesting capabilities. 

 

Results presented in this thesis suggest that the future flywheel prototype for 

active vibration control and energy harvesting applications could be designed with 

much lower damping coefficient of the inertial mass suspension system. The axial 

inertia effect produced by the flywheel element would maintain good performance 

of the velocity feedback loop thanks to high signal gain margin and at the same time, 

the flywheel inertial prototype would be characterised with much higher energy 

harvesting performance thanks to low damping coefficient compared to the classical 

inertial transducer. 

 

Based on the experimental results of the tree flywheel inertial actuators a list of 

advantages and disadvantages of the flywheel inertial configuration compared to the 

classical inertial transducer is shown in Table 7.1. The advantages are concentrated 

around the improved performance and stability of the velocity feedback loops, while 

the disadvantages are focused on the complexity and price of the flywheel 

components. Some of the described disadvantages could by avoided by designing 

new flywheel inertial transducer. 
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Table 7.1. Advantages and disadvantages of the flywheel inertial configuration 

compared to the classical inertial transducer. 

Advantages Disadvantages 

Reduces the fundamental resonance 

frequency of the actuator. 

Reduces the constant force effect at the 

frequencies above fundamental 

resonance frequency of the actuator. 

Does not increase the static deflection 

of the inertial mass. 

Increases the impedance of the proof 

mass suspension system. 

Maintains low weight of the inertial 

mass. 

Lowers the energy harvesting 

capabilities compared to the transducer 

with the same inertial mass. 

Lowers the feedback control spillover 

effect at the fundamental resonance 

frequency of the actuator. 

Increases the complexity of the inertial 

transducer, which leads to the 

additional dynamics. 

Increases signal gain margin of the 

velocity feedback control loop. 

Increases the costs due to additional 

components. 

Improves actuator robustness in case of 

shocks and high accelerations. 
 

 

7.2  FUTURE WORK 

The future work could be carried in the following topics listed below. 

 

 Development of a mechanism that can transform the linear motion of the 

transducer into constant spinning motion, instead of oscillatory, of the flywheel 

element to reduce the nonlinear effects (e.g. stick-slip).  

 Development of a device without flexural bearings that are relatively expensive 

and have limited angular range. 

 Development of a device that is equipped just with flywheel element instead of 

the proof mass. 

 Development of a device that would have the main axis of flywheel rotation 

perpendicular to the surfaces of the structure. 

 Further miniaturisation of the actuators and the controller units. Although the 

used actuators are quite small-scale, the cumulative mass added to the structure 

could to be reduced. 
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 A full integration of the control system components into the smart panel, which 

should provide further savings in space and weight. 

 A study on the MIMO velocity feedback control system with flywheel inertial 

actuators.  

 A future research could be focused on the design of a control unit dedicated for 

energy harvesting applications.  

 

  



 

List of publications 

187 

L I S T  O F  P U B L I C A T I O N S  

1. A. Kras and P. Gardonio, “Velocity feedback control with a flywheel proof 

mass actuator,” Journal of Sound and Vibration, vol. 402, pp. 31–50, 2017. 

  

2. A. Kras and P. Gardonio, “Flywheel proof mass actuator for velocity feedback 

control,” in Proceedings of the International Conference on Motion and Vibration Control 

(MoViC) and of the International Conference on Recent Advances in Structural Dynamics 

(RASD), 2016, pp. 1–14. 

 

3. A. Kras and P. Gardonio, “Flywheel inertial actuator for velocity feedback 

control: parametric study,” in Proceedings of the international conference on noise and 

vibration engineering ISMA2016, 2016, pp. 1217–1231. 

 

4. A. Kras and P. Gardonio, “Flywheel proof mass transducer for energy 

harvesting applications,” in Proceedings of the VIII ECCOMAS Thematic Conference on 

Smart Structures and Materials, SMART 2017, 2017, pp. 642–653. 

 

5. A. Kras and P. Gardonio, “Experimental tests of a flywheel inertial actuator,” 

in Proceedings of the 24th International Congress on Sound and Vibration, ICSV 2017, 2017, 

pp. 1–8. 

 

6. A. Kras and P. Gardonio, “Flywheel piezoelectric actuator for active vibration 

control applications,” in Proceedings of SPIE 10595, Active and Passive Smart Structures 

and Integrated Systems XII, 105951T, 2018, pp. 1–12. 

 

7. A. Kras and P. Gardonio, “Experimental tests of a flywheel proof mass 

actuator for velocity feedback control,” in Proceedings of the international conference on 

noise and vibration engineering ISMA2018, 2018, (submitted). 

 

8. A. Kras and P. Gardonio, “Flywheel inertial actuator for velocity feedback 

control: experimental implementation,” Journal of Sound and Vibration, (in 

preparation). 

 



 

 

188 

9. A. Kras and P. Gardonio, “Flywheel inertial actuator for velocity feedback and 

vibration control,” in “ANTARES”Advanced Training and Research in Energy efficient 

Smart Structures, W. Desmet, B. Pluymers, S. Ophem, P. Becht, Ed. KU Leuven, 2018. 

 

  



 

Technical Drawings of the EM Prototypes 

189 

A  
T E C H N I C A L  D R A W I N G S  O F  T H E  E M  

P R O T O T Y P E S  

The following appendix consists technical drawings of the manufactured 

components for two EM flywheel prototypes. The assembly drawings are followed 

by the exploded view drawings and by the detailed drawings of each component.  

The ANT16100 and ANT16103 drawings in edition A present the pinned flywheel 

prototype with the fabricated pushing pin that did not demonstrate the required 

flexibility. The ANT16100 and ANT16103 drawings in edition B present the pinned 

flywheel prototype with the fabricated pushing pin that uses the third flexural 

bearing to transmit the linear motion of the actuator into rotation of the flywheel. 

The ANT162 drawings present the hinged flywheel prototype.  
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B  
T E C H N I C A L  D R A W I N G S  O F  T H E  P I E Z O E L E C T R I C  

P R O T O T Y P E  

The following annex consists technical drawings of the manufactured components 

for the piezoelectric flywheel prototype. The assembly drawings are followed by the 

exploded view drawings and by the detailed drawings of each component. 
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C  
T E C H N I C A L  D R A W I N G S  O F  T H E  P L A T E  S E T U P  

The following appendix consists technical drawings of the manufactured structure 

used for implementation of the active control system.  
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D  
L I S T  O F  E Q U I P M E N T  

The following appendix presents list of equipment used in the measurements of 

transducers elecromechanical properties and in the implementation of the velocity 

feedback control loops on a rectangular plate with an EM actuators. The equipment 

used in the measurements is listed in Table D.1  

 

 

Table D.1. List of the equipment used in the measurements.  

No. Equipment  Manufacturer  Model 

1 ICP Impedance head PCB 288D01 

2 ICP Force cell PCB 208C01 

3 ICP Accelerometer PCB 352C65 

4 Shaker 1 PCB 2004E 

6 Shaker 2 PCB 2075E 

7 Shaker amplifier PCB 2100E21-400 

8 ICP Integrator PCB 480B10 

9 Voltage probe Pico Technology KA405 

10 Current probe Pico Technology TA018 

11 Quad amplifier  InterM QD-4480 

12 Piezo amplifier ElbaTech T-500 

13 Signal analyser DP Data Physics Abacus  

14 Laser vibrometer Polytec PSV-I-500 
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