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“If you want to find the secrets of the universe,

think in terms of energy, frequency and vibration.”
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ABSTRACT

This thesis presents a comprehensive study on the design and development of a
new inertial actuator for the active vibration control. This linear inertial transducer
can be used to implement decentralised velocity feedback control loops to reduce
flexural vibration of thin structures.

Such active vibration control system is typically formed by an inertial actuator
attached on one side of the structure and a collocated velocity sensor attached on the
other side with a constant gain controller. This arrangement creates skyhook damping
effect that can be effectively used to reduce the out-of-plane vibrations of the
structure. To guarantee the stability and thus good control performance, the
fundamental resonance frequency of the actuator must be as low as possible and
lower than the fundamental resonance frequency of the hosting structure. This
requirement imposes that the inertial actuator is composed by a heavy inertial mass
and soft suspension. However, when the hosting structure is exposed to shocks, an
actuator with heavy mass will suffer undesired stroke saturation effects, which may
also lead to instability of the feedback loop.

The new inertial actuator, presented in this study, is equipped with additional
flywheel element, which is used to augment the inertia effect of the inertial mass
without increasing the suspended weight. This additional inertia effect produced by
the flywheel element improves the actuator robustness to shocks and simultaneously
improves the stability of the velocity feedback loop.

The first part of the thesis is focused on the theoretical analysis of vibration control
using classical and four new configurations of the proposed flywheel electromagnetic
actuator. The kinematic properties of the actuators and effectiveness of point velocity
feedback loops are assessed based on mathematical simulations obtained from a
lumped parameter model. Finally a parametric and scaling study presents main
guidelines for designing flywheel prototypes.

The second part of the thesis presents the design process and experimental tests of
two flywheel prototypes. These two prototypes were designed based on a
commercially available linear electromagnetic actuator. The electro-mechanical
properties of the classical and flywheel configurations were compared with the

mathematical simulation obtained from the simplified lumped parameter model.



II

The third part of the thesis presents the design and experimental results of a
flywheel inertial prototype using a piezoelectric transducer. Compared to the
electromagnetic flywheel actuator the piezoelectric flywheel actuator presents some
interesting properties. This part of the thesis describes the advantages that would
arise when implementing a velocity feedback loop with this type of transducer.

The forth part of the thesis presents the experimental implementation of a point
velocity feedback control unit with the electromagnetic flywheel actuator to reduce
the flexural vibrations of a rectangular thin plate. The stability of the system is
assessed based on the sensor-actuator open loop frequency response function, while
the performance of the feedback loops is assessed based on the reduction of the total
flexural kinetic energy of the plate.

The last part of the thesis briefly presents the potential use of the flywheel

prototype as a seismic transducer to harvest energy from the vibrating structure.
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Y. c point plate mobility [m/s/N]

Y Inertial mass mobility [m/s/N]

Zg Actuator suspension impedance [N/m/s]



Nomenclature

Zy Actuator base impedance [N/m/s]
Z, Actuator electrical impedance [Q]
Frequency response functions
Parameter Description Unit
Ty Blocked force per unit current [N/A]
Tru Blocked force per unit voltage [N/V]
T Transduction coefficient FRF [V/m/s]
Zgv Mechanical base impedance [N/m/s]
Yiu Electrical admittance [A/V]
Zyi Electrical impedance [V/A]
Subscripts
Parameter Description
Actuator
b Base / case of the actuator
c Control position
cl Velocity feedback control
e Electrical element
f Force
h Hinged configuration
H Harvested
i Current
m Inertial element
n Natural frequency
p Pinned configuration
pzt Piezoelectric
Plate structure
u Voltage
Flywheel element
Aw Stroke
w Velocity
x — coordinate (plate axis)
y y — coordinate (plate axis)
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Introduction

INTRODUCTION

Asitis well known, every mechanical element that has a specific mass and stiffness
shows unique vibrational response when being exposes to time varying disturbance
[1], [2]. Many mechanical structures with higher performance criteria and refined
design specifications require a control of these disturbances [3]. In many cases, the
traditional approach to reduce these vibrations by changing the mechanical
properties of the structure is insufficient. At the same time, the constant technological
growth of smart materials and power electronics give an opportunity to combine
them in mechatronic systems for active vibration control. Hence, the combination of
smart transducers and control electronics embedded in the hosting structure present
many appealing advantages. Although in some cases, vibrational oscillations can be
used for a specific purpose, like improvement of the technological processes (smart
machine tools [4]), cavitation generation (ultrasonic transducers [5]), defect detection
[6], [7], etc., in most cases they are undesired. The excessive vibrations in the
mechanical systems are undesired mainly for three reasons:

Fatigue effect on the structure — excessive vibrations may lead to wearing and
accelerated failure of the components or the entire structure [8]-[10]. The excessive
vibrations may cause delamination of the composite structures [11], [12].

Comfort & health — the comfort improvement in the transportation vehicles.
Reduction of noise and vibration in the interior cabin of the airplanes [13], [14],
vibration reduction in the helicopters [15]-[17], reduction of noise and vibration
generated by the ventilation and air supply systems [18], [19]. Also the improvement
of personal protection for the humans exposed to vibration and noise generated by
machines [20], [21].

Operational conditions — everywhere where the high precision and small
tolerances are required. Most common examples are the measuring equipment,
surgical robots [22], large flexible structures [23], [24], machining process, etc. [25],
[26].



1.1 ACTIVE CONTROL

Active control of noise and vibration can be achieved with many different
methods. This part of the thesis describes the techniques that are used for designing
smart structure for active control of noise and vibration. In principle, every
mechatronic system for the noise and vibration control is built out of three
fundamental components [27], [28]:

- sensor (accelerometer, force cell, strain gauge, etc.),

- actuator (linear actuator, torque motor, hydraulic cylinder, etc.),

- control system and algorithm (feedforward, feedback, etc.).

The final design of a specific active control system depends on several aspects that

determine the different type of each component.

1.1.1 Feedforward control

Feedforward control is the primary algorithm of active noise and vibration control
of tonal disturbances or stationary stochastic disturbances. This method strongly
depends on the availability of the reference signal correlated to the primary
disturbance source [29], [30]. In practice, the reference signal is sent and processed in
an adaptive filter, where the filter coefficients are tuned to minimise the output error
signal of the system. Finally, the output signal from the adaptive filter is applied back
to the system via secondary sources. The principle of feedforward control operation
is that the secondary source is driven by the adaptive filters to produce a signal that
interferes with the primary disturbance source and cancels it out. Essentially, the
control algorithm produces a signal equal magnitude and opposite phase to the
disturbance source.

As the coefficients of the adaptive filters are tuned to minimise the signal at the
location of the error sensor the feedforward algorithm is considered as a local system.
Thus, the algorithm does not guarantee that the global response is minimised or that
in some areas the response is not amplified. Furthermore, the feedforward control
provides good control performance for tonal or stationary stochastic disturbances
that can be measured in advance. Beside of these drawbacks, the feedforward control
strategy presents several advantages over the feedback systems. Unlike the feedback

systems, the feedforward systems are more robust to phase lag effects in the control
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system. Additionally, the use of the reference signal does not require the model of the
system but only the adaptation process [23].

Feedforward controllers are widely used in applications for which the reference
signal can be obtained in advance to overcome any delays caused by the signal
processing in the adaptive filter. Practically, the sensor must be placed far enough to
provide enough early in time the reference signal, to guarantee the necessary
processing delay of the controller.

Often in case of periodic disturbance signals, instead of using the reference sensor
the signal can be obtained directly from the machine that produces the disturbance,

for example with a tachometer mounted on a rotating machine [29].

1.1.2 Feedback control

A feedback control system relies on an error signal and control actuator such that
the error signal is fed back to the actuator via a controller. In theory to implement an
active control system, it is necessary to model exact inverse of the plant with the
condition that both, the plant and the controller are unconditionally stable.
Unfortunately, the properties of the plant change due to the external disturbances that
are never known. Thus, the main four reasons for using the feedback control are:

- unknown disturbances,

- plant model uncertainties,

- little knowledge of the system,

- instability of the plant.

The main difference that distinguish a feedback control architecture from a
feedforward control architecture is that there is no need for a reference sensor to give
enough in advance information about the primary disturbance. The feedback control
is mainly used in systems where there are several disturbances or when the primary
disturbance cannot be directly observed [29]. In order to benefit from feedback
control, high feedback gains are normally required to obtain the inverse of the plant
without the need of the exact model. However, the main limitation is the instability,
which can be induced by high feedback gains mainly at high frequencies. For this
reason, the feedback systems are principally suited for control in limited range of
frequencies [31].

One of the most commonly used technique for the active vibration control is the

direct velocity feedback system [32]. This technique incorporates a collocated sensor-



actuator pair to increase the effective damping in the system, while keeping the
natural frequencies, of the controlled structure, substantially unchanged. The sensor-
actuator pair collocation arrangement guaranties observability and controllability of
the system. Ideally the system is equipped with a velocity sensor collocated with a
point force actuator or equivalently with an angular velocity sensor collocated with a
torque motor. Several studies on the velocity feedback control applications can be
found in following references [33], [34].

Recent studies has shown that when the control gains of velocity feedback loops
are adjusted to minimise the kinetic energy of the controlled structure the power
absorbed by feedback loops is then maximised [34]-[38]. Thus, the electromechanical
transducers can be used to absorb power from the structure. The collocation and
duality of the sensor and transducer facilitates the vibration energy harvesting, which
instead of being wasted could be used to operate the control unit itself. In particular,
it could be used to operate a local tuning device that sets the feedback control gain to
reduce the overall vibration of the structure where it is mounted [39].

Several studies were performed on the active vibration control of lightly damped
thin two-dimensional structures, where the inertial actuators were used to reduce the
flexural deflections of the structure [33], [40]-[42]. Direct velocity feedback control is
widely used to increase the damping effect in the system and to reduce the amplitude
of the resonance peaks of the structure. However more complex, techniques can be
used depending on the required control purpose, as for example reduction of sound
radiation through the structure [27], [43].

1.1.3 Noise and vibration active control applications

Noise and vibration control is a challenging problem in many sectors of industry.
Especially vehicles production sector focuses on the noise and vibration control. The
studies on the noise and vibration control in the aircrafts started in the mid 40s
however, the active control was not exploited until beginning of 80s both in propeller
and in turbofan aircrafts [14]. Several studies were done on the active control starting
from the ground tests to flight tests and finally to implementation on a commercial
aircraft [13]. In the similarly period, the car industry started to take a particular look
on an active suspension system. Several solutions were incorporated for the active

suspension control using hydraulic systems and electromagnetic actuators [44].
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The wide area of interest in active control is presented in noise and vibration
cancelation in the ventilation ducts. The decentralised feedback is used to reduce

structure-borne noise radiated by the duct wall [18].

1.2 TRANSDUCERS FOR VIBRATION CONTROL

This section presents a review of recent work on various transducers for active
vibration control of thin flexural structures. Typically, in smart structures the
electromechanical transducers are used, which work as electromechanical energy
converters. Indeed transducers can transform vibration energy into electrical energy
that is stored (energy harvesting) or dissipated via an electrical shunt [45]-[47].
Alternatively, the electrical energy can be transformed by transducers to produce
motion or control forces (actuators) [28]. Electromechanical actuators present several
advantages over other types of actuators, for example:

- they are more ecological friendly than the hydraulic pistons that typically

suffer from a leakage of the hydraulic fluids,

- they are compact and easy to adapt in the smart structures,

- they can be easily scalable to improve the performance of the vibration control

system,

- they require low maintenance,

- they can be simultaneously used for energy harvesting applications,

- they can be adopted in the harsh environments (do not freeze in low

temperatures),

- they are easy to control as the electrical signal can be simply modified and

processed with dedicated electronics.

There are two mayor types of electromechanical transducers commonly used in
active vibration and noise control systems. First, the electromagnetic actuators that
are based on the Lorenz force principle. Typically, they are used as proof mass
actuators, where the inertial mass produces the so called sky hook force effect above
the fundamental resonance frequency of the system. Second, the piezoelectric patches
and stacks, which, thanks to the inverse piezoelectric effect produce relative
displacement when the electrical field is applied to the electrodes. Typically, these
type of transducers are used as reactive actuators in the form of patches attached to
the thin flexural plates. Alternatively, they can also be used as stacks reacting between

two mechanical components.



This section describes both types of transducers used in the active vibration and

noise control systems.

1.2.1 Electromagnetic transducers

Electromagnetic (EM) inertial actuators also known as proof mass actuators or
reaction mass actuators have been widely used to implement feedback control loops
for the control of flexural vibrations of distributed structures [33], [48]-[65]. The
classical proof mass actuators for feedback control systems [28], [66], [67] incorporate
a voice coil actuator, which is composed by a cylindrical magnetic element,
suspension system and a coil armature [68]. Typically, the magnetic element
is mounted via soft springs in an inner cylindrical cut that hosts the coil. Figure 1.1
shows two types of inertial actuator assembly commonly implemented in practical
applications. In the first, the coil armature is rigidly fixed to the actuator base and the
moving magnet is suspended to the actuator base via soft springs (Figure 1.1a).
Instead, in the second, the magnet is joined to the actuator base while the coil

armature is suspended to the base by soft springs (Figure 1.1b).
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Figure 1.1. Two types of inertial actuator assembly implemented in practical
applications, with the coil armature rigidly fixed to the base (a), or with the magnet
fixed to the base (b).

In both configurations, when current is applied to the coil placed in the magnetic
field generated by the permanent magnet both components experience the Lorentz
force. The force effect produced between the coil and the magnet is proportional to
the applied current, the magnetic flux and the wire length of the coil [69]. Thus, when
current flows through the coil, a reactive force is produced between the coil and the

magnet, which sets into relative motion both components. The force applied either to
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the moving magnet or to the armature-coil is thus balanced by the inertia effect due
to the acceleration experienced by the inertial mass elements. As a result, a net force
is generated on the actuator base, which, at frequencies below the fundamental
resonance frequency of the springs—inertial mass assembly, grows proportionally
with frequency and is out of phase with the driving current, while at higher
frequencies, is constant and in phase with the driving current [70]. Thus, when this
actuator is used to implement a negative velocity feedback to mimic a sky-hook
damper, at frequencies below the fundamental resonance frequency, the feedback
loop essentially produces a positive velocity feedback effect that is a negative
damping effect, which leads to instability. It is therefore vitally important the
fundamental resonance frequency of the actuator is kept as low as possible and the
amplitude of the resonance peak is also the minimum possible. However, this
solution tends to increase the static displacement of the inertial mass, which, in
presence of shocks, may hit the actuator end stops and trigger instability effects. This
study is focused on a design of a new EM proof mass actuator with both low
fundamental resonance frequency and low static deflection of the inertial mass.

The proposed actuators are foreseen for several control applications. For example,
vibro-acoustic control of thin lightweight panels of transportation vehicles (cars,
trains, aircraft, etc.) and vibration control of relatively small scale machines (domestic
appliances, car engines, manufacturing equipment and machines). Also, vibration
control of heavy plate and beam framework structures of industrial plants and
buildings, and seismic vibration of relatively large machineries (marine engines,
agricultural machinery, industrial plants, etc.) [71], [72].

The designed actuators could be used in the active vibration control systems,
which are typically composed by a proof mass actuator and inertial accelerometer
placed at the base footprint of the actuator. The integrated accelerometer signal
is amplified with the operational amplifier and send to the proof mass actuator.
Although the active control system works locally by reducing the vibrations of the
structure, the global effects have influence on the feedback loop. Beside of measuring
vibrations of the structure at the control position, the inertial sensor also detects
accelerations of the entire structure. As discussed in the previous paragraph, to obtain
the best control performance of the feedback loop at the control position, the error
signals must be send to the proof mass actuator with highest stable gain. Thus, in case
of any unexpected shocks or sudden fast movements of the hosting structure, the

amplified error signal that is send to the proof mass actuator can exceed the working



limit conditions and thus destroy the vibration control system. Some of the examples
of such situations are:

e Turbulences and shocks during landing of the aircraft.

e High tides of the rough sea hitting the ship hull.

e Shocks during the spacecraft or satellite take off.

e Bumpy road during driving a car.

Thus, in practical applications the error signals should not be send to the proof mass
actuator with the highest stable gain.

Finally, despite the thesis considers a voice coil transducer, several other
transduction technologies and materials could be employed. For instance,
electrostatic transducers could be used, which however are more suited for
microscopic systems due to very high operating voltages. Alternatively
magnetostrictive or moving iron transducers could be directly employed [73].
However, the force reversibility in the voice coil actuators, considered in this study,
is an advantage over the other transducer configurations and highly required in the

feedback control systems.

1.2.2 Piezoelectric transducers

As mentioned in the previous paragraph, for feedback control systems the
electromagnetic inertial actuator provides point force by means of inertial mass
suspended on soft springs [56], [57]. However, this type of actuator presents several
disadvantages. Firstly, the produced force strongly depends on the size and the
weight of the inertial mass causing the actuator to be heavy and bulky. Several scaling
studies show that the downsizing of the electromagnetic actuator reduces its ability
to produce significant amount of control forces [54], [74]. Thus, this type of inertial
actuator is not ideal for working in small and confined spaces. Secondly, the low
fundamental resonance frequency and high static displacement of the suspended
inertial mass causes velocity feedback loops with high control gains to go unstable in
case of shocks and high movements of the hosting structure [75]. Finally, the magnetic
flux generated by the electromagnetic transducer can propagate in ferrite materials of
the hosting structure, like steel plates or bars and can interfere with the working
conditions of the control electronics.

An alternative group of transducers widely used for vibration control systems are

piezoelectric transducers. Piezoelectric materials present several advantages over
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electromagnetic transducers. The compact dimensions and high force density makes
them perfect for use in the smart structures. Additionally, due to the capacitive
electrical effect, they use much less power compared to the EM actuators, especially
when they are driven with switching amplifiers. Several studies have been conducted
on the switching amplifiers with power recovery system dedicated for the
piezoelectric actuators. Vibration control system equipped with piezoelectric
actuators driven by switching amplifiers could present very high efficiency [76], [77].

Several studies were done on thin piezoelectric patch transducers that are bonded
directly onto the surface of the controlled structure [78]-[81]. However compared to
inertial actuators, piezoelectric patches require large surfaces to provide sufficient
amount of control forces. Thus, these actuators are mainly dedicated to thin structures
[79] rather than to large flexible systems as for example the truss structures.

Alternatively, piezoelectric stack transducers connected to a proof mass can be
used to form a point force inertial actuator. The main limitation of using these types
of actuators to implement feedback control loops is their high fundamental resonance
frequency, typically above several kHz [82]. As discussed before, it is crucial for the
velocity feedback system that the fundamental resonance frequency of the inertial
actuator is below the first resonance frequency of the hosting structure so that the
inertial actuator could produce a constant forces effect, which is in phase with the
driving signal.

Another main disadvantage of piezoelectric stack actuators is their small stroke
[83]. Hence, to use the piezoelectric materials for the inertial actuators they would
require an amplification mechanism to generate the strokes necessary to produce
significant force level. Several commercially available solutions were proposed to
overcome this limitation.

Amplified piezoelectric actuator present several appealing properties for the
realisation of inertial actuators [25], [84]. This transducer can provide large
displacements, and thus accelerations, of the proof mass, which are required to
generate sufficient amount of base forces necessary for the implementation of velocity
feedback control loops [77]. To meet the requirement of low resonance frequency, the
actuator needs to be equipped with a heavy proof mass. However, this solution tends
to increase the static displacement of the inertial mass. Hence, in case the actuator
is exposed to shocks, the piezoelectric stack transducer would undergo large
deformations, which may lead to cracks of the ceramics and eventually to instability

of the control system.
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This study is also focused on a design of a new piezoelectric proof mass actuator
with both low fundamental resonance frequency and low static deflection of the

inertial mass.

1.2.3 Scaling of the transducers

Small electromechanical transducers for smart structures present several
advantages over the macroscale mechanisms. By integrating control circuits with
sensors they can be used to form compact control system [85]. Additionally, different
transduction technologies and materials can be employed for the implementation of
feedback control system to reduce flexural vibrations in distributed structures.
However, physical and mechanical properties of the materials determine which
solution is more suited for a specific type of application. A proper scaling study of the
transducer properties can improve the performance of the feedback control loops [54],
[55].

The main aim of this study is to increase the control force and minimise the total
weight of the transducers. Different studies showed that decentralised multiple-input
multiple-output (MIMO) control systems produce higher vibration reductions
compared to single-input single-output (SISO) systems [33], [86]. Thus, the scaling
study is crucial when multiple actuators are used on lightweight structures. Actuator
scaling may improve the stability of the feedback loop by reducing the actuator static
deflection and thus reducing stroke saturation effects, which may lead to instability
when the system is affected by shocks or fast movements of the hosting structure.
Thus, it is very important to take into consideration the scaling laws during the design
process of the actuator [87], [88].

The biggest advantage of the velocity feedback control is that it requires little
knowledge about the system. However, to improve its performance it is important to
take a particular care about the scaling of the crucial mechanical and physical
parameters. As for example transducer type, size, sensor-actuator pair sensitivity,
maximum feedback gain signals, etc. The scale of the actuator also plays a key role on
the selection of the transduction technology. For example, electrostatic transducers
are better suited for small scale applications, while electro-magnetic transducers
works better on large scale devices. An exhaustive overview of the principal scaling
laws of electro-mechanical systems and of the principal transduction materials and

technologies can be found in following references [74], [87]-[89].
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1.2.4 Vibration energy harvesting

The inertial transducers besides of being used as actuators for the active vibration
control applications can be also used as energy harvesters [39]. The two most popular
transducers for the energy harvesting applications are the piezoelectric [47], [90] and
electromagnetic transducers [46], [91]. The main purpose of vibration energy
harvesting is to develop self-powered devices, which are capable of transforming
mechanical energy into electrical energy using transducers, store the electrical energy
in batteries and finally, to use the stored energy to power small electrical circuits.

The vibration control systems can be easily adopted to harvest energy from
ambient vibrations. The stored power can used to power the sensors or control
circuits, which can be used for condition monitoring of the machine components, data
transmission or secondary control operations. Moreover, besides of the harvested
power used for the condition monitoring sensors, the vibration amplitude and thus
generated by the transducer electrical power can be a good estimator of the machine
components damage or wear. The sensor-transducer pair typically used for the active
vibration control applications can be easily adopted for vibration energy harvesting.
The sensor is used to detect tonal disturbances at the fundamental resonance
frequency of the transducer where the vibration energy absorption can be maximised.
Moreover, the ambient vibration energy is typically higher at lower frequencies.
Thus, low fundamental resonance of the inertial transducer can improve the
effectiveness of both, the vibration control loop by reducing the spillover effect and
the vibration energy harvesting by operating at lower frequencies and maximising
harvested power.

The inertial transducers present several advantages for the vibration energy
harvesting applications. The inertial transducers do not require additional structure
react off. Can be compact and installed in the confined spaces where there is little
access from outside. Finally, can operate in harsh environments [77].

Although this thesis concentrates on the active vibration control applications, the
final chapter shortly discusses the possible use of the designed flywheel inertial

transducer for the vibration energy harvesting applications.

11
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1.3 STABILITY

To guarantee good performance of a control system requires knowledge, both
about the plant response and about the disturbance. In particular one of the main
aspects for the design and implementation velocity feedback control is the stability of
the control loop [32], [92]. Open loop frequency response function (FRF) of the sensor-
actuator pair can be plotted in the complex plane to assess the system stability via the
Nyquist criterion [40], [53], [68], [93], [94]. In general, a system is considered
unconditionally stable if and only if all poles of the open loop transfer function is in
the right half of the plane. The Nyquist stability criterion gives an information about
the conditional stability and thus the maximum feedback control [23], [29], [95].

When the inertial actuator is used to implement a negative velocity feedback, to
reduce the flexural deflection of a thin plate structure the dynamic response and the
static deflection of the proof mass transducer cause stability and control performance
limitations. At frequencies below the fundamental resonance frequency of the
transducer, the produced net force at the actuator base, grows proportionally with
frequency and has opposite phase with the driving signal. Thus, the feedback loop
essentially produces a positive velocity feedback effect that is a negative damping
effect, which leads to instability. Only above the fundamental resonance frequency of
the transducer, the produced net force at the actuator base is constant and in phase
with the driving current. Therefore, when the inertial transducer is used to implement
a direct velocity feedback, it is important that its fundamental resonance frequency is
as low as possible. By reducing amplitude of the resonant response of the actuator
and lowering its fundamental resonance frequency the poles in the left half of the
complex plane of the sensor-actuator pair open loop FRF tend to be farther from the
imaginary axis that defines the instability limit. Therefore higher stable control gains
can be applied to the feedback system such that its performance is increased.
Increasing inertial mass and lowering fundamental resonance tends to increase the
static displacement of the inertial mass, which, in presence of shock, may hit the
actuator end stops and trigger instability effects [75], [96]-[100]. Thus, one of the key
parameters that characterises the inertial actuators for vibration control with negative
velocity feedback control is the static deflection that defines the robustness and ability
to withstand shocks.

Several solutions have been proposed to improve the robustness of the inertial

actuators for the negative velocity feedback control. A series of studies has been
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performed to implement within the actuator either a relative displacement, or a
relative velocity or a force feedback loop [101]-[104].

Alternatively, it was proposed to implement in the velocity feedback loop an active
controller that would compensates the dynamics of the springs-inertial mass
assembly [105], [106].

Another group of techniques for active vibration control are based on the positive
position feedback [107], [108] as for example the modal positive position feedback
[109], [110] that uses the positive feedback of the position signals with the first — order
filters to reduce the vibrations of the undamped structures. Moreover, the
combination the position and velocity feedback control was investigated [111]. The
use blended velocity feedback performance and stability was investigation of the
vibration attenuation in two degree of freedom system [112].

An ideal solution would be to design of a new proof mass actuator with both low
fundamental resonance frequency and low static deflection to improve stability of the

feedback loops and robustness to shocks of the hosting structure.

1.4 INERTER AND THE FLYWHEEL ELEMENT

The first use of the flywheel element in the shock and impact reduction mechanism
was presented in late 90s in a road barrier prototype called as energy accumulation
and diffusion converter (EADC) [113]. The main feature of this barrier was the ability
to absorb the impact of the approaching vehicle and convert it into rotational motion
of the flywheels. The energy of the impact was converted, stored and slowly
dissipated inside the spinning flywheels. The experimental tests showed the impact
of the vehicle can be easily absorbed by the EADC mechanism without damaging car
exterior bodywork.

Another use of the flywheel element for the vibration control was presented with
a new mechanical element called “inerter”, which derived directly from the electro-
mechanical analogy [114], [115]. The inerter was defined as a two terminal mechanical
device with the property that the opposite and equal force applied to terminals is
proportional to the relative acceleration between the terminals. The constant of
proportionality that defined the inerter was called the inertance and it was
characterised in mass units [kg]. The operation of the inerter was based on the
mechanism that could transform the relative linear motion at the terminals into

rotational motion of the flywheel element mounted inside the device. Therefore, the

13
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inertance produced at the terminals of the device does not directly depends on the
weight but on the flywheel moment of inertia.

Two full size prototypes were build, where one of them was using the pinion-rack
mechanism while the other the ballscrew mechanism to transform the linear motion
into rotation of the flywheel [116], [117]. A practical solution for the formula one cars
was built based on the inerter mechanism and it was named as J-damper [118]. The
experimental tests of the prototypes showed several advantages of the inerter that are
appealing for the vibration control applications. However, the fabricated prototypes
typically are heavy, bulky and designed for large relative displacements, which
exclude them for vibration control of large flexible structures [119].

In recent year several studies have shown that inerter devices can improve the
stability and the performance of the velocity feedback control loops [120], [121].
Extensive theoretical studies have been carried out on the implementation of the
inerter in the tuned vibration absorbers [122]-[124], covering wide variety of
applications. From the vibration control of several stories building [125], [126], bridge
cables [127], beam structures [128], sculptures [129] to vehicle suspension systems
[130]-[133]. Also some studies were dedicated to the energy harvesting using tuned
mass-damper [134].

However, these studies considered only an idealised inerter element, which
neglects the weight of the components. Additionally, the stiffness and damping
effects of the gearing mechanisms that convert axial relative motion at the terminals
of the inerter into angular motion of the flywheels are also neglected.

The inerter element present appealing properties for practical implementation in
inertial actuators for the active vibration control application. The inerter can be used
to increase the inertia of the proof mass and thus to lower fundamental resonance
frequency of the actuator, while keeping low static deflection small, which is crucial

in case of shocks of the hosting structure.

1.5 SCOPE AND OBJECTIVE OF THE THESIS

The objective of this thesis is to investigate the use of rotational inertial
electromechanical actuators for the implementation of velocity feedback loops that
control broadband vibration of thin plate and shell structures. In the proposed
research, the actuator is used to produce constant force effect proportional to the local

velocity at the control position. The control unit is equipped with a rotational element
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that can be used to augment the inertia effect of the suspended mass element. This
could improve the stability of velocity feedback loops by reducing the static deflection
of the proof mass actuator and thus reducing stroke saturation effects in case of
shocks or fast movements of the hosting structure. Additionally, by increasing the
inertia effect, and thus lowering the fundamental resonance frequency of the control
unit, the extent of the out-of-phase force excitation effect, which tends to destabilise
the velocity feedback loops is reduced. This control unit should also be much more
compact and lightweight than ordinary units with axial inertial actuators.

Another advantage of using rotational element could be cost reduction of the
typical linear actuator. In the classical configuration, the flexures or linear flexural
bearings are relatively expensive to fabricate. Thus, the proposed solution could
lower the costs of the control unit.

Furthermore, the collocation and duality of the sensor and actuator transducers
facilitates the harvesting of vibration energy, which instead of being wasted can be
used to operate the control unit itself. In particular, it can be used to operate a local
tuning device that sets the feedback control gain to reduce the overall vibration of the

structure where it is mounted.

1.6 CONTRIBUTIONS OF THE THESIS

The novel contributions of this thesis are:

- A lumped parameter model of an inertial electromagnetic actuator equipped
with a flywheel and gearing mechanism to transform axial to rotational
motion.

- Detailed guidelines for designing new inertial actuator that incorporates
“inerter” element for the decentralised velocity feedback control on a thin
structures.

- A practical solution for transforming the oscillatory linear motion of classical
inertial actuator into rotational motion of the flywheel element without play
and backlash between the components.

- A practical solution for suspending the flywheel element in an inertial actuator
that could provide soft torsional motion while keeping the element rigidly in

the axial directions.
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- A summary on the practical possibility of using other actuation method in the
inertial actuators rather than the commonly used electromagnetic effect for the
decentralised velocity feedback applications.

- Experimental validation of the stability and control performance of
decentralised velocity feedback control on a thin rectangular panel with the
inertial actuator, which incorporates the proposed flywheel element.

- Theoretical and experimental investigation of using the inertial transducer

with flywheel element for vibration energy harvesting.

1.7 STRUCTURE OF THE THESIS

The thesis is organised in seven chapters.

Chapter two presents the theoretical analysis based on simulations results of active
vibration control using classical and four configurations of the proposed flywheel
electromagnetic actuator. Firstly, the electro-mechanical properties of the actuators
are introduced. Secondly, the performance of the point velocity feedback loops using
classical and four new flywheel actuators is assessed. A parametric and scaling study
that gives basic guidelines for designing flywheel prototypes is presented in the final
section of this chapter.

Chapter three of the thesis presents the design process and experimental results of
testing two flywheel prototypes. In this chapter, two mayor problems of flywheel
integration in the compact linear actuators are investigated. Firstly, the design of a
frictionless mechanism without backlash and wear that can be used to support the
flywheel element is investigated. Secondly, the design of a mechanism that can
transform the linear motion of the actuator into rotational motion of a flywheel
element is presented. The two prototypes are designed based on a commercially
available linear electromagnetic actuator. The electromechanical properties of the
classical and flywheel configurations are compared based on measurements of the
frequency response functions that characterise the inertial actuators. Then, the
experimental results are contrasted with the numerical simulation obtained from a
simplified lumped parameter model of the inertial actuators.

Chapter four presents the design and experimental results performed on a
flywheel inertial prototype using a piezoelectric stack actuator. The piezoelectric
stack actuators present several advantages over the electromagnetic actuators that

are briefly sumarised in this chapter. The electro-mechanical properties of the
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fabricated prototype are measured and compared with numerical results obtained
from a simplified lumped parameter model of the actuator.

Chapter five of the thesis presents the experimental implementation of the velocity
feedback control using a classical and the proposed flywheel actuator to reduce the
flexural vibrations of the thin rectangular plate. The stability of the velocity feedback
loops is assessed based on the actuator-sensor open loop frequency response function.
Finally, the performance of the feedback loops is assessed based on the total flexural
kinetic energy of the plate.

Chapter six of the thesis presents a study on the effectiveness of the flywheel
prototype for a vibration energy harvesting. The experimental results are contrasted
with the numerical simulations for the inertial transducer connected to a purely
resistive load.

Chapter seven presents general conclusions of this thesis and presents new ideas

for future work.
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2

VELOCITY FEEDBACK WITH FLYWHEEL
ACTUATOR

This chapter presents the theoretical study on the use of electromagnetic actuators
for the implementation of velocity feedback loops used to control the vibration of
distributed flexural structures. The investigated actuators are based on a classical
proof mass actuator designs with an additional inerter [114] element that increases
the inertia effect of the proof mass. This chapter considers the effective weight and
dynamics effects of an inerter element composed by a single flywheel, which is either
pinned or hinged to the base mass or to the proof mass of the actuator. Four new
flywheel proof mass actuators are presented and evaluated in his study. The aim of
these new designs is twofold. Firstly, to lower the fundamental resonance frequency
of the springs-proof mass system in such a way as to minimise the out-of-phase force
excitation effect, which tends to destabilise the velocity feedback loop. Secondly, to
reduce the static deflection of the proof mass actuator and thus reducing stroke
saturation effects, which also lead to instability when the system is affected by shocks
or fast movements of the hosting machine or flexible structure. This chapter also
presents a simulation study on the stability and control performance properties when
velocity feedback loops using the four proof mass actuators with flywheel element
are implemented on a thin plate structure to reduce the flexural vibration at low
frequencies. Finally, a parametric study is introduced to provide basic guidelines for
the design and practical realisation of the proposed flywheel proof mass actuators
and on the effective implementation of velocity feedback loop with these actuators.
The aim of the scaling study is to improve the performance of the velocity feedback
control loops, both by increasing the control force and by minimizing the total weight,
which is crucial when multiple actuators are used on lightweight structures. Actuator
scaling may improve the stability of the feedback loop by reducing the actuator static
deflection and thus reducing stroke saturation effects, which may lead to instability
when the system is affected by shocks or fast movements of the hosting structure.
Thus, it is very important to take into consideration the scaling laws during the design

process of the actuator
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This chapter is structured in five sections. First section introduces the four
proposed flywheel proof mass actuators and the lumped parameter models of the
classical and proposed flywheel proof mass actuators. Section two introduces the
lumped parameter model used to study the flexural response of a simply supported
thin rectangular plate hosting structure, which is excited by an acoustic plane wave
and is equipped with a velocity feedback loop using the classical and proposed
flywheel inertial actuators. Section three introduces the mobility-impedance
formulation used to study the response of the actuators and of the velocity feedback
loops. Section four investigates the dynamic and kinematic properties of the classical
and proposed flywheel proof mass actuators; i.e. the actuators base impedance,
blocked force, proof mass stroke, electrical impedance. Section five contrasts the
stability analyses of point velocity feedback loops using four new flywheel proof
mass actuators. Section six presents the control performance of the implemented
velocity feedback loops using either the classical or the proposed flywheel proof mass
actuators. Finally, section seven presents a parametric study on the performance,

static deflection and scaling of the inertial actuators.

2.1 FLYWHEEL INERTIAL TRANSDUCERS

The classical proof mass actuator considered in this study is formed by a
cylindrical magnetic element with an inner cylindrical gap where a coil is housed [28],
[31], [56], [67], [68]. The coil armature is firmly fixed to the base of the actuator.
Instead, the magnet element is connected to the base via soft elastic springs. The new
actuators, shown in Figure 2.1, are characterised by an additional flywheel element,
which is either hinged or pinned by a soft torsional spring to the actuator base or to
the proof mass of the actuator. The flywheel is also connected respectively to either
the proof mass or the base of the actuator via a pinion-rack gear mechanism such that
the small axial relative oscillation between the base and the moving proof mass of the
actuator is converted into an angular oscillation of the flywheel.

Although two configurations are presented in this study, several other
configurations can be foreseen to hold the flywheel and to convert the axial
oscillations between the base and proof mass into angular oscillations of the flywheel.
For instance, if the flywheel element is hinged, a simple bushing-shaft or a ball
bearing-shaft could be used. Instead, in the pinned case a flexible torsional shaft or

flexural bearings could be used. The axial oscillations between the actuator base and
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proof mass can be converted into angular oscillation of the flywheel with a pinion-
rack or a ball-screw gear system or, alternatively, with metal or plastic flexural hinges.
The flywheel axis of rotation can be oriented in axial direction or transverse
depending on the mechanism chosen to convert relative axial oscillations into
rotational motion and the mounting solution chosen to hold the flywheel element.

When dealing with the practical design and fabrication of the proposed flywheel
actuators, the choice amongst the constructive solutions described above strongly
depends on the scale of the actuator. For instance, with small scale actuators, which
are therefore characterised by small strokes and small forces, it may be favourable to
pin the flywheel to the base with flexible shafts or flexural bearings and to use flexural
hinges with flexible linkages to convert the axial oscillations to angular oscillations of
the flywheel element. Beside practical limitations due to the fabrication of
miniaturised components, bushing-shaft and ball bearing-shaft assemblies are very
sensitive to stick-slip non-linear phenomena while pinion-rack and ball-screw
gearing systems are prone to non-linear gear-meshing effects, all of which may
disrupt the correct functioning of the actuator. The non-linear effect can appear
especially in the gearing mechanism when the backlash between the pinion element
and the rack would be larger than the small relative oscillations between the actuator
base and the proof mass. However, with large-scale actuators, which are
characterised by large strokes such that stick-slip and gear-meshing effects are less
important, a setup with bushing-shaft or a ball bearing assembly to hold the flywheel
and pinion-rack or a ball-screw gearing systems to convert the axial to angular motion
may be preferable, as presented in [116], [117], since flexible joints and linkages may
give rise to undesirable non-linear elastic effects. In fact, the combination of large
strokes and large forces could lead to fatigue damage of the flexural hinges.

Figure 2.1 shows the lumped parameter models that have been used to describe
the electro-mechanical response of the classical proof mass actuator (Figure 2.1a),
which has been taken as a reference system, and the proposed four proof mass
actuators, which are equipped with a flywheel hinged to the base (Figure 2.1b),
pinned to the base (Figure 2.1c), hinged to the proof mass (Figure 2.1d) and pinned to
the proof mass (Figure 2.1e). As shown in Figure 2.1a, the classical actuator is
described with a proof mass M,, which is connected to the base mass m,, via a flexible
mount modelled by a spring and a damper in parallel having stiffness k and damping
factor c respectively. The coil - magnet transduction effect is modelled in terms of a
reactive actuator, with transduction coefficient 1, that produces a force F,

proportional to the current flowing in the coil i;, and a voltage source u,, with the
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same transduction coefficient 1,, which produces the so called back electromotive
force (BMF), up,r, proportional to the relative velocity between the proof mass and
base mass elements W, —w,. The proposed actuators shown in Figure 2.1b-e
are based on the same model of the classical proof mass actuator. Where, the flywheel
element mass m,, is attached either to the base mass m,, or to the proof mass M,, such
that M,, + m,, = M,. The torsional spring (only for the pinned flywheel cases shown
in Figure 2.1c and Figure 2.1e) is characterised with angular stiffness coefficient k,,
and torsional damper (only for the hinged flywheel cases shown in Figure 2.1b and
Figure 2.1d) is characterised with angular damping coefficient c,,. Finally, the
flywheel element is characterised by polar moment of inertia I, with the external
radius R, of the flywheel and the radius 7, of the pinion rack gear mechanism that
converts the axial relative motion between the proof mass and base mass into angular

motion of the flywheel.

Classical configuration (Reference case)

@ [m A,
l A R L iy
( Y ;Tmef UaT
k C a
(Mo | A,
Flywheel attached to the case Flywheel attached to the proof mass
®) [pm w + W ) + Wm
R L i, R L i
. Iw
Hinged C ) W, Tubmf Ua Ya Tmef “aT
Rw"mw | k c Kk c
Mo I A, Imb | Aviry
© M W © [M, + Wm
R L i
IW CW l l Fa a
=
Pinned Q) Y, Tmef Ua Y, Tmef UaT
Ra"mw | k c k c vk
[Mb | +Wb ] +Wb

Figure 2.1. Schemes of the proof mass actuators (a) without flywheel (classical
configuration), (b) with hinged flywheel attached to the case, (c) with pinned flywheel
attached to the case, (d) with hinged flywheel attached to the proof mass, (e) with
pinned flywheel attached to the proof mass (M, = M,, + m,,).
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The parameters of the actuators, which are summarised in Table 2.1, were set with
reference to the geometry and physical properties of the thin rectangular plate hosting
structure considered in this study, which are summarised in Table 2.2. It was decided
that the total mass of actuator has to be below 10% of the mass of the plate and, at the
same time, the mass of the actuator case has to be less than 10% of the total actuator
mass. Also it was decided that the combined proof mass M,, and flywheel mass m,, of
the proposed actuators should correspond to the proof mass of the classical actuator,
ie. M, +m, =M, The stiffness of the proof mass axial suspension system
was adjusted in such a way as to set the fundamental resonance frequency for the
axial oscillations of the elastically suspended proof mass without flywheel element at
about 20 Hz. The flywheel element is considered as a solid thin cylinder with outer
radius R,,. The flywheel is either pinned or hinged to the actuator case or to the proof
mass via a tiny shaft. Also, the flywheel is connected via an idealised gear mechanism
characterised by a pinion gear of particularly small radius 7,, which magnifies the
amplitude of the angular oscillation of the flywheel and thus its inertia effect. The
electro-mechanical transduction coefficient has been chosen considering typical
values of small scale coil-magnet transducers that can be found in practical
applications [53], [54], [56], [57].

Table 2.1. Mechanical parameters of the proof mass actuators (M, = M,, + m,,).

Parameter Value
Case mass my, = 0.002 kg
Proof mass classical actuator M, = 0.03 kg
Proof mass proposed actuators M,, = 0.02 kg
Flywheel mass m,, = 0.01 kg
Axial stiffness k =470 Nm™1!
Axial damping ratio ¢ =0.04
Flywheel polar moment of inertia I,, = 1.125 x 107% kgm?
Flywheel radius R, =0.015m
Flywheel pinion radius rw = 0.0015m
Torsional stiffness k,, = 0.001 Nmrad™!
Torsional damping ratio ¢w =0.01
Transduction coefficient P, = 2.6 NA™L
Coil resistance R=2Q
Coil inductance L=5-10"*H
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Table 2.2. Mechanical parameters of the thin simply supported rectangular plate.

Parameter Value
Length l,=0414m
Width I, =0314m
Thickness h =0.001m
Density p=2720kgm3
Elastic modulus E =71x%10°Nm™2
Poisson ratio v =0.33
Damping ratio {s =0.01
Position of the actuator (x¢,y:) = (0.166 m,0.126 m)

2.2 PLATE WITH THE VELOCITY FEEDBACK LOOP USING FLYWHEEL
ACTUATOR

In this study, the control performance of the velocity feedback loops using the
classical and the proposed flywheel proof mass actuators are investigated considering
the flexural response of a simply supported thin rectangular plate hosting structure,
which, as shown in Figure 2.2a, is excited by an acoustic plane wave incident at 45°
elevation and 45° azimuthal angles. A mobility-impedance [43], [68], [135]-[137]
electro-mechanical model [33], [53], [57] has been assembled to derive the response
of the plate with the feedback loop using the proof mass actuators. As shown in Figure
2.2b, the system has been divided in four parts: the flexible plate, the base mass, the
flexible mounting system with in parallel the coil-magnet transducer, the flywheel
element, and the proof mass. Here F, and F, represent the forces exerted on the plate
respectively by the bottom end of the flexible mounting system with in parallel the
flywheel and coil-magnet transducer and by the base mass of the actuator whereas
F,, represents the force produced on the proof mass by the top end of the flexible
mounting system with in parallel the flywheel and coil-magnet transducer. Also, W,
is the velocity of the plate at the control position and the velocity at the base end of
the flexible mounting system with in parallel the coil-magnet transducer and it is
equal to the velocity of the base mass of the actuator, i.e. W, = W,,. Finally w,, is the
velocity of the actuator proof mass and the velocity at the top end of the flexible
mounting system with in parallel the flywheel and coil-magnet transducer. A

detailed view of the flywheel element is given in Figure 2.2c in which the outer radius
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of the flywheel element is defined as R,, and the pinion rack gear mechanism

is characterised by inner radius 7.

B
P\ &
= |

Figure 2.2. Simply supported rectangular plate with a velocity feedback loop using
the proposed flywheel proof mass actuator (a). Mobility model (b) and detailed view
of the flywheel element (c).

Mo | (c)

2.3 MATHEMATICAL MODEL

This section presents a frequency domain analysis based on the complex
amplitudes g(w) of time-harmonic functions given in the form g(t)=
Re{g(w) exp(jwt) }, where w is the circular frequency and j2 = (—1).

Considering the lumped parameter model shown in Figure 2.2b, the complex
velocities at the connecting points between these elements have been expressed with

the following mobility relations:
We = Yo Fe + Yo Fpy + Yepp (2.1)
where W, is the complex velocity at the control position,
Wi = Vi (2.2)
where W, is the complex velocity of the proof mass,
Wy = Yy, + Yo Fp + Vipp, (2.3)

where W, is the complex velocity at the base position. The complex velocities at the

connecting points can be rewritten and expressed with the following mobility matrix

relation:
Wc ch 0 ch E, c YCP
Wnl|=]0 Y, O[|E.l+]|0 [p, (2.4)
Wb ch 0 Ybb F b pr
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where:

1 1 1

Y = , = , Y =———«+«— 2.5
" joM, " jwM, " joM,, +m,y,) 29)

are the mobilities respectively for the classical actuator (Figure 2.1a), for the actuators
with the flywheel connected to the case (Figure 2.1b,c) and for the actuators with the
flywheel connected to the proof mass (Figure 2.1d,e). Also, Y., Y¢p, Ype, Ypp are point
and transfer plate mobilities, which, considering two generic points r and s of the
plate, can be calculated with following matrix expression [68], [136], [137]:

Wy (@)
folw)

where W, (w) and f,(w) are the complex amplitudes of the time — harmonic transverse

Ys(w) = = (I)T(xrf V) QW) (x5, ¥s) , (2.6)

velocity and transverse force acting at positions (x,, ¥,) and (x,,, y,,) respectively. Also
Q(w) is a diagonal matrix of elements given by [68]:
jw

Qn(w) B [ms(wrzl + Zj(swnw - wZ)] '

2.7)

where {; is the damping ratio, mg = L, [, hp is the mass of the plate structure and wy

is the n-th flexural natural frequency. For simply supported plates [15]:

1 2
B (D )2 (nln)z N n,m
“n=Uon) [\ L,

where D = Eh3/[12(1 — v?)], p, E and v are respectively the bending stiffness per unit

(2.8)

)

length, density, Young’s modulus of elasticity and Poisson ratio of the plate material,
Ly, Ly, h, are the dimensions and thickness of the plate and ny,n, are the two modal

indices for the n-th mode. Instead, for clamped plates [136]:

D%nz 4 4lx4 lxz (2.9)
Wy = (E) (_> Gxn + Gyn (_> +2 <—> [VHanyn + (1 — v)]xn]yn] , .

L L L,

where for first flexural natural frequency G; = 1.506, H; = 1.248 and J; = 1.248. For
the n-th mode the constants were obtained with the following expressions G, = n +
1/2,H, = (n+1/2)?(1—-4/C2n+ Dn)and J, = (n+1/2)2(1 —4/2n + Dm).
Finally ¢(x, y) is a column vector with the flexural modal amplitudes at a given point,
which, for the simply supported plate have been taken equal to [68]:

b0 (x,y) = 2sin (nlnx) sin <"2”y ) . (2.10)

L L
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In this study all natural frequencies up to 1.3 kHz and the respective natural modes

have been used in the plate mobility expressions. The elements Y,

cp» Ypp are transfer

mobilities between the point c or b and the distributed pressure excitation produced
by the acoustic plane wave impinging into the panel at elevation and azimuthal
angles a=45° and p=45°, which, as discussed in reference [136] are given by:

Wy (w)
p(w)

where W, (w) and p(w) are the complex amplitudes of the time — harmonic transverse

= ¢ (x, )W) P (W), (2.11)

Yip (w) =

velocity and acoustic sound pressure. Also, ®(w) is the complex vector with the

modal excitation terms due to the incident plane wave, which are given by [15], [138]:

Le rly
() = f f 0 (6 9)pa (6, , 0)dxdy (2.12)
0 0

where, p, (x,y, w) = exp[—j(kxx + kyy)], is the complex pressure exerted on the plate
surface by a unit amplitude incident acoustic plane wave with complex amplitude
p(w). Here k, =kgsin(a)cos(B) and k, = kgsin(a)sin(f) are the flexural
wavenumbers in x and y directions, where ky = w/c is the acoustic wave number
and where ¢ is the speed of sound propagation in air. The integral in Equation (2.12)
leads to the expression given by [15], [139]:
D, (w) = 4lyqlnsl L, , (2.13)
where, if nym # +(wl,/cy) sina cosf and n,m # i(a)ly/co) sina sinf the I,;; and I,
vales are given by:
nym(1— (_1)n1e—i(wlx/co)sin(a)COS(B)]
= Tty — [l /o) sin(a@) cos (B
n,m [1 _ (_1)111e—j(wly/co)sin(a)sin(ﬁ)]

(n,m)? — [(a)ly/co)sin(a)sin(ﬂ)]2

and, if nym = *(wl,/co) sina cosp and n,m = +(wly,/co) sina sinf the I,; and I,

(2.14)

Inz

vales are given by:
Iy = (j/2)sgn(sina cosp) and I, = (j/2 )sgn(sina sinp) . (2.15)

To simplify the formulation, Equation (2.4) is rewritten in the following compact

form:

W= Yf+Y,p. (2.16)
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Considering the lumped parameter model shown in Figure 2.2b, the complex forces
at the connecting points between the elements forming the system have been

expressed with the following mobility relations:
F. = —ZoWe + ZaWp + Yl (2.17)
where F, is the complex force acting at the control position,
Ep = ZoWe — ZgWp — Yaig (2.18)
where F,, is the complex force acting on the proof mass,
F, = —Z,Wwp, (2.19)

where Fj, is the complex force acting at the base position. The complex forces at the
connecting points between the elements forming the system at hand shown in Figure

2.2b, have been expressed with the following impedance matrix relation:

F, Z, —Z, 0771w, Yy
Enl=—|-Za Zo O||Wm|+|—v.|ia, (2.20)
Fp 0 0 Zllw, 0
where:
Zy =jomy , Zp =jo(my,+my,) , Z, =jom, (2.21)

are the impedances respectively for the classical actuator (Figure 2.1a), for the
actuators with the flywheel connected to the case (Figure 2.1b,c) and for the actuators
with the flywheel connected to the proof mass (Figure 2.1d,e). Also the actuator

impedance Z, depends on the type of the actuator and can be defined as follows:

I c k I k
=, Zy=ct—tjom+—— (2.22)
W ™w Jw ™w Jwry,

Z LI L
=cC —_, =cC —
a jw a jw Jw

respectively for the classical actuator (Figure 2.1a), for the hinged flywheel actuator
(Figure 2.1b,d) and for the pinned flywheel actuator (Figure 2.1ce). In these
expressions k and c are the axial stiffness and damping coefficient of the proof mass
suspension. The damping coefficients of the proof mass suspension are calculated
with the assumption that the damping ratio is constant for all configurations of the
inertial actuators. Thus, for the classical proof mass actuator the damping coefficient
is calculated with the following formula ¢ = 2¢,/kM,. For the hinged configuration

with the flywheel connected to the case the damping coefficient is calculated with the

following formula ¢ = 2¢ \/ k(M,, +I,,/12), while for the pinned configuration with
the following formula ¢ =2¢ \/ (k + ky,/r2)(M,, + I,/12). For the hinged

configuration with the flywheel connected to the proof mass the damping coefficient
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is given with the following formula ¢ = 2¢ \/ k(M,, + m,, + I,,/r:2), while for the
pinned configuration with the flywheel connected to the proof mass is given by ¢ =
20\ (k + ky /12)(M,, + m,, + I,,/12). The k,, and c,, are the torsional stiffness and

damping coefficient of the flywheel shaft, where the torsional damping is given by

cw = 28y Tia k(M +my, +1,,/13). The 1, = 2m,, R}, is the polar moment of inertia of
the flywheel disk and, as shown in Figure 2.2¢, R, and r,, are respectively the external
radius of the flywheel and the radius of the pinion rack gear mechanism. The
transduction coefficient of the coil-magnet is given by 1),, as specified in Table 2.1.

For simplicity, Equation (2.20) has also been rewritten in the following compact form:
f=-7Zw+ Yi,. (2.23)

The complex voltage at the terminals of the coil shown in Figure 2.2b, have been

expressed with the following impedance relation:
Uy = Zolg + Y W — Y Wy, (2.24)
where Z, is the coil electrical impedance given by:
Z, = joL+R (2.25)
and has also been rewritten in the following compact form:
Uy = Z,ig + P W. (2.26)

After substitution of Equation (2.23) into Equation (2.16), the vector with velocities

for the current driven actuator results:
W = (iqlq + qpp, (2.27)
where:
Qo = A+YD)'Y¢ |, qu=A+YD)Y,, (2.28)

and I is a 3x3 identity matrix. Instead, rewriting Equation (2.26) and substituting it to

Equation (2.27) the complex velocity is given:

W = Quqlg + Qupl » (2.29)

where:

B 1 .1\ ! 1 _ 1 7\ 1
0,=(+a,-v") a,- . a,=(0+q,-¢") q,. 30

ia ze
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The complex velocity at the control position can be expressed in terms of the complex
amplitude of the incident wave p(w) and the complex amplitude of the current fed to

the actuator i(w) with the following algebraic expression:
We = Geglg + GepP s (2.31)
where:

Gea =Qia , Gop = Qi (2.32)
and t; =1 0 0]. Here the G., is the open loop sensor —actuator frequency
response function (FRF) for the current driven actuator, which is used later on to
assess the stability of the feedback loops using the Nyquist criterion.

Simultaneously, the complex velocity at the control position can be also expressed
in terms of the complex amplitude of the voltage applied to the actuator u(w) with

the following algebraic expression:
We = Geyg + GypD (2.33)

where:

Geu =%Qua + Gup = taQup - (2.34)
Also in this case the G, is the open loop sensor —actuator frequency response
function (FRF), which is used later on to assess the stability of the feedback loops,
however in this case for voltage driven inertial actuator.
When the negative velocity feedback control loop implements a constant gain g,
with a power amplifier, a fixed current signal i, proportional to the error velocity

signal W, is fed to the actuator coil, such that:

= g, . (2.35)

la
Instead, when the negative velocity feedback control loop for the voltage driven
actuator is implemented the error velocity signal v, is fed to the actuator coil with a
constant gain g., such that:

Uy = —gCWC . (236)

Therefore, substituting Equation (2.35) into Equation (2.31) the closed loop response
at the control position for the current driven actuator is given by the following

expression:

We = Geyp (2'37)

where:
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Gep
Gy = ——P 2.38
1+ geGea i
However, substituting Equation (2.36) into Equation (2.33), the closed loop response

at the control position for the voltage driven actuator is given by the following

expression:
We = Gep (2'39)
where:
Gup
G, =—22 2.40
T+ 9cGeu ( )

The time—averaged total flexural kinetic energy, which for brevity will be referred as
kinetic energy in the remaining part of the article, is used to evaluate the flexural
response of the plate without and with feedback loops. For time-harmonic vibrations,

the time-averaged kinetic energy is given by the following formula:
= lim 11 2 =1 i 2
KE(t) = TlgrgoTsz Ja phW?(x,y,)dAdE =< [, phlw(x,y, w)|?dA, (241)

where A is the area of the plate. Also, the complex velocity of the plate w(x, y, w) can

be derived from the following expression:

wx,y,0) = T (xr, y)[ac (@) 0 ap()f(w) + 7 (xr, yr)ap (wIp(w) . (2:42)

Here 0 is a nx1 vector of zeros, and

ac(w) = U@)P(xe,¥) , ap(w) = QwW)P(Xp, ), Apw) = L) P(w), (2.43)
where the elements in the ®(w) vector are defined in Equation (2.13) for the plane

acoustic wave excitation. Instead for the point force excitation the:

Ap(w) = U@)P(xp, )/ (2.44)
where the (x,,¥,) is the position of the primary force that excites the plate.

The complex vector with the junction forces f in Equation (2.42) for the current
driven actuator can be derived with the following steps: first, Equation (2.37) is
substituted in Equation (2.35); second, the resulting equation is substituted in
Equation (2.27), third the resulting equation is substituted into Equation (2.23), so
that:

f= (Zqiachcli - Zqip - ‘l’chcli)p : (2-45)
Instead the complex vector with the junction forces f in Equation (2.42) for the voltage

driven actuator can be derived with the following steps: first, Equation (2.39) is
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substituted in Equation (2.36); second, the resulting equation is substituted in
Equation (2.29), third the resulting equation and rewritten Equation (2.26) are
substituted into Equation (2.23), so that:

1 1
f= <(Z + llJZ_lllT) (Quachclu - qup) - lIJZ_gCGClu) D. (2.46)
€ e
Substitution of Equation (2.45) into Equation (2.42) gives:

w(x,y, ) = 7 (x, y)ac, (w)p(w) + 7 (x, y)a, (w)p(w), (2.47)

where for the current driven actuator:

ac, = [a.(w) 0 a, ((U)](anchcl - qu - lIjchcl) ’ (2.48)

while for the voltage driven actuator:

Acp = [ac(w) 0 ap (w)] <(Z + lllzlelllT) (quachclu - qup) - lljziechclu)- (2'49)

Thus, recalling that for the flexural natural modes given above the following
orthogonality properties holds, [, &7 (x,y)dA = Aand [, &n(X,Y)Pmen(x,y) dA =0
the kinetic energy of the plate with the passive effects of the flywheel proof mass
actuator and the active effects of the velocity feedback loop is given by:

1
KE(w) = ZMp [a, + acb]H[ap +ag|Ipl?. (2.50)

where p is pressure for the plane acoustic wave excitation or force for point force
excitation. The kinetic energy for the plate with the feedback loop open can be derived
after setting g. = 0 in the expression for the vector a.;,. Also the kinetic energy for the

plain plate without proof mass actuator can be derived by setting a., = 0.

2.4 DYNAMIC CHARACTERISTICS OF THE PROPOSED ACTUATORS

This section investigates the dynamic and kinematic properties of the classical and
four proposed flywheel proof mass actuators. The mathematical derivation is given
for each principal electromechanical property. The equations are used to obtain the
typical properties of the inertial actuators used in active vibration control applications
based on the frequency response functions (FRF) of the base impedance, the actuators
blocked force per unit driving current, the actuators transduction FRF, the actuators
blocked force per unit applied voltage, the electrical impedance and the actuators

proof mass stroke per unit driving current. The base impedance FRF is used to
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characterise the mechanical components of the inertial actuators. The parameters of
the mechanical components can be used to calculate the inertial mass static deflection,
which is a principal parameter used to assess the actuator robustness in case of
shocks. The blocked force FRFs define the extent of the force generated at the actuator
base per unit driving signal (current or voltage). The electrical impedance FRF is used
to characterise the electrical components of the inertial actuators. Finally, the actuator

stroke defines the maximum displacement of the inertial mass per unit driving signal.

2.4.1 Base impedance

The base impedance of the open loop actuators is given by Zs;, (w) = F; /Wl =0,
where F; = —(F, + F.). Assuming i, = 0 and p = 0, the following impedance and
mobility equations can be extracted from Equation (2.20) and Equation (2.4):
F.=—-Zw.+Z Wy, Fp, = Z;W,—Z, Wy, F, = —Z,w, and w,, = Y,,F,,, which can be
combined to give the following expression for the actuator base impedance:

—F, Zy + ZpYmZa + Zg
ZfW = — = .

We l; —o 1+Y.Z,

(2.51)

Table 2.3 gives the natural frequencies and the fundamental resonance frequency
and antiresonance frequencies that characterise the dynamic response of the classical
and four proposed flywheel proof mass actuators obtained from base impedance
simulations.

The Bode plots in Figure 2.3 show the base impedance FRFs of the classical and the
four proposed proof mass actuators. The solid blue lines in the two plots are for the
classical proof mass actuator. Plot (a) shows the base impedance of the actuators with
the flywheel either hinged (dashed black lines) or pinned (dashed-dotted red lines)
to the base of the actuator while plot (b) shows the base impedance of the actuators
with the flywheel either hinged (dashed black lines) or pinned (dashed-dotted red
lines) to the proof mass of the actuator.

The base impedance of the classical proof mass actuator (solid blue lines in Figure
2.3a,b) has low and high frequency asymptotes characterised by a modulus that rises
proportionally to frequency with phase equal to +90°, which are spaced out by a
resonance peak, at about 19.90 Hz, and an antiresonance low, at about 79.9 Hz. The
resonance peak occurs in the vicinity of the fundamental natural frequency of the
actuator, i.e. 19.92 Hz as given in Table 2.3. The resonance peak and antiresonance

low are connected by a segment that decreases proportionally to frequency and has

33



34

phase equal to -90°. These features indicate that the base impedance is characterised
by low and high frequency mass-laws, as given in Table 2.4, connected via a stiffness
law, given by Z = k/(jw). The amplitude of the resonance peak with reference to the
low frequency mass asymptote and the stiffness asymptote is controlled by the
damping of the mounting system and is given by 1/(2¢y/1 — {2), thus about 22 dB.
These properties indicate that, at low frequencies, below 19.90 Hz, the case and proof
masses oscillate together as a solid body and produce an overall mass—-impedance
effect. At higher frequencies, the proof mass is characterised by little oscillations and
behaves like a seismic reference system such that in the frequency range between
19.90 Hz and 79.9 Hz, the elastic suspension of the proof mass controls the actuator
base dynamics and produces a sky-hook stiffness-impedance effect. At frequencies
above 79.9 Hz, the case controls the actuator base dynamics and produces a base

mass—-impedance effect.

Table 2.3. Characteristic natural, resonance and antiresonance frequencies of the
actuators (the values are given with two decimal digits merely to highlight the
difference between natural and resonance frequency values).

Resonance Antiresonacne
Actuator Natural frequency w,,
configuration [Hz] frequency w,,  frequency w,
[Hz] [Hz]
Classical K
configuration Wn = |3 = 19.92 19.90 79.9
Flywheel hinged 0. = kK _ 479
to the base " (Mw+i7‘:v) 478 >0
k
Flywheel pinned k+lg
= w_ = 6.67 6.9
to the base “n (MW‘L%) 6.67
Flywheel hinged — , _ k — 474
to the proof mass " (Mw+mw+%) 473 >0
k
Flywheel hinged k+y
= [ — = 6.60 6.9
to the proof mass “n My +) 6.61
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Table 2.4 provides low-frequency and high-frequency asymptotic expressions of

the base impedance for the classical and four proposed flywheel proof mass actuators.

Table 2.4. Low-frequency and high-frequency asymptotic expressions of the base

impedance.
Actuator Base impedance Base impedance
configuration Zgy, for w < w, Zgy, for w > w,
Classical
~jo (M, + ~j
configuration jo (Mg +mp) Jomy
Flywheel hinged jw(my, + n w/ Ty )
—io(M ~jw(my +m,,
to the base jo (My +my +mp) 1+I_V;ML
7"W w
Flywheel pinned oM+ + ) ~w(my +my, + le/ruzzl )
to the base JOLTw Tty + Ty 14w =
2 M
w w
Flywheel hinged (my, + w/T )
~jw(M,, +m,, + ~wlmy
to the proof mass jo My +myy +mp) 1+ I_V;L
rW MW
Flywheel hinged (my, + w/Ti )
~jw(M,, +m,, + ~wlmy
to the proof mass jo(My, +my, +m,) 1+ I_V;L
rW MW

The base impedance of the proposed actuator with the flywheel hinged to the case
(dashed black line in Figure 2.3a) shows a similar spectrum as that of the classical
proof mass actuator, although it is characterised by significant scaling effects. In fact,
although, the low frequencies mass-law is still given by overall mass-impedance
effect, the higher frequencies mass law is about 24 dB greater than that of the classical
proof mass actuator. At higher frequencies, the mass-impedance effect is controlled
by the axial inertia effects produced by the base mass, by the mass of the flywheel and
by the polar moment of inertia of the flywheel, as given in Table 2.4. The additional
inertia effect produced by the angular oscillation of the flywheel also diminishes the
fundamental natural frequency of the actuator to 4.79 Hz, as given in Table 2.3. Thus
the resonance peak occurs at about 4.78 Hz while the antiresonance low occurs only
at a slightly higher frequency of about 5 Hz. The vicinity between the resonance peak

and antiresonance low essentially cancels the sky-hook stiffness effect in between the
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resonance and antiresonance frequency and also significantly lowers the amplitudes
of the resonance peak and antiresonance low. If rather than being hinged, the
flywheel is pinned with a torsional spring to the actuator case (dashed-dotted red line
in Figure 2.3a), the spectrum of the base impedance varies by little. The torsional
spring slightly increases the fundamental natural frequency of the actuator, which
becomes 6.67 Hz, as given in Table 2.3. As a result the resonance peak and
antiresonance low occurs at about 6.67 Hz and 6.9 Hz respectively and thus the

amplitudes of the resonance peak and antiresonance low are somewhat more marked.
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Figure 2.3. Base impedance for the actuator with flywheel attached to base (a) and
flywheel attached to proof mass (b). Classical configuration (Solid blue lines). Hinged
flywheel actuator (dashed black lines). Pinned flywheel actuator (dashed-dotted red
lines).

The base impedance of the proposed actuator with the flywheel hinged to the
proof mass (dashed black line in Figure 2.3b) shows similar asymptotic behaviour to
those found when the flywheel is hinged to the actuator case. However, in this
circumstance, the fundamental natural frequency of the actuator is slightly lowered
since it is affected also by the additional inertia effect produced by the axial oscillation
of the flywheel and becomes 4.74 Hz, as given in Table 2.3. Thus, the resonance peak
and antiresonance low occurs at slightly lower frequencies, i.e. about 4.73 Hz and
5 Hz respectively, as given in Table 2.3. The low frequencies mass-law is given by

overall mass-impedance effect, while the higher frequencies mass law is about 23 dB
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greater than that of the classical proof mass actuator, since it is controlled by the axial
inertia effects produced by the mass of the case and by the polar moment of inertia of
the flywheel, as given in Table 2.4. As a result, the resonance peak and antiresonance
low are slightly more marked than those of the proposed actuator with the flywheel
hinged to the case. Also for this configuration, if rather than being hinged, the
flywheel is pinned with a torsional spring to the actuator proof mass (dashed-dotted
red line in Figure 2.3b), the spectrum of the base impedance varies by little. Again,
the torsional spring slightly increases the fundamental natural frequency of the
actuator, to 6.61 Hz, as given in Table 2.3. While the resonance peak and antiresonance
low occurs at about 6.60 Hz and 6.9 Hz respectively so that the amplitudes of the

resonance peak and antiresonance low are slightly more marked.

2.4.2 Blocked force per unit current fed to the actuator

The blocked force produced by the actuators per unit current fed to the actuators
is given by Tr; = F./i4ly 0. In this case, assuming W, = 0 and p = 0, the following
impedance and mobility equations can be derived from Equation (2.20) and Equation
(4): Fo=Zwn+Y iy, Fp=—ZWwy—Y i, and w,, =Y, F,, which can be
combined to give the following expression of the blocked force per unit current fed
to the actuator:

LR
= =TTV 7
14 Y2,

. (2.52)
taly, =0

Table 2.5 provide low-frequency and high-frequency asymptotic expressions of
the blocked force per unit current fed to the classical and four proposed flywheel
proof mass actuators.

The Bode plots in Figure 2.4 show the blocked force per unit current fed to the
classical and the four proposed proof mass actuators. The solid blue lines in the two
plots are for the classical proof mass actuator. Plot (a) shows the blocked force of the
actuators with the flywheel either hinged (dashed black lines) or pinned (dashed-
dotted red lines) to the base of the actuator while plot (b) shows the blocked force of
the actuators with the flywheel either hinged (dashed black lines) or pinned (dashed-
dotted red lines) to the proof mass of the actuator.

The amplitude of the blocked force per unit current fed to the classical proof mass
actuator at low frequencies rises proportionally to w?, as given by asymptote in Table

2.5 and is characterised by phase equal to +180°. In other words, it has opposite phase
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than that of the driving current signal fed to the actuator coil. The amplitude reaches
a peak value at the resonance frequency of the actuator at 19.90 Hz, as given in Table
2.3 and then it settle to a constant value. Around the resonance frequency, the phase
undergoes a -180° lag such that, at higher frequencies, the blocked force produced by
the actuator is in phase with the driving current signal i, and is equal to actuator

transduction coefficient as given in Table 2.5.

Table 2.5. Low-frequency and high-frequency asymptotic expressions of the blocked
force per unit current fed to the actuators.

Actuator Blocked force Blocked force
configuration Ty; for w < w, Ty; for w > w,
contigaration -Gy L ¥
o e /4
O R T /4
oo proot mass ~00 T /(G
S

The blocked force produced by the proposed actuator with the flywheel hinged to
the case (dashed black line in Figure 2.4a) shows similar asymptotic behaviours as the
classical proof mass actuator, although the resonance peak occurs at a much lower
resonance frequency of 4.78 Hz as given in Table 2.3. At higher frequencies, the
constant force effect per unit driving current signal is about 28.3 dB lower and it
settles to a constant value as defined by an asymptote, in Table 2.5. Thus the presence
of the flywheel component lowers the cut off resonance frequency above which the
actuator produces a constant force in phase with the driving current signal but also
reduces the amplitude of the force by a factor 1/(1 + I,,/M,,%2). If rather than being
hinged, the flywheel is pinned with a torsional spring to the actuator case (dashed-
dotted red line in Figure 2.4a), the spectrum of the blocked force per unit current fed

to the actuator varies by little. The cut off resonance frequency occurs at a slightly
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higher frequency of 6.67 Hz, as given in Table 2.3 while the constant force produced
at higher frequencies is still defined by the same asymptote, as given in Table 2.5.
The blocked forces produced by the proposed actuators with the flywheel hinged
to the proof mass (dashed black line in Figure 2.4b) shows similar asymptotic effects
to those found with the flywheel hinged to the actuator case. In this circumstance, the
cut off resonance frequency occurs at a slightly lower value of 4.73 Hz, as given in
Table 2.3 and the constant force produced at higher frequencies is slightly higher, as
given in Table 2.5. If rather than being hinged, the flywheel is pinned with a torsional
spring to the actuator proof mass (dashed-dotted red line in Figure 2.4b), the
spectrum of the blocked force varies by little since the cut off resonance frequency
occurs at slightly higher frequency of 6.60 Hz, as given in Table 2.3. However, the
constant force produced at higher frequencies remains defined by the same

asymptote, as given in Table 2.5.
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Figure 2.4. Blocked force per unit current fed to the actuator with flywheel attached
to base (a) and flywheel attached to proof mass (b). Classical configuration (Solid blue
lines). Hinged flywheel actuator (dashed black lines). Pinned flywheel actuator
(dashed-dotted red lines).

2.4.3 Transduction FRF

The actuators transduction FRF is given by Ty, = ug/Wcli,—o- In this case,

assuming i, = 0 and p = 0, the following impedance and mobility equations can be
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derived from Equation (2.4), Equation (2.20) and Equation (2.24):w,, =Y,,F,
Fo=—=Zwe+ ZWey, Fry = ZWe—Z Wy, Fy = —Zyw and u, = ¢ w. — P Wy, which
can be combined to give the following expression of the actuator transduction FRF:

—Uq — _l/)a
e by _o 1+ YnZa

(2.53)

Tuv’v -

It is important to note that the expression obtained for the actuator transduction
FRF T, in Equation (2.53), is bound to be equal to the expression obtained for the
blocked force per unit current fed to the coil of the actuator obtained in Equation
(2.52). Thus, the low-frequency and high-frequency asymptotic expressions of the
blocked force per unit current fed to the classical and four proposed flywheel proof
mass actuators given in Table 2.5 can be also used for the actuator transduction FRF.
The negative sign in Equation (2.53) indicates that the generated voltage has opposite
direction to the direction defined in the Figure 2.2b.

The Bode plots in Figure 2.5 show the actuator transduction FRF of the classical
and the four proposed proof mass actuators. The solid blue lines in the two plots are
for the classical proof mass actuator. Plot (a) shows the transduction FRF of the
actuators with the flywheel either hinged (dashed black lines) or pinned (dashed-
dotted red lines) to the base of the actuator while plot (b) shows the transduction FRF
of the actuators with the flywheel either hinged (dashed black lines) or pinned
(dashed-dotted red lines) to the proof mass of the actuator.

The amplitude of the classical proof mass actuator transduction FRF at low
frequencies rises proportionally to w?, as given in Table 2.5 and is characterised by
phase equal to 0°. The amplitude reaches a peak value at the resonance frequency of
the actuator at 19.90 Hz, as given in Table 2.3 and then it settle to a constant value.
Around the resonance frequency, the phase undergoes a lag such that, at higher
frequencies is equal to -180°, and the amplitude is equal to actuator transduction
coefficient as given in Table 2.5.

The transduction FRFs of the proposed actuator with the flywheel hinged to the
case (dashed black line in Figure 2.5a) shows similar asymptotic behaviours as the
classical proof mass actuator, with the resonance peak that occurs at a much lower
resonance frequency of 4.78 Hz as given in Table 2.3. At higher frequencies, the
produced voltage per unit velocity of excitation is about 28 dB lower and it settles to
a constant value as given in Table 2.5. The presence of the flywheel component
reduces the amplitude of the produced voltage above the actuator resonance

frequency. If rather than being hinged, the flywheel is pinned with a torsional spring
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to the actuator case (dashed-dotted red line in Figure 2.5a), the spectrum of the
actuator transduction FRF varies by little. The cut off resonance frequency occurs at a
slightly higher frequency of 6.67 Hz, as given in Table 2.3 while the produced constant
voltage at higher frequencies is still defined by the same asymptote, as given in
Table 2.5.

The transduction FRF of the actuators with the flywheel hinged to the proof mass
(dashed black line in Figure 2.5b) shows similar asymptotic effects to those found
with the flywheel hinged to the actuator case. The cut off resonance frequency occurs
at a slightly lower value of 4.73 Hz, as given in Table 2.3 and the constant force
produced at higher frequencies is slightly higher, as given in Table 2.5 but it is still
about 25 dB lower compared to the classical proof mass actuator. For the pinned
flywheel with a torsional spring attached to the actuator proof mass (dashed-dotted
red line in Figure 2.5b), the spectrum of the transduction FRF varies by little since the
cut off resonance frequency occurs at slightly higher frequency of 6.60 Hz. The
constant voltage effect produced at higher frequencies remains defined by the same

asymptote, as given in Table 2.5.
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Figure 2.5. Actuator transduction FRF with flywheel attached to case (a) and flywheel
attached to proof mass (b). Classical configuration (Solid blue lines). Hinged flywheel
actuator (dashed black lines). Pinned flywheel actuator (dashed-dotted red lines).
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2.4.4 Blocked force per unit voltage applied to the actuator

The produced blocked force per unit voltage applied to the actuators is given by
Try = F¢/uqgly =o. In this case, assuming w, = 0 and p = 0, the following impedance
and mobility equations can be derived from Equation (2.4), Equation (2.20) and
Equation  (2.24):w,, = Y. Fy,  Fo=Zqgwp + Y iy, Fp=—ZWy, — Y i, and
Uy = Zely — Y W, which can be combined to give the following expression for the

blocked force per unit voltage applied to the actuator:

FC lpa
T uglyno Ze + Ze¥mZa + Y2 (259

Table 2.6 provide low-frequency and high-frequency asymptotic expressions of
the blocked force per unit voltage applied to the classical and four proposed flywheel

proof mass actuators.

Table 2.6. Low-frequency and high-frequency asymptotic expressions of the blocked
force per unit voltage applied to the actuators.

Actuator Blocked force Blocked force
configuration Ty, for w < w, Ty, for w > w,

Classical ) Y. M, Ya

~(jy? s ~Rr D)
configuration kR (R +jwl)
Flywheel hinged o YaMy ~ T Ve
to the base (o) kR I+ 32 R +jwl)

WrW
Flywheel pinned ~(jw)? YoM,y i Ld:
to the base ) (k + ky/12)R I+ 372 (R +jol)
WrW

Flywheel hinged ~(j0)? Y,(M,, + my,) ~ " Yq .
to the proof mass kR 1+ m) (R +jwl)
Flywheel hinged ()2 YoMy, +my) ~ 7 id:
to the proof mass (k + k,,/72)R a+ m)m + jwlL)

The Bode plots in Figure 2.6 show the blocked force per unit voltage applied to the

the classical and the four proposed proof mass actuators. The solid blue lines in the
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two plots are for the classical proof mass actuator. Plot (a) shows the blocked force of
the actuators with the flywheel either hinged (dashed black lines) or pinned (dashed-
dotted red lines) to the base of the actuator while plot (b) shows the blocked force of
the actuators with the flywheel either hinged (dashed black lines) or pinned (dashed-
dotted red lines) to the proof mass of the actuator.

The amplitude of the blocked force produced by the classical proof mass actuator
at low frequencies rises proportionally to w? as given by asymptote in Table 2.6 and
is characterised by phase equal to +180°. The amplitude reaches a highly damped
peak value at the resonance frequency of the actuator at 19.90 Hz and then it settle to
a constant value as given in Table 2.6. Compared to the blocked force for the unit
current fed to the actuator, the blocked force for the voltage signal presents highly
damped resonance peaks. The resistive effect of the coil rounds off the peaks at the
resonance frequency of the actuator. Around the resonance frequency, the phase
undergoes a smooth -180° lag such that, at higher frequencies, the blocked force
produced by the actuator is in phase with the voltage signal. At higher frequencies,
the inductive effect of the actuator coil starts to take more important role and thus
making the produced blocked force to drop with frequency. At the same time, the
phase undergoes additional lag such that, at higher frequencies, the produced by the
actuator blocked force starts to be out phase with the voltage signal.

The blocked force produced by the proposed actuator with the flywheel hinged to
the case (dashed black line in Figure 2.6a) shows similar asymptotic behaviours as the
classical proof mass actuator, although the resonance peak occurs at a much lower
resonance frequency of 4.78 Hz, as given in Table 2.3. The constant force effect per
unit voltage signal is about 29 dB lower due to the axial inertia effect produced by the
flywheel as given in Table 2.6. If rather than being hinged, the flywheel is pinned with
a torsional spring to the actuator case (dashed-dotted red line in Figure 2.6a), the
spectrum of the blocked force per unit voltage applied to the actuator varies by little.
The cut off resonance frequency occurs at a slightly higher frequency of 6.67 Hz, as
given in Table 2.3 while the constant force produced at higher frequencies is still given
by the same asymptote as given in Table 2.6.

The blocked forces produced by the proposed actuators with the flywheel hinged
to the proof mass (dashed black line in Figure 2.6b) shows similar asymptotic effects
to those found with the flywheel hinged to the actuator case. In this circumstance, the
cut off resonance frequency occurs at a slightly lower value of 4.73 Hz as given in
Table 2.3. The constant force produced at higher frequencies is slightly higher as given
by an asymptote in Table 2.6 but is still about 25 dB lower compared to the classical
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proof mass actuator. If rather than being hinged, the flywheel is pinned with a
torsional spring to the actuator proof mass (dashed-dotted red line in Figure 2.6b),
the spectrum of the blocked force varies by little since the cut off resonance frequency
occurs at slightly higher frequency of 6.60 Hz as given in Table 2.3. The constant force

produced at higher frequencies remains equal as given by an asymptote in Table 2.6.
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Figure 2.6. Blocked force per unit voltage applied to the actuator with flywheel
attached to base (a) and flywheel attached to proof mass (b). Classical configuration
(Solid blue lines). Hinged flywheel actuator (dashed black lines). Pinned flywheel
actuator (dashed-dotted red lines).

2.4.5 Electrical impedance

The electrical impedance of the actuators is given by Z,;; = u,/ ialv'vc=0- In this case,
assuming w, = 0 and p = 0, the following impedance and mobility equations can be
derived from Equation (2.4), Equation (2.20) and Equation (2.24):w,, =Y,,F,,
Fo=ZWwp +Y,ly Fp=—Zgwny -9 i, and u, = Z.i, — Wy, which can be
combined to give the following expression for the actuator electrical impedance:

P _ Zo+ Z Y Zo + Yipdhd
ut a 1+Y,Z, '

(2.55)

fa Lo
The Bode plots in Figure 2.7 show electrical impedance FRFs of the classical and

the four proposed proof mass actuators. The solid blue lines in the two plots are for
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the classical proof mass actuator. Plot (a) shows the electrical impedance of the
actuators with the flywheel either hinged (dashed black lines) or pinned (dashed-
dotted red lines) to the base of the actuator while Plot (b) shows the electrical
impedance of the actuators with the flywheel either hinged (dashed black lines) or
pinned (dashed-dotted red lines) to the proof mass of the actuator.

At low frequencies, the amplitude of the electrical impedance for the classical
proof mass actuator is characterised by the constant value equal to coil resistance,
with the phase equal to 0°. The amplitude reaches a peak value equal to 27.8 dB at the
resonance frequency of the actuator at 19.90 Hz, as given in Table 2.3 and it drops to
a constant value equal to coil resistance. Below the resonance frequency, the phase
slowly increases and then undergoes almost -180° lag at the actuator resonance
frequency. Above the resonance frequency, the phase slowly increases to a constant
value equal to 0°. At higher frequencies, the inductive effect of the actuator coil starts
to take more important role making the electrical impedance amplitude and phase
rise with frequency.

The electrical impedance of the proposed actuator with the flywheel hinged to the
case (dashed black line in Figure 2.7a) shows similar asymptotic behaviours as the
classical proof mass actuator, although the resonance peak occurs at a much lower
resonance frequency of 4.78 Hz, as given in Table 2.3 and with much lower amplitude
equal to 16 dB. Thus the presence of the flywheel component lowers the resonance
frequency and increases the damping effect as given in Equation (2.22). When the
flywheel is pinned with a torsional spring to the actuator case (dashed-dotted red line
in Figure 2.7a), the spectrum of the electrical impedance varies by little. The resonance
frequency occurs at a slightly higher frequency of 6.67 Hz with amplitude equal to
15.4 dB.

The electrical impedance of the flywheel hinged to the proof mass (dashed black
line in Figure 2.7b) shows similar asymptotic effects to those found with the flywheel
hinged to the actuator case. The resonance frequency occurs at 4.73 Hz with the
amplitude equal to 16 dB. If rather than being hinged, the flywheel is pinned with a
torsional spring to the actuator proof mass (dashed-dotted red line in Figure 2.7b),
the spectrum of the electrical impedance shows that the resonance frequency occurs
at 6.60 Hz with the amplitude equal to 15.3 dB.

The classical and the four proposed proof mass actuator configurations are based
on the same electrical circuit, thus the low and high frequency asymptotes are equal
to the each other.
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Figure 2.7. Electrical impedance of the actuator with flywheel attached to base (a) and
flywheel attached to proof mass (b). Classical configuration (Solid blue lines). Hinged
flywheel actuator (dashed black lines). Pinned flywheel actuator (dashed-dotted red
lines).

2.4.6 Proof mass stroke

The stroke of the actuators proof mass per unit current fed to the actuators is given
by Tawi = Aw/ig|ly,—0, where Aw = w,, —w,. Assuming w. =0 and p =0, the
following impedance and mobility equations can be derived from Equation (2.4),
Equation  (2.20):  wy, =Y Fy, Fo=Z Wy +Pie Fm=—ZWwy, -9, and
Uy = Z,iq — Y Wy, which can be combined to give the following expression of the
actuator for the stroke per unit current fed to the actuator:
_Aw 1 Y,

jol+Y,Z,

(2.56)

Awi i
a ‘w.=0

Rewriting Equation (2.52) and substituting it to Equation (2.56) the blocked force
produced by the actuators is given by:

1 Aw
F.=———. (2.57)
JoYn
The obtained equation highlights that the produced force is proportional to the
stroke of the inertial actuator. Thus, to maximise the control force produced by the

proof mass actuator the designed transducer should move with large strokes.
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Table 2.7 provide low-frequency and high-frequency asymptotic expressions of
the proof mass stroke per unit current fed to the classical and four proposed flywheel

proof mass actuators.

Table 2.7. Low-frequency and high-frequency asymptotic expressions of the proof
mass stroke per unit current fed to the actuators.

Actuator Stroke Stroke
configuration Tpywi for w < w, Tpyi for w > w,

Classical Yo 1 Y
configuration Tk (jw)? Mg
Flywheel hinged Yq ~ 1 Ya

to the base k (w)? My, + L, /75
Flywheel pinned ~ l’bak 1 Ya

to the base k+5 (w)? My, + L, /75
Flywheel hinged Yq -~ 1 Ya

to the proof mass k (w)* My, +my, + 1, /75
Flywheel hinged ~ ll)ak 1 Ya

to the proof mass k+ (w)? My +my, + 1y/75

The Bode plots in Figure 2.8 show the proof mass stroke per unit current fed to the
classical and the four proposed proof mass actuators. The solid blue lines in the two
plots are for the classical proof mass actuator. Plot (a) shows the stroke of the
actuators with the flywheel either hinged (dashed black lines) or pinned (dashed-
dotted red lines) to the base of the actuator while Plot (b) shows the stroke of the
actuators with the flywheel either hinged (dashed black lines) or pinned (dashed-
dotted red lines) to the proof mass of the actuator.

At low frequencies the proof mass stroke of the classical actuator (blue lines in
Figure 2.8a,b) is characterised by a constant amplitude, as given in Table 2.7, which
grows to a peak value at the fundamental resonance frequency at about 19.90 Hz, and
then drops at a rate proportional to 1/w?, as given in Table 2.7. The actuators with
the flywheel hinged to either the case (dashed black line in Figure 2.8a) or to the proof
mass (dashed black line in Figure 2.8b) are characterised by the same stroke at low

frequencies. The cut off resonance frequencies where the stroke peaks and then drops,
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are instead much lower and occur respectively at 4.78 Hz and 4.73 Hz as given in
Table 2.3. The actuators with the flywheel pinned to either the case (dash-dotted red
line in Figure 2.8a) or to the proof mass (dash-dotted red in Figure 2.8b) are instead
characterised by a smaller low frequency stroke, as given in Table 2.7. This is due to
the additional stiffness effect produced by the torsional spring used to pin the
flywheel. The cut off resonance frequencies where the stroke peaks and then drops
occurs in these two cases respectively at 6.67 Hz and 6.60 Hz, as given in Table 2.3.
The peak strokes of the proposed actuators are 2 to 6 dB lower than the peak stroke

of the classical actuator.
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Figure 2.8. Proof mass stroke per unit driving current for the actuator with flywheel
attached to base (a) and flywheel attached to proof mass (b). Classical configuration
(Solid blue lines). Hinged flywheel actuator (dashed black lines). Pinned flywheel
actuator (dashed-dotted red lines).

2.5 OPEN LOOP STABILITY ANALYSIS

The stability of the velocity feedback loops using the classical and the four
proposed flywheel proof mass actuators is assessed using the Nyquist criterion [29],
[95]. Figure 2.9 shows the Bode plots while Figure 2.10 shows the Nyquist plots of the
open loop sensor — actuator FRFs, which are given by G, as specified in Equation
(2.32). The solid blue lines in the two plots of Figure 2.9 are for the feedback loop with

the classical proof mass actuator. The plots in Figure 2.9a consider the feedback loop



Velocity Feedback With Flywheel Actuator

with the flywheel either hinged (dashed black lines) or pinned (dashed-dotted red
lines) to the base of the actuator while the plots in Figure 2.9b consider the feedback
loop with the flywheel either hinged (dashed lines) or pinned (dashed-dotted lines)
to the proof mass of the actuator.

Considering first the Bode plot for the classical actuator (solid blue lines), it is
noted that the amplitude is characterised by a resonance peak at about 19.9 Hz, which
is due to the fundamental resonance of the proof mass actuator, and then a sequence
of sharp resonance peaks and narrow antiresonance lows pairs. The phase plot is
characterised by a -180° phase lag at the fundamental resonance frequency and then
a sequence of -180° phase lag and +180° phase lead for each resonance peak and
antiresonance low pair.

Thus, except for the first resonance peak and -180° phase lag, the open loop sensor—
actuator FRF shows the typical Bode plot for collocated point velocity sensor and
point force actuator pairs [86], [138]. The Bode plots of the open loop frequency
response function with the flywheel hinged either to the base or proof mass (dashed
black lines) present similar features, except three main differences. Firstly, the
fundamental resonance peak and -180° phase lag are moved to a much lower
resonance frequency of about 4.7 Hz. Secondly, the fundamental resonance peak has
now a much lower amplitude than that obtained when the classical proof mass
actuator is employed. Finally, above about 200 Hz, the sequence of resonance peaks
and antiresonance lows pairs tends to smoothen rapidly as the frequency rises.

These effects are due to the additional inertia offered by the flywheel, which
reduces the fundamental natural frequency of the actuator. Also, because of the
gearing mechanism, the flywheel produces primarily a relative inertia effect, thus no
matter whether it is fixed to the case or to the proof mass of the actuator, the net result
is an additional inertia effect on the plate at the control point so that the sensor—
actuator open loop FRF presents a smoothened spectrum at frequencies above
200 Hz. The Bode plots of the open loop FRF with the flywheel pinned either to the
case or to the proof mass (dash-dotted red lines) present very similar features to those
found for the hinged flywheel element, except that the resonance peak for the
fundamental resonance frequency of the actuator occurs at about 6.6 Hz. This is due
to the fact that the pinned shaft introduces an additional stiffness effect that rises a
little the fundamental natural frequency of the proof mass compared to the hinged

configuration.
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Figure 2.9. Open loop sensor—actuator FRFs for the actuator with flywheel attached
to base (a) and flywheel attached to proof mass (b). Classical configuration (Solid blue
lines). Hinged flywheel actuator (dashed black lines). Pinned flywheel actuator
(dashed-dotted dotted red lines).

The Nyquist plots in Figure 2.10 confirm the analysis presented with the Bode
plots. Figure 2.10a highlights that the Nyquist diagram for the feedback loop with the
classical proof mass actuator is characterised by a circle in the real negative quadrants
centred along the real axis, which is due to the resonance peak of the fundamental
natural frequency, and then a series of progressively smaller circles in the real positive
quadrants, centred along the real axis. The circle on the left hand quadrants indicates
that the feedback loop is only conditionally stable. More precisely the stability gain
margin is about 10 dB. The Nyquist plots for the feedback loops with the flywheel
either hinged (Figure 2.10b, d) or pinned (Figure 2.10c, e) to either the case (Figure
2.10b, c) or proof mass (Figure 2.10d, e) show similar characteristics than those found
for the feedback loop with the classical proof mass actuator apart from a very
important detail: in all four cases, the circle in the real negative quadrants is much
smaller than that found for the feedback loop with the classical proof mass actuator.
Thus, the feedback loops with the proposed actuators are characterised by much
higher gain margins, which reach the limit of about 31 dB for the hinged

configurations and about 27 dB for the pinned configurations.
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Figure 2.10. Nyquist plots of the open loop sensor — actuator FRFs. (a) Classical
configuration, (b) Hinged flywheel attached to case, (c) Pinned flywheel attached to
case, (d) Hinged flywheel attached to proof mass, (e) Pinned flywheel attached to
proof mass. The plots have been normalised such that the largest circle in the real
positive quadrants has unit diameter.

2.6 CONTROL PERFORMANCE

The performance of the feedback loops with the proposed flywheel actuators has
been assessed considering the total flexural kinetic energy of the hosting plate as
defined in Equation (2.50). The two plots in Figure 2.11 show the 3 Hz — 1 kHz spectra

of the kinetic energy per unit acoustic excitation for the plate without proof mass
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actuator, for the plate with open loop proof mass actuator and for the plate with the
closed loop feedback control systems using the proof mass actuator without flywheel
and with the flywheel either hinged or pinned to the case (Figure 2.11a) and to the
proof mass (Figure 2.11b) of the actuator. The feedback loops implement stable gains
with gain margin of about 2 dB.

The kinetic energy spectrum for the plain plate (dotted green lines), is
characterised by a dominant resonance peak at about 40 Hz, which is due to the
fundamental flexural natural mode of the plate. Above this resonance frequency, the
spectrum rapidly rolls off following a typical mass law for acoustic excitations [68].
The fundamental resonance peak is followed by other sharp peaks due to flexural
modes of the plate with one or both indices even, which are effectively excited by
acoustic waves [15], [68], [138].
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Figure 2.11. Total flexural kinetic energy per unit acoustic excitation of the plate
without proof mass actuator (dotted green lines), for the plate with open loop proof
mass actuator (thick dotted magenta line) and for the plate with the closed loop
feedback control systems using the proof mass actuator without flywheel (solid blue
lines) and with the flywheel either hinged (dashed black lines) or pinned (dashed-
dotted red lines) to the case (plot a) and to the proof mass (plot b) of the actuator.

When the classical proof mass actuator is mounted to the plate (thick dotted
magenta lines), the amplitude of the resonance peak of the fundamental mode is
rounded off by about 11 dB. At higher frequencies the actuator produces much
smaller effects, which are negligible. When for the same actuator the feedback loop is
closed (solid blue line), with a 2 dB signal gain margin, an additional 22 dB vibration
reduction is noticed at the fundamental resonance frequency. Instead, when the

feedback loops using the proposed proof mass actuator with the flywheel is
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implemented an additional 39 dB for pinned (dashed-dotted red lines) and 48 dB for
hinged (dashed black lines) either to the case (plot a) or to the proof mass (plot b)
vibration reduction is noticed at the fundamental resonance frequency. This is
principally due to the improved stability properties of the control loops with these
actuators that can implement a much larger feedback control gain. The two plots
clearly show that the feedback loop with the classical proof mass actuator also
generates a rather high control spillover effect at the fundamental resonance
frequency of the actuator at about 19.9 Hz. In contrast, the feedback loops using the
proposed actuators, produce much smaller control spillover effect at the fundamental
resonances at about 4.7 and 6.6 Hz.

To better asses the effectiveness of the proposed control systems, the 1 Hz to 1 kHz
frequency averaged plate kinetic energy reduction is considered. The reductions are
normalised with reference to the frequency averaged kinetic energy of the plate with
open loop control systems. Figure 2.12 shows the reduction of the frequency average
kinetic energy when the feedback loops are closed with increasing feedback control
gains. The solid blue lines in the two plots indicate that the feedback loop with the
classical proof mass actuator produces up to about 10 dB reduction of the frequency
averaged kinetic energy when the maximum stable gain is implemented as marked
with blue circles in Figure 2.12. Alternatively, the feedback loops using the proof mass
actuator with the flywheel hinged (dashed black lines) either to the base (Figure 2.12a)
or to the proof mass (Figure 2.12b) can implement much larger feedback control gains,
as shown in Figure 2.10, such that the frequency averaged kinetic energy of the plate
is reduced by up to 21 dB, as marked with black circles in Figure 2.12. The feedback
loops using the proof mass actuator with the flywheel pinned (dashed-dotted red
lines) either to the base (Figure 2.12a) or to the proof mass (Figure 2.12b) can
implement slightly lower feedback control gains compared to hinged configuration,
such that the frequency averaged kinetic energy of the plate is reduced by 19 dB as
marked with red circles in Figure 2.12. It should be emphasised that the improved
control performance are obtained thanks to the possibility of implementing about
20 dB higher control gains, that is about one order of magnitude higher control
signals. Thus, it is important the scale of the actuator, and in particular the scale of
the coil, can withstand the high current signals that would be fed to the coil when the
maximum feedback control gains are implemented [54], [55], [87].

Figure 2.12 also shows the predicted frequency average kinetic energy when the
feedback loops are closed with increasing feedback control gains above the stability

gain margins. The dotted blue lines in the two plots indicate that the feedback loop
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with the classical proof mass actuator could produces up to about 20 dB reduction of
the frequency kinetic energy when the feedback loops would allow implementing
29 dB signal gain. Instead, the feedback loops using the proof mass actuator with the
flywheel either hinged (dotted black lines) or pinned (dotted red lines) to the base
(Figure 2.12a) or to the proof mass (Figure 2.12b) could produces up to about 22 dB
reduction of the frequency kinetic energy when the feedback loops would allow
implementing 37 dB signal gain.

Figure 2.12 shows that implementing high signal gains lead to drop of the feedback
loop effectiveness and control performance. High signal gains lead to the pinning
effect of the rectangular plate at the control position. Thus, the implemented feedback
loops generate additional pinning point, which instead of reducing vibrations of the

structure change its dynamics.
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Figure 2.12. Reductions of the 1 Hz — 1 kHz frequency averaged kinetic energy
produced by the feedback loops using either the classical inertial actuator (solid blue
lines) or the proposed proof mass actuators with the flywheel either hinged (dashed
black lines) or pinned (dashed-dotted red lines) to the case (plot a) and to the proof
mass (plot b) of the actuator. The doted lines show predicted frequency averaged
kinetic energy produced by the feedback loops using the inertial actuators.
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2.7 PARAMETRIC STUDY

The parametric study presented in this paragraph investigates several aspects of
influence of the flywheel element on the performance and the static deflection of the
inertial transducer. In the last part of this paragraph, the scaling study investigates
how size influences the design of the proposed flywheel proof mass actuators in order

to have feedback loops with high gain margins and thus high vibration control effects.

2.7.1 Performance

The simulation results presented in the previous two sections have shown that
adding the flywheel element in the proof mass actuator increases the stability gain
margin of the feedback loop and consequently the control effectiveness of the
feedback loop. The flywheel introduces an additional inertia effect which is
proportional to the relative acceleration of the proof mass with reference to the case
of the actuator. As reported in Equation (2.22), this inertia effect is given by I, /12,
where I, = %mWR,f,. Thus it depends on the mass of the flywheel, m,,, the external
radius of the flywheel R,, and the radius 7, of the pinion rack gear mechanism. A
parametric study is therefore introduced to assess how the control effectiveness of the
feedback loops using the four proposed actuators vary with the mass and the
geometry of the flywheel. The maximum reduction of the frequency averaged kinetic
energy considered in previous section is plotted with reference to the radius ratio
R,, /7, and with reference to the mass ratio m,,/M,. The four plots in Figure 2.13 show
that with all flywheel proof mass actuators considered in this study, the control
performance of the feedback loops improve as the ratio R, /7, and the ratio m,,/M,
increases. In other words, the performance of the feedback loop improves as the
inertia of the flywheel is augmented by either increasing the outer radius of the
flywheel R, or by magnifying the conversion of the axial stroke into the angular
oscillation of the flywheel, i.e. by reducing the radius 7, of the pinion rack gear
mechanism. Also the performance of the feedback loops improves when the balance
between the masses M,, and m,,, whose sum is assumed constant, i.e. M,, + m,, = M,

is shifted towards the mass m,, of the flywheel element.
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Figure 2.13. Maximum reductions of the 20 Hz — 1 kHz frequency averaged kinetic
energy produced by the feedback loops using the proposed actuators with the
flywheel either hinged (a) or pinned (b) to the case of the actuator or the flywheel
either hinged (c) or pinned (d) to the proof mass of the actuator.

2.7.2 Static deflection

As discussed in the introduction, to improve the stability, and thus control
performance of feedback loops with proof mass actuators, the fundamental natural
frequency of the actuator has to be kept the lowest possible. However, this condition
contrasts with the need of limiting the static displacement of the actuator proof mass
to allow for a correct operation of the actuator also in presence of shocks or fast
movements of the hosting structure, which could cause undesired stroke saturation
effects that would lead to instability of the feedback loops.

Considering the models in Figure 2.1, the static deflection is given by:

oM,
Tk

) (2.58)

for the classical configuration (Figure 2.1a), where o is the nominal gravitational
acceleration. Also, the static deflections for the actuator with the flywheel hinged
(Figure 2.1b) or pinned (Figure 2.1c) to the case are given respectively by:

oM, oM,
b6=——, 6=
k K + k_,%, (2.59)

Tw
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and the static deflections for the actuator with the flywheel hinged (Figure 2.1d) or

pinned (Figure 2.1e) to proof mass are given respectively by:

_oMy+m,) o0y +m,)
K ot B (2.60)
n

w

é

Figure 2.14 shows how the static deflection varies with reference to the radius ratio
R,, /7, and with reference to the mass ratio m,,/M,. When the flywheel is hinged to
the base, Figure 2.14a shows that the static deflection tends to diminish as the balance
of the actuator mass M,, + m,, = M, is shifted towards the flywheel element m,,. Yet
the static deflection does not vary with the radius ratio R, /7, that controls the
rotational inertia effect of the flywheel. In fact, the rotational inertia of the flywheel
does not contribute to the weight of the proof mass and thus does not produce effects
on the static deflection. If instead the flywheel is elastically pinned to the base, as
shown in Figure 2.14b, the radius ratio R,, /7, influences the static deflection. This is
because the radius 7, of the pinion rack gear mechanism affects the axial stiffness
effect produced by the torsional stiffness of the shaft used to pin the flywheel to the

actuator base.
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Figure 2.14. Static deflection of the actuator with the flywheel either hinged (a) or
pinned (b) to the case of the actuator or the flywheel either hinged (c) or pinned (d)
to the proof mass of the actuator.
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When the flywheel is hinged to the proof mass, Figure 2.14c shows that the static
deflection does not depend on the balance of the actuator inertial mass since, both the
proof mass M,, and the flywheel mass m,, contribute to the total weight of the
suspended components, which influences the static deflection. As seen for the
previous two configurations, also in this case the static deflection does not vary with
the radius ratio R, /7, since it controls the rotational inertia effect of the flywheel
only. However, if the flywheel is elastically pinned to the case, as shown in Figure
2.14d the radius ratio R,, /1, influences the static deflection since the radius 7, of the
pinion rack gear mechanism affects the axial stiffness effect produced by the torsional
stiffness of the shaft used to pin the flywheel to the actuator case.

In summary the plots in Figure 2.14 suggest that, to reduce the static deflection, it
is preferable that the flywheel is hinged or pinned to the case of the actuator and the
balance of the actuator mass M,, + m,, = M, is shifted towards the flywheel element,
i.e. towards m,,. Also, when the flywheel is pinned, with a shaft of given stiffness,
either to the case or proof mass of the actuator, the static deflection tends to decrease
as the radius 7, of the pinion rack gear mechanism is lowered, i.e. as the conversion

factor between axial and angular motions is increased.

2.7.3 Scaling study

The scaling study presented in this section investigates how size influences the
design of the proposed flywheel proof mass actuators in order to have feedback loops
with high gain margins and thus high vibration control effects. Following the scaling
study presented in references [54], [55], the scaling laws of the proof mass actuators
mechanical and electrical properties are first revised. The scaling laws for the
mechanical parameters of the actuators are then introduced. As presented in
references [74], [140] the scaling laws are defined with the [L"] notation, where n
identifies the power of the linear dimension L. The scaling study presented here
considers an isometric (or isomorphic) scaling, which preserves the aspect ratio and
geometric integrity of the actuator components [74], [87], [89].

The scaling laws for the inertia, stiffness and damping properties of the principal
components of the classical and proposed proof mass actuators are derived in this
section in view of the lumped parameter models shown in Figure 2.1. The first
parameter analysed, of the actuator physical properties, is the suspended inertial

mass. The linear inertia effects depend on the mass of the actuator components, that
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is the mass of the elastically suspended magnetic element M, or M,,, the mass of the
case m;, and the mass of the flywheel m,,, which are all proportional to the material

density and volume of the components, so that:
Mg < [LP] , My, < [L%] , my < [L%] , m,, o< [LP]. (2.61)

The angular inertial effect produced by the rotation of the flywheel is instead
proportional to the polar moment of inertia of the flywheel, which for a disc element
is given by I,, = im,, R}, where R,, is the external flywheel radius. Thus, the flywheel

angular inertia effect scales with:
Ly = s RE o [L5]. (2.62)

Instead, the flywheel axial inertia effect scales with:

I
r—”; « [L%], (2.63)
w

where 7, is the radius of the pinion-rack gear mechanism. As can be found in
reference [140], the axial and torsional stiffness of the springs holding the proof mass
and flywheel elements depends on the length of the elastic element (spiral metal
sheet, metal coil, tiny shaft, etc.):
1 w 1
koo [LY] , — o [LY]. (2.64)
rW
The principal damping mechanism is given by the viscous damping effect produced
by the air flow in the gap between the magnet and the coil. Considering the axial and
torsional damping of the suspension system as presented in previous work [74] this
parameter scales with the following factor:
c
co [LY] , = o [LY]. (2.65)
rW
The first parameter analysed, of the actuator mechanical properties, is the static
deflection of the proof mass, which for the classical actuator (Figure 2.1a) is given by:
_ oM,

*=%

« [L2], (2.66)

where ¢ is the nominal gravitational acceleration. Also, the static deflections for the
actuator with the flywheel hinged to either the case (Figure 2.1b) or proof mass
(Figure 2.1d) are given respectively by:

M
8=0TWOC[L2] .5

_ oM, +my)

e [12] (2.67)
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and the static deflections for the actuator with the flywheel pinned to either the case

(Figure 2.1c) or proof mass (Figure 2.1e) are given respectively by:

oM,, oM, + m,,)
=——— « [L

§=——7—«|[L?] , 6= [L7].
vl e 269
TW rW

Thus, in all cases, the static deflection of the proof mass scales proportionally to L%.
Also, it is noticed that the design with the pinned flywheel could reduce the static
displacement, particularly when the flywheel is pinned to the case of the actuator.
The damping ratio for the classical actuator (Figure 2.1a) is given by:
c
2./kM,

{= o [L71]. (2.69)

Also, the damping ratio of the actuator with the flywheel hinged to either the case
(Figure 2.1b) or proof mass (Figure 2.1d) are given respectively by:

B c ~ _ c ~
YR B T AL

w

and the damping ratio of the actuator with the flywheel pinned to either the case

(Figure 2.1c) or proof mass (Figure 2.1e) are given respectively by:

{ = . < [L7]

kW IW
ZJ (x W) (11 W)
C

(= ——— — o (1)
2\/(k+%)(MW+mw+%)

Thus, in all cases, the damping ratio scales proportionally to L™!. The fundamental

(2.71)

natural frequency of the classical actuator (Figure 2.1a) is given by:

W, = jMEa o [L71]. (2.72)

Also, for the actuator with the flywheel hinged to either the case (Figure 2.1b) or the
proof mass (Figure 2.1d) they are given respectively by:




Velocity Feedback With Flywheel Actuator

and for the actuator with the flywheel pinned to either the case (Figure 2.1c) or the

proof mass (Figure 2.1e) they are given respectively by:

(2.74)

These expressions show that the natural frequencies for the five actuator
configurations scales proportionally to L™1. Also, it is noticed that the designs with
the flywheel pulls down the natural frequency, particularly when the flywheel is
hinged to the proof mass. In general it can be concluded that on one hand, to reduce
the static displacement, configurations (b) and (c) shown in Figure 2.1 would be
preferable, since the flywheel would not increase the amount of suspended mass and
actually, for configuration (c), the additional torsional pinning spring would increase
the stiffness holding the suspended mass, as shown in Equation (2.68). On the other
hand, to reduce the fundamental natural frequency of the actuator, configurations (d)
and (e) shown in Figure 2.1 would be preferable, since the inertia of the proof mass
would be enhanced by the linear and angular inertia of the flywheel. Possibly the best
compromise that would guarantee a reduction of both the static displacement and the
fundamental natural frequency of the actuator is given by configuration (c) shown in
Figure 2.1, which actually uses the more practical torsional pinning spring to fix the
flywheel. The equations derived above and Equations (2.62) and (2.63) also highlight
that it is important the ratio between the radius of the flywheel R, and the radius of
the pinion-rack gear mechanism 7, should be as high as possible to guarantee the
highest angular inertia effect I, with the smaller linear inertia m,, penalty.

As discussed in references [54], [55], [87], [88], the scaling laws of the force
generated by the moving magnet actuators, can be considered based on three major
cases: a) constant current density in the coil, b) constant heat dissipation rate, c)
constant temperature rise across the winding. The scaling factors for the three cases

are summarised in the Table 2.8.

Table 2.8. Scaling laws for coil-magnet actuator transduction effect.

Transduction hypothesis Actuation force F, scaling law
Constant current density [L3]
Constant heat dissipation rate [L%°]
Constant temperature rise [L?]
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In many practical cases, the constant temperature assumption is employed since
the coil winding overheating problem typically limits the actuation force produced

by the transducer. In this case, the generated force is given by:
F, = —Bli, « [L?], (2.75)

where B is the magnetic field in the gap where the coil is housed and [ is the length
of the winding. For a given material of the coil winding, the law of heat conduction is
given by:

. dT

Q — tCASE’ (2.76)

where @ is a heat power dissipation, ¢, is the thermal conductivity, A; is the total area
of conductor, T is the temperature and z is the normal to the surface A; of heat flow.
Additionally it is known that:

Q = RiZ, (2.77)

where R is the conductor resistance and i, is the actuator driving current. Substituting
Equation (2.76) into Equation (2.77) for the assumption that the heat rise AT is kept

constant, the actuator driving current is given by:

1tA dT
— —
R ¢ *°dz

iqg = [L']. (2.78)
Thus, assuming constant temperature in the coil, the current flow in the coil scales
proportional to L'. Also according to Equation (2.75) the force generated by the
transducer scales proportionally to L2.

Figure 2.15 shows the graphical representation of the scaling laws for the physical
properties (Figure 2.15a) and mechanical parameters (Figure 2.15b) of the flywheel
proof mass actuators. In general, it can be concluded that when the actuator is down-
scaled the fundamental natural frequency and damping ratio tend to rise, the static
displacement and the actuation force tend to decrease. Thus, there is no univocal
conclusion on the best scaling law for a coil-magnet proof mass actuator, which
ideally should be characterised by low fundamental natural frequency, high damping
ratio, low static displacement and high actuation force. Nevertheless, it could be
agreed that, since the flywheel element tends to increase the inertia effect, and thus to
reduce the fundamental natural frequency, without affecting the static displacement,
the proposed flywheel proof mass actuators are better suited than the classical proof

mass actuators for the implementation of small scale control units.
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Figure 2.15. Scaling laws for the physical properties (a) and mechanical parameters
(b) of a flywheel proof mass actuator. Flywheel angular inertia I,,, Mass of the
actuator M,, Flywheel axial inertia I,,, /12, Stiffness k, Damping coefficient ¢, Torsional
stiffness k,, /12, Torsional damping c,,/nZ, Electromagnetic force F,, Actuator static
displacement §, Driving current i,, Damping ratio ¢, Fundamental natural frequency
W

From a practical point of view it is worth to point out that the downscaling of the
actuators is not always simple and straightforward task, since external forces that can
be neglected at macroscale may become dominant at the microscale level. The
frictional loads and stick-slip phenomena mainly determine the type of the flywheel
actuator configuration that can be used depending the size of the actuator. As it was
shown in previous section, the highest control performance can be obtained for the
hinged configuration of the flywheel proof mass actuator. This configuration can be
efficiently used when the actuator is exposed to relatively high displacement of the
vibrating structure and when the stiction effect between the surfaces can be neglected.
The pinned configuration is more appealing for the micro actuators in which the
flexural hinges are used for motion conversion and where the dominant frictional

loads are no longer a problem.

2.8 CHAPTER SUMMARY

This chapter has presented a new inertial electrodynamic actuator with a flywheel
element for velocity feedback control loops on flexible structures. Four different
configurations have been considered where the flywheel is either hinged or pinned

to either the proof mass or the case of the actuator. The study has introduced a lumped
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parameter model and an impedance — mobility electromechanical formulation for the
operation of the velocity feedback loop.

The kinetic and kinematic response of the classical and four proposed flywheel
proof mass actuators were first investigated considering spectra of six
electromechanical properties. The actuators were compared based on FRFs of the base
impedance, the actuators blocked force per unit driving current, the actuators
transduction FRF, the actuators blocked force per unit applied voltage, the electrical
impedance and the actuators proof mass stroke per unit driving current.

The base impedance study has shown that a classical proof mass actuator is
characterised by low and high frequencies mass—impedances proportional
respectively to the total and the case mass of the actuator, which are connected via a
resonance peak and antiresonance low linked by a stiffness—-impedance segment. The
actuators with the flywheel element present a similar impedance spectrum although
the high frequency mass-impedance is in this case nearly equal to the low frequency
mass—-impedance. In addition, the amplitude of the resonance peak and antiresonance
low are much smaller as the resonance and antiresonance frequencies are moved to
lower frequencies and are much closer to each other. Thus, the proposed flywheel
actuators are characterised by a constant mass-impedance effect in the whole
frequency range except a very small band delimited by the fundamental resonance
and antiresonance frequencies of the actuator.

The blocked force per unit current fed to the actuator has highlighted that when
the actuator with the flywheel element is used, the additional inertia effect produced
by the oscillations of the flywheel tends to lower the low frequency range where the
produced force is out of phase with the driving current. However, the axial inertia
effect produced by the flywheel element also lowers the constant force effect
produced above fundamental resonance frequency of the actuator.

The transduction FRF is characterised with the equal expression to the blocked
force per unit current fed to the transducers. Thus, the low-frequency and high-
frequency asymptotic expressions of the blocked force per unit current fed to the
classical and four proposed flywheel proof mass actuators can be also used for the
characterisation of the actuator transduction FRF.

The blocked force per unit voltage applied to the actuator has highlighted that the
electrical impedance of the coil rounds off the peaks at the fundamental resonance
frequencies of the actuators. Additionally, the inductive effect of the actuator coil
starts to take important role at higher frequencies making the produced blocked force

drop with frequency.
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The results of the electrical impedance showed that the fundamental resonance
frequency of the transducers could be lowered both in frequency and amplitude with
the axial inertia effect produced by the flywheel element.

Finally, the stroke study has shown that, at low frequencies below the
fundamental resonance frequency of the actuators, the proof mass stroke of the
actuators with the flywheel hinged to either the actuator base or actuator proof mass
is the same as that of the classical actuator and it is controlled by the axial stiffness of
the suspension system. Alternatively, the proof mass stroke of the actuators with the
flywheel pinned to either the actuator case or actuator proof mass is smaller since it
is controlled by a higher stiffness effect due to the axial stiffness of the suspension
system and the torsional stiffness acting on the flywheel.

The stability and control performance of velocity feedback loops using classical
and four proposed flywheel proof mass actuators was considered assuming that the
control loops operate on a thin rectangular panel excited by an acoustic plane wave.
The stability analysis has shown that for all configurations of the actuator, the
addition of the flywheel element increases the gain margin of the feedback loop
without any increase of the actuator mass. As a result, the feedback loops using the
proposed proof mass actuators with the flywheel element are characterised by
improved control performance. More specifically, the maximum vibration reduction
produced by a feedback loop with a classical actuator is about 10 dB while the
maximum vibration reductions produced by the feedback loops with the proposed
flywheel actuators is about 21 dB. Results showed that the actuators equipped with
the flywheel element attached either to base or to proof mass present similar control
performance. However, slightly higher reductions were obtained when the flywheel
was attached to the proof mass. The control performance study has highlighted that
when the actuator with the flywheel element is used to implement a velocity
feedback, the additional inertia effect produced by the flywheel element tends to
lower the low frequency range where the destabilising positive feedback effect occurs.
The parametric study has also been introduced to investigate both the vibration
control performance of the feedback loops with the proposed actuators and the static
deflection of the proposed actuators, which influence the robustness of the control
system. The study has shown that both vibration control effectiveness and static
deflection are improved when the balance of the actuator mass M,, + m,, = M, is
shifted towards the mass m,, of the flywheel element. Secondly, when the radius of

the flywheel R, and thus polar moment of inertia of the flywheel, is increased. Finally
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when the radius 7, of the pinion rack gear mechanism for the conversion of the axial
stroke into the angular oscillation of the flywheel is reduced.

The parametric study presented in this chapter suggests a new configuration of the
proof mass actuator, where the inertial mass of the actuator M, = M,, + m,, is
primarily allocated to the flywheel mass m,, and the proof mass M,, is reduced to the
minimum compatibly with the construction constraints. The improved control
performance was obtained thanks to the possibility of implementing higher control
gains. Thus, it is important to scale the electromechanical components of the actuator
that could withstand the high current signals that would be fed to the coil when the
maximum feedback control gains are implemented.

The scaling study has considered a linear model of the actuator, which does not
take into account the typical nonlinear effects of friction in the hinge joint and the
nonlinear effects that arise for the gear meshing in the pinion rack mechanism used
to convert the axial oscillations of the proof mass into angular oscillations of the
flywheel. Nevertheless, the study has shown that there is no univocal conclusion on
the best scaling law for a coil-magnet proof mass actuator. For instance to obtain low
fundamental natural frequency and large control forces the actuator should be up-
scaled. Alternatively, to have low static displacement, the actuator should be down-
scaled. Nevertheless, the study has shown that the proposed flywheel element could
be used to effectively reduce the fundamental natural frequency of the actuator

allowing then the use of small-scale devices.
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3

FLYWHEEL COIL MAGNET TRANSDUCER

This chapter presents the mechanical design and characterisation of
electromagnetic proof mass actuators equipped with two different flywheel elements.
Both prototypes are based on a standard and commercially available coil magnet
linear transducer. In both configurations, the flywheel element is mounted in parallel
with the actuator suspension spring and connects the magnet with coil armature.
Thus, the relative axial motion between the inner magnet and exterior armature coil
element produces the rotational motion of the flywheel element. Furthermore, the
prototypes are designed to have similar physical characteristics to the configurations
presented in the analytical study of the previous chapter.

In the first configuration, the classical coil-magnet transducer is equipped with a
flywheel element designed in from of a balanced beam (rocker arm) having lumped
masses at the ends, which produces the desired rotational inertia effect. The flywheel
element is designed in such a way as to allow changes in the position of the lumped
masses that control the rotational inertia. The first prototype uses hinges, similarly to
the configuration presented in the analytical study of the previous chapter. Thus, in
this chapter the first prototype of the flywheel inertial actuator is called “hinged
configuration”. The linear motion of the actuator is converted into a rotation of the
flywheel by hinging one side of the rocker arm to a pin connected to the inner magnet,
while the other side to a bracket fixed to the external coil armature. The bracket and
the rocker arm was designed with four different hinging points, so that the conversion
offset from axial to rotational motion could be changed and thus the rotational inertia
effect can be modified.

The second prototype is equipped with a round flywheel element with dimensions
optimised in such a way as to minimise weight and to maximise polar moment of
inertia. Compared to the first prototype, this configuration adopted the pivot bearings
in order to minimise stick-slip effects and reduce the backlash effects between the
moving components. The flywheel element is attached via two flexural bearings to
the bracket fixed to the external coil armature. The linear motion of the actuator

is converted into a rotation of the flywheel by a pushing pin link attached to the inner
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magnet and the third pivot bearings that was mounted on one of the flywheel arms.
The frictionless flexural bearings used in this prototype can be modelled as a torsional
springs, similarly to the second configuration presented in the analytical study of the
previous chapter. Thus, in this chapter the second prototype of the flywheel inertial
actuator is called “pinned configuration”.

The first part of this chapter presents a detailed design of the flywheel prototypes.
Selection of the components and assembly process is described in order to clarify the
operation of each prototype. The second part of this chapter presents the
characterisation of the electromechanical properties. Also, the experimental tests
carried out on a new prototypes are compared with the simulation results based on
the lumped parameter models. The mathematical formulations of the
electromechanical model presented in the previous chapter are used to obtain the
simulation results that are contrasted with experimental results. Additionally, the
results for both flywheel prototypes are compared with the results for the classical

coil magnet linear actuator having equal mass as two flywheel actuator prototypes.

3.1 ELECTROMAGNETIC TRANSDUCER

The electromagnetic (EM) transducer presented in Figure 3.1, described as
reference or classical configuration in the remaining part of this document, was used
as a base for designing two flywheel prototypes. The EM transducer produced by
H2W Technologies (NCM02-17-035-2F) shown in Figure 3.1a, can be used either as an
actuator or as an energy harvester. It was decided to use this actuator for building the
prototypes mainly due to the availability, which did not require any additional
purchasing and shipment delay. Moreover, the actuator showed favourable
properties for the active vibration control applications, which are high damping
coefficient and large stroke without hard end-stops. The symmetric arrangement of
the transducer is ideal for designing new prototypes. The transducer provides easy
access and connections from both sides (top and bottom shown in Figure 3.1) to the
magnet element and to the external coil armature, which can be used as an inertial
mass. Three symmetrically distributed tapped holes on both sides of the coil armature
and one in the centre of the magnet element enable to integrate additional elements
in the transducer to build a new prototype. Moreover, the tapped holes on both ends

allow to use this actuator either as an inertial or as a reactive transducer.
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The transducer is designed with a cylindrical magnetic element placed in the
centre of the round coil armature as shown with the schematic section view in Figure
3.1b. The magnet is suspended with two flexural axial springs that are attached to
both sides of the coil armature. The two springs are characterised by soft axial
stiffness and comparatively much higher transverse stiffness. The springs allow this
transducer to work in axial oscillatory motion, so that it can move as a balanced spring
mass system. The damping effect in this actuator is created by the eddy currents
generated between the magnet and the metal armature around the external coil and
by the air damping that develops in the gap between the coil and the magnet. The
design allows to us this actuator either as a moving magnet or as a moving coil
armature actuator. However, from the practical point of view, the actuator is used as
a moving coil actuator due to heavier inertial mass (lower fundamental resonance
frequency) and attachment simplicity to a hosting structure as it requires only one
screw. Design studies of a similar electromagnetic actuator can be found in references
[141]-[143] for example.

(a) . \ (b) _I_I m |

o LT

Figure 3.1. Coil magnet transducer. Picture (a) and schematic section view (b).

The actuator presented in Figure 3.1 can be easily adopted for prototypes thanks
to three 4-40 threaded holes on each sides of the coil armature that can be used to
attach the bracket support for the flywheel prototype. The electromechanical
properties of the actuator are summarised in Table 3.1. The electromechanical

properties of the EM transducer were obtained from the producer datasheet [144].
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Table 3.1. Electromechanical properties of the transducer [144].

Parameter Value
Stroke 5.6 mm
Magnet Mass 115 g
Total Mass 300 g
Resistance at 20°C 22 Q)
Inductance at 20°C 4.35 mH
Force Constant 22.5 N/A
Back EMF 22.5V/m/s
Force at 100% Duty 15.6 N
Power at 100% Duty 11.0 W
Current at 100% Duty 0.70 A

3.2 HINGED CONFIGURATION OF THE FLYWHEEL TRANSDUCER

The first prototype considered here is based on the hinged configuration. Figure
3.2 shows the computer added design (CAD) view of the hinged configuration of the
flywheel transducer. Rendered view is shown in Figure 3.2a while the schematic view
is shown in Figure 3.2b. The analytical study presented in the previous chapter
showed that the actuators used in the velocity feedback control system present better
performance when the flywheel element is attached to the inertial mass. Thus, the
hinged prototype is designed with the flywheel support that is attached to the heavier
coil armature of the reference actuator, which is presented in Figure 3.1. The flywheel
element was designed with rocker arm having several holes at both ends. The holes
are used to attach the lumped masses that increase the inertia of the rocker arm as
they are fixed further apart from the centre point of rotation. The position of the
masses can be easily shifted to change the polar moment of inertia of the flywheel
element. A special bracket was designed to hold the rocker arm element that
is connected to a coil armature with three 4-40UNC screws. The linear motion of the
actuator is converted into a rotation of the rocker arm by hinging one side of the arm
to a bracket and the other side to a yoke that is attached to the inner magnet. For both
connections two screws are used that act as pins. The bracket and the rocker arm was
designed with four additional holes that are used to change the position of the pin
and to change the hinging points. By changing the position of the pin, the relative

offset between the axis of the actuator linear motion and axis of the flywheel
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rotational motion is shifted. This parameter has influence on the axial inertia effect
produced by the rocker arm element and corresponds to the small radius defined
with 7, symbol in the theoretical study of the previous chapter. The fabricated
components were made of aluminium while the pins and screws for the masses were
made of steel. The physical properties of the hinged inertial transducer with the
flywheel element are summarised in Table 3.2. The technical drawings of the
manufactured components for hinged EM flywheel prototype are presented in

appendix A.
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Figure 3.2. Design view of the hinged configuration of the flywheel prototype.
Rendered view (a) and schematic view (b).

Table 3.2. Physical properties of the hinged flywheel inertial actuator.

Parameter Value
Inertial mass 0.205 kg
Case mass 0.117 kg
Flywheel mass with 2 ballasts 0.021 kg
Flywheel mass with 4 ballasts 0.033 kg
Torsional damping ratio 0.005
Hinged flywheel inertia value Depends on the ballast position
4 Offset values 17,13,9,5 mm

Axial flywheel mass effects Vary
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3.2.1 Hinged configuration: rocker arm design

The design of the hinged configuration started from the rocker arm element. Figure
3.3 shows the designed rocker arm element for the hinged configuration of the inertial
actuator. The flywheel element was designed in a form of a rocker arm out of a long
beam. Several connecting holes were designed in the rocker arm. The six holes at both
ends are used to attach the lumped masses in a form of ballasts that increase the polar
moment of inertia of the rocker arm. Five holes for the pins were designed on the
front-left side of the rocker arm. Particular attention was given to the flywheel centre
of gravity. Figure 3.3 shows the location of the flywheel centre of gravity when four
lumped masses are attached to the rocker arm. In order to obtain the centre of gravity
that intersects the axis of the central hole, the two additional holes were designed on
the front-right side of the rocker arm.

The offset from the flywheel centre point (defined with the black-white circle) for
each axis direction is:

X=0.000 mm (red arrow in the drawing)

Y =0.000 mm (green arrow in the drawing)

7 =0.000 mm (blue arrow in the drawing)

Figure 3.3. Flywheel element of the hinged configuration with marked centre of
gravity.

The rocker arm was designed to be equipped either with two or with four ballasts.
However, to ensure that the flywheel centre of gravity always intersects the axis of
the central hole, the ballasts must be equally distributed along the rocker arm.
Additionally, the ballasts must be placed on the opposite sides of the rocker arm. The
mass distribution of the ballasts must be mirrored with respect to the XY surfaces

shown in Figure 3.3. To prevent mistakes while mounting the flywheel element in the
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brackets and yoke the rocker arm was designed with just one 2.7 mm hole for the
M2.5. This ensures that the centre of gravity of the flywheel element is always

attached to the inertial mass of the actuator via the bracket.

3.2.2 Assembly process of the hinged prototype

The assembly process of the hinged rocker arm prototype is presented in order to
clarify the structure of the prototype. Figure 3.4 shows the exploded view of an
actuator with numbered parts. The exploded view is shown to demonstrate the
principal concept and the mechanism of transforming linear motion of the actuator
into rotational motion of the cker arm element. The assembly process of the hinged
configuration of the flywheel prototype is performed in several steps.

Firstly, the bracket (No. 1) needs to be attached to the actuator (No. 2) with three
4-40UNC screws (No. 3). Then the yoke (No. 12) should be attached to the central
connector of the actuator (No. 2) with the additional 4-40UNC screw (No. 4). The two
holes in the fins of the yoke (No. 12) must be concentric and aligned with the holes of
the bracket (No. 1). Then the rocker arm (No. 5) can be placed between the fins of the
yoke (No. 12). When the rocker arm are placed in the position the M2x0.4 screw (No.
7) can be pushed through the 4.2 mm hole of the bracket (No. 1) and should go
through the hole of the yoke (No. 12) and one of four 2.2 mm holes in the rocker arm
(No. 5). The M2 screw (No. 7) should be pushed all the way through and slightly tight
with the M2 nut (No. 13) on the other side of the yoke (No. 12). After that, the M2.5
screw (No. 11) can be used to attach the rocker arm (No. 5) with the bracket (No. 1).
To connect both components one of the four 2.7mm holes in the bracket (No. 1) and
one g2.7mm hole in rocker arm (No. 5) should be used. Finally, the screw should be
blocked (No. 11) with M2.5 nut (No. 8). To create sufficient polar moment of inertia
the ballasts (No. 16) that act as a lumped masses should be attached to the rocker arm
(No. 5). In total four ballast were fabricated, allowing to attach two of them on each
side of the rocker arm. The M2.5 screws (No. 10) and M2.5 nuts (No. 9) are used to
attach the ballasts (No. 16) to the rocker arm (No. 5). The lumped masses must be
attached on each side of the rocker arm with the same distance to the centre of the
rocker arm. This ensures that the flywheel centre of the gravity intersects the axis of
rotation defined with the M2.5 screw (No. 11). With the configuration, the mass of the
flywheel element is supported by the M2.5 screw (No. 11) that is attached to the

bracket (No. 1) and to the inertial mass of the actuator (external coil aramature).
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The advantage of the hinged configuration is that the relative distance between the
hinges can be easily changed and thus the produced axial inertia effect can be easily

modified.

Figure 3.4. Exploded view of the designed hinged configuration of the flywheel
prototype.

3.2.3 Backlash and play cancelation

After first assembly of the hinged prototype, it was observed that the screws,
which are used as pins, do not ensure proper contact between the elements. The play
between the pin and the bushing in the bracket was too big to create rotational motion
of the rocker arm element. In order to improve the performance and establish tight
connection between the pins and the bushings, the two screws were wrapped with
aluminium tape, as shown in the Figure 3.5. This additional aluminium tape reduced
nonlinearities and cancelled backlash and play between components. The

preliminary tests showed that the pins with aluminium tape present sufficient
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performance to transform the linear motion of the actuator into rotational motion of
the flywheel element. It was also observed that the flywheel mechanism was working
better and smoothly when the pins were dry, rather than when a small amount of

lubricant was used.

Figure 3.5. Screws used as a shafts wrapped with the aluminum tape.

3.3 PINNED CONFIGURATION OF THE FLYWHEEL TRANSDUCER

The second prototype of the flywheel inertial actuator presented in Figure 3.6 is
based on the pinned configuration. Rendered view is shown in Figure 3.6a while the
schematic view is shown in Figure 3.6b. The physical properties of the designed
pinned inertial actuator with the flywheel element are summarised in Table 3.3. The
analytical study presented in the previous chapter showed that a velocity feedback
control loop presents better control performance when the flywheel element of the
actuator is attached to the inertial mass. Thus, also the pinned prototype was
designed with the flywheel element attached to the heavier coil armature of the
reference actuator, which is presented in Figure 3.1. The flywheel element was
designed in a form of a round wheel with dimensions optimised in such a way as to
minimise weight and to maximise the polar moment of inertia. Compared to the
hinged prototype, this configuration adopted the flexural bearings in order to
minimise backlash and the play between the components. Additionally, the pivot
bearings reduced the stick-slip effects between the pins and bushings when the
actuator was performing small amplitude oscillations. The flywheel element is
supported by two flexural bearings attached to the bracket mounted on the external
coil armature of the inertial actuator. The linear motion of the actuator is converted
into a rotation of the flywheel by a pushing pin attached to the inner magnet. In the
preliminary design, the pushing pin was designed with the flexural hinge that
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transforms the linear motion of the actuator into rotational motion of the flywheel
element. However, the first tests showed that the fabricated pushing pin did not
present the necessary flexibility. Thus, a different pushing pin was fabricated that was
equipped with a flexural bearing. On the one side, the pushing pin was attached to
the inner magnet of the actuator while on the other side via frictionless pivot bearing
to the one of the flywheel arms. The distance between the horizontal flywheel axis of
rotation to the vertical axis of the actuator linear motion was defined as a offset value.
This parameter has direct influence on the axial inertia effect produced by the
flywheel element and corresponds to a small radius defined with 7, symbol in the
theoretical study of the previous chapter. The fabricated components were made of
aluminium. The three frictionless flexural bearings used in this prototype can be
modelled as a torsional springs, similarly to the second configuration presented in the
analytical study of the previous chapter. Thus, in this remaining part of this document
the second prototype is called the pinned configuration. The technical drawings of
the manufactured components for pinned EM flywheel prototype are presented in

appendix A.
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Figure 3.6. Design view of the pinned configuration of the flywheel prototype.
Rendered view (a) and schematic view (b).
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Table 3.3. Physical properties of the pinned flywheel inertial actuator.

Parameter Value

Inertial mass 0.227 kg
Case mass 0.117 kg
Flywheel mass 0.019 kg
Torsional stiffness 0.003 Nmrad ™!
Flywheel inertia 6.8+ 107% kgm?
Pushing pin offset Ty = 6.4 mm
Axial flywheel mass effect 0.166 kg

3.3.1 Pinned configuration: flywheel element design

The designed flywheel element for the pinned prototype is presented in Figure 3.7.
The dimensions of the flywheel element were chosen based on results of the scaling
study presented in previous chapter. More specifically, the dimensions of the
flywheel element were optimised in such a way as to minimise weight and to
maximise the polar moment of inertia. A particular emphasis was given to obtain the
centre of flywheel gravity exactly in the centre of the flywheel hole where the
supporting flexural bearings are mounted. Figure 3.7 shows the centre of gravity
offset from the flywheel central point (defined with the black-white circle) for each
axis direction:

X =0.002 mm (red arrow in the drawing)

Y =0.001 mm (green arrow in the drawing)

7 =-0.003 mm (blue arrow in the drawing)

The flywheel was designed with two groves in the external ring. The bottom grove
was designed for the pushing pin that had to be placed as close as possible to the
flywheel centre of gravity. Instead, the top grove was designed to counterbalance the
bottom grove and to equilibrate the flywheel centre of gravity. The two tenons on the
top and left arm of the flywheel element were designed as connectors for the pushing
pin. Finally, the small grove on the right arm of the flywheel element was designed
to prevent contact between the moving parts of the pushing pin and the flywheel
element.

Based on the designed flywheel element, the dimensions of the bracket support
for the actuator was also optimised. The flywheel was fabricated out of aluminium

with total mass of 19g. The previsioned polar moment of inertia over the Z axis (blue
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arrow in the drawing) with CAD software equals 6.8 - 107® kgm?. The dimensions of
the pinned flywheel prototype components are presented in the detailed drawings

attached in annex 4.

b
Figure 3.7. Flywheel element of the pinned configuration with marked centre of

gravity.

3.3.2 Flexural rotational bearing

One of the key problems in designing small oscillatory mechanisms is backlash
and play between the components, especially when the tolerances between the parts
are much greater than the oscillation amplitude. In such case, the motion of the
actuator is not transmitted to the other component but it is dissipated in the backlash.
Additionally, the classical parts typically suffer from the wear effects and introduce
additional friction. Due to these constraints, the typical mechanisms as ball bearings
or hinges should be avoided in the design of the pinned configuration. Additionally
the flywheel is designed to perform rotational oscillations with small angles of
rotation. In case of small displacements and harmonic oscillations, the standard
mechanisms introduce nonlinear friction effect (stick-slip) that can disrupt proper
operation of the system.

One of the solutions to the described problem is to use monolithic structure with
compliant joints. The structure could be fabricated as a one single element with local
flexural hinges that could provide rotational motion of the flywheel. However, this
technique requires high precision machining typically based on Electrical Discharge
Machining (EDM). Furthermore, the components need to be fabricated out of special

materials that are strong, flexible and typically expensive.
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Another solution is to use commercially available components that could provide
required rotational motion. It was decided to use flexural bearings presented in
Figure 3.8 that are the cylindrical, limited rotational pivots, with a high radial and
axial stiffness with relatively low torsional spring rates. Depending on the torsional
spring stiffness, the angle of deflection could be reach up 30°. Two companies were
found that provide the flexural bearings:

- Riverhawk Company with the product called the pivot bearing [145]

- C-Flex Bearing Co. with the product called the C-Flex bearing [146]

Both companies are specialized in manufacturing flexural bearings.

Figure 3.8. Flexural bearings used in the pinned configuration of the flywheel
prototype [145].

The minimum torsional stiffness of the flexural bearings is 0.003 Nm/rad, which is
similar to the value of 0.001 Nm/rad used in the analytical study presented in the
previous chapter. The bearing itself is build out of two stainless steel sleeves held in
position by three leaf springs on two planes. There is no contact between the sleeves
eliminating friction and wear effects of the parts. Additionally, the bearings do not
require any lubrication making it low maintenance mechanisms. The three leaf
springs allow for the pivotal motion, while maintaining the self centring effect. The
external diameter of the bearings is 1/8in (3.175mm) with total length of a 0.2in
(5.08mm). The miniature size of the bearing allows to used them in the compact

mechanisms.

3.3.3 Pushing pin

The second challenge in the development of the pinned prototype is to design a
mechanism that could transform linear motion of the actuator into rotation of the
flywheel element. The pinion rack mechanism, commonly used in inerters and

considered in the theoretical study of the previous chapter, was rejected in the design
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of the pinned prototype. The pinion rack mechanism could be implemented in cases
characterised by large relative displacement. However, the small oscillations of the
inertial actuator in the prototype considered here could be easily dissipated between
the connections of the gearing mechanism components.

The first solution of the pushing pin, shown in Figure 3.9, was based on the concept
of flexural hinges. Figure 3.9 shows the pushing pin optimisation stages from the
conceptual idea to the final solution, while Figure 3.10a shows the pushing pin
assembled in the flywheel element of the pinned prototype. The pushing pin
optimisation process was done using the FEM software based on several parameters.
The key parameters were the actuator maximum static deflection, the flywheel angle
of rotation and the component manufacturing. The optimisation process was done in
several steps by changing the geometrical properties of the pushing pin and
compering the key parameters. The optimisation study showed that with reduction
of the flexural hinge thickness the ability of the pushing pin to transform the linear
motion into rotation increased. However, the minimum thickness of the flexural
hinge was limited by the manufacturing feasibility of the component. In the final
solution, it was decided to use aluminium to reduce costs and facilitate the fabrication
process. However, to improve the performance of the designed pushing pin it is
strongly recommended to fabricate it out of APX4 high strength stainless steel
(commonly designated as X4CrNiMo016.5.1).

Figure 3.9. Pushing pin optimisation stages from the conceptual idea (left hand side)
to the final solution (right hand side).

The preliminary tests of the pinned flywheel prototype showed that the fabricated
pushing pin (Figure 3.10a) did not demonstrate the required flexibility. After
examination, it was observed that the pushing pin was fabricated with flexural hinge
that was much thicker and above tolerances previsioned in the design. Thus, a
different pushing pin was fabricated that could be equipped with a flexural bearing

as shown in Figure 3.10b. In this design, the pivot bearing is used as a flexural hinge
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that can transmit the linear motion of the actuator into rotation of the flywheel. One
side of the pushing pin was attached to the inner magnet of the actuator while the

other side was attached to the right arm of the flywheel via frictionless pivot bearing.

(a)

Ry
N7

-

Figure 3.10. Pinned configuration flywheel elements with the two different pushing
pins. Pushing pin based on the flexural hinge (a), Pushing pin design with third pivot
bearing (b).

The distance between the horizontal flywheel axis of rotation to the vertical axis of
the actuator linear motion was defined as a offset value. This parameter has a direct
influence on the axial inertia effect produced by the flywheel element and
corresponds to a small radius defined with 7, symbol in the theoretical study of the

previous chapter.

3.3.4 Assembly process of the pinned prototype

The assembly process of the pinned flywheel prototype is described to clarify the
construction of the prototype. Figure 3.12 shows the exploded CAD view of an
actuator with numbered parts. The exploded view is shown to demonstrate the
principal concept and the mechanism used to transform the linear motion of the
actuator into rotation of the flywheel element. The assembly process of the pinned
configuration of the flywheel prototype is performed in several steps.

Firstly, the flexural bearings (No. 2) should be glued in the central hole of the
flywheel element (No. 1) with a small amount of epoxy glue. It is recommended to
take a particular care while gluing the components especially, to prevent the situation
when the glue might penetrate between the sleeves and leaf springs of the flexural

bearings. After placing the two flexural bearings in the hole, the distances should be
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adjusted so that both of them equally stick out of the flywheel element. The flexural
bearings must be rotated as shown in the Figure 3.11. Before proceeding to the next

phase, it is recommended to wait until the glue dries.

Sleeve

FRONT VIEW

Figure 3.11. Position of the flexural bearings in the flywheel and sleeve.

The third flexural bearing (No. 12) should be also glued to the right, horizontal
arm of the flywheel element. The third flexural bearing (No. 12) should be placed in
the machined grove of the flywheel arm. The other side of the flexural bearing should
be glued to pushing pin (No. 6) as shown in Figure 3.12.

While the glue dries, the fabricated connector (No. 5) can be attached to the central
hole in the actuator (No. 8). Then the bracket (No. 7) can be attached to the actuator
(No. 8) with three 4-40UNC screws (No. 9). Only after ensuring that the epoxy glue
has dried, the sleeves (No. 4) can be mounted on both flexural bearings (No. 2). The
sleeves should be pushed not more than a half of the flexural bearing length, to enable
the rotational motion of the bearings. Then, the assembled flywheel (No. 1) can be
placed in the bracket (No. 7). The sleeves (No. 4), attached to the flexural bearings
(No. 2) and flywheel (No. 1), should be placed in the rounded grooves of the bracket
(No. 7) as shown in Figure 3.12. The sleeves (No. 4) should be rotated in such a way
that the extrusions in the sleeves (No. 4) are aligned with the top surface of the bracket
(No. 7). It is recommended to take a particular care while rotating the sleeves (No. 4),
in order to not twist or damage the flexural bearings (No. 2). Using measuring gauge
the assembled flywheel (No. 1) should be centred in the bracket (No. 7) so that both
components are distanced by 1.5mm from each other, from both sides.

Then, the sleeves (No. 4) can be attached to the support (No. 7) with two clamps
(No. 3) by using four M2 screws (No. 11). The sleeves (No. 4) with the extrusions were
designed to be squeezed and to compressed the flexural bearings (No. 2) providing
tight connection.

Finally, the pushing pin (No. 6) can be attached with the actuator (No. 8) via a

connector (No. 5) and small M2 screw (No. 10). After mounting all the components it
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is recommended to check the position of all the components and tightening of the

SCrews.

Figure 3.12. Pinned configuration of the flywheel prototype.

3.4 ELECTROMECHANICAL PROPERTIES

This section investigates the electromechanical properties of the classical and two
prototypes by analysing the actuators base impedance, the actuators blocked force
per unit driving current, the actuators blocked force per unit applied voltage, the
transduction coefficient and the actuators electrical impedance. The simulation
results based on lumped parameter models of the classical and two prototypes are
contrasted with measurement results. The mathematical derivation of each principal

electromechanical property is given in the section 2.4 of the previous chapter.
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3.4.1 Characterisation of the actuators

This section presents the lumped parameter models, used to derive the
electromechanical properties of the classical and two prototypes of the flywheel
inertial actuators. The classical inertial actuator considered in this study is made with
the coil-magnet linear transducer as shown in Figure 3.13a. The electromechanical
response has been studied with the lumped elements model shown in Figure 3.13e.
The transducer is based on the classical configuration formed by an inner round
magnet and an outer cylindrical coil armature as described in details in section 3.1 of
this chapter. The lighter inner magnet is attached to the structure and acts as a base
mass my,. Instead, the external and heavier coil armature acts as a inertial mass M,
which is suspended to the inner element via two flexural springs of stiffness k and
damping c as depicted schematically in Figure 3.13e. The electromagnetic effect that
produces a pair of reactive forces F, between the base mass (magnet) and inertial mass
(coil) of the actuator is modelled in terms of transduction coefficient 1, and current
i flowing in the coil. The voltage u, applied at the electrical terminals of the actuator
is proportional to the coil resistance R, inductance L and back electromotive force
Upmy that is proportional to the relative velocity v, — W, between the inertial mass
and the base mass of the actuator.

Figure 3.13b presents the classical configuration with the same inertial mass as that
of the flywheel prototypes. This configuration was used to compare the properties
and performance of the classical inertial actuator with the fabricated prototypes. To
obtain the best similarity to the fabricated prototypes the classical configuration with
the same inertial mass was based on the pinned prototype of the flywheel inertial
actuator. The flywheel and the supporting bracket was attached to the inertial mass.
The pushing pin was disconnected from the base mass to deactivate the axial inertia
effect produced by the flywheel element. Figure 3.13b shows the picture while Figure
3.13f lumped elements model of the classical actuator configuration with the same
inertial mass as the flywheel prototypes with disconnected pushing pin. The flywheel
element was firmly attached to the supporting bracket to prevent any undesired
rotational motion that could induce additional dynamics during measurements. The
lumped parameter model for this configuration is characterised with the same
elements as for the classical configuration. The total inertial mass is equal to the sum
of proof mass M, and flywheel mass m,,.

The first porotype, which will be referred in the remaining part as the hinged

flywheel inertial actuator is shown in Figure 3.13c, with the lumped elements model
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shown in Figure 3.13g. The prototype was based on classical actuator and equipped
with a rocker arm having lumped masses symmetrically located at the ends ensuring
that its mass centre is in line with the axis of rotation and that the rocker arm works
as a flywheel element. The produced rotational inertial effect is proportional to the
relative axial motion between the base mass (magnet) and inertial mass (coil) of the
actuator. The additional relative inertia effect, which, as depicted in Figure 3.13g, is
modelled with a flywheel element connected in parallel with the suspension spring
and damper elements. This element is characterised by a mass m,,, which adds to the
inertial mass M,, and by a polar moment of inertia I,,. Considering mathematical
model given in section 2.3 of the previous chapter the symbols for the inertial masses
are equal M, = M,,. The rotational motion of the rocker arm is guaranteed by a pair
of hinged joints. The first hinge connects the inner cylindrical magnet with the rocker
arm, while the second hinge connects the rocker arm with the external coil armature
element. The aluminium bracket attached to the coil armature element was designed
with several hinging points, so that the axial inertia effect produced by the flywheel
1,/7% can be varied by changing the conversion offset 7, from axial to rotational
motion. The hinges produce a rotational damping effect c,,, which is also converted
into axial damping given by ¢, /2.

The second porotype, which will be referred in the remaining part as the pinned
flywheel inertial actuator is shown in Figure 3.13d, with the lumped elements model
shown in Figure 3.13h. The additional flywheel element was designed in the form of
a round wheel with polar moment of inertia I, and mass m,, that adds to the inertial
mass M,. Considering mathematical model given in section 2.3 of the previous
chapter the symbols for the inertial masses are equal M, = M,,. As can be seen in
Figure 3.13d, the shape and the dimensions of the flywheel element were optimised
to minimise weight and to maximise the polar moment of inertia. The rotational
inertial effect produced by the flywheel element is proportional to the relative axial
motion between the base mass and inertial mass of the actuator and is transferred
with tree frictionless pivot bearings of torsional stiffness k,, to the flywheel element.
The flywheel element is suspended via two flexural bearings to the designed bracket
attached to the coil armature. The third frictionless pivot bearing connects the
flywheel element with the case of the actuator via designed pushing pin mounted
with an offset 7, from the flywheel horizontal axis of rotation, which was set to

intersect the vertical axis of the transducer to keep the whole system in balance.
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Figure 3.13. Pictures (a,b,c,d) and schemes (e,f,g,h) of the tested classical (a,e), classical
with the same inertial mass as that of the flywheel configuration (b,f), the hinged
flywheel inertial actuator (c,g) and the pinned flywheel inertial actuator (d,h).

The physical properties of the classical coil-magnet actuator and two flywheel
actuator prototypes are summarised in Table 3.4. The table specifies the equivalent
axial inertia I,, /1% effects of the rocker arm and the flywheel element with reference
to the tree offsets 7, for the hinged configuration and pushing pin offset 7, for the

pinned configuration of the actuator.
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Table 3.4. Mechanical parameters of the classical and flywheel inertial actuators.

Parameter Value
Proof mass / Coil mass M, = 0.185 kg
Case mass / Magnet mass m, = 0.115 kg
Hinged flywheel mass system m,, = 0.048 kg
Pinned flywheel mass system m,, = 0.045 kg
Axial stiffness k = 2950 Nm™1!
Torsional stiffness k,, = 0.003 Nmrad™?
Damping ratio (=02
Torsional damping ratio ¢w = 0.005

Hinged flywheel inertia values

Hinged offset values

Axial hinged flywheel mass effects

Pinned flywheel inertia value

Pinned pushing pin offset values
Axial pinned flywheel mass effect

Coil resistance
Coil inductance

Transduction coefficient

I,; = 74-107° kgm?
I, = 70-107° kgm?
I3 = 67-107° kgm?
I, = 65-107° kgm?
Twi = 17 mm
Tw2 = 13 mm
w3 = 9 mm
T4 = 5 mm
I,,/12, = 0.256 kg
l,,/12; = 0.415kg
I,3/12; = 0.831kg
I,a/124 = 2.618 kg
I,, = 6.8-107° kgm?

Ty = 6.4 mm

— =0.166 kg
rW

R=225Q
L=435-10"°H

Yo = 22.5NA"?
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3.4.2 Actuator mathematical model

The mathematical derivation of the principal electromechanical property was
given in section 2.4 of the previous chapter. However, after preliminary tests the
damping coefficients used in the simulations for each EM transducer had to be adjust.
Thus, the following section presents the mathematical derivation of the damping
values used in the actuator impedance Z, given in Equation (2.22).

The damping coefficient of the proof mass suspension for the classical

configuration was calculated with the following formula:

¢ = 2¢kM, . (3.1)

The same formula was used for the classical actuator with the same inertial mass as

the flywheel configuration.

c=2{JkM,; +m,,). (3.2)

The damping coefficient of the proof mass suspension for the hinged configuration

was calculated with the following formula:

c= 2{\/1{ (Ma +i—“;+mw), (3.3)

while for torsional damping with the following:

I”; + mw) : (3.4)

Tw

Cy = 2(rv12,\/k (Ma +

Finally the damping coefficient of the proof mass suspension for the the pinned

configuration was calculated with the following formula:

k

c= 2\/<k + —“2”) M, +m,). (3.5)
TW

This result indicates that, although the axial mass effect produced by the flywheel

element reduces the fundamental resonance frequency of the transducer, it does not

influence the mechanical damping, which, actually, plays a key role in energy

harvesting applications.
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3.4.3 Base impedance

Figure 3.14 shows scheme (Figure 3.14a) and picture (Figure 3.14b) of the base
impedance test setup. The tested actuators were mounted on a shaker as shown in
Figure 3.14b. The shaker was excited with a sine logarithmic sweep signal up to
100Hz. Two parameters were measured simultaneously during tests using signal
analyser. Input channel A measured force excreted to the actuator base while input
channel B measured the base acceleration. The shaker amplifier was used to drive the
shaker with required excitation signal. As shown in Figure 3.14b, the impedance head
mounted between shaker and the actuator was used to measure force and
acceleration. Appendix D lists all the equipment used in the measurements of the

transducer elecromechanical properties.

(a) /‘\ (b)

Signal analyser
. Abaqus
Inertial =

actuator
InA
Lil 1
Impedance head nB
288D1 [ Out
Lil
Input
Shaker p 3
2004E Output Shaker amplifier
VAL L L L L L L 2100E21-400

Figure 3.14. Scheme (a) and picture (b) of the base impedance test setup.

The Bode plots in Figure 3.15 show the base impedance FRFs of the classical,
classical with the same inertial mass as the flywheel configuration and hinged and
pinned configurations of the flywheel inertial actuators as given in Equation (2.51).
The figure is organised in two columns where, the left column shows the modulus
diagrams while the right column shows the phase diagrams of the mechanical base
impedance. The solid blue lines in the diagrams present the measurement results,
while the dashed-dotted red lines present the simulation results. Plot (a) shows the

base impedance for the classical actuator. Plot (b) shows the base impedance for the
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classical actuator with the same inertial mass as the flywheel configuration. Plots (c-
f) show the base impedance for the hinged flywheel inertial actuator with increasing
value of the equivalent axial inertia I,,/r2 effect of the rocker arm (I,,1/(r3,) <
Ly2/(125) < Ly3/(r23) < Lya/(124)). The bottom plot (g) shows the base impedance
for the pinned flywheel inertial actuator.

The modulus of the base impedance for the classical configuration shown in left
diagram of the Figure 3.15a is characterised by low and high frequencies asymptotic
mass behaviours separated by a resonance peak and antiresonance through. The
resonance peak appears at about the fundamental resonance frequency of 20 Hz while
the antiresonance through at about 35 Hz. Between the resonance peak and
antiresonance through the actuator produces a sky-hook stiffness effect. The low
frequency asymptote is proportional to the total mass (M, + m;) while the high
frequency asymptote is proportional to base mass (m;) of the inertial actuator. The
phase of the base impedance for the classical configuration showed in the right
diagram of the Figure 3.15a is characterised by the two shifts. The damping of the
inertial mass suspension system controls the amplitude and the phase shift at the
resonance peak. At the resonance peak the base impedance phase shifts from +90° to
around 0° while at the antiresonance the phase shifts back from 0° to +90°. The
measured base impedance for the classical configuration agree well with the
simulated values.

The base impedances for the classical configuration with the same inertial mass as
the flywheel configuration is shown in Figure 3.15b. The modulus of the base
impedance shown in the left diagram presents almost identical characteristic to the
classical configuration. However, there are two major differences that are due to the
heavier inertial mass. Firstly, the resonance peak appears at slightly lower frequency
of about 18 Hz and has higher amplitude. Secondly, the low frequency asymptote is
slightly increased and is proportional to the total mass (M, + m, + m,,) of the inertial
actuator. The high frequency asymptote remained proportional to base mass (m,,).
The phase of the base impedance shows the phase shifts from +90° to around -10° at
the resonance frequency. This shows that the damping coefficient of the suspension
system of the classical configuration with the same inertial mass as the flywheel
configuration is the same as for the classical configuration. The measured base
impedance agree well with the simulated values.

The base impedance for the first prototype of the flywheel inertial actuator shown
in Figure 3.15c-f present similar characteristics to that of the classical configurations,

with small differences. Firstly, the axial inertia effect I,,/r,Z produced by the hinged
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rocker arm shifts the fundamental resonance frequency to a lower value with a
progressively smaller offset values r,,. Thus, the fundamental resonance frequency is
moved to about 12 Hz (Figure 3.15¢) for the first value of the inertia effect I,,,, /1:2,, to
about 10 Hz (Figure 3.15d) for the second value of the inertia effect I,,,,/7:2,, to about
8.5 Hz (Figure 3.15¢) for the third value of the inertia effect I,,3/r2; and to about
5.5 Hz (Figure 3.15f) for the fourth value of the inertia effect I,,,/7;2,. Consequently,
the antiresonance through is also influenced by the axial inertia effect produced by
the hinged rocker arm. The antiresonance through is moved to about 16.5 Hz (Figure
3.15¢) for the first value of the inertia effect I,,, /1:2,, to about 13.5 Hz (Figure 3.15d)
for the second value of the inertia effect I,,,/12,, to about 10 Hz (Figure 3.15¢) for the
third value of the inertia effect 1,5 /125 and to about 6.5 Hz (Figure 3.15f) for the fourth
value of the inertia effect I,/r2,. The vicinity of the resonance peak and
antiresonance through almost completely cancels the sky-hook stiffness effect.
Secondly, the amplitude of the higher frequency asymptotic mass behaviour is
progressively increased as the equivalent axial inertia I, /% effect of the rocker arm

is increased (i‘”Tl < i‘”TZ < iWTS < in4) with the following relation m;, + I, /2. Compared
w3

wil w2 w4

to the classical configuration also the amplitude of the lower frequency asymptotic
mass behaviour is increased. However, in this case, it is not because of the axial inertia
effect, but because of the additional mass of the flywheel mechanism that can be
defined with the following relation M, +m,, + m;. Finally, the internal damping
effect in the inertial actuator is also increased, such that the resonance peak and
antiresonance through are progressively rounded. The increase of the internal
damping effect can be also observed in the phase diagrams of the base impedance
FRFs. The phase presented in the right diagrams of the Figure 3.15c-f show a shift
between +90° to around +44° for the first value of the inertia effect I,,,/7r2,, a shift
between +90° to around +55° for the second value of the inertia effect I,,,/1:2,, a shift
between +90° to around +69° for the third value of the inertia effect I,,3/125, and a
shift between +90° to around +82° for the fourth value of the inertia effect I,,,4/72,. The
experimental results align well with the simulated base impedance FRFs for all
configurations except the last one. For the highest value of equivalent relative axial
inertia effect I,,/r2, (Figure 3.15f) the simulation result gives lower actuator
resonance frequency compared to the experiment. Additionally, with the increase of
the axial inertia effect the phase starts to drop compared to the simulation value,

especially for the two configurations shown in Figure 3.15d and in Figure 3.15f. It is
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assumed that this effect is linked to the backlash effect in the hinged joints of the
rocker arm.

The base impedances for the second prototype of the flywheel inertial actuator
shown in Figure 3.15g presents similar characteristics to the classical configuration
and the first configuration, which is equipped with the rocker arm. Also in this case
the flywheel element shifts the fundamental resonance peak to a lower value at about
14 Hz while the antiresonance low at about 20 Hz. The phase shown in the right hand
side diagram of the Figure 3.15g shifts between +90° to around +15°. Compared to the
classical configuration, the asymptotes below resonance frequency and above
antiresonance low are slightly higher. This is due to the fact that, below the
fundamental resonance frequency the flywheel element increments the total mass of
the transducer to M, +m;, +m,, while above the antiresonance frequency the
flywheel increase the seismic mass effect to my, + I,,/1,2. The experimental results for
the pinned configuration of the flywheel inertial actuator align very well with the
simulated base impedance FRF and are better compared to the rocker arm
configuration due to the use of the flexural bearings that minimise the backlash effects

and provide smoother operation.
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Figure 3.15. Actuator base impedance for the classical configuration (a), classical with
the same inertial mass as that of the flywheel configuration (b), hinged flywheel
element actuator with the increasing axial inertia values I,1/13; (¢), Ly2/T2, (d),
Lys/T2s (€), Lys/r2s (f) and pinned flywheel element (g). Comparison of the
experimental results (solid blue lines) with the numerical simulations (dashed-dotted
red lines).
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Additional tests of the base impedances for the first prototype of the flywheel
inertial actuator with the highest axial inertia value I, /75, were performed. During
these tests, it was observed that the angular position of the M2 screw (No. 7 shaft in
Figure 3.4) plays an important influence on the resonance frequency of the actuator
and additional modes that appears between 50Hz and 100Hz. Results presented in
Figure 3.16 show the magnitude and phase of the actuator base impedance for four
angular position of the M2 screw. Based on results it can be concluded that the
dynamics of the hinged flywheel inertial actuator prototype with the rocker arm is
strongly influenced by the backlash between the shaft and the bushing in the
prototype.
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Figure 3.16. Actuator base impedance for hinged flywheel element with the highest
axial inertia value I, /1;2,. Comparison of the M2 screw four different angle positions
(0° solid blue lines, 90° dashed-dotted red lines, 180° dashed yellow lines, 270° dotted
black lines).
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3.4.4 Blocked force current driven

Figure 3.20 shows scheme (Figure 3.20a) and picture (Figure 3.20b) of the blocked
force test setup for the current driven inertial actuator. During tests, the actuator was
attached to a rigid base via a force cell as shown in Figure 3.20b. Two parameters were
measured during tests using signal analyser. Channel input A measured force
excreted to the actuator base while input B measured the current fed to the actuator.
The quad amplifier was used to drive the EM actuators. Appendix D lists all the
equipment used in the measurements of the transducer elecromechanical properties.

(b)
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Figure 3.17. Scheme (a) and picture (b) of the blocked force per unit current fed to
the actuator test setup.

The Bode plots in Figure 3.18 present the FRFs of the blocked force produced by
the actuators per unit current fed to the classical, classical with the same inertial mass
as the flywheel configuration, hinged and pinned configuration of the flywheel
inertial actuators as given in Equation (2.52). The figure is organised in two columns
where, the left column shows the modulus diagrams while the right column shows
the phase diagrams of the actuator blocked force. The solid blue lines in the diagrams
present the measurement results, while the dashed-dotted red lines present the
simulation results. Plot (a) shows the blocked force of the classical actuator. Plot (b)
shows the blocked force for the classical actuator with the same inertial mass as the
flywheel configuration. Plots (c-f) show the blocked force of the hinged flywheel

inertial actuator with increasing value of the equivalent axial inertia I, / (1) effect
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of the rocker arm (1,1 /(121 ) < Ly2/(122) < Ly3/(13)) < Lya/ (124 ). Bottom plot (g)
shows the blocked force for the pinned flywheel inertial actuator

The blocked force produced by the classical configuration of the inertial actuator
is shown in Figure 3.18a. At low frequencies, the produced force rises proportionally
to w? and is out of phase with the driving current signal fed to the actuator coil, which
is characterised by phase equal to 180°. Thus, the produced force is out of phase with
the driving signal below fundamental resonance frequency of the actuator. The
amplitude reaches a peak value at the resonance frequency of the actuator at about
21 Hz with the phase shift that undergoes a -180° lag such that it equal to 0°. At higher
frequencies, the blocked force produced at the base of the actuator settles to a constant
value that is equal to the actuator transduction coefficient ), that is 27dB and is in
phase with the driving current signal i,. Thus, the investigated inertial actuator
produces the desired constant force excitation effect, which is in phase with the
driving signal at frequencies above its fundamental resonance frequency. The
principal features of the measured blocked force for the classical configuration agree
well those obtained from simulations.

The blocked force produced by the classical actuator with the same inertial mass
as that of the flywheel configuration is shown in Figure 3.18b. The modulus and the
phase diagram presents almost identical characteristic compared to the classical
configuration. However, for this configuration the amplitude reaches a peak value at
slightly lower frequency, which is at about 19 Hz. Also for this configuration, the
measured blocked force agrees well with the simulation results.

The blocked force for the first prototype of the flywheel inertial actuator equipped
with the rocker arm is shown in Figure 3.18c-f. The features found for the first
prototype present similarity to the classical configuration, however with an
increasingly smaller offset that is higher equivalent relative axial inertia effect of the
rocking arm I,,/r%, the resonance peak is progressively smoothened and brought
down in frequency. Thus, the fundamental resonance frequency is moved to about
13 Hz (Figure 3.18c¢) for the first value of the inertia effect I,,,/r2;, to about 11 Hz
(Figure 3.18d) for the second value of the inertia effect I,,, /1,25, to about 9 Hz (Figure
3.18e) for the third value of the inertia effect I,,3/125 and to about 5 Hz (Figure 3.18f)
for the fourth value of the inertia effect 1,4 /124 At higher frequencies, the produced
blocked forces settle to progressively lower constant values. It settles at about 21 dB
for the first value of the inertia effect, at about 18 dB for the second value of the inertia
effect, at about 14 dB for the third value of the inertia effect and at about 5 dB for the

fourth value of the inertia effect. The measured blocked force for the flywheel inertial
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Figure 3.18. Blocked force per unit current fed to the actuator for the classical
configuration (a), classical with the same inertial mass as that of the flywheel
configuration (b), with the hinged flywheel element with the increasing axial inertia
values I, /121 (€), L2 /125 (), Lys /125 (€), Lya/T24 (f) and with the pinned flywheel
element (g). Comparison of the experimental results (solid blue lines) with the

numerical simulations (dashed-dotted red lines).
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actuator equipped with the rocker arm agree well with that obtained with
simulations. However, at about 50 Hz an additional peak appears for all four
configurations, which should not depend on the axial inertia effect I, /nZ. Most likely,
itis a rocking effect of the suspended mass that was aggravated during measurements
when the base mass of the actuator was rigidly fixed. For the third axial inertia effect
Ly3/125 value of the flywheel an additional through appears at about 90 Hz that could
be caused by the dynamics of the rocker arm. At higher frequencies for the fourth
axial inertia effect I,,, /12, value (Figure 3.18f) the phase of the blocked force drifts
causing the produced force to be out of phase with the driving current.

The blocked force for the second prototype of the inertial actuator equipped with
the flywheel element is shown in Figure 3.18g. The blocked force is characterised by
a similar FRF compared to the classical configuration except that the fundamental
resonance peak occurs at lower frequency that is at about 14 Hz and that the
amplitude at the peak is about 2.5 dB lower. The measured blocked force for the
pinned flywheel inertial actuator agree with simulations compared to the hinged
flywheel inertial actuator equipped with rocker arm. There two additional peaks that
appear at 40 Hz and at 60 Hz, which could be due to the test setup used for the

measurement and due to dynamics of flywheel mechanism.

3.4.5 Blocked force voltage driven

Figure 3.24 shows scheme (Figure 3.24a) and picture (Figure 3.24b) of the blocked
force per unit voltage applied to the actuator test setup. During tests, the actuator was
attached to a rigid base via a force cell as shown in Figure 3.24b. Two parameters were
measured during tests using signal analyser. Input channel A measured force
excreted to the actuator base while input channel B measured applied voltage to the
actuator. The quad amplifier was used to drive the EM actuator. Appendix D lists all
the equipment used in the measurements of the transducer elecromechanical

properties.
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Figure 3.19. Scheme (a) and picture (b) of the blocked force per unit voltage applied
to the actuator test setup.

The Bode plots in Figure 3.20 present the FRFs of the blocked force produced by
the actuators per unit voltage applied to the classical, classical with the same inertial
mass as the flywheel configuration, hinged and pinned configurations of the flywheel
inertial actuators as given in Equation (2.54). The figure is organised in two columns
where, the left column shows the modulus diagrams while the right column shows
the phase diagrams of the blocked force. The solid blue lines in the diagrams present
the measurement results, while the dashed-dotted red lines present the simulation
results. Plot (a) shows the blocked force of the classical actuator. Plot (b) shows the
blocked force for the classical actuator with the same inertial mass as the flywheel
configuration. Plots (c-f) show the blocked force of the hinged flywheel inertial
actuator with increasing value of the equivalent axial inertia I,, / (r2) effect of the
rocker arm (L1 /(121 ) < Ly2/(132) < Ly3/(r23) < Lya/(r24)). Bottom plot (g) shows
the blocked force for the pinned flywheel inertial actuator.

The blocked force produced by the classical configuration of the inertial actuator
is shown in Figure 3.20a. At low frequencies, the produced force rises proportionally
to w? and is out of phase with the voltage signal applied at the electrical terminals of
the actuator coil, which is characterised by phase equal to 180°. Thus, the produced
force is out of phase with the voltage signal below fundamental resonance frequency
of the actuator, similarly as for the produced blocked force per unit current. Around
the fundamental resonance frequency of the actuator, the blocked force passes a
transient mode to reach constant value of around 0dB at higher frequencies. The well

visible peak at the fundamental resonance frequency of the actuator observed for the
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blocked force produced per unit current is rounded off for the voltage driven
actuator. This behaviour is caused by the electrical properties of the transducer coil,
mainly the resistance, which increases the internal damping effect. Additionally, at
the fundamental resonance frequency the phase shifts and undergoes a -180° lag such
that it equal 0° at higher frequencies. The classical inertial actuator can produce the
constant force effect at frequencies above its fundamental resonance frequency that is
in phase with the applied voltage signal. The measured blocked force for the classical
configuration agrees well with simulations results, although the measured results are
slightly higher in the amplitude compared to the simulation results.

The blocked force produced by the classical actuator with the same inertial mass
as the flywheel configuration is shown in Figure 3.20b. The modulus and the phase
diagram presents nearly identical characteristic compared to the classical
configuration. For this configuration, the amplitude reaches a peak value at slightly
lower frequency, which is at about 19 Hz. Also for this configuration, the measured
blocked force agrees well with the simulation results.

The blocked force for the first prototype of the flywheel inertial actuator equipped
with the rocker arm is shown in Figure 3.20c-f. The blocked force of the first prototype
presents similar characteristic to the classical configuration. With higher equivalent
relative axial inertia effect of the rocking arm I,,/72, the resonance peak is shifted
down in frequency. The fundamental resonance frequency is moved to about 13 Hz
(Figure 3.20c) for the first value of the inertia effect I, /15, to about 11 Hz (Figure
3.20d) for the second value of the inertia effect I,,,/n2,, to about 9 Hz (Figure 3.20e)
for the third value of the inertia effect I,,3/1%5 and to about 5 Hz (Figure 3.20f) for the
fourth value of the inertia effect I,,,4/12,4. At higher frequencies, the produced blocked
force settles to lowered values. It settles at about -6 dB for the first value of the inertia
effect, at about -8 dB for the second value of the inertia effect, at about -13 dB for the
third value of the inertia effect and at about -22 dB for the fourth value of the inertia
effect. The measured blocked forces for the flywheel inertial actuator equipped with
the rocker arm agree well with that obtained with simulations. A slight overshoot of
the blocked force is observed above fundamental resonance frequency of the actuator
for the higher axial inertia value of the flywheel element. For all four configurations,
an additional peak appears at about 50 Hz and it can be assumed that it does not
depend on the axial inertia effect I,,/r2. Most probably, it is a rocking effect of the
suspended mass that was aggravated during measurements when the base mass of

the actuator was rigidly fixed. At higher frequencies for the fourth axial inertia effect
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Figure 3.20. Blocked force per unit voltage applied to the actuator for the classical
configuration (a), classical with the same inertial mass as that of the flywheel
configuration (b), with the hinged flywheel element with the increasing axial inertia
values I, /121 (€), Ly2/125 (), Lys /125 (€), Lya/T24 (f) and with the pinned flywheel
element (g). Comparison of the experimental results (solid blue lines) with the
numerical simulations (dashed-dotted red lines).
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Ly4/124 value (Figure 3.20f) the phase of the blocked force drifts causing the produced
force to be out of phase with the applied voltage.

The blocked force for the second prototype of the inertial actuator equipped with
the flywheel element is shown in Figure 3.20g. The produced blocked force is
characterised by a similar FRF to the classical configuration except that the
fundamental resonance of the actuator is shifted to a lower frequency that is at about
14 Hz. The produced blocked force settles at about -4 dB above fundamental
resonance frequency of the actuator. The measured blocked force for the pinned
flywheel inertial actuator agrees well with simulations compared to the hinged
flywheel inertial actuator equipped with rocker arm. The two additional peaks that
appear at 40 Hz and at 60 Hz may be due to the test setup used for the measurement

and due to dynamics of flywheel mechanism.

3.4.6 Transduction FRF

Figure 3.21 shows the scheme (Figure 3.21a) and picture (Figure 3.21b) of the
transduction FRF test setup. The tested transducers were mounted on the shaker. Two
parameters were measured during tests using signal analyser. Input channel A
measured voltage at the electrical terminals of the transducer, while input channel B
measured the base acceleration. The shaker amplifier was used to drive the shaker
with a sine logarithmic sweep excitation up to 100Hz. Appendix D lists all the
equipment used in the measurements of the transducer elecromechanical properties.

The Bode plots in Figure 3.22 present the transduction coefficient FRFs of the
classical, classical with the same inertial mass as the flywheel configuration, hinged
and pinned flywheel configurations of the inertial actuators as given in Equation
(2.53). According to Equation (2.53) the transduction coefficient should be equal to
the blocked force Tf; produced by the actuators per unit current. The figure is
organised in two columns where, the left column shows the modulus diagrams while
the right column shows the phase diagrams of the transduction coefficient FRFs. The
solid blue lines in the diagrams present the measurement results, while the dashed-
dotted red lines present the simulation results. Plot (a) shows the transduction
coefficient of the classical actuator. Plot (b) shows the blocked force for the classical
actuator with the same inertial mass as the flywheel configuration. Plots (c-f) show
the transduction coefficient FRFs of the hinged flywheel inertial actuator with

increasing value of the equivalent axial inertia I,, / (%) effect of the rocker arm
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(w1 /(i) < hwz/(ri2 ) < hwa/ (i3 ) < Lwa/(riys)). Bottom plot (g) shows the
transduction coefficient FRF for the pinned flywheel inertial actuator.
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Figure 3.21. Scheme (a) and picture (b) of the transduction coefficient FRF test setup.

The transduction coefficient FRF of the classical inertial actuator shown in Figure
3.22a is almost identical to the results obtained for the blocked force produced per
unit current fed to the actuator. At low frequency, the generated voltage rises
proportionally to w? and is out of phase with the unit velocity of excitation. The
amplitude reaches a peak value at the resonance frequency of the actuator at about
21 Hz with the phase shift that undergoes a -180° lag. At higher frequencies, the
generated voltage settles to a constant value that is equal to the actuator transduction
coefficient Y, that is 27dB. The measured transduction coefficient FRF agrees well
with the simulations.

The transduction coefficient FRF of the classical actuator with the same inertial
mass as the flywheel configuration is shown in Figure 3.22b. The results present
similar characteristic to the classical configuration with one difference. Compared to
the classical configuration, the amplitude reaches a peak value at slightly lower
frequency, which is at about 19 Hz. The measured transduction coefficient FRF agrees

well with the simulation results.
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The transduction coefficient FRFs for the first prototype of the inertial actuator
equipped with the rocker arm are shown in Figure 3.22c-f. As expected the
transduction FRF is similar to the blocked force FRF. Also in this case, with the smaller
offset r;,, that is the higher equivalent relative axial inertia effect of the rocking arm
L, / (), the resonance peak is progressively smoothened and brought down in
frequency. The fundamental resonance frequency is moved to about 13 Hz (Figure
3.22¢) for the first value of the inertia effect 1,1 /124, to about 11 Hz (Figure 3.22d) for
the second value of the inertia effect I, /12,, to about 9 Hz (Figure 3.22¢) for the third
value of the inertia effect I,,3/125 and to about 5 Hz (Figure 3.22f) for the fourth value
of the inertia effect I,,,/72,. Furthermore, at higher frequencies the transduction
coefficient FRFs settle to a progressively lowered constant value. It settles at about
21 dB for the first value of the inertia effect, at about 18 dB for the second value of the
inertia effect, at about 14 dB for the third value of the inertia effect and at about 5 dB
for the fourth value of the inertia effect. The measured transduction coefficients for
the hinged flywheel inertial actuator equipped with the rocker arm agree well with
the expected properties obtained with simulations. However for the third (Figure
3.22e) and fourth (Figure 3.22f) values of the inertia the transduction coefficient FRF
does not settle to a constant value at higher frequencies. Above about 20 Hz the
characteristics starts to rise in amplitude and settles to a value of the classical inertia
actuator that is at about 27 dB. Most probably, this is due to the backlash in the hinged
joints that is greater than the relative motion of the base and inertial mass of the
actuator at higher frequencies. Above about 20 Hz the small relative movements start
to be dissipated in the hinged joints rather than transferred via flywheel element,
which means that the prototype starts to behave just like a classical configuration. The
additional peak that appeared for all four configurations at about 50Hz in the blocked
force measurements (Figure 3.18) is not visible with the transduction coefficient
measurements because the actuator base mass is not rigidly fixed but excited.

The transduction coefficient FRF for the second prototype of the flywheel inertial
actuator is shown in Figure 3.22g. The transduction coefficient FRF is characterised
by a fundamental resonance frequency at about 14 Hz and with amplitude at the peak
2.5 dB lower compared to the classical configuration. The measured transduction
coefficient FRF for the pinned flywheel inertial actuator agree well with simulations
and align far better compared to the results obtained for the hinged configuration of
the flywheel inertial actuator. The measurements show additional peak that appears

at about 40 Hz, which most likely is caused by the dynamics of flywheel mechanism.
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Figure 3.22. Actuator transduction coefficient for the classical configuration (a),
classical with the same inertial mass as that of the flywheel configuration (b), with the
hinged flywheel element with the increasing axial inertia values I, /121 (), Ly2/722
(d), Lys/135 (€), Lya/T24 (f) and with the pinned flywheel element (g). Comparison of
the experimental results (solid blue lines) with the numerical simulations (dashed-
dotted red lines).
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3.4.7 Electrical impedance

Figure 3.23 shows the scheme (Figure 3.23a) and picture (Figure 3.23b) of the base
impedance test setup. The tested actuators were attached to a rigid base. Two
parameters were measured during tests using signal analyser. Input channel A
measured voltage at the electrical terminals of the actuator while input B measured
current fed to the actuator. The quad amplifier was used to drive the EM actuators.
Appendix D lists all the equipment used in the measurements of the transducer

elecromechanical properties.
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Figure 3.23. Scheme (a) and picture (b) of the electrical impedance test setup.

The Bode plots in Figure 3.24 present the electrical impedance FRFs of the classical,
classical with the same inertial mass as the flywheel configuration, hinged and pinned
flywheel configurations of the inertial actuators as given in Equation (2.55). The figure
is organised in two columns where, the left column shows the modulus diagrams
while the right column shows the phase diagrams. The solid blue lines in the
diagrams present the measurement results, while the dashed-dotted red lines present
the simulation results. Plot (a) shows the electrical impedance FRF of the classical
actuator. Plot (b) shows the electrical impedance of the classical actuator with the
same inertial mass as the flywheel configuration. Plots (c-f) show the electrical
impedance FRFs of the hinged flywheel inertial actuator with increasing value of the
equivalent axial inertia I, / (r2) effect of the rocker arm (I, /(131) < Ly2/(1r22) <
Lys/(123) < Lya/ (124 ). Bottom plot (g) shows the electrical impedance FRF for the

pinned flywheel inertial actuator.
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The modulus of the electrical impedance for the classical configuration showed in
left diagram of the Figure 3.24a is characterised by a low and high frequencies purely
resistive behaviours separated by a resonance peak. The mechanical effect of the
inertial mass is relevant only around the fundamental resonance frequency of the
classical actuator that appears at about 20 Hz. At low frequencies, the spectrum is
characterised by a constant value of about 27.5 dB that is equal to the coil resistance
and the phase equal to zero meaning that the applied at the terminals of the actuator
voltage is in phase with the driving current. At the fundamental resonance frequency
the actuator electrical impedance reaches nearly 38 dB and the phase undergoes a
shift from about +32° to -32°, which is due to the electro-mechanical effect of the
inertial mass. Above the fundamental resonance frequency of the actuator the
spectrum is still characterised by resistive behaviour of the coil. However, at higher
frequencies the inductance of the coil starts to play more important role due to the
frequency dependence of this parameter as shown in Equation (2.25). The measured
electrical impedance for the classical configuration agree well with the previsioned
properties obtained with simulations.

The electrical impedance FRF of the classical actuator with the same inertial mass
as the flywheel configuration is shown in Figure 3.24b. The results present similar
characteristic to the classical configuration with one difference. Compared to the
classical configuration, the electrical impedance reaches amplitude peak at slightly
lower frequency, which is at about 18 Hz. The measured electrical impedance FRF
agrees well with the simulation results.

The electrical impedances for the first prototype of the flywheel inertial actuator
shown in Figure 3.24c-f present similar characteristic to that of the classical
configuration. The axial inertia effect produced by the hinged rocker arm shifts the
fundamental resonance frequency to a lower value with progressively smaller offset
values. Thus, the fundamental resonance frequency is moved to about 12 Hz (Figure
3.24c) for the first value of the inertia effect I,,, /1:2,, to about 10.5 Hz (Figure 3.24d)
for the second value of the inertia effect I,,,, /1,25, to about 8.5 Hz (Figure 3.24e) for the
third value of the inertia effect I,,5/72; and to about 5 Hz (Figure 3.24f) for the fourth
value of the inertia effect I,,4/1%,. The internal damping effect is also increased, such
that the resonance peaks are progressively rounded and the phase shifts between
smaller values. For the first value of the inertia effect the modulus reaches about
35 dB with the phase shift from about +24° to -24°. For the second value of the inertia
effect the modulus reaches about 34 dB with the phase shift from about +22° to -22°.

For the third value of the inertia effect I,,5 /1,25 the modulus reaches about 33 dB with
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Figure 3.24. Actuator electrical impedance for the classical configuration (a), classical
with the same inertial mass as that of the flywheel configuration (b), with the hinged
flywheel element with the increasing axial inertia values 1,1 /12, (c), L2/, (d),
Lys3/125 (€), Lya/T24 (f) and with the pinned flywheel element (g). Comparison of the
experimental results (solid blue lines) with the numerical simulations (dashed-dotted
red lines).
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the phase shift from about +19° to -19°. For the fourth value of the inertia effect I,,,4 /12,
the modulus reaches about 31 dB with the phase shift from about +13° to -13°. The
measured electrical impedance FRF for the flywheel inertial actuator equipped with
the rocker arm agree well with the previsioned properties obtained with simulations.
For the second value of the inertia effect (Figure 3.24d) the measured amplitude does
not reaches the previsioned with simulations value.

The electrical impedances for the second prototype of the flywheel inertial actuator
shown in Figure 3.24g presents similar characteristic to that of the classical
configuration. The produced inertia effect of the flywheel element shifts the
fundamental resonance peak to about 14 Hz with the maximum amplitude of about
37 dB. The phase shown in the right diagram of the Figure 3.24g shifts between +30°
to around -30°. The experimental results for the pinned configuration of the flywheel
inertial actuator align well with the numerical results. There is small additional peak
that appears at about 40 Hz, which was also observed in the measurement results

obtained with the other tests.

3.5 STATIC DEFLECTION STUDY

One of the key parameters used to characterise an inertial actuator for active
vibration control is the static deflection. The static displacement of the springs-coil
assembly defines the robustness of the actuator to shocks that may cause stability and
control performance limitations. Figure 3.25 shows the comparison of the calculated
static deflection of the classical actuator and two prototypes with previsioned
simulation. The results are normalised to the static deflection of the classical
configuration defined in Equation (2.58) with respect to its natural frequency for the
classical actuator (blue dot), for the classical configuration with the same inertial mass
as that of the flywheel configuration (magenta diamond), for the hinged flywheel
inertial actuator with increasing value of the equivalent axial inertia effect I, / (13)
of the rocker arm (red crosses) and for the pinned flywheel inertial actuator (black
square). The solid blue line shown in the Figure 3.25 presents the simulated static
deflection of the classical configuration for the increasing weight of the inertial mass
for the given stiffness value specified in Table 3.4.

The normalised static deflection of the classical inertial actuator is equal to one at
its natural frequency that is at about 20 Hz. The solid blue line shows the simulated

increase of the static deflection (inertial mass weight increase for given stiffness) with
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reduction of the natural frequency for the classical inertial actuator. Thus, the static
deflection for the classical actuator with the same inertial mass as the flywheel
configuration shown in Figure 3.25 (magenta diamond) aligns with the previsioned
solid blue line.

Considering the hinged configuration of the flywheel actuator, the normalised
static deflection has increased to about 1.2 for all tree vales of the inertia effect I,, /%2.
In this case the increase of the static deflection does not depend on the flywheel inertia
but is caused by the additional mass of flywheel itself and its support, which was
attached to the inertial mass. The static deflection of the hinged flywheel actuator with
the highest value of the inertia effect is nearly five times smaller compared to the

classical configuration.
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Figure 3.25. Normalised static deflection with respect to actuator natural frequency
for the classical configuration (blue dot), classical configuration with the same inertial
mass as that of the flywheel configuration (magenta diamond) with the hinged
flywheel element (red crosses) and with the pinned flywheel element (black square).
Solid blue line presents previsioned static deflection for diminishing natural
frequency (increasing weight for given stiffness) of the inertial mass of the classical
configuration.

The results for the pinned configuration of the flywheel inertial actuator show that
the normalised static deflection has increased to 1.1. Although the flywheel element
in the pinned configuration has the same mass as in the hinged configuration the

static deflection is reduced due to the additional torsional bearings that increase the
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stiffness of the actuator suspension system. Comparing the results with the
simulations of the classical actuator the static deflection was reduced nearly twice
with the pinned configuration of the flywheel inertial actuator.

The results shown in Figure 3.25 clearly demonstrate that the static deflection of
the inertial actuators does not depend on the inertia effect I,,/r2 produced by the
flywheel element. Also, it shows that the flywheel configurations can increase the
robustness to shocks of the active vibration control system by reducing the static

deflection of the inertial actuators.

3.6 CHAPTER SUMMARY

This chapter has presented the EM actuator that was used as a base for designing
two different flywheel prototypes. The first prototype was designed with hinged
mechanism while the second prototype with the pinned flywheel element
analogously to the theoretical study presented in the second chapter. The flywheel
element of the hinged configuration was designed in a form of a rocker arm with four
lumped masses. The rocker arm was designed with several holes that allowed
changing the position of the lumped masses and thus changing the moment of inertia
produced by the flywheel element. The pinned configuration was equipped with the
flywheel element designed in a form of a wheel. The shape of the flywheel element
was optimised to maximise the polar moment of inertia and minimise the total
weight. The flexural bearings were used to minimise the backlash between the
components and to avoid any nonlinear effects (stick-slip effect).

The first part of this chapter described in details both fabricated prototypes. The
design and assembly process of each prototype was also described. A particular
emphasis was given to the description of the mechanisms used to transform linear
motion of the actuator into rotation of the flywheel element.

The second part of this chapter has presented experimental and simulation results
on the FRFs that characterise the electromechanical response of the flywheel inertial
actuators. The study has considered the actuators base impedance, the actuators
blocked force per unit driving current, the actuators blocked force per unit applied
voltage, the transduction FRF and the actuators electrical impedance. The measured
FRFs were taken on a classical coil-magnet inertial actuator, classical inertial actuator
with the same inertial mass as the flywheel configuration, on the hinged prototype

inertial actuator equipped with a rocker arm designed to produce a variable flywheel
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inertia effect and on the pinned prototype. The simulated FRFs were derived from a
lumped parameter model defined in the theoretical study presented in the second
chapter.

The experimental study has shown reasonably good agreement between the
measured and simulated FRFs. In addition, it has confirmed that the rotational inertia
effect of the flywheel element tends to reduce the resonance frequency and the
amplitude of the fundamental resonance peak that characterise the response of the
actuator. After testing various flywheel configurations of the hinged prototype it was
observed that the surfaces of the shafts covered with the aluminium tape have visible
wear effect. This wear effect on both shafts used in the hinged prototype is shown in
the Figure 3.26. The experimental results of the hinged configuration showed that the
play and backlash effect between the components introduces nonlinearities in the
dynamics of the actuator. The hinged configuration does not fulfil the requirement of
an inertial actuator to implement more stable and robust velocity feedback loops to

control the vibration of flexible structures.

Figure 3.26. Screws used as shafts in the hinged prototype with visible wear effect.

The static deflection study has demonstrated that the flywheel element can be used
to reduce the fundamental resonance frequency of the transducer without increasing
the inertial mass. Thus, the flywheel element can improve stability and robustness to
shocks of the implemented velocity feedback loops both by lowering the feedback
control spillover effect at the fundamental resonance frequency of the actuator and
without increasing the static deflection of the transducer.

The designed flywheel prototypes are much heavier compared to the
configurations analysed in the theoretical study. Thus, to implement a velocity
feedback loops with the fabricated inertial actuators a specific test structure need to
be build. To compare the theoretical study with the experimental results it is required
to design a new setup with a simply supported plate, in which the weight of the

inertial actuators would be around 10% of the host structure mass.
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4

FLYWHEEL PIEZOELECTRIC TRANSDUCER

This chapter presents the experimental tests carried out on a new proof mass
piezoelectric actuator equipped with a flywheel element for the implementation of
decentralised velocity feedback loops for vibration control of large flexible structures.
The measured frequency response functions that characterise the electromechanical
responses of the flywheel inertial actuator are contrasted with simulation results
obtained from a simplified mathematical model and compared with those of a
classical proof mass actuator.

The first part of this chapter presents the detailed design of the flywheel
piezoelectric actuator. The selection of the components and assembly process is
described in details. The second part of this chapter presents the classical and
flywheel piezoelectric proof mass actuator that can be used in the active vibration
control applications. A new mathematical formulation is used to derive the FRFs that
characterise the electromechanical properties of both configurations. The simulated
FRFs of actuator base impedance, blocked force and electrical admittance are

contrasted with the experimental results.

4.1 PIEZOELECTRIC TRANSDUCER

The piezoelectric transducer presented in Figure 4.1, was used as a base for
designing the flywheel inertial actuator. The amplified piezoelectric transducer
produced by Cedrat Technologies (APA900M)[83] is built with piezoelectric stack
actuators mounted in the oval shell. The transducer uses two 5x5x20mm?3PZT (Lead
Zirconate Titanate) stacks that are installed in the metal shell, which is used to
mechanically amplify the produced displacement. When a voltage is applied to the
transducer, the piezo stacks start to expand in the direction of the longest edge,
proportionally to the applied signal. The expanding piezo stacks push on the longer
sides of the shell causing the shell to contract in the direction of the shorter edge.

Thus, the amplified piezoelectric transducer works as a pulling actuator. The ratio
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between the shell deformation in longer axis to the deformation in shorter axis is
called the transducer displacement amplification ratio and for the presented actuator
is equal to 21. This type of transducer works with low voltage piezeoelectric stack
actuators (-20V + 150V) and can provide 850um of stroke. The transducer can be used

either for energy harvesting applications or as an actuator.

Figure 4.1. Amplified piezoelectric transducer.

The amplified piezoelectric transducer was used as a base for building a prototype
flywheel actuator due to flat surfaces and M2.5 holes on the both mechanical
terminals of the metal shell. The physical properties of the actuator are summarised
in Table 4.1. The electromechanical properties of the amplified piezoelectric

transducer were obtained from the producer datasheet [83].

Table 4.1. Physical properties of the transducer [83].

Parameter Value
Stroke 850um
Total Mass 18 ¢
Resonance frequency (free-free) 969 Hz
Resonance frequency (blocked-free) 225 Hz
Stiffness 25600 N/m
Blocked force 11.8 N
Capacitance 225 uF
High 10 mm
Length 49 mm
Width 10 mm

The amplified piezoelectric transducer presented in Figure 4.1 can be used to

implement a velocity feedback loop to reduce the flexural vibration of flexible
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structures. However, to produce a constant force effect at the control position in the
low frequency range the actuator should be equipped with a large inertial mass.
However, in case the actuator is exposed to shocks, the metal shell of the piezoelectric
transducer undergoes large deformations, which may lead to cracks of the piezo stack
and eventually to instability of the control system. Thus, it was decided to equip this
actuator with the flywheel element that can improve the robustness of the control
system to shocks and large disturbances by producing an apparent mass effect

without increasing the inertial mass.

4.2 FLYWHEEL PIEZOELECTRIC INERTIAL ACTUATOR

The flywheel piezoelectric prototype was developed from the experience obtained
during design of the two flywheel electromagnetic inertial actuators. The designed
piezoelectric prototype is presented in Figure 4.2. Rendered view is shown in Figure
4.2a while the schematic view is shown in Figure 4.2b. The physical properties of the
designed flywheel piezoelectric actuator are summarised in Table 4.2. The designed
inertial actuator was based on the commercially available amplified piezoelectric
transducer. In contrast to electromagnetic prototypes, the piezoelectric configuration
was designed with the flywheel element attached to the base of the actuator. The
flywheel element was designed in a form of a beam with lumped masses at both ends.
A special yoke bracket is used to support the flywheel element and to connect it with
the base of the piezoelectric actuator. The flywheel element was designed with a fixed
value of the polar moment of inertia. Most of the fabricated components were made
of aluminium. However, the lumped masses were made out of heavier brass to
increase the moment of inertia produced by the flywheel element. The linear motion
of the actuator is converted into a rotation of the flywheel by four pivot bearings. Two
flexural bearings, one on each side, connect the flywheel element with the yoke
bracket. Other two pivot bearings, also one on each side, connect the top output of
the piezoelectric actuator via a special connector. The distance between the pair of the
flexural bearings is the flywheel offset value. This parameter influences the axial
inertia effect produced by the flywheel element and corresponds to a small radius
defined with 7, symbol in the theoretical study. The technical drawings of the
manufactured components for piezoelectric flywheel prototype are presented in

appendix B.
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Figure 4.2. Design view of the flywheel piezoelectric inertial actuator. Rendered

view (a) and schematic view (b).

Table 4.2. Physical properties of the piezoelectric flywheel inertial actuator.

Parameter Value

Inertial mass 0.013 kg
Case mass 0.011 kg
Flywheel mass 0.024 kg
Torsional stiffness 0.003 Nmrad™?
Flywheel inertia 25.5+107° kgm?
Pushing pin offset Ty = 5mm
Axial flywheel mass effect 1.02 kg

4.2.1 Flywheel element

The designed flywheel element for the piezoelectric inertial actuator is shown in
Figure 4.3. The flywheel element was composed of a beam with two lumped masses
attached at both ends. The rectangular chassis was made out of aluminium, while the
lumped masses were made out of heavier brass to increase the moment of inertia
produced by the flywheel element. The lumped masses are attached to the
rectangular chassis with four M2.5 socked head cap screws. The dimensions of the

flywheel element were optimised in such a way as to maximise the polar moment of
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inertia and to sustain the compact dimensions of the inertial actuator. Thus, the length
of the flywheel element slightly exceeds the length of the amplified piezoelectric
actuator. The weight of the lumped masses was chosen such that the axial inertia
effect produced by the flywheel element could reduce the fundamental resonance
frequency of the actuator to about 20Hz. This fundamental resonance frequency was
chosen so that the piezoelectric inertial actuator could be compared with the
electromagnetic configuration described in the previous chapter. Additionally, the
dimensions and thus the weight of the lumped masses were chosen such that the
centre of flywheel gravity would coincide with the axis defined by two holes where
the supporting flexural bearings would be mounted. Figure 4.3 shows the flywheel
centre of gravity offset from the axis defined by two holes (defined with the black-
white circle) for each specific direction:

X=0.006 mm (red arrow in the drawing)

Y =0.000 mm (green arrow in the drawing)

7 =0.000 mm (blue arrow in the drawing)

The two holes that coincide with the flywheel centre of gravity are connected to
the yoke bracket via two flexural bearings, while the yoke bracket is connected with
the base of the piezoelectric actuator. Thus, in this configuration the mass of the
flywheel element is attached to the base mass of the piezoelectric actuator. The other
two holes are connected to the top part of the piezoelectric actuator via special
connector and are distanced by 5mm from the holes used for flywheel support. The
flywheel element was designed with the fixed value of the polar moment of inertia.

With the total mass of 24 g, the axial inertia effect produced by the flywheel element

is equal to 1.02 kg.

Figure 4.3. Flywheel element with marked centre of gravity.
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4.2.2 Assembly process

The assembly process of the flywheel piezoelectric actuator is presented to clarify
the development of the prototype. Figure 4.4 shows the exploded CAD view of an
actuator with numbered parts. The assembly process of the flywheel piezoelectric
actuator is performed in several steps.

Firstly, the APA900M actuator (No. 2) should be glued with the yoke bracket (No.
1). A small grove in the base of the yoke (No. 1) was machined to match exactly the
flat surface of the actuator mechanical terminal (No. 2). After placing small amount
of glue on the flat surface of the mechanical terminal (No. 2) the actuator can be placed
in the grove of the yoke (No. 1). At the same time, the special connector (No. 3) can
be glued to the top flat surface of the actuator mechanical terminal (No. 2). The special
connector (No. 3) was also fabricated with the small grove on the bottom surfaces.
The M2.5 screw (No. 6) should be used to position the connector (No. 3) on the top
flat surface of the actuator mechanical terminal (No. 2). Before proceeding to the next
phase, it is recommended to wait until the glue dries.

The second step is to attach the chassis (No. 7) to the yoke bracket (No. 1). In order
to perform this operation the chassis should be placed between the yoke bracket (No.
1) and the connector (No. 3) so that the holes would coincide. A small amount of glue
should be placed on the external, round surfaces of the flexural bearings (No. 4) and
then both of them can be pushed through the holes of the yoke bracket (No. 1) and
the chassis (No. 7). The flexural bearings (No. 4) that connect the chassis (No. 7) with
the actuator connector (No. 3) should be installed exactly in the same way. It is
recommended to take a particular care while gluing the components to prevent the
situation when the glue might penetrate between the sleeves or leaf springs of the
flexural bearings.

Finally, the two lumped masses can be attached to chassis. The heavier and bigger
mass (No. 8) should be attached on the side where the flywheel is attached to the yoke
brackets. The smaller and lighter mass (No. 9) should be attached closer to the side
where the flywheel is attached to the actuator.

The bottom connector is only used to connect the actuator with the measurement

equipment (No. 5).
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Figure 4.4. Exploded view of the designed flywheel piezoelectric inertial actuator.

4.3 ACTUATORS DESCRIPTION

This section describes the classical and the flywheel proof mass actuators equipped
with the amplified piezoelectric stack actuators. Also, it presents the lumped
parameter models used to derive the electromechanical frequency response functions
that characterise the two actuators. The classical proof mass actuator considered in
this study is made with the amplified piezoelectric transducer connected to an inertial
mass. This reference proof mass actuator is shown in Figure 4.5a with the lumped
element model shown in Figure 4.5c. The classical configuration shown in Figure 4.5a,
was equipped with a square metal block that was attached to one end of the
transducer to act as a inertial mass M,. The bottom part of the shell with piezo stacks
that is attached to the structure act as a base mass m,,. The stiffness k and damping c
of the metal shell are modelled with the spring and dashpot as depicted schematically
in Figure 4.5c. The electromechanical effect that produces a pair of reactive forces F,

between the base mass and proof mass of the actuator is modelled in terms of
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transduction coefficient ¥,,,¢, and voltage u, applied at the electrical terminals of the
actuator. The applied voltage u, and the current i, flowing in the circuit is
proportional to the capacitance G, of the piezo stacks. The direct piezoelectric effect
produces a voltage u,,;, which is proportional to the relative displacement w;,-w,,

between the proof mass and the base mass of the actuator.

@ © [ e,

| TFb, Wb

(b)

|TFm/V'Vm

a

| TFb/ Wp

Figure 4.5. Pictures (a,b) and schemes (c,d) of the tested classical (a,c) and the flywheel
inertial actuator (b,d).

The flywheel porotype is shown in Figure 4.5b, with the lumped parameter model
shown in Figure 4.5d. The additional flywheel element was designed in the form of a
beam with two ballasts placed at the far ends of the arm. As can be seen in Figure
4.5b, the shape and the dimensions of the flywheel element were optimised to
minimise weight and to maximise the produced polar moment of inertia I,. The
ballasts were designed to ensure that the flywheel centre of gravity is in line with the
axis of rotation in the designed bracket support and that the flywheel mass m,, adds
to the base mass m;, of the actuator. The produced rotational inertial effect is
proportional to the relative axial motion between the base mass m; and proof mass
M,, of the actuator and is transferred with four frictionless pivot bearings of torsional
stiffness k,, to the flywheel element. The flywheel element is suspended with two
flexural bearings to the designed bracket attached to the base. The other two

frictionless pivot bearings connect flywheel element to the top end of the amplified
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piezoelectric transducer. The distance between the bearing axis of rotation installed
in the brackets and the bearing axis of rotation mounted to the top end of the
transducer is the flywheel offset r;, as depicted in Figure 4.5d.

The physical properties of the classical piezoelectric actuator and the flywheel
prototype are summarised in Table 4.3. The table specifies the axial inertia I, / (12)
effect that defines the equivalent inertial mass that would be required to reduce the
fundamental resonance frequency of the actuator to the same value as in the flywheel

prototype without using the flywheel element.

Table 4.3. Mechanical parameters of the piezoelectric inertial actuators.

Parameter Value
Inertial mass of the classical actuator M, = 0.039 kg
Inertial mass of the flywheel actuator M,, = 0.013 kg
Base mass my = 0.011 kg
Flywheel mass m,, = 0.030 kg
Total mass of the classical actuator M, + m, = 0.050 kg
Total mass of the flywheel actuator M,, + m,, + my, = 0.054 kg
Axial stiffness k = 25600 Nm™!
Torsional stiffness k,, = 0.012 Nmrad™!
Damping ratio of the classical actuator ¢ =0.0065
Damping ratio of the flywheel actuator ¢ =10.01
Flywheel inertia value I, = 2.55 X 1075 kgm?
Flywheel offset value rw = 0.005m
Axial mass effect of the flywheel I,/r2 =1.02kg
Piezo stacks capacitance Cpzt = 2.25 uF
Transduction coefficient Ypze = 0.075 NV~

4.4 MATHEMATICAL MODEL

This section presents the mathematical equations based on mobility—-impedance
formulation [136] used to derive the frequency response functions (FRFs) for the base
impedance, electrical admittance and blocked force that characterise the
electromechanical response of the classical (Figure 4.5a,c) and flywheel (Figure
4.5b,d) inertial actuators. The piezoelectric inertial actuator studied in this chapter has

different electromechanical properties compared to the EM actuator. Thus, a slightly
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different mathematical model was derived for the actuators investigated in this
chapter.

Considering the lumped parameter models of the classical (Figure 4.5c) and
flywheel (Figure 4.5d) inertial actuators, the complex force at the base of the

transducer is given with the following impedance relation:
Fb = _wab - ZaWb + Zan - Fa ) (41)

where Z,, is the base mass impedance for the classical (Figure 4.5a) and for the

flywheel inertial actuator (Figure 4.5b) given respectively by:
Zp = jomy, , Z = jo(m, +m,). (4.2)

Also Z, are the transducer suspension system impedances for the classical and
proposed flywheel inertial transducer given respectively by:

IW kW

rn2  jorz’

k ko
Za_c+j_a) , Za—c+j—w+]w (4.3)

where the damping is defined as ¢ = {2,/M k for the classical actuator and ¢ =
¢ 2\/ (Mg + 1,/12)(k + ky,/72) for the flywheel actuator. The force generated by the

piezoelectric stack is given by:
Fo = YpzeZeiq, (4.4)
where Z, is the electrical impedance of the piezoelectric stack given by:

Cpzt
7, =22 45
*= Jw (4.5)

The complex force acting on the inertial mass of the transducers can be expressed

with the following impedance relation:
Ep = ZgWy — ZgVim + E, . (4.6)
The complex velocity of the inertial mass is given by the following mobility relation:
Wi = Y (4.7)

where Y, is the inertial mass mobility for the classical (Figure 4.5a) and for the
flywheel inertial actuator (Figure 4.5b) given respectively by:

Y, = ! Y, = !
™ jeM, T jo(My,)

(4.8)

Finally, the complex voltage at the terminals of the piezoelectric transducer is given

by:
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Ug = Zelg + Zelppztwb - Zelppztwm . 4.9)
Substituting Equation (4.4) into Equation (4.6) and then the resulting equation into
Equation (4.7) the velocity of the inertial mass is given by:

YmZa . YmZelppzt .

Vm = ——o—— . 4.10
Ym =Ty, 2, T 1,z (4.10)
Substituting Equation (4.4) and Equation (4.10) into Equation (4.1) the force acting at

the base mass is given by:

Zy+ ZpYmZg+ 27 Z
Y = — b bim“a awb_ el/}pzt ia: (4'11)
1+Y,7, 1+ Y2,
where
z —_&| = 7, + 8
Y=, o ST 1Yy 7, (4.12)
is the mechanical impedance of the open circuit transducer and
Fb Zelppzt
T = — = -
= o 117,72, (4.13)

is the electromechanical coupling coefficient, which gives the produced force per unit
current for the transducer with the blocked base. Substituting Equation (4.10) into
Equation (4.9) the driving current of the piezoelectric transducers is given by:

P = 1+ YmZa w. — l:bpzt W (
¢ Ze + ZerZa - Zelppztymzelppzt ‘1 + YmZa - lppthmZelppzt b

4.14)

where

, _la 1+ Y2,
w =T = 4.15
Ul o Ze t Ze¥mZa — ZeWpaYmeWpa (215)

is the electrical admittance of the transducer with the blocked base. Substituting

Equation (4.14) into Equation (4.11)the force acting at the base mass is given by:

Za + Ze’wbpztwpzt > W
b
1+ YmZa (1 + YmZaL)(1 + YmZa - l/)pthmZa)
Ya
— ua )
1+ YmZa - lppthmZelppzt

Fb = <_Zb -
(4.16)

where
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—F Z Z
wa = — b — Zb + - ; Z _ elppztl/)pzt (4'17)
Wp Ug=0 + Yinlq (1 + sza)(l + YmZa - l»bpztymza)
is the mechanical impedance of the short circuit transducer and
F b _lppzt
Ty = — = 4.18
I Uq Wp=0 1+YnZ, — lppthmZel/)pzt ( )

is the electromechanical coupling coefficient, which gives the produced force per unit

voltage applied to the transducer with the blocked base.

4.5 EXPERIMENTAL TESTS

The following subsections contrast the measured and simulated base impedance,
blocked force and electrical admittance of the classical and flywheel piezoelectric
actuators. The FRFs are depicted in form of matrix of plots where the left hand side
plots show the measured (solid blue lines) and simulated (dash-dotted red lines)
results of the classical actuators while the right hand side plots show the measured
(solid blue lines) and simulated (dash-dotted red lines) results of the flywheel

actuator.

4.5.1 Mechanical impedance of the open circuit transducer

Figure 4.6 shows scheme (Figure 4.6a) and picture (Figure 4.6b) of the base
impedance test setup. The electrical terminals of the inertial actuators were in the
open circuit configuration during tests. The tested actuators were mounted on a
shaker as shown in Figure 4.6b. The shaker was excited with a sine logarithmic sweep
signal up to 1kHz. Two parameters were measured during tests using signal analyser.
Input channel A measured force excreted to the actuator base while input channel B
measured the base acceleration. As shown in Figure 4.6b, the impedance head
mounted between shaker and the actuator measured simultaneously force and
acceleration. The shaker amplifier was used to drive the shaker with required
excitation signal. Appendix D lists equipment used in the measurements of the

transducer elecromechanical properties.
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Figure 4.6. Scheme (a) and picture (b) of the base impedance test with the actuator
electrical terminals in open circuit.

The Bode plots in Figure 4.7 show the base impedance FRFs of the open circuit
classical and flywheel configurations of the proof mass actuators as given in Equation
(4.12). The plots in Figure 4.7a show the results for the classical configuration while
the plots in Figure 4.7b show the results for the flywheel configuration.

The base impedance of the open circuit classical actuator simulation shown in the
modulus plot of Figure 4.7a is characterised by low and high frequency mass-laws
separated by a resonance peak and an antiresonance low. The resonance peak of the
classical actuator is at about 129Hz while the antiresonance low at about 275Hz. The
low frequency asymptote is proportional to the total mass (M, + m;) while the high
frequency asymptote is proportional to base mass (mj) of the proof mass actuator.
The phase of the base impedance shown in lower plot of Figure 4.7a is characterised
by two shifts. At resonance frequency of about 129Hz, the base impedance phase
shifts from +90° to -90° whereas at antiresonance frequency of about 275Hz, the phase
shifts back from -90° to +90°. The full phase shift (+90° to -90°) and sharp resonance
peak and antiresonance low indicates that the classical piezoelectric actuator is lightly
dampened and thus is characterised by a high quality factor (Q = 1/2(). The
measured base impedances of the open circuit classical configuration agree well with
the simulated value. However, the antiresonance low is pushed to lower value of
236 Hz due to the additional peak that appears at about 290 Hz. Most probably, the
additional peak is caused by a higher flexible mode of the ceramics installed in the
shell.

The base impedances of the open circuit flywheel prototype shown in Figure 4.7b

presents similar characteristic to the classical configuration, apart from small
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differences. Firstly, the flywheel axial inertia effect (I,,/%2) shifts the fundamental
resonance frequency to a lower value at about 25 Hz while the antiresonance low at
about 25.5Hz. The sky-hook stiffness effect in between the resonance and
antiresonance frequency is nearly cancelled. Secondly, the amplitude of the higher
frequency asymptotic mass behaviour is increased because of the additional axial
inertia effect (m;, + m,, + I,,/72) produced by the flywheel element. However, the
amplitude of the lower frequency asymptotic mass behaviour has not changed
because the classical and flywheel actuators have nearly equal weight. Finally, the
internal damping effect in the inertial actuator is also increased, such that the
resonance peak and antiresonance through are rounded. The increase of the internal
damping effect is also observed in the phase diagrams. The phase presented in the
lower diagram of Figure 4.7b shifts only by couple of degrees between +90° to around
+81°. The experimental results align well with the simulated open circuit base
impedance FRF. Exactly as for the classical configuration, also for the flywheel
prototype there is an additional peak that appears at about 290 Hz. In the
experimental results there are two additional peaks that appear at 680 Hz and 780 Hz.
Most probably, the dynamics of the flywheel mechanism causes these peaks.
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Figure 4.7. Base impedance of the actuators with the electrical terminals in open
circuit: (a) classical configuration, (b) flywheel prototype. Experimental results (solid
blue lines) and numerical simulations (dashed-dotted red lines).
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4.5.2 Mechanical impedance of the short circuit transducer

Figure 4.8 shows scheme (Figure 4.8a) and picture (Figure 4.8b) of the base
impedance test setup with the actuator electrical terminals in short circuit. The tested
actuators were mounted on a shaker as shown in Figure 4.8b. The shaker was excited
with a sine logarithmic sweep signal up to 1kHz. Two parameters were measured
simultaneously during tests using signal analyser. As shown in Figure 4.8b, the
impedance head mounted between shaker and the actuator measured simultaneously
force and acceleration. Input channel A measured force excreted to the actuator base
while input channel B measured the base acceleration. The shaker amplifier was used
to drive the shaker with required excitation signal. Appendix D lists equipment used
in the measurements of the transducer elecromechanical properties.
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Figure 4.8. Scheme (a) and picture (b) of the base impedance test with the actuator
electrical terminals in short circuit.

The Bode plots in Figure 4.9 show the base impedance FRFs of the short circuit
classical and flywheel configuration of the proof mass actuators as given in Equation
(4.17). The plots in Figure 4.9a show the results for the classical configuration while
the plots in Figure 4.9b show the results for the flywheel configuration.

The base impedance of the short circuit classical actuator shown in Figure 4.9a
presents similar characteristics to the results obtained for the open circuit transducer.
The main difference is that the resonance peak and antiresonance low are shifted to
lower frequencies. Since the piezo ceramics is a dielectric medium, the strains and
stresses in the material are strongly related to the electrical field. The free flow of

electrons and lack of the generated electrical field in the short circuit configuration
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makes the ceramics slightly softer compared to the configuration with open circuit.
The resonance peak of the classical actuator is at about the fundamental resonance
frequency of 123 Hz while the antiresonance low at about 261 Hz. The phase of the
base impedance shown in phase plot of Figure 4.9a is characterised by the shift from
+90° to -90° at the resonance frequency and a shift from -90° to +90° at the
antiresonance frequency. The measured base impedances of the closed circuit
classical configuration agree well with the simulated value. As found for the base
impedance with the open circuit transducer, also here the antiresonance low is
pushed to a lower value of 224 Hz due to the additional peak that appears at about
290 Hz.
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Figure 4.9. Base impedance of the actuators with the electrical terminals in short
circuit: (a) classical configuration, (b) flywheel prototype. Experimental results (solid
blue lines) and numerical simulations (dashed-dotted red lines).

The base impedances of the short circuit flywheel prototype shown in Figure 4.9b
presents similar characteristics to those obtained for the transducer in open circuit.
The flywheel axial inertia effect (I,,/r2) shifts the fundamental resonance frequency
to about 24 Hz and the antiresonance low to about 24.5Hz. The amplitude at the
resonance peak is nearly the same as for the open circuit configuration with the shift
form +90° to around +81° as shown in lower plot of Figure 2b. The experimental

results align well with the simulated short circuit base impedance FRF. Also in this
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case there is an additional peak that appears at about 290 Hz. The experimental results
show two additional peaks that appear at about 690 Hz and 810 Hz caused by the

higher dynamics of the flywheel mechanism.

4.5.3 Blocked force for current driven actuator

Figure 4.10 shows the scheme (Figure 4.10a) and picture (Figure 4.10b) of the
blocked force test setup for the current driven inertial actuator. During tests, the
actuator was attached to a rigid base via a force cell as shown in Figure 4.10b. Two
parameters were measured during tests using signal analyser. Channel input A
measured force excreted to the actuator base while input B measured the current fed
to the actuator. The T-500 amplifier was used to drive the piezoelectric actuators.
Appendix D lists all the equipment used in the measurements of the transducer

elecromechanical properties.
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Figure 4.10. Scheme (a) and picture (b) of the blocked force per unit current fed to
the actuator test setup.
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The Bode plots in Figure 4.11 show the blocked force FRFs per unit current fed to
the classical and flywheel configurations of the proof mass actuators as given in
Equation (4.13). The plots in Figure 4.11a show the results for the classical
configuration while the plots in Figure 4.11b show the results for the flywheel
configuration.

Considering first the bode plot shown in Figure 4.11a for the classical transducer,
at low frequencies the blocked force per unit current fed to the transducer rises
proportionally with frequency and has phase -90°. At the resonance peak, the blocked
force effect reaches maximum value and undergoes a -180° lag as show in the phase
plot of Figure 4.11a. The resonance peak of the classical actuator is at about 129 Hz,
as found for the base impedance measurement assuming open circuit transducer. At
frequencies above the resonance peak, the blocked force drops proportionally with
frequency. The measured blocked force per unit current fed to the actuator of the
classical configuration agree well with the simulated value. Also with the blocked
force measurements, an additional peak appears at about 290 Hz.

The blocked force per unit current fed to the flywheel prototype shown in Figure
4.11b presents similar characteristic to the classical configuration. The flywheel
element axial inertia effect (I, / (r2)) shifts the fundamental resonance frequency to
a lower value of about 25 Hz, similarly to the result for the base impedance assuming
open circuit transducer. In comparison to the classical configuration, the blocked
force is reduced by about 30 dB at the resonance peak and by about 40 dB at
frequencies above the resonance peak. Because of this reduction, the additional peak
that appears at 290 Hz seems to be much sharper compared to the results for the
classical configuration. However, in both measurement the peak at 290 Hz has similar
amplitude. The additional dynamics of the flywheel element appear at 680 Hz and at

740 Hz as for the base impedance measurements.
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Figure 4.11. Blocked force for current driven actuators: (a) classical configuration, (b)
flywheel prototype. Experimental results (solid blue lines) and numerical simulations
(dashed-dotted red lines).

4.5.4 Blocked force for voltage driven actuator

Figure 4.12 shows scheme (Figure 4.12a) and picture (Figure 4.12b) of the blocked
force per unit applied voltage applied to the actuator test setup. During tests, the
actuator was attached to a rigid base via a force cell as shown in Figure 4.12b. Two
parameters were measured during tests using signal analyser. Input channel A
measured force excreted to the actuator base while input channel B measured applied
voltage to the actuator. The T-500 amplifier was used to drive the piezoelectric
actuators. Appendix D lists equipment used in the measurements of the transducer

elecromechanical properties.
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Figure 4.12. Scheme (a) and picture (b) of the blocked force per unit voltage applied
to the actuator test setup.

The Bode plots in Figure 4.13 show the blocked force per unit voltage fed to the
classical and flywheel configurations of the proof mass actuator as given in Equation
(4.18). The plots in Figure 4.13a show the results for the classical configuration while
the plots in Figure 4.13b show the results for the flywheel configuration.

Considering the plot for the classical transducer, at low frequencies the blocked
force per unit voltage applied to the transducer rises proportionally with frequency
and has phase at 0°. At the resonance peak, the blocked force effect reaches maximum
value and undergoes a -180° lag. The fundamental resonance peak is at about 122 Hz,
as found in the measured base impedance FRF for the short circuit transducer. At
frequencies above the resonance peak, the blocked force approximates to a constant
value equal to the transduction coefficient 1, of the transducer. As mentioned in
the actuator description, the amplified piezoelectric transducer works as a pulling
actuator thus the phase is opposite to the applied voltage signal. The measured
blocked force per unit voltage applied to the actuator of the classical configuration
agrees well with the simulation results. An additional peak appears at about 290 Hz

as found in the measurements of the previous electromechanical properties.
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Figure 4.13. Blocked force for voltage driven actuators: (a) classical configuration, (b)
flywheel prototype. Experimental results (solid blue lines) and numerical simulations
(dashed-dotted red lines).

The blocked force per unit voltage fed to the flywheel prototype shown in Figure
4.13b presents similar characteristic to that of the classical configuration. The flywheel
axial inertia effect (I, / (r2)) shifts the fundamental resonance frequency to a lower
value at about 24 Hz, as found for the base impedance FRF of the short circuit
transducer. Compared to that of the classical configuration, the blocked force is
reduced also in amplitude by about 40 dB. The additional peak above the
fundamental resonance frequency appears at about 290 Hz and has similar amplitude
compared to that of the classical configuration. The higher order dynamic effects of
the flywheel element appear at 670 Hz and 730 Hz. Thus, these effects limit the
frequency range for the active vibration control system.

The FRFs presented in this and previous subsections suggest that when the
actuator is driven with constant current, the point force produced above the
fundamental resonance frequency of the actuator tends to decrease with frequency.
In contrast, when the actuator is driven with constant voltage, the point force
produced by the inertial actuator above the fundamental resonance frequency of the
actuator remains constant with frequency. Thus, for the implementation of a uniform

velocity feedback control, it is preferable to implement voltage driven control.

133



134

4.5.5 Electrical admittance

Figure 4.14 shows scheme (Figure 4.14a) and picture (Figure 4.14b) of the electrical
admittance test setup. The tested actuators were attached to a rigid base. Two
parameters were measured during tests using signal analyser. Input channel A
measured voltage at the electrical terminals of the actuator while input B measured
current fed to the actuator. The T-500 amplifier was used to drive the piezoelectric
actuators. Appendix D lists all the equipment used in the measurements of the

transducer elecromechanical properties.

@) - Current probe
Inertial I: (@R :I TA018
o 57% T
w3
8
%Ij Signal analyser
w Abaqus
"%D —
C
g I B
1 Output
InA  Out Input
(b) 1 L P Amplifier T-500

Figure 4.14. Scheme (a) and picture (b) of the electrical admittance test setup.

The Bode plots in Figure 4.15 show the electrical admittance of the classical and
flywheel proof mass actuators as given in Equation (4.15). The plots in Figure 4.15a
show the results for the classical configuration while the plots in Figure 4.15b show
the results for the flywheel configuration

The Bode plot of the electrical admittance FRF for the classical configuration
shown in Figure 4.15a is characterised by low and high frequency asymptotes with

phase at +90° separated by a sharp peak and antiresonace low where the phase shifts
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from +90° to about -70° and finally returns to +90°. The sharp resonance peak is at
about 122 Hz that is resonance frequency of the short circuit transducer. The
aniresonance low is at about 129 Hz that is the resonance frequency of the open circuit
transducer. The low and high frequency asymptotes rise proportionally to the
transducer piezo capacitance. At the resonance frequencies of the transducer, the
electrical admittance has phase equal to 0°, that is the driving current is in phase with
the voltage. The measured electrical admittance of the classical configuration agrees

well with the simulation results.
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Figure 4.15. Electrical admittance of (a) classical configuration and (b) flywheel
prototype. Experimental results (solid blue lines) and numerical simulations (dashed-
dotted red lines).

The electrical admittance of the flywheel prototype shown in Figure 4.15b is very
similar to the classical configuration, since the two transducers are made with
identical piezo component. The principal difference remains in the lower resonance
frequency due to the additional mass effect produced by the flywheel axial inertia
effect (I,, / (1;%)). The sharp resonance peak at about 24 Hz is the resonance frequency
of the short circuit transducer, while the aniresonance low at about 25 Hz is the
resonance frequency of the open circuit transducer. The phase falls from +90° to about
-45° at the resonance frequency and finally returns to +90° at the aniresonance

frequency. The measured electrical admittance of the flywheel configuration agrees
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well with the simulation results. The numerical and experimental results show that
for the given driving voltage the transducers require higher currents at high
frequencies. Thus to control the vibrations at high frequencies this type of inertial

actuator requires amplifier that can provide large power.

4.6 CHAPTER CONCLUSIONS

This chapter has presented simulation and experimental results that characterise
the electromechanical FRFs of a classical and flywheel piezoelectric proof mass
actuator, which can be used to implement a velocity feedback loop to reduce the
flexural vibration of large flexible structures. The study has considered the
mechanical base impedance, the blocked force and the electrical admittance FRFs. The
experimental testes were matched with numerical results derived from a new lumped
parameter model, which included a dedicated flywheel element connected to the
piezoelectric transducer. The results for the flywheel configuration were compared
with those obtained for an amplified piezoelectric transducer equipped with
additional inertial mass element.

The results have shown reasonably good agreement between the measured and
simulated FRFs, both for the classical and the flywheel proof mass actuators. The
results show that the flywheel element can be used to reduce the fundamental
resonance frequency of the actuator without increasing the total weight of the
suspended mass. Moreover, the flywheel element can be optimised to obtain compact
shape and dimensions.

The blocked force study has shown that the piezoelectric actuators should not be
used in velocity feedback system where the actuator is driven with a current signal.
In this case, above the transducer fundamental resonance frequency, the produced
blocked force per unit current fed to the actuator decrees causing the control system
to be less effective at higher frequencies. Instead, the piezoelectric actuator should be
driven with a voltage signal.

The electrical admittance study has shown that the actuators can be used in a wide
frequency range. However, for the voltage driven actuator the required current rises
proportionally to the piezo capacitance and driving frequency. Thus, to efficiently
control the structure at higher frequencies the inertial actuators would require

amplifiers that can provide high power.
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This chapter has also presented the advantages of the piezoelectric proof mass
actuator over the classical electromagnetic solution used in active vibration control
systems. The piezoelectric actuators can be more compact and do not generate
magnetic flux. Piezoelectric actuators with switching amplifiers present very high
efficiency and use less power compared to the electromagnetic actuators.
Additionally, the capacitive effect of the piezoelectric material can be used in power
recovery systems of the switching amplifiers. This system could be easily
reconfigured for the energy harvesting applications of the vibration structures.
Compared to piezoelectric patches, the amplified piezoelectric transducer considered
in this study provides higher displacements that can be efficiently used to produce
large point forces via the oscillations of the inertial mass.

The experimental results obtained with the prototype actuator have shown that
the flywheel element induces additional dynamic in the actuator. Thus, a velocity
feedback loop with the proposed flywheel piezoelectric actuator could be

implemented in narrow and low frequency band.
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5

ACTIVE VIBRATION CONTROL

This section presents the test setup and models used to evaluate the stability and
control performance of a velocity feedback loop implemented on thin rectangular
plate using inertial EM actuators. The stability and control performance of the control
system is assessed using the classical, classical with the same inertial mass as the
flywheel configuration and the pinned configuration of the flywheel inertial actuator.
The results presented in the previous chapters for the electromechanical properties of
the inertial actuators showed that the flexural bearings used in the pinned
configuration minimise the nonlinear effects and reduce the backlash effects that
could introduce stability issues. Thus, the hinged configuration of the flywheel

inertial actuator was excluded from this study.

5.1 EXPERIMENTAL SETUP

A special experimental setup was designed to test the velocity feedback loops with
the inertial EM actuators. Figure 5.1 shows the fabricated test setup with a supported
rectangular plate. The structure was designed for multipurpose use and can be
adapted for measurements in horizontal and vertical orientations. The base of the test
setup was fabricated out of concrete material sealed in a metal frame. Heavy base
prevents the setup from any undesired oscillations during measurements by lowering
the amplitude of the rigid body modes. A multipurpose aluminium profile was
immersed in the concrete base and can be used to attach various equipment. The
chassis attached to the concrete base was designed with triangle sidewalls to reduce
the vibrations in parallel direction to the out-of-plane axis of the plate. The
construction of the chassis allows to approach the plate from both sides. A T-slot
support was mounted inside the chassis, which is used to attach the excitation
shakers. The level at which the T-slot support is mounted can be easily changed
allowing to define any excitation position over the surface of the plate. Finally, the

investigated plate is mounted between top and bottom frames that are attached to the
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chassis. A large number of M10 bolts guarantee that the clamping force is evenly
distributed. A thin layer of soldering wire was distributed between the frame and the
steel plate to mimic a simply supported boundary condition. However, the
preliminary tests showed that the simulation results match better the experimental
results when the natural frequencies of the plate are calculated for the clamped
boundary condition as given in Equation (2.9). The technical drawings of the
manufactured structure used for implementation of the active control system are

presented in appendix C.

Figure 5.1. Test setup with a rectangular plate for the implementation of the velocity
feedback loop system with inertial actuators.

The picture and schematic model of the velocity feedback loop system
implemented on the rectangular plate is shown in the Figure 5.2. The tested actuator
is attached on one side of the rectangular panel. The panel is excited by a point force
produced by a shaker located on the other side of the panel. The error signal is
measured with a small accelerometer sensor that is attached on the same side of the
panel as the shaker, exactly underneath the actuator position. The mechanical
properties of the rectangular panel and location of the actuator and primary force are

specified in Table 5.1.
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(b)

Figure 5.2. Picture (a) and scheme (b) of a rectangular plate with a velocity feedback
control loop system using the inertial actuators. The picture clearly shows the shaker
used to excite the plate with point force and the control inertial actuator attached to
the plate. The small accelerometer sensor was installed on the shaker side as shown
in the scheme (b).

Table 5.1. Mechanical parameters of the thin rectangular plate used for the
inmplemantation of the velocity feedback control system.

Parameter Value
Length l, =0.668 m
Width I, = 0.444 m
Thickness h =0.00137 m
Mass density p = 8200 kgm™3
Elastic modulus E =210x% 10° Nm™2
Poisson ratio v =0.31
Damping ratio {s =0.0035
Position of the actuator (xc,y.) = (0.234m,0.178 m)
Position of the primary force (xp,¥p) = (0.433m,0.157 m)

The velocity feedback control loop was implement with an analogue conditioner
that filters and integrates the signal obtained from the accelerometer. The output
velocity signal is send back to the actuator via a voltage operational amplifier that
also increases the gain of the error signal. The stability of the velocity feedback loops
using the classical configuration, the classical with the same inertial mass as the
flywheel configuration and the pinned flywheel inertial actuator is assessed using the
Nyquist criterion based on the open loop sensor —actuator frequency response
function. The performance of the feedback loops has been assessed considering the
velocity at the control position and the total flexural kinetic energy of the hosting

plate. The experimental results are compared with numerical simulations obtained
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from the lumped parameter model of the actuators located on the rectangular panel

derived in chapter two of this thesis.

5.2 OPEN LOOP STABILITY ANALYSIS FOR THE CURRENT DRIVEN
ACTUATOR

Figure 5.3 shows scheme (Figure 5.3a) and picture (Figure 5.3b) of the open loop
sensor — actuator FRF test setup for the current driven inertial actuator. During tests,
the actuator was attached to a rectangular plate as show in Figure 5.3b. Two
parameters were measured during tests using signal analyser. Input channel A
measured acceleration at the base footprint of the actuator while input channel B

measured current fed to the actuator. The quad amplifier was used to drive the
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Figure 5.3. Scheme (a) and picture (b) of the open loop sensor — actuator FRF test
setup for the current driven inertial actuator.
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actuator with a 1kHz random excitation signal generated by the signal analyser.
Appendix D lists all the equipment used in the measurements.

The stability of the velocity feedback loops using the classical, classical with the
same inertial mass as the flywheel configuration and the pinned flywheel inertial
actuator is assessed using the Nyquist criterion. Figure 5.4 shows the Bode diagram
of the open loop sensor —actuator frequency response function for the classical
actuator. The top plot in Figure 5.4 shows the modulus diagram while the bottom plot
shows the phase diagram of the actuator open loop FRF for the current driven
classical actuator. The solid blue lines in the plots present the measurement results,
while the dashed-dotted red lines present the simulation results of the open loop
sensor — actuator FRF which is given by G, as specified in Equation (2.32).

The modulus plot for the classical actuator is characterised by a resonance peak at
about 19 Hz with amplitude of -15.7 dB, which is due to the fundamental resonance
of the inertial actuator, and then a sequence of sharp resonance peaks and narrow
antiresonance lows pairs. The phase plot is characterised by a -180° phase lag at the
fundamental resonance frequency of the actuator and then a sequence of -180° phase
lag and +180° phase lead for each resonance peak and antiresonance low pair due to
the response of the plate. The experimental results (solid blue lines) for the classical
configuration of the inertial actuator align well with the numerical results (dashed-
dotted red lines). The mathematical model predicts well the resonance peak and the
phase shift due to dynamics of the inertial actuator. Furthermore, most of the
resonance peaks and antiresonance lows pairs due to dynamics of the plate aligns
well with the measurement. A small difference in the amplitude and frequency can
be observed at higher frequencies, mainly between 400 Hz and 600 Hz. The simulated
phase of the open loop sensor—actuator FRF for the current driven classical actuator
aligns well with measurement. However, the measured phase starts slowly to decay
at higher frequencies. Most probably, this is caused by the electrical properties of the

measurement setup that were neglected in the simulations.
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Figure 5.4. Open loop sensor—actuator FRFs for the current driven classical inertial
actuator. Experimental results (solid blue lines) and numerical simulations (dashed-
dotted red lines).

Figure 5.5 shows the Bode diagram of the open loop sensor — actuator FRF for the
current driven classical actuator with the same inertial mass as the flywheel
configuration. The modulus and phase diagrams present almost identical
characteristic to those of the classical configuration. However, due to the heavier
inertial mass, the resonance peak at the fundamental resonance of the inertial actuator
appears at slightly lower frequency of about 17 Hz and has slightly lower amplitude
of -16.3 dB. The sequence of sharp resonance peaks and narrow antiresonance lows
pairs in the modulus diagram with the sequence of -180° phase lag and +180° phase
lead in the phase diagram is almost identical as for the classical configuration. The
experimental results (solid blue lines) align well with the numerical results (dashed-
dotted red lines) also for this configuration of the inertial actuator. The additional
peaks in the modulus diagram between 50 Hz and 60 Hz in measurements are caused
by the increased mass attached to the inertial actuator. Most probably, due to the
heavier inertial mass the higher order mode that appeared at 70 Hz for the classical
inertial actuator (Figure 5.4) is shifted to lower frequency. Also for the classical
actuator with the same inertial mass as the flywheel configuration a small difference
in the amplitude and frequency can be observed between 400 Hz and 600 Hz. The

simulated phase of the open loop sensor—actuator FRF aligns well with the measured
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one. The measured phase starts slowly to decay at higher frequencies also for open
loop sensor-actuator FRF of the classical actuator with the same inertial mass as the

flywheel configuration.
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Figure 5.5. Open loop sensor-actuator FRFs for the current driven classical
configuration with the same inertial mass as that of the flywheel configurations.
Experimental results (solid blue lines) and numerical simulations (dashed-dotted red
lines).

Figure 5.6 shows the open loop sensor — actuator FRF for the pinned configuration
of the flywheel inertial actuator. The modulus and phase diagrams clearly show that
the inertia effect of the flywheel element shifts the resonance peak of the fundamental
resonance of the inertial actuator to lower frequency of about 13 Hz and to lower
amplitude of -22.1 dB. The experimental results (solid blue lines) for the flywheel
configuration of the inertial actuator align with the numerical results (dashed-dotted
red lines) mainly at lower frequenices. The additional resonance of the actuator at
about 210 Hz causes the phase shift from 90° to about 190°. Although additional
dynamics of the actuator can cause instability in the velocity feedback loop, this
resonance has much lower amplitude of -28 dB compared to the fundamental
resonance of the inertial actuator. Thus, the stability limit of the feedback control
system can be considered based on the fundamental resonance frequency of the

flywheel inertial actuator. Another mayor difference between the measurement and
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simulation results are the rapidly smoothen resonance peaks and antiresonance lows
above 300 Hz, both in modulus and phase diagrams. The measured resonance peaks
and antiresonance lows show similar amplitudes compared to those found in the
other configurations of the inertial actuators. Thus, it can be assumed that the
influence of the inertia effect of the flywheel element is diminished at higher
frequencies or that the dynamics of the plate is slightly different from the one
predicted with simulations. Considering the phase diagram, the measured phase
starts to decay at higher frequencies due to the electrical properties of the

measurement setup that were neglected in the simulations.
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Figure 5.6. Open loop sensor-actuator FRFs for the current driven pinned
configuration of the flywheel inertial actuator. Experimental results (solid blue lines)
and numerical simulations (dashed-dotted red lines).

The stability of the velocity feedback loops using the classical and the pinned
flywheel inertial actuator is assessed using the Nyquist criterion. Figure 5.7 shows the
Nyquist plots of the open loop sensor — actuator FRF for the three configurations of
the inertial actuator. Figure 5.7a shows the results for the classical configuration.
Figure 5.7b shows the results for the classical actuator with the same inertial mass as
the flywheel configuration. Finally, Figure 5.7c shows the results for the pinned

configuration of the flywheel inertial actuator. The solid blue lines in the plots present
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the measurement results, while the dashed-dotted red lines present the simulation
results.

The Nyquist diagram for the open loop FRF with the current driven classical
inertial actuator is characterised by a circle in the real negative quadrants, which is
due to the resonance peak of the fundamental natural frequency, whereas the
progressively smaller circles in the real positive quadrants are due to the resonance
peaks and antiresonance lows of the plate. The circles in the real negative and positive
quadrants are not centred along the axis due to high damping ratio of the inertial
actuator that slightly shifts the pattern. The circle in the left hand side quadrants
indicates that the feedback loop is only conditionally stable with maximum signal
gain margin of about 16 dB. The experimental results (solid blue lines) align well with
the numerical results (dashed-dotted red lines) mainly for the first and second
resonance peaks. Thus, the performance of the velocity feedback loops for the current
driven inertial actuator can be assessed with following approximation
201log1(1 + 6,,/64), proposed by Aoki et al. [147]-[149], where the §,, and §, are the
real values of the open loop sensor-actuator FRF for the n™" resonance peak of the plate
and resonance peak at the fundamental resonance of the inertial actuator as shown in
Figure 5.7. Therefore, the maximum reduction of the first resonance peak of the plate
with the classical inertial actuator can reach 23 dB.

The Nyquist plot for the classical actuator with the same inertial mass as the
flywheel configuration shown in Figure 5.7b presents similar characteristic to the
classical configuration. The circle in the left hand side quadrants indicates that
stability gain margin is about 17 dB. The experimental results (solid blue lines) align
well with the numerical results (dashed-dotted red lines) also for this configuration
of the inertial actuator. This analysis shows that the maximum reduction of the first
resonance peak of the plate with this configuartion of the inertial actuator can reach
23.4 dB.
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Figure 5.7. Nyquist plots of the open loop sensor — actuator FRFs for the current
driven actuators. (a) Classical actuator, (b) classical configuration with the same
inertial mass as the flywheel configuration, (c) pinned configuration of the flywheel
inertial actuator. Experimental results (solid blue lines) and numerical simulations

(dashed-dotted red lines).
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The Nyquist plot for the pinned configuration of the flywheel inertial actuator
shown in Figure 5.7c presents similar characteristic to the previous two
configurations. However, the inertia effect produced by the flywheel element has
significantly increased the stability of the feedback loop. Thus, the stability gain
margin is about 21.5 dB. The experimental results (solid blue lines) align well with
the numerical results (dashed-dotted red lines). As shown in Figure 5.6 for the open
loop sensor — actuator FRF, an additional resonance of the actuator creates a second
circle in the left hand quadrants. The second circle is much smaller compared to the
one for the resonance peak of the actuator fundamental natural frequency and does
not threaten stability of the velocity feedback loop. The assesed performance for the
flywheel inertial actuator shows that the maximum reduction of the first resonance

peak of the plate can reach up to 30.7 dB.

5.3 OPEN LOOP STABILITY ANALYSIS FOR THE VOLTAGE DRIVEN
ACTUATOR

Although electromagnetic actuators are typically driven with current amplifiers,
they can also be used with voltage amplifiers that are generally more easily available.
The results presented in paragraph 3 show that the inertial actuators used in the
experiments can produce constant force effect while being driven either with current
or voltage signals. Therefore, the stability of the velocity feedback loops is assessed
also for the voltage driven inertial actuators.

Figure 5.8 shows scheme (Figure 5.8a) and picture (Figure 5.8b) of the open loop
sensor — actuator FRF test setup for the voltage driven inertial actuator. During tests,
the actuator was attached to a rectangular plate as show in Figure 5.8b. Two
parameters were measured during tests using signal analyser. Input channel A
measured acceleration at the base footprint of the actuator while input channel B
measured voltage applied to the inertial actuator. The quad amplifier was used to
drive the actuator with a 1kHz random excitation signal generated by the signal

analyser. Appendix D lists all the equipment used in the measurements.
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Figure 5.8. Scheme (a) and picture (b) of the open loop sensor — actuator FRF test
setup for the voltage driven inertial actuator.

Figure 5.9 shows the Bode diagram of the open loop sensor — actuator FRF for the
voltage driven classical inertial actuator. The solid blue lines in the plots present the
measurement results, while the dashed-dotted red lines present the simulation results
of the open loop sensor — actuator FRF which is given by G, as specified in Equation
(2.34). The modulus plot is characterised by a heavily damped resonance peak at the
fundamental resonance of the inertial actuator and then a sequence of rounded
resonance peaks and antiresonance lows pairs. The resonance peaks are rounded off
by the resistive effect in the transducer coil as specified in Equation (2.24). The phase
plot is characterised by a -180° phase lag at the fundamental resonance frequency of
the actuator and then a sequence of -180° phase lag and +180° phase lead for each
resonance peak and antiresonance low pair of the plate. The experimental result (solid
blue lines) for the classical configuration of the inertial actuator aligns with the

numerical result (dashed-dotted red lines). The mathematical model predicts well the
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resonance peak with the phase shift of the inertial actuator and most of the resonance
peaks and antiresonance lows pairs due to dynamics of the plate. A small difference
in amplitude and frequency between the numerical and measurement results can be
observed between 400 Hz and 600 Hz, as noticed with the open loop sensor-actuator
FRF for the current driven actuator. The simulated phase of the open loop sensor—
actuator FRF for the voltage driven classical actuator aligns well with the measured
one. The measured phase starts to decay at higher frequencies due to the electrical

inductance of actuator coil, as predicted in numerical results.
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Figure 5.9. Open loop sensor—actuator FRFs for the voltage driven classical inertial
actuator. Experimental results (solid blue lines) and numerical simulations (dashed-
dotted red lines).

Figure 5.10 shows the Bode diagram of open loop sensor-actuator FRFs for the
voltage driven classical actuator with the same inertial mass as the flywheel
configuration. The modulus and phase diagrams present almost identical
characteristics to the classical configuration. Slightly heavier inertial mass shifts the
fundamental resonance of the inertial actuator to a hardly noticeable lower frequency.
The sequence of rounded off resonance peaks and narrow antiresonance lows pairs
in the modulus diagram with the sequence of -180° phase lag and +180° phase lead in
the phase diagram is almost identical as for the classical configuration. The

experimental results (solid blue lines) align well with the numerical results (dashed-
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dotted red lines) also for this configuration of the inertial actuator. The classical
actuator with the same inertial mass as the flywheel configuration presents a small
difference in the amplitude and frequency between 400 Hz and 600 Hz. The simulated

phase of the open loop sensor—actuator FRF aligns well with the measured one.
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Figure 5.10. Open loop sensor-actuator FRFs for the voltage driven classical
configuration with the same inertial mass as that of the flywheel configuration.
Experimental results (solid blue lines) and numerical simulations (dashed-dotted red
lines).

Figure 5.11 shows the results for the pinned configuration of the flywheel inertial
actuator. The inertia effect of the flywheel element shifts the resonance peak at the
fundamental resonance of the inertial actuator to lower frequency. The experimental
results (solid blue lines) for the flywheel configuration of the inertial actuator align
well with the numerical results (dashed-dotted red lines) mainly at lower frequenices.
Similarly to the open loop sensor-actuator for the current driven actuator there is an
additional resonance of the actuator at about 210 Hz that causes the phase to shift
from 70° to about 170°. However, the actuator additional dynamics produces lower
fundamental resonance peak compared to the peak of fundamental resonance
frequency of the inertial actuator. Another mayor difference between the
measurement and simulation results are the rapidly smoothen resonance peaks and

antiresonance lows above 300 Hz, both visible in the modulus and the phase
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diagrams. This effect is very similar to the one visible for the open loop sensor-
actuator for the current driven actuator. Considering the phase diagram, the
measured phase starts to decay at higher frequencies due to the electrical properties

of the actuator coil that were predicted in the simulations.
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Figure 5.11. Open loop sensor-actuator FRFs for the voltage driven pinned
configuration of the flywheel inertial actuator. Experimental results (solid blue lines)
and numerical simulations (dashed-dotted red lines).

The stability of the velocity feedback loops using the classical, classical
configuration with the same inertial mass as the flywheel configuration and the
pinned flywheel inertial actuator is assessed using the Nyquist criterion. Figure 5.12
shows the Nyquist plots of the open loop sensor —actuator FRF for the three
configurations of the inertial actuator. Figure 5.12a shows the results for the classical
configuration. Figure 5.12b shows the results for the classical actuator with the same
inertial mass as the flywheel configuration. Figure 5.12c shows the results for the
pinned configuration of the flywheel inertial actuator. The solid blue lines in the plots
present the measurement results, while the dashed-dotted red lines present the
simulation results.

The Nyquist diagram for the open loop sensor-actuator FRF with the voltage
driven classical inertial actuator is characterised by a small circle in the real negative

quadrants, which is due to the fundamental resonance frequency of the actuator,
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while the progressively smaller circles in the real positive quadrants are due to the
resonance peaks and antiresonance lows of the plate. The circles are not centred along
the axis due to high damping ratio of the inertial actuator that shifts the pattern. The
small circle in the left hand side quadrants indicates that the feedback loop is only
conditionally stable with maximum signal gain margin of about 54 dB. The
experimental results (solid blue lines) align well with the numerical results (dashed-
dotted red lines). As done for the current driven actuator, the performance of the
velocity feedback loops with the voltage driven inertial actuator can be assessed with
the approximation 201log;,(1 + 6,,/6,) [147]-[149], where the &,, and §, are the real
values of the open loop sensor-actuator FRF for the n resonance peak of the plate
and resonance peak at the fundamental resonance of the inertial actuator as shown in
Figure 5.12. In this case, the maximum reduction of the first resonance peak of the
plate with the classical inertial actuator can reach 23.8 dB.

The Nyquist plot for the classical actuator with the same inertial mass as the
flywheel configuration shown in Figure 5.12b presents similar characteristic to the
classical configuration. The circle in the left hand quadrants indicates that the stability
gain margin is about 55 dB. The experimental results (solid blue lines) align well with
the numerical results (dashed-dotted red lines) also for this configuration of the
inertial actuator. The assesed performance shows that the maximum reduction of the
first resonance peak of the plate with this configuartion of the inertial actuator can
reach 24.3 dB.

The Nyquist plot for the pinned inertial actuator shown in Figure 5.12c presents
similar characteristic to the previous two configurations. However, the inertia effect
produced by the flywheel element has significantly increased the stability of the
feedback loop. Indeed, the stability gain margin is now about 59 dB. The experimental
results (solid blue lines) obtained for the flywheel inertial actuator align well with the
numerical results (dashed-dotted red lines). As shown in Figure 5.11 of the open loop
sensor — actuator FRF, an additional resonance effect of the actuator creates a second
circle in the left hand quadrants. The second circle is much smaller compared to the
one for the resonance peak of the fundamental resonance frequency of the actuator
and does not threaten the stability of the velocity feedback loop. The assesed
performance for the flywheel inertial actuator shows that the maximum reduction of

the first resonance peak of the plate can reach up to 32.8 dB.
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Figure 5.12. Nyquist plots of the open loop sensor — actuator FRFs for the voltage
driven actuators. (a) Classical actuator, (b) classical configuration with the same
inertial mass as the flywheel configuration, (c) pinned configuration of the flywheel
inertial actuator. Experimental results (solid blue lines) and numerical simulations

(dashed-dotted red lines).
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5.4 PERFORMANCE

The control performance of the velocity feedback loops with the classical, classical
configuration with the same inertial mass as the flywheel configuration and the
pinned configuration of the flywheel inertial actuator is assessed by plotting the
velocity reductions generated at the control position and the total flexural kinetic
energy of the rectangular plate.

Figure 5.13 shows the scheme (Figure 5.13a) and the picture (Figure 5.13b) of the
closed loop sensor —actuator test setup for the voltage driven inertial actuator. During
tests, the actuator was attached to a thin rectangular plate as shown in Figure 5.13b.
Two parameters were measured during tests using signal analyser. Input channel A
measured excitation force while input channel B measured acceleration at the base
footprint of the inertial actuator. A dedicated shaker amplifier was used to drive the
shaker with a 1kHz random excitation signal generated by the signal analyser. The
quad amplifier was used to drive the actuator with a velocity signal obtained from
the accelerometer mounted at the base footprint of the inertial actuator. A signal
conditioner was used to integrate the acceleration and to obtain the velocity signal.

Appendix D lists all the equipment used in the measurements.
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Figure 5.13. Scheme (a) and picture (b) of the closed loop sensor — actuator test setup
for the voltage driven inertial actuator.

Figure 5.14 shows the control performance of the velocity feedback loops at the

control position of the rectangular plate per unit force excitation for different control

gains applied to the actuators. The figure is organised in two columns where, the left

column shows the simulation results (plots a-c) given by Equation (2.39) while the

right column shows the measurement results (plots d-f).
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Figure 5.14 shows the control velocity signal per unit primary force excitation
considering the plain plate (dotted green lines), the plate equipped with open loop
inertial actuator (dashed brown lines) the plate equipped with the feedback loop
using voltage driven inertial actuator with 10 dB signal gain margin (dashed-dotted
magenta lines) and the plate equipped with the feedback loop with maximum signal
gain that guarantee stability applied to the control actuator (solid lines). To extinguish
three configurations of the inertial actuators shown in Figure 5.14, the blue lines
present the classical inertial actuator, the black lines present the classical
configuration with the same inertial mass as the flywheel configuration and the red
lines present the pinned flywheel inertial actuator.

The spectrum of the plane plate flexural response at the control position (dotted
green lines) is characterised by fundamental resonance peak at about 43 Hz and then
a sequence of progressively smaller in amplitude sharp resonance peaks. The
numerical results for the plain plate shown in left hand plots of Figure 5.14
correspond quite well to the experimental results shown in right hand plots of Figure
5.14. The amplitude of the plate resonance peak starts to diminish with the increase
of the frequency with numerical results (plots a-c), while in the experimental results
(plots d-f), the amplitude of the plate resonance peaks stay relatively equal in entire
measured band.

When the classical inertial actuator (plots a, d), classical configuration with the
same inertial mass as the flywheel configuration (plots b, e) or flywheel inertial
actuator (plots ¢, f) is mounted to the plate (dashed brown lines), the amplitudes of
the sharp resonance peaks are rounded off. The mass of the inertial actuators shifts
the fundamental resonance peak of the plate to a slightly lower frequency. The
numerical results (plots a, b, c) for the plate equipped with open loop inertial
actuators present slightly higher reductions of the plate fundamental resonance peak
compared to measurements (plots d, e, f). The experimental results show that the
fundamental resonance peak of the plate is rounded off by about 11.9 dB with the
classical inertial actuator, by about 12 dB with the classical configuration with the
same inertial mass as the flywheel configuration and by about 6.4 dB with the
flywheel configuration.

When the velocity feedback loops are implemented with 10 dB control gain
margins (dashed-dotted magenta lines), to ensure stability and robustness in case of
shocks of the hosting structure, the control loops produce higher vibration reductions.
Experimental results show that when the feedback loops with 10 dB control gain

margins are implemented the plate fundamental resonance peak is rounded off by
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about 32.1 dB with the classical inertial actuator, by about 33.6 dB with the classical
configuration with the same inertial mass as the flywheel configuration and by about
31.3 dB with the flywheel configuration. The numerical (plots a, b, c) and
experimental (plots d, e, f) results show that the velocity feedback loops also generate
small control spillover effect around the fundamental resonance frequency of the
actuators. The control spillover for the classical inertial actuator has amplitude of
about -45.7 dB, for the classical configuration with the same inertial mass as the
flywheel configuration has amplitude of about -48.8 dB while for the flywheel
configuration has amplitude of about -53.3 dB.

When the velocity feedback loops are implemented with maximum control gain
that guarantee stability (solid lines) the control loops produce high vibration
reductions. Experimental results show that when the feedback loops with maximum
signal gain that guarantee stability are implemented the plate fundamental resonance
peak is rounded off by about 40.6 dB with the classical inertial actuator, by about 40.4
dB with the classical configuration with the same inertial mass as the flywheel
configuration and by about 39.8 dB with the flywheel configuration. The numerical
(plots a, b, c) and experimental (plots d, e, f) results show that the velocity feedback
loops also generate high control spillover effect at the fundamental resonance

frequency of the actuators.
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Figure 5.14. Velocity at the control position per unit force excitation of the plate with
different signal gains applied to the actuators. Simulation results (plots a, b, c)
compared with measurements (plots d, e, f). Plate without inertial actuator (dotted
green lines). Plate with the feedback control loop using voltage driven classical
inertial actuator (plots a, d), classical configuration with the same inertial mass as the
flywheel configuration (plots b, e) and flywheel inertial actuator (plots , f). Plate with
open loop inertial actuator (dashed brown lines). Plate with the feedback control
systems using voltage driven inertial actuator with 10 dB signal gain margin (dashed-
dotted magenta lines) and with maximum signal gain that guarantee stability applied
to the control actuators (solid lines).
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Figure 5.15 shows the control velocity signal per unit primary force excitation
considering the plain plate (dotted green lines) and the plate equipped with the
feedback loop with maximum signal gain that guarantee stability using classical
actuator (solid blue line), classical configuration with the same inertial mass as the
flywheel configuration (dashed black lines) and the pinned flywheel inertial actuator
(dashed-dotted red lines). The simulation results (Figure 5.15a) are compared with
the measurements (Figure 5.15b). The velocity feedback loops are implemented with
maximum signal gains that guarantee stability, which were defined using open loop
FRFs presented in paragraph 5.3.

When the velocity feedback loops are implemented with maximum control gains
that ensure stability using the inertial actuators the response at the control position is
characterised by rounded off plate resonance peaks. However, both plots show that
the velocity feedback loops also generate quite high control spillover effect around
the fundamental resonance frequency of the actuators. Thus, for the classical
configuration of the inertial actuator the spillover effect appears at about 20 Hz, for
the classical configuration with the same inertial mass as the flywheel configuration
at about 18 Hz, while for the pinned flywheel inertial actuator at about 15 Hz. The
spillover effect produced by the flywheel configuration has lower amplitude by about
3 dB compared to the other two configurations. The simulation results show that all
three configurations produce similar vibration control performance at low
frequencies and round off the fundamental resonance peak of the plate by about
48 dB. However, above around 500 Hz the flywheel configuration produces higher
reductions compared to other two configurations. The measurement results present
similar characteristic to the numerical results given by Equation (2.39). The
fundamental resonance frequency of the plate is rounded off by about 40 dB by all
three configurations. Measurement results also show that the flywheel configuration
produces much smaller control effect at lower frequencies compared to other two
configurations. However, between 200 Hz and 800 Hz the control performance of the
flywheel configuration is much greater compared to the other two configurations.
Additionally, both plots clearly show the pinning effect of the plate at the control
position due to the high feedback gains applied to the actuators. The first pinning
effect appears at about 60 Hz, while the second at about 130 Hz, which as discussed

in chapter 2.6 may limit the control performance of the velocity feedback control loop.
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Figure 5.15. Velocity at the control position per unit force excitation of the plate with
maximum signal gain that guarantee stability applied to the control actuators. Plate
without inertial actuator (dotted green lines) and for the plate with the feedback
control systems using voltage driven classical inertial actuator (solid blue lines),
classical configuration with the same inertial mass as the flywheel configuration
(dashed black lines) and with the flywheel inertial actuator (dashed-dotted red lines).
Simulation results (plot a) compared with measurements (plot b).

The performance of the velocity feedback loops with the classical, classical
configuration with the same inertial mass as the flywheel configuration and the
pinned configuration of the flywheel inertial actuator is also assessed considering the
total flexural kinetic energy of the rectangular plate.

Figure 5.16 shows the scheme (Figure 5.16a) and the picture (Figure 5.16b) of the
laser vibrometer closed loop sensor — actuator test setup. During tests, the actuator
was attached to a thin rectangular plate as shown in Figure 5.16b. The velocity of the
panel was measured at 186 (17x11 grid mesh) evenly distributed points using laser
vibrometer. The reference input channel measured the excitation force generated by
the shaker. The shaker amplifier was used to drive the shaker with a 1kHz pseudo
random excitation signal generated by the laser vibrometer. The quad amplifier was
used to drive the actuator with a velocity signal obtained from the accelerometer
mounted at the base footprint of the inertial actuator. A signal conditioner was used
to integrate the acceleration and to obtain the velocity signal. Appendix D lists all the

equipment used in the measurements.
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Figure 5.16. Scheme (a) and picture (b) of the laser vibrometer closed loop sensor —
actuator test setup.

Figure 5.17 shows the total flexural kinetic energy of the plate per unit force
excitation for different control gains applied to the actuators. The figure is organised
in two columns where, the left column shows the simulation results (plots a-c) given

by Equation (2.50) while the right column shows the measurement results (plots d-f).
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Figure 5.17 shows the total flexural kinetic energy per unit primary force excitation
considering the plain plate (dotted green lines), the plate equipped with open loop
inertial actuator (dashed brown lines) the plate equipped with the feedback loop
using voltage driven inertial actuator with 10 dB signal gain margin (dashed-dotted
magenta lines) and the plate equipped with the feedback loop with maximum signal
gain that guarantee stability applied to the control actuator (solid lines).

The spectrum of the total flexural kinetic energy of the plain plate (dotted green
lines) is characterised by a sharp resonance peak at about 44 Hz, which is due to the
fundamental natural mode of the plate followed by other peaks due to flexural modes
of the plate. The numerical results for the plate shown in left hand plots of Figure 5.17
correspond quite well to the experimental results shown in right hand plots of Figure
5.17. However, the measurement results show that up to 200 Hz the amplitude of the
plate resonance peaks stay relatively equal.

When the classical inertial actuator (plots a, d), classical configuration with the
same inertial mass as the flywheel configuration (plots b, e) or flywheel inertial
actuator (plots ¢, f) is mounted to the plate (dashed brown lines), the amplitudes of
the sharp resonance peaks are rounded off. Similarly to the results obtained at the
control position, the mass of the inertial actuators shifts the fundamental resonance
peak of the plate to a slightly lower frequency. Also, the numerical results (plots a, b,
c) for the plate equipped with open loop inertial actuators present slightly higher
reductions compared to the experimental results (plots d, e, f). The experimental
results show that the fundamental resonance peak of the plate is rounded off by about
41.2 dB with the classical inertial actuator, by about 42.2 dB with the classical
configuration with the same inertial mass as the flywheel configuration and by about
33.3 dB with the flywheel configuration.

When the velocity feedback loops are implemented with 10 dB control gain
margins (dashed-dotted magenta lines), to ensure stability and robustness in case of
shock of the hosting structure, the control loops produce higher vibration reductions.
Experimental results show that when the feedback loops with 10 dB control gain
margins are implemented the plate fundamental resonance peak is rounded off by
about 79.3 dB with the classical inertial actuator, by about 78 dB with the classical
configuration with the same inertial mass as the flywheel configuration and by about
79.5 dB with the flywheel configuration. The numerical (plots a, b, ¢) and
experimental (plots d, e, f) results show that the velocity feedback loops also generate
small control spillover effect around the fundamental resonance frequency of the

actuators.
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Figure 5.17. Total flexural kinetic energy per unit force excitation of the plate with
different signal gains applied to the actuators. Simulation results (plots a, b, c)
compared with measurements (plots d, e, f). Plate without inertial actuator (dotted
green lines). Plate with the feedback control loop using voltage driven classical
inertial actuator (plots a, d), classical configuration with the same inertial mass as the
flywheel configuration (plots b, e) and flywheel inertial actuator (plots ¢, f). Plate with
open loop inertial actuator (dashed brown lines). Plate with the feedback control
systems using voltage driven inertial actuator with 10 dB signal gain margin (dashed-
dotted magenta lines) and with maximum signal gain that guarantee stability applied
to the control actuators (solid lines).
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When the velocity feedback loops are implemented with maximum control gain
that guarantee stability (solid lines) the control loops produce higher vibration
reductions. The numerical (plots a, b, c) and experimental (plots d, e, f) results show
that the velocity feedback loops also generate high control spillover effect at the
fundamental resonance frequency of the actuators. Results show that the velocity
feedback loops with the maximum control gains and with 10 dB control gain margins
produce similar reductions of the plate fundamental resonance peak. Similarly to the
results obtained at the control position, the high feedback gains applied to the control
actuators cause the pinning effect of the plate that can be observed with a peak at
about 70 Hz , which as discussed in chapter 2.6 may limit the control performance of
the velocity feedback control loop.

Figure 5.18 shows the total flexural kinetic energy of the panel per unit force
excitation considering the plain plate (dotted green lines) and the plate equipped with
the feedback loop with maximum signal gain that guarantee stability using classical
actuator (solid blue line), classical configuration with the same inertial mass as the
flywheel configuration (dashed black lines) and the pinned flywheel inertial actuator
(dashed-dotted red lines). The simulation results (Figure 5.18a) are compared with
the measurements (Figure 5.18b). The velocity feedback loops are implemented with
maximum signal gains that guarantee stability, which were defined using open loop
FRFs presented in paragraph 5.3.

Considering the kinetic energy of the plate when the velocity feedback loops are
implemented with maximum control gains that ensure stability using the inertial
actuators the spectra are characterised by rounded off plate resonance peaks. The
spectra also show that the velocity feedback loops generate high control spillover
effects around the fundamental resonance frequency of the actuators, as observed in
Figure 5.15. However, the kinetic energy spectrum shows that when the feedback
loops with flywheel configuration is implemented the spillover effect is about 20 dB
lower compared to classical configuration and about 13 dB lower compared to the
classical configuration with the same inertial mass as the flywheel actuator. The
simulation results show that all three velocity feedback loops produce similar
vibration control performance in the entire frequency band. The feedback loops
round off the two resonance peaks of plate by about 77 dB and by about 57 dB (Figure
5.18a). The measured spectra of the total flexural kinetic energy present slightly
different characteristics to the simulated ones. For instance, the first two resonance
peaks are rounded off by about 79 dB and by about 60 dB (Figure 5.18b). Similarly to

the results obtained at the control position, the measured performance of the velocity
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feedback loops with flywheel actuator is worse at lower frequencies compared to
other two configurations. However, the control performance of the flywheel

configuration is much greater compared to other configurations above 500 Hz.
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Figure 5.18. Total flexural kinetic energy per unit force excitation of the plate with
maximum signal gain. Without inertial actuator (dotted green lines) and for the plate
with the closed loop feedback control systems using voltage driven classical inertial
actuator without flywheel (solid blue lines), classical configuration with the same
inertial mass as the flywheel configuration (dashed black lines) and with the flywheel
inertial actuator (dashed-dotted red lines). Simulation results (plot a) compared with
measurements (plot b).

5.5 FREQUENCY AVERAGED ANALYSIS

The plate flexural kinetic energy vibration control effect presented in the previous
paragraph showed the velocity feedback loops implemented only with maximum
control gains that ensure stability. To better asses the effectiveness of the proposed
control systems, the 10 Hz to 1 kHz frequency averaged plate kinetic energy reduction
is considered with reference to increasingly higher feedback control gains. The
reductions of the frequency averaged flexural kinetic energy of the plate equipped
with the feedback control units are normalised with reference to the frequency
averaged kinetic energy of the plain rectangular plate. Figure 5.19 shows reduction of
the frequency average kinetic energy when the feedback loops are implemented using
the classical (solid blue line), classical configuration that have the same inertial mass
as the flywheel configuration (dashed black line) and the flywheel inertial actuator

(dashed-dotted red line). The results show the frequency averaged plate kinetic
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energy reduction with increasing feedback control gains up to maximum control gain
that guarantees stability. Figure 5.19 shows point with performance for the 10 dB
signal margin that should be used in practical applications to improve stability and
robustness of the feedback loops in case of shocks of the hosting structure. Figure 5.19
shows only experimental results due to the slight variation between the measured

and numerical results as discussed for the results shown in Figure 5.15 and Figure
5.18.
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Figure 5.19. Reductions of the 10 Hz — 1 kHz frequency averaged kinetic energy
produced by the feedback loops using either the voltage driven classical inertial
actuator without flywheel (solid blue lines), classical configuration with the same
inertial mass as the flywheel configuration (dashed black lines) and with the flywheel
inertial actuator (dashed-dotted red lines).

Considering first the classical configuration (solid blue line), the results show that
the feedback loop with the inertial actuator produces up to 15.4 dB reduction of the
frequency averaged kinetic energy with a maximum control gain of 54 dB. However,
the maximum stable gain does not produces maximum control performance, which
as discussed in chapter 2.6 is due to the pinning effect produced by the velocity
feedback control loop. When the velocity feedback loop is implemented with a 10 dB
signal gain margin the classical inertial actuator produces up to 14.9 dB reduction.

The performance of the velocity feedback loop is slightly better when the classical
configuration that has the same inertial mass as the flywheel configuration is used.
Considering the dashed black line, when the velocity feedback loop is implemented

the inertial actuator produces up to 15.6 dB reduction. Then, when the velocity
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feedback loop is implemented with a 10 dB signal gain margin this inertial actuator
produces 14.5 dB reduction. Finally, the feedback loop with the flywheel inertial
actuator (dashed-dotted red lines) can implement much larger feedback control gains
(up to 59dB) such that the frequency averaged kinetic energy of the plate is reduced
by up to 15.9 dB. Similarly to the previous configurations, when the velocity feedback
loop is implemented with a 10 dB signal gain margin the flywheel configuration of
the inertial actuator produces about 15.4 dB reduction. The improved control
performance are obtained thanks to the possibility of implementing about 5.6 dB

higher control gains.

5.6 CHAPTER CONCLUSIONS

This chapter has investigated the use of flywheel inertial actuator for the
implementation of velocity feedback loop independent units that can be used to
control the broadband vibration of thin structures. Experimental results were
obtained based on the tests carried out on a rectangular panel test rig and have been
contrasted with simulations. The stability and control performance of velocity
feedback loops were considered using classical inertial actuator, classical inertial
actuator with the same inertial mass as the flywheel actuator and pinned flywheel
inertial actuator.

The stability of the velocity feedback loops has been assessed using the Nyquist
criterion based on the open loop sensor — actuator FRFs for the current and voltage
driven transducers. The stability analysis has shown that the actuator with additional
flywheel element has much higher gain margin of the feedback loop with the classical
configurations. Moreover, comparing the classical actuator with the same inertial
mass as the flywheel configuration and the pinned flywheel prototype, the gain
margin results increased without any increment of the actuator proof mass. The
actuators driven with a current signal have reached maximum signal gain margin of
16 dB for the reference configuration, 17 dB for the classical actuator with the same
inertial mass as the flywheel configuration and 21.5 dB for the flywheel prototype.
Instead, the actuators driven with the voltage signal have reached the maximum
signal gain margin of 54 dB for the classical inertial actuator, 55 dB for the classical
actuator with the same inertial mass as the flywheel configuration and 59 dB for the
flywheel prototype. Both for the current and voltage driven inertial actuators, the

experimental testes matched well the numerical results.
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The performance of the feedback loops has been assessed considering the velocity
at the control position and the total flexural kinetic energy of the hosting structure.
The experimental results have been compared with the numerical simulations
obtained from the lumped parameter model of the actuators located on the
rectangular panel derived in chapter two of this thesis. Result showed that the
feedback loops using the flywheel inertial actuators are characterised by a slightly
better control performance thanks to increased signal gain margins.

The experimental results presented in this chapter confirmed the simulation study.
The flywheel inertial actuators can improve the control performance of the velocity

feedback loops to reduce the broadband vibration of thin plate.
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6

ENERGY HARVESTING

This chapter presents the study on the energy harvesting with the inertial EM
transducers. The mathematical formulation for the power harvested per unit base
excitation is derived for a classical, classical with the same inertial mass as the
flywheel configuration and flywheel inertial transducer. Finally, both simulation and
experimental results of the energy harvesting effects are presented for three inertial
transducers connected to a purely resistive load.

This chapter introduces a new flywheel coil-magnet proof mass transducer for
vibration energy harvesting. The seismic transducer includes an additional flywheel
element that produces three effects on the elastically suspended proof mass: firstly, it
lowers the fundamental resonance frequency, secondly it lowers the static
displacement and thirdly it lowers the mechanical damping effect. The combination
of all three effects is beneficial for vibration energy harvesting applications. In fact,
having a low resonance frequency transducer facilitates the tuning of the harvester to
a low frequency band where ambient vibration energy is normally higher. Also,
having a low static displacement of the proof mass element allows the construction
of a device robust to shocks and fast movements despite it has a low fundamental
resonance frequency. Finally, having a low internal mechanical damping leaves more
energy for the conversion to electrical energy. The chapter presents both simulations
and experimental results that contrast the principal electro-mechanical properties and
the energy harvesting effects of classical and proposed flywheel coil-magnet proof
mass transducers connected to a purely resistive load.

Simulated frequency response functions (FRFs) are contrasted with measured
FRFs taken on a classical coil-magnet proof mass transducer and on a prototype coil-

magnet proof mass transducer equipped with a flywheel element.
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6.1 MATHEMATICAL MODEL FOR ENERGY HARVESTING

This section presents the mathematical formulation used to derive the power
harvested per unit base excitation with the classical, with the classical having the
same inertial mass as the flywheel configuration and with the proposed flywheel
inertial transducer. The frequency domain formulations presented in this section
consider the complex amplitudes of time-harmonic functions as defined in chapter
two.

To harvest vibration energy, the EM transducers presented in Figure 3.13 are
connected to an electrical impedance Zj at the terminals of the coil. Considering the
lumped parameter models shown in Figure 3.13e, f, h, the voltage across two

terminals u, is equal to:
Ug = —Zylg, (6.1)

since i, is defined to flow onto the transducer. The complex velocity at the proof mass

can be derived from Equation (2.4) and is given by:

Wy =Y, F, (6.2)
while the complex force at the proof mass can be derived from Equation (2.20) and is
given by:

Fpp = Zgwe—ZqWwp + 91, - (6.3)

After substitution of Equation (6.2) into Equation (6.3), the complex velocity at the

proof mass for the current driven actuator results:

— YmZa W _ lepa i
1+YpZ, ¢ 1+Y,Z, ¢

Wy, (6.4)
Substituting Equation (6.4) into Equation (2.24), the complex voltage at the

terminals of the coil is given by:
Ug = —TyiWe + Zyiig, (6.5)

where T,,; is the actuators transduction FRF given in Equation (2.53) while the Z;; is
the actuators electrical impedance given in Equation (2.55). Substituting Equation
(6.1) into Equation (6.7), the generated current at the terminals of the coil is given:

Tuv‘v

g = 5—— W, . 6.6

When the electromagnetic transducer is exposed to harmonic vibrations, the time

averaged harvested power is given by:
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1
Py = ERe{i;ua} (6.7)

and using Equation (6.1) and Equation (6.10) the harvested power results:

_ 1 T . |2
PH = ERE(ZH) |ZH$W

6.8
+Z, ¢ 68)

Now, assuming a purely resistive electrical load, i.e. Z; = Ry, and recalling the
expressions given in Equation (2.53) and Equation (2.55) the harvested power can be
rewritten in the following form:

2

— 1
e 2. (6.9)

¢a
Py ==R
H 2 H

Ry+Z,+ Ry +Z)YZy + Y2

This equation indicates how both the electrical and mechanical parameters of the
harvester influence the energy harvesting with either the classical or the proposed
flywheel proof mass transducer. This study is indeed focused on the use of the
additional flywheel element in the proof mass transducer to increase the energy

harvesting of classical proof mass actuators.

6.2 ENERGY HARVESTING COMPARISON

A key factor that determines the harvested power from a coil-magnet proof mass
transducer connected to a purely resistive load is the internal losses in the transducer,
which is mechanical damping and electrical dissipation. The mechanical damping is
primarily due to the eddy current effect between the magnet and the steel coil
armature. The electrical losses are instead generated by the resistive effect of the coil.
While the electrical losses can be easily modelled considering the resistance of the
coil, the mechanical dissipation is somewhat more complex to handle. This is
particularly the case with the proposed proof mass transducer comprising the
flywheel element, which is both pinned to the case and connected to the moving coil-
armature component via flexural bearings. Thus, a preliminary experimental study
was put in place to identify the most appropriate expression for the critical damping
to be used in a classical viscous damping model. The power harvested per unit base
acceleration was therefore measured with the pinned flywheel proof mass transducer
connected to a purely resistive load Z,=68 Q.

Figure 6.1 shows the scheme (Figure 6.1a) and the picture (Figure 6.1b) of the

energy harvesting test setup. The actuator mounted on the shaker was excited with a
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random excitation signal up to 40 Hz. Two parameters were measured during tests
using signal analyser. Input channel A measured base acceleration measured, input
channel B current flowing in the variable resistor while input channel C measured
voltage generated by the actuator at the terminals of the variable resistor. The shaker
amplifier was used to drive the shaker with required excitation signal generated by

the signal analyser. Appendix D lists all the equipment used in the measurements.
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52}(1)31;]9; Output Shaker amplifier
i 2100E21-400
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Figure 6.1. Scheme (a) and picture (b) of the energy harvesting test setup.

The solid blue lines in plots a-c of Figure 6.2 show the spectra of the measured
power harvested. The dash-dotted red lines in the same plots a-c of Figure 6.2 show
the power harvested simulated using Equation (6.9), where the damping term c in the

mechanical impedance Z, has been taken equal to:
c = {c, (6.10)

considering a damping ratio equal to (=0.2. Plot a shows the simulated power
harvested assuming the critical damping is derived from the classical definition given

for the inerter transducers:
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Alternatively, plot b shows the simulated power harvested assuming the critical

damping is equal to that for the proof mass transducer without flywheel:

c. = 2,/kM, . (6.12)

Finally, plot ¢ shows the simulated power harvested assuming the critical damping

is given by:

w

=2 \/ (k + ';—“2”) (M, +m,,). (6.13)

5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30
Frequency (Hz) Frequency (Hz) Frequency (Hz)

Figure 6.2. Frequency response function of the harvested power to a resistive load
Zy = 681 for the flywheel proof mass transducer with the constant damping ratio (a),
with the constant damping coefficient (b), with the optimal damping (c).
Experimental results (blue lines). Simulations (dashed-dotted red lines).

Contrasting the results plotted in Figure 6.2a-c it is noted that the expression for
the critical damping given in Equation (6.13) is the most appropriate to derive the
damping factor to be used in the calculus of the mechanical impedance Z, in order to
derive correctly the energy harvested with Equation (6.9). This result indicates that,
although the axial inertia effect produced by the flywheel element (I,, / (2)) reduces
the fundamental resonance frequency of the transducer, it does not influence the
mechanical damping, which, as discussed above, plays a key role in the disposal of
the absorbed mechanical vibration energy to electrical energy, which is then

harvested.
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Having established the correct model for the mechanical damping, the measured
results (solid blue lines) of energy harvested is contrasted with the simulated (dash-
dotted red lines). The energy harvested with the classical inertial transducer (Figure
3.13a), classical with the same inertial mass as the flywheel configuration (Figure
3.13b) and with the proposed flywheel inertial transducer (Figure 3.13c) are shown
respectively in Figure 6.3. Since the three transducers are characterised by different
mechanical damping factors, the maximum energy harvesting at the resonance
frequency is obtained with different resistive loads. The result in Figure 6.3a shows
that maximum power can be harvested by applying to the classical proof mass
transducer a resistive load of Ry = 75 Q. Alternatively, the result in Figure 6.3c shows
that maximum power can be harvested by applying to the proposed flywheel proof
mass transducer a resistive load of Ry = 68 Q.

The two plots clearly show that the simulation results agree well with the
experimental tests carried out either with the classical configuration (Figure 6.3a),
classical with the same inertial mass as the flywheel configuration (Figure 6.3b) and

with the pinned flywheel inertial transducer (Figure 6.3c).

-4 -4 -4

,\ 5 X10 5 X10 — g X10
o (a) (b) (0
s 4 4
i

3 3
:;D
T 2 2
S 1 1

I

“ 0

10° 10’ 102 10% 10° 10’ 102 10% 10° 10" 102 103

Resistance Z, (Q) Resistance Z | (Q) Resistance Z | (Q)

Figure 6.3. Maximum harvested power at the resonance frequency with varying
resistive load Z; for the classical transducer (a), and classical with the same inertial
mass as the flywheel configuration (b) and pinned flywheel prototype (c).
Experimental results (solid blue lines). Simulations (dashed-dotted red lines).

6.3 CHAPTER CONCLUSIONS

This chapter has investigated the use of the inertial EM transducers for energy
harvesting applications. The experimental testes were successfully matched with

numerical results obtained from a lumped parameter scheme, which included a
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specific model for the damping coefficient of the flywheel inertial transducer. The
results for the new configuration were compared with those obtained with a classical
coil-magnet proof mass transducer and a classical transducer with the same inertial
mass as the flywheel configuration.

The results of the energy harvesting have shown that the flywheel element reduces
the fundamental resonance frequency of the actuator without significantly increasing
the total mass of the transducer and without increasing the damping coefficient of the
transducer. Moreover, the simulation and experimental results have shown that the
flywheel transducer increases the harvested energy by about 30% compared to the
reference configuration. However, compared to the classical transducer with the same
inertial mass as the flywheel configuration the fabricated prototype presented lower
energy harvesting performance by about 25%. It is worth to emphasise that
transducers used in this study are characterised with high damping, which is
disadvantageous for the energy harvesting applications. Thus, it may be possible that
a proper design of the new transducer may lead to a device with even higher energy

harvesting capabilities.
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/

SUMMARY

This chapter summarises the work presented in this thesis and gives suggestions

for the future work.

7.1 CONCLUSIONS

The objective of this study was to investigate and develop a new inertial
electromechanical transducer for the implementation of velocity feedback loops that
control the broadband vibration of distributed structures. The idea for the new
transducers was based on the inerter element that has been used to augment the
inertia effect by using a rotational mass element. A comprehensive theoretical study
has been performed to assess the benefits of using the proposed actuators for the
velocity feedback control applications. Three new prototypes with the flywheel
element have been designed and fabricated. The prototypes were analysed based on
typical electromechanical FRFs of inertial actuators. Finally, the stability and
performance of the velocity feedback loops with the fabricated prototype has been
assessed. The experimental results have been compared with the these obtained for a

classical inertial actuator used for the active vibration control applications.

Chapter two has presented simulation results for the new inertial electrodynamic
actuator with a flywheel element for velocity feedback control loops on flexible
structures. Four different configurations have been considered where the flywheel is
either hinged or pinned to either the proof mass or the case of the actuator. The study
has introduced a lumped parameter model and an impedance — mobility
electromechanical formulation for the operation of the feedback loop. The kinetic and
kinematic response of the classical and four proposed flywheel proof mass actuators
were first investigated considering spectra of six electromechanical FRFs. The
stability and control performance of velocity feedback loops using the classical and

four proposed flywheel actuator was considered assuming the control loops operate
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on a thin rectangular panel excited by an acoustic plane wave. The performance of
the point velocity feedback loops have been assessed based on the total flexural
kinetic energy of the panel. Finally, a parametric and scaling study was introduced to
give basic guidelines for designing flywheel prototypes.

The theoretical study presented in this chapter has shown that the inertial
transducers could be equipped with the flywheel element that has one mechanical
terminal attached to the base mass while to other mechanical terminal to the proof
mass of the inertial transducer. The simulated electromechanical FRFs of the
proposed flywheel inertial actuators have shown that the fundamental resonance
frequency of the transducer can be lowered with the axial inertia effect produced by
the flywheel element. The simulated blocked force FRFs per unit current fed to the
proposed flywheel actuators has shown that with the increase of the axial inertia
effect produced by the flywheel element the constant force effect at frequencies above
the fundamental resonance frequency of the actuator diminishes. Thus to obtain the
same vale of control force as the classical inertial actuator, the proposed flywheel
inertial actuators need to be fed with much higher control signals. This result showed
that it is important to scale the electromechanical components of the actuator that
could withstand the high current signals that would be fed to the coil when the
maximum feedback control gains are implemented. The stability analysis has shown
that for all configurations of the actuator, the addition of the flywheel element
increases the gain margin of the feedback loop without any increase of a total mass of
the actuator. As a result the feedback loops using the proposed proof mass actuators
with the flywheel element were characterised by improved control performance
thanks to the possibility of implementing higher control gains. Results showed that
the actuators equipped with the flywheel element attached either to base or to proof
mass present similar control performance. However, slightly higher reductions were
obtained when the flywheel was attached to the proof mass. The control performance
study has highlighted that when the actuator with the flywheel element is used to
implement a velocity feedback, the additional inertia effect produced by the flywheel
element tends to lower the low frequency range where the destabilising positive
feedback effect occurs. The parametric and scaling study presented in this chapter has
shown that the control performance and rebusteness to shocks of the velocity
feedback control loops can be improved when the inertial mass is shifted twoards the
flywheel element. Also the static deflection of the inertial actuator can be improved
when the radius of the gear mechanism that transforms the axial oscillations of the

proof mass into angular oscillations of the flywheel is reduced. Finally, the scaling
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study has shown that the proposed flywheel element could be used to effectively
reduce the fundamental natural frequency of the actuator allowing then the use of

small scale devices.

Chapter three has presented the design of two flywheel electromagnetic inertial
actuators. The prototypes were designed based on a commercially available linear
electromagnetic actuator. The first prototype was designed with a hinged while the
second prototype with the pinned flywheel element analogously to the theoretical
study presented in chapter two. The flywheel element of the hinged configuration
was designed in a form of a rocker arm with four lumped masses. The pinned
configuration was equipped with the flywheel element designed in a form of a wheel.
The shape of the flywheel element was optimised to maximise the polar moment of
inertia and minimise the total weight. The flexural bearings were used to minimise
the backlash between the components and to avoid any nonlinear effects caused by
stick-slip effect. The dynamic response of the classical and two flywheel prototypes
were investigated considering spectra of electromechanical FRFs. The properties of
the classical and flywheel configurations were also compared with the mathematical
simulation obtained from the simplified lumped parameter model.

The study presented in this chapter has shown that it is vitally important for a
flywheel inertial actuator to design a proper mechanism that can transform the axial
oscillations of the inertial mass into angular oscillations of the flywheel. Also the
suspension system of the flywheel element should be designed with soft torsional
spring that has comparatively much higher axial stiffness. The design of both
elements should be done with flexural hinges to minimise the nonlinear effects caused
by the backlash or stick-slip effect. The experimental test results of both prototypes
have confirmed the expected dynamics of the flywheel element that were previsioned
in chapter two. The electromechanical properties of the flywheel prototypes assessed
based on simulation and experimental results have shown that the fundamental
resonance frequency of transducers can be reduced with the axial inertia effect
produced by the flywheel element. The experimental results of the hinged
configuration showed that the play and backlash effect between the components
introduces nonlinearities in the dynamics of the transducer. Hence, the hinged
configuration did not fulfil the requirement of an inertial actuator to implement more
stable and robust velocity feedback loop. Finally, the static deflection study has
demonstrated that the flywheel element can be used to reduce the fundamental

resonance frequency of the transducer without increasing the inertial mass. Thus, the
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flywheel element can improve stability and robustness to shocks of the implemented
velocity feedback loops by lowering the spillover effect at the fundamental resonance

frequency of the actuator without increasing the static deflection of the actuator.

Chapter four has presented a new piezoelectric actuator that can be used to
implement a velocity feedback loop to reduce the flexural vibration of large flexible
structures. The new actuator was designed with a long beam flywheel element
suspended with flexural bearings. The developed control unit was more compact and
lightweight than ordinary unit with axial inertial mass. The electromechanical
properties of a classical and flywheel prototype were assessed based on the
simulation and experimental results of the actuators FRFs. The study has considered
the mechanical base impedance, the blocked force and the electrical admittance FRFs.
The experimental testes were matched with numerical results derived from a new
lumped parameter model for the piezoelectric inertial actuator.

The study presented in this chapter has confirmed that the axial inertia effect
produced by the flywheel element can be used to reduce the fundamental resonance
frequency of the actuator without increasing the inertial mass. However, the flywheel
element with high axial inertia effect can also reduce the higher resonance frequencies
of the inertial actuators and induce additional dynamics. The study has also showed
that the flywheel piezoelectric stack actuator could be a good alternative to
electromagnetic actuators or piezo patches in the active vibration control applications.
The electromechanical properties of the flywheel prototype assessed based on
simulation and experimental results have shown that when the actuator is driven
with constant current, the point force produced by the inertial actuator above the
fundamental resonance frequency of the actuator tends to decrease with frequency.
In contrast, when the actuator is driven with constant voltage, the point force
produced by the inertial actuator above the fundamental resonance frequency of the
actuator remains constant with frequency. Thus, for the implementation of a uniform
velocity feedback control with the flywheel piezoelectric actuator it is preferable to
implement voltage driven control, contrary to the current driven control for the
electromagnetic actuator. The study has also shown that for the voltage driven
piezoelectric actuator the required current rises proportionally to the piezo
capacitance and driving frequency. Thus, to efficiently control the structure at higher
frequencies the inertial actuators would require amplifiers that can provide high

power. The switching topology of the amplifiers would be more preferable compared
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to the linear amplifiers because of their high efficient thanks to the power recovery

system when driving piezoelectric actuators.

Chapter five has presented the test setup with a supported plate to implement the
velocity feedback loops with the proposed flywheel inertial actuators. The setup has
been used to evaluate the stability and control performance of the velocity feedback
loop implemented on thin rectangular plate using electromagnetic inertial actuators.
The stability and control performance has been assessed for the feedback loops using
the classical, classical with the same inertial mass as the flywheel configuration and
the pinned configuration of the flywheel inertial actuator. The stability of the velocity
feedback loops has been assessed both for voltage and current driven inertial
actuators. The performance of the feedback loops has been assessed considering the
velocity at the control position and the total flexural kinetic energy of the hosting
structure. Finally, the performance of the velocity feedback loops using three
configurations of the inertial actuator have been compared based on the frequency
averaged plate kinetic energy reduction.

The experimental results presented in this chapter confirmed the that the flywheel
inertial actuators can improve the control performance of the velocity feedback loops
to reduce the broadband vibration of thin plate. The experimental tests of the velocity
feedback loop stability and control performance have confirmed the expected results
previsioned in the theoretical study presented in chapter two. The stability study
presented in this chapter has shown that the actuator with additional flywheel
element has much higher gain margin of the feedback loop compared to the classical
configurations. The performance study has shown that the feedback loops using the
flywheel inertial actuators are characterised by a slightly better control performance
thanks to increased signal gain margins. This is a rather important results,
particularly in view of the fact that the proposed flywheel actuator is characterised
by much smaller static displacements and thus can be also used in presence of large

shock effects due to undesired persistent excitations.

Chapter six has investigated the possibility of using the proposed flywheel inertial
transducer for energy harvesting applications. Both simulation and experimental
results of energy harvesting with the classical, classical with the same inertial mass as
the flywheel configuration and proposed pinned flywheel electromagnetic

transducer connected to a purely resistive load have been presented.
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The experimental results presented in this chapter have shown that the flywheel
element reduces the fundamental resonance frequency of the actuator without
significantly increasing the total mass of the transducer and without increasing the
damping coefficient of the transducer. Although, the flywheel element reduces the
fundamental resonance frequency of the transducer where ambient vibration
amplitudes are normally higher and more preferable for the energy harvesting
applications, the tested prototype presented lower energy harvesting performance
compared to the classical configuration with the same inertial mass as the flywheel
prototype. Experimental results have shown that the pinned flywheel prototype
presented lower energy harvesting performance by about 25% compared to the
classical transducer with the same inertial mass as the flywheel configuration. It is
worth to point out that the electromagnetic transducer used in this study was
characterised by high damping value which is disadvantageous for the energy
harvesting applications. Thus, a proper design of the new transducer could lead to a

device with even higher energy harvesting capabilities.

Results presented in this thesis suggest that the future flywheel prototype for
active vibration control and energy harvesting applications could be designed with
much lower damping coefficient of the inertial mass suspension system. The axial
inertia effect produced by the flywheel element would maintain good performance
of the velocity feedback loop thanks to high signal gain margin and at the same time,
the flywheel inertial prototype would be characterised with much higher energy
harvesting performance thanks to low damping coefficient compared to the classical

inertial transducer.

Based on the experimental results of the tree flywheel inertial actuators a list of
advantages and disadvantages of the flywheel inertial configuration compared to the
classical inertial transducer is shown in Table 7.1. The advantages are concentrated
around the improved performance and stability of the velocity feedback loops, while
the disadvantages are focused on the complexity and price of the flywheel
components. Some of the described disadvantages could by avoided by designing

new flywheel inertial transducer.
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Table 7.1. Advantages and disadvantages of the flywheel inertial configuration
compared to the classical inertial transducer.

Advantages

Disadvantages

Reduces the fundamental resonance

frequency of the actuator.

Does not increase the static deflection
of the inertial mass.
Maintains low weight of the inertial

mass.

Lowers the feedback control spillover
effect at the fundamental resonance
frequency of the actuator.
Increases signal gain margin of the
velocity feedback control loop.
Improves actuator robustness in case of

shocks and high accelerations.

Reduces the constant force effect at the
frequencies above fundamental
resonance frequency of the actuator.
Increases the impedance of the proof
mass suspension system.
Lowers the energy harvesting
capabilities compared to the transducer
with the same inertial mass.
Increases the complexity of the inertial
transducer, which leads to the
additional dynamics.
Increases the costs due to additional

components.

7.2 FUTURE WORK

The future work could be carried in the following topics listed below.

e Development of a mechanism that can transform the linear motion of the

transducer into constant spinning motion, instead of oscillatory, of the flywheel

element to reduce the nonlinear effects (e.g. stick-slip).

e Development of a device without flexural bearings that are relatively expensive

and have limited angular range.

e Development of a device that is equipped just with flywheel element instead of

the proof mass.

e Development of a device that would have the main axis of flywheel rotation

perpendicular to the surfaces of the structure.

e Further miniaturisation of the actuators and the controller units. Although the

used actuators are quite small-scale, the cumulative mass added to the structure

could to be reduced.
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e A full integration of the control system components into the smart panel, which
should provide further savings in space and weight.

e A study on the MIMO velocity feedback control system with flywheel inertial
actuators.

e A future research could be focused on the design of a control unit dedicated for

energy harvesting applications.
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Technical Drawings of the EM Prototypes

A

TECHNICAL DRAWINGS OF THE EM
PROTOTYPES

The following appendix consists technical drawings of the manufactured
components for two EM flywheel prototypes. The assembly drawings are followed
by the exploded view drawings and by the detailed drawings of each component.

The ANT16100 and ANT16103 drawings in edition A present the pinned flywheel
prototype with the fabricated pushing pin that did not demonstrate the required
flexibility. The ANT16100 and ANT16103 drawings in edition B present the pinned
flywheel prototype with the fabricated pushing pin that uses the third flexural
bearing to transmit the linear motion of the actuator into rotation of the flywheel.

The ANT162 drawings present the hinged flywheel prototype.
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Technical Drawings of the EM Prototypes
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Technical Drawings of the EM Prototypes
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Technical Drawings of the EM Prototypes
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PARTS LIST
ITEM|QTY |PART NUMBER |DESCRIPTION
1 1 |ANT16201-B_ |Support

Support
2 1 |NCM02-17-03 |Actuator
5-2F
3 1 |ANT16203-B_ [Rod
Rod
4 2 |ANT16206-B_ |Ballast
Ballast
gl 5 1 |ANT16207-A_ |Connector
Connector
6 1 |ANT16202-B_ |Folded pusher
Folded_pusher
- 7 3 [M2.5x0.45 x |Screw
25
8 3 |4-40UNC- |Socket Head
3/8 HSHCS |Cap Screw
D] 9 1 |4-40 UNC- |[Socket Head
1/4 HS HCS  |Cap Screw
10 | 1 [M2x0.4 x 10 |[Socket Head
Cap Screw
=1 11 | 3 |M2.5x0.45 |Hex Nut

12 | 1 | M2x0.4 Hex Nut

C
B
Tite_ Mass
Swing rod assembly 343.4 g
A Name Date eXpIOded et A
Designed | Aleksander K| 13/04/2016 [BWG No Edition [Shee
Checked ANTIG%OSOI SB '1 7 1
Approved &2zt UNIVERSIT, cale ize
1) B T [y D
5T 7 T 6 T 5 T 43 71T 2 1 1
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Technical Drawings of the Piezoelectric Prototype

B

TECHNICAL DRAWINGS OF THE PIEZOELECTRIC
PROTOTYPE

The following annex consists technical drawings of the manufactured components
for the piezoelectric flywheel prototype. The assembly drawings are followed by the

exploded view drawings and by the detailed drawings of each component.
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Technical Drawings of the Piezoelectric Prototype

8 ] 7 ] 6 ] 5 ] 4 ] 3 ] 2 ] 1
PARTS LIST
ITEM|QTY| PART NUMBER | DESCRIPTION e a e
1 1 |ANT17204 Support
2 1 |ANT17202 Bearing
connector
3 1 |ANT17205 Sensor adapter @
4 | 1 |ANT17206 Flywheel frame ] \
5 1 |ANT17208 Ballast2
6 1 |ANT17207 Ballast1
7 | 4 [Mod. A10 C-Flex @
8 | 1 |APA0OM STEP AP203 ~¢
9 5 |M2.5x0.45 x 6 |Screw

Name

Designed

Aleksander K]

Date

24/01/2017

Title
APA Flywheel actuator

assembly exploded

TMass

M
46.8 g

Material

Checked

DWG No

Approved

6 | 5

AT amensions mmm |
im

Ang 1o

NIVERSITA

ANT17200 |

Sy, U Scale Size
Sl PR Y
T2 1

Srieey 1

1@
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Technical Drawings of the Plate Setup

C

TECHNICAL DRAWINGS OF THE PLATE SETUP

The following appendix consists technical drawings of the manufactured structure

used for implementation of the active control system.
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List of Equipment

D

LIST OF EQUIPMENT

The following appendix presents list of equipment used in the measurements of

transducers elecromechanical properties and in the implementation of the velocity

feedback control loops on a rectangular plate with an EM actuators. The equipment

used in the measurements is listed in Table D.1

Table D.1. List of the equipment used in the measurements.

No. Equipment Manufacturer Model
1 ICP Impedance head PCB 288D01
2 ICP Force cell PCB 208C01
3  ICP Accelerometer PCB 352C65
4  Shaker1 PCB 2004E
6  Shaker 2 PCB 2075E
7 Shaker amplifier PCB 2100E21-400
8  ICP Integrator PCB 480B10
9  Voltage probe Pico Technology KA405
10  Current probe Pico Technology TA018
11  Quad amplifier InterM QD-4480
12 Piezo amplifier ElbaTech T-500
13 Signal analyser DP Data Physics Abacus
14  Laser vibrometer Polytec PSV-1-500
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