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INFERENCE FROM PSEUDO LIKELIHOODS
WITH PLUG-IN ESTIMATES

Luigi Pace, Alessandra Salvan1 and Nicola Sartori

University of Udine, University of Padova and University of Padova

Abstract

Effective implementation of likelihood inference in models for high-dimen-
sional data often requires a simplified treatment of nuisance parameters, re-
placed by handy estimates. The likelihood function as well could be simpli-
fied by using a partial specification of the model, as in composite likelihood.
Tests and confidence regions for the parameter of interest may then be con-
structed using Wald type and score type statistics, accounting for nuisance
parameters estimation or partial specification of the likelihood. Here, a gen-
eral analytical expression for the needed asymptotic covariance matrices is
derived, together with suggestions for obtaining Monte Carlo approxima-
tions. The same matrices are involved in a rescaling adjustment of the log
likelihood ratio type statistic we propose here. This adjustment recovers the
usual chi-squared asymptotic distribution, generally failing after the simpli-
fications considered. The practical implication is that, for a wide variety of
likelihoods and nuisance parameter estimates, confidence regions for the pa-
rameter of interest are readily computable from the rescaled log likelihood
ratio type statistic as well as from the Wald type and score type statistics.
Two examples, a measurement error model with full likelihood and a spatial
correlation model with pairwise likelihood, illustrate and compare the pro-
cedures. Wald type and score type statistics give rise to confidence regions
that may have unsatisfactory shape in small and moderate samples. In addi-
tion to satisfactory shape, regions based on the rescaled log likelihood ratio
type statistic show empirical coverage in reasonable agreement with nominal
confidence levels.

Keywords: Composite likelihood; Estimating equation; Nuisance parameter; Pair-
wise likelihood; Profile likelihood.

1 Introduction

Consider a model for data y indexed by two sets of parameters: a parameter of
interest θ and a nuisance parameter φ. Complex model structures may raise diffi-
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culties in the elimination of nuisance parameters, both when using the full log like-
lihood `(θ, φ) and when using a suitably simplified likelihood such as a composite
likelihood (Lindsay, 1988; Varin et al., 2011). Profiling, i.e. replacing φ with φ̂θ,
the maximiser of the full or simplified likelihood with respect to φwith θ fixed, may
not be practically feasible or advisable, especially with high-dimensional parame-
ters. Use of Gong & Samaniego (1981) suggestion, to plug-in a simple estimate φ̃
of φ in the working log likelihood, is common in applications due to its computa-
tional convenience. The resulting function of the parameter of interest is referred
to as a pseudo log likelihood and will be denoted by ˜̀(θ). Recent examples are in
Guolo (2011), Ghosh et al. (2013), Wang et al. (2014) for the full likelihood, and
in Pakel et al. (2011) and Varin et al. (2011, §§ 3 and 4) for composite likelihoods.

Tests and confidence regions for the parameter of interest may be constructed
from ˜̀(θ) using Wald type and score type statistics, accounting for nuisance pa-
rameters estimation or partial specification of the likelihood. In Section 2.1 of this
paper, a general analytical expression for the needed asymptotic covariance ma-
trices is derived, together with widely feasible Monte Carlo approximations. The
ensuing Wald-type and score-type regions, however, may suffer from theoretical
and practical difficulties, such as lack of parameterization invariance, numerical
instability (Molenberghs & Verbeke, 2005, § 9.3.2), leading to poor shape and un-
boundedness of the region, and possibily poor coverage accuracy in small samples
(Hauck & Donner, 1977), as is shown by the examples in Section 3.

These inconveniences may be mitigated by using likelihood ratio type statis-
tics. However, the latter have a nonstandard asymptotic distribution given by a
weighted sum of independent chi-squared variables. See Kent (1982) for a general
misspecified likelihood, Liang & Self (1996) and Chen & Liang (2010) for plug-in
estimation in a full likelihood and Varin et al. (2011) for the composite likelihood.
In principle, p-values can be computed from this distribution, while construction
of confidence regions seems to be a daunting task because the weights in the sum
of chi-squares depend on (θ, φ). As an alternative procedure, which is preferable
for confidence regions, we suggest in Section 2.2 a rescaled pseudo likelihood ra-
tio statistic, which recovers the asymptotic chi-squared distribution. Rescaling is
based on the pseudo score, its asymptotic covariance and the pseudo likelihood
Hessian.

The practical implication is that, for a wide variety of likelihoods and nuisance
parameter estimates, confidence regions for the parameter of interest are readily
computable from the rescaled log likelihood ratio type statistic as well as from
the Wald type and score type statistics. The two examples below illustrate the
simplification gained by using ˜̀(θ) as a basis for inference and will be continued
in Section 3 with the construction of confidence regions.
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1.1 Example 1: A measurement error model

As noted in Chen & Liang (2010, § 1.6), if a full log likelihood `(θ, φ) decomposes
as

`(θ, φ) = `1(φ) + `2(θ, φ)

with both `1(φ) and `2(θ, φ) genuine log likelihoods, a simplified estimate φ̃ of φ
is provided by the maximiser of `1(φ). Inference about θ may then be based on the
pseudo log likelihood

˜̀(θ) = `2(θ, φ̃) ,

which is in general computationally more practical than the profile log likelihood
`P (θ) = `(θ, φ̂θ), with φ̂θ the maximizer of `(θ, φ) with respect to φ with θ fixed.
A major instance of the decomposition of `(θ, φ) as `1(φ) + `2(θ, φ) is offered by
measurement error models. They relate a response variable Y , via a parameter θ,
to the true covariateX , which is observed indirectly through a surrogateW , whose
distribution given X depends on an additional parameter φ.

As a simple illustration, let (w1, y1), . . . , (wn, yn) be independent observations
from the bivariate random variable (W,Y ), where W = X + U and Y = β0 +
β1X+ε, with ε, X , U independent unobservable variables with X ∼ N(µX , σ

2
X

),
U ∼ N(0, σ2

U
), ε ∼ N(0, σ2ε). Above, µX , β0, β1 ∈ IR and σ2

X
, σ2

U
, σ2ε are

positive. To allow later comparison with inference based on the profile log like-
lihood, we assume that σ2

X
= k2σ2

U
and σ2ε = h2σ2

U
, with k2 and h2 known

positive constants. Hence, data are a random sample of size n from a bivariate
normal distribution (W,Y ), with means E(W ) = µX , E(Y ) = β0 + β1µX ,
variances V ar(W ) = (1 + k2)σ2

U
, V ar(Y ) = (β21k

2 + h2)σ2
U

and covariance
Cov(W,Y ) = β1k

2σ2
U

.
Let us consider θ = (β0, β1) and φ = (µX , σ

2
U

). We have `(θ, φ;w, y) =
`1(φ;w) + `2(θ, φ;w, y), where, neglecting constants,

`1(φ;w) = −n
2

log σ2
U
− 1

2(1 + k2)σ2
U

n∑
i=1

(wi − µX )2 ,

`2(θ, φ;w, y) = −n
2

log v(β1, σ
2
U

)− 1

2 v(β1, σ2U )

n∑
i=1

(
yi − β0 − β1

µX + wik
2

1 + k2

)2

,

with v(β1, σ
2
U

) =
{
h2 + β21k

2/(1 + k2)
}
σ2

U
. Replacing φ with an estimate based

on `1(φ;w) is simpler than calculating `P (θ). The maximiser of `1(φ;w) is φ̃ =
(µ̃X , σ̃

2
U

), where

µ̃X = w̄n =
1

n

n∑
i=1

wi , σ̃2
U

=
1

(1 + k2)n

n∑
i=1i

(wi − w̄n)2 .
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The resulting pseudo log likelihood for θ is, neglecting constants,

˜̀(θ) = `2(θ, φ̃;w, y)

= −n
2

log v(β1, σ̃
2
U

)− 1

2 v(β1, σ̃2U )

n∑
i=1

(
yi − β0 − β1

µ̃X + wik
2

1 + k2

)2

.

We will be interested in the construction of confidence regions for θ based on ˜̀(θ).

1.2 Example 2: Data from spatial Gaussian random fields

Gaussian random fields play a central role in the construction of models for the
analysis of geostatistical data (Cressie, 1993). For these models, exact computa-
tion of the log likelihood becomes unfeasible as the number of sample points gets
large. Composite likelihood methods (Lindsay, 1988; Varin et al., 2011) offer one
appealing computational simplification, while preserving part of the properties of
the full likelihood. For an up to date review of composite likelihood for spatial
Gaussian random fields, we refer to Bevilacqua & Gaetan (2014).

Consider a vector y = (y1, . . . , ym)> of measurements of the phenomenon of
interest at m monitoring stations, observed together with a vector of k explanatory
variables at each station. We model y as a realization of Y , having an m-variate
normal distribution with mean µ = Xβ, whereX is a full rankm×k fixed matrix,
β ∈ IRk, and covariance σ2R(θ), where σ2 > 0 is the common variance of the
components of Y and R(θ) has generic element ρrs = ρrs(θ). The parameters
of interest in models for data from spatial random fields are typically those in the
autocorrelation matrix. With φ = (β, σ2), the full log likelihood for (θ, φ) is

`(θ, φ) = −m
2

log σ2 − 1

2
log |R(θ)| − 1

2σ2
(y −Xβ)>[R(θ)]−1(y −Xβ) ,

where evaluation of |R(θ)| and [R(θ)]−1 becomes demanding as m gets large,
since their computational cost is, with the most widely used algorithms, of order
O(m3). A simple composite log likelihood is the pairwise log likelihood (see for
instance Bevilacqua & Gaetan, 2014, § 3), which only requires calculation of the
Gaussian log likelihood for pairs (yr, ys), r, s = 1, . . . ,m, r 6= s. Denoting by
wrs some known weights, the pairwise log likelihood is

p`(θ, φ) =

m∑
r,s=1
r 6=s

wrs log pYrYs (yr, ys; θ, φ) . (1)

The computational cost of p`(θ, φ) is at most of orderO(m2), and it can be smaller
if many weights are null.
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We consider a specification of R(θ) of exponential form (Diggle & Ribeiro,
2007, § 3.4),

ρrs = exp(−drs/θ) ,

where drs is a distance between spatial locations giving rise to Yr and Ys and θ > 0.
The quantities below are, however, general for normal models with parameters
of interest in a structured correlation matrix R(θ). We will use (1) with weights
wrs = 1 if drs is smaller than a fixed threshold d0 and zero otherwise. The choice
of d0, and more in general of the weightswrs, may affect the efficiency of inference
based on the pairwise likelihood. This issue is beyond the scope of the present
paper and will not be discussed here. A recent account is given by Bevilacqua &
Gaetan (2014).

The generic pair (Yr, Ys), r 6= s, has a bivariate normal distribution with mean
(µr, µs), common variance σ2, and correlation ρrs. Therefore, (1) is

p`(θ, φ) =

m−1∑
r=1

m∑
s=r+1

wrs

{
− log σ2 − 1

2
log(1− ρ2rs)−

Ars
2σ2(1− ρ2rs)

}
,

with Ars = (yr − µr)2 + (ys − µs)2 − 2ρrs(yr − µr)(ys − µs) .
A further simplification is obtained by replacing φ in p`(θ, φ) with the usual

least squares estimates under independence φ̃ = (β̃, σ̃2), where

β̃ = (X>X)−1X>y , σ̃2 =
1

m− k
(y −Xβ̃)>(y −Xβ̃).

This gives the pseudo pairwise log likelihood ˜̀(θ) = p`(θ, φ̃) from which confi-
dence regions for θ are to be constructed.

2 Approximate pivots from pseudo likelihoods

Consider inference about a p-dimensional parameter of interest θ, in the pres-
ence of a q-dimensional nuisance parameter φ, based on data y = (y1, . . . , yn).
Let y1, . . . , yn be observations of m-dimensional independent random variables
Y1, . . . , Yn. More generally, we assume that the information about (θ, φ) is of
order O(n). Let `(θ, φ) be a full or composite log likelihood for (θ, φ).

We consider for inference about θ the pseudo log likelihood

˜̀(θ) = `(θ, φ̃) .

The estimate φ̃ is a simple estimate. It is assumed to be the solution of an estimating
equation g(φ; y) =

∑n
i=1 gi(φ; yi) = 0, such that Eθ,φ (gi(φ;Yi)) = 0, for i =
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1, . . . , n, and for every θ and φ, or, more generally, Eθ,φ (g(φ;Y )) = O(1), with
Y = (Y1, . . . , Yn).

The following notation is used in the rest of the paper. Let θ̃ be the maximizer
of ˜̀(θ). We assume that θ̃ is the unique solution of Ũ(θ) = 0, where Ũ(θ) =
(∂/∂θ)˜̀(θ) is the pseudo score. We have that Ũ(θ) = Uθ(θ, φ̃), with Uθ(θ, φ) =
(∂/∂θ)`(θ, φ).

2.1 Pseudo Wald and score type statistics from ˜̀(θ)

Using standard arguments, we may easily recover a general analytical expression
for the asymptotic covariance matrices of Ũ(θ) and of θ̃. Hereafter, the symbol ·∼
is a shorthand for ‘is approximately distributed as’, with the approximation hav-
ing error of order Op(n−1/2). Under regularity conditions stated for instance in
Molenberghs & Verbeke (2005, Section 9.2), we have(

Uθ(θ, φ)T/
√
n,
√
n(φ̃− φ)T

)T ·∼ Np+q(0, V ) ,

where

V =

 Jθθ/n Ωθφ(Q−1)>

Q−1Ω>θφ nΣ

 ,

with

Jθθ = Eθ,φ{Uθ(θ, φ)Uθ(θ, φ)>} ,
Ωθφ = Covθ,φ(Uθ(θ, φ), g(φ;Y )) = Eθ,φ(Uθ(θ, φ) g(φ;Y )>) ,

Q = Eθ,φ

(
−∂/∂φ>g(φ;Y )

)
, Σ = Q−1S(Q−1)> .

Above, S = V arθ,φ (g(φ;Y )) = Eθ,φ
(
g(φ;Y )g(φ;Y )>

)
, where the last equality

holds with error O(1) if Eθ,φ (g(φ;Y )) = O(1). From the expansion

Uθ(θ, φ̃) = Uθ(θ, φ)−Hθφ(φ̃− φ) +Op(1) ,

with Hθφ = Eθ,φ{−∂/∂φ>Uθ(θ, φ)} , we get

Ũ(θ)
·∼ Np(0,K) ,

where
K = Jθθ +HθφΣH>θφ − Ωθφ(Q−1)>H>θφ −HθφQ

−1Ω>θφ . (2)

Formula (2) accounts both for the use of a simplified likelihood in place of the
full likelihood and for plug-in estimation of nuisance parameters. It unifies various
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special cases in the literature ensuing from Gong & Samaniego (1981).

Remark 1. Formula (2) reduces to K = Jθθ + HθφΣ(Hθφ)> when Ωθφ = 0.
This happens in particular if φ̃ is evaluated on independent data, as when using past
studies.

Remark 2. When `(θ, φ) is a full likelihood, Jθθ = iθθ and Hθφ = iθφ, where
iθθ and iθφ are blocks of the Fisher information matrix. Moreover, Ωθφ = 0 as
a consequence of the efficiency of Uθ(θ, φ) as an estimating function for θ at the
true φ (Pierce, 1982; Chen & Liang, 2010, Theorem 1). Hence,K = iθθ+iθφΣi>θφ.

Remark 3. When Uθ(θ, φ) is nuisance parameter-insensitive, that is when
Hθφ = 0 (Jørgensen & Knudsen, 2004), we get K = Jθθ.

Let now

Hθθ = Eθ,φ(−∂/∂θ>Uθ(θ, φ)) = Eθ,φ(−∂/∂θ>Ũ(θ)) + o(n) .

From θ̃ − θ = H−1θθ Ũ(θ) + op(n
−1/2), we get

θ̃ − θ ·∼ Np(0, H
−1
θθ KH

−1
θθ ) . (3)

It follows that the Wald-type statistic

w̃e(θ) = (θ̃ − θ)>HθθK
−1Hθθ(θ̃ − θ) , (4)

and the score-type statistic

w̃u(θ) = Ũ(θ)>K−1Ũ(θ) ,

have the usual asymptotic χ2
p distribution at the true θ. When `(θ, φ) is a full log

likelihood Hθθ = iθθ.
Matrices K and Hθθ will in general depend on θ and φ. The latter will be

replaced by φ̃. In Wald-type statistics, it is customary to evaluate K and Hθθ

at (θ̃, φ̃). The quantity Hθθ depends on the curvature of ˜̀(θ) and, in general, is
easy to calculate, or to estimate. Approximation of K by means of Monte Carlo
simulation of the variance of Ũ(θ) is feasible in wide generality, adapting to ˜̀(θ)
the ideas proposed in Varin et al. (2011, § 5.1) and in Cattelan & Sartori (2014)
for composite likelihoods. Use of this Monte Carlo approximation is illustrated
in the examples of Section 3. Cattelan & Sartori (2014, § 4.1) perform a simula-
tion study for values of M ranging from 250 to 1000, confirming that a moderate
number of replications such as M = 250 is enough for satisfactory accuracy of
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empirical coverage probabilities. Moreover, for the pairwise likelihood of Section
3.2, the analytical version (2) requires the quantity Jθθ, which has a computational
cost of order O(m4). This is higher than the order of the computation cost of the
likelihood. Therefore, the simulated version, which has computation cost of order
O(Mm2) could be the only viable solution when m is large. Some details are
given in Section 3.2.

2.2 Rescaled pseudo likelihood ratio

Inference based on w̃e(θ) and w̃u(θ) may suffer from some drawbacks, such as lack
of invariance under reparameterizations, numerical instability, unboundedness and
poor shape of confidence regions. The pseudo likelihood ratio statistic

w̃(θ) = 2
{

˜̀(θ̃)− ˜̀(θ)
}

could be a more appealing basis for inference, but it is more difficult to calibrate,
because, at the true value of (θ, φ),

w̃(θ)
·∼

p∑
j=1

νjZ
2
j ,

whereZ1, . . . , Zp are i.i.d.N(0, 1) and the ν1, . . . , νp are the eigenvalues ofKH−1θθ
(cf. Theorem 8.5 in Severini, 2005), which in general depend on (θ, φ).

The asymptotic null distribution of w̃(θ) is chi-square on p degrees of freedom
if and only ifKH−1θθ = Ip+o(1), that is if and only if the pseudo log likelihood ˜̀(θ)

satisfies the information identity V arθ,φ(Ũ(θ)) = Eθ,φ{−(∂/∂θ>)Ũ(θ)} with er-
ror o(n). Such identity generally fails for the profiled composite log likelihood, as
illustrated in Pace et al. (2011). It typically fails even for a pseudo log likelihood
˜̀(θ) based on a genuine likelihood. When this is the case, quantiles of the approxi-
mate distribution of w̃(θ) depend on θ and contruction of confidence regions based
on inversion of acceptance regions is far from being straightforward.

In order to recover a χ2
p asymptotic distribution for the pseudo likelihood ratio,

we propose an adjustment of w̃(θ). The adjustment applies to multidimensional pa-
rameters of interest and extends to a general framework the proposal of Pace et al.
(2011) referred to composite likelihoods and elimination of nuisance parameters
by profiling. The rescaled likelihood ratio statistic has the form

w̃∗(θ) =
Ũ(θ)>K−1Ũ(θ)

Ũ(θ)>H−1θθ Ũ(θ)
w̃(θ) . (5)
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The asymptotic χ2
p distribution of w̃∗(θ) follows from the expansion w̃(θ) =

Ũ(θ)>H−1θθ Ũ(θ) + op(1), so that w̃∗(θ) = Ũ(θ)>K−1Ũ(θ) + op(1) = w̃u(θ) +
op(1) and the three forms w̃∗(θ), w̃e(θ) and w̃u(θ) are asymptotically equivalent.
With scalar θ, (5) simplifies to w̃∗(θ) = (Hθθ/K) w̃(θ). This agrees with several
proposals in the literature, see e.g. Kent (1982), Stafford (1996), Geys et al. (1999).

Confidence regions with asymptotic level 1− α based on w̃∗(θ) have the form
{θ : w̃∗(θ) ≤ χ2

p,1−α}. On the other hand, regions of the form {θ : w̃(θ) ≤
χ2
p,1−α}, ignoring the cost of estimating nuisance parameters, are typically un-

dercovering, being wrongly calibrated. Moreover, in the examples of Section 3,
regions based on w̃∗(θ) appear to be close in shape and coverage to ideal regions
based on profiling the full likelihood, of the form {θ : wP (θ) ≤ χ2

p,1−α}, where
wP (θ) is the profile likelihood ratio from the full likelihood. Regions based on the
score type statistic w̃u(θ), i.e. of the form {θ : w̃u(θ) ≤ χ2

p,1−α} have asymptotic
level 1− α, but may be unbounded in small samples. In turn, regions based on the
Wald type statistic {θ : w̃e(θ) ≤ χ2

p,1−α} might have asymptotic correct coverage,
but have forced ellyptical shapes and lack parameterization invariance.

An appealing feature of w̃∗(θ) is that inference about a p0-dimensional com-
ponent ψ of θ = (ψ, λ) can be based on

w̃∗
P

(ψ) = min
λ
w̃∗(ψ, λ) , (6)

with a limiting χ2
p0 null distribution. The latter result can be easily shown using

standard likelihood asymptotics from the asymptotic equivalence between w̃∗(θ)
and w̃e(θ) given by (4). So, in the end, some nuisance parameters may be dealt
with through separate estimation plus adjusting, while other ones afterward through
profiling.

3 Numerical illustration

We provide here numerical evidence of the accuracy of the methods in Section 2
applied to the examples introduced in Sections 1.1 and 1.2.

3.1 Measurement error model

For the measurement error model of Section 1.1, the covariance matrix of φ̃ is
Σ = n−1diag

(
(1 + k2)σ2

U
, 2σ4

U

)
. Adjustment (5) has K = iθθ + iθφΣi>θφ, with

elements of iθθ and iθφ given in the Appendix, and Hθθ = iθθ.
As an illustration, we consider a simulated dataset with n = 20, θ = (1, 2),

µX = 2, σ2
U

= 1.1 and h = k = 1. Confidence regions for θ with nominal level
0.95 are displayed in Figure 1. The region based on w̃(θ), wrongly calibrated on
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a χ2
2 scale, is too narrow. The score-type confidence region has an unusual shape

and departs remarkably from that based on the profile log likelihood ratio statistic,
wP (θ), considered as the gold standard. At least in the present parameterization,
the Wald-type region is closer to the target. The closest agreement in shape and
location with the region based on wP (θ) is obtained using w̃∗(θ). However, the
region based on w̃∗(θ) is somehow larger than the region based on wP (θ), as is to
be expected.

A small simulation study was performed in order to compare the coverage of
the confidence regions for θ based on the different likelihood ratio statistics. Esti-
mated coverage probabilities are summarized in Table 1. The proposed adjustments
show a reasonable performance, substantially improving on the unadjusted pseudo
likelihood ratio statistic. Table 1 also includes results for the versions of w̃u(θ) and
w̃∗(θ) with a simulated estimate of K, based on 500 replications, which are de-
noted respectively by w̃usim(θ) and w̃∗sim(θ). These versions for small to moderate
sample sizes tend to give regions with larger empirical coverages compared with
those obtained from w̃u(θ) and w̃∗(θ). The confidence region based on w̃u(θ) has
an unpleasant shape, see the bottom left panel of Figure 1, which is not improved
by w̃usim(θ), not shown in the figure.

Table 1: Measurement error model. Empirical coverage (%) of confidence regions
of nominal level 90%, 95%, 99% for θ based on different statistics in three simu-
lations, each with 10, 000 replications, θ = (1, 2), µX = 2, σ2

U
= 1.1, h = k = 1

and n = 10, 20, 100.
n = 10 n = 20 n = 100

nominal 90 95 99 90 95 99 90 95 99

wP (θ) 85·3 91·6 97·9 88·0 93·7 98·5 89·9 95·0 98·9
w̃(θ) 69·1 76·2 86·3 72·5 80·7 90·6 75·4 83·8 93·5
w̃u(θ) 78·7 82·5 87·6 83·9 88·1 93·3 89·0 93·6 97·8
w̃usim(θ) 93·5 95·2 97·3 91·2 94·0 97·3 90·9 94·8 98·3
w̃e(θ) 80·7 86·7 93·5 86·0 91·3 96·6 89·3 94·5 98·7
w̃∗(θ) 81·7 87·3 93·7 86·5 91·6 96·7 89·5 94·5 98·6
w̃∗sim(θ) 97·9 98·8 99·6 94·8 97·2 99·3 91·6 96·0 99·1

Figure 2 shows confidence regions from wP (θ) and w̃∗(θ) of nominal level
0.95 for θ = (β0, β1), together with confidence intervals for the two components,
β0 and β1, obtained by profiling w̃∗(θ), as in formula (6). The confidence in-
tervals from the lower-right panel in Figure 2 are (−0.672, 3.044) (w̃∗

P
(β0)) and

(−0.498, 2.879) (wP (β0)). For comparison, the Wald-type confidence interval is
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Figure 1: Measurement error model. Confidence regions for regression parameters
for simulated data of Section 3.1. In all panels, the solid lines represent regions
with nominal level 0.95 based on wP (θ), while the circle and the cross represent
θ̂ and θ̃, respectively. Moving clockwise from the top left panel, the dashed lines
represent the confidence region based on w̃(θ), w̃∗(θ), w̃e(θ) and w̃u(θ).
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(−0.218, 3.408). The corresponding intervals for β1, from the upper-left panel are,
respectively, (1.022, 2.643), (1.111, 2.569) and (0.842, 2.449). In both cases, in-
tervals based on the profile adjusted pseudo likelihood ratio are closer to full profile
likelihood intervals than Wald-type ones.

3.2 Spatial Gaussian random fields

As an illustration of the example in Section 1.2, we consider the Wolfcamp ac-
quifer data (Cressie, 1993, pp. 212-214) consisting of m = 85 irregularly spatially
located measurements of piezometric head, available in the R package geoR. The
strong trend in the northeast-southwest direction is removed by linear regression on
spatial coordinates, so that φ = (β0, β1, β2, σ

2). The pairwise log likelihood for
(θ, φ) has been calculated with threshold d0 = 100 kilometers for the weights. Full
maximum likelihood estimates are (θ̂, φ̂) = (18.93, 616.45,−1.29,−1.24, 4344.00),
while (θ̃, φ̃) = (21.56, 607.77,−1.28,−1.14, 3880.49). The pseudo pairwise log
likelihood ratio w̃(θ) and adjusted versions w̃∗(θ) and w̃∗sim(θ) are compared with
the profile log likelihood ratio in Figure 3. The needed quantities for all statis-
tics are given in the Appendix for the more general case of a random sample
of size n from the model in Section 1.2. The confidence interval with nominal
level 0.95 from the profile log likelihood is (9.77, 37.17). The analogous intervals
are (15.36, 27.76) from w̃(θ), (10.23, 74.15) from w̃∗(θ) and (11.15, 52.75) from
w̃∗sim(θ). The figure also displays score-type and Wald-type statistics w̃u(θ) and
w̃e(θ) as well as the version with simulated K, w̃usim(θ) (K simulated with 200
replications). As in the previous example, the score-type statistic has an irregular
shape that reflects on the costruction of confidence intervals. For this reason, these
are not reported, while the Wald confidence interval is (4.98, 38.27). Qualitatively,
the behaviour of the profile likelihood ratio is best recovered by the adjusted ver-
sions of the pseudo pairwise likelihood ratio. This is also supported by empirical
coverages in the simulation studies discussed below.

An alternative solution could be to use confidence intervals based on the boot-
strap distribution of θ̃. This can be obtained using samples simulated from the
observed (θ̃, φ̃). With Wolfcamp data, the 0.95 percentile bootstrap confidence in-
terval with 1000 bootstrap samples is (7.68, 30.11). This is quite different from
the profile gold standard and empirical coverage, estimated by simulation in the
setting described below with n = 1, is 0.494, which is rather poor. Although for
this particular data set the computational cost is fairly reasonable, this might not
be the case for more complex settings since it requires optimization of the pseudo
log likelihood for each bootstrap sample. Also a nonparametric bootstrap could be
considered. However, in the present model, like with time series models, the re-
sampling method needs to account for the data dependence structure, as in window
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Figure 2: Measurement error model. Confidence regions for θ = (β0, β1), jointly
and separately, for the simulated data of Section 3.1. In all panels, the solid lines
represent regions with nominal level 0.95 based on the profile likelihood, while the
dashed lines represent the same based on w̃∗(θ) (upper-right panel) and its profiling
for β1 (upper-left panel) and for β0 (lower-right panel). The circle and the cross
represent θ̂ and θ̃, respectively.

13



subsampling schemes.
Coverage probabilities of the various confidence intervals have been checked

through a simulation study for n = 1, 5, 30 and parameter values equal to the max-
imum likelihood estimates from the Wolfcamp data. Due to poor behaviour with
n = 1 and prohibitive computational cost with n = 5, 30, bootstrap confidence
intervals have not been considered. The statistics w̃∗sim(θ) and w̃usim(θ) have been
computed with M = 200. The results are reported in Table 2. In the setting with
n = 1 coverage probabilities for w̃∗(θ) are the closest to the nominal levels, even
substantially improving on the profile. With additional independent observations
at each spatial location (n = 5), coverage properties for wP (θ) improve and w̃∗(θ)
and w̃∗sim(θ) are still competitive. When n = 30 nominal levels are attained by
all statistics except of course by w̃(θ). Simulation results, not reported here, show
stability of the results for w̃∗sim(θ) and w̃usim(θ) computed with M = 500, in par-
ticular for n = 5, 30.

In the above setting, with only m = 85 spatial locations, the differences in
computational costs of w̃∗(θ), w̃∗sim(θ) and wP (θ) are barely noticeable. However,
as m increases, such differences become more remarkable. As an example, we
generated a sample of size m = 500 by resampling and perturbing the original
spatial locations and using (θ̂, φ̂) as parameter value. As noted at the end of Section
2.1, in this setting w̃∗sim(θ) is the most convenient choice, while the analytical
version w̃∗(θ) is computationally more demanding even than wP (θ). Indeed, the
computation of w̃∗sim(θ) took about 8 seconds, while those of w̃∗(θ) and wP (θ)
took about 940 and 110 seconds, respectively. Figure 4 shows w̃(θ) and w̃∗sim(θ)
for this dataset.

Finally, we mention an alternative formulation of inference for these models,
that considers as nuisance parameter φ = β, while the variance σ2 and the cor-
relation parameter are included in the parameter of interest θ. This choice would
have the advantage of nuisance parameter-insensitivity, giving the simplification
K = Jθθ. However, numerical evidence (not reported here) indicates a poor be-
haviour of both adjusted pairwise and pseudo pairwise likelihoods. This seems to
suggest that, as a general rule, it is convenient to treat as nuisance parameters, to be
estimated by simple estimates, all parameters identifiable in univariate marginals.

4 Discussion

Simplified treatment of nuisance parameters with plug-in estimation needs to be
supplemented with computationally affordable and reliable methods for construct-
ing confidence regions. The rescaling adjustment for nuisance parameter estima-
tion proposed here allows ready calculation of the usual likelihood-based regions
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Figure 3: Wolfcamp data. In each panel, the statistic in the title is the dashed line,
the solid line is wP (θ), while the longdashed line is the statistic in the title with
simulated K. The horizontal dotted line gives the approximate confidence interval
of nominal level 95%.
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Figure 4: Simulated data with m = 500. The solid line is w̃(θ), while the dashed
line is w̃∗sim(θ). The horizontal dotted line gives the approximate confidence inter-
val of nominal level 95%.
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Table 2: Empirical coverage (%) of confidence regions of nominal level 90%, 95%,
99% based on different statistics in three simulations, n = 1, 5, 30, with 10, 000
replications from an exponential correlation model with covariates as in the Wolf-
camp data and (θ, φ) equal to the maximum likelihood estimate from the dataset.

n = 1 n = 5 n = 30

nominal 90 95 99 90 95 99 90 95 99

wP (θ) 80·0 86·0 91·7 88·8 94·4 98·7 90·0 95·0 99·0
w̃(θ) 32·2 39·1 53·4 41·4 48·5 61·3 44·1 51·4 63·5
w̃u(θ) 85·3 93·2 99·2 88·1 94·1 98·9 90·2 95·1 98·9
w̃usim(θ) 73·8 84·7 96·0 90·2 95·5 99·3 90·1 95·0 98·9
w̃e(θ) 66·3 74·4 85·9 84·0 89·7 96·0 89·6 94·3 98·6
w̃∗(θ) 90·5 97·1 99·9 89·0 95·0 99·3 90·4 95·2 98·9
w̃∗sim(θ) 79·3 90·0 98·7 91·1 96·4 99·6 90·3 95·2 98·9

with acceptable computational cost for a variety of models and likelihoods. Alter-
native solutions based on bootstrap methods, although viable in wide generality,
seem less appealing in this context. On one side, complex models are typically
related to complex dependencies, that need to be accounted for in the resampling
scheme of a nonparametric bootstrap. On the other hand, parametric boostrap of
the estimator with no prepivoting may lead to poor results as indicated in Section
3.2. Another possibility could be to use parametric bootstrap of w̃(θ) for obtaining
a confidence region for θ. However, this solution turns out to be computation-
ally very demanding: at each θ value, at least 1000 bootstrap samples are needed
for reasonable accuracy, with optimization of the pseudo log likelihood required
for each bootstrap sample. A numerical example with the Wolfcamp data (not re-
ported here) shows that the bootstrap version of w̃(θ), that is the statistic obtained
by inverting bootstrap p-values, obtained with 1000 simulated samples from (θ, φ̃),
has a rather poor behaviour for large θ leading to an unbounded interval. Indeed,
there is no guarantee to obtain accurate results since w̃(θ) is not a pivotal quantity
(see, for instance, Young & Smith, 2005, § 11.2).
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Appendix

Measurement error model

For the model in Sections 1.1 and 3.1, with θ = (β1, β2) and φ = (µX , σ
2
U

), the
adjustment in equation (5) hasK = iθθ+iθφΣi>θφ, where iθθ and iθφ have elements

iµ
X
β0 =

nβ1

σ2
U

{
h2(1 + k2) + β21k

2
} , iµ

X
β1 =

nβ1µX

σ2
U

{
h2(1 + k2) + β21k

2
} ,

iσ2
U
β0 = 0 , iσ2

U
β1 =

nβ1k
2

σ2
U

{
h2(1 + k2) + β21k

2
} ,

iβ0β0 =
n(1 + k2)

σ2
U

{
h2(1 + k2) + β21k

2
} , iβ0β1 =

nµX (1 + k2)

σ2
U

{
h2(1 + k2) + β21k

2
} ,

iβ1β1 =
2nβ21k

4

(h2(1 + k2) + β21k
2)2

+
n

(h2(1 + k2) + β21k
2)

{
k4 +

µ2X(1 + k2)

σ2
U

}
.

Spatial Gaussian random fields

In the following we give various quantities related to the pseudo pairwise log like-
lihood of Section 1.2, in the more general case in which we have n independent
replications of the vector y, at the same m monitoring stations. In particular, the
pseudo score is

Ũ(θ) =

n∑
i=1

∑
s>r

wrs
∂ρrs
∂θ

1

(1− ρ2rs)

{
ρrs −

ρrs
σ̃2

Ãirs
(1− ρ2rs)

+
(yir − µ̃ir)(yis − µ̃is)

σ̃2

}
,

where µ̃ir is the generic element of µ̃i = Xiβ̃ and Ãirs = (yir − µ̃ir)2 + (yis −
µ̃is)

2 − 2ρrs(yir − µ̃ir)(yis − µ̃is) .
The asymptotic covariance matrix of φ̃ is Σ = diag (Σ11,Σ22), with

Σ11 = σ2

(
n∑
i=1

X>i Xi

)−1( n∑
i=1

X>i R(θ)Xi

)(
n∑
i=1

X>i Xi

)−1

Σ22 =
2n(σ2)2

(nm+ k)2

m∑
k=1

γ2k ,

where γk are the eigenvalues of R(θ).
We now give details on computation of the quantities needed for matrix K,

given by (2). Using the relationEθφ{(Yir−µir)(Yis−µis)(Yit−µit)(Yiu−µiu)} =
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σ4ρrstu, where ρrstu = ρrsρtu + ρrtρsu + ρruρst, we have

Jθθ = n
∑
s>r

∑
t>u

wrswtu
∂ρrs
∂θ

∂ρtu
∂θ>

1

(1− ρ2rs)
1

(1− ρ2tu)

{−ρrsρtu + ρrstu −
ρrs

(1− ρ2rs)
(ρrrtu + ρsstu − 2ρrsρrstu)

− ρtu
(1− ρ2tu)

(ρttrs + ρuurs − 2ρtuρrstu) +
ρrs

(1− ρ2rs)
ρtu

(1− ρ2tu)

(ρrrtt + ρrruu + ρsstt + ρssuu + 4ρrsρtuρrstu − 2ρtuρturr

−2ρtuρtuss − 2ρrsρrstt − 2ρrsρrsuu)}
Hθβ = 0

Hθσ2 = − n

σ2

∑
s>r

wrs
∂ρrs
∂θ

ρrs
(1− ρ2rs)

Q = diag

(
1

σ2

n∑
i=1

X>i Xi,
nm+ k

2σ4

)
Ωθβ = 0

Ωθσ2 =
n

2σ2

∑
t

∑
s>r

wrs
∂ρrs
∂θ

1

(1− ρ2rs){
ρrs −

ρrs
(1− ρ2rs)

(ρrrtt + ρsstt − 2ρrsρrstt) + ρrstt

}
.

Being Hθβ = Ωθβ = 0, we have

HθφΣHT

θφ = Σ22Hθσ2H
T

θσ2 , Ωθφ(Q−1)THT

θφ =
2σ4

nm
Ωθσ2H

T

θσ2 .

The resulting K does not depend on β. Moreover,

Hθθ = n
∑
s>r

wrs
1 + ρ2rs

(1− ρ2rs)2
∂ρrs
∂θ

∂ρrs
∂θT

.

References

BEVILACQUA, M. & GAETAN, C. (2014). Comparing composite likelihood meth-
ods based on pairs for spatial Gaussian random fields. Statistics and Computing,
to appear.

CATTELAN, M. & SARTORI, N. (2014). Empirical and simulated adjustments of
composite likelihood ratio statistics. Tech. Rep. 2/2014, Department of Statisti-
cal Sciences - University of Padova. ArXiv: 1403.7093v1.

19



CHEN, Y. & LIANG, K. (2010). On the asymptotic behaviour of the pseudolikeli-
hood ratio test statistic with boundary problems. Biometrika 97, 603–620.

CRESSIE, N. (1993). Statistics for Spatial Data. New York: Wiley.

DIGGLE, P. J. & RIBEIRO, P. J. (2007). Model-based Geostatistics. New York:
Springer.

GEYS, H., MOLENBERGHS, G. & RYAN, L. (1999). Pseudolikelihood modeling
of multivariate outcomes in developmental toxicology. J. Amer. Statist. Assoc.
94, 734–745.

GHOSH, A., WRIGHT, F. A. & ZOU, F. (2013). Unified analysis of secondary
traits in case–control association studies. J. Amer. Statist. Assoc. 108, 566–576.

GONG, G. & SAMANIEGO, F. (1981). Pseudo maximum likelihood estimation:
Theory and applications. Ann. Statist. 9, 861–869.

GUOLO, A. (2011). Pseudo-likelihood inference for regression models with mis-
classified and mismeasured variables. Statist. Sinica 21, 1639–1663.

HAUCK, W. & DONNER, A. (1977). Wald’s test as applied to hypotheses in logit
analysis. J. Amer. Statist. Assoc. 72, 851–853.

JØRGENSEN, B. & KNUDSEN, S. J. (2004). Parameter orthogonality and bias
adjustment for estimating functions. Scand. J. Statist. 31, 93–114.

KENT, J. (1982). Robust properties of likelihood ratio tests. Biometrika 69, 19–27.

LIANG, K. & SELF, S. (1996). On the asymptotic behaviour of the pseudolikeli-
hood ratio test statistic. J. R. Statist. Soc. B 58, 785–796.

LINDSAY, B. G. (1988). Composite likelihood methods. Contemp. Math. 80,
221–240.

MOLENBERGHS, G. & VERBEKE, G. (2005). Models for Discrete Longitudinal
Data. New York: Springer.

PACE, L., SALVAN, A. & SARTORI, N. (2011). Adjusting composite likelihood
ratio statistics. Statist. Sinica 21, 129–148.

PAKEL, C., SHEPHARD, N. & SHEPPARD, K. (2011). Nuisance parameters, com-
posite likelihood and a panel of GARCH models. Statist. Sinica 21, 307–329.

PIERCE, D. (1982). The asymptotic effect of substituting estimators for parameters
in certain types of statistics. Ann. Statist. 10, 475–478.

20



SEVERINI, T. A. (2005). Elements of Distribution Theory. Cambridge: Cambridge
University Press.

STAFFORD, J. (1996). A robust adjustment of the profile likelihood. Ann. Statist.
24, 336–352.

VARIN, C., REID, N. & FIRTH, D. (2011). An overview of composite likelihood
methods. Statist. Sinica 21, 5–42.

WANG, H., HU, X. J., MCBRIDE, M. L. & SPINELLI, J. J. (2014). Analysis
of counts with two latent classes, with application to risk assessment based on
physician-visit records of cancer survivors. Biostatistics 15, 384–397.

YOUNG, G. A. & SMITH, R. L. (2005). Essentials of Statistical Inference. Cam-
bridge: Cambridge University Press.

21


