
Informatics in Medicine Unlocked 21 (2020) 100456

Available online 16 October 2020
2352-9148/© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Underlying cause of death identification from death certificates using 
reverse coding to text and a NLP based deep learning approach 

Vincenzo Della Mea *, Mihai Horia Popescu, Kevin Roitero 
University of Udine, Udine, Italy   

A R T I C L E  I N F O   

Keywords: 
ICD-10 
Mortality 
Automated coding 
Machine learning 
Deep learning 
Embeddings 
Natural language processing 

A B S T R A C T   

The identification of the underlying cause of death is a matter of primary importance and one of the most 
challenging issues in the setting of healthcare policy making. The World Health Organisation provides guidelines 
for death certificates coding using the ICD-10 classification. Guidelines can be manually applied, but there exist 
some coding support systems that implement them to simplify the coding work. Nevertheless, there is disparity 
among countries with respect to the level and the quality of death certificates registration. In this work we 
propose an effective supervised model based on Natural Language Processing algorithms to the aim of correctly 
classifying the underlying cause of death from death certificates. In our study we compared tabular represen
tations of the death certificate, including the hierarchical path of each condition in the classification, with a novel 
representation consisting in translating back to their standard title the conditions expressed as ICD-10 codes. Our 
experimental evaluation, after training on 10.5 million certificates, reached a 99.03% accuracy, which currently 
outperforms state-of-the-art systems. For its practical applicability, we studied performance by classification 
chapter and found that accuracy is low only for chapters including very rare death causes. Finally, to show the 
robustness of our model, we leverage the model confidence to help identifying death certificates for which a 
manual coding is needed.   

1. Introduction and background 

Reliable knowledge on the mortality and causes of death of a pop
ulation is critical for healthcare policy making. Civil registration and 
vital statistics systems (CRVS) are the most reliable source of continuous 
data on fertility, mortality, and causes of death and, if functioning 
properly, can guide the organisation’s policies and priorities for health 
and development. Cause of death information is one of the most chal
lenging products that comes within the CRVS. Most countries collect 
information about causes of death by filling death certificates according 
to a standard methodology defined by the World Health Organisation 
(WHO) in line with the International Statistical Classification of Diseases 
and Related Health Problems (ICD). The level of registration of deaths in 
some countries may be high but there is a huge disparity in generating 
cause-of-death information across continents and the information on the 
cause of death is often either absent or of low quality. Overall only 
around one-third of all the deaths in the world are recorded in civil 
registries with the associated cause of death information [25]. After 
being filled by a physician, death certificates are then coded using a 

specific ICD Revision, currently the 10th Revision (ICD-10). 
Cause-specific mortality statistics by age and sex are some precious in
formation that can be found in the death certificate, but the so-called 
underlying cause of death (UCOD) is the most important code used for 
statistical comparison and public health data. WHO has defined the 
UCOD as: “I (a) the disease or injury which initiated the train of morbid 
events leading directly to death; or (b) the circumstances of the accident or 
violence which produced the fatal injury.” [26] 

The death certificate contains a description of the causal chain of 
events, which goes from the first health condition that, even remotely, 
could have caused the death, to the condition that directly brought to 
death, passing through conditions each one possibly caused by the 
previous ones. However, normally the last one is not significant from a 
public health point of view. As example, most chains may be considered 
ending with a cardiac arrest, but the important condition is the one that 
initially brought to it - maybe a cancer, an infection, a car accident. The 
UCOD is in principle one of the conditions of the chain, ideally the first 
one, but it is not always the case, because chains are reported by the 
certifying doctor and may include conditions not relevant for the death, 
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or conditions that, connected together, can be described together as a 
different condition, etc. Thus, UCOD is not always easy to identify. 
Furthermore, death certificates are initially filled by the doctor certi
fying the death with conditions expressed in free text, then coded in ICD- 
10 by specialised personnel, often under control of a national statistical/ 
epidemiological institution. This aspect also introduces difficulties in the 
overall process of mortality coding, although it is not among the aims of 
the present work. For these reasons, many countries adopt a decision 
support system to help the coder, which is usually different from the 
certifying doctor. 

The WHO provides countries with a standardised format for the 
definition of the causal chain of events, which is implemented by the set 
of support systems that are used by most countries. Those systems 
incorporate a very large number of rules known as “decision tables”. 
Such rules are central to the function of the automated mortality coding 
systems, but they are also used when performing manual coding; this 
allows a consistent and harmonised application of the ICD rules across 
the coding processes. 

The decision tables used in the coding process form a knowledge base 
of relations between pairs of codes representing the causes of death 
reported on the death certificate that must be taken into consideration 
during the application of the steps for the selection of the UCOD. This 
knowledge base was first developed by the US National Center for 
Health Statistics for the ACME system [14]. Successively it has been 
embedded in the automated coding system Iris [10] and, since 2011, the 
Iris Institute maintains the tables according to the WHO official updates 
of ICD and on the basis of the recommendations of the Mortality 
Reference Group, which operates in the network of the WHO Collabo
rating centres for the Family of international Classifications (WHO-FIC). 
At the present date, Iris and ACME are the most used systems for the 
support of the automated coding. 

An automated coding system for the causes of death reduces 
considerably the workload of medical coders. When the editing or 
coding problems can be solved successfully by the support system 
without manual intervention, the system is expected to handle up to 
85% of the death certificates [12]. However, a fair amount of death 
certificates depict complex situations that cannot be automatically 
solved and thus are left to manual coders, representing a burden for 
healthcare systems. Recent studies made in the Netherlands estimated 
that about 68.5% of death certificates are automatically coded by Iris, 
leaving 31.5% to manual coders [12]; note that part of them are left to 
manual coders due to human annotation errors in the certificates, not 
necessarily to difficulties in UCOD selection. 

Machine Learning (ML) is the scientific discipline that focuses on 
how computers learn from data [19]. ML and in particular Deep 
Learning (DL) has been employed in the setting of death certificates in at 
least two tasks: the coding of the free text descriptions to ICD-10, 
applying/adopting techniques used in the case of discharge letters and 
patient summaries, and the extraction of UCOD from coded chains of 
events occurring in death certificates [2,3,9,11,15,27,28]. 

In particular, the automated UCOD selection using deep learning 
techniques has been the subject of a couple of papers. Falissard et al. 
[11] developed a modified Inception network, obtaining an accuracy 
score of 0.978 on a dataset of 8.5 millions French death certificates, 
outperforming the Iris performance, which has an accuracy score of 
0.925 on automatically coded certificates. In our own previous work [6], 
a comparison of multiple approaches as Logistic regression, Random 
Forest, XGBoost and Feedforward Neural Network was presented and 
state-of-the-art performance is reached using DL techniques. In addition 
to such techniques, two different encodings were proposed to improve 
feature organisation and data reduction. More in detail, results from 
Della Mea et al. [6] obtained an accuracy score of 0.984 (considering the 
CI, the real accuracy value lies in the [0.984, 0.985] range). 

The present paper aims at enhancing the performance obtained in 
the previous experiment [6], by adding contextual information to the 
description of the death certificates. This has been carried out following 

two different approaches: in the former, each code has been enriched 
with its parents in the classification (ICD-10 has a hierarchical organi
sation), always as codes. In the latter, categories have been substituted 
by their descriptive text in order to use Natural Language Processing 
(NLP) algorithms. In both experiments, the main aim is to exploit the 
classification hierarchy to provide a better definition of each health 
condition. 

2. Data 

2.1. The death certificate 

The death certificate is the main source of mortality data. Informa
tion on the death certificates is best provided by an experienced medical 
practitioner who is well informed about the medical history of the dead 
person. This certificate contains administrative details, Frame A which 
describes the health conditions subdivided in two sections (Part 1 and 
Part 2) and Frame B which contains additional health conditions (i.e., 
surgery if performed, autopsy if performed, manner of death, place of 
occurrence of the external cause, fetal and infant deaths, maternal 
deaths). The administrative data present in the certificate is used to 
collect information on sex, date of birth, and date of death of the person. 
Part 1 normally is formed by 5 lines (but the number could differ be
tween countries), and describes the chain of events which leads to the 
person death, with the originating cause on the last line and the direct 
cause on the first line; note that a representation with more than one 
condition per line is allowed. Part 2 of the certificate is used to annotate 
the context of the conditions that contributed to the death of the person. 
Table 1 shows an example of a simplified but realistic death certificate; 
note that the conditions in the certificates are expressed by both by 
means of codes and by free text (associated to the code). In this case, for 
example, according to the rules provided by WHO the UCOD is N40 
(prostatic obstruction). 

While in principle the UCOD is the originating cause of death and the 
conditions are the chain of events leading to death, the originating cause 
of death should be present on the lowest line of the certificate; Never
theless, from an epidemiological point of view, formal rules are neces
sary because it is not always the case that such condition (i.e., the lowest 
line) is the UCOD. For this reason, to ensure that the selection of the 
UCOD is done in a formal way and following the same principles in every 
country, the WHO provides a very detailed set of rules to tackle this 
issue; such rules are defined in the Volume 2 of ICD-10 [26]. This set of 
rules assure that the data generated in different places is comparable. 

2.2. Data source 

The death certificates dataset has been obtained from the U.S. Na
tional Center for Health Statistics, which make them available for sta
tistical and analytical research.1 The dataset contains a total of 12, 919, 

Table 1 
Example of a death certificate.  

Part 1 Condition 

1 I21.9 Acute myocardial infarction 
2 I10 Hypertension 
3 N19 Unspecified kidney failure 
4 … … … …. . 
5 … … … …. . 

Part 2 Condition 

1 … … … …. . 

Other Administrative data Sex: female Age: 55  
Underlying cause of deathI 21.9 Acute myocardial infarction  

1 https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. 
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268 records for the years 2014–2017. After a brief pre-processing, the 
main source of information for the identification of the UCOD has been 
extracted; we considered the sex, age, and conditions appearing on both 
Part 1 and Part 2 of the certificate. The train/test split of the data has 
been made after randomisation and stratified sampling by year; in more 
detail, for each year 500,000 records have been assigned to the valida
tion set, 100,000 to the test set, and the rest to the training set. Thus, in 
the end we considered a training set composed by 10, 519, 268 records, 
a validation set composed by 2,000,000 records, and a test set composed 
by 400,000 records. We considered a single training/test split as done by 
Falissard et al. [11]. 

2.3. Dataset preparation 

We considered two different representations, both derived from the 
second method presented in Ref. [6]. While the first representation is 
optimized for space reduction and feature relevance, for this work we 
decided to add additional information for each condition by specifying 
where it belongs inside the classification. In fact, the ICD classification 
has a hierarchical structure, and the conditions are coded using leaf 
codes only. By adding the hierarchical path to the (leaf) condition, we 
can provide the algorithms with additional information which can be 
exploited; codes with the same or a similar path will have a similar 
encoding, resembling the way WHO organises the decision rules used to 
code the death certificates, and adding the ICD hierarchical structure in 
the encoding. Such rules generally involve more general terms as sets 
than ICD-10 leaf codes; more in detail, each set could be seen as a block 
of ICD codes or also as a group of similar concepts, with a relation be
tween those sets. For this reason in the first encoding we propose in this 
work we add, for each condition, up to three ICD-10 parents categories. 
As example, C75 (Malignant neoplasm of other endocrine glands and 
related structures) has three features associated: Chapter II (C00-D48), 
Block C00–C97 (Malignant neoplasms) and C00–C75 (Malignant neo
plasms, stated or presumed to be primary, of specified sites, except of 
lymphoid, haematopoietic and related tissue). Conditions appearing in 
the death certificate are represented by their positions in the certificate, 
coded with two digits, the most significant for the line, the least sig
nificant for the position in the line. 

Table 2 shows an example of certificate encoding. We expect this 
representation to give a boost to the results for the following rationale: 
Machine/Deep Learning models build a model based on the observations 
found in the training data, but such category of algorithms treat each 
observation independently, thus the algorithm cannot integrate into the 
learning function (at least, not in a naive way) the correlation between 
codes that might occur for difference instances different instances. For 
this reason, by coding explicitly the relationship between codes we 
provide the model a view of the ICD hierarchy, which could lead to 
possibly increase the model effectiveness. 

The second representation we consider consists in substituting ICD 
codes with their narrative title and then use a NLP algorithm to predict 
the UCOD. In some way, this reverses the work done by coders because it 
brings the certificate back to text; however, since titles of conditions that 
are neighbours in the classification are also most of times similar, this 
also provides indirect information on the ICD hierarchy. In this repre
sentation, each death certificate was encoded in the form of text, where 
both administrative data and conditions become text. The administra
tive data was put in an explicit form (e.g., Female, 39y old). Each line of 
the causality goes between parenthesis, where each ICD-10 code is 
replaced with the classification title. If multiple codes are on the same 
line they are concatenated with the expression “or” between the titles (e. 
g. C16, C80 codes on the same line, are replaced with " (Malignant 
neoplasm of stomach or Malignant neoplasm, without specification of 
site)"). Different lines were concatenated with the string “due to”, and 
the Part 2 codes are connected with the sentence of Part 1 with the string 
“in the context of”. Three examples can be found in Table 3. The target 
label was kept as ICD-10 code. The result is a sort of human-readable 

version of the originally coded text, that attempts to respect the orig
inal semantics of the certificate. Tables 2 and 3 show an example of the 
result of the reverse coding process. After the coding process, we 
computed some statistic on the dataset. Considering each instance, the 
average number of words is 20, with a maximum of 186, and a standard 
deviation of 13. 

Note that while many works start from free text to obtain diagnostic 
codes by means of ML or DL algorithms [4,20,22], to the best of our 
knowledge this is the first case of application in the medical domain in 
which we move from a representation based on codes back to a repre
sentation based on free text, translating the former into the latter. 

3. Methods 

3.1. Experiments 

The experiments were divided in two main phases: the former is a 
preliminary one, in which multiple algorithms are taken into account 
and the training and tests are carried out using a reduced dataset. Then, 
in the latter experiment we compare and evaluate the best performing 
algorithms on the complete dataset. Finally, we select the best per
forming algorithm and we evaluate it on a novel test set composed by the 
death certificates from the year 2018. 

3.2. Machine Learning algorithms 

Della Mea et al. [6] have shown a comparison of ML and DL algo
rithms in the setting of UCOD prediction. Their analysis have shown that 
the DL algorithms where the most effective ones. For this reason, in this 
work we consider a set of DL algorithms, namely a Feedforward Neural 
Network and a set of NLP based deep learning algorithms. The following 
subsections detail the algorithms considered in this work. 

3.2.1. Deep learning and embedding layers for tabular data 
We adopted a Feedforward neural network model provided by the 

Fast. ai framework [13,23]. Our specific architecture model considers 77 
features in input, where Sex and Age are taken from administrative data 
and the remaining 75 features are used for the codes (a pragmatic choice 
because in our dataset there are no more than 15 ICD-10 codes per 
certificate, represented with 5 features for each code). After the cate
gorical embeddings encoding, we obtain, depending on the fold, up to 
3527 features that are set as input for the first layer, while the output 
layer has up to 4602 features. The architecture is composed by 5 Hidden 
layers with 5000 fully connected neurons per layer. Concerning the 
layer training parameters, we use Rectified Linear Unit (ReLU) as acti
vation function and a Batch Normalisation for continuous variables; the 
output is computed using the softmax function. We trained the network 
using 5 epochs, with a maximum learning rate of 2− 4. 

3.3. Deep learning algorithms for NLP 

The algorithms detailed in the next sections use new language rep
resentation model with pre-training, which has been shown to be 
effective for improving many natural language processing tasks, such as 
sentence-level tasks like natural language inference and paraphrasing 
[8]. There are two existing strategies for applying pre-trained language 
representations to so called downstream tasks (i.e., supervised learning 
tasks that utilise a pre-trained model or component): feature-based and 
fine-tuning. The feature-based approach uses a task-specific architecture 
that include the pre-trained representations as additional features. The 
fine-tuning approach, which we use in this work, introduces minimal 
task-specific parameters, and is trained on the downstream tasks by 
simply fine-tuning all pre-trained parameters. We have used many 
different pre-trained models, detailed in the following. 
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3.3.1. BERT 
BERT is a language representation model, which stands for Bidirec

tional Encoder Representations from Transformers [24]. Unlike other 
language representation models, BERT is based on the concept of bidi
rectional training of the transformer attention model to language 
modelling. The key building block which makes the transformer model 
particularly effective is the so called encoder/decoder architecture [7, 
24]. Such architecture contains different steps: tokenization which 
consists into splitting each word chunk into pieces; numericalization, 
which maps each token into a number in the corpus vocabulary; then, a 
multidimensional embedding is computed for each token; such elements 
are the ones learned during the training phase. Next, such multidi
mensional representation is enriched with positional information, in 
order to modify the representation of a specific word depending on its 
position in the sentence, in order to capture local context. This sub 
building block of the Encoder model is called Multi Head (Self) Attention 
mechanism, which allows to look at other positions in the input 
sequence (i.e., the context) for indications that can lead to a better 
encoding for this word. To generate the final output of the transformer 
based architecture, multiple encoder blocks are chained together in 
order to capture more abstract and complex representations of the input. 
Another difference between BERT and its predecessors is the usage of 
Bidirectional Training: in place of reading the input sequence in one 
direction, BERT encodes the entire input sequence at once. Furthermore, 
BERT is trained on two tasks simultaneously: Masked Language Model 
and Next Sentence Prediction. In the former the model aim to predict a 
masked word from the input the sequence, in the latter the model is 
given two input sequences, and it is trained to predict if the second 
sentence follows the first in a corpus or not. 

We considered the BERT-base-uncased2 which is trained on lower- 
cased English text, BERT-base-cased3 which is pretrained on the cased 
version of the same corpus. We also considered other improvements and 
specialisations of BERT trained on different corpora. BioClinicalBERT4 is 
a modification of the BERT model, where the model is initialised with 
the weights from BioBert, a pre-trained model for biomedical text 
mining [17], trained on a large-scale biomedical corpora, and trained on 
all MIMIC notes from the clinical domain [1]. 

BioBertPubmed5 is a modification of the BioBert model trained on 
Pubmed records. Givent the large amount of time and resources needed 
to train BERT models, researchers proposed a method to pre-train a 
smaller general purpose language representation model, which can be 
then fine tuned with good performances on a wide range of tasks like its 

larger counterparts [21]. This is the case of DistilBERT.6 While most of 
the BERT based pre-trained models support more domain specific ap
plications than BERT adding specializations, distilBERT aims at inves
tigating the use of distillation for building task-specific models. With the 
leverage knowledge distillation during the pre-training phase they have 
shown that it is possible to reduce the size of a BERT model by 40%, 
while retaining 97% of its language understanding capabilities and 
being 60% faster. 

All Transformers based models detailed above share a design limi
tation: the maximum length for textual inputs within such models is set 
to 512 tokens (i.e., word pieces). To check weather such limitation can 
arise in our setting, we computed the number of tokens for our dataset 
considering the BERT-base pre-trained tokenizer (results with other 
tokenizers are almost identical). We found that considering each 
instance, the average number of tokens is 40, with a maximum of 275, 
and a standard deviation of 22. 

3.3.2. RoBERTa 
RoBERTa,7 which stand for Robustly optimized BERT approach, 

propose modifications to the BERT pretraining procedure that improve 
end-task performance [18]. Specifically, RoBERTa is trained with dy
namic masking, full sentences, large mini-batches, and a larger 
byte-level of BERT [8]. RoBERTa have shown that BERT performances 
can be substantially improved by training the model longer, with bigger 
batches and using more data, removing the next sentence prediction 
objective, training on longer sequences, and dynamically changing the 
masking pattern applied to the training data. RoBERTa achieved 
state-of-the-art results on the GLUE, RACE and SQuAD datasets. 

3.3.3. XLM 
XLM8 is trained on the same data than the pretrained BERT Ten

sorFlow model [16]. XLM approach show the effectiveness of generative 
pre-training on cross-lingual pre-training. XLM obtained state-of-the-art 
results on cross-lingual classification, unsupervised and supervised 
machine translation tasks. Moreover, XLM improved the previous 
state-of-the-art for German-English and Romanian-English translations 
tasks. XLM-R (a variation of XLM), trained on one hundred languages 
using more than two terabytes of filtered CommonCrawl data, out
performed multilingual BERT (mBERT) on a variety of cross-lingual 
benchmarks [5]. 

3.3.4. XLNet 
XLNet9 is an unsupervised language representation learning method 

based on a novel generalized permutation language modelling objective. 
Additionally, XLNet employs Transformer-XL as the backbone model, 
exhibiting excellent performance for language tasks involving long 
context. Overall, XLNet achieves substantial improvement over previous 
pre-training objectives on various tasks as: question answering, natural 
language inference, sentiment analysis, and document ranking [29]. 

The code used to train the algorithms can be found at https://github. 
com/MITEL-UNIUD/UCODeep. 

Table 2 
Example encoding for the death certificates as tabular data.  

c1 p1 par1.1 par1.2 par1.3 c2 p2 par2.1 par2.2 par2.3 c3 … par 15.3 sex age UCOD 

C509 10 II C00–C97 C00–C75 C80 11 II C00–C97 C76–C80 … 0 39 C509 
M726 10 XIII M60-M79 M70-M79 A419 20 I A30-A49 A41 … 0 40 M726 
C159 10 II C00–C97 C00–C75 F179 60 V F10–F19  … 0 37 C159  

Table 3 
Example encoding for the death certificates as sentence.  

Every record of the death certificate as a single sentence UCOD 

Male, 39y old: (Malignant neoplasm of breast, unspecified or Malignant 
neoplasm, without specification of site) 

C509 

Male, 40y old: (Sepsis, unspecified) due to (Necrotizing fasciitis) M726 
Male, 37y old: (Malignant neoplasm of oesophagus, unspecified) in the 

context of (Mental and behavioural disorders … unspecified) 
C159  

2 https://huggingface.co/bert-base-uncased.  
3 https://huggingface.co/bert-base-cased.  
4 https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT.  
5 https://huggingface.co/monologg/biobert_v1.0_pubmed_pmc. 

6 https://huggingface.co/transformers/model_doc/distilbert.html.  
7 https://github.com/pytorch/fairseq/tree/master/examples/roberta.  
8 https://huggingface.co/transformers/model_doc/xlm.html.  
9 https://huggingface.co/transformers/model_doc/xlnet.html. 
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4. Results 

4.1. Preliminary analysis 

On the preliminary exploratory analysis multiple algorithms were 
selected to be used for a comparison on a smaller version of the dataset; 
we considered both various NLP algorithms and a FNN. We conducted 
this preliminary analysis because the main experiment has been proven 
to be very demanding in terms of resources, as detailed in the respective 
section. For this analysis we considered a training dataset composed by 
400,000 death certificates and a test dataset composed by 100,000 death 
certificates. We used a set of 800,000 certificates to fine tune the hyper- 
parameters of the FNN. The NLP algorithms have been fine tuned per
forming 4 epochs of training using the whole training set. 

Table 4 shows the effectiveness scores of the algorithms considered 
as well as the 95% Confidence Interval (CI) for the Accuracy@1 score 
alone. We computed the CI using the StatsModel library10. We consider 
Accuracy as effectiveness metric, defined as: 

Accuracy=
TP + TN

TP + TN + FP + FN
,

where: TP represents the true positives (i.e., instances labelled as posi
tive and classified by the algorithm as positive), TN represents the true 
negatives (i.e., instances labelled as negative and classified by the al
gorithm as negative), FP represents the false positives (i.e., instances 
labelled as negative and classified by the algorithm as positive), FN 
represents the false negatives (i.e., instances labelled as positive and 
classified by the algorithm as negative). As done in previous work [6,11] 
we determine the most effective approach according to the accuracy@1 
score (i.e., using only the most probable class returned by the algo
rithm); we report for completeness and future reproducibility also the 
Accuracy@3 scores (i.e., the accuracy scores computed by considering 
the top-3 most probable class as returned by the algorithm). 

As we can see from Table 4, the FNN is always outperformed by the 
NLP based models. However, it outperforms the accuracy obtained on 
the same dataset in our previous work [6], which was 0.936. Concerning 
the NLP models, although the accuracy scores are very similar, there are 
some differences. All the BERT based models achieve accuracy@1 scores 
of around 0.97, with the exception of distilBERT (0.9696) that shown a 
slightly lower effectiveness score. Overall, we found that the most 
effective algorithms are: xlnet (accuracy@1= 0.9746) and xlm (Accu
racy@3= 0.9919). Overall, we see that the NLP-based models obtain 
very high accuracy scores, at all cut-offs; on the contrary, the FNN ar
chitecture lead to obtain significantly lower accuracy. Thus, from the 
results of this preliminary experiment we can conclude that it appears 

that the NLP-based representation of death certificates boosts the ac
curacy levels obtained from leveraging the code-based representation. 
This effect might be due to the fact that the NLP is able to capture se
mantic similarities derived from word and sentences gathered from the 
coding process. 

Given the results from the preliminary analysis, to seek confirmation 
for our findings, we selected a subset of algorithms from Table 4 and we 
performed the main experiment, detailed in the next section. We remark 
that this choice, as well as the choice of not using a k-fold validation 
process, is mainly dictated from the efficiency of the algorithms, and 
from the training time. To give some statistics, the base BERT models 
takes around 7 days to train and 2 days to test on a machine with a 
nVidia Titan XP GPU and 80 GB of RAM memory. 

4.2. Main analysis 

Table 5 shows the effectiveness scores computed when considering 
the main analysis, that is considering 10 M instances in training and 400 
K in test for a subset of algorithms from Table 4. In more detail, we 
considered FNN for maintaining the hierarchical based coding in the 
main experiment even if less promising, BERT base uncased and its cased 
counterpart because they have shown to increase effectiveness scores 
with the growth of the training data, BIO_clinicalBERT because it has 
been the most effective BERT variant pre-trained on the medical domain 
(see Table 4), and xlnet because was the most effective algorithm in the 
preliminary experiment. 

As we can see from Table 5, it is again the case that all the accuracy 
scores are very similar. As in the previous experiment, all the NLP based 
models achieve similar scores with accuracy@1 scores of around 0.99; 
on the contrary, the FNN model shows lower effectiveness scores (i.e., 
accuracy@1 of 0.9842), this time with no measurable enhancement 
against the accuracy found in Ref. [6]. Overall, and contrary to what was 
found in the preliminary analysis, the most effective algorithm in the 
main experiment is BIO_clinicalBERT, which shows an accuracy@1 
score of 0.9903, followed by BERT base uncased and its cased coun
terpart. The xlnet algorithm which was the most effect on the pre
liminary experiment appears to be less effective than the BERT based 
models. 

4.3. Accuracy at the chapter level 

In this section we break down the performances of the most effective 
algorithm (i.e., BIO_clinicalBERT) by investigating the classified in
stances at the ICD chapter level. 

Fig. 2 shows on the x-axis the predicted class, on the y-axis the true 
class for every instance in the dataset from Section 4.2. The values in 
each cell of the bottom plot represent the relative frequencies normal
ised such that each row sums up to 1 to show the classification outcome 
with a focus on each of the ICD chapters (see Fig. 3). 

As we can see from Fig. 2 (and as expected from the results of 
Table 5), almost every ICD chapter is correctly classified in the vast 
majority of the cases (i.e., more 90% of the times). We also calculated 
the F1 score per chapter, as detailed in Table 6. Nevertheless, there are 
some exceptions (Chapters 7, 18, 22), due to the very low number of 

Table 4 
Effectiveness scores for the preliminary analysis. We considered 400 k instances 
in training and 100 k in test.  

Method Accuracy@1 95% CI Accuracy@3 

FNN fastai .9480 [.947, .949] .9816 
BERT base uncased .9705 [.969, .972] .9842 
BERT base cased .9705 [.969, .972] .9840 
Bio_ClinicalBERT .9714 [.970, .972] .9845 
BioBert_Pubmed .9710 [.970, .972] .9846 
distilBERT .9696 [.969, .971] .9841 
Roberta .9710 [.970, .972] .9858 
xlm .9732 [.972, .974] .9919 
xlnet .9746 [.974, .976] .9875  

Table 5 
Effectiveness scores for the main analysis. We considered 10 M instances in 
training and 400 K in test.  

Method Accuracy@1 95% CI Accuracy@3 

FNN fastai .9842 [.984, .985] .9958 
BERT base uncased .9901 [.990, .990] .9959 
BERT base cased .9900 [.990, .990] .9959 
Bio_ClinicalBERT .9903 [.990, .991] .9961 
xlnet .9898 [.989, .990] .9960  

10 see https://www.statsmodels.org/dev/generated/statsmodels.stats.propo 
rtion.proportion_confint.html. 
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UCODs belonging to them (see top plot), which make training 
inadequate. 

As additional overall performance measures independent from 
prevalence, we also calculated the macro-averaged accuracy and F1 
scores, as average of equally weighted accuracy and F1 scores per 
chapter, obtaining respectively 0.974 and 0.968. 

4.4. Model confidence 

To further break down the BIO_clinicalBERT model performances, as 
done by Ref. [11], we investigated the model confidence. To do so, we 
considered the probabilities returned by the model for each instance and 
the corresponding predicted class. 

Fig. 1 shows the probability distributions for the probabilities as 
returned by the model for the correctly (blue) and incorrectly (orange) 
classified instances. The plot on the left shows all the y-axis, while the 
plot on the right shows a potion of x-axis in order to enhance the fre
quencies for the incorrectly classified instances. As we can see from 
Fig. 1, the model shows high confidence (i.e., high probabilities) for the 
correctly classified instances; this is clear by looking at the blue peak in 
the right part of the left plot. Concerning incorrectly classified instances, 
from the plot on the right we see that, despite the orange peak around 
probabilities close to 1, overall the model shows lower confidence (i.e., 
probabilities lower than 0.2) for the incorrectly classified instances. If 
we remove from the dataset the instances for which the model is not 
confident (i.e., the ones with probabilities lower than 0.2) we would 
maintain the accuracy@1 measure at the 0.9903 score: we move from 
396,120 instances correctly classified out of 400,000 to 395,807 in
stances correctly classified out of 398,655. 

Summarising, this analysis has shown that the model is overall less 
confident on instances that are incorrectly classified; on the contrary, 
when model is confident on the classification of an instance, in the vast 
majority of the cases the instance is then correctly classified. This is an 
important result: in fact we could supply the human annotators with the 
classification probability of every instance, and they can focus only on 
instances for which the model is not confident. 

4.5. Reusing the model on a new year 

A practical useful case is to reuse a model which is previously trained 
on a set of past instances to classify a set of death certificates for a novel 
and not previously seen year. In fact, apart from the very rare change of 
Revision number (ICD-10 was approved in 1990 for adoption in 1994, 
ICD-11 in 2019 for adoption in 2022), every year a minor update is 

released, with few changes in codes, and every year also updates to 
decision tables are released, to keep the pace with ICD-10 but also to 
correct mistakes in the rules. In our case, we found 210 codes from 2018 
that where not present in our training set. 

To this aim, we performed the following experiment: we tested the 
BIO_clinicalBERT model with about 2.85 million death certificates from 
the year 2018. Table 7 shows the effectiveness scores. As we can see 
from the table, it is again the case that the FNN model is outperformed 
by the BIO_clinicalBERT model. Concerning the BIO_clinicalBERT 
model, we see that it reaches an accuracy score of 0.9875, which is very 
high considering the fact that there was no instance from the year 2018 
in the training set. This is again an important result: we show that a NLP 
based model can be effectively reused in the setting of a novel year. We 
want to remark that this is a sort of lower bound for the effectiveness 
scores of the algorithm on the new year; the performances of the algo
rithm can be easily boosted by supplying the novel introduced codes in 
the training/fine tuning phase. 

5. Discussion 

From the results detailed in Section 4 we can draw many conclusions: 
again, our analysis show that the NLP-based representation of death 
certificates lead to obtain higher accuracy levels than the ones obtained 
from leveraging the code-based representation, even considering that it 
has been enriched with the hierarchical structure of ICD with respect to 
the base version used by Della Mea et al. [6]. These results suggest that it 
might be the case that the NLP based representation of codes is able to 
capture semantic similarities derived from word and sentences gathered 
from the coding process, and that such similarities can not be exploited 
in the case of a code-based representation. 

One limitation of our NLP-based approach is that current models 
impose limits in the length of text sequences, which in the case of BERT 
is 512 tokens. However, the realworld death certificates used in our 
experiments never reached such number, thus this constraint, in our 
data set, is not influencing results. Larger models have lesser constraints 
and could be adopted in case of need, although with higher costs in 
terms of training. 

BIO_clinicalBERT is the most effective algorithm on the main 
experiment (see Section 4.2). This shows that, in the case of UCOD 
prediction, pre-training the NLP algorithms on a task which is close to 
the one performed in the fine tuning and test phase lead to obtain 
slightly higher effectiveness scores. However, the increase from 
BERT_base is minimal. This can be in part due to the very large training 
set used in our experiment, which is comparable if not larger than the 
document set used to fine tune BIO_clinicalBERT. The latter observation 
seems partly supported by the fact that in the preliminary experiment, 
with a significantly smaller training set, the difference between the two 
models is larger. 

Table 6 
Error Rate, Prevalence, and F1 Scores for each Chapter.  

Ch. Prevalence Error Rate Error Rate [6] F1 

1 .025 .013 .038 .978 
2 .226 .002 .006 .997 
3 .003 .061 .109 .933 
4 .044 .009 .029 .981 
5 .052 .004 .012 .993 
6 .071 .006 .011 .994 
7 .000 1 .680 – 
8 .000 .000 .354 – 
9 .307 .004 .012 .993 
10 .098 .006 .017 .989 
11 .038 .011 .039 .980 
12 .002 .035 .066 .965 
13 .005 .046 .096 .948 
14 .025 .016 .036 .976 
15 .000 .114 .110 .854 
16 .004 .021 .043 .962 
17 .003 .074 .087 .930 
18 .012 .004 .006 .997 
20 .082 .009 .014 .986 
22 .000 1 .000 –  

Fig. 1. Probability distributions for correctly (blue) and incorrectly (orange) 
classified instances. Most effective classifier of Table 5. Full plot on the left, 
limited y-axis on the right. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.) 
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Fig. 2. Accuracy matrix for BIO_clinicalBERT, absolute values (top), and percentages (bottom).  
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Our most performing algorithm shows an accuracy@1 score of 
0.9903 (95% ​ CI ​ [0.990, 0.991]). This result outperforms our previous 
result of 0.9844 (95% CI [0.984, 0.985]), obtained on the same 
training and test sets [6]. The very first work applying deep learning to 
UCOD identification, by Falissard et al. [11], reports an effectiveness 
score of 0.978 (95% CI [0.977, 0.979]) on 8.5 millions French death 
certificates from 2000 to 2015. However, due to the different data set, 
not too far in size but created in a different context, with possibly 
different coding habits, it is impossible to properly compare the 
effectiveness. What can be told, considering both results, is that deep 
learning in its various incarnations might provide an effective way for 
UCOD identification, with the limitation that new codes and rules may 
need some temporary usage of a rule-based system. Since their work 
outperforms the state-of the-art software Iris, the same can be said for 
our model. 

Concerning the accuracy at the chapter level (see Section 4.3), we 
can compare only with our previous results [6], because in Ref. [11] 
results are presented only visually. Furthermore, chapters 7, 8, 19, 21 
and 22, which overall had less than 10 UCOD cases, can be ignored. A 
chapter-wise comparison with our previous work is shown in Table 6, 
where error rates are shown side by side together with Prevalence and 
the F1 scores. Error rate is computed as 1− the Accuracy score, Preva
lence details how often each chapter occurs in the dataset, and F1 score 
is computed as the harmonic mean of Precision and Recall. As we can see 
by comparing the error rate from our previous work with the from the 
current work and, excluding very low prevalence chapters, the model 
presented here always outperforms the previous one. In particular, the 
error rate in the two most prevalent chapters (2 and 9) is reduced to one 
third of the previous values. With respect to reusing the model on data 
from a new year (see Section 4.5), to the best of our knowledge this is the 
first paper detailing this kind of experiment. However, we concur with 
Falissard et al. [11] that a rule-based system can be still needed for those 
chapters scarcely represented in the training set due to their rarity as 
causes of death. 

6. Conclusion 

In this work we proposed an effective NLP based model to the aim of 
identify and correctly classify the underlying cause of death from death 
certificates, which is applied to disease codes translated back to the text 
they represent. This result is possibly due to the fact that text re- 
establishes similarity among conditions, that gets lost with codes used 
as categories. We have shown that our NLP based approach outperforms 
both the state-of-the-art and the hierarchically enriched code based 
representation model. Our results show that our approach reaches an 
accuracy score of 0.9903 on a test set of 400,000 certificates and an 
effectiveness score of 0.9875 on a set of previously unseen 2.5 million 
certificates of a novel year. We show that our approach is robust across 
the ICD chapters and we found that the model confidence can be 
leveraged to increase the overall model effectiveness. 

A likely, but yet unproven, advantage of the proposed method is the 
possibility of directly code certificates in their textual form before ICD- 
10 coding. Among the future works, we want to test this possibility, 
initially in English to directly exploit our current model, and then with 
datasets in other languages, which means also a new training after 
translation of codes to a different language among those in which ICD-10 
has been translated. 

Another future work is to consider further encodings such as the 
belonging of a condition to a set of classes used in the rules proposed by 
WHO and to experiment with a mixture of NLP based and code based 
representations in order to increase the model performance. We also 
plan to leverage the model probabilities and to add humans in a human- 
in-the-loop model in order to mark a step towards an effective model 
which can be used in practice to support the healthcare decision making 
and the semi-automatic encoding of death certificates. 
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