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Abstract. The use of hybrid surfaces, alternating hydrophobic and hydrophilic (or less-hydrophobic)
areas, has been recently proposed as a valuable tool for dropwise condensation performances enhancement.
The hydrophilic region, in particular, is designed in order to promote the removal of the droplet from the
hydrophobic region, reducing their average size and thus increasing the heat transfer performance. Here,
dropwise condensation on heterogeneous surfaces composed by a texture of alternating hydrophobic and
hydrophilic (or less-hydrophobic) vertical strips is numerically investigated through a Lagrangian-based
phenomenological model, originally developed to study droplet evolution in the framework of in-flight
icing phenomenon. The effects of droplet nucleation, growth, coalescence and motion are implemented.
The model is extended to the case of curved surface. In order to properly assess the hybrid surface,
however, a better knowledge of the interaction between the droplet and the film is required. Thus, additional
numerical simulations are carried out using an in-house Eulerian full solver of the liquid film layer, in order
to understand the migration mechanism of a drop between two different wettability regions. This will give
useful information for a proper implementation of the effect of hydrophilic strips in the phenomenological
Lagrangian model. A parametric analysis allows to find the optimal geometric configuration of the hybrid
pattern, leading to maximum heat transfer performance, for a given set of wettability properties, nucleation
density and condensation rate per unit area. Comparison with experimental data from the available literature
ensures the capability of the current Lagrangian model to properly catch the physics behind dropwise
condensation process on both planar and curved hybrid surfaces. The uncertainty of the estimate of some
model input parameter and their influence on the computed solution are be also discussed.

1. Introduction

The evolution of a droplet pattern over a solid substrate is involved in a number of engineering
applications. In particular, the droplet size and distribution have a great impact on: heat transfer
performances of HVAC finned dehumidification devices [1]; safety issues related to both the airplane
inflight icing [2] and the visibility through fogged automotive windshield [3-5]; defogging process
of refrigerated cabinets door [6]. When condensation is involved, as it happens in most of HVAC
applications, dropwise mode is much more efficient than filmwise one, allowing for heat transfer
enhancement. Thus, various methods have been implemented in order to promote dropwise condensation
(DWC). In fact, effective DWC can be achieved through micro and nano-structured hydrophobic and
superhydrophobic surfaces [7]. The heat transfer surface may be entirely nonwettable or an hybrid one,
characterized by a pattern of hydrophobic and hydrophilic (or less hydrophobic) regions. The hybrid
surfaces design has been introduced in order to ensure higher replenishment frequency at smaller drop
diameter. The existence of optimal geometrical configurations is demonstrated by literature experimental
results [8,9]. Most of the above mentioned applications are inherently multiscale problems: the smaller
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scales range from the mesoscale related to the droplet size down to the molecular scale characterizing
the interaction between liquid and solid substrate; on the other side, the larger macroscales include
the fully 3D thermofluidodynamic problem, driving the shear stress over the airplane wings in case
of inflight-icing phenomena or the condensation heat transfer rate over the whole surface of a finned
dehumidifier. Thus, decoupling droplet dynamics from the fully 3D problem is required in order to
reduce computational cost when the numerical approach is adopted.

The droplet pattern evolution is here predicted via an efficient phenomenological model, based on
a simplified modeling of the smaller scale (via imposition of contact angle and nucleation density);
adopting a Lagrangian approach, the history of each droplet is followed in order to provide, via
postprocessing of the droplets population, statistically relevant information to the macroscale problem.
The mathematical procedure, developed and validated for the prediction of droplet pattern in inflight-
icing problems [2] and moisture condensation in finned dehumidifier [1], was extended to pure steam
condensation over plane or cylindrical surfaces by the authors in [10]. However, it was not possible
to replicate the details of the interaction between the discrete droplets and the hydrophilic strip,
experimentally proved in [8,9]. To do so, a numerical investigation is conducted using a fully Eulerian
solver of the governing lubrication equation, looking for the hydrodynamics driving the drop absorption
process. The effect of hydrophilic strip is implemented in the phenomenological model, using the
information provided by the fluid dynamics simulations. Also, new mechanisms, such as the dependence
of the contact angle hysteresis on the external forces, are added. Test cases experimentally investigated in
the available literature are replicated, in order to assess the accuracy and the uncertainty of the proposed
model. The effect of the geometrical configuration of the hybrid surface is investigated.

2. Mathematical model

The prediction of the thermal performances of hybrid surfaces requires a simulation of the evolution
of the droplet population, taking into account the wetting properties of the surface. Since a multiphase
numerical computation quickly becomes unpractical due to the required mesh refinement, a possible
choice is to follow each individual droplet evolution from nucleation to shedding adopting a Lagrangian
approach. The process is simplified with a phenomenological model that describes the main steps of
the evolution, namely nucleation, growth, coalescence and shedding. The droplet shape is approximated
with a spherical cap, defined by a constant contact angle along its contour.

The modeling process, implemented in a in-house FORTRAN code, can be summarized in the following
steps: generation of nuclei at random locations (only dry spots are active); growth of the whole droplets
population due to condensation; coalescence check and hydrophilic strip absorption; droplet movement
check, including coalescence along moving path; next time step.

Nucleation step requires the knowledge of the actual number of nucleation sites, which is not easy to
determine in most of the practical applications. Rose correlation [11],

N =0.037r,> (D

estimates the nucleation density N (m~2) as a function of the nucleation radius r,. However, Eq. (1) is
known to overestimate the real value of N, which ranges between 10° to 10'! in practical applications
[12]. Since coalescence is significant when droplet radius approaches a critical value [11],

Fer ~ (4N)7'/2 )

it can be assumed that newly nucleated drops grow independently one from each other until r = r,.
Thus, the very first stage of droplet growth is neglected and the initial radius of the new drops is set in all
the computations to a safe value of ry = r.,/4 without losing accuracy. To ensure consistency with the
physical process, the integration time step corresponds to the time required by the newly nucleated drop
to grow from the nucleating radius to the imposed initial radius [10],

At:ro_r" _dr g 3
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g/ being the condensation heat flux per unit area, A the condensation latent heat, p the liquid density
and 0 the averaged contact angle along drop perimeter. The drop growth velocity due to condensation
u, depends on the imposed ¢/, which in turns is evaluated as a function of the substrate subcooling AT..
Droplets also grow because of coalescence. Coalescence occurs when overlapping between adjacent
droplets is detected. The volume of the resulting drop will be the sum of the volumes of the pre-merged
drops and will be located at the center of mass of the two pre-merged drops.

Drops are subjected to external forces, given by gravity and aerodynamic drag, the last contribution
arising when the wetting surface is exposed to a gas flow. Thus, the drop becomes non-spherical and
is characterized by an hysteresis. The actual contact angle, which ranges between 0, and 0.y, is a
function of the azimuthal angle y, according to [13, 14]. Since the condensing droplet is growing, it
is reasonable to assume that the maximum value of the contact angle is equal to the advancing contact
angle, 6,,,, = 6,, while the actual value of 6,,;,, depends on the drop deformation, i.e. on the magnitude
of the external forces. The balance between drag, gravitational force (projected along solid surface) and
rigidity force (i.e. the surface tension force acting along moving axis due to contact angle hysteresis)
allows to determine the actual 6,,;,. Since the drag force is not considered in the current study, the
following expression, taking into account of gravity and surface tension, is implemented,

Fy
oS O,in = cos 0, + == 4
Fs
24 .
F(;:;Gdb;Fg:ngdrp sin o 5

« being the angle between the substrate outward normal and the gravity vector. The fully derivation of
both the gravitational force F, and the surface tension force Fi; used in Eq. (4) can be found in [15, 16].
The averaged drop contact angle,

A 1 T 9a+9min
0=— Ody ~ ——— 6
LR (©)

is updated at each time step for each drop and used to evaluate coalescence condition, drop radius, drop
free surface and rigidity force. The motion of the drop is triggered when the computed 6,;, is lower than
the receding contact angle 6,. In such a case, 6, is chosen as the minimum contact angle and a power
balance between gravity force work ®,, surface tension work ®4 and viscous dissipation ®,, given by
the sum of laminar viscous dissipation at the core flow and wedge dissipation, is imposed in order to
compute drop velocity, as explained in [1, 17].

The implemented procedure is suitable for both plane and tube surfaces. In the latter case, o depends on
the position along the tube circumferential coordinate. The computational domain, which is periodic, is
given by the unwrapped surface of a tube hydrophobic strip. Sections x = 0 and x = 2 & R both correspond
to the topmost point of the tube, while x = R is the bottom point, R being the tube radius. Moreover,
the additional falling condition and splitting condition are implemented. According to [10], the force
balance between drop weight and surface tension is written along the surface normal outward direction
for the drops located near the bottom of the tube:

ngdrpcosoc+27rGrsin2é:0 @)

Bigger drops standing at the top of the tube are cut through x = 0 and splitted into two smaller drops if
one or both of those splitted drops falls into the moving condition.

3. Hybrid surface characterization

3.1. Numerical solution of lubrication equation

The understanding of the interaction between a drop in touch with a narrow rivulet is crucial in order
to access the hybrid surface behavior and ensure accurate results. In fact, larger droplets may not be
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instantly absorbed by hydrophilic strips, as assumed in [10]. Thus, several simulations are run, using an
Eulerian in-house solver of the well known lubrication equation. Assuming a thin liquid flowing down
an inclined plate, lubrication theory gives,

dh Vp 3\
at+V-<3“h>_O (8)
p=pg(hcosa—xsina)—II—oK 9)

where x is the plate downhill direction, ¢ is the plate inclination and 4 is the liquid film thickness.
Disjoining pressure I'l, which definition can be found in [18], is related to intermolecular forces occurring
at the solid-liquid interface and requires the additional assumption of a thin precursor film. The substrate
wettability (i.e. the static contact angle) can be imposed following [18, 19] and the contact angle
hysteresis modeled. Capillary pressure o k is related to the surface tension forces acting at the liquid-
gas interface. The usual assumption of small slope approximation, k¥ = V?A, is abandoned and the full
expression of the free surface curvature, given in [20], is implemented,

2 2
9%h oh 9%h oh oh dh 9*h
e |:1+<8y) :|+9y2 |:1+(3x) ]— 3% 9y axdy
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allowing to investigate static contact angles close to the mathematical limit 6; < 90° of lubrication theory.
Details about space discretization can be found in [21]. An implicit 8 —weighted scheme is implemented
for time integration due to the restrictive stability constraint, as done in [22] under the assumption of
small slope approximation. The resulting sparse system is iteratively solved, at each time step. The
in-house code here used was validated in [21, 23, 24] for applications involving thin liquid films flowing
on flat, solid substrate.

In order to investigate the experimental test case of [9], a spherical drop standing on a vertical plate
(i.e. o =90°) is put in contact with a narrow, hydrodynamically developed rivulet. According to [9],
the L, x L, computational domain is characterized by a given static contact angle, except for a wettable
strip of width Lgy, where the narrow rivulet flows. The rivulet inlet section is set to x = 0, while fully
developed condition is imposed through x = L,; symmetry condition is applied through y =0 and y = L,.

(10)

plkgm™) p(kgm s ) o(Nm") A(kkg "
958.0 2819x10°% 5.892x 102 2256.0

Table 1. Properties of saturated liquid water at 100° C.

Liquid properties, listed in table 1, are chosen according to [9]. The initial drop base diameter is equal
to dp o = 1 mm, which is of the same order of magnitude of the hydrophobic strip width in [9]. Since
dp is less than the capillary length, l.,, = \/0/(p g), it was reasonable to assume an initial spherical
shape for the drop. Both the contact angle and the strip width are varied, in order to gain information
about the influence of hybrid surface characteristics: 6, ranges between 30° and 60°; Lgw up to dp is
investigated. Note that the contact angle is lower than the one experimentally investigated in [9] due
to lubrication limit. However, values up to 60° can be simulated thanks to the fully implementation of
capillary pressure, Eq. (10). The imposed initial distance between drop center and rivulet center line is
equal to Ag =dp0/2+ Lrw /4.

As clearly demonstrated by figure 1, where snapshots of the absorbed drop at successive instants are
shown, it was observed that the drop is always captured by the rivulet standing on the wettable strip,
independently on both the contact angle and the wettable width Lgw. Even if the drop gets deformed
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Figure 1. Absorbed drop at r+ = 3.71 x 1079s (a), t = 1.04 x 10~*s (b), r = 2.13 x 10~ *s (c),

1 =427 x10"*s (d). Lrw = 0.2mm, djo = 1mm, 6, = 60°, ho = dp 0 ‘7o

while being absorbed, its shape keeps almost spherical when the wettable strip is thin enough. After
the drop is captured, it flows along the vertical plate with a given speed, which depends on the wettable
width. Thus, the whole process can be modeled as: 1) the drop is instantly captured by the rivulet flowing
over the wettable strip; 2) the absorbed drop, well approximated by a spherical cap if dj, o > Lrw, moves
due to gravity. Assuming such a behavior, the droplet position X4,, can be traced through the definition
of center of gravity:

Xdrp Vdrp + Xpiv Viiv = thXdy (1 1)

LiL,

The center-rivulet position X,;, corresponds to the known center of the wettable strip; V., is equal to
the initial drop volume (spherical cap with base diameter dj, o and contact angle 6;); V,;, is the initial
volume of the fully developed rivulet; the integral term at the RHS is computed from the numerical
liquid distribution. Thus, the drop advection velocity ug,, = dfji’” can be easily estimated as well as the
absorption time, defined as 7, : { Vdrp — yriv‘ < 0.01A.
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Figure 2. Computed drop absorption time (a) and absorbed drop velocity (b) as a function of wettable
width Lrw and static contact angle. dj o = 1 mm.
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Figure 2(a) traces the absorption time required by the drop to be captured by the wettable strip. As
expected, a larger wettable width leads to a decrease in #,,,. It is also important to point out that the
absorption process is almost instantaneous for low substrate wettability: 7,5, < 5 X 103 s when 6, = 60°.
The absorbed drop advection velocity is plotted in figure 2(b). It can be stated that u,,, approaches the
filmwise velocity for increasing wettable width. Drops spreading on lower wettable substrate move faster
due to the higher volume (meaning an higher driving gravity force) of the initial drop.

Such information are used to parameterize the hydrodynamic behavior of hybrid substrate and add the
strip effect in the Lagrangian solver, as explained in the next section.

3.2. Modeling of hydrophilic strips

The Eulerian simulations of hybrid patterned surfaces suggest that the drop is always captured by the
hydrophilic strips: if Lrwc > dp, the drop is fully incorporated by the filmwise liquid pattern flowing
over the hydrophilic region; if Lrwc < dp, the drop hold an almost spherical shape. A continuous film
pattern is assumed over the whole hydrophilic region. It was also shown that the absorption process can
be considered (from a numerical point of view) an instantaneous event when the hydrophobic region is
characterized by an high value of the contact angle. The Lagrangian solver first looks for drops touching
the hydrophilic strips. Thus, two cases may occur:

a) if dp < Lpwc, the absorbed drop is simply deleted from the computational domain;

b) if d, > Lrwc, the solver retains the drop and its center of gravity is moved along the center-line of
the closer hydrophilic strip, located at y = —Lpwc/2 or y = Lpwe + Lrwc/2.

As previously pointed out, the external forces acting on a drop induce an hysteresis in the contact angle
along wetted perimeter and eventually lead to drop motion. However, when case b) occurs, a portion of
drop stands on an already wetted pattern and the calculation of rigidity force due to surface tension must
be modified. Assuming that the rigidity force Fi; only acts along the dry perimeter of the drop, it can be
rewritten as,
Lrwc

dp

¢ corresponding to the dry arc of drop perimeter and 6 (y) being modeled according to [13, 14].
Calculating the rigidity force through Eq. (12) and solving the power balance following [1, 17], it can be
verified that the resulting drop velocity u,,, increases with the Lry ¢ /dj ratio, according to the numerical
results of figure 2(b). Thus, both the drop moving condition and the drop advection velocity calculation
are modified according to Eq. (12) for all the absorbed drops having d, > Lgwc.

n—¢
Fs :d;,/ ocosOcosydy, sing = 12)
¢

4. Validation and results

The following results are focused on condensation heat transfer optimization around a condenser tube of
radius R, characterized by an hybrid surface, Lpwc and Lpwc denoting the hydrophobic width and the
hydrophilic width. The experimental setup of [9] is replicated. Thus, liquid properties listed in table 1
are considered and a tube of radius R = 3.175mm is simulated, the hydrophobic width ranging between
0.6mm to 1 mm. Advancing and receding contact angles are set to 8, = 135° and 6, = 56°.

Figure 3 shows the drop distribution over the unwrapped domain (including both the hydrophobic and
the hydrophilic regions) at 5 successive time steps. We can see a big droplet at the topmost point of the
tube splitted between x = 0 and x = 2 T R, according to the implemented periodic condition. Also, some
droplets touching the hydrophilic strips are absorbed; the bigger ones are moved along the hydrophilic
strip center-line. Such droplets will drain due to gravity force, drying part of the computational domain
and ensuring free nucleation spots. Since the whole hydrophobic strip can be simulated, a quantitative
validation with experimental results of [9] is tried. Thus, we simulate different configurations. The
hydrophobic width is fixed to Lpyc = 0.6 mm, while Lgyc is varied, looking for the best configuration
in terms of computed heat flux. Different substrate subcoolings are investigated, namely AT, = 5°C, 6°C
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Figure 3. Drop distribution over the hybrid surface at five successive time steps (0.91 seconds apart):
unwrapped surface, x = 0, 2R being the topmost point and x = R the bottom-most point (a); 3D view
(b). Lpwe = lmm, Lpyc = 0.8mm, 6, = 135°, 6, = 56°, AT;. = 10°C, N = 10°m 2.

and 9°C, corresponding to the imposed values of condensing mass flow rate per unit free-surface area,
]! = q/!/A. Final time is set to 7y = 30s, ensuring that a sufficient number of wetting-dewetting cycles
are simulated. Assuming that condensation drives heat transfer process, the heat flux is computed as,

/)

I rit, A l/tf Sdrp,i

=——|L + — = (¢t 13
T = Lewc+Lowe ( T Jo Zi“ZER (3)

Sarp,i being the free surface area of the i-th population drop. The nucleation density depends on both
the micro-structure of the solid surface and the imposed subcooling. Since Eq. (1) offers only an
upper limit for the actual nucleation density, N as a function of ATy, is determined in order to best
fit the experimental results: fixing the imposed ATy, parametric simulations are run varying N and
the heat flux is computed for different configurations (Lgwc = 0.2, 0.3, 0.4, 0.5, 0.6 mm) and compared
with the experimental values of [9]; the chosen nucleation density for a given subcooling corresponds
to the minimum sum of square of errors in the computed ¢” for the investigated configurations Lryc.
Figures 4(a) and 4(b), referred to ATy, = 5°C and 6°C, reveal a good agreement between experimental
and numerical results, while a bit more uncertainty is obtained for AT = 9°C, figure 4(c). However, the
correct optimum configuration at Lrwc = 0.3mm is always replicated, meaning that the mathematical
model is able to catch the main physics behind condensation on hybrid surfaces. Also, reasonable values
of the nucleation density were obtained. A 10% variation in N does not change the maximum position,
while producing a heat flux variation comparable to the experimental uncertainty of 9% declared in [9].

5. Conclusion
A Lagrangian model describing the evolution of droplets condensing on a hybrid (both plane or
cylindrical) surface was presented. Basic mechanisms such as nucleation, growth, coalescence, shedding,
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Figure 4. Computed vs experimental [9] heat flux as a function of hydrophilic width: AT, =5°C, N =
1.1 x 10°m™2 (a); AT =6°C, N = 1.0 x 10°m~2 (b); AT =9°C, N = 1.25 x 10°m™2. Lpyc = 0.6mm.

fall are implemented, allowing for a realistic description of the liquid pattern details. Running fully
Eulerian simulations, it was possible to understand the drop migration process and add the effect of
hydrophilic strips in the Lagrangian model. Averaged engineering relevant quantities, such as heat flux,
may, thus, be predicted. The model was validated simulating practical problems involving heat transfer
over hybrid surfaces, showing that the main physical features are correctly captured. In particular,
the existence of an optimal geometry configuration was observed and its location correctly predicted,
according to literature experimental data [8, 9], thanks to the model improvements. However, numerical
results are affected by some physical parameters given as input of the Lagrangian solver: nucleation
density, which was set in order to fit experimental data due to its difficult estimation, greatly influences
the liquid pattern evolution.
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