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Abstract: A prototype SIR model with vaccination at birth is analyzed in terms of the stability of
its endemic equilibrium. The information available on the disease influences the parents’ decision on
whether vaccinate or not. This information is modeled with a delay according to the Erlang distribution.
The latter includes the degenerate case of fading memory as well as the limiting case of concentrated
memory. The linear chain trick is the essential tool used to investigate the general case. Besides its
novel analysis and that of the concentrated case, it is showed that through the linear chain trick a
distributed delay approaches a discrete delay at a linear rate. A rigorous proof is given in terms of the
eigenvalues of the associated linearized problems and extension to general models is also provided.
The work is completed with several computations and relevant experimental results.
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1. Introduction

It is widely known that delay equations originate dynamical systems of infinite dimension [1].
Their treatment in view of stability and bifurcation analyses thus poses several challenges. Then it is
not a surprise that the issue still attracts the attention of many researchers after several decades of
efforts. A major direction to attack the problem is undoubtedly represented by the reduction to finite
dimension, either exactly or through approximation.

The recent work [2] represents an elegant and up-to-date reference for the first option, also useful
as a starting point for the relevant branch of literature. In particular, it shows up as a modern account
of the possibility of reducing a delay equation to an equivalent finite-dimensional system of Ordinary
Differential Equations (ODEs). This has been well known since long for the case of delays modeled
according to the Erlang distribution. In particular, the corresponding methodology originated from the
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pioneering work [3] in queueing theory and nowadays, in the context of delays, it undergoes the name
of linear chain trick. The term has been probably proposed by MacDonald [4, 5], even though the
technique dates back to the late sixties [6–8], at least as far as fields like epidemiology, population
dynamics and evolutionary systems in general are concerned.

When an exact reduction is not available, the study of relevant approximations through ODEs
becomes central. In this sense, Breda, et al. [9] proposes a general numerical approach to address a
broad class of functional problems. Nevertheless, in the early eighties the subject was already alive.
Busenberg and Travis [10] and Cooke and Grossman [11] represent important contributions from
those years, with particular reference to biological models, where indeed delays emerge naturally.
Therein, the linear chain trick is investigated in view of analyzing the stability of steady states (in the
first) or as a way to gain insight into the pros and cons of using discrete or distributed delays in
modeling (in the second).

Essentially, and on the one hand, the linear chain trick is a smart way to construct a system of
ODEs equivalent to a problem with a delay modeled according to the Erlang distribution∗. The
number of ODEs corresponds to the (integer) shape parameter of the latter. As this number grows, the
variance of the distribution decreases and the delay values tend to concentrate around their mean
value. If we let this number grow unbounded, in the limit we obtain the Dirac’s delta distribution,
corresponding to a problem with a single discrete delay. Thus, on the other hand, the linear chain trick
can be interpreted as a mean to approach a fixed delay through a sequence of distributed delays.
Under this point of view, it is natural to ask how the relevant stability properties behave, a question
already central in [10,11], but still contemporary, see, e.g., [12] or [13] concerning the computation of
the basic reproduction number.

Eventually, despite the evident interest that the literature devoted to the argument, there has been
no rigorous study on the rate at which the linear chain trick makes the sequence of distributed delays
converge to the limit of concentrated delay, together with the associated stability features. It is anyway
worth recalling from page 169 in [5] that a general degree should be kept in mind when one applies
the linear chain trick, this degree being indeed the number of ODEs used to “decompose” the delay.
Let us point out that some effort in this direction is reported in [14,15] on investigating experimentally
the effect of increasing the degree of approximation. As a general outcome, it is observed that on the
way towards a fixed delay the chances of instability grow, mainly due to sustained oscillations.

In the works just mentioned the delay represents the infectious period of childhood viral diseases.
The author addresses the study of more realistic distributions of the latter (viz. Erlang with larger
shape parameter) by using the linear chain trick, therein named method of stages after the original
work [3]. The biological field of infectious diseases and epidemics is a major area of investigation.
Recently it gained even more attention, also outside the scientific community, due to the impact of
vaccination strategies in modern societies as opposed to the emerging of often clamoring campaigns
of vaccine hesitancy. It is not surprising then that the discipline of behavioral epidemiology arose
lively, with the broad target of studying the effect of the “individual behavior as a key determinant of
infection trajectories” [16]. Besides the two cornerstones [17, 18] and many other contributions (see,
e.g., [19–26]), d’Onofrio, et al. [27] is a thorough representative of this new branch of mathematical
biology. In it, the authors study the effect of the so called rational exemption, the phenomenon by

∗Note that the linear chain trick works as the Erlang distribution is in fact a sum of independent exponential distributions.
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which parents relate the decision to whether vaccinate or not their children to the current as well as
past information available on the disease. They propose to model the information variable through the
Erlang distribution, even though in the end only the degenerate exponential case of fading memory is
elaborated. The main focus is on the stability of the endemic equilibrium and the appearance of stable
oscillations through Hopf bifurcations is demonstrated. We mention also [28], which is seemingly the
first work in the field about distributed delays, and [29] on Hopf bifurcations in structured
populations.

In view of the above and taking inspiration from [27], the current work chases two objectives.
On the one side, we aim at extending the analysis of stability of the endemic equilibrium of the

SIR model studied in [27], investigating both the general Erlang case with varying shape parameter,
as well as the limiting case of concentrated memory. The latter alone already represents a novel
contribution in that the relevant analysis makes use of modern numerical methods for the stability
analysis of delay systems, e.g., [30–32]. As such, it is our hope that this first attempt will open the
door to further extensions towards more realistic models including even different (type and number
of) delays.

On the other side, as the linear chain trick is used to deal with the general Erlang distribution, we
perform a rigorous study of how the latter approaches the concentrated case by increasing its shape
parameter. In particular, we analyze the behavior of the rightmost eigenvalues of the relevant
variational problems, eventually proving that those of the Erlang case converge to those of the
concentrated case at a linear rate in terms of the number of ODEs used to reduce the distributed delay.
To the best of our knowledge, this question has never been addressed in the literature.

In addition to the contributions described above, our results confirm that when the delay
distribution presents a lower variance, systems are more prone to instability. This instability shows up
as a series of stability switches through couples of destabilizing/stabilizing Hopf bifurcations. In
particular, as a clear outcome, we obtain that the number of these switches increases from a single one
in the case of exponential distribution to possibly infinitely-many in the case of concentrated memory.
We also give a rigorous argument justifying the latter result based on [33].

Finally, we show that the proof of linear convergence mentioned above can be extended to models
described by a general system of ODEs in which there is a dependence on an “information” variable
modeled through a distributed delay. Therefore, the applicability of the proposed analysis goes far
beyond the SIR model used here as a prototype.

In the sequel we present in section 2 the SIR model just mentioned, analyzing the case of fading
memory in section 2.1, the case of concentrated memory in section 2.2 and the general Erlang
distribution in section 2.3. In section 2.4 we collect the outcome of the experimental analysis in terms
of stability charts. The convergence of the linear chain trick in terms of eigenvalues is proved in
section 3 for the prototype SIR model, and then it is extended in section 4. Some concluding remarks
close the work in section 5.

2. Prototype model and kernels

Following [27], let us consider the SIR model for a non-fatal pediatric disease in a constant
homogeneously mixing population with vaccination at birth
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

S ′(t) = µ[1 − p(M(t))] − µS (t) − βS (t)I(t)

I′(t) = βS (t)I(t) − (µ + ν)I(t)

R′(t) = νI(t) − µR(t)

V ′(t) = µp(M(t)) − µV(t),

where µ represents both the constant fertility and mortality rates, β the constant contact rate, ν the
constant recovery rate and p : [0,+∞) → R the vaccination coverage function. The latter gives the
fraction of vaccinated newborns, which depends on the information about the disease available to their
parents. This information is described by the map M : [0,+∞)→ R given by

M(t) :=
∫ +∞

0
g(S (t − θ), I(t − θ))K(θ) dθ, (2.1)

which considers the past values of the disease prevalence g : [0,+∞) × [0,+∞) → R as weighted
through a memory kernel K : [0,+∞)→ R, non-negative and normalized as∫ +∞

0
K(θ)dθ = 1. (2.2)

The coverage function p is assumed to be piecewise smooth and non-decreasing in M, so that the
decision to vaccinate is directly correlated to the disease prevalence. The latter is a smooth function of
both susceptible and infected individuals, assumed to be increasing in the second. Moreover, g(S , 0) =

0 independently of the values of S : In absence of infection there is indeed no information. Note that
S , I, R and V represent fractions with respect to the total (constant) population.

The equations for R and V are linear inhomogeneous ODEs, so that their solution is straightforward
through the variation of constants formula once I and M are given. Therefore, in view of investigating
the relevant dynamics, it is enough to consider the reduced model

S ′(t) = µ[1 − p(M(t))] − µS (t) − βS (t)I(t)

I′(t) = βS (t)I(t) − (µ + ν)I(t)

M(t) =
∫ +∞

0
g(S (t − θ), I(t − θ))K(θ) dθ,

(2.3)

where we directly add (2.1) to the equations for S and I.
It is not difficult to see that system (2.3) presents a unique endemic equilibrium (S , I,M) with

S = (µ + ν)/β, I the solution of
µ[1 − p(g(S , I))] = (µ + βI)S (2.4)

and M = g(S , I). Note that I is unique since in Eq (2.4) the left-hand side is decreasing in I while
the right-hand side is increasing. Moreover, and more important, the equilibrium is independent of the
choice of the memory kernel K, at least as long as Eq (2.2) holds. The same cannot be said for its
local asymptotic stability and, indeed, the focus of this work is at investigating how the choice of the
memory kernel influences the latter.

To this aim, we first analyze two prototype choices, i.e., the case of fading memory

K(θ) = ae−aθ, (2.5)
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where a > 0 plays the role of decaying rate, and the case of concentrated memory

K(θ) = δ(θ − τ), (2.6)

where δ is the Dirac’s delta at τ > 0. We call delay the latter, observing that it represents a fixed time
instant in the past where all the information about the disease is assumed to be concentrated.

The two cases above can be seen as the extrema of a spectrum of choices, in which the information
is distributed on [0,+∞) around a mean value with a certain variance. In this rispect, we take into
consideration also the kernel

K(θ) = Erln,a(θ), (2.7)

where

Erln,a(θ) :=
anθn−1

(n − 1)!
e−aθ, (2.8)

is the Erlang distribution, i.e., a Gamma distribution with integer shape parameter n ∈ N \ {0} and rate
parameter a > 0. In particular, Erln,a has mean value n/a and variance n/a2, so that by fixing

a =
n
τ
, (2.9)

we end up with a mean value τ and variance τ2/n. As anticipated, by letting n = 1 we recover exactly
the case of fading memory Eq (2.5), while by letting n → ∞ we obtain the case of concentrated
memory Eq (2.6), see Figure 1.

Figure 1. Erlang distribution (2.8) according to Eq (2.9) for fixed τ and increasing n (in this
plot τ = 10 and n = 1, 2, 4, 6, . . . , 40).

As far as the coverage function is concerned, in the sequel we initially fix

p(M) := p0 + p1(M) (2.10)

with the specific choice
p1(M) = min{cM, 1 − p0}. (2.11)

In (2.10) the constant p0 ∈ (0, 1) represents the fixed fraction of population that vaccinate their children
independently of the available information M, while the function p1 : [0,+∞) → R portrays the
concept of rational exemption (vaccinate less/more with more/less immune individuals) page 304,
note 1 in [27]. With (2.11) p is piecewise smooth with slope c > 0 in the first part and it reaches the
saturation value 1 − p0 for larger values of M. Other choices are considered in section 2.4.
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Similarly, as for the disease prevalence, we perform most of the analysis by choosing

g(S , I) = kI (2.12)

for k some positive constant†.
In the following sections, keeping the choices above, we investigate the local asymptotic stability

of the endemic equilibrium (S , I,M) for varying τ (and possibly c) with either Eq (2.5) in section 2.1,
Eq (2.6) in section 2.2 and Eq (2.7) in section 2.3.

Remark 2.1. Condition (2.9) is implicitly assumed in the sequel, even when not explicitly used.

2.1. Fading memory

Let us consider the choice (2.5) and rewrite the third of system (2.3) as

M(t) = ae−at
∫ t

−∞

g(S (σ), I(σ))eaσ dσ.

By differentiating the latter system (2.3) reduces to the system of 3 ODEs
S ′(t) = µ[1 − p(M(t))] − µS (t) − βS (t)I(t)

I′(t) = βS (t)I(t) − (µ + ν)I(t)

M′(t) = ag(S (t), I(t)) − aM(t).

The local asymptotic stability of the endemic equilibrium (S , I,M) is analyzed in [27] by resorting to
the Routh-Hurwitz criterion as applied to the matrix associated to the relevant linearization, i.e.,

A1 :=


−µ − βI −βS −µp′(M)

βI βS − (µ + ν) 0

agS (S , I) agI(S , I) −a

 ∈ R3×3, (2.13)

where gS and gI denote the partial derivatives of g with respect to S and I, respectively. Here, instead,
we compute the eigenvalues of matrix (2.13) in view of generalizing this approach in the forthcoming
sections: A rightmost eigenvalue with negative real part guarantees asymptotic stability, otherwise any
eigenvalue in the right-half of C determines instability.

Figure 2 reproduces in this sense the same results of Figure 1 in [27] for the choices (2.10), (2.11)
and (2.12), and for the values of the concerned parameters as in Table 1 (which depict measles in a
low-mortality population [27]). Let us highlight that for sufficiently large c at most one instability
interval occurs in the domain of τ (recall Eq (2.9)). This is originated by a couple of Hopf bifurcations,
the first destabilizing and the other stabilizing, Figure 3. In the latter, the eigenvalues are computed by
standard routines for matrix eigenvalues (specifically, eig in Matlab) and the bifurcation values for the
delay τ are found by standard nonlinear solvers (specifically, fzero in Matlab).

†This choice is motivated by the aim of reproducing the results of [27]. Note, however, that the general setting discussed in section 4
includes also the choice g(S , I) = kS I, as well as more general ones
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Table 1. Values of the parameters used in the simulations.

Parameter Value
fertility/mortality rates [1/days] µ = 1/(75 · 365)
contact rate [1/days] β = 1.4289
recovery rate [1/days] ν = 1/7
coverage baseline p0 = 0.75
coverage slope c free bifurcation parameter
prevalence constant k = 1
delay [days] τ free bifurcation parameter
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Figure 2. Real part of the rightmost eigenvalue(s) of matrix (2.13) for varying τ and several
values of c.
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Figure 3. Real part of the rightmost eigenvalue(s) of matrix (2.13) for varying τ and c = 300
(top-left panel); eigenvalues corresponding to the selected values of τ in the top-left panel
(remaining panels).
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2.2. Concentrated memory

Let us consider now the choice Eq (2.6), by which model (2.3) reduces to
S ′(t) = µ[1 − p(M(t))] − µS (t) − βS (t)I(t)

I′(t) = βS (t)I(t) − (µ + ν)I(t)

M(t) = g(S (t − τ), I(t − τ)).

(2.14)

System (2.14) is made of 2 ODEs coupled to an algebraic equation with delay. This makes the
corresponding dynamical system infinite-dimensional, with state space a set of functions defined on
the delay interval [−τ, 0]. For this and the following related issues we refer to [34]. Alternatively, one
can substitute the third equation for M into the first one, obtaining a more conventional DDE for S
coupled to the ODE for I, for which we refer to [32] as far as the following is concerned. Anyway we
feel free to use one formulation or the other depending on the convenience from time to time.

The endemic equilibrium (S , I,M) of system (2.14) remains unchanged, although the analysis of
its local asymptotic stability is far less trivial due to the infinite dimension. The principle of linearized
stability still holding, the problem reduces to determine the spectrum of suitable linear operators
associated to the linearized system. These are either the semigroup of solution operators or its
infinitesimal generator. Of course, numerical approximation is needed, as they are operators on
Banach spaces of functions. In this regard, we rely on the pseudospectral methods in either [35]
or [32] depending on the chosen formulation, both furnishing accurate approximations of the
rightmost eigenvalue, which is the stability determining one. The results are illustrated in Figure 4,
which is the analogous of Figure 2 but for Eq (2.6) replacing Eq (2.5). Now infinitely-many intervals
of instability can appear, always due to Hopf bifurcations, Figure 5 (the analogous of Figure 3). A
rigorous argument behind this claim is given next.
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Figure 4. Real part of the rightmost eigenvalue(s) relevant to system (2.14) for varying τ and
several values of c.

Let us resume from [33] the concepts of kernel and offspring sets, introduced therein for linear
autonomous systems with delay. Let us stress that this kernel has nothing to deal with the memory
kernel: To avoid confusion we use italic fonts when dealing with the former. We anticipate from
Eq (3.8) in section 3 that the characteristic equation associated to the linearized version of system (2.14)
contains the complex exponential e−λτ, a well-known fact indeed for systems with a discrete delay τ.
Nontrivial conjugated roots on the imaginary axis, say λ = ±βi, make the exponential periodic in βτ.
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Figure 5. Real part of the rightmost eigenvalue(s) relevant to system (2.14) for varying τ and
c = 300 (top-left panel); eigenvalues corresponding to the selected values of τ in the top-left
panel (remaining panels).

Given β, let us define the kernel set

K(β) := {τ > 0 : βτ ∈ (0, 2π)}.

This in turn generates the offspring set

O(β) := {τ + 2π j/β : τ ∈ K(β), j = 1, 2, . . .} .

Therefore any value in the kernel set gives rise to a periodic sequence of delay values in the relevant
offspring set. Note however that one has to compute only the kernel set, since the offspring set follows
automatically. In the specific case (2.14), for any given value of c over a certain threshold, there are
just two values of β giving rise to Hopf bifurcations, one destabilizing and one stabilizing.
Correspondingly we can find the relevant kernel sets, each of which consists of only a single delay
value. As a convention, in the sequel we use the index 1 for the delay value τ1 originating the
destabilizing Hopf bifurcation and the index 2 for the delay value τ2 originating the stabilizing Hopf
bifurcation. These two values of τ correspond to the first two crossings of the horizontal axis
in Figure 4. All the other crossings are obtained as offspring sets, and are indeed periodically
distributed along the delay axis with period 2π/β. Let us observe anyway that the instability intervals
created by the two sequences of τ values may merge or disappear at some points, given that the period
2π/β changes with β. Eventually, we remark that this theoretical argument is validated experimentally
with rather high accuracy, see Table 2 and Figure 6. In Table 2 exact means computed as τ + 2π j/β
once β and τ are computed for the kernel set.
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Table 2. Kernel and offspring delay values for system (2.14) with c = 300.

delay τ1

kernel 162.2237119784580
offspring exact numerical
j = 1 2 415.766179177166 2 415.766179177342
j = 2 4 669.308646375874 4 669.308646376010
j = 3 6 922.851113574581 6 922.851113574772
delay τ2

kernel 1 046.604140032942
offspring exact numerical
j = 1 3 462.713668448635 3 462.713668448839
j = 2 5 878.823196864328 5 878.823196864712
j = 3 8 294.932725280021 8 294.932725280545
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Figure 6. Kernel (red • and ◦) and offspring (blue • and ◦) delay values for system (2.14)
with c = 300.

2.3. Erlang distribution and the linear chain trick

Let us consider now the choice Eq (2.7) and define the auxiliary variables

Zi(t) :=
∫ +∞

0
g(S (t − θ), I(t − θ))Erli,a(θ)dθ, i = 1, . . . , n.

Clearly Zn(t) = M(t), while differentiation allows to transform system (2.3) into the system of n + 2
ODEs 

S ′(t) = µ[1 − p(Zn(t))] − µS (t) − βS (t)I(t)

I′(t) = βS (t)I(t) − (µ + ν)I(t)

Z′1(t) = ag(S (t), I(t)) − aZ1(t)

Z′i (t) = aZi−1(t) − aZi(t), i = 2, . . . , n.

(2.15)

This procedure is known as linear chain trick, as already anticipated and discussed in the Introduction.
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The endemic equilibrium is now (S , I,M, . . . ,M): It differs just in the presence of the auxiliary
components which, being all equal to the information compartment, do not bring any novelty in. By
proceeding as in section 2.1, we compute the eigenvalues of the matrix of the linearized system, i.e.,

An :=



−µ − βI −βS 0 0 · · · −µp′(M)

βI βS − µ − ν 0 0 · · · 0

agS (S , I) agI(S , I) −a 0 · · · 0
0 0 a −a · · · 0
...

...
...

. . .
. . .

...

0 0 0 0 a −a


(2.16)

in R(n+2)×(n+2). Figure 7 shows the analogous results of Figures 2 and 4. It emerges clear that the curve
representing the real part of the rightmost eigenvalue(s) of matrix (2.16) gets close to that relevant to
the case of concentrated memory as n increases: Indeed, more and more instability intervals due to
Hopf bifurcations appear in the direction of increasing τ as long as n grows. We omit to include the
analogous of Figures 3 and 5 since qualitatively unchanged. We instead show in Figure 8 the values of
τ for varying n corresponding respectively to the first (destabilizing) and the second (stabilizing) Hopf
bifurcations. Some of these values are provided in Table 3 for reference.
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Figure 7. Real part of the rightmost eigenvalue(s) of matrix (2.16) for c = 300, varying τ
and increasing n (solid lines), compared to the concentrated case (dashed-dotted line).
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Table 3. Delay values for system (2.15) for varying n and c = 300.

n τ1 τ2

1 209.7943611962976 655.462477398103
5 166.4696842243129 944.028737310052
20 163.1531571152444 1 010.230663791640
50 162.5856775785959 1 030.759177525466
100 162.4030841436188 1 038.443502844732
200 162.3129976629166 1 042.462005449525
400 162.2682549880071 1 044.517323668264
∞ 162.2237119789684 1 046.604140033032
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Figure 8. Delay graphs for system (2.15) for varying n and c = 300.

Although we leave a detailed investigation of this behavior to section 3, let us anticipate that,
experimentally, we find that the difference between the real part of the rightmost eigenvalue(s) of
cases (2.6) and (2.7) for fixed values of τ is O(1/n), Figure 9. In section 3, as a major contribution of
the present work, we rigorously show that this is indeed the case.
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n
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Figure 9. Difference between the real part of the rightmost eigenvalues relevant to (2.14) and
that of (2.15) for increasing n, compared to a line of slope −1 (dashed): c = 300, τ = 600
(left) and τ = 2800 (right).
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Figure 10. Real part of the rightmost eigenvalue(s) in the (τ, c)-plane for varying n = 1,
i.e., Eq (2.5), n = 5, 20, 50, 100, 200, 400 in Eq (2.7) and n = ∞, i.e., Eq (2.6), with relevant
stability boundaries (solid thick).
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2.4. Stability charts and other coverage functions

To give a panorama of the situation described at the end of the preceding section, we illustrate in
Figure 10 a sketch of the variation of the stability properties of the endemic equilibrium in the (τ, c)-
plane as n increases from 1 to ∞, i.e., passing from the case of fading memory Eq (2.5) (n = 1,
top-left panel) to that of concentrated memory Eq (2.6) (n = ∞, bottom-right-panel) through the cases
of Erlang distributions Eq (2.7) (intermediate panels). The obtained stability boundaries (through
contour in Matlab) denote the presence of so-called stability lobes. In particular, there is only one
such lobe for n = 1, while more and more lobes appear as n grows, leading to a possibly infinite series
of lobes for n = ∞. Below these lobes the endemic equilibrium is asymptotically stable, above it
becomes unstable in favor of a limit cycle. The latter is stable, at least in proximity of the boundary
of the lobe (recall that eigenvalues provide local results). Of course, the stability boundaries represent
loci of Hopf bifurcations.

Below we report the results of the same analysis as carried out for different choices of the coverage
function p and of the disease prevalence g. As for the former and with reference to Eq (2.10), we use
the functions of the examples in [27, section 6], i.e., besides Eq (2.11), we consider both the Michaelis-
Menten type coverage

p1(M) =
c1M

d1M + 1
(2.17)

and the Holling-type 2 coverage

p1(M) =
c2M2

d2M2 + 1
, (2.18)

where c1, c2, d1 and d2 are positive constants. In all cases, p1 is (piecewise) smooth and increasing in M,
p1(0) = 0 and 0 ≤ p1(M) ≤ 0.99 − p0 (= ci/di, i = 1, 2, see [27, section 6]), with an S-shaped profile
portraying a slow increase at low levels of M followed by a rapid increase towards saturation. The latter
takes into account for the fraction of population that is never reached by vaccination [27, section 2].
Examples of these profiles are given in Figure 11 for c1 = c2 = c, d1 = d2 = d and c/d = 1 − p0 with
c = 300. As for g, instead, besides the choice (2.12), we consider also

g(S , I) = kS I. (2.19)

0 0.05 0.1 0.15
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1

p

Figure 11. Examples of coverage functions p in (2.10) with S-shaped profiles: (2.11) (solid),
(2.17) (dashed) and (2.18) (dashed-dotted).

Figure 12 illustrates the stability charts and boundaries for the choice (2.17) and both cases (2.12)
and (2.19) in the same guise of Figure 10, just limiting the choice of values of n to the set
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{1, 50, 200,∞}, given that the results are qualitatively unchanged. Figure 13 is the same but for
Eq (2.18): Again, the quality of the results is unchanged. The values of the parameters are those
described above for Figure 11, except for c which is now varying.
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Figure 12. Real part of the rightmost eigenvalue(s) in the (τ, c)-plane for varying n ∈
{1, 50, 200,∞} with relevant stability boundaries (solid thick) for (2.17) and (2.12) (first 4
panels in the top) and (2.19) (last 4 panels in the bottom).
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Figure 13. Real part of the rightmost eigenvalue(s) in the (τ, c)-plane for varying n ∈
{1, 50, 200,∞} for (2.18) and (2.12) (first 4 panels in the top) and (2.19) (last 4 panels in
the bottom).
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3. From fading to concentrated memory

In section 2.3 we have seen that by using Eq (2.7) and increasing n starting from 1, more and more
instability intervals due to Hopf bifurcations appear, possibly becoming infinitely-many in the limit as
n→ ∞. Here we study the behavior of the relevant rightmost eigenvalues, showing that they converge
to those of Eq (2.6) linearly with respect to n, i.e., their difference decreases as O(1/n). We thus provide
the theoretical confirmation to the experimental results illustrated in Figure 9. Then, in section 4, we
show that these results easily extend to models far more general than system (2.3).

The following analysis of convergence is based on the characteristic equations relevant to
systems (2.14) and (2.15). The corresponding characteristic functions are compared by applying
Rouché’s Theorem on zeros of holomorphic functions (see, e.g., [36]). By following the arguments
used in [31], we eventually show that the difference between the eigenvalues of the intermediate case
and those of the concentrated case is O(1/n), thus proving also their coincidence in the limit as
n→ ∞.

Let us start from the matrix matrix (2.16) at the right-hand side of the linearization of system (2.15)
around the endemic equilibrium. The associated characteristic function is

hn(λ) := det(λIn+2 − An).

By applying the Laplace rule along the first row we get

hn(λ) = (λ + µ + βI)(λ − βS + µ + ν)(λ + a)n + β2S I(λ + a)n

+(−1)nµp′(M)
[
(−βI)

(
−agI(S , I)

)
(−a)n−1

+(−λ + βS − µ − ν)(−agS (S , I)(−a)n−1].
Equivalently,

hn(λ) = f1(λ)(λ + a)n + f2(λ)an, (3.1)

where
f1(λ) := (λ + µ + βI)(λ − βS + µ + ν) + β2S I (3.2)

and
f2(λ) := µp′(M)

[
βIgI(S , I) + (λ − βS + µ + ν)gS (S , I)

]
(3.3)

are analytic functions. Eventually, let us write

hn(λ) = (λ + a)nhn(λ) (3.4)

for

hn(λ) := f1(λ) + f2(λ)
(
1 +

λ

a

)−n

. (3.5)

Now let us look for the characteristic function of the model with concentrated memory, i.e., (2.14).
The system linearized at the nontrivial equilibrium (S , I,M) reads

S ′(t) = (−µ − βI)S (t) − βS I(t) − µp′(M)M(t)

I′(t) = βIS (t) + [βS − (µ + ν)]I(t)

M(t) = gS (S , I)S (t − τ) + gI(S , I)I(t − τ).
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Let X := C([−τ, 0];R3) be the state space of the corresponding dynamical system. With reference
to [34], the associated infinitesimal generator is the linear unbounded operator A : D(A) ⊆ X → X
defined asAϕ = ϕ′ with domain

D(A) = {ϕ ∈ X : ϕ′ ∈ X and ϕ′1(0) = L1ϕ, ϕ
′
2(0) = L2ϕ, ϕ3(0) = L3ϕ}

for
L1ϕ := [−µ − βI]ϕ1(0) − βSϕ2(0) − µp′(M)ϕ3(0),

L2ϕ := βIϕ1(0) + [βS − (µ + ν)]ϕ2(0),

L3ϕ := gS (S , I)ϕ1(−τ) + gI(S , I)ϕ2(−τ)}.

(3.6)

Since λ ∈ σ(A) if and only if there exists ϕ ∈ D(A) \ {0} such thatAϕ = λϕ, it follows that ϕ satisfies
ϕ′(θ) = λϕ(θ), θ ∈ [−τ, 0],
ϕ′1(0) = L1ϕ

ϕ′2(0) = L2ϕ

ϕ3(0) = L3ϕ.

The unique solution has the form ϕ(θ) = eλθϕ(0), so that

L1(eλ·ϕ(0)) = L1ϕ = ϕ′1(0) = λϕ1(0)
L2(eλ·ϕ(0)) = L2ϕ = ϕ′2(0) = λϕ2(0)
L3(eλ·ϕ(0)) = L3ϕ = ϕ3(0).

(3.7)

Therefore, the characteristic function turns out to be

h∞(λ) := det



λ 0 0
0 λ 0
0 0 1

 − A∞(λ)


for

A∞(λ) :=


−µ − βI −βS −µp′(M)

βI βS − (µ + ν) 0

gS (S , I)e−λτ gI(S , I)e−λτ 0


coming from Eqs (3.6) and (3.7). Then, by applying Laplace rule along the first row and by using
Eqs (3.2) and (3.3), we get

h∞(λ) = f1(λ) + f2(λ)e−λτ. (3.8)

In order to study how hn in Eq (3.1) approaches h∞ in Eq (3.8) as n → ∞ we need to evaluate their
difference for varying n. However, thanks to the following lemma, we compare hn in Eq (3.5) with h∞.

Lemma 3.1. If

a , µ + ν − βS + βI
gI(S , I)

gS (S , I)
(3.9)

then hn(λ) = 0 ⇔ hn(λ) = 0.
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Proof. It is enough to observe that condition (3.9) guarantees f2(−a) , 0, so that Eq (3.1) ensures that
λ = −a cannot be a characteristic root of hn. The thesis follows from Eq (3.4). �

Note that condition (3.9) is satisfied generically when Eq (2.9) holds, given that n is integer.
The following lemmas provide all the ingredients necessary to prove the final convergence result.

We denote B(λ, ρ) the closed ball in C of center λ and radius ρ.

Lemma 3.2 (see Lemma 3.5 in [31]). Let λ∗ be a zero of h∞ with algebraic multiplicity m. Then there
exists ρ1 = ρ1(λ∗) > 0 and C1 = C1(λ∗) > 0 such that for all λ ∈ B(λ∗, ρ1) \ {λ∗}

|h∞(λ)| > C1|λ − λ
∗|m.

Proof. By considering the Taylor series of h∞(λ) around λ∗ and by taking into account the multiplicity
m we obtain h∞(λ) = h(m)

∞ (λ∗)(λ−λ∗)m/m!+O
(
|λ − λ∗|m+1

)
with h(m)

∞ (λ∗) , 0. Then limλ→λ∗ |h∞(λ)|/|λ−
λ∗|m = |h(m)

∞ (λ∗)|m!. Let us set C′1 := |h(m)
∞ (λ∗)|/m!. Since C′1 > 0, there exists ρ1 > 0 and C1 > 0, both

depending on λ∗, such that, for all λ ∈ B(λ∗, ρ1) \ {λ∗}, |h∞(λ)|/|λ − λ∗|m > C1. �

Lemma 3.3. Let λ∗ ∈ C and ρ0 > 0. Then there exists C0 = C0(λ∗, ρ0) > 0 such that for all λ ∈ B(λ∗, ρ0)
and all n ∈ N \ {0} ∣∣∣∣∣(1 +

λτ

n

)n

− eλτ
∣∣∣∣∣ ≤ C0

n
.

Proof. Let us fix z ∈ C and consider the initial value problem{
y′(t) = zy(t), t ∈ [0, 1],
y(0) = 1,

(3.10)

whose unique solution is y(t) = ezt. The proof is based on analyzing the error committed by
solving (3.10) with the explicit Euler method with step h = 1/n, n ∈ N \ {0}. Let yi be the relevant
approximation of y(ti), ti = ih, i = 1, . . . , n, and let y0 = y(0). The method reads yi+1 = (1 + hz)yi,
i = 0, . . . , n− 1, with y0 = 1. The local truncation error is εi+1 := (1 + hz)y(ti)− y(ti+1), i = 0, . . . , n− 1,
and the second-order Taylor expansion of y(ti+1) with Lagrange remainder gives

εi+1 = (1 + hz)y(ti) − y(ti) − y′(ti)h − y′′(ξi)
h2

2

= (1 + hz)y(ti) − y(ti) − zy(ti)h − y′′(ξi)
h2

2

= −y′′(ξi)
h2

2

for some ξi ∈ (ti, ti+1). The global truncation error at tn = 1 follows as

en : = yn − y(tn)
= (1 + hz)yn−1 − (1 + hz)y(tn−1) + εn

= (1 + hz)en−1 + εn

= (1 + hz)[(1 + hz)en−2 + εn−1] + εn

...

= (1 + hz)ne0 + (1 + hz)n−1ε1 + · · · + (1 + hz)εn−1 + εn.
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Since e0 = y(0) − y0 = 0, we get en =
∑n−1

i=0 (1 + hz)iεn−i. Then the triangle inequality gives |en| ≤

maxi=1,...,n |εi|
∑n−1

i=0 (1 + h|z|)i. The first factor at the right-hand side above is bounded as

max
i=1,...,n

|εi| ≤
h2

2
‖y′′‖∞ =

h2

2
|z2|max

t∈[0,1]
|ezt| =

h2

2
|z|2 max{1, e<z}.

As for the second factor we get

n−1∑
i=0

(1 + h|z|)i ≤

n−1∑
i=0

eih|z| =
1
h

n−1∑
i=0

heih|z| ≤
1
h

∫ 1

0
e|z|tdt =

e|z| − 1
h|z|

thanks to the (left) rectangular quadrature formula for the function e|z|t in t ∈ [0, 1] with quadrature
points ti, i = 0, . . . , n − 1. Therefore |en| ≤ C′0h holds for C′0 = C′0(z) := 1

2 (e|z| − 1)|z|max{1, e<z}.
We conclude that |(1 + hz)n − ez| = |en| ≤ C′0/n and the thesis follows by choosing z = λτ and
C0 = C0(λ∗, ρ0) := maxλ∈B(λ∗,ρ0) C′0(λτ). �

Lemma 3.4. Let λ∗ ∈ C and ρ0 > 0. Then there exists C2 = C2(λ∗, ρ0) > 0 such that for all λ ∈ B(λ∗, ρ0)
and all n ∈ N \ {0} ∣∣∣∣hn(λ) − h∞(λ)

∣∣∣∣ ≤ C2

n
.

Proof. Thanks to Lemma 3.3 there exists C0 = C0(λ∗, ρ0) > 0 such that (1 + λτ/n)n = eλτ + γ(n) with
γ(n) such that |γ(n)| ≤ C0/n. Then [(1+λτ/n)n]−1 = [eλτ+γ(n)]−1 = e−λτ−e−λτγ(n)+O(|γ(n)|2) follows
by a second-order Taylor expansion. Thus, for all λ ∈ B(λ∗, ρ0), |(1 + λτ/n)−n − e−λτ| ≤ C′2/n, where
C′2 := C0 ·maxλ∈B(λ∗,ρ0) |e

−λτ|. Now, by Eqs (3.5) and (3.8), we have |hn(λ)−h∞(λ)| ≤ maxλ∈B(λ∗,ρ0) | f2(λ)| ·
|(1 + λτ/n)−n − e−λτ| and the thesis follows by choosing C2 = C2(λ∗, ρ0) := C′2 ·maxλ∈B(λ∗,ρ0) | f2(λ)|. �

Eventually, we state and prove the convergence of the eigenvalues of An to those of A in terms of
zeros of hn and h∞, respectively.

Theorem 3.5 (see Theorem 3.6 in [31]). Let λ∗ be a zero of h∞ with algebraic multiplicity m and r > 0
be such that λ∗ is the only zero of h∞ in B(λ∗, r). Then there exists n∗ ∈ N \ {0} sufficiently large such
that hn∗ has exactly m zeros λn∗,1, . . . , λn∗,m (counted with multiplicities) in B(λ∗, r) and

max
i=1,...,m

|λ∗ − λn∗,i| ≤ ρ(n∗),

with ρ(n∗) = O((1/n∗)1/m).

Proof. Thanks to Lemma 3.2 there exist ρ1 = ρ1(λ∗) and C1 = C1(λ∗, ρ1) > 0 such that, for all
λ ∈ B(λ∗, ρ1) \ {λ∗}, |h∞(λ)| > C1|λ − λ

∗|m. We can assume ρ1 < r without loss of generality. Let us
define ρ(n) := [C2/(C1n)]1/m for C2 as in Lemma 3.4 with ρ0 = ρ1. Since ρ(n) → 0 as n → ∞, there
exists n∗ sufficiently large such that ρ(n∗) < ρ1. Then

|h∞(λ)| > C1|λ − λ
∗|m = C1ρ(n∗)m =

C2

n∗
≥

∣∣∣∣hn(λ) − h∞(λ)
∣∣∣∣ .

follows by taking λ ∈ B(λ∗, ρ1) such that |λ − λ∗| = ρ(n∗). Since both hn and h∞ are holomorphic
in B(λ∗, ρ1), Rouché’s Theorem (see, e.g., [36]) ensures that they have the same number of zeros in
B(λ∗, ρ(n∗)) counted with multiplicities. The thesis follows by Lemma 3.1. �
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Remark 3.6. The linear chain trick can be interpreted as a way to approximate a constant delay τ
through a sequence of time steps of constant size h := τ/n = 1/a. If one thinks about the finite
difference scheme corresponding to explicit Euler with step h, the bidiagonal matrix of entries 1/h = a
and −1/h = −a arises naturally, compare with matrix (2.16) or matrix (4.2) below. This translates
then into the Taylor’s truncation of the exponential function, on which the given convergence proof is
indeed based.

4. A general framework

It is not difficult to realize that the results of the preceding section are independent of the specific
model at hands (in our case (2.3)), and thus they can be extended to the much more general modeling
setting  x′(t) = f (x(t),M(t))

M(t) =
∫ +∞

0
g(x(t − θ))K(θ) dθ

(4.1)

as we illustrate next. Above, for d some positive integer, f : Rd+1 → Rd and g : Rd → R are smooth.
Moreover, we assume the existence of a nontrivial equilibrium (x,M) ∈ Rd+1, i.e., f (x,M) = 0 for
M = g(x). Note that, beyond population models, this setting includes also economic models with time
delay, see, e.g., [37, 38].

Following section 2.3, for K in Eq (2.7) we apply the linear chain trick to obtain the system of d + n
ODEs 

x′(t) = f (x(t),M(t))

Z′1(t) = ag(x(t)) − aZ1(t)

Z′i (t) = aZi−1(t) − aZi(t), i = 2, . . . , n.

Linearizing around the nontrivial equilibrium (x,M) gives a linear system with matrix

An :=



Dx f (x̄,M) 0 0 · · · DM f (x̄,M)
aDg(x̄) −a 0 · · · 0

0 a −a · · · 0
...

...
. . .

. . .
...

0 0 0 a −a


∈ R(d+n)×(d+n), (4.2)

where the entries have the appropriate dimension. In order to recover the characteristic function it is
convenient to partition the characteristic matrix as

λId+n − An =

A B
C D


Mathematical Biosciences and Engineering Volume 17, Issue 5, 5059–5084.
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with blocks

A := λId − Dx f (x̄,M) ∈ Rd×d, B :=
(
0 · · · 0 −DM f (x̄,M)

)
∈ Rd×n,

C :=


−aDg(x̄)

0
...

0

 ∈ R
n×d, D :=


λ + a 0 · · · 0
−a λ + a · · · 0
...

. . .
. . .

...

0 0 −a λ + a

 ∈ R
n×n.

We can assume the block D to be nonsingular, i.e., λ , −a, in parallel with Lemma 3.2. Therefore its
inverse reads

D−1 =



1
λ + a

0 · · · 0

a
(λ + a)2

1
λ + a

· · · 0
...

. . .
. . .

...

an−1

(λ + a)n · · ·
a

(λ + a)2

1
λ + a


and we can compute the Schur complement

S (D) := A − BD−1C

= λId − Dx f (x̄,M)

−
(
0 · · · 0 −DM f (x̄,M)

)


1
λ + a

0 · · · 0

a
(λ + a)2

1
λ + a

· · · 0
...

. . .
. . .

...

an−1

(λ + a)n · · ·
a

(λ + a)2

1
λ + a




−aDg(x̄)

0
...

0


= λId − Dx f (x̄,M) − DM f (x̄,M)Dg(x̄)

(
1 +

λ

a

)−n

.

The Schur determinant identity gives then the characteristic function as

hn(λ) = det(λId+n − An) = det(D) det(S (D)) = (λ + a)nhn(λ),

where

hn(λ) := det
(
λId − Dx f (x̄,M) − DM f (x̄,M)Dg(x̄)

(
1 +

λ

a

)−n)
.

As for K in Eq (2.6), i.e., in the concentrated case, following section 3 we arrive at the linear delay
system  x′(t) = Dx f (x̄,M)x(t) + DM f (x̄,M)M(t)

M(t) = Dg(x̄)x(t − τ),
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whose characteristic matrix reads

λId+1 − A∞(λ) :=
λId − Dx f (x̄,M) −DM f (x̄,M)
−Dg(x̄)e−λτ 1

 .
By using the Schur complement of 1 we obtain the characteristic function as

h∞(λ) := det(λId+1 − A∞(λ))

= det
(
λId − Dx f (x̄,M) − DM f (x̄,M)Dg(x̄)e−λτ

)
.

Now we can apply all the results of section 3, ending up with the same Theorem 3.5 through
Lemmas 3.2, 3.3 and 3.4. The latter, in particular, is proved along the same lines just by noting that
the determinant is a continuously differentiable function of its argument, so that there exists a constant
C = C(λ∗, ρ0) such that |hn(λ) − h∞(λ)| ≤ C|(1 + λτ/n)−n − e−λτ|.

5. Conclusions

In this paper we extended the stability analysis of [27] concerning an SIR model with vaccination at
birth, in which the decision to vaccinate depends on the information on the disease. Indeed, we passed
from the case of fading memory treated therein to that of concentrated memory through the Erlang
distribution with varying shape parameter. The Erlang case is dealt with by using the linear chain trick.
We obtained stability charts where it emerges clearly how the number of instability intervals along the
delay axis increases to possibly infinitely-many, concluding that delay distributions with lower variance
augment the chances of sustained oscillations.

In parallel, we gave a rigorous proof of the linear rate (in terms of the shape parameter) at which
the Erlang distribution approaches the Dirac’s delta. This is done by analyzing the convergence of
the eigenvalues of the variational problems obtained by linearizing the original models around their
endemic equilibrium. Moreover, this analysis is showed to be more general than that of the case of the
concerned SIR framework.

The above outcomes would not have been obtained without resorting to recent techniques for
treating equations with delays, e.g., [30–32]. We hope that in the future this could serve as a basis to
analyze other models involving more or different delays. This would represent indeed an opportunity
in view of the many possible directions to extend the modeling of the information term. In particular,
it is plan of the authors and colleagues to tackle more realistic memory kernels. Examples can be
multimodal distributions, or distributions with unconstrained variance (recall Eq (2.9)), as well as
laws of power type or Gaussian-derived kernels. Of course, also going beyond the stability of the
endemic equilibrium should be considered, and in this regard we remark that efficient techniques are
already available to analyze the stability of periodic behaviors of systems with delays [39, 40], as well
as a more complete bifurcation analysis [9].
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