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Abstract
We are concerned with wave equations associated with some Liouville-type problems on 
compact surfaces, focusing on sinh-Gordon equation and general Toda systems. Our aim is 
on one side to develop the analysis for wave equations associated with the latter problems 
and second, to substantially refine the analysis initiated in Chanillo and Yung (Adv Math 
235:187–207, 2013) concerning the mean field equation. In particular, by exploiting the 
variational analysis recently derived for Liouville-type problems we prove global existence 
in time for the subcritical case and we give general blow-up criteria for the supercritical 
and critical case. The strategy is mainly based on fixed point arguments and improved ver-
sions of the Moser–Trudinger inequality.
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1 Introduction

In this paper, we are concerned with wave equations associated with some Liouville-type 
problems on compact surfaces arising in mathematical physics: sinh-Gordon equation (1.1) 
and some general Toda systems (1.7). The first wave equation we consider is

with u ∶ ℝ
+ ×M → ℝ , where (M, g) is a compact Riemann surface with total area |M| and 

metric g, Δg is the Laplace–Beltrami operator, and �1, �2 are two real parameters. Nonlinear 
evolution equations have been extensively studied in the literature due to their many appli-
cations in physics, biology, chemistry, geometry and so on. In particular, the sinh-Gordon 
model (1.1) has been applied to a wide class of mathematical physics problems such as 
quantum field theories, non-commutative field theories, fluid dynamics, kink dynamics, 
solid-state physics, nonlinear optics and we refer to [1, 8, 12, 14, 36, 37, 47, 51] and the 
references therein.

The stationary equation related to (1.1) is the following sinh-Gordon equation:

In mathematical physics, the latter equation describes the mean field equation of the equi-
librium turbulence with arbitrarily signed vortices, see [29, 41]. For more discussions con-
cerning the physical background we refer, for example, to [13, 33, 35, 38, 39] and the refer-
ences therein. On the other hand, the case �1 = �2 has a close relationship with constant 
mean curvature surfaces, see [48, 49].

Observe that for �2 = 0 , Eq. (1.2) reduces to the following well-known mean field equation:

which has been extensively studied in the literature since it is related to the prescribed 
Gaussian curvature problem [4, 43] and Euler flows [9, 30]. There are by now many results 
concerning (1.3), and we refer to the survey [45]. On the other hand, the wave equation 
associated with (1.3) for M = �

2 , that is

was recently considered in [11], where the authors obtained some existence results and a 
first blow-up criterion. Let us focus for a moment on the blow-up analysis. They showed 
that in the critical case � = 8� for the finite time blow-up solutions to (1.4), there exist a 
sequence tk → T−

0
< +∞ and a point x1 ∈ �

2 such that for any 𝜀 > 0,

(1.1)�2
t
u − Δgu = �1

(
eu

∫
M
eu

−
1

|M|

)
− �2

(
e−u

∫
M
e−u

−
1

|M|

)
on M,

(1.2)−Δgu = �1

(
eu

∫
M
eu

−
1

|M|

)
− �2

(
e−u

∫
M
e−u

−
1

|M|

)
.

(1.3)−Δgu = �

(
eu

∫
M
eu

−
1

|M|

)
,

(1.4)�2
t
u − Δgu = �

(
eu

∫
�2 eu

−
1

4�

)
on �

2,

(1.5)lim
k→+∞

∫
B(x1,�)

eu(tk ,⋅)

∫
�2 e

u(tk ,⋅)
≥ 1 − �,
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i.e., the measure eu(tk) (after normalization) concentrates around one point on �2 (i.e., it 
resembles a one bubble). On the other hand, for the general supercritical case 𝜌 > 8𝜋 the 
blow-up analysis is not carried out and we are missing the blow-up criteria. One of our 
aims is to substantially refine the latter analysis and to give general blow-up criteria, see 
Corollary 1.5. As a matter of fact, this will follow by the analysis we will develop for more 
general problems: the sinh-Gordon equation (1.1) and Toda systems (1.7).

Let us return now to the sinh-Gordon equation (1.2) and its associated wave equation 
(1.1). In the last decades, the analysis concerning (1.3) was generalized for treating the 
sinh-Gordon equation (1.2) and we refer to [2, 3, 23, 24, 28, 39] for blow-up analysis, 
to [17] for uniqueness aspects and to [6, 18–20] for what concerns existence results. On 
the other hand, for what concerns the wave equation associated with (1.2), i.e., (1.1), 
there are few results mainly focusing on traveling wave solutions, see, for example, [1, 
16, 37, 47, 51]. One of our aims is to develop the analysis for (1.1) in the spirit of [11] 
and to refine it with some new arguments. More precisely, by exploiting the variational 
analysis derived for Eq. (1.2), see in particular [6], we will prove global existence in 
time for (1.1) for the subcritical case and we will give general blow-up criteria for the 
supercritical and critical case. The sub/supercritical case refers to the sharp constant of 
the associated Moser–Trudinger inequality, as it will be clear in the sequel.

Before stating the results, let us fix some notation. Given T > 0 and a metric space X, 
we will denote C([0, T]; X) by CT (X) . Ck

T
(X) and Lk

T
(X) , k ≥ 1 , are defined in an analo-

gous way. When we are taking time derivative for t ∈ [0, T] , we are implicitly taking 
right (resp. left) derivative at the endpoint t = 0 (resp. t = T  ). When it will be clear from 
the context, we will simply write H1, L2 to denote H1(M),L2(M) , respectively, and

Our first main result is to show that the initial value problem for (1.1) is locally well-posed 
in H1 × L2.

Theorem  1.1 Let �1, �2 ∈ ℝ . Then, for any (u0, u1) ∈ H1(M) × L2(M) such that 
∫
M
u1 = 0 , there exist T = T(𝜌1, 𝜌2, ‖u0‖H1 , ‖u1‖L2 ) > 0 and a unique, stable solution, i.e., 

depending continuously on (u0, u1),

of (1.1) with initial data

Furthermore,

Remark 1.2 The assumption on the initial datum u1 to have zero average guarantees that 
the average (1.6) of the solution u(t, ⋅) to (1.1) is preserved in time. A consequence of the 
latter property is that the energy E(u(t, ⋅)) given in (3.9) is preserved in time as well, which 
will be then crucially used in the sequel, see the discussion later on.

‖u‖2
H1(M)

= ‖∇u‖2
L2(M)

+ ‖u‖2
L2(M)

.

u ∶ [0, T] ×M → ℝ, u ∈ CT (H
1) ∩ C1

T
(L2),

{
u(0, ⋅) = u0,

�tu(0, ⋅) = u1.

(1.6)∫M

u(t, ⋅) = ∫M

u0 for all t ∈ [0, T].
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The proof is based on a fixed point argument and the standard Moser–Trudinger ine-
quality (2.1), see Sect. 3. Once the local existence is established, we address the exist-
ence of a global solution to (1.1). Indeed, by exploiting an energy argument jointly with 
the Moser–Trudinger inequality associated with (1.2), see (2.2), we deduce our second 
main result.

Theorem  1.3 Suppose 𝜌1, 𝜌2 < 8𝜋. Then, for any (u0, u1) ∈ H1(M) × L2(M) such that 
∫
M
u1 = 0 , there exists a unique global solution u ∈ C(ℝ+;H1) ∩ C1(ℝ+;L2) of (1.1) with 

initial data (u0, u1).

The latter case 𝜌1, 𝜌2 < 8𝜋 is referred as the subcritical case in relation to the sharp 
constant 8� in the Moser–Trudinger inequality (2.2). The critical and supercritical case 
in which �i ≥ 8� for some i is subtler since the solutions to (1.2) might blow up. How-
ever, by exploiting the recent analysis concerning (1.2), see in particular [6], based on 
improved versions of the Moser–Trudinger inequality, see Proposition 2.1, we are able 
to give quite general blow-up criteria for (1.1). Our third main result is the following.

Theorem  1.4 Suppose �i ≥ 8� for some i. Let (u0, u1) ∈ H1(M) × L2(M) be such that 
∫
M
u1 = 0 and let u be the solution of (1.1) obtained in Theorem 1.1. Suppose that u exists 

in [0,T0) for some T0 < +∞ and it cannot be extended beyond T0 . Then, there exists a 
sequence tk → T−

0
 such that

Furthermore, if �1 ∈ [8m1�, 8(m1 + 1)�) and �2 ∈ [8m2�, 8(m2 + 1)�) for some 
m1,m2 ∈ ℕ , then there exist points {x1,… , xm1

} ⊂ M such that for any 𝜀 > 0, either

or there exist points {y1,… , ym2
} ⊂ M such that for any 𝜀 > 0,

The latter result shows that once the two parameters �1, �2 are fixed in a critical or 
supercritical regime, the finite time blowup of the solutions to (1.1) yields the following 
alternative: either the measure eu(tk) (after normalization) concentrates around (at most) 
m1 points on M (i.e., it resembles a m1-bubble) or e−u(tk) concentrates around m2 points on 
M. We point out that this is new for the mean field equation (1.4) as well and general-
izes the previous blow-up criterion (1.5) obtained in [11] for � = 8� . More precisely, the 
general blow-up criteria for the supercritical mean field equation are the following.

Corollary 1.5 Suppose � ∈ [8m�, 8(m + 1)�) for some m ∈ ℕ , m ≥ 1 . Let 
(u0, u1) ∈ H1(M) × L2(M) be such that ∫

M
u1 = 0 , and let u be a solution of (1.4), where 

�
2 is replaced by a compact surface M. Suppose that u exists in [0,T0) for some T0 < +∞ 

lim
k→+∞

‖∇u(tk, ⋅)‖L2 = +∞, lim
k→+∞

max

�
∫M

eu(tk ,⋅),∫M

e−u(tk ,⋅)
�

= +∞.

lim
k→+∞

∫⋃m1
l=1

B(xl ,�)
eu(tk ,⋅)

∫
M
eu(tk ,⋅)

≥ 1 − �,

lim
k→+∞

∫⋃m2
l=1

B(yl ,�)
e−u(tk ,⋅)

∫
M
e−u(tk ,⋅)

≥ 1 − �.
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and it cannot be extended beyond T0 . Then, there exist a sequence tk → T−
0

 and m points 
{p1,… , pm} ⊂ M such that for any 𝜀 > 0,

Finally, it is worth to point out some possible generalizations of the results so far.

Remark 1.6 We may consider the following more general weighted problem

where hi = hi(x) are two smooth functions such that 1
C
≤ hi ≤ C on M, i = 1, 2 , for some 

C > 0 . It is easy to check that Theorems 1.1, 1.3 and 1.4 extend to this case as well. The 
same argument applies also to the Toda system (1.7).

On the other hand, motivated by several applications in mathematical physics [1, 40, 42] 
we may consider the following asymmetric sinh-Gordon wave equation

with a > 0 . For a = 2 , which corresponds to the Tzitzéica equation, we can exploit the 
detailed analysis in [25] to derive Theorems 1.1, 1.3 and 1.4 for this case as well (with 
suitable modifications accordingly to the associated Moser–Trudinger inequality). On the 
other hand, for general a > 0 the complete analysis is still missing and we can rely, for 
example, on [21] to get at least the existence results of Theorems 1.1 and 1.3.

We next consider the wave equation associated with some general Toda system,

where �i , i = 1,… , n are real parameters and An = (aij)n×n is the following rank n Cartan 
matrix for SU(n + 1):

The stationary equation related to (1.7) is the following Toda system:

which has been extensively studied since it has several applications both in mathematical 
physics and in geometry, for example, non-abelian Chern–Simons theory [15, 46, 50] and 

lim
k→∞

∫⋃m

l=1
B(pl,�)

eu(tk ,⋅)

∫
M
eu(tk ,⋅)

≥ 1 − �.

�2
t
u − Δgu = �1

(
h1e

u

∫
M
h1e

u
−

1

|M|

)
− �2

(
h2e

−u

∫
M
h2e

−u
−

1

|M|

)
,

�2
t
u − Δgu = �1

(
eu

∫
M
eu

−
1

|M|

)
− �2

(
e−au

∫
M
e−au

−
1

|M|

)
,

(1.7)�2
t
ui − Δgui =

n∑
j=1

aij �j

(
euj

∫
M
euj

−
1

|M|

)
on M, i = 1,… , n,

(1.8)An =

⎛
⎜⎜⎜⎜⎝

2 −1 0 ⋯ 0

−1 2 −1 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮

0 ⋯ −1 2 −1

0 ⋯ 0 −1 2

⎞
⎟⎟⎟⎟⎠
.

(1.9)−Δgui =

n∑
j=1

aij �j

(
euj

∫
M
euj

−
1

|M|

)
, i = 1,… , n,
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holomorphic curves in ℂℙn [7, 10, 32]. There are by now many results concerning Toda-
type systems in particular regarding existence of solutions [6, 22, 34], blow-up analysis 
[26, 31] and classification issues [32].

On the other hand, only partial results concerning the wave equation associated with 
the Toda system (1.7) were obtained in [11] which we recall here. First, the local well-
posedness of (1.7) analogously as in Theorem 1.1 is derived for a general n × n sym-
metric matrix An . Second, by assuming An to be a positive definite symmetric matrix 
with nonnegative entries the authors were able to deduce a global existence result by 
exploiting a Moser–Trudinger-type inequality suitable for this setting, see [44]. On the 
other side, no results are available neither for mixed positive and negative entries of the 
matrix An (which are relevant in mathematical physics and in geometry, see, for exam-
ple, the above Toda system) nor for blow-up criteria. Our aim is to complete the latter 
analysis.

Before stating the results, let us fix some notation for the system setting. We 
denote the product space as (H1(M))n = H1(M) ×⋯ × H1(M) . To simplify the nota-
tion, to take into account an element (u1,… , un) ∈ (H1(M))n we will rather write 
H1(M) ∋ � ∶ M ↦ (u1,… , un) ∈ ℝ

n . With a little abuse of notation, we will write ∫
M
� 

when we want to consider the integral of each component ui , i = 1,… , n.
Since the local well-posedness of (1.7) is already known from [11], our first result 

concerns the global existence in time.

Theorem 1.7 Suppose 𝜌i < 4𝜋 for all i = 1,… , n. Then, for any (�0, �1) ∈ H1(M) × L2(M) 
such that ∫

M
�1 = 0 , there exists a unique global solution

of (1.7) with initial data

The latter result follows by an energy argument and a Moser–Trudinger-type inequal-
ity for systems as obtained in [27]. On the other hand, when �i ≥ 4� for some i, the 
Moser–Trudinger inequality does not give any control and the solutions of (1.9) might 
blow up. In the latter case, by exploiting improved versions of the Moser–Trudinger 
inequality for the system recently derived in [5] we are able to give the following gen-
eral blow-up criteria.

Theorem  1.8 Suppose �i ≥ 4� for some i. Let (�0,�1) ∈ H1(M) × L2(M) be such that 
∫
M
�1 = 0 , and let � be the solution of (1.7). Suppose that � exists in [0,T0) for some 

T0 < ∞ and it cannot be extended beyond T0 . Then, there exists a sequence tk → T−
0

 such 
that

Furthermore, if �i ∈ [4mi�, 4(mi + 1)�) for some mi ∈ ℕ , i = 1,… , n , then there exist at 
least one index j ∈ {1,… , n} and mj points {xj,1,… , xj,mj

} ∈ M such that for any 𝜀 > 0,

� ∶ ℝ
+ ×M → ℝ

n, � ∈ C(ℝ+;H1) ∩ C1(ℝ+;L2),

{
�(0, ⋅) = �0,

�t�(0, ⋅) = �1.

lim
k→+∞

max
j

‖∇uj(tk, ⋅)‖L2 = +∞, lim
k→+∞

max
j ∫M

euj(tk ,⋅) = +∞.
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Therefore, for the finite time blow-up solutions to (1.7) there exists at least one compo-
nent uj such that the measure eu(tk) (after normalization) concentrates around (at most) mj 
points on M. One can compare this result with the one for the sinh-Gordon equation (1.1) 
or the mean field equation (1.4), see Theorem 1.4 and Corollary 1.5, respectively.

Finally, we have the following possible generalization of the system (1.7).

Remark 1.9 We point out that since the improved versions of the Moser–Trudinger ine-
quality in [5] hold for general symmetric, positive definite matrices An = (aij)n×n with non-
positive entries outside the diagonal, we can derive similar existence results and blow-up 
criteria as in Theorems 1.7, 1.8, respectively, for this general class of matrices as well. In 
particular, after some simple transformations (see, for example, the introduction in [2]) we 
may treat the following Cartan matrices:

which are relevant in mathematical physics, see, for example, [15]. To simplify the presen-
tation, we give the details just for the matrix An in (1.8).

The paper is organized as follows. In Sect.  2, we collect some useful results, and in 
Sect. 3, we prove the main results of this paper: local well-posedness, global existence and 
blow-up criteria.

2  Preliminaries

In this section, we collect some useful results concerning the stationary sinh-Gordon equa-
tion (1.2), Toda system (1.9) and the solutions of wave equations which will be used in the 
proof of the main results in the next section.

In the sequel, the symbol u will denote the average of u, that is

Let us start by recalling the well-known Moser–Trudinger inequality

For the sinh-Gordon equation (1.2), a similar sharp inequality was obtained in [39],

lim
k→∞

∫⋃mj

l=1
B(xj,l,�)

euj(tk ,⋅)

∫
M
euj(tk ,⋅)

≥ 1 − �.

Bn =

⎛
⎜⎜⎜⎜⎝

2 −1 0 ⋯ 0

−1 2 −1 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮

0 ⋯ −1 2 −2

0 ⋯ 0 −1 2

⎞
⎟⎟⎟⎟⎠
, Cn =

⎛
⎜⎜⎜⎜⎝

2 −1 0 ⋯ 0

−1 2 −1 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮

0 ⋯ −1 2 −1

0 ⋯ 0 −2 2

⎞
⎟⎟⎟⎟⎠
,

G2 =

�
2 −1

−3 2

�
,

u = ⨏M

u =
1

|M| ∫M

u.

(2.1)8� log�M

eu−u ≤ 1

2 �M

|∇u|2 + C(M,g) , u ∈ H1(M).
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We recall now some of main features concerning the variational analysis of the sinh-
Gordon equation (1.2) recently derived in [6], which will be exploited later on. First of 
all, letting �1, �2 ∈ ℝ the associated Euler–Lagrange functional for Eq. (1.2) is given by 
J�1,�2 ∶ H1(M) → ℝ,

Observe that if �1, �2 ≤ 8� , by (2.2), we readily have

for any u ∈ H1(M) , where C > 0 is a constant independent of u. On the other hand, as soon 
as 𝜌i > 8𝜋 for some i = 1, 2 the functional J�1,�2 is unbounded from below. To treat the 
latter supercritical case, one needs improved versions of the Moser–Trudinger inequality 
(2.2) which roughly assert that the more the measures eu, e−u are spread over the surface, 
the bigger is the constant in the left-hand side of (2.2). More precisely, we have the follow-
ing result.

Proposition 2.1 ([6]) Let 𝛿, 𝜃 > 0 , k, l ∈ ℕ and {Ω1,i,Ω2,j}i∈{1,…,k},j∈{1,…,l} ⊂ M be such 
that

Then, for any 𝜀 > 0 there exists C = C(�, �, �, k, l,M) such that if u ∈ H1(M) satisfies

it follows that

From the latter result, one can deduce that if the J�1,�2 (u) is large negative at least one 
of the two measures eu, e−u has to concentrate around some points of the surface.

Proposition 2.2 ([6]) Suppose �i ∈ (8mi�, 8(mi + 1)�) for some mi ∈ ℕ , i = 1, 2 ( mi ≥ 1 
for some i = 1, 2 ). Then, for any 𝜀, r > 0 there exists L = L(𝜀, r) ≫ 1 such that for any 
u ∈ H1(M) with J�1,�2 (u) ≤ −L , there are either some m1 points {x1,… , xm1

} ⊂ M such that

or some m2 points {y1,… , ym2
} ⊂ M such that

(2.2)8�

(
log�M

eu−u + log�M

e−u+u
)

≤ 1

2 �M

|∇u|2 + C(M,g) , u ∈ H1(M).

(2.3)J�1,�2 (u) =
1

2 ∫M

|∇u|2 − �1 log∫M

eu−u − �2 log∫M

e−u+u.

J�1,�2 (u) ≥ −C,

d(Ω1,i,Ω1,i� ) ≥ �, ∀ i, i� ∈ {1,… , k}, i ≠ i�,

d(Ω2,j,Ω2,j� ) ≥ �, ∀ j, j� ∈ {1,… , l}, j ≠ j�.

�
Ω1,i

eu ≥ � �M

eu, ∀i ∈ {1,… , k}, �
Ω2,j

e−u ≥ � �M

e−u, ∀j ∈ {1,… , l},

8k� log�M

eu−u + 8l� log�M

e−u+u ≤ 1 + �

2 �M

|∇u|2 dVg + C.

∫
∪
m1
l=1

Br(xl)
eu

∫
M
eu

≥ 1 − �,
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We next briefly recall some variational aspects of the stationary Toda system (1.9). 
Recall the matrix An in (1.8) and the notation of � introduced before Theorem  1.7 
and write � = (�1,… , �n) . The associated functional for the system (1.9) is given by 
J� ∶ H1(M) → ℝ,

where (aij)n×n is the inverse matrix A−1
n

 of An . A Moser–Trudinger inequality for (2.4) was 
obtained in [27], which asserts that

for any � ∈ H1(M) , where C is a constant independent of � , if and only if �i ≤ 4� for any 
i = 1,… , n. In particular, if 𝜌i > 4𝜋 for some i = 1,… , n the functional J� is unbounded 
from below. As for the sinh-Gordon equation (1.2), we have improved versions of the 
Moser–Trudinger inequality (2.5) recently derived in [5] (see also [6]) which yield concen-
tration of the measures euj whenever J�(�) is large negative.

Proposition 2.3 ([5, 6]) Suppose �i ∈ (4mi�, 4(mi + 1)�) for some mi ∈ ℕ, i = 1,… , n 
( mi ≥ 1 for some i = 1,… , n ). Then, for any 𝜀, r > 0 there exists L = L(𝜀, r) ≫ 1 such that 
for any � ∈ H1(M) with J�(�) ≤ −L , there exists at least one index j ∈ {1,… , n} and mj 
points {x1,… , xmj

} ⊂ M such that

Finally, let us state a standard result concerning the wave equation, that is the 
Duhamel principle. Let us first recall that every function in L2(M) can be decomposed as 
a convergent sum of eigenfunctions of the Laplacian Δg on M. Then, one can define the 
operators cos(

√
−Δg) and sin(

√
−Δg)√

−Δg

 acting on L2(M) using the spectral theory. Consider 
now the initial value problem

on [0,+∞) ×M . Recall the notation of CT (X) and � before Theorems 1.1 and 1.7, respec-
tively. Then, the following Duhamel formula holds true.

Proposition 2.4 Let T > 0 , (u0, u1) ∈ H1(M) × L2(M) and let f ∈ L1
T
(L2(M)) . Then, (2.6) 

has a unique solution

given by

∫
∪
m2
l=1

Br(yl)
e−u

∫
M
e−u

≥ 1 − �.

(2.4)J�(�) =
1

2 ∫M

n�
i,j=1

aij⟨∇ui,∇uj⟩ −
n�
i=1

�i log∫M

eui−ui ,

(2.5)J�(�) ≥ C,

∫
∪
mj

l=1
Br(xl)

euj

∫
M
euj

≥ 1 − �.

(2.6)
{

�2
t
v − Δgv = f (t, x),

v(0, ⋅) = u0, �tv(0, ⋅) = u1,

v ∶ [0, T) ×M → ℝ, v ∈ CT (H
1) ∩ C1

T
(L2),
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Furthermore, it holds

The same results hold as well if u0, u1, and f (t, ⋅) are replaced by �0, �1 and � (t, ⋅) , 
respectively.

3  Proof of the main results

In this section, we derive the main results of the paper, that is local well-posedness, global 
existence and blow-up criteria for the wave sinh-Gordon equation (1.1), see Theorems 1.1, 
1.3 and 1.4, respectively. Since the proofs of global existence and blow-up criteria for the 
wave Toda system (1.7) (Theorems 1.7, 1.8) are obtained by similar arguments, we will 
present full details for what concerns the wave sinh-Gordon equation and point out the dif-
ferences in the two arguments, where necessary.

3.1  Local and global existence

We start by proving the local well-posedness of the wave sinh-Gordon equation (1.1). The 
proof is mainly based on a fixed point argument and the Moser–Trudinger inequality (2.1).

Proof of Theorem 1.1 Let (u0, u1) ∈ H1(M) × L2(M) be such that ∫
M
u1 = 0 . Take T > 0 to 

be fixed later on. We set

and we introduce the space BT given by

where

For u ∈ BT , we consider the initial value problem

(2.7)

v(t, x) = cos
�
t

�
−Δg

�
u0 +

sin(t
√
−Δg)√

−Δg

u1

+ ∫
t

0

sin
�
(t − s)

√
−Δg

�
√
−Δg

f (s) ds.

(2.8)‖v‖CT (H
1) + ‖�tv‖CT (L

2) ≤ 2
�
‖u0‖H1 + ‖u1‖L2 + ‖f‖L1

T
(L2)

�
.

(3.1)R = 3
�‖u0‖H1 + ‖u1‖L2

�
, I = ⨏M

u0 =
1

�M� ∫M

u0,

BT =

�
u ∈ CT (H

1(M)) ∩ C1
T
(L2(M)) ∶ ‖u‖∗ ≤ R, �M

u(s, ⋅) = I for all s ∈ [0, T]

�
,

‖u‖∗ = ‖u‖CT (H
1) + ‖�tu‖CT (L

2).

(3.2)

{
�2
t
v − Δgv = f (s, x) = �1

(
eu

∫
M
eu
−

1

|M|
)
− �2

(
e−u

∫
M
e−u

−
1

|M|
)
,

v(0, ⋅) = u0, �tv(0, ⋅) = u1,
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on [0,T] ×M . Applying Proposition 2.4, we deduce the existence of a unique solution of 
(3.2).

Step 1 We aim to show that v ∈ BT if T is taken sufficiently small. Indeed, still by Prop-
osition 2.4 we have

Since u ∈ BT , we have ⨏
M
u(s, ⋅) = I for all s ∈ [0, T] , and therefore, by the Jensen 

inequality,

Therefore, we can bound the last two terms on the right-hand side of (3.3) by

for some C > 0 . On the other hand, recalling the Moser–Trudinger inequality (2.1), we 
have for s ∈ [0, T]

for some C > 0 , where we used ‖u‖∗ ≤ R . Similarly, we have

Hence, recalling the definition of R in (3.1), by (3.3) and the above estimates we conclude

Therefore, if T > 0 is taken sufficiently small, T = T(�1, �2, ‖u0‖H1 , ‖u1‖L2 ) , then ‖v‖∗ ≤ R.
Moreover, observe that if we integrate both sides of (3.2) on M, we get

and hence,

It follows that

(3.3)

‖v‖∗ ≤ 2
�‖u0‖H1 + ‖u1‖L2

�
+ 2�1 �

T

0

������

�
eu

∫
M
eu

−
1

�M�

�������L2
ds

+ 2�2 �
T

0

������

�
e−u

∫
M
e−u

−
1

�M�

�������L2
ds.

�M

eu ≥ e⨏M u = eI and �M

e−u ≥ e− ⨏
M
u = e−I .

CT(��1� + ��2�) + CT��1�e−I max
s∈[0,T]

‖eu(s,⋅)‖L2 + CT��2�eI max
s∈[0,T]

‖e−u(s,⋅)‖L2 ,

(3.4)
‖eu(s,⋅)‖2

L2
= �M

e2u(s,⋅) = �M

e2(u(s,⋅)−u)e2I

≤ C exp

�
1

4� �M

�∇u(s, ⋅)�2
�
e2I ≤ Ce2Ie

1

4�
R2

,

‖e−u(s,⋅)‖2
L2

≤ Ce−2Ie
1

4�
R2

.

‖v‖∗ ≤ 2
�‖u0‖H1 + ‖u1‖L2

�
+ CT(��1� + ��2�) + CT(��1� + ��2�)e

1

8�
R2

=
2

3
R + CT(��1� + ��2�) + CT(��1� + ��2�)e

1

8�
R2

.

�2
t
v(s) = 0, for all s ∈ [0, T],

�tv(s) = �tv(0) = u1 = 0, for all s ∈ [0, T].
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Thus, for this choice of T we conclude that v ∈ BT.
Therefore, we can define a map

Step 2 We next prove that by taking a smaller T if necessary, F  is a contraction. Indeed, let 
u1, u2 ∈ BT be such that vi = F(ui), i = 1, 2 . Then, v = v1 − v2 satisfies

Hence, by Proposition 2.4 we have

For s ∈ [0, T] , we use the following decomposition,

Reasoning as before, the first term in the right-hand side of the latter estimate is bounded 
by

for some C > 0 , where we used the Hölder inequality. Moreover, we have

for some C > 0 . Using the latter estimate for the second term in (3.7) and the Sobolev 
inequality for the first term, we can bound (3.7) by

and hence

⨏M

v(s, ⋅) = ⨏M

v(0, ⋅) = ⨏M

u0 = I for all s ∈ [0, T].

F ∶ BT → BT , v = F(u).

{
�2
t
v − Δgv = �1

(
eu1

∫
M
eu1

−
eu2

∫
M
eu2

)
− �2

(
e−u1

∫
M
e−u1

−
e−u2

∫
M
e−u2

)
,

v(0, ⋅) = 0, �tv(0, ⋅) = 0.

(3.5)

‖v‖∗ ≤ 2�1 �
T

0

������

�
eu1

∫
M
eu1

−
eu2

∫
M
eu2

�������L2
ds

+ 2�2 �
T

0

������

�
e−u1

∫
M
e−u1

−
e−u2

∫
M
e−u2

�������L2
ds.

(3.6)

‖‖‖‖‖‖

(
eu1(s,⋅)

∫
M
eu1(s,⋅)

−
eu2(s,⋅)

∫
M
eu2(s,⋅)

)‖‖‖‖‖‖L2
≤ ‖‖‖‖‖

eu1 − eu2

∫
M
eu1

‖‖‖‖‖L2

+
‖‖‖‖‖
eu2

(∫
M
eu1 − ∫

M
eu2

)
(∫

M
eu1

)(∫
M
eu2

)
‖‖‖‖‖L2

.

(3.7)
Ce−I

���(u1(s, ⋅) − u2(s, ⋅))(e
1(s,⋅) + eu2(s,⋅))

���L2
≤ Ce−I‖u1(s, ⋅) − u2(s, ⋅)‖L4

�‖eu1(s,⋅)‖L4 + ‖eu2(s,⋅)‖L4
�
,

‖eui(s,⋅)‖4
L4

= �M

e4(ui(s,⋅)−u1(s))e4I ≤ Ce4I exp

�
1

� �M

�∇ui(s, ⋅)�2
�

≤ Ce4Ie
1

�
R2

, i = 1, 2,

Ce
1

4�
R2‖u1 − u2‖H1
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On the other hand, by using (3.4), the second term in (3.6) is bounded by

for some C > 0 , where in the last step, we used the Sobolev inequality.
In conclusion, we have

Similarly,

Finally, by the latter estimate, (3.8) and by (3.6), (3.5), we conclude that

Therefore, if T > 0 is taken sufficiently small, T = T(�1, �2, ‖u0‖H1 , ‖u1‖L2 ) , then F  is a 
contraction map. The latter fact yields the existence of a unique fixed point for F  , which 
solves (1.1) with initial conditions (u0, u1).

The same arguments with suitable adaptations show that the initial value problem (1.1) 
is locally well-posed, so we omit the details. The proof is completed. □

We next prove that if the two parameters in (1.1) are taken in a subcritical regime, 
then there exists a global solution to the initial value problem associated with (1.1). To 
this end, we will exploit an energy argument jointly with the Moser–Trudinger inequal-
ity related to (1.2), see (2.2). For a solution u(t, x) to (1.1), we define its energy as

for t ∈ [0, T] . We point out that

where J�1,�2 is the functional introduced in (2.3). We first show that the latter energy is con-
served in time along the solution u.

(3.8)
�����
eu1 − eu2

∫
M
eu1

�����L2
≤ Ce

1

4�
R2‖u1 − u2‖H1 .

Ce−2I‖eu2(s,⋅)‖L2 �M

�u1(s, ⋅) − u2(s, ⋅)�
�
eu1(s,⋅) + eu2(s,⋅)

�

≤ Ce−2I‖eu2(s,⋅)‖L2
�‖eu1(s,⋅)‖L2 + ‖eu2(s,⋅)‖L2

�‖u1(s, ⋅) − u2(s, ⋅)‖L2
≤ Ce

1

4�
R2‖u1(s, ⋅) − u2(s, ⋅)‖H1 ,

������

�
eu1(s,⋅)

∫
M
eu1(s,⋅)

−
eu2(s,⋅)

∫
M
eu2(s,⋅)

�������L2
≤ Ce

1

4�
R2‖u1(s, ⋅) − u2(s, ⋅)‖L2 .

������

�
e−u1(s,⋅)

∫
M
e−u1(s,⋅)

−
e−u2(s,⋅)

∫
M
e−u2(s,⋅)

�������L2
≤ Ce

1

4�
R2‖u1(s, ⋅) − u2(s, ⋅)‖L2 .

‖v‖∗ ≤ CT(��1� + ��2�)e
1

4�
R2‖u1(s, ⋅) − u2(s, ⋅)‖H1

≤ CT(��1� + ��2�)e
1

4�
R2‖u1 − u2‖∗ .

(3.9)E(u(t, ⋅)) =
1

2 ∫M

(|�tu|2 + |∇u|2) − �1 log∫M

eu−u − �2 log∫M

e−u+u,

E(u(t, ⋅)) =
1

2 ∫M

|�tu|2 + J�1,�2 (u(t, ⋅)),
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Lemma 3.1 Let �1, �2 ∈ ℝ and let (u0, u1) ∈ H1(M) × L2(M) be such that ∫
M
u1 = 0 . Let 

u ∈ CT (H
1) ∩ C1

T
(L2) , for some T > 0 , be a solution to (1.1) with initial data (u0, u1) and 

let E(u) be defined in (3.9). Then, it holds

Proof We will show that

We have

After integration by parts, the first two terms in the right-hand side of the latter equation 
give

where we have used the fact that u satisfies (1.1). Plugging the latter equation into (3.10), 
we readily have

since ∫
M
u(t, ⋅) = ∫

M
u0 for all t ∈ [0, T] , see Theorem 1.1. This concludes the proof. □

We can now prove the global existence result for (1.1) in the subcritical regime 
𝜌1, 𝜌2 < 8𝜋.

Proof of  Theorem  1.3 Suppose 𝜌1, 𝜌2 < 8𝜋 . Let (u0, u1) ∈ H1(M) × L2(M) be such that 
∫
M
u1 = 0 and let u be the solution to (1.1) with initial data (u0, u1) obtained in Theo-

rem 1.1. Suppose that u exists in [0,T0) . With a little abuse of notation, C([0, T0);H1) will 
be denoted here still by CT0

(H1) . Analogously, we will use the notation C1
T0
(L2) . We have 

that u ∈ CT0
(H1) ∩ C1

T0
(L2) satisfy

We claim that

for some C > 0 depending only on �1, �2 and (u0, u1) . Once the claim is proven, we can 
extend the solution u for a fixed amount of time starting at any t ∈ [0, T0) , which in particu-
lar implies that the solution u can be extended beyond time T0 . Repeating the argument, we 
can extend u for any time and obtain a global solution as desired.

Now, we shall prove (3.11). We start by recalling that the energy E(u(t, ⋅)) in (3.9) is 
conserved in time, see Lemma 3.1, that is,

E(u(t, ⋅)) = E(u(0, ⋅)) for all t ∈ [0,T].

�tE(u(t, ⋅)) = 0 for all t ∈ [0, T].

(3.10)�tE(u(t, ⋅)) = �M

(�tu)
�
�2
t
u
�
+ �M

⟨∇�tu,∇u⟩ − �1

∫
M
eu�tu

∫
M
eu

+ �2

∫
M
e−u�tu

∫
M
e−u

.

�M

(�tu)
(
�2
t
u − Δgu

)
= �M

�tu

(
�1

(
eu

∫
M
eu

−
1

|M|

)
− �2

(
e−u

∫
M
e−u

−
1

|M|

))
,

�tE(u(t), ⋅) =
�2 − �1

|M| ∫M

�tu =
�2 − �1

|M| �t

(
∫M

u

)
= 0 for all t ∈ [0, T],

�2
t
u − Δu = �1

(
eu

∫
M
eu

−
1

|M|

)
− �2

(
e−u

∫
M
e−u

−
1

|M|

)
on [0,T0) ×M.

(3.11)‖u‖CT0
(H1) + ‖�tu‖CT0

(L2) ≤ C,
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Suppose first �1, �2 ∈ (0, 8�) . By the Moser–Trudinger inequality (2.2), we have

where C > 0 is independent of u(t, ⋅) . Observe moreover that by the Jensen inequality, it 
holds

Therefore, letting � = max{�1, �2} we have

for t ∈ [0, T0) , where C > 0 is independent of u(t, ⋅) . Finally, since 𝜌 < 8𝜋 and by using 
(3.12), we deduce

where C > 0 is independent of u(t, ⋅).
On the other hand, to estimate ‖u(t, ⋅)‖L2 we recall that ∫

M
u(t, ⋅) = ∫

M
u0 for all 

t ∈ [0, T0) , see Theorem 1.1, and use the Poincaré inequality to get

where C > 0 is independent of u(t, ⋅) . By the latter estimate and (3.14), we readily have 
(3.11).

Suppose now one of �1, �2 ’s is not positive. Suppose without loss of generality �1 ≤ 0 . 
Then, recalling (3.13) and by using the standard Moser–Trudinger inequality (2.1) we have

Reasoning as before, one can get (3.11).
Finally, suppose �1, �2 ≤ 0 . In this case, we readily have

(3.12)E(u(t, ⋅)) = E(u(0, ⋅)) for all t ∈ [0, T0).

8�

(
log�M

eu(t,⋅)−u(t) + log�M

e−u(t,⋅)+u(t)
)

≤ 1

2 �M

|∇u(t, ⋅)|2 + C, t ∈ [0, T0),

(3.13)log�M

eu(t,⋅)−u(t) ≥ 0, log�M

e−u(t,⋅)+u(t) ≥ 0, t ∈ [0,T0).

(3.14)

E(u(t, ⋅)) ≥ 1

2 �M

(|�tu(t, ⋅)|2 + |∇u(t, ⋅)|2)

− �

(
log�M

eu(t,⋅)−u(t) − log�M

e−u(t,⋅)+u(t)
)

≥ 1

2 �M

(|�tu(t, ⋅)|2 + |∇u(t, ⋅)|2) − �

16� �M

|∇u(t, ⋅)|2 − C�,

1

2

�
1 −

�

8�

��‖�tu(t, ⋅)‖2L2 + ‖∇u(t, ⋅)‖2
L2

�

≤ 1

2 �M

�
��tu(t, ⋅)�2 +

�
1 −

�

8�

�
�∇u(t, ⋅)�2

�

≤ E(u(t, ⋅)) + C� = E(u(0, ⋅)) + C�,

‖u(t, ⋅)‖L2 ≤ ‖u(t, ⋅) − u(t)‖L2 + ‖u(t)‖L2 ≤ C‖∇u(t, ⋅)‖L2 + Cu(t)

= C‖∇u(t, ⋅)‖L2 + Cu0,

E(u(t, ⋅)) ≥ 1

2 �M

(|�tu(t, ⋅)|2 + |∇u(t, ⋅)|2) − �2 log�M

eu(t,⋅)−u(t)

≥ 1

2 �M

(
|�tu(t, ⋅)|2 +

(
1 −

�2

8�

)
|∇u(t, ⋅)|2

)
− C�2.
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which yields (3.11). The proof is completed.□

Remark 3.2 For what concerns the wave equation associated with the Toda system (1.7), 
we can carry out a similar argument to deduce the global existence result in Theorem 1.7. 
Indeed, for a solution � = (u1,… , un) to (1.7) we define its energy as

where (aij)n×n is the inverse matrix A−1
n

 of An . Analogous computations as in Lemma 3.1 
show that the latter energy is conserved in time, i.e.,

To prove the global existence in Theorem 1.7 for 𝜌i < 4𝜋 , i = 1,… , n , one can then follow 
the argument of Theorem 1.3 jointly with the Moser–Trudinger inequality associated with 
the Toda system (1.9), see (2.5).

3.2  Blow‑up criteria

We next consider the critical/supercritical case in which �i ≥ 8� for some i. The fact that 
the solutions to (1.2) might blow up makes the problem more delicate. By exploiting the 
analysis introduced in [6], in particular the improved version of the Moser–Trudinger ine-
quality in Proposition 2.1 and the concentration property in Proposition 2.2, we derive the 
following general blow-up criteria for (1.1). We stress that this is new for the wave mean 
field equation (1.4) as well.

Proof of Theorem 1.4 Suppose �i ≥ 8� for some i. Let (u0, u1) ∈ H1(M) × L2(M) be such 
that ∫

M
u1 = 0 and let u be the solution of (1.1) obtained in Theorem 1.1. Suppose that u 

exists in [0,T0) for some T0 < +∞ and it cannot be extended beyond T0 . Then, we claim 
that there exists a sequence tk → T−

0
 such that either

Indeed, suppose this is not the case. Recall the definition of E(u) in (3.9) and the fact that 
it is conserved in time (3.12). Recall moreover that ∫

M
u(t, ⋅) = ∫

M
u0 for all t ∈ [0, T0) , see 

Theorem 1.1. Then, we would have

E(u(0, ⋅)) = E(u(t, ⋅)) ≥ 1

2 �M

(|�tu(t, ⋅)|2 + |∇u(t, ⋅)|2),

E(�(t, ⋅)) =
1

2 ∫M

n�
i,j=1

aij
�
(�tui)(�tuj) + ⟨∇ui,∇uj⟩

�
−

n�
i=1

�i log∫M

eui−ui ,

E(�(t, ⋅)) = E(�(0, ⋅)) for all t ∈ [0, T].

(3.15)lim
k→∞∫M

eu(tk ,⋅) = +∞ or lim
k→∞∫M

e−u(tk ,⋅) = +∞.
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for some C > 0 depending only on �1, �2 and (u0, u1) . Thus, we can extend the solution u 
beyond time T0 contradicting the maximality of T0 . We conclude (3.15) holds true. Now, 
since u(t) is constant in time, the Moser–Trudinger inequality (2.1) yields

This concludes the first part of Theorem 1.4.
Finally, suppose �1 ∈ [8m1�, 8(m1 + 1)�) and �2 ∈ [8m2�, 8(m2 + 1)�) for some 

m1,m2 ∈ ℕ , and let tk be the above defined sequence. Next, we take �̃�i > 𝜌i such that 
�̃�i ∈ (8mi𝜋, 8(mi + 1)𝜋), i = 1, 2 , and consider the following functional as in (2.3),

Since �̃�i > 𝜌i, i = 1, 2 and since E(u(ti, ⋅)) , u(t) are preserved in time, we have

for k → +∞ , where we used (3.15). Then, by the concentration property in Proposi-
tion 2.2 applied to the functional J�̃�1,�̃�2 , for any 𝜀 > 0 we can find either some m1 points 
{x1,… , xm1

} ⊂ M such that, up to a subsequence,

or some m2 points {y1,… , ym2
} ⊂ M such that

This finishes the last part of Theorem 1.4.□

Remark 3.3 The general blow-up criteria in Theorem  1.8 for the wave equation associ-
ated with the Toda system (1.7) in the critical/super critical regime �i ≥ 4� are obtained 

1

2 �M

(|�tu(t, ⋅)|2 + |∇u(t, ⋅)|2)

= E(u(t, ⋅)) + �1 log�M

eu(t,⋅)−u(t) + �2 log�M

e−u(t,⋅)+u(t)

≤ E(u(t, ⋅)) + (�2 − �1)u(t) + C

= E(u(0, ⋅)) + (�2 − �1)u(0) + C

≤ C for all t ∈ [0, T0),

(3.16)lim
k→∞

‖∇u(tk, ⋅)‖L2 = +∞.

J�̃�1,�̃�2 (u) =
1

2 ∫M

|∇u|2 − �̃�1 ∫M

eu−u − �̃�2 ∫M

e−u+u.

J�̃�1,�̃�2 (u(tk, ⋅)) = E(u(tk, ⋅)) −
1

2 �M

|𝜕tu(t, ⋅)|2

− (�̃�1 − 𝜌1) log�M

eu(tk ,⋅)−u(tk ,⋅) − (�̃�2 − 𝜌2) log�M

e−u(tk ,⋅)+u(tk ,⋅)

≤ E(u(0, ⋅)) + (�̃�1 − 𝜌1)u(0) − (�̃�2 − 𝜌2)u(0)

− (�̃�1 − 𝜌1) log�M

eu(tk ,⋅) − (�̃�2 − 𝜌2) log�M

e−u(tk ,⋅) → −∞,

lim
k→+∞

∫
∪
m1
l=1

Br(xl)
eu(tk ,⋅)

∫
M
eu(tk ,⋅)

≥ 1 − �,

lim
k→+∞

∫
∪
m2
l=1

Br(yl)
e−u(tk ,⋅)

∫
M
e−u(tk ,⋅)

≥ 1 − �.
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similarly. More precisely, one has to exploit the conservation of the energy of solutions to 
(1.7), see Remark 3.2, and the concentration property for the Toda system (1.9) in Proposi-
tion 2.3.
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