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Abstract. Knowing the relationship between the stiffness modulus and the empirical 
mechanical characteristics of asphalt concrete, road engineers may predict the expected results 
of costly laboratory tests and save both time and financial resources in the mix design phase. In 
fact, such a model would make it possible to assess a priori whether the stiffness of a specific 
mixture, characterised in the laboratory only by the common Marshall test, is suitable for the 
level of service required by the road pavement under analysis. In this study, 54 Marshall test 
specimens of high modulus asphalt concrete were prepared and tested in the laboratory to 
determine an empirical relationship between the stiffness modulus and Marshall stability by 
means of shallow artificial neural networks. Part out of these mixtures was characterised by 
different types of bitumen (20/30 or 50/70 penetration grade) and percentages of used 
reclaimed asphalt (RAP at 20% or 30%); a polymer modified bitumen was used in the 
preparation of the remaining Marshall test specimens, which do not contain RAP. For the 
complex and laborious identification of the neural model hyperparameters, which define its 
architecture and algorithmic functioning, the Bayesian optimization approach has been 
adopted. Although the results of this methodology depend on the predefined hyperparameters 
variability ranges, it allows an unbiased definition of the optimal neural model characteristics 
to be performed by minimizing (or maximizing) a loss function. In this study, the mean square 
error on 5 validation folds was used as a loss function, in order to avoid a poor performance 
evaluation due to the small number of samples. In addition, 3 different neural training 
algorithms were applied to compare results and convergence times. The procedure presented in 
this study is a valuable guide for the development of predictive models of asphalt concretes' 
behaviour, even for different types of bitumen and aggregates considered here. 

1.  Introduction 
In the Czech Republic, high-modulus asphalt concrete mixtures (specified in the Czech Republic 
under the abbreviation “VMT”) have been in use since 2001. Their initial introduction was promoted 
by an extensive research project commissioned by the Ministry of Transportation, known under the 
project title “New Generation of Asphalt Pavements” (AVNG) which was realized by a large expert 
team 20 years ago. The starting point was a collection of practical findings and experience with the 
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application of such type of mixture in France starting from the early 1990s where the mixtures were 
originally referred to as EME (Enrobés à Module Élevé). The initial development of the mixtures in 
France was followed by a number of studies and practical implementations in other countries, where 
the mixtures gradually established themselves under the term HMAC (High Modulus Asphalt 
Concrete). 

In the first stage, the original EME concept was based primarily on high stiffness values and 
excellent resistance to rutting while, at the time, the French approach distinguished several classes of 
mixtures: a higher stiffness modulus was required for base layers and a lower stiffness (𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 = 11,000 
MPa) applied to binder layers. It shall be pointed out that the French modulus characteristics have 
been and still are, in compliance with the EN 12697-26 test standard, most often determined by the 4-
point beam test or by direct tensile stress test. This can be a factor complicating a comparison of the 
original French limits to the limits introduced in the Czech Republic by technical specifications TP 
151 (Technical Specifications of the Ministry of Transportation for High-Modulus Asphalt Mixtures). 
The minimum required values there are tested either by 2-point test on trapezoidal test specimens or 
by indirect tensile test on cylindrical specimens. Even in this case, both tests do not provide on one 
mixture at the same temperature identical stiffness value. 

In the Czech republic the HMAC mixtures are distinguished from common asphalt concrete 
mixtures primarily by a more restricted grading curve range in comparison to ACbin or ACbase of same 
maximum particle size, more stringent requirements for air voids content (3-5%-vol. for type testing 
and 2.5-6.0%-vol. for control testing), different requirements for the content of soluble bituminous 
binder (4.2-5.4% by mass for HMAC 22 and 4.4-5.6% by mass for HMAC 16) and, first and foremost, 
by the required minimum stiffness determined at 15°C; i.e. criterion 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 = 9,000 MPa. For long-life 
pavement concepts additionally fatigue criterion is set with min. Ɛ6 = 125. Recently the discussion 
was raised to introduce the fatigue parameter also to HMAC variants if their stiffness at 15°C is larger 
than 13,500 MPa and there is a potential risk of limited fatigue life. The performance related 
behaviour is further defined by the minimum required water susceptibility ratio, ITSR ≥ 80%, and by 
resistance to permanent deformation which is tested on a small device in air bath at 50°C according to 
EN 12697-22 (wheel tracking test). In this case, the key parameters and their required maximum 
values are PRDAIR = 3.0% and WTSAIR = 0.05 mm/103 cycles. For HMAC mixtures different types if 
bituminous binders can be used. The most common are paving grades and hard paving grades like 
20/30 or 15/25 as well as modified binders PMB 25/55-60 (-65) or PMB 10/45-60. It is allowed to use 
also multi-grade bituminous binders as defined by EN 13924-2. Similarly, concepts for warm mix 
asphalt can be used, whereas the so far most commonly applied solution was by doping either the 
bitumen or the asphalt mixture by fatty acid amides (e.g. Licomont) since such solution improves the 
resistance to permanent deformation and increases stiffness. Experimental tests were done with using 
crumb rubber modified bitumen as well, nevertheless, this option is still under extensive expert 
discussion. With respect to reclaimed asphalt (RA), it is allowed according to TP 151 to substitute up 
to 30% aggregates by RA. Regularly up to 15% are used and introduced to the mixture by cold 
batching. If higher content is targeted double coated drum or parallel drum needs to be used on 
a mixing plant. For higher RA contents, rejuvenators are usually used in recent years or hard paving 
grade is replaced by 50/70 bitumen. Such solutions have been successfully introduced to some 
motorway projects in the last two years. 

In order to optimize the composition of a bituminous mixture, computational approaches could be 
useful, especially to avoid further expensive tests, with respect to the minimum necessary for the mix 
design. The possibility of using constitutive models to numerically simulate the mechanical behaviour 
of materials has been already investigated [1] and some attempts have been made by means of 
artificial intelligence, mainly with respect to conventional asphalt concretes [2]. 
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This article fits into the latter context and tries to identify an efficient procedure for modelling the 
stiffness of asphalt mixes, even of the high modulus type, with and without RAP, by means of the 
Marshall stability and some categorical variables (necessary to identify the type of mix). 

2.  Description of tested asphalt mixtures 
In the present study, a set of 18 variants of HMAC mixtures was used. Many of these mixtures were 
produced as a regular product by mixing plants, some are part of further developments or 
optimizations. Mixtures containing either paving grade or modified binders are represented, in two 
cases WMA concept was used and, in many cases, HMAC contained 20-30% reclaimed asphalt. This 
covers most of the options which are technically allowed and are used in practice. Test specimens used 
for further assessments were compacted by 2x75 blows using Marshall hammer. 

Table 1. Volumetric properties and mechanical characteristic of HMAC variants (mean values on 3 
specimens) 

Asphalt mix 
Bitumen 

Bulk 
density  

Maximum 
density 

Voids 
content 

Marshall 
Stability 

Marshall 
deformation 

Marshall 
stiffness 

Stiffness 
at 15°C 

VMT (ID) g/cm3 g/cm3 % kN 0.1 mm kN/mm MPa 
Standard asphalt concretes: 
30RA_F-A 20/30 2.447 2.640 7.3% 21.9 32 0.69 15,474 
30RA_F-B 20/30 2.456 2.647 7.2% 20.9 45 0.47 14,944 
30RA_F-C 20/30 2.478 2.663 7.0% 24.3 24 1.00 15,654 
20RA_F-1 20/30 2.464 2.676 7.9% 20.4 43 0.51 13,157 
20RA_F-2 20/30 2.476 2.682 7.7% 20.5 49 0.42 12,601 
20RA_F-4 20/30 2.454 2.678 8.4% 24.0 43 0.60 15,371 
20RA_F-6 20/30 2.418 2.667 9.3% 23.1 32 0.73 12,344 
30RA_F-D 50/70 2.546 2.617 2.7% 20.5 57 0.38 12,691 
30RA_F-E1 50/70 2.537 2.607 2.7% 20.8 55 0.37 13,081 
30RA_F-E2 50/70 2.545 2.602 2.2% 19.0 61 0.32 13,539 
30RA_F-F 50/70 2.550 2.626 2.9% 21.7 52 0.42 16,081 
20RA_F-5 50/70 2.482 2.639 6.0% 21.0 38 0.56 13,037 
20RA_P-A 50/70 2.410 2.496 3.4% 13.1 50 0.26 8,622 
NT_Lic_1 20/30 2.394 2.490 3.9% 19.0 51 0.37 14,580 
NT_Lic_2 20/30 2.302 2.490 7.6% 17.2 76 0.23 14,842 
PMB-modified asphalt concretes:  
SK-1 25/55-60 2.361 2.436 3.1% 20.5 68 0.30 10,675 
SK-2 25/55-60 2.364 2.436 3.0% 17.9 30 0.60 6,444 
NT_Lic_1_M 25/55-60 2.358 2.465 4.3% 19.2 101 0.19 9,875 

For each variant bulk density and maximum density was determined according to EN 12697-5 and 
-6. Based on this air voids content was calculated. Soluble bitumen content was determined as well to 
define basic empirical characteristics which could be used for neural network analysis and learning. 
From the perspective of mechanical and deformation characteristics, it was decided to focus on 
Marshall test parameters (Marshall stability, Marshall Flow and Marshall stiffness) as defined by EN 
12697-34. The test was done after conditioning the test specimens in a water bath of 60°C. Mainly 
Marshall stability and Marshall stiffness were compared to stiffness determined according to EN 
12697-26, method C (indirect tensile test on cylindrical test specimens), performed at 15°C as 
a standard test temperature required in the Czech Republic. For this test, a common universal testing 
machine was used and the resulting stiffness is based on 5 test cycles applied for two directions on test 
specimen with a rising time of 124 ms. 
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Volumetric properties and Marshall test results are summarized in Table 1. With respect to voids 
content variants produced on asphalt mixing plants where samples were taken for control testing fulfil 
the limits given by the interval for control testing. Only the sample VMT NT_Lic_2 which test 
specimens were compacted at 130°C as an extreme check for a potential drop in working temperature 
since it was a WMA variant, it showed that the limiting temperature is most probably rather between 
140-150°C. With respect to used hard paving grade (20/30) and the typical potentials of the used fatty 
acid amid, this result is not surprising. For many options of VMT 30RA F or VMT 20RA F, the voids 
content levels were either too high (> 6,0%-vol.) or too low (< 2,5%-vol.). Since for defining the 
possible functionality between stiffness and Marshall test parameters not only the ideal values are 
important but dissonant results (with respect to voids content) may help to identify the sensitivity of 
such functionality, these variants were tested and included in the study as well. 

Results for HMAC mixtures containing RA show the challenge to find appropriate balance 
between the grading curve limits, bitumen content, possible variations of degraded bitumen content in 
RAP and voids content. In several cases, it was shown that higher voids content results in high 
stiffness values. In some cases, the bitumen content played in this respect nearly no role (compare e.g. 
options VMT 30RA F-A to F-C). On the other hand, if the voids content was very low (e.g. options 
VMT 30RA F-D to F-F) the impact of receiving significantly lower stiffness was not true. These both 
sets of experimentally designed HMACs are characterized by higher reclaimed asphalt content which 
seems to have a dominant impact. The difference in stiffness values can be given by the used paving 
grades (hard grade for the first set and typical 50/70 paving grade for the second set). In the first set 
additionally, the reason for higher voids content can be due to the compaction temperature which was 
160-165°C. In the case of combining RA and hard paving grade, it can be even possible that the 
compaction temperature needs to be a bit higher. The results for VMT 20RA F-1 to F-6 provide 
a similar resume. Of course, there might be another aspect which needs to be considered, especially if 
comparing VMT 20RA F-5 and VMT 20RA P-A. In this case, the same concept for mix composition 
was used with the only difference in bitumen content which was by 0.4% lower for the latter mixture. 
The voids content in these two cases fulfils the criteria given in TP 151, but the stiffness values have 
a difference of 4,500 MPa. One aspect might be the used aggregates, since the first mix contains 
granitic porphyry and the latter mix uses spilite aggregate which might be a little bit softer than the 
first one. Heterogeneity of reclaimed asphalt is another aspect since it is received from various 
pavements and their wearing and binder courses (or even asphalt based courses). For the neuronal 
network analysis aspect of aggregate type and reclaimed asphalt origin were not considered, for the 
future maybe they will need to be reflected as well. 

If looking on the bitumen content for all 18 assessed HMAC variants, the received values are 
within the range as required by the specification TP 151. Most of the variants are even in a range of 
4.5 to 5.0% by mass resulting in a very small difference in bitumen content. Marshall test 
characteristics do not provide any clear trends. Since this test and its characteristics are not required as 
a standard parameter for HMAC it is even not possible to compare it with some limiting threshold 
values. In specifications TP 151, it is only stated that Marshall stability and Marshall flow can be 
taken as the first indication before stiffness according to EN 12697-26 is determined. In this case and 
only for paving grades, multi-grade bitumen and hard paving grades the specifications state that if 
Marshall stability is > 14 kN and Marshall flow is 20-50 0.1mm than it is highly probable that required 
stiffness will be reached as well. Therefore, in this study we focused on this functionality. 

Lastly, Table 1 provides data about stiffness. Only two mixtures showed lower values than the 
minimum requirement from the specification TP 151 – variant VMT 20RA_P-A and VMT SK-2. For 
the later, the value is very low. On the other hand, usually for HMACs with PMB 25/55-60, it is 
challenging to exceed the limit of 9,000 MPa due to the elastic behaviour of this polymer modified 
binder and several optimizations and modifications of the grading curve or even used aggregate are 
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needed. On the contrary for base layers especially if extended lifetime would be expected such 
behaviour and limited stiffness might be more positive. 

3.  Theory and calculations 

3.1. Artificial Neural Networks (ANNs) 
ANNs are mathematical models that aim to explain the information processing scheme happening in 
biological systems [3,4]. Towards the replication of the brain’s structure, an ANN is composed of sets 
of neurons which are connected together by weighted connections. Through these, neurons are capable 
of sending signals to each other in order to process information and ultimately produce an outcome. 
From the point of view of pattern recognition problems, ANNs are a general class of nonlinear 
parametric functions. In their simplest form, which is also referred as multi-layer perceptrons, neurons 
are arranged in multiple sequential layers. These, called hidden layers, are organized in a stack that 
lays between an input and an output layer. Artificial neurons are implemented as logistic regression 
models with nonlinear activation functions. Each of them is chained, through weighted and biased 
connections, to every neuron present in the previous layer of the network. During a training process, 
the connections are adjusted by means of a learning rule, in order to replicate the ground-truth output 
(target) associated with the input pattern (supervised learning). By increasing the number of hidden 
layers and/or the number of neurons, it is possible to control the complexity and the richness of the 
relations between input and output patterns. However, Shallow Neural Networks (SNNs), i.e. two-
layer perceptron networks, have been shown to solve arbitrarily well any multi-dimensional input-
output fitting problem by providing a sufficient number of neurons in its only hidden layer [5]. 

In the proposed SNN, the input layer consists of 2 neurons corresponding to the number of input 
features; the hidden layer is provided with 𝑁𝑁 neurons and passed to an exponential linear (𝐸𝐸𝐸𝐸𝐸𝐸), 
hyperbolic tangent (𝑡𝑡𝑡𝑡𝑡𝑡ℎ) or rectified linear (𝑅𝑅𝑅𝑅𝐸𝐸𝐸𝐸) activation unit; the output layer is realized with 1 
neuron and the identity function is considered as activation. The input parameters considered were the 
bitumen type, the percentage of RAP used and the Marshall Stability. The output evaluated was the 
stiffness modulus of the asphalt concrete. Before being inputted to the ANN, each feature contained in 
the feature vectors was standardized, i.e. the respective mean was subtracted and division by the 
respective standard deviation was applied. The same procedure was performed for the target feature 
vectors, where each target variable was subtracted by its mean and divided by its standard deviation 
computed. 

3.2. ANN optimization 
The ANNs’ weights and biases 𝑊𝑊 are learned with a supervised training phase. First, a forward pass of 
the network is performed, i.e. the feature vector is presented as an input layer of the network. The 
activation is obtained by the hidden layer and then the output of the network 𝒚𝒚� is computed. At this 
point, the backward pass is performed. 𝒚𝒚� is compared to the ground-truth vector 𝒚𝒚 by means of a loss 
function 𝐸𝐸(𝒚𝒚�,𝒚𝒚). Then, the backpropagation algorithm [3] is used to compute the gradients of the loss 
with respect to the parameters 𝑊𝑊. These are used in the learning rule to update the weights and biases 
of the network, i.e. 

 𝑊𝑊(𝑒𝑒) = 𝑊𝑊(𝑒𝑒−1) − 𝛼𝛼𝛼𝛼𝐸𝐸[𝑊𝑊(𝑒𝑒−1)], 𝑅𝑅 ∈ {0,⋯ ,𝐸𝐸 − 1} (1) 

where 𝑊𝑊(𝑒𝑒−1) are the parameters values at iteration 𝑅𝑅 − 1. 𝛼𝛼𝐸𝐸[𝑊𝑊(𝑒𝑒−1)] is the first order 
approximation of the gradients of the weights at time step 𝑡𝑡 and it is estimated by computing the 
derivative of 𝐸𝐸(⋅) with respect to 𝑊𝑊(𝑒𝑒−1). The process is repeated for a fixed number of iterations 𝐸𝐸, 
until the loss value is reduced to a minimum. 𝛼𝛼 is the learning rate and it is used to control the step 
size of the movement towards such point. After that the ANN is trained, the obtained weights and 
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biases are kept fixed while test patterns are processed just in the forward manner. In this work the 
Mean Squared Error (MSE) is considered as training loss 𝐸𝐸: 

 𝐸𝐸(𝒚𝒚(𝑑𝑑)� ,𝒚𝒚(𝑑𝑑))  =  ||𝒚𝒚(𝑑𝑑)� − 𝒚𝒚(𝑑𝑑)||22 (2) 

The aforementioned training process, with the update rule introduced in Equation 1, is known as 
Gradient Descent (GD). 

It is worth pointing out that the selection of the learning rate affects the performance of the GD 
algorithm: too small 𝛼𝛼 values determine very long convergence times, while too high values can make 
the algorithm unstable, deviating the solution from the absolute minimum. In order to improve 
convergence speed and quality of ANNs, different improvements have been proposed to this 
algorithm. Two heuristic methods have been shown to be effective for increased performance. The 
first referred as Variable Learning Rate Backpropagation (VLBP) [5,6], addresses the issue of 
choosing an appropriate learning rate for the steepest descent algorithm when the curvature of the 
error surface varies drastically over the parameters' space. In fact, a large learning rate may be taken in 
flat regions of the error surface, while a small learning rate may be appropriate when the curvature in 
a certain region is high. Therefore, convergence can be accelerated by varying the learning rate during 
the training course, according to the performance of the algorithm. The application of this method 
requires some changes in the training process: at each epoch, a comparison is performed between the 
squared error produced by the learning rate at the iteration 𝑅𝑅 − 1 and that at the current iteration 𝑅𝑅. If 
such error increases by more than a set percentage 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚, then the new weights and biases are 
discarded. In addition, the learning rate is multiplied by a reducing factor 𝛼𝛼𝑑𝑑𝑒𝑒𝑑𝑑. Otherwise (the error 
increases by less than 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚), the weight update is kept and the learning rate is unchanged. If the 
network error decreases at the iteration 𝑅𝑅, then the new weights and biases are accepted and the 
learning rate is multiplied by a factor of increase 𝛼𝛼𝑚𝑚𝑚𝑚𝑑𝑑. Obviously, the adoption of this method 
involves an increase in the number of the neural model’s parameters, compared to the only parameter 
required by the GD algorithm. The second advancement, Momentum Backpropagation (MOBP) [5,6], 
is a method to reduce the number of oscillations in the algorithm's trajectory to the minimum error. 
Basically, it is a low-pass filter that allows a network to overcome a shallow local minimum and to 
respond to recent trends in the error surface. Adding a first-order filter to Equation 1 leads to the 
following modification of the GD algorithm: 

 𝑊𝑊(𝑒𝑒) = 𝑊𝑊(𝑒𝑒−1) + 𝜇𝜇∆𝑊𝑊(𝑒𝑒−2) − 𝛼𝛼(1 − 𝜇𝜇)𝛼𝛼𝐸𝐸[𝑊𝑊(𝑒𝑒−1)], 𝑅𝑅 ∈ {0,⋯ ,𝐸𝐸 − 1} (3) 

where 𝜇𝜇∆𝑊𝑊(𝑒𝑒−2) is the previous (𝑅𝑅 − 2) weight update and 𝜇𝜇 the constant that defines the amount 
of momentum. 

The aforementioned strategies can be combined to produce a gradient descent algorithm with 
momentum and variable learning rate backpropagation. In this study, three optimization algorithms 
were employed to compute the optimal weights of the implemented ANN, that is: a standard gradient 
descent (hereafter referred to as traingd), a GD with adaptive learning rate (traingda) and a GD with 
momentum and variable learning rate (traingdx). 

3.3. ANN regularization 
Overfitting is the situation where a machine learning model fits too much the training data, with 
subsequent poor performance on testing data. To overcome such issues, different solutions have been 
introduced which are known as regularization techniques. In the current study setup, the early stopping 
procedure has been implemented. Such technique requires a random partition of the dataset into three 
subsets with predefined tasks: the training, validation and test. The first one allows the training loss to 
be computed, while the second one is used for monitoring the generalization error during the training 
phase. Since the validation error has to increase when the model overfits the data, the training process 
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stops when the validation error always increases during a number of iterations 𝛿𝛿 (assumed as network 
parameter), with respect to the training error. As a result, the ANN parameters are set at the minimum 
of the validation error. Finally, the test set is used on data never seen before to assess the model 
predictive skill. In this study, the validation and test datasets were composed of 16% and 20% of the 
original data respectively, while the remaining 64% makes the training dataset up. This dataset 
subdivision derives from the necessary application of a 5-fold cross-validation, followed by a partition 
of the training fold into the actual training sub-sets of 80% and the validation sub-set of 20%. 

3.4. K-fold cross validation 
To have a fair evaluation of the performance of the proposed model, the K-Fold Cross Validation was 
employed. This method suggests splitting the dataset of interest into k equally sized partitions referred 
as folds. 𝑘𝑘 experiments are run where each data fold is in turn considered as the test set, while the 
remaining 𝑘𝑘 − 1 folds are used to form the training fold. After the whole procedure is completed, 𝑘𝑘 
validation scores are obtained and their average value is given as the general performance of the 
model. In this way, the issue of having potentially biased performance results is avoided. Indeed, with 
a fixed training-test split, the achieved performance may not be actual due to the different distribution 
of training and test data. In the study setting, a K-Fold Cross Validation method with 𝑘𝑘 = 5 fold was 
implemented. 

3.5. Bayesian hyperparameters optimization 
Many machine learning models require a careful definition of different hyperparameters. This process 
is often considered an art as it requires time, expert knowledge and sometimes even brute force search. 
Standard methodologies include random or grid search that still requires a precise definition of 
parameters ranges and sampling strategies. To overcome these problems, an automatic 
hyperparameters search based on Bayesian methods have been introduced recently [7]. In Bayesian 
optimization, the goal is to find the minimum of a fusnction 𝑓𝑓(𝒙𝒙), where 𝒙𝒙 belongs to some bounded 
set 𝒳𝒳 ⊂ ℝ. Algorithms for this problem construct and continuously update a probabilistic model for 
𝑓𝑓(𝒙𝒙), which is exploited at the same time to make decisions about where in 𝒳𝒳 to next evaluate 𝑓𝑓(⋅). 
The work of Snoke et al. [7] provides a practical guide on how to use Bayesian optimization for 
searching machine learning models hyperparameters. The authors propose a framework based on the 
assumption that 𝑓𝑓(⋅) is drawn from a Gaussian Process (GP) prior [8]. During the optimization 
process, the framework maintains a posterior distribution for 𝑓𝑓(⋅) which is updated as the results of 
running the machine learning experiments with different hyperparameters are observed. To determine 
which hyperparameters 𝒙𝒙𝒏𝒏𝒏𝒏𝒙𝒙𝒏𝒏 ∈  𝒳𝒳 should be evaluated next during the optimization, an acquisition 
function 𝑡𝑡 ∶  𝒳𝒳 →  ℝ+ is employed by solving 𝒙𝒙𝒏𝒏𝒏𝒏𝒙𝒙𝒏𝒏 =  𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝒙𝒙𝑡𝑡(𝒙𝒙). Among the different existing 
definitions for 𝑡𝑡(⋅), the Expected Improvement (EI) [9] is perhaps the most popular method and has 
been shown to be efficient in the number of function evaluations required to find the global optimum 
of many multimodal black-box functions [10,11]. Such EI acquisition function evaluates the expected 
amount of improvement in 𝑓𝑓(⋅), ignoring the values that cause an increase. To escape a local 
minimum, the improvement proposed by Bull [11] allows the EI acquisition function to modify its 
behaviour when it estimates the over-exploitation of an area of the surface 𝑓𝑓(⋅). Thanks to this 
enhancement, such acquisition function is called Expected-Improvement-Plus (EIP). 

In the problem of interest, the function 𝑓𝑓(⋅) defined as 𝑓𝑓:𝑋𝑋𝑁𝑁 × 𝑋𝑋𝐴𝐴𝐴𝐴 × 𝑋𝑋𝛿𝛿 × 𝑋𝑋𝛼𝛼 × 𝑋𝑋𝐸𝐸 → [0,∞] has 
to be maximized when the traingd algorithm is used. Therefore, given the five hyperparameters 
𝑁𝑁,𝐴𝐴𝐸𝐸, 𝛿𝛿,𝛼𝛼,𝐸𝐸, the 𝑓𝑓(⋅) is a function that constructs an SNN with 𝑁𝑁 neurons in the hidden layer, 𝐴𝐴𝐸𝐸 as 
activation function and runs a 5-Fold Cross Validation experiment in which the SNN is trained for 𝐸𝐸 
iterations with learning rate 𝛼𝛼. Such training process is early stopped after 𝛿𝛿 consecutive validation 
fails. 𝑓𝑓(⋅) returns a single scalar that expresses the average mean squared error obtained by the SNN 
on the 5 test folds. The Bayesian optimization algorithm is run for 300 iterations. At each iteration, 
candidates are sampled by the posterior distribution with the EIP algorithm and given to 𝑓𝑓(⋅) to run an 
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experiment. The retrieved performance is then used to update the posterior distribution. Iteration by 
iteration, the underlined GP learns which are the best areas of the given hyperparameters ranges to 
sample from. The same procedure also applies to the traingda and traingdx algorithms. However, the 
number of hyperparameters to be set increases: in fact, the function 𝑓𝑓(⋅) has also to consider the 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚, 
𝛼𝛼𝑑𝑑𝑒𝑒𝑑𝑑, 𝛼𝛼𝑚𝑚𝑚𝑚𝑑𝑑 parameters for the adaptive variation of 𝛼𝛼 when traingda is applied and, in addition to 
these, the momentum constant 𝜇𝜇 when traingdx is used. 

In this work, the following ranges were defined for the hyperparameters to be optimized through 
the Bayesian methodology: the integer range 𝑋𝑋𝑁𝑁 = {4,⋯ ,40}, for the number of neurons in the hidden 
layer of the network; 𝑋𝑋𝐴𝐴𝐴𝐴 = {𝑡𝑡𝑡𝑡𝑡𝑡ℎ,𝑅𝑅𝑅𝑅𝐸𝐸𝐸𝐸,𝐸𝐸𝐸𝐸𝐸𝐸} is the set of activation layers to apply after the hidden 
layer; the integer range 𝑋𝑋𝛿𝛿 = {5,⋯ ,10}, for the maximum number 𝛿𝛿 of validation failures; the range 
𝑋𝑋𝛼𝛼 = [10−4, 10−2], for the learning rate 𝛼𝛼; the integer range 𝑋𝑋𝐸𝐸 = {500 ,⋯ , 5,000}, for the number 
of learning iterations; the range 𝑋𝑋𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = [1.03,1.15], for the maximum percentage of MSE increase 
(in VLBP); the range 𝑋𝑋𝛼𝛼𝑑𝑑𝑑𝑑𝑑𝑑 = [0.60,0.90], for the learning rate factor to decrease (in VLBP); the 
range 𝑋𝑋𝛼𝛼𝑖𝑖𝑖𝑖𝑑𝑑 = [1.03,1.15], for the learning rate factor to increase (in VLBP); the range 𝑋𝑋𝜇𝜇 =
[0.40,0.80], for the momentum constant (in MOBP). 

It is important to point out that all the source code required for this study was implemented in 
MATLAB. 

4.  Results and discussions 
Table 2 shows the results of the Bayesian optimization process for tuning the SNN model's 
hyperparameters. Firstly, the BO processes associated with the considered training algorithms led to 
the same network architecture, although these GD algorithms differ due to the enhancements described 
in Subsection 3.2: the optimal SNN is characterized by 27 neurons in the hidden layer and an 
activation layer with 𝑅𝑅𝑅𝑅𝐸𝐸𝐸𝐸 function. Regarding the optimized parameters of the training algorithms 
(Table 2), a direct comparison between the obtained results is not feasible, due to the implementations 
considered to modify the standard GD algorithm. However, a few considerations can be made: the 
traingdx algorithm performs 3 times more iterations to optimize network weights and bias; the 
enhanced GD algorithms are characterized by initial learning rates with the same order of magnitude 
(10−4); the adaptation parameters of alpha are different: the absolute value of the differences is 0.09 
for 𝛼𝛼𝑑𝑑𝑒𝑒𝑑𝑑, 0.08 for 𝛼𝛼𝑚𝑚𝑚𝑚𝑑𝑑 (quite large compared to its variability range) and 0.01 for 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚; finally, 
traingdx algorithm is sufficiently sensitive to the local gradient, thanks to the optimized 𝜇𝜇 of 0.75, to 
ignore small features in the error surface. 

Table 2. Bayesian optimization results 
GD 

Algorithms 𝑁𝑁 𝐴𝐴𝐸𝐸 E 𝛿𝛿 𝛼𝛼 𝛼𝛼𝑑𝑑𝑒𝑒𝑑𝑑  𝛼𝛼𝑚𝑚𝑚𝑚𝑑𝑑 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 𝜇𝜇 

traingd 27 𝑅𝑅𝑅𝑅𝐸𝐸𝐸𝐸 1,304 6 6.40e-3 - - - - 
traingda 27 𝑅𝑅𝑅𝑅𝐸𝐸𝐸𝐸 1,273 10 8.26e-4 0.70 1.06 1.03 - 
traingdx 27 𝑅𝑅𝑅𝑅𝐸𝐸𝐸𝐸 4,298 10 9.59e-4 0.61 1.14 1.04 0.75 

The average error on the 5 folds scored differently between the three optimal models (Figure 1), as 
expected: the standard GD algorithm had the highest MSE-score of 0.02203, while the learning rate's 
adaptive variation (implemented in traingda) during the training course improved performance by 
8.6% compared to traingd, scoring 0.02013. The lowest value of the mean square error, equal to 
0.01906 (Figure 1), was reached by the SNN trained by means of the GD algorithm with momentum 
and adaptive learning rate backpropagation. In particular, traingdx resulted in 13.5% improvement 
over traingd and 5.3% over traingda. Therefore, the VLBP and MOBP heuristic methods have 



WMCAUS 2020
IOP Conf. Series: Materials Science and Engineering 960 (2020) 022083

IOP Publishing
doi:10.1088/1757-899X/960/2/022083

9

 
 
 
 
 
 

improved the quality of the neural model, overcoming the limits of the standard GD algorithm, which 
probably ran into a local minimum. 

It is worth pointing out that performance also depends on the variability ranges, fixed by the 
research engineer, for the hyperparameters to be optimized. However, the ranges set in this study 
provided a sufficiently large searching domain, as shown by the shape of the error surface. Looking at 
the graphs in Figure 1, the loss function has assumed, in the 300 iterations of the BO process, values 
ranging from 10−2 to 100 as an order of magnitude. However, the higher number of scores below the 
performance level 0.1 suggests that the error surface is characterized by a wide lightly tilted region 
(where MSE-scores vary gradually) that becomes steeper in some areas of the solution space (typically 
at one or more of the domain edges), scoring values close to or above the unit. This result reveals the 
presence, within the domain, of hyperparameter's combinations not suitable for the case study, due to 
the use of wide ranges for one or more of the model parameters. Therefore, the performance of the 
optimal BO models in terms of an average error on the 5 folds is not affected by the limits imposed on 
the variability of the hyperparameters. 

 
Figure 1. Average MSE-scores on the 5 test folds for the 300 iterations of the 3 algorithms 

Further consideration should be made on the graphs in Figure 1: the MSE-scores take a downward 
trend, i.e. the Bayesian optimizer found network configurations with progressively better performance. 
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However, when the trend seems to stabilize and no new minimum is found (the Bayesian optimizer 
identified a region of the searching space, near the optimum, where the test error does not change 
significantly), the squared error suddenly increases. This happens due to the improvement proposed by 
Bull [11] to the EI acquisition function: the EIP function estimated an over-exploration of a specific 
area of the error surface and moved elsewhere, randomly selecting a new combination of 
hyperparameters 

With regard to computational times, it is important to report that the first attempt values of the 
hyperparameters were randomly chosen by the Bayesian optimizer within their variability ranges, as 
a suitable combination for all considered models was impossible to identify (due to the different 
number of hyperparameters that characterize them). Therefore, the three BO processes reached the 
optimum at different iterations, as shown in Figure 1. 

Despite the variability of the data set, justified by the use of mixtures with very different 
characteristics, the optimal BO model gives satisfactory results on all the 5 folds in terms of Pearson 
coefficient (𝑅𝑅) scores. In fact, in the worst case (fold n°3), the 𝑅𝑅-score was 0.86827, while in the best 
case (fold n°1), the scored value was 0.97944. Averaging the results over the 5 folds, the predictive 
skills of the proposed SNN model can be properly evaluated: 

 𝑅𝑅𝑘𝑘−𝑓𝑓𝑓𝑓𝑓𝑓𝑑𝑑 = (0.97944 + 0.97698 + 0.86827 + 0.97564 + 0.90441) 5⁄ = 0.94095 (4) 

5.  Conclusions 
The main purpose of this study was to implement and apply a novel procedure, based on several well-
established methodologies, for the determination of a reliable correlation between stiffness modulus 
and Marshall stability of asphalt concretes. In particular, the case study involved a set of 18 variants of 
HMAC mixtures, prepared with different types of bitumen and RAP percentages. The application of 
the ANNs required the evaluation of several network structures that had to be built by setting the 
model hyperparameters. The Bayesian optimization has provided a computationally-effective 
technique for solving time-consuming model selection problems. The shallow neural network that best 
fits the experimental data is characterized by 27 neurons in the hidden layer, 𝑅𝑅𝑅𝑅𝐸𝐸𝐸𝐸 as activation 
function and is trained by the gradient descent algorithm with momentum and variable learning rate 
backpropagation (traingdx) for 𝐸𝐸 = 4,298 iterations with an initial learning step size 𝛼𝛼 = 9.59e-4. Such 
training process is early stopped after 𝛿𝛿 = 10 consecutive validation fails. The adaptation parameters 
of 𝛼𝛼 are set to 0.61 for 𝛼𝛼𝑑𝑑𝑒𝑒𝑑𝑑, 1.14 for 𝛼𝛼𝑚𝑚𝑚𝑚𝑑𝑑 and 1.04 for 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚. 

The procedure presented in this study was explained in detail to give the reader an opportunity to 
replicate it. In fact, this procedure still stands for the development of any predictive model of the 
asphalt concretes' mechanical behaviour, even for mixtures different from those considered here. 
Although ANNs allow for satisfactory results, such approaches do not offer the possibility to follow 
directly the internal training process and to understand the physical meaning of the model factors. For 
this reason, they are sometimes referred to as “black box” methods. Furthermore, it is worth pointing 
out that this study did not consider the effect of aggregate gradation and bitumen content on the 
results. For future developments, it is recommended to study this effect by integrating new input 
variables. 
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