# CHEMISTRY A European Journal 

## Supporting Information

© Copyright Wiley-VCH Verlag GmbH \& Co. KGaA, 69451 Weinheim, 2014

# Synthesis and Analysis of the Conformational Preferences of 5-Aminomethyloxazolidine-2,4-dione Scaffolds: First Examples of $\boldsymbol{\beta}^{\mathbf{2}}$ - 

 and $\boldsymbol{\beta}^{2,2}$-Homo-Freidinger Lactam AnaloguesArianna Greco, Sara Tani, Rossella De Marco,* and Luca Gentilucci* ${ }^{*[a]}$
chem_201402519_sm_miscellaneous_information.pdf


## Table of contents

Plausible reaction pathway for the synthesis of Amo-peptides $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . \ldots$................... p2
VT-NMR experiments for $\mathbf{3 a}, \mathbf{3 b}, \mathbf{3 c}, \mathbf{3 f}, \mathbf{5}$, in $\mathrm{CDCl}_{3}$
p. S3

Circular dichroism of 3d, 3d, 10a, and 10b in DCM $\ldots \ldots \ldots$........................ 33

Variation of NH chemical shift of $\mathbf{3 a}, \mathbf{3 c}, \mathbf{3 f}$, in $\mathrm{CDCl}_{3} / 0-8 \%\left[\mathrm{D}_{6}\right] \mathrm{DMSO} \ldots \ldots \ldots \ldots \ldots .$. p. S4

Unrestrained MD simulation of 10a in TIP3P water $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$. ................... 88

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of compounds 3a-h, 5, 10a, 10b $\ldots \ldots \ldots \ldots \ldots \ldots$. p. S10

Plausible reaction pathway for the synthesis of Amo-peptides.
A plausible reaction pathway for the cyclization of the model peptide Ts-Ala-isoSer-PheNH2 to Ts-Ala-AmoPheNH2 with DSC and catalytic DIPEA is depicted in Scheme S1. In the proposed mechanism, the cyclization to Amo proceeds via the isoSer-O-succinimidyl carbonate intermediate $\mathbf{A}$. The intermediate $\mathbf{A}$ is deprotonated by DIPEA at PheNH, giving the 5-membered anionic intermediate $\mathbf{B}$ with endocyclic $\mathrm{C}=\mathrm{O}$ (path a). The loss of 2,5-dioxopyrrolidin-1-olate leaving group, rapidly protonated by DIPEAH ${ }^{+}$, leads to the Amopeptide 3 and DIPEA, which can be utilized in catalytic amount. The intermediate A can be deprotonated at isoSerNH as well (path $\mathbf{b}$ ); this could give access to the alternative 5-membered cyclic anionic intermediate C with hexocyclic $\mathrm{C}=\mathrm{O}$, precursor of a Oxd-peptide.

Preliminary computations were performed for the intermediates B and Cemploying Density Functional Theory; a systematic conformational analysis for the structures was done at the B3LYP/6-311++G(d,p) level. Optimization was performed by conjugate gradient algorithm, convergence at 0.001 . The results indicate that the intermediate $\mathbf{B}$ is about $2.0 \mathrm{Kcal} \mathrm{mol}^{-1}$ more stable than the alternative intermediate $\mathbf{C}$.


Scheme S1. Cyclization of the model peptide Ts-Ala-isoSer-PheNH2 2 to Ts-Ala-Amo-PheNH2 $\mathbf{3}$.

Table S1. $\Delta \delta / \Delta \mathrm{t}$ values (p.p.b. ${ }^{\circ} \mathrm{K}$ ) for the amide protons of peptides $\mathbf{3 a}, \mathbf{3 b}, \mathbf{3 c}, \mathbf{3 f}, 5$, in $\mathrm{CDCl}_{3}$.

| Compd | sequence | AlaNH | AmoNH | ValNH | CONH $_{2}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 3a | Ts-Ala-(S)-Amo-PheNH2 | -15.1 | -8.1 | - | $-14.3 /-9.7$ |
| 3b | Ts-Ala-( $R$ )-Amo-PheNH 2 | -8.6 | -6.2 | - | $-8.6 /-8.0$ |
| 3c | Ts-Ala-(S)-Amo-( $R$ )-PheNH 2 | -8.4 | -6.0 | - | $-7.7 /-9.5$ |
| 3f | Boc-Ala-(S)-Amo-Phe-ValOMe | -4.5 | -5.0 | -4.5 | - |
| $\mathbf{5}$ | Ts-Ala-(R)-5-hydroxyAmo-PheNH2 | -14.7 | -10.0 | - | $-13.7 /-11.0$ |

Circular dichroism of 3d, 3d, 10a, and 10b recorded in DCM.
ECD spectra were recorded from 200 to 400 nm at $25^{\circ} \mathrm{C} .1 \mathrm{mM}$ solutions were made up in spectral grade solvents and run in a 0.1 cm quartz cell (Figure S1). Data are reported in molar ellipticity [ $\theta$ ] ( $\mathrm{deg} \mathrm{cm}^{2} \mathrm{dmol}^{-1}$ ).


Figure S1. ECD spectra of 3d, 3e, 10a, and 10b recorded in DCM at r.t.; 3d and 10b are practically superimposed.

IR analyses 3d, 3e, 10a, and 10b in DCM.
The compounds were dried in vacuo, and all the sample preparations were performed under nitrogen atmosphere. All infrared spectra were obtained for 1 mM solutions in dry DCM at $297^{\circ} \mathrm{K}$ at $2 \mathrm{~cm}^{-1}$ resolution, using a 1 mm NaCl solution cell and a FT-IR spectrometer (64 scans). (Figure S2).


Figure S2. Amide NH stretching regions of the IR absorption spectra for samples of 2 mM 3 d , $\mathbf{3 e}, \mathbf{1 0 a}$, and 10b in DCM at r.t.


Figure S3. Titration experiments: variation of NH proton chemical shift (p.p.m.) of $2 \mathrm{mM} \mathrm{3a}, \mathbf{3 c}, \mathbf{3 f}$, in $\mathrm{CDCl}_{3}$ as a function of increasing $\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$ (from 0 to $8 \% \mathrm{v} / \mathrm{v}$ ).

Table S2. Non-obvious ROESY cross-peaks observed for 3d in 8:2 [ $\left.\mathrm{D}_{6}\right] \mathrm{DMSO} / \mathrm{H}_{2} \mathrm{O}$. ${ }^{\text {a }}$

| Cross-peak | intensity | Cross-peak | Intensity |
| :---: | :---: | :---: | :---: |
| ValNH-ValMe | vs | PheArH3 ${ }_{3,5}-\mathrm{AmoH} \beta_{\text {up }}$ | m |
| ValNH-AlaMe | w | PheArH ${ }_{3,5}$ - $\mathrm{PheH} \beta_{\text {up }}$ | m |
| ValNH-ValH $\beta$ | s | PheArH ${ }_{3,5}-\mathrm{PheH} \beta_{\mathrm{dw}}$ | w |
| ValNH-TsMe | w | PheArH3,5-ValH $\alpha$ | w |
| ValNH-AmoH $\beta_{\text {up }}$ | w | PheArH ${ }_{3,5}$-PheH $\alpha$ | m |
| ValNH-PheH $\beta_{\text {up }}$ | w | PheArH4-ValMe | w |
| ValNH-PheH $\beta_{\text {dw }}$ | s | PheArH4-TsMe | w |
| ValNH-COOMe | w | PheArH ${ }_{2,6}$-ValMe | w |
| ValNH-ValHa | m | PheArH ${ }_{2,6}$-AlaMe | w |
| ValNH-PheH $\alpha$ | vs | PheArH2,6-TsMe | w |
| ValNH-AlaNH | w | PheArH ${ }_{2,6}$ - $\mathrm{AmoH}^{\text {up }}$ | m |
| ValNH-AmoNH | w | PheArH ${ }_{2,6}$ - $\mathrm{PheH} \beta_{\text {up }}$ | vs |
| AmoNH-ValMe | w | PheArH ${ }_{2,6}$ - $\mathrm{PheH} \beta_{\mathrm{dw}}$ | s |
| AmoNH-AlaMe | m | PheArH ${ }_{2,6}$ - $\mathrm{PheH} \alpha$ | vs |
| AmoNH-AmoH $\beta_{\text {up }}$ | s | AmoH $\alpha$-AlaMe | m |
| AmoNH-AmoH $\beta_{\text {dw }}$ | m | AmoH $\alpha$ - $\mathrm{AmoH} \beta_{\text {up }}$ | m |
| AmoNH-AlaH $\alpha$ | vs | $\mathrm{AmoH} \alpha-\mathrm{AmoH} \beta_{\mathrm{dw}}$ | vs |
| AmoNH-AmoH $\alpha$ | m | PheH $\alpha$-ValMe | w |
| AmoNH-TsArH2,6 | m | PheH $\alpha$-ValH $\beta$ | w |
| AmoNH-AlaNH | m | PheH $\alpha$-TsMe | w |
| AlaNH-ValMe | w | PheH $\alpha$-PheH $\beta_{\text {up }}$ | m |
| AlaNH-AlaMe | vs | PheH $\alpha$-PheH $\beta_{\mathrm{dw}}$ | s |
| AlaNH-PheH $\beta_{\mathrm{dw}}$ | w | PheH $\alpha$-COOMe | w |
| AlaNH-AlaH $\alpha$ | m | PheH $\alpha$-ValH $\alpha$ | w |
| AlaNH-PheH $\alpha$ | w | ValH $\alpha$-AlaMe | w |
| AlaNH-TsArH2,4 | w | ValH $\alpha$-ValH $\beta$ | vs |
| TsArH2,6-ValMe | w | ValH $\alpha$-TsMe | w |
| TsArH2,6-AlaMe | s | ValH $\alpha$-PheH $\beta_{\text {up }}$ | w |


| TsArH ${ }_{2,6}$ - $\mathrm{AmoH}^{\text {up }}$ | w | ValH $\alpha$-PheH $\beta_{\mathrm{dw}}$ | w |
| :---: | :---: | :---: | :---: |
| TsArH ${ }_{2,6}$ - $\mathrm{AmoH} \beta_{\mathrm{dw}}$ | m | COOMe-ValH $\beta$ | m |
| TsArH ${ }_{2,6}$ - $\mathrm{AlaH} \alpha$ | S | PheH $\beta_{\mathrm{dw}}$-AlaMe | w |
| TsArH 2,6 - $\mathrm{ValH} \alpha$ | w | PheH $\beta_{\text {up }}$-ValMe | m |
| TsArH ${ }_{2,6}$ - $\mathrm{AmoH} \alpha$ | w | PheH $\beta_{\text {up }}$-ValH $\beta$ | w |
| TsArH ${ }_{3,5}$-ValMe | w | $\mathrm{AmoH} \beta_{\mathrm{dw}}$-AlaMe | W |
| TsArH ${ }_{3,5}$ - AlaMe | w | TsMe-ValMe | w |
| TsArH3,5-AmoH $\beta_{\mathrm{dw}}$ | w | TsMe-AlaMe | w |
| TsArH ${ }_{3,5}-\mathrm{Val} \mathrm{H} \alpha$ | w | TsMe-ValH $\beta$ | w |
| TsArH ${ }_{3,5}$-Amo H $\alpha$ | w | ValH $\beta$-AlaMe | w |
| PheArH3,5-AlaMe | w | ValMe-AlaMe | w |

${ }^{a}$ Stereochemistry has been omitted; ${ }^{\mathrm{b}} \mathrm{up}=$ upfield, $\mathrm{dw}=$ downfield; ${ }^{\mathrm{c}} \mathrm{vs}=$ very strong, $\mathrm{s}=$ strong, $\mathrm{m}=$ medium, $\mathrm{w}=$ weak.

Table S3. Non-obvious ROESY cross-peaks observed for $\mathbf{3 e}$ in $8: 2\left[\mathrm{D}_{6}\right] \mathrm{DMSO} / \mathrm{H}_{2} \mathrm{O} .{ }^{\text {a }}$

| Cross-peak | Intensity | Cross-peak | Intensity |
| :---: | :---: | :---: | :---: |
| ValNH-ValMe | vs | PheArH ${ }_{3,5}$ - $\mathrm{PheH} \beta_{\text {up }}$ | w |
| ValNH-ValH $\beta$ | S | Phe $\mathrm{ArH}_{3,5}-\mathrm{PheH} \beta_{\mathrm{dw}}$ | w |
| ValNH-AmoH $\alpha$ | w | PheArH3,5-Phe H $\alpha$ | w |
| ValNH-PheH $\beta_{\text {up }}$ | m | PheArH ${ }_{2,6}$ - AlaMe | w |
| ValNH-PheH $\beta_{\text {dw }}$ | w | PheArH ${ }_{2,6}$ - $\mathrm{AmoH} \beta_{\mathrm{dw}}$ | m |
| ValNH-COOMe | w | PheArH2,6-PheH $\beta_{\text {up }}$ | s |
| ValNH-ValH $\alpha$ | m | PheArH ${ }_{2,6}$ - $\mathrm{PheH} \beta_{\mathrm{dw}}$ | vs |
| ValNH-PheH $\alpha$ | vs | PheArH ${ }_{2,6}$-PheH $\alpha$ | vs |
| ValNH-AlaNH | w | AmoH $\alpha$-ValMe | w |
| ValNH-AmoNH | w | AmoH $\alpha$ - $\mathrm{AmoH} \beta_{\text {up }}$ | m |
| AmoNH-ValMe | w | $\mathrm{AmoH} \alpha-\mathrm{AmoH} \beta_{\mathrm{dw}}$ | m |
| AmoNH-AlaMe | m | AmoH $\alpha-\mathrm{PheH} \beta_{\mathrm{dw}}$ | w |
| AmoNH-AmoH $\beta_{\text {up }}$ | m | AmoH $\alpha$-ValH $\alpha$ | w |
| AmoNH-AmoH $\beta_{\mathrm{dw}}$ | s | PheH $\alpha$-ValMe | w |
| AmoNH-AlaH $\alpha$ | vs | PheH $\alpha$-ValH $\beta$ | w |
| AmoNH-AmoH $\alpha$ | w | PheH $\alpha$-PheH $\beta_{\text {up }}$ | s |
| AmoNH-AlaNH | w | PheH $\alpha$-PheH $\beta_{\mathrm{dw}}$ | m |
| AlaNH-ValMe | w | PheH $\alpha$-ValH $\alpha$ | w |
| AlaNH-AlaMe | vs | ValHo-AlaMe | m |
| AlaNH-AmoH $\alpha$ | w | ValH $\alpha$-ValH $\beta$ | m |
| AlaNH-AlaH $\alpha$ | s | ValH $\alpha$-ValMe | vs |


| AlaNH-TsArH2,6 | s | ValH $\alpha$ - $\mathrm{AmoH} \beta_{\mathrm{dw}}$ | w |
| :---: | :---: | :---: | :---: |
| AlaNH-TsArH3,5 | s | ValH $\alpha$-PheH $\beta_{\text {up }}$ | w |
| TsArH2,6-ValMe | w | ValH $\alpha$ - $\mathrm{PheH} \beta_{\mathrm{dw}}$ | w |
| TsArH ${ }_{2,6}$ - ${ }^{\text {AlaMe }}$ | m | COOMe-ValMe | w |
| TsArH ${ }_{2,6}$ - $\mathrm{AlaH} \alpha$ | m | COOMe-ValH $\beta$ | w |
| TsArH ${ }_{2,6}$ - $\mathrm{ValH} \alpha$ | w | COOMe-PheH $\beta_{\text {up }}$ | s |
| TsArH ${ }_{2,6}$ - $\mathrm{AmoH} \alpha$ | w | AlaH $\alpha$-TsMe | w |
| TsArH2,6-PheH $\alpha$ | w | TsMe-AlaMe | w |
| TsArH3,5-ValMe | w | TsMe-ValH $\beta$ | m |
| TsArH3,5-AlaMe | w | ValHß-AlaMe | w |
| PheArH ${ }_{3,5}-\mathrm{AmoH} \beta_{\mathrm{dw}}$ | w | ValMe-AlaMe | w |

${ }^{\mathrm{a}}$ Stereochemistry has been omitted; ${ }^{\mathrm{b}} \mathrm{up}=$ upfield, $\mathrm{dw}=$ downfield; ${ }^{\mathrm{c}}$ vs $=$ very strong, $\mathrm{s}=$ strong, $\mathrm{m}=$ medium, $\mathrm{w}=$ weak.

Table S4. Non-obvious ROESY cross-peaks observed for 10a in 8:2 [D $\left.\mathrm{D}_{6}\right] \mathrm{DMSO} / \mathrm{H}_{2} \mathrm{O}$. ${ }^{\text {a }}$

| Cross-peak | intensity | Cross-peak | Intensity |
| :---: | :---: | :---: | :---: |
| ValNH-ValMe | vs | PheArH3,5-AlaMe | w |
| ValNH-AlaMe | m | PheArH ${ }_{3,5}$ - $\mathrm{AmoH} \beta_{\text {up }}$ | m |
| ValNH-ValH $\beta$ | s | PheArH ${ }_{3,5}$ - $\mathrm{PheH} \beta_{\text {up }}$ | m |
| ValNH-TsMe | w | PheArH ${ }_{3,5}-\mathrm{PheH} \beta_{\mathrm{dw}}$ | w |
| ValNH-AmoH $\beta_{\text {up }}$ | w | PheArH3 ${ }_{3,5}$-ValH $\alpha$ | w |
| ValNH-PheH $\beta_{\text {up }}$ | w | PheArH3,5-PheH $\alpha$ | m |
| ValNH-PheH $\beta_{\text {dw }}$ | S | PheArH4-ValMe | w |
| ValNH-COOMe | w | PheArH4-TsMe | w |
| ValNH-ValHa | m | PheArH ${ }_{2,6}$-ValMe | w |
| ValNH-PheH $\alpha$ | vs | PheArH2,6-AlaMe | w |
| ValNH-AlaNH | w | PheArH ${ }_{2,6}$-TsMe | w |
| ValNH-AmoNH | w | PheArH ${ }_{2,6}$ - $\mathrm{AmoH}^{\text {up }}$ | m |
| AmoNH-ValMe | w | PheArH ${ }_{2,6}$ - $\mathrm{PheH} \beta_{\text {up }}$ | vs |
| AmoNH-AlaMe | m | PheArH ${ }_{2,6}-\mathrm{PheH} \beta_{\mathrm{dw}}$ | s |
| AmoNH-AmoMe | m | PheArH ${ }_{2,6}$ - $\mathrm{PheH} \alpha$ | vs |
| AmoNH-ValH $\beta$ | m | PheH $\alpha$-ValMe | w |
| AmoNH-AmoH $\beta_{\text {up }}$ | s | PheH $\alpha$-ValH $\beta$ | w |
| AmoNH-AmoH $\beta_{\mathrm{dw}}$ | m | PheH $\alpha$-TsMe | w |
| AmoNH-AlaH $\alpha$ | vs | PheH $\alpha$-PheH $\beta_{\text {up }}$ | m |
| AmoNH-ValHo | m | PheH $\alpha$-PheH $\beta_{\mathrm{dw}}$ | S |
| AmoNH-PheH $\alpha$ | m | PheH $\alpha$-COOMe | w |
| AmoNH-TsArH ${ }_{2,6}$ | m | PheH $\alpha-\mathrm{ValH} \alpha$ | w |
| AmoNH-AlaNH | m | ValH $\alpha$-AlaMe | m |


| AlaNH-ValMe | m | ValH $\alpha$-ValH $\beta$ | vs |
| :---: | :---: | :---: | :---: |
| AlaNH-AlaMe | vs | ValH $\alpha$-TsMe | w |
| AlaNH-ValH $\beta$ | w | ValH $\alpha$-PheH $\beta_{\text {up }}$ | w |
| AlaNH-PheH $\beta_{\mathrm{dw}}$ | w | ValH $\alpha$-AlaH $\alpha$ | m |
| AlaNH-AlaH $\alpha$ | m | ValH $\alpha$-COOMe | m |
| AlaNH-ValH $\alpha$ | m | ValH $\alpha$ - $\mathrm{PheH} \beta_{\mathrm{dw}}$ | w |
| AlaNH-PheH $\alpha$ | w | COOMe-ValH $\beta$ | m |
| AlaNH-TsArH2,4 | w | PheH $\beta_{\mathrm{dw}}$-AlaMe | w |
| TsArH2,6-ValMe | w | PheH $\beta_{\text {up }}$-ValMe | m |
| TsArH ${ }_{2,6}$ - AlaMe | S | PheH $\beta_{\text {up }}-\mathrm{ValH} \beta$ | w |
| TsArH ${ }_{2,6}$ - AmoMe | w | AmoH $\beta_{\text {dw }}$-AlaMe | w |
| TsArH ${ }_{2,6}$ - $\mathrm{AmoH} \beta_{\text {up }}$ | w | TsMe-ValMe | W |
| TsArH ${ }_{2,6}$ - $\mathrm{AmoH} \beta_{\mathrm{dw}}$ | m | TsMe-AlaMe | W |
| TsArH ${ }_{2,6}$ - $\mathrm{AlaH} \alpha$ | s | TsMe-ValH $\beta$ | w |
| TsArH 2,6 - $\mathrm{ValH} \alpha$ | w | ValHß-AlaMe | m |
| TsArH3,5-ValMe | w | AmoMe-AlaMe | w |
| TsArH3,5-AlaMe | w | AmoMe-AmoH $\beta_{\text {up }}$ | m |
| TsArH3,5-AmoMe | w | AmoMe-AmoH $\beta_{\mathrm{dw}}$ | vs |
| TsArH ${ }_{3,5}-\mathrm{AmoH} \beta_{\mathrm{dw}}$ | w | AlaMe-ValMe | m |
| TsArH3,5-ValH $\alpha$ | w |  |  |

${ }^{\mathrm{a}}$ Stereochemistry has been omitted; ${ }^{\mathrm{b}}$ up $=$ upfield, $\mathrm{dw}=$ downfield; ${ }^{\mathrm{c}}$ vs $=$ very strong, $\mathrm{s}=$ strong, $\mathrm{m}=$ medium, $\mathrm{w}=$ weak.

Table S5. Non-obvious ROESY cross-peaks observed for $\mathbf{1 0 b}$ in $8: 2\left[\mathrm{D}_{6}\right] \mathrm{DMSO} / \mathrm{H}_{2} \mathrm{O} .{ }^{\text {a }}$

| Cross-peak | Intensity | Cross-peak | Intensity |
| :---: | :---: | :---: | :---: |
| ValNH-ValMe | vs | PheArH ${ }_{3,5}$ - $\mathrm{PheH} \beta_{\text {up }}$ | w |
| ValNH-AmoMe | m | Phe $\mathrm{ArH}_{3,5}-\mathrm{PheH} \beta_{\mathrm{dw}}$ | w |
| ValNH-ValH $\beta$ | s | PheArH3,5-PheH $\alpha$ | w |
| ValNH-PheH $\beta_{\text {up }}$ | m | PheArH ${ }_{2,6}$-AlaMe | w |
| ValNH-PheH $\beta_{\mathrm{dw}}$ | w | PheArH ${ }_{2,6}$ - $\mathrm{AmoH} \beta_{\mathrm{dw}}$ | m |
| ValNH-COOMe | w | PheArH ${ }_{2,6}$ - $\mathrm{PheH} \beta_{\text {up }}$ | s |
| ValNH-ValH $\alpha$ | m | PheArH ${ }_{2,6}$ - $\mathrm{PheH} \beta_{\mathrm{dw}}$ | vs |
| ValNH-PheH $\alpha$ | vs | PheArH2,6-PheH $\alpha$ | vs |
| ValNH-AlaNH | w | PheH $\alpha$-ValMe | w |
| ValNH-AmoNH | w | PheH $\alpha$-ValH $\beta$ | w |
| AmoNH-ValMe | w | PheH $\alpha$-PheH $\beta_{\text {up }}$ | s |
| AmoNH-AlaMe | m | PheH $\alpha$-PheH $\beta_{\mathrm{dw}}$ | m |
| AmoNH-AmoMe | m | PheH $\alpha$-ValH $\alpha$ | w |


| AmoNH-AmoH $\beta_{\text {up }}$ | m | ValHo-AlaMe | m |
| :---: | :---: | :---: | :---: |
| AmoNH-AmoH $\beta_{\mathrm{dw}}$ | s | ValH $\alpha$-ValH $\beta$ | m |
| AmoNH-AlaH $\alpha$ | vs | ValH $\alpha$-ValMe | vs |
| AmoNH-AlaNH | w | ValH $\alpha-\mathrm{AmoH} \beta_{\mathrm{dw}}$ | w |
| AlaNH-ValMe | w | ValH $\alpha$-PheH $\beta_{\text {up }}$ | w |
| AlaNH-AlaMe | vs | ValH $\alpha$-PheH $\beta_{\text {dw }}$ | w |
| AlaNH-AmoMe | w | COOMe-ValMe | w |
| AlaNH-AlaH $\alpha$ | s | COOMe-ValH $\beta$ | w |
| AlaNH-TsArH2,6 | s | COOMe-PheH $\beta_{\text {up }}$ | s |
| AlaNH-TsArH3,5 | S | AlaH $\alpha$-TsMe | w |
| TsArH2,6-ValMe | w | TsMe-AlaMe | w |
| TsArH2,6-AlaMe | m | TsMe-ValH $\beta$ | m |
| TsArH2,6-AmoMe | w | ValH $\beta$-AlaMe | w |
| TsArH ${ }_{2,6}$ - $\mathrm{AlaH} \alpha$ | m | AmoMe-ValMe | m |
| TsArH2,6-ValH $\alpha$ | w | AmoMe-AmoH $\beta_{\text {up }}$ | m |
| TsArH 2,6 - $\mathrm{PheH} \alpha$ | w | AmoMe-AmoH $\beta_{\mathrm{dw}}$ | m |
| TsArH3,5-ValMe | w | AmoMe-PheH $\beta_{\mathrm{dw}}$ | w |
| TsArH ${ }_{3,5}$-AlaMe | w | AmoMe-ValH $\alpha$ | m |
| Phe $\mathrm{ArH}_{3,5}-\mathrm{AmoH} \beta_{\mathrm{dw}}$ | w | AlaMe-ValMe | m |

${ }^{a}$ Stereochemistry has been omitted; ${ }^{\mathrm{b}} \mathrm{up}=$ upfield, $\mathrm{dw}=$ downfield; ${ }^{\mathrm{c}}$ vs $=$ very strong, $\mathrm{s}=$ strong, $\mathrm{m}=$ medium, $\mathrm{w}=$ weak.


Figure S4. Distances ( $\AA$ ) between the amide nitrogen of $\mathrm{Amo}^{2}$ and the carbonyl oxygen of Phe ${ }^{3}$ sampled from a 10 ns unrestrained Molecular Dynamics simulation of 10 a calculated in a $30 \times 30 \times 30 \AA$ box of equilibrated standard TIP3P water molecules, using the ROESY-derived geometry as starting structure.


Figure 3. Minimum-energy conformations and relative energies of the $+g$, trans, and $-g$ rotamers around the central backbone dihedral angle $\theta$ of model compounds 11a and 11b. A systematic conformational analysis around $\phi$ and $\theta$ was performed in gas-phase employing DFT; $\Delta E$ are given in $\mathrm{kcal} / \mathrm{mol} ; \phi, \theta$, and $\psi$, are given into brackets in degrees; Amo is rendered in balls and cylinders, the rest in sticks.


Figure 5. Sketches of the structures of 3d and 10a, and short-range (distances $\leq 3 \AA$ ) protonproton ROESY correlations, indicated by arrows. Intra-residue and long-range (> 3 A) correlations are not shown. Red arrows connect protons belonging to consecutive residues $(i-i+1)$, while blue arrows connect protons of non-consecutive residues $(i-i+2$ or $i-$ $i+3$ ).

Figure 6. Top, representative lowest energy structures 3d, 3e, 10a, and 10b, calculated by restrained MD in a $30 \times 30 \times 30 \AA$ box of standard TIP3P water molecules. Backbones and Amo rings are rendered in balls and cylinders, the rest in sticks.








3c








(Soc
3f







3h












