CHEMISTRY A European Journal

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2014

Synthesis and Analysis of the Conformational Preferences of 5-Aminomethyloxazolidine-2,4-dione Scaffolds: First Examples of β^2 and $\beta^{2,2}$ -Homo-Freidinger Lactam Analogues

Arianna Greco, Sara Tani, Rossella De Marco,* and Luca Gentilucci*^[a]

chem_201402519_sm_miscellaneous_information.pdf

Table of contents

Plausible reaction pathway for the synthesis of Amo-peptides		p. S2
VT-NMR experiments for 3a , 3b , 3c , 3f , 5 , in CDCI ₃		p. S3
Circular dichroism of 3d, 3d, 10a, and 10b in DCM		p. S3
IR analyses of 3d, 3e, 10a, and 10b in DCM		p. S3
Variation of NH chemical shift of 3a , 3c , 3f , in CDCl ₃ /0-8% [D ₆]	DMSO	p. S4
ROESY cross peaks for $3d$, $3e$, $10a$, $10b$ in 8:2 [D ₆]DMSO/H ₂ O		p. S4
Unrestrained MD simulation of 10a in TIP3P water		p. S8
Color versions of Fig. 3, 5, and 6		p. S9
¹ H and ¹³ C-NMR spectra of compounds 3a-h , 5 , 10a , 10b		p. S10

Plausible reaction pathway for the synthesis of Amo-peptides.

A plausible reaction pathway for the cyclization of the model peptide Ts-Ala-*iso*Ser-PheNH₂ to Ts-Ala-Amo-PheNH₂ with DSC and catalytic DIPEA is depicted in Scheme S1. In the proposed mechanism, the cyclization to Amo proceeds *via* the *iso*Ser-*O*-succinimidyl carbonate intermediate **A**. The intermediate **A** is deprotonated by DIPEA at PheNH, giving the 5-membered anionic intermediate **B** with endocyclic C=O (path **a**). The loss of 2,5-dioxopyrrolidin-1-olate leaving group, rapidly protonated by DIPEAH⁺, leads to the Amopeptide **3** and DIPEA, which can be utilized in catalytic amount. The intermediate **A** can be deprotonated at *iso*SerNH as well (path **b**); this could give access to the alternative 5-membered cyclic anionic intermediate **C** with hexocyclic C=O, precursor of a Oxd-peptide.

Preliminary computations were performed for the intermediates **B** and **C** employing Density Functional Theory; a systematic conformational analysis for the structures was done at the B3LYP/6-311++G(d,p) level. Optimization was performed by conjugate gradient algorithm, convergence at 0.001. The results indicate that the intermediate **B** is about 2.0 Kcal mol⁻¹ more stable than the alternative intermediate **C**.

Scheme S1. Cyclization of the model peptide Ts-Ala-isoSer-PheNH₂ 2 to Ts-Ala-Amo-PheNH₂ 3.

Compd	sequence	AlaNH	AmoNH	ValNH	CONH ₂
3a	Ts-Ala-(S)-Amo-PheNH ₂	-15.1	-8.1	-	-14.3/-9.7
3b	Ts-Ala-(<i>R</i>)-Amo-PheNH₂	-8.6	-6.2	-	-8.6/-8.0
3c	Ts-Ala-(S)-Amo-(<i>R</i>)-PheNH₂	-8.4	-6.0	-	-7.7/-9.5
3f	Boc-Ala-(S)-Amo-Phe-ValOMe	-4.5	-5.0	-4.5	-
5	Ts-Ala-(<i>R</i>)-5-hydroxyAmo-PheNH ₂	-14.7	-10.0	-	-13.7/-11.0

Table S1. $\Delta\delta/\Delta t$ values (p.p.b./°K) for the amide protons of peptides 3a, 3b, 3c, 3f, 5, in CDCl₃.

Circular dichroism of 3d, 3d, 10a, and 10b recorded in DCM.

ECD spectra were recorded from 200 to 400 nm at 25 °C. 1 mM solutions were made up in spectral grade solvents and run in a 0.1 cm quartz cell (Figure S1). Data are reported in molar ellipticity [θ] (deg cm² dmol⁻¹).

Figure S1. ECD spectra of **3d**, **3e**, **10a**, and **10b** recorded in DCM at r.t.; **3d** and **10b** are practically superimposed.

IR analyses 3d, 3e, 10a, and 10b in DCM.

The compounds were dried in vacuo, and all the sample preparations were performed under nitrogen atmosphere. All infrared spectra were obtained for 1 mM solutions in dry DCM at 297 °K at 2 cm⁻¹ resolution, using a 1 mm NaCl solution cell and a FT-IR spectrometer (64 scans). (Figure S2).

Figure S2. Amide NH stretching regions of the IR absorption spectra for samples of 2 mM **3d**, **3e**, **10a**, and **10b** in DCM at r.t.

Figure S3. Titration experiments: variation of NH proton chemical shift (p.p.m.) of 2 mM **3a**, **3c**, **3f**, in CDCl₃ as a function of increasing [D₆]DMSO (from 0 to 8 % v/v).

Cross-peak	intensity	Cross-peak	Intensity
ValNH-ValMe	VS	PheArH _{3,5} -AmoHβ _{up}	m
ValNH-AlaMe	W	$PheArH_{3,5}$ -PheH β_{up}	m
ValNH-ValHβ	S	PheArH _{3,5} -PheH _{βdw}	W
ValNH-TsMe	W	PheArH _{3,5} -ValHα	W
$ValNH-AmoH\beta_{up}$	W	PheArH _{3,5} -PheH α	m
$ValNH-PheH\beta_{up}$	W	PheArH ₄ -ValMe	W
$ValNH-PheH\beta_{dw}$	S	PheArH ₄ -TsMe	W
ValNH-COOMe	W	PheArH _{2,6} -ValMe	W
ValNH-ValHa	m	PheArH _{2,6} -AlaMe	W
ValNH-PheHa	VS	PheArH _{2,6} -TsMe	W
ValNH-AlaNH	W	$PheArH_{2,6}-AmoH\beta_{up}$	m
ValNH-AmoNH	W	$PheArH_{2,6}$ -PheH β_{up}	VS
AmoNH-ValMe	W	PheArH _{2,6} -PheH _{βdw}	S
AmoNH-AlaMe	m	PheArH _{2,6} -PheH α	VS
AmoNH-AmoH β_{up}	S	AmoHa-AlaMe	m
AmoNH-AmoH β_{dw}	m	AmoH α -AmoH β_{up}	m
AmoNH-AlaHα	VS	AmoH α -AmoH β_{dw}	VS
AmoNH-AmoHa	m	PheHα-ValMe	W
AmoNH-TsArH _{2,6}	m	PheHα-ValHβ	W
AmoNH-AlaNH	m	PheHa-TsMe	W
AlaNH-ValMe	W	PheH α -PheH β_{up}	m
AlaNH-AlaMe	VS	PheH α -PheH β_{dw}	S
AlaNH-PheH β_{dw}	W	PheHa-COOMe	W
AlaNH-AlaHα	m	PheHα-ValHα	W
AlaNH-PheHα	W	ValHα-AlaMe	W
AlaNH-TsArH _{2,4}	W	ValHα-ValHβ	VS
TsArH _{2,6} -ValMe	W	ValHa-TsMe	W
TsArH _{2,6} -AlaMe	S	ValH α -PheH β_{up}	W

Table S2. Non-obvious ROESY cross-peaks observed for 3d in 8:2 [D₆]DMSO/H₂O.ª

TsArH _{2,6} -AmoHβ _{up} w	$ValH\alpha$ -PheH β_{dw} w
$TsArH_{2,6}-AmoH\beta_{dw}$ m	COOMe-ValHβ m
TsArH _{2,6} -AlaHα s	PheH β_{dw} -AlaMe w
TsArH _{2,6} -ValHα w	PheH β_{up} -ValMe m
TsArH _{2,6} -AmoHa w	PheH β_{up} -ValH β w
TsArH _{3,5} -ValMe w	AmoHβ _{dw} -AlaMe w
TsArH _{3,5} -AlaMe w	TsMe-ValMe w
$TsArH_{3,5}$ -AmoH β_{dw} w	TsMe-AlaMe w
TsArH _{3,5} -Val Hα w	TsMe-ValHβ w
TsArH _{3,5} -Amo Hα w	ValHβ-AlaMe w
PheArH _{3,5} -AlaMe w	ValMe-AlaMe w

Table S3. Non-obvious ROESY cross-peaks observed for **3e** in 8:2 [D₆]DMSO/H₂O.ª

Cross-peak	Intensity	Cross-peak	Intensity
ValNH-ValMe	VS	PheArH _{3,5} -PheH _{βup}	W
ValNH-ValHβ	S	$PheArH_{3,5}$ - $PheH\beta_{dw}$	W
ValNH-AmoHa	W	PheArH _{3,5} -Phe H α	W
$ValNH-PheH\beta_{up}$	m	PheArH _{2,6} -AlaMe	W
ValNH-PheH β_{dw}	W	$PheArH_{2,6}-AmoH\beta_{dw}$	m
ValNH-COOMe	W	$PheArH_{2,6}$ -PheH β_{up}	S
ValNH-ValHα	m	$PheArH_{2,6}$ -PheH β_{dw}	VS
ValNH-PheHa	VS	PheArH _{2,6} -PheH α	VS
ValNH-AlaNH	W	AmoHa-ValMe	W
ValNH-AmoNH	W	AmoHα-AmoHβ _{up}	m
AmoNH-ValMe	W	AmoH α -AmoH β_{dw}	m
AmoNH-AlaMe	m	AmoH α -PheH β_{dw}	W
AmoNH-AmoHβ _{up}	m	AmoHα-ValHα	W
AmoNH-AmoHβ _{dw}	S	PheHa-ValMe	W
AmoNH-AlaHα	VS	PheHα-ValHβ	W
AmoNH-AmoHa	W	PheH α -PheH β_{up}	S
AmoNH-AlaNH	W	PheH α -PheH β_{dw}	m
AlaNH-ValMe	W	PheHα-ValHα	W
AlaNH-AlaMe	VS	ValHa-AlaMe	m
AlaNH-AmoHa	W	ValHα-ValHβ	m
AlaNH-AlaHα	S	ValHa-ValMe	VS

AlaNH-TsArH _{2,6} s	$ValH\alpha$ -AmoH β_{dw} w
AlaNH-TsArH _{3,5} s	$ValH\alpha$ -PheH β_{up} w
TsArH _{2,6} -ValMe w	$ValH\alpha$ -PheH β_{dw} w
TsArH _{2,6} -AlaMe m	COOMe-ValMe w
TsArH _{2,6} -AlaHα m	COOMe-ValHβ w
TsArH _{2,6} -ValHα w	$COOMe-PheH\beta_{up}$ s
TsArH _{2,6} -AmoHα w	AlaHa-TsMe w
TsArH _{2,6} -PheHα w	TsMe-AlaMe w
TsArH _{3,5} -ValMe w	TsMe-ValHβ m
TsArH _{3,5} -AlaMe w	ValHβ-AlaMe w
$PheArH_{3,5}-AmoH\beta_{dw}$ w	ValMe-AlaMe w

Table S4. Non-obvious ROESY	cross-peaks of	bserved for 10a i	n 8:2 [D ₆]DMSO/H ₂ O. ^a
-----------------------------	----------------	--------------------------	--

Cross-peak	intensity	Cross-peak	Intensity
ValNH-ValMe	VS	PheArH _{3,5} -AlaMe	W
ValNH-AlaMe	m	PheArH _{3,5} -AmoHβ _{up}	m
ValNH-ValHβ	S	PheArH _{3,5} -PheH _{βup}	m
ValNH-TsMe	W	PheArH _{3,5} -PheH _{βdw}	W
ValNH-AmoHβ _{up}	W	PheArH _{3,5} -ValHα	W
ValNH-PheH _{βup}	W	PheArH _{3,5} -PheHa	m
$ValNH-PheH\beta_{dw}$	8	PheArH ₄ -ValMe	W
ValNH-COOMe	W	PheArH ₄ -TsMe	W
ValNH-ValHa	m	PheArH _{2,6} -ValMe	W
ValNH-PheHa	VS	PheArH _{2,6} -AlaMe	W
ValNH-AlaNH	W	PheArH _{2,6} -TsMe	W
ValNH-AmoNH	W	PheArH _{2,6} -AmoH β_{up}	m
AmoNH-ValMe	W	$PheArH_{2,6}$ -PheH β_{up}	VS
AmoNH-AlaMe	m	$PheArH_{2,6}$ -PheH β_{dw}	8
AmoNH-AmoMe	m	PheArH _{2,6} -PheH α	VS
AmoNH-ValHβ	m	PheHa-ValMe	W
AmoNH-AmoHβ _{up}	S	PheHα-ValHβ	W
AmoNH-AmoHβ _{dw}	m	PheHa-TsMe	W
AmoNH-AlaHα	VS	PheH α -PheH β_{up}	m
AmoNH-ValHα	m	PheH α -PheH β_{dw}	8
AmoNH-PheHα	m	PheHa-COOMe	W
AmoNH-TsArH _{2,6}	m	PheHα-ValHα	W
AmoNH-AlaNH	m	ValHa-AlaMe	m

AlaNH-ValMe	m	ValHa-ValHβ	VS
AlaNH-AlaMe	VS	ValHa-TsMe	W
AlaNH-ValHβ	W	$ValH\alpha$ -PheH β_{up}	W
AlaNH-PheH β_{dw}	W	ValHα-AlaHα	m
AlaNH-AlaHα	m	ValHa-COOMe	m
AlaNH-ValHα	m	$ValH\alpha$ -PheH β_{dw}	W
AlaNH-PheHα	W	COOMe-ValHβ	m
AlaNH-TsArH _{2,4}	W	PheH β_{dw} -AlaMe	W
TsArH _{2,6} -ValMe	W	PheH β_{up} -ValMe	m
TsArH _{2,6} -AlaMe	S	PheH β_{up} -ValH β	W
TsArH _{2,6} -AmoMe	W	AmoHβ _{dw} -AlaMe	W
$TsArH_{2,6}$ -AmoH β_{up}	W	TsMe-ValMe	W
$TsArH_{2,6}$ -AmoH β_{dw}	m	TsMe-AlaMe	W
$TsArH_{2,6}$ -AlaH α	S	TsMe-ValHβ	W
TsArH _{2,6} -ValHα	W	ValHβ-AlaMe	m
TsArH _{3,5} -ValMe	W	AmoMe-AlaMe	W
TsArH _{3,5} -AlaMe	W	AmoMe-AmoH β_{up}	m
TsArH _{3,5} -AmoMe	W	AmoMe-AmoH β_{dw}	VS
TsArH _{3,5} -AmoHβ _{dw}	W	AlaMe-ValMe	m
TsArH _{3,5} -ValHα	W		

Cross-peak	Intensity	Cross-peak	Intensity
ValNH-ValMe	VS	PheArH _{3,5} -PheH _{βup}	W
ValNH-AmoMe	m	$PheArH_{3,5}$ -PheH β_{dw}	W
ValNH-ValHβ	S	PheArH _{3,5} -PheHa	W
ValNH-PheH β_{up}	m	PheArH _{2,6} -AlaMe	W
ValNH-PheH _{βdw}	W	PheArH _{2,6} -AmoH _{βdw}	m
ValNH-COOMe	W	$PheArH_{2,6}$ -PheH β_{up}	S
ValNH-ValHa	m	$PheArH_{2,6}$ -PheH β_{dw}	VS
ValNH-PheHa	VS	PheArH _{2,6} -PheHa	VS
ValNH-AlaNH	W	PheHα-ValMe	W
ValNH-AmoNH	W	PheHα-ValHβ	W
AmoNH-ValMe	W	PheH α -PheH β_{up}	S
AmoNH-AlaMe	m	PheH α -PheH β_{dw}	m
AmoNH-AmoMe	m	PheHα-ValHα	W

Table S5. Non-obvious ROESY cross-peaks observed for **10b** in 8:2 [D₆]DMSO/H₂O.^a

AmoNH-AmoHβ _{up}	m	ValHa-AlaMe	m
AmoNH-AmoHβ _{dw}	S	ValHα-ValHβ	m
AmoNH-AlaHα	VS	ValHa-ValMe	VS
AmoNH-AlaNH	W	ValHα-AmoHβ _{dw}	W
AlaNH-ValMe	W	$ValH\alpha$ -PheH β_{up}	W
AlaNH-AlaMe	VS	$ValH\alpha$ -PheH β_{dw}	W
AlaNH-AmoMe	W	COOMe-ValMe	W
AlaNH-AlaHα	S	COOMe-ValHβ	W
AlaNH-TsArH _{2,6}	S	COOMe-PheHβ _{up}	S
AlaNH-TsArH _{3,5}	S	AlaHα-TsMe	W
TsArH _{2,6} -ValMe	W	TsMe-AlaMe	W
TsArH _{2,6} -AlaMe	m	TsMe-ValHβ	m
TsArH _{2,6} -AmoMe	W	ValHβ-AlaMe	W
TsArH _{2,6} -AlaHα	m	AmoMe-ValMe	m
TsArH _{2,6} -ValHα	W	AmoMe-AmoHβ _{up}	m
TsArH _{2,6} -PheHα	W	AmoMe-AmoHβ _{dw}	m
TsArH _{3,5} -ValMe	W	AmoMe-PheHβ _{dw}	W
TsArH _{3,5} -AlaMe	W	AmoMe-ValHa	m
PheArH _{3,5} -AmoH _{βdw}	W	AlaMe-ValMe	m

Figure S4. Distances (Å) between the amide nitrogen of Amo² and the carbonyl oxygen of Phe³ sampled from a 10 ns unrestrained Molecular Dynamics simulation of **10a** calculated in a 30x30x30 Å box of equilibrated standard TIP3P water molecules, using the ROESY-derived geometry as starting structure.

Figure 3. Minimum-energy conformations and relative energies of the +*g*, *trans*, and -*g* rotamers around the central backbone dihedral angle θ of model compounds **11a** and **11b**. A systematic conformational analysis around ϕ and θ was performed in gas-phase employing DFT; ΔE are given in kcal/mol; ϕ , θ , and ψ , are given into brackets in degrees; Amo is rendered in balls and cylinders, the rest in sticks.

Figure 5. Sketches of the structures of **3d** and **10a**, and short-range (distances \leq 3 Å) protonproton ROESY correlations, indicated by arrows. Intra-residue and long-range (> 3 Å) correlations are not shown. Red arrows connect protons belonging to consecutive residues (*i*-*i*+1), while blue arrows connect protons of non-consecutive residues (*i*-*i*+2 or *ii*+3).

Figure 6. Top, representative lowest energy structures **3d**, **3e**, **10a**, and **10b**, calculated by restrained MD in a 30x30x30 Å box of standard TIP3P water molecules. Backbones and Amo rings are rendered in balls and cylinders, the rest in sticks.

