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Abstract: In recent years, cold food chains have shown an impressive growth, mainly due to
customers life style changes. Consequently, the transportation of refrigerated food is becoming
a crucial aspect of the chain, aiming at ensuring efficiency and sustainability of the process while
keeping a high level of product quality. The recently defined Refrigerated Routing Problem (RRP)
consists of finding the optimal delivery tour that minimises the fuel consumption for both the traction
and the refrigeration components. The total fuel consumption is related, in a complex way, to the
distance travelled, the vehicle load and speed, and the outdoor temperature. All these factors depend,
in turn, on the traffic and the climate conditions of the region where deliveries take place and they
change during the day and the year. The original RRP has been extended to take into account also
the total driving cost and to add the possibility to slow down the deliveries by allowing arbitrarily
long waiting times when this is beneficial for the objective function. The new RRP is formulated
and solved as both a Mixed Integer Programming and a novel Constraint Programming model.
Moreover, a Local Search metaheuristic technique (namely Late Acceptance Hill Climbing), based on
a combination of different neighborhood structures, is also proposed. The results obtained by the
different solution methods on a set of benchmarks scenarios are compared and discussed.

Keywords: energy efficiency; sustainable transports; cold food chain; rich vehicle routing problem;
mixed integer programming; constraint programming; local search

1. Introduction

In the last decade, cold chains have recorded an impressive growth due to both urbanization and
lifestyle changes, which have produced an increasing demand of ready-to-use refrigerated and frozen
food. In the near future, the global refrigerated transport market is projected to reach USD 21.6 billion
by 2025 at CAGR (Compound Annual Growth Rate) of 5.8 %, with the frozen food segment recording
the fastest growth [1] .

However, the transport sector is known to be one of the major contributor to global energy
consumption and related greenhouse gas (GHG) emissions. Therefore, the transition towards
sustainable transport, which can be defined as a way of the transport sector to embrace the concept
of sustainable development, has attracted great attention of academics, industry practitioners and
governments in the last two decades, as highlighted in the recent review by Zhao et al. [2].

In the cold chain, sustainability has an even greater role due to additional energy required to
assure the proper control of food temperature [3]. Since a temperature raise might be harmful for
both the safety and the quality of the delivered products, the refrigeration needs adds additional
energy requirements to vehicle traction, thus increasing fuel consumption and greenhouse GHG
emissions. Indeed, increasing the efficiency of refrigerated transport is ranked as the third energy
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saving potential among cold chain processes (James et al. [4]). Furthermore, even if the cold chain
logistics market is prosperous, cold chain logistics companies are usually small in scale and numerous
in quantity, thus leading to high costs and high carbon emissions during transportation [5]. Therefore,
reducing the total delivery cost and energy consumption becomes crucial to guide the transition
towards sustainable transports and making cold chain logistics companies both competitive and
compliant to environment preservation.

The problem of planning the route for a refrigerated vehicle (Refrigerated Routing Problem,
RRP) has received attention only recently [6]. Differently from traditional routing problems, both the
traction and refrigeration fuel consumption should be taken into account [7]. The latter depend on the
outdoor temperature, which varies along a day and also in the different seasons of a year, so that a
multi-period model has to be considered. The route with minimum total fuel consumption will be
selected depending on both the delivery tour and the hourly profile of temperature along a year of the
specific region where the delivery tour takes place.

In order to better embrace the sustainable transport concept both in its economic and
environmental dimensions, the routing problem for a refrigerated vehicle should take into account
also the driver wage policy, since the driver wage is a relevant component of travel costs as underlined
by Stellingwerf et al. [7]. However, the multi-period modelling proposed in [6] should be preserved in
order to better estimate fuel consumption during a real delivery process. Furthermore, to adhere to
typical drivers’ behaviour, which is prone to avoid traffic congestion, arbitrary waiting times at clients
should be allowed, slowing down the delivery plan if it turns out to be beneficial for the overall cost
function, which involves both the fuel cost for refrigeration and traction and the wage cost. Since the
latter is assumed proportional to the delivery duration in most routing literature (see also the recent
JRC (Research Centre of the European Commission) Report on road transports costs in Europe [8]),
then the opportunity of delaying departure from clients should be investigated.

Therefore, in this paper a new formulation of the RRP is provided, by introducing the wage cost
and arbitrary waiting times to complete the delivery tour, taking into account the hourly profile of
temperature of the region along the year, as well as hourly speed pattern due to congestion. A new
mathematical formulation is proposed in terms of both a Mixed Integer Programming (MIP) model
and a novel Constraint Programming (CP) model. A metaheuristic solution technique based on the
Local Search paradigm, which uses a composition of two neighborhood relations, is also provided in
order to solve larger test cases in shorter computational time. Two datasets of instances have been
generated by means of a parametrised instance generator that uses real data about climate conditions
and travel times. The proposed solution methods are compared on benchmark instances, both in terms
of solution quality and running times. All instances, along with our best solutions, have been made
available on the web to encourage future comparisons.

The remainder of the paper is organised as follows. Section 2 presents an overview of the literature
about sustainable routing problems. The extended RRP is formally described in Section 3 along with
the MIP model, while the CP model and the LS metaheuristic are presented in Section 4. Section 5
reports results. In particular, the reference scenario is described in Section 5.1, while the solution
methods are empirically compared in Section 5.2, which reports the outcomes of the computational
experiments. The analysis of cost and energy performance for the basic reference scenario are reported
in Section 5.3 and in Section 5.4 a further performance analysis on a traffic-congested scenario is
provided. Section 5.5 reports the sensitivity analysis on the driver wage costs, whereas Section 5.6
discusses the adoption of different policies for the driver wage cost. Finally, some conclusions are
derived in Section 6.

2. Sustainable Routing: A Literature Overview

The growing attention to sustainability issues in logistics has attracted the interest of the research
community that introduced the concept of Green Logistics [9]. The class of Green Vehicle Routing
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Problems (GVRP), in particular, is characterised by the commitment of balancing the environmental
and economic costs by implementing effective vehicle routes and schedules.

In this context, the Pollution Routing Problem (PRP) was firstly presented by Bektaş and Laporte [10] as
a variant of the classical Capacitated Vehicle Routing Problem, in which the goal is to minimise a more
comprehensive objective function that accounts for GHG emissions, fuel consumption, and driver costs.
The authors proposed different mathematical models and reported computational experiments on realistic
instances up to 20 nodes. For the solution of the PRP, Demir et al. [11] devised an Adaptive Large
Neighborhood Search (ALNS) heuristic combined with a speed optimisation procedure. The same authors
improved and adapted the ALNS algorithm to solve a Bi-Objective PRP [12], where the fuel consumption
and driving time objective are considered separately.

Franceschetti et al. [13] tackled the PRP with traffic congestion (Time-Dependent PRP) by
considering a two-level speed function: the peak-period, when the vehicle must travel at a
congestion speed, and the following period, when the vehicle runs at free flow speed, respecting
legal limits only. They provided an Integer Linear Programming formulation (ILP) for this problem
and investigated in which cases the travel costs can be reduced by allowing vehicles to wait at
nodes, depending on driver wage policies and modelling traffic congestion. In a subsequent work,
Franceschetti et al. [14] presented an ALNS heuristic for the solution of the Time-Dependent PRP with
several insertion and removal operators specifically tailored to the problem with traffic congestion.
While in the Time-Dependent PRP the free flow speed is optimised, Ehmke et al. [15,16] studied the
problem of routing a fleet of vehicles minimising gas emissions in urban areas, where vehicles travel at
speed of traffic and no waiting time is allowed at customer locations. A detailed sensitivity analysis
is performed on real-world and generated test instances, analysing varying geographies, departure
times, demand quantities and vehicle types.

The problem of modeling time-varying traffic conditions has been widely discussed also by
Xiao and Konak [17] in the context of GVRP. The GVRP proposed by Xu et al. [18] considers a
non-linear time-varying vehicle speed and soft time windows. The problem is formulated as a
Mixed Integer Non-Linear Programming model and solved by a Genetic Algorithm embedding
adaptive greedy strategies. Xiao et al. [19] proposed a fuel consumption optimisation model for the
Capacitated Vehicle Routing Problem, where the objective function depends both on the distance
travelled and the carried load. As a solution technique, they implemented a Simulated Annealing
algorithm which uses a combination of three neighborhood structures (Swap, Relocation and 2-Opt).
A further extension to the PRP has been proposed by Koç et al. [20], who introduced the Fleet Size and
Mix PRP where a heterogenous fleet of vehicles is considered. The problem is solved by means of a
hybrid evolutionary metaheuristic and extensive computational experiments on realistic and artificial
instances demonstrated the benefits of using a heterogenous fleet over a homogenous one.

Besides the specific domain of road logistics, there are other attempts to investigate the application
of metaheuristic optimisation methods for sustainability in the context of maritime transportations.
Among others, De et al. [21] studied sustainability aspects in the context of maritime transportation by
considering a model that employs a non-linear fuel consumption function depending on the speed
of the vessel and solve it through a Particle Swam Optimisation algorithm. In [22], the authors deal
with the more complex problem of the definition of strategies for the optimisation, in a sustainability
perspective, of fuel bunker management and their impact in container shipping operation, in particular
considering disruption and recovery policies.

Coming back to road logistics, the literature about transportation for cold chains is rather limited
and focused mainly at supply chain level (e.g., [23–27]). At operational level, Hsu et al. [28] investigated
the vehicle routing problem for the delivery of perishable food from a distribution center by considering
loss of food during transport, energy consumed by storage equipment due to a fixed difference between
indoor and outdoor temperature, and time-window constraints. Novaes et al. [29] introduced the
Process Capability Indices (PCI) based on simulations of thermal characteristic of potential journeys
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and product thermal properties in order to identify the route with the minimum travel distance,
while respecting a minimum PCI value.

Meneghetti and Ceschia [6] addressed the routing problem of a refrigerated vehicle for palletized
frozen food by defining the Refrigerated Routing Problem (RRP). The objective is to find the route with
minimum fuel consumption, taking into account thermal loads depending on outdoor temperature,
service times at each client based on the quantity to be unloaded, as well as different speeds
depending on the hourly traffic situation. In this setting, traction and refrigeration requirements
can vary throughout the day and also the different seasons of the year, so a multi-period model was
developed. For the refrigeration load, in particular, the transmission and the infiltration components
were considered, while the traction fuel requirements were modeled following the CMEM approach,
dividing them into the weight, engine and speed module [14]. The problem was formulated by a
Constraint Programming extended vehicle routing model and solved thorough the Gecode solver
available in the MiniZinc suite [30]. Real-world test scenarios came from a company that supplies
frozen bread dough to a local network of supermarkets. In addition, a sensitivity analysis on typical
tour attributes such as customers’ demand, start time of the delivery tour, seasonality, network
complexity, and different climate conditions was performed.

Stellingwerf et al. [7] propose an extension of the GVRP model whose objective is to minimise
emissions in temperature-controlled transportation systems. Similarly to Meneghetti and Ceschia [6],
the objective function takes into account the fuel consumption for motive energy and for thermal
energy and refrigerant leakage; in addition, the authors consider also the wage costs and a limit on the
maximum driving time. Differently from Meneghetti and Ceschia [6], the model is not multi-period,
such that a single value (30 ◦C) is considered for the outdoor temperature independently from the
hour the day and the month of the year. In addition, it does not considered traffic condition varying
during the day (speed values are fixed for each arc). The model is tested on a case study regarding the
distribution of frozen food from a central distribution center to nine supermarkets in Netherlands.

This work aims to fill the gaps in existing literature by extending the model proposed in [6],
embedding also the cost due to drivers, and proposing and comparing new solution approaches on
different test cases.

3. Problem Description and Formulation

In the following, a detailed description and a mathematical formulation of the problem are
proposed. The formulation is expressed in terms of a Mixed Integer Problem.

Let G = (N ,A) be a graph where N = {0, . . . , n, n + 1} is the set of nodes and A is the set of
arcs. The customers correspond to the nodes C = {1, . . . , n}, whereas the starting depot is identified
by the vertex 0 and the ending depot by n + 1 (usually they coincide, however, for more generality,
it is convenient to consider them separately for an easier formulation). There are no arcs ending at
vertex 0 or originating from vertex n + 1, but the subgraph induced by the set of customer nodes C,
is a complete graph. The distance between two nodes i and j is denoted by dij and it is expressed
in kilometres.

Each customer i ∈ C has a non-negative demand qi of palletized units, each of them having the
weight µ. We denote with Q = ∑i∈C qi the total quantity requested, and by D = µQ the total demand.
In addition, we assume that the total demand D is always less or equal than the total vehicle capacity,
so that all the customers can be served by just a single vehicle.

In order to deal with the real situation faced by the vehicle during the different times of the day
we represent the variation of traveling speed during the day by means of a discrete function in the
following way: there are |S| time intervals [tmin

s , tmax
s ), each one corresponding to a traffic time slot

s ∈ S and to a speed level vs.
On the basis of the previous input data, the main decision variables of the problem

are xij, which assume value 1 if the arc (i, j) is included in the route and 0 otherwise
(where i 6= j, i 6= n + 1, j 6= 0). We also introduce a set of integer decision variables uij ≥ 0 that
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represent the load of the vehicle on arc (i, j) and the set of binary variables zs
ij that take value 1 if the

arc (i, j) is traversed during timeslot s ∈ S corresponding to speed level vs. Moreover, ti ≥ 0 represents
the arrival time at customer i and si its service duration (both in seconds), whereas the binary variables
wk

ij are equal to 1 if the temperature slot (i.e., the time window) k is active on arc (i, j) (where K is the
set of temperature slots in a day). Finally, rij are binary variables that assume value 1 if the first pallet
of customer i to be unloaded is in the j-th position in the vehicle.

We adopt the fuel consumption non-linear formulation proposed in [6]. In the following we
provide the details of the formulation, but we refer the interested reader to that paper for the detailed
explanation of how it is derived. The objective function (Equation (1)) accounts for the total fuel
consumption as the aggregation of three main components: the traction fuel consumption (Ftrac),
which according to the CMEM model [31] is in turn the sum of three modules (weight, engine
and speed), the refrigeration fuel consumption (Frefr), which can also be further decomposed into
transmission and infiltration consumption, and the driver wage (Fdriver), which is the product of the
driver cost by the total delivery time (travel and stops).

min z = f f × Ftrac + f f × Frefr + Fdriver [e] (1)

Fdriver = fd × ν× (tn+1 − t0) [e] (2)

In Equation (2), given that the RRP is a multi-period problem, we aggregate the driver costs along
the whole planning horizon, so that the single-route value has to be multiplied by the total number of
delivery tours ν.

The traction fuel consumption Ftrac component is modelled in Equation (3), where α, β, and γ are
parameters depending on the vehicle specifications reported in Table 1. The first term in Equation (3)
corresponds to the weight module, since it depends on the curb weigh w and the load uij carried by
the vehicle on this arc; the second term is known as the engine module and it is linear on travel time;
the third term is the speed module which grows with the square of the vehicle speed. Similarly to
Equation (2), the single tour traction fuel consumption is multiplied by the total number of delivery
tours ν.

Ftrac = ν×
(

∑(i,j)∈A α× dij × (w× xij + uij) +

∑(i,j)∈A β× dij ×∑s∈S
zs

ij
vs +

∑(i,j)∈A γ× dij ∑s∈S zs
ij(v

s)2) [l] (3)

Table 1. Main input parameters.

Description Value Description Value

α Weight module const. 1.494 × 10−5 l
kg km φ Fix time at customer 300 s

β Engine module const. 5.54 l
h µ Palletized unit load 600 kg

γ Speed module const. 3.962 × 10−5 l h2

km3 δ Time to open/close doors 12 s

ξ Exchange surface 150 m2 χ Movement time of forklift 36 s
υ Global heat transfer coeff. 0.44 W

m2K ψ Movement time in a row 3 s
w Weight of empty vehicle 7450 kg ε Units per row 3
σ Specific fuel consumption 0.30 l

kWh fd Driver cost 0.0022 e
s

f f Fuel cost 1.4 e
l Tmax Max tour duration 9 h

ϑ Indoor temperature −20 ◦C ν Number of yearly tours 329

Constraints (4) and (5) impose that each customer must be visited exactly once in a route.

∑
j∈N\0,j 6=i

xij = 1 ∀i ∈ N \ {n + 1} (4)
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∑
i∈N\{n+1},j 6=i

xij = 1 ∀j ∈ N \ 0 (5)

Constraints (6) and (7) force the load of the vehicle at the depot: the vehicle is fully loaded when
the tour starts and empty when it returns to the depot.

∑
j∈C

u0j = D (6)

∑
i∈C

ui,n+1 = 0 (7)

Constraints (8) and (9) set the vehicle load for the other arcs of the graph.

∑
j∈N\{n+1}

uji − ∑
j∈N\0

uij = µ× qi ∀i ∈ C (8)

xij × (µ× qj) ≤ uij ≤ xij × (D− µ× qi) ∀(i, j) ∈ A (9)

Constraints (10) establish that exactly one speed level must be assigned to each arc of the route.

∑
s∈S

zs
ij = xij ∀(i, j) ∈ A (10)

Constraints (11) and (12) define the relation between ti and zs
ij variables: if the vehicle departs

from node i within the time interval [tmin
s , tmax

s ), the zs
ij is activated and the vehicle will travel at speed

level vs on arc (ij).
ti + si ≥ ∑

s∈S
tmin
s ∑

j
zs

ij ∀i ∈ N \ {n + 1} (11)

ti + si < ∑
s∈S

tmax
s ∑

j
zs

ij ∀i ∈ N \ {n + 1} (12)

The refrigeration fuel consumption is reported in Equation (13). It depends on both the
transmission and infiltration energy, which are affected by the outdoor temperature. The variation of
the temperature during each day of the horizon is modelled similarly to the speed function with |K|
time slots [τmin

k , τmax
k ) in a day.

Since the outdoor temperature within the same hour of the day varies seasonally, we consider
m ∈ M months in the planning horizon. Therefore, for each day timeslot k and each month of the

horizon m, there are several corresponding parameter values: an outdoor temperature level θ
m,k

,
a specific coefficient of performance ρm,k, an infiltration energy value ιm,k, an infiltration power value

ζ
m,k

, and a number of occurrences ηm,k during the horizon.

Frefr = ∑
(i,j)∈A

(Etrans
ij + Einf

ij )/σ [l] (13)

Etrans
ij =

(
tj − ti

)
× ∑

m∈M
∑
k∈K

(
ηmwk

ij ×
ξ × υ× (θ

m·|K|+k − ϑ)

ρm·|K|+k

)
(14)

According to [32], the infiltration power converges to a value ζ
m,k

40 s after the doors have
been opened. Consequently, the infiltration energy when the doors remain open for more than 40 s
(which is the usual case when palletized units have to be removed) can be modelled as in Equation (15),
where ιm,k is the infiltration contribution of the first 40 s.

Einf
ij = ∑

m∈M
∑
k∈K

(
ηmwk

ij ×
ιm·|K|+k + ζ

m·|K|+k × (si − 40)

ρm·|K|+k

)
(15)
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Notice that ηm is the number of working days of month m, while ιm,k, ζm,k, and ρm,k are the specific
parameter values of the time slot k of month m (e.g., 9:00–10:00, May). Constraints (16) and (17) define
the relation between ti and wk

ij variables.

ti ≥ ∑
k∈K

τmin
k ∑

j
wk

ij ∀i ∈ N \ {n + 1} (16)

ti < ∑
k∈K

τmax
k ∑

j
wk

ij ∀i ∈ N \ {n + 1} (17)

Constraints (18) establish that exactly one outdoor temperature time slot must be selected for each
arc of the route.

∑
k∈K

wk
ij = xij ∀(i, j) ∈ A (18)

The service duration si is the time needed for unloading operations, which depends on the
position of each palletized unit in the vehicle (for the depot the service duration is null), which can be
estimated as in Equation (19).

si = φ + 2× δ +
Q−qi

∑
j

rij

qi

∑
k

rj+k ∀i ∈ C (19)

For each customer i, the binary variable rij is positive if the first palletized unit to be unloaded is
in the j-th position within the vehicle (pallets are numbered consecutively from the rear to the front of
the vehicle), while rk is the time needed to drop off a unit in position k.

rk = χ + 2ψ× b k− 1
ε
c k = {1, . . . , Q} (20)

Constraints (21) and (22) establish the relation between the rij and the main variables xij; for the
depot we fix r00 = 1.

Q

∑
k

rik = 1 ∀i ∈ C (21)

xij

(
Q

∑
k

k(rjk − rik)− qi

)
= 0 ∀(i, j) ∈ A (22)

Constraints (22) can be easily linearised as follows:

Q

∑
k

k(rjk − rik)− qi ≥ −M(1− xij) ∀(i, j) ∈ A (23)

Q

∑
k

k(rjk − rik)− qi ≤ M(1− xij) ∀(i, j) ∈ A (24)

Constraints (25) and (26) define the arrival times at depot and customer nodes: for the starting
depot the tour conventionally begins at time t0.

t0 = t0 (25)

ti + si + ∑
s∈S

dij ×
zs

ij

vs − tj ≤ M(1− xij) ∀(i, j) ∈ A (26)
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The arrival time variable ti impose a unique route direction, thereby eliminating any sub-tours,
consequently the classical sub-tour elimination constraints become redundant. Finally, the domains of
the variables are:

xij ∈ {0, 1} ∀(i, j) ∈ A
uij ≥ 0 ∀(i, j) ∈ A
zs

ij ∈ {0, 1} ∀(i, j) ∈ A, ∀s ∈ S
wk

ij ∈ {0, 1} ∀(i, j) ∈ A, ∀k ∈ K
rij ∈ {0, 1} ∀(i, j) ∈ A
ti ≥ 0 ∀i ∈ N
si ≥ 0 ∀i ∈ N

It should be noticed that this formulation implicitly allows pre-service waiting times at customer
nodes, i.e., the vehicle is allowed to wait idly at the customer node before starting to serve the customer.
This is necessary to guarantee the “non-passing” (or FIFO) [33] property which requires that if a vehicle
departs from node i to travel to node j, an earlier departure time produces an earlier arrival time,
and vice versa.

Example

An exemplary instance with three customer nodes and a depot is shown in Figure 1, where the
value reported on each arch refers to its length in km.

D 1

23

40

50
30 30

50

40

Figure 1. Example instance with 3 customers.

Figure 2 shows the independent decision variables of the mathematical model for the sample
instance in Figure 1, i.e., the arcs xij that have to be included in the route and the arrival time ti at each
node. Conventionally, the depot has been duplicated into the starting depot (node 0) and the ending
depot (node n + 1).

The mathematical model counts
(
n2 + n

)
independent binary variables xij, (n + 2) independent

integer-valued variables ti, and 7n2 + 15n + 11 constraints, such that for this example instance with
three customers and 24 speed and temperature time slots, the total number of independent variables is
12 and the number of constraints is 119.
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0

t0

2

t2

1

t1

3

t3

n + 1

tn+1

x02

x01

x03

x1,n+1

x2,n+1

x3,n+1

x12 x21

x23 x32

x 1
3

x 3
1

Figure 2. Independent decision variables of the mathematical model for the sample graph of Figure 1.

Figure 3a depicts the optimal route for the instance in Figure 1, as mapped in the graph of Figure 2
(x03 = 1, x32 = 1, x21 = 1, x1,n+1 = 1, t0 = 25,200, t3 = 28,922, t2 = 32,567, t1 = 34,995, tn+1 = 38,880).

We report on each arc the travel speed (in km/h). For each node, we show in brackets the
pre-service waiting time (in seconds), the arrival time (hh:mm), and the service time (in seconds).
We do not report data about temperature, because for the same time slots the outdoor temperature
varies based on the month of the year.

In this example the vehicle departs from the depot at 7:00 a.m., and travels to node 3 for 30 km
with a speed of 30 km/h. Before starting the service, the driver has to wait for 122 s, such that the
actual arrival time is 8:02, and the unloading activity lasts 765 seconds. Then the vehicle leaves node
3 towards node 2, traveling for 40 km at 50 km/h. The pre-service waiting times for node 2 is null,
such that the unloading service can start immediately at 9:02 and it takes 885 seconds. Subsequently,
the vehicle moves to node 1, traveling for 30 km at 70/km; there is not waiting time and the vehicle
arrives at 9:43, while the service time is equal to 1005. Finally, the vehicle goes back to the depot,
which is 40 km far, traveling with a speed of 50 km, and it arrives there at 10:48.

Given the cost parameters reported on Table 1, the (yearly) total costs of this solution is
z = 45,066.7e, whereas the detailed costs of the different components are: Ftrac = 30,814, Ftrans = 2684.7,
Finf = 1666.4, Fdriver = 9901.6.

(a) Optimal solution with driver costs.

0

7:00

2

[0, 9:02, 885]

1

[0, 9:43, 1005]

3

[122, 8:02, 765]

n + 1

10:48

30 50
70 50

(b) Optimal solution without driver costs.

0

7:00

2

[0, 9:45, 885]

1

[0, 10:36, 1005]

3

[2670, 8:44, 765]

n + 1

11:40

30 50
50 50

Figure 3. Optimal solutions for the example graph of Figure 1.
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With the purpose to prove the importance of the driving cost component Fdriver and its impact on
the selection of the best solution, in Figure 3b it is reported the optimal route plan if Fdriver is neglected.
It can be noticed that the sequence of visited customers is the same as in Figure 3a, however arrival
times, and consequently speed values and waiting times are different. In particular, it is request that
the driver waits about 45 minutes at node 3 before starting unloading, so that all also the arrival
time to the subsequent node is delayed of 43 min (9:45 instead of 9:02). The most evident implication
is that arc (2, 1) is traversed with a speed of 50 km/h which is slower than the value of 70 km/h
reported in the optimal solution of Figure 3a, with a consequent reduction of traction consumption
of about 3% (Ftrac = 29,937.4). Conversely, the consumption for refrigeration requirements is greater
(Ftrans = 3289.7, Finf = 1686.7) given that the route duration is increased and the vehicle travels in
hotter hours. The total cost (not considering the driver wage) is equal to 34,913.8e, compared to to
35,165.1e of solution in Figure 3a.

4. Solution Methods

Our solution methods are based on a Constraint Programming model described in Section 4.1
and a local search technique presented in Section 4.2.

4.1. Constraint Programming Model

Analogously to [6], a Constraint Programming model is proposed for the problem, although from
a different perspective. Indeed, in [6] the problem was formulated in a routing perspective as an
extended VRP, that is the main decision variables are the arcs of the graph to be followed in the route
visiting all the customers (see Figure 4). In this work, instead, similarly to the approach followed
in [34] for a different logistics problem, a planning perspective is adopted. Indeed, in the case at hand,
the route has to serve all the n customers and therefore the problem consists of determining a plan of
n + 2 steps s ∈ {0, 1, . . . , n + 1} where at each step the relevant decision variables are the customer
to be served and the arrival times at that step (Figure 5). This planning perspective allows to avoid
some of the constraints that were part of the routing model and were needed for maintaining a dual
view on the operations at each customer, thus simplifying the model. Another feature of the proposed
planning model is the possibility of arbitrarily long waiting times whereas the previous routing model
used waiting times which were multiples of a specified time granularity (i.e., 5 min up to 30 min).

0

twaiting
0

succ(0)

2

twaiting
2

succ(2)

1

twaiting
1

succ(1)

3

twaiting
3

succ(3)

n + 1

Figure 4. Independent decision variables of the CP model proposed in [6], where succ(i) and twaiting
i

denote respectively the node successor of i and the time the vehicle waits at i.
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Figure 4. Independent decision variables of the CP model proposed in [6], where succ(i) and twaiting
i

denote respectively the node successor of i and the time the vehicle waits at i.
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Figure 5. Independent decision variables of the new CP model, where touri and arrival_timei denote
respectively the node visited in the i-th step of the route plan and the corresponding arrival time.
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In detail, more precisely, the Constraint Programming model consists of the following sets of
variables and constraints.

The main decision variables tours ∈ {0, . . . , n + 1}, for s ∈ {0, . . . , n + 1}, specify who is the
customer served at step s of the plan. The first step tour0 is fixed to be the depot 0 so also the last step
tourn+1, for which the depot is n + 1. The hamiltonian circuit property and sub-tour elimination is
implicit in the model, just requiring that the values of the variables tours must be distinct, i.e.,:

alldifferent(tour) (27)

The other set of integer decision variables arrival_times ∈ {0, . . . , 86,400}, for s ∈ {0, . . . , n}
determine the arrival time (measured in seconds) at the node served at step s. These variables do not
simply functionally depend on the traveling times because of the possibility for the driver to wait
before serving the customer.

Other time-related variables are processing_times, departure_times, and travel_times,
s ∈ {0, . . . , n}, which account for the time needed to service the customer at step s and characterise
the travel leaving the customer at step s and reaching the customer at step s + 1. Notice that these
variables are not needed for the last step of the plan (therefore they are just n + 1 and not n + 2). In the
following, to simplify the notation, the index s will refer to the right set of values depending on the
considered variables.

The latter time-related variables functionally depend on the setting of the decision variables.
For example, processing_times depends on tours, the customer at step s, and the start_pallets the
index of the first pallet to be discharged from the truck after all the customers 0, . . . , s− 1 have been
served. Since this information can be computed beforehand, the possible processing times are stored
in a matrix called unload_time_from logically indexed by these two information through an element
constraint, i.e.,

processing_times = unload_time_from[tours, start_pallets] (28)

Similarly, travel_times depends both on the customers served at step s and s + 1 (actually their
distance) and on the travel speed associated to the specific departure_times, therefore:

travel_times = travel_speed[departure_times/|K|] · d[tours, tours+1] (29)

Moreover, the departure time for the travel from step s to s + 1 is determined as follows
(departure_time0 is set to the departure time from the depot):

departure_time0 = start_time_from_depot (30)

departure_times = arrival_times + processing_times (31)
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Finally, the relation for the arrival_times variables is the following:

arrival_time0 = departure_time0 (32)

arrival_times+1 ≥ departure_times + travel_times (33)

Once the values of the time-related variables are set, the time-dependent cost function components
(i.e., infiltration and transmission costs) can be expressed as formulae using lookups, using the element
constraint, in some specific tables where the values are partially precomputed for a given temperature
and month. For example, the transmission energy at step s (corresponding to Equation (14)) is
determined as:

transm_consumptions = ∑
m∈M

transm_temps[temperature_slotsm] (34)

·(processing_times + travel_times)

The formula for the infiltration energy is similar to the one reported in Equation (15) in the
MIP model.

As for the load-related variables, also those variables are determined in terms of the plan,
for example the vehicle_loads and start_pallets sets of variables are constrained as followed:

vehicle_load0 = Q (35)

vehicle_loads+1 = vehicle_loads − q[tours+1] (36)

and

start_pallet0 = 0 (37)

start_pallets = start_pallets−1 − q[tours−1] (38)

Analogously with the time-dependent cost components, also the load-dependent cost component
is determined in a similar way as in the MIP model (Equation (3)).

The implemented model uses both Int and Float variables (these latter for the cost components)
and extends Gecode with the implementation of the element constraint over arrays of Float values,
which was not available in the system.

Finally, as the variable/value branching heuristics, from a set of preliminary experiments the best
strategy has been determined as follows:

1. Branch on the tour variables, selecting the one having the maximum value for the Accumulated
Failure Count and the values in increasing order;

2. Branch on the arrival_time variables, similarly selecting the one having the maximum value for
the Accumulated Failure Count contribution and the values in increasing order;

3. Branch on the cost_value variable, splitting the domain in two halves around the median value
(i.e., min+max

2 ).

Overall, the constraint programming model accounts for n decision variables tours,
whose domain is {0, . . . , n}, and n decision variables arrival_times, whose domain is {0,86,400}.

The model is more succinct than the one used in an earlier work [6]. In particular, the use of the
decision variables for the customers visits instead of the route successor variables of [6] (i.e., which is
the next customer to be visited) allows to avoid the indirect indexing of the array of temporal CP
variables (arrival/processing/waiting time) through the element constraint. The indirect reference
would have required a considerable amount of constraint propagation at each solution search step
which is avoided by the direct indexing of those variables (as in a regular array) in the new model.

Moreover, the novel model saves n decision variables (i.e., those accounting for the waiting times,
which are implicitly modelled by using a set of departure times) and allows to express constraints
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more naturally. Indeed, for a more precise comparison, the number of constraints involved in the
two models is reported in Table 2, where only the relevant constraints are considered (i.e., equality
constraints are disregarded). In particular, with respect to [6], the model is able to avoid many element
constraints, thus considerably reducing the constraint propagation effort during the search.

Table 2. Comparison of the number of constraints in the CP model with respect to those of [6].

Global Constraints New CP Model CP Model [6]

alldifferent 1 1
circuit — 1
sorted — 1
element 4(n− 1) + m · (n− 1) 6(n− 1) + 7m(n− 1)

Arithmetic constraints

Inequality n− 1 —

As for the example instance reported in Figure 1, with n = 4 nodes and m = 24 speed and
temperature time slots, the total number of decision variables is 8 and the number of constraints is 88,
whereas the routing CP model of [6] uses 12 decision variables and 525 constraints.

4.2. Local Search

In this section we outline the main problem-specific components of the local search algorithm
employed in this study.

4.2.1. Search Space, Initial Solution and Cost Function

Looking at the mathematical and CP models defined in Sections 3 and 4.1, it could be noticed
that the only independent decision variables are those related to the sequence of customers and the
arrival times. Analogously, for the LS algorithm we choose a representation of a solution where a state
in the search space is constituted only by two vectors of size n. The first one, similarly to the CP model,
represents the permutation of nodes in the route, that is the order of customer to visit. The second one
is a boolean-valued vector that states for each node i ∈ C, if the vehicle has to wait at the node up to
the start of the next speed time slot or not. Thereby, LS works on a reduced solution space whereas
exact models consider any possible value for waiting times. The only practical reason for idle waiting
at a node is to control the vehicle speed that depends on traffic congestion characterised by some peaks
during the day, while temperature variations are smoother.

Adopting such solution representation gives the advantage that Constraints (4), (5) and (26) are
automatically satisfied, thus always working with feasible solutions. Indeed, all the other constraints
are only necessary to set the values of the dependent variables, which are used by the cost function.

The initial solution is a random permutation of the n nodes, without any waiting time. The cost
function includes the cost components of the RRP defined in Equation (1), as detailed in Equations (2),
(3) and (13).

4.2.2. Neighborhood Relations

The neighborhood used is a combination of two basic moves. The first one (called CN, for Change
Node) changes the position of a node in a route, while the other one adds a waiting time to a node
(WT, for Waiting Time). The waiting time for a node is computed as the difference between the start of
the subsequent speed time slot and its current departure time. When a CN move is performed, all the
waiting times of the nodes visited after the minimum between the old and the new position of the
node, are set to 0. Given that the complete neighborhood used is the set union of the CN and WT basic
relations, we use a probability to select first the neighborhood used, and then the specific move within
the neighborhood (with uniform probability). In detail, WT is selected with probability pWT and CN
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with probability 1− pWT. The value pWT has been subject to tuning, along with the other parameters
of the LAHC metaheuristic.

4.2.3. Late Acceptance Hill Climbing Metaheuristic

In order to guide the local search, we implemented the Late Acceptance Hill-Climbing (LAHC)
algorithm has originally proposed by Burke and Bykov [35], which has been proven to be very effective
in the context of routing problems.

At each step of the search, LAHC selects randomly one move from the neighborhood. The move
is then accepted if the candidate solution improves or equals the cost function value of the solution
which was the current several iterations before. As a consequence, the only control parameter is the
length Lh of the list that records the previous values of the current cost function (history length).

As a stop criteria for LAHC, we used the number of iterations without improvement of the value
of the cost function (stagnation detection), which has been set to 50,000 according to the results of
preliminary experiments.

5. Results

The proposed model has been tested by referring to a basic scenario, which is described in details
in the following Section 5.1. In Section 5.2, a comparative analysis of computational performance for
the proposed solution methods is provided. Energy and cost performance of solutions for the reference
scenario are analysed in Section 5.3. In Section 5.4, a more congested scenario is also analysed in order
to derive the impact of a different speed profile on routes and waiting times. Sensitivity analysis has
been performed on the time-dependent wage cost parameter and reported in Section 5.5.

Finally, different structures of the driver’s wage cost are investigated in Section 5.6. Besides the
cost proportional to the delivery process duration as in Equation (2), a fixed salary as well as a driver’s
payment proportional to the total travelled distance are considered, so that their impact on waiting
times and sustainability performance achieved for the same delivery process can be derived.

5.1. The Reference Scenario

A parametrized instance generator has been developed in order to reproduce realistic data for
different sizes of the delivery tour. The user specifies the desired number of nodes, the demand for
each node, the vehicle parameters (see Table 1), the speed profile and the outdoor climate pattern.
The position of each node is then randomly generated inside an area of 60× 60 km2.

For the reference scenario, the average outdoor temperatures in hourly/monthly timeslots have
been retrieved from the meteorological agency ARPA FVG OSMER, which collects the weather data for
the Friuli-Venezia Giulia Region in North-Eastern Italy. As for the speed profile and travel distances,
real data related to the investigated region have been collected from Google Maps. The resulting
hourly speed values are reported in Table 3, describing the realistic traffic situations of a suburban area.

Table 3. Daily speed time slots for the basic scenario dataset D1.

Slot Speed Slot Speed

Start End [km/h] Start End [km/h]

00:00 06:00 70 13:00 14:00 45
06:00 07:00 60 14:00 15:00 50
07:00 08:00 40 15:00 16:00 55
08:00 09:00 45 16:00 17:00 50
09:00 10:00 50 17:00 18:00 45
10:00 11:00 50 18:00 19:00 40
11:00 12:00 45 19:00 20:00 50
12:00 13:00 40 20:00 24:00 60
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We generated the dataset D1 of 14 test instances each with a number of nodes up to 17, and with
a maximum total amount of palletized unit loads per delivery tour equal to the maximum vehicle
capacity, which is 33 units for the adopted semi-trailer.

Indeed, this type of refrigerated transportation involves typically food delivered to supermarkets,
thus the number of customers visited in a route is usually rather limited (see also [7]). Another
restriction on the total number of nodes is given by the law regulation about the maximum number
of consecutive driving hours, which in Italy is set to 9 h. However, in order to show how the
different solution approaches scale on larger cases as reported in the following Section 5.2, we also
generated an instance with 34 nodes (the maximum possible theoretical dimension for this scenario),
which corresponds to 33 customers each having a demand of one unit, plus the depot.

For these instances, the demand is homogeneous, i.e., each node requires the same delivered
quantity. Actually, cases with heterogeneous demand have been already investigated in [6], reaching
the conclusion that customers with the larger demand are served at first, in order to obtain savings on
the traction consumption related to the weight module of the CMEM model.

The name of each instance follows this pattern: Di-nj-npk, where i refers to the dataset, j is the
number of nodes (depot included) and k is the total demand (palletized unit loads). All the instances
employed in the paper and the best solutions obtained are available on the web for future inspection
and comparison at https://bitbucket.org/sceschia/the-refrigerated-routing-problem/.

5.2. Computational Analysis

The results of the proposed solution techniques have been compared in terms of solution quality
and computational times. For the MIP solver we use the default CPLEX configuration (v. 12.7.1). The CP
model has been implemented in C++ using Gecode (v. 6.2.0) [36]. In addition we extended the CP
model proposed in [6], which has been coded in MiniZinc (v. 2.0.14), by including also the driver cost.
We ran CPLEX, Gecode and MiniZinc sequentially in deterministic mode, with a common time limit
of one hour. The LAHC algorithm has been written in C++, using the EasyLocal++ framework [37],
and compiled using the GNU C/C++ compiler (v. 4.4.3) under Ubuntu Linux. All experiments were
run on an Intel R© i7-7700 (3.60 GHz) machine.

The tuning phase for the LAHC metaheuristic has been performed using the tool JSON2RUN [38],
which implements the F-Race procedure [39] (p-value = 0.02) for comparing the different parameter
configurations. The resulting best configuration was: pWT = 0.1 and Lh = 25,000.

The results for the RRP obtained by the different solution methods are shown on Table 4 and
Figure 6. The LAHC metaheuristic was run 30 times on each instance, collecting the average, the best
value and the running time. As for the MIP and the CP models, instead, only the results of a single
run are reported, since they have no stochastic component. Proven optimal solutions are marked by ∗

whereas best values are highlighted in bold; the dash symbol is used whenever the solver was not able
to find any solution in the granted time.

From the results reported in Table 4, it can be noticed that LAHC is able to find all the proven
optimal solutions (cases up to 12 nodes) and the best solutions for all the other cases; in addition the
metaheuristic technique exhibits a high robustness given that average values are equal to minimum
ones on 11 of 15 instances. For larger instances, the exact approaches are clearly outperformed by the
LAHC in shorter computational times. In particular, for instance D1-n34-np33 they have not been able
to find any feasible solution within one hour.

As for the comparison between the two CP models, the planning model proposed in this paper is
able to consistently find solutions (although not optimal) for all problem sizes within the granted time
bound. On the contrary, the routing model proposed in [6] scales up to 10 nodes but is not able to find
any solution for bigger problem sizes in the allowed running time.

https://bitbucket.org/sceschia/the-refrigerated-routing-problem/
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Table 4. Results on dataset D1: objective function values [e] and running times [s].

Instance
CP Routing [6] CPLEX CP Planning LAHC

z Time z Time z Time Avg z Min z Time

D1-n4-np33 * 45,033.7 0.3 * 45,033.7 0.6 * 45,033.7 7.6 45,033.7 45,033.7 3.7
D1-n5-np32 * 37,771.5 0.9 * 37,771.5 1.8 * 37,771.5 2.2 37,771.5 37,771.5 3.8
D1-n6-np30 * 54,125.7 164 * 54,125.7 9.6 * 54,125.7 415 54,186.4 54,125.7 4.3
D1-n7-np30 * 45,605.8 193 * 45,605.8 63 * 45,605.8 17.8 45,605.8 45,605.8 4.7
D1-n8-np28 * 51,347.7 1516 * 51,347.7 117 * 51,347.7 94.9 51,347.7 51,347.7 5.6
D1-n9-np32 71,357.6 3600 43,591.1 3600 * 43,591.1 26.3 43,591.1 43,591.1 8.2
D1-n10-np27 78,744.8 3600 72,433.9 3600 * 66,982.9 364.6 67,114.6 66,982.9 9.7
D1-n11-np30 115,664.9 3600 71,620.9 3600 * 53,828.5 271.5 54,175.5 53,828.5 9.9
D1-n12-np33 109,173.7 3600 108,015.0 3600 * 59,091.2 1597.4 59,091.2 59,091.2 10.3
D1-n13-np24 124,985.2 3600 98,232.4 3600 56,692.2 3600 56,692.2 56,692.2 13.6
D1-n14-np26 140,885.5 3600 109,270.0 3600 95,558.0 3600 64,561.4 64,561.4 14.3
D1-n15-np28 148,593.2 3600 134,534.0 3600 75,444.8 3600 56,639.3 56,639.3 16.5
D1-n16-np30 169,970.0 3600 163,666.0 3600 119,894.0 3600 66,987.7 66,987.7 20.5
D1-n17-np32 165,214.5 3600 156,708.0 3600 102,083.0 3600 61,256.5 61,256.5 22.4
D1-n34-np33 – – – – – – 100,906.6 98,228.5 67.4
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Figure 6. Comparative performance of different solution methods.

Figure 6 shows the performance of the different solution methods, grouped by instance
(excluding instance D1-n34-np33, given that the only results available are those of LAHC). It is possible
to notice that LAHC consistently outperforms the other approaches, exhibiting, in general, lower costs
and a reasonably compact range of variation (shown by the orange deviation bars with respect to the
average cost found by the method); indeed the other methods either find a solution with a considerably
higher cost or are not able to find any feasible solution at all.

The main motivation for the poor performance of the exact methods is the complexity of the
problem formulation, in particular Equations (14) and (15), that refer to the transmission and infiltration
energy, introduce non linear terms, which are not naturally handled by the solvers.
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5.3. Cost and Energy Performance for the Basic Reference Scenario

Table 5 reports the values of the different components of the objective function (Equation (1)) for
the best solutions found during the whole experimentation for the basic scenario, and the possible
pre-service waiting times at customer nodes also.

Table 5. Values of the best solutions of dataset D1: F[e], waiting times [s].

Instance Ftrans Finf Ftrac Fdriver z Waiting Times

D1-n4-np33 2791.5 1630.5 30,228.8 10,382.9 45,033.7 [0 0 0]
D1-n5-np32 2467.9 1818.0 24,260.8 9224.8 37,771.5 [0 0 0 0]
D1-n6-np30 3428.3 2102.3 36,095.8 12,499.3 54,125.7 [0 0 0 0 0]
D1-n7-np30 2907.0 2300.8 29,495.4 10,902.6 45,605.8 [0 0 0 0 0 0]
D1-n8-np28 3436.2 2537.8 32,842.6 12,531.1 51,347.7 [0 0 0 0 0 0 0]
D1-n9-np32 2999.6 2868.5 26,746.6 10,976.4 43,591.1 [0 0 0 0 0 0 0 0]
D1-n10-np27 4466.2 3094.0 43,420.9 16,001.8 66,982.9 [0 0 0 0 0 0 0 0 0]
D1-n11-np30 3599.3 3470.2 33,805.1 12,953.9 53,828.5 [0 0 0 0 0 0 0 0 0 0]
D1-n12-np33 3956.7 3860.2 37,169.6 14,104.7 59,091.2 [0 0 0 0 0 0 0 0 0 0 0]
D1-n13-np24 3934.3 3833.4 34,847.3 14,077.2 56,692.2 [0 0 15 0 0 0 0 0 0 0 0 0]
D1-n14-np26 4599.4 4145.9 39,585.6 16,230.5 64,561.4 [0 0 0 0 0 0 0 0 0 0 0 0 0]
D1-n15-np28 4055.0 4481.2 33,710.3 14,392.8 56,639.3 [0 0 0 0 0 0 0 0 0 0 0 0 0 0]
D1-n16-np30 4722.7 4852.8 40,766.9 16,645.3 66,987.7 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
D1-n17-np32 4387.5 5202.6 36,186.5 15,479.9 61,256.5 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
D1-n34-np33 6922.3 10,045.0 57,047.2 24,214.0 98,228.5 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0]

In detail, Ftrans represents the monetary cost due to fuel consumption for transmission energy,
Finf the cost of infiltration energy, Ftrac is the cost for traction (Equation (3)), and Fdriver represents the
driver wage (Equation (2)). The driver wage sums up to about the 24% of the total cost on average.
The remaining cost is due to fuel consumption, which is dominated by the traction component (83%),
while the consumption for refrigeration is almost equally divided between the infiltration (9%) and the
transmission (8%) components. This is also evident from Figure 7 that displays the distribution of the
values of the cost components obtained by the LAHC.

Coherently with previous results about RRP [6], infiltration fuel consumption, and consequently
the related fuel cost, grows with the number of door openings (see Equation (17)) and therefore with the
number of clients involved in the delivery process (see Figure 7). Transmission energy requirements are
proportional to the time the vehicle is exposed to outdoor temperature and therefore strictly depends
on the trip duration, which increases with the size of the instance. Traction energy requirements
depend on the on board load along each route segment of the delivery process, related speed values
and distance, so they are more variable among the different instances of dataset D1, but still accounts
for the most part of total fuel consumption.
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Figure 7. Distribution of the values of the different cost components, scale is semi-logarithmic to allow
the analysis of the trends for all cost components.
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All the best solutions but one (instance D1-n13-np24) are obtained without triggering waiting
times at clients. This happens because waiting times usually increase the total tour duration,
and consequently the driver wage which is a relevant part of the total cost. For the adopted
speed profile this cannot be compensated by more favourable traffic or outdoor climate conditions.
Specifically, a really short waiting time is convenient only for instance D1-n13-np24 just in the case of
one customer. Indeed, because of the modeling characteristics, delaying the departure allowed the
vehicle to travel at a greater speed (45 km/h with respect to 40 km/h without waiting). That reduces
the travel time and consequently the transmission consumption and the driver wage, which are
proportional to the tour duration.

5.4. Analysis of a Traffic-Congested Scenario

In this subsection, a traffic-congested scenario is taken into account by generating a dataset D2.
With respect to the basic configuration analysed in the previous subsections, this scenario depicts the
situation where there are fast and significant variations of the speed values also between adjacent
timeslots, as typical for traffic congestion in rush hours (see Figure 8).

00:00 06:00 12:00 18:00 00:00

30

35

40

45

50

55

60

65

70 Dataset D1
Dataset D2

daily time slot

sp
ee

d 
[k

m
/h

]

Figure 8. Daily speed time slots for the traffic-congested dataset D2 and its comparison with the
reference scenario D1.

First of all, similarly to the previous analyses, we report in Table 6 the comparative results of the
different solution methods on this dataset in the same setting employed in Section 5.2. Even for this
dataset the results confirm that the LAHC method is the most effective one. In this case, however,
on smaller instances some optimal solutions found by exact methods are beyond the reachability of
LAHC (instances D2-n4-np33, D2-n5-np32, D2-n7-np30, Table 6), although the worst gap w.r.t. to the
average values of LAHC is still within 1%.

Concerning the other solution methods, it should be noticed that on this dataset, the CP model
proposed in [6] is not able to find the optimal solutions even for small cases since the domain of the
waiting time variables is reduced to values ranging from 0 to 6, which represent time intervals of 5 min
each (i.e., maximum 30 min). In addition, for instances with more than 10 nodes, it was not able to find
any feasible solution within 1 h.
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Table 6. Results on dataset D2: objective function values [e] and running times [s].

Instance
CP Routing [6] CPLEX CP Planning LAHC

z Time z Time z Time Avg z Min z Time

D2-n4-np33 36,146.9 1.2 * 35,960.5 0.439 35,960.5 3600 36,063.6 35,980.6 4.1
D2-n5-np32 31,141.4 1.4 * 29,706.4 2.12 29,716.1 3600 29,716.5 29,707.7 5.2
D2-n6-np30 42,573.2 4.7 * 42,573.2 14.84 42,573.2 3600 42,573.2 42,573.2 4.3
D2-n7-np30 38,312.7 60 * 36,130.1 135 36,233.0 3600 36,190.3 36,138.5 8.9
D2-n8-np28 39,805.6 112 * 39,805.7 946 40,593.0 3600 39,968.3 39,805.7 5.8
D2-n9-np32 37,370.4 3600 33,439.5 3600 44,667.1 3600 33,480.6 33,450.7 10.9
D2-n10-np27 64,977.3 3600 54,517.2 3600 73,189.5 3600 52,986.5 52,779.5 12.3
D2-n11-np30 – 3600 45,305.4 3600 71,452.4 3600 42,600 42,147.9 15.7
D2-n12-np33 – 3600 75,671.5 3600 81,994.9 3600 46,248.1 46,221.1 16.4
D2-n13-np24 – 3600 81,188.4 3600 76,844.7 3600 44,156.3 44,118.4 20.2
D2-n14-np26 – 3600 87,372.7 3600 79,720.2 3600 49,790.9 49,778.6 25.2
D2-n15-np28 – 3600 79,524.3 3600 81,212.1 3600 43,838.1 43,800.1 24.5
D2-n16-np30 – 3600 73,351.4 3600 83,858.7 3600 52,053.0 51,926.4 31.4
D2-n17-np32 – 3600 89,769.6 3600 85,098.6 3600 47,016.5 46,985.5 36
D2-n34-np33 – – – – – – 81,491.9 77,451.3 73.4

Moving to a specific analysis of the waiting times, results in Table 7a highlight how a more
significant speed variation between adjacent time slots triggers waiting times in order to avoid traffic
congestion and benefit from related faster travel times, which impact both on transmission energy
requirements (see Equation (14)) and traction fuel consumption (as in Equation (3)). Due to wage cost
minimisation, which is proportional to the delivery process duration, waiting times are limited to just
the amount needed to activate a more convenient speed value. On the one hand, this underlines that
modelling arbitrary waiting times as described in Section 3, instead of discrete waiting periods of 300 s
each as in [6], allows to identify optimal driver’s behaviours. On the other hand, this suggests the
opportunity to increase the accuracy of the model by also introducing the wage cost component to
limit excessive stop times at clients.

The latter hypothesis is confirmed by the solutions obtained for the same dataset D2, when the
wage cost is neglected (see Table 7b) and an upper bound on the overall delivery process duration is
set to not exceed the maximum driving time imposed by law (e.g., 9 h for Italy). In comparison to the
solutions reported in Table 7a, the same routes are obtained, but longer waiting times are selected in
order to gain the most favourable speed values and reduce travel time consequently. The increased
refrigeration requirements needed to counterbalance transmission load, which depend on the elapsed
time the vehicle is exposed to outdoor temperature (see Equation (14)), cannot overcome, in facts,
fuel savings for traction. Thus, if the driver wage cost component is neglected, more globally energy
efficient behaviours are selected. For the analysed instances, the improvement on fuel consumption
and therefore on related GHG emissions does not exceed 3%. Therefore, such a greener approach
should be adopted basing on the goals to be pursued by the company in charge of the delivery process,
which should manage potential driver and vehicle capacity underutilisation.

5.5. Sensitivity Analysis

To further investigate the role of the wage component, a sensitivity analysis on the related cost
parameter fd (see Equation (2) and Table 1) has been performed. For the reference case, solutions in
terms of both route and waiting times remain unchanged for different fd values.

Therefore, it can be derived that for a speed profile with slightly different values between adjacent
time slots, waiting times are seldom convenient even for very low values of fd. Table 7 suggests,
instead, that for a more variable speed pattern as that of dataset D2, the wage cost parameter can play
a more significant role.
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Table 7. Values of the best solutions found on dataset D2 by the problem model with and without time
dependent wage costs: F[e], waiting times [s].

Instance Ftrans Finf Ftrac Fdriver z Waiting Times

(a) Best solutions of the model with time dependent wage cost.

D2-n4-np33 2779.3 1630.5 31,793.2 10,422.7 46,625.7 [0 0 0 6]
D2-n5-np32 2222.3 1818.0 26,605.8 8402.6 39,048.7 [0 87 0 0 0]
D2-n6-np30 3257.8 2087.8 37,227.6 12,010.0 54,583.2 [0 0 0 0 0 0]
D2-n7-np30 2744.1 2287.2 31,202.2 10,359.7 46,593.2 [0 90 0 0 0 25 0]
D2-n8-np28 3123.4 2525.4 35,303.9 11,483.1 52,435.8 [0 129 0 0 54 0 0 0]
D2-n9-np32 2827.6 2868.5 28,378.8 10,419.1 44,494.0 [0 0 0 0 0 0 0 0 0]
D2-n10-np27 4423.4 3123.6 45,321.4 15,640.6 68,509.0 [0 0 0 0 0 0 0 0 0 0]
D2-n11-np30 3620.5 3458.6 35,329.0 13,076.9 55,485.0 [0 0 327 0 0 0 0 0 0 0 0]
D2-n12-np33 3949.9 3889.4 38,611.6 14,056.2 60,507.1 [0 0 0 0 0 0 0 0 0 0 0 0]
D2-n13-np24 4142.9 3881.1 36,322.2 14,748.1 59,094.3 [0 324 0 0 0 0 0 0 0 0 0 0 230]
D2-n14-np26 4685.4 4166.3 40,934.5 16,528.7 66,314.9 [0 0 0 0 0 0 0 0 930 0 287 0 70 0]
D2-n15-np28 4000.6 4481.2 35,629.0 14,253.1 58,363.9 [0 0 0 483 0 0 0 0 0 0 0 0 0 0 0]
D2-n16-np30 4827.0 4900.7 42,455.1 16,938.4 69,121.2 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
D2-n17-np32 4391.0 5192.0 37,487.7 15,529.9 62,600.6 [0 0 0 0 0 0 0 0 0 29 0 0 0 0 0 0 0]

D2-n34-np33 6552.4 10,094.9 60,959.5 22,865.6 100,472.4 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0]

(b) Best solutions of the model neglecting wage cost.

D2-n4-np33 3532.0 1686.7 30,741.7 – 35,960.5 [0 1514 1348 0]
D2-n5-np32 3220.2 1867 24,619.2 – 29,706.4 [0 719 1119 1762 0]
D2-n6-np30 3257.8 2087.9 37,227.6 – 42,573.2 [0 0 0 0 0 0]
D2-n7-np30 3882.5 2336.4 29,911.1 – 36,130.1 [0 0 0 341 3015 0 319]
D2-n8-np28 3703.9 2537.8 33,564.0 – 39,805.7 [0 0 0 0 0 0 0 0]
D2-n9-np32 3039.3 2868.5 27,531.9 – 33,439.5 [0 0 0 0 0 0 0 494 0]
D2-n10-np27 4740.3 3132.3 44,906.9 – 52,779.5 [0 0 0 621 0 43 0 0 0 0]
D2-n11-np30 4382.3 3498.5 34,267.1 – 42,147.9 [0 0 327 837 0 1851 0 0 0 45 0]
D2-n12-np33 4069.7 3890.2 38,261.2 – 46,221.1 [0 288 0 0 0 0 0 79 0 0 0 0]
D2-n13-np24 4797.7 3928.2 35,392.5 – 44,118.4 [0 324 0 0 0 2580 0 0 0 0 357 0 0]
D2-n14-np26 4677.8 4166.3 40,934.5 – 49,778.6 [0 0 0 0 0 0 647 0 283 0 0 0 357 0]
D2-n15-np28 4651.5 4507.8 34,640.8 – 43,800.1 [0 0 0 483 0 0 0 2163 0 0 0 694 172 0 0]
D2-n16-np30 4899.7 4911.2 42,115.5 – 51,926.4 [0 0 0 0 0 0 838 0 0 0 0 0 0 753 0 0]
D2-n17-np32 4870.1 5222.0 36,893.4 – 46,985.5 [0 0 45 0 0 0 0 1615 25 0 0 0 0 0 0 0 0]

D2-34-np33 6588.7 10,078.8 60,783.8 – 77,451.3 [0 0 0 0 0 0 135 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0]

In Figure 9 results of the sensitivity analysis for different values of fd, expressed as a percentage
of the basic wage value of 7.92e/h, on instances for the scenario D2 are reported. In detail,
fd = ω · 7.92e/h for ∈ {0.0, 0.1, 0.2, 0.4, 0.8, 1.0}.

The response in total waiting times to any change of the hourly wage is quite composite among
the differenty instances of dataset D2. Therefore, in Figure 9 the most representative instance for each
identified cluster of similar behaviour in the whole dataset has been reported. Specifically, for a few
instances (see Figure 9a), there is a sudden drop to solutions that are not using waiting times at all,
as soon as the time dependent driver wage is introduced. For other instances (Figure 9b), the transition
towards the adoption of waiting times is either smoother or associated with higher hourly wages.
Finally, some instances are completely insensitive to the hourly wage (Figure 9c).

In general, we can derive that, since lower hourly wage costs reduce progressively the weight of
the wage component in the objective function, waiting times result to be less and less bounded.
Therefore, when the speed profile allows potential benefits on activating different time slots,
then waiting times are triggered and sized in order to gain the most favourable speed values.
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(c) No change.

Figure 9. Sensitivity analysis on total waiting time per delivery route for different values of
fd = ω · 7.92e/h on dataset D2, ω ∈ {0.0, 0.1, 0.2, 0.4, 0.8, 1.0}. Representative instances for each
of the three types of response are reported.

5.6. Modelling Different Wage Structures

The wage cost component for the extended RRP has been modelled, commonly to most routing
literature, as proportional to the delivery process duration (see Equation (2)). The sensitivity analysis
in the previous Section 5.5 has highlighted how, whenever the speed profile allows significant
improvement of travel times, adding the wage to fuel consumption cost lead to control waiting
times at clients.

To investigate whether a different cost structure can lead to different solutions, further experiments
and analyses have been performed.

A fixed wage for the driver is equivalent to neglect the wage cost component from the objective
function, since a constant cannot change the optimal route and related waiting times. Therefore,
insights of the impact of this cost structure can be derived by analysing the time-dependent wage
when fd is set to a null value. As already observed by comparing Table 7, in this case the route
doesn’t change, but more waiting times are triggered to achieve the best overall fuel consumption
along the whole delivery tour, without limits imposed by the need of not excessively prolonging the
process due to the driver’s wage. From an environmental point of view, as underlined in the previous
Section 5.5, the solutions are related to lower fuel consumption and therefore lower GHG emissions,
but they should be adopted by a company when energy efficiency is the primary goal and potential
underutilisation of drivers and vehicles can be faced.

If a wage proportional to the travelled distance is taken into account, then Equation (2) should be
replaced by the following Equation (39), where gd is the cost per unit distance:

Fdriver = gd × ν× ∑
(i,j)∈A

dij × xij [e] (39)

Experiments on dataset D1 for gd equal to 0.22 e/km have led to the same results in terms of route
and waiting times obtained for the time dependent wage. As concerns instead dataset D2, where more
significant speed value variations between adjacent time slots have been considered, this different
wage structure leads to trigger waiting times greater than the time-dependent wage ones (see Table 8),
but lower than the fixed wage values. Since distance affects not only the driver wage, but also the
fuel consumption for traction, as shown in the CMEM model (Equation (3)), when it is introduced in
another significant cost component of the objective function as in the distance-based wage, then its
overall effect is reducing the weight of the time dependent cost component and potential benefits of
later departures from clients consequently. As concerns the selected routes, they remain unchanged in
comparison to the time-dependent and fixed wage circuits in 13 out of 15 cases. Analysing the two
involved instances, the permutation of clients in the distance-based wage route allows to get both a
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lower overall distance and greater speed values, which counterbalance the cost components affected
by prolonged delivery duration due to waiting times.

Table 8. Values of the best solution of dataset D2 with driver wage cost proportional to the travelled
distance: F[e], waiting times [s].

Instance Ftrans Finf Ftrac Fdriver z Waiting Times

D2-n4-np33 3294.3 1686.7 31,158.9 10,350.3 46,490.2 [0 315 1179 0]
D2-n5-np32 3221.5 1867.0 24,619.2 8902.7 38,610.4 [0 87 1680 1833 0]
D2-n6-np30 3257.8 2087.8 37,227.6 12,738.9 55,312.1 [0 0 0 0 0 0]
D2-n7-np30 3891.0 2336.4 29,911.1 10,639.9 46,778.4 [0 0 0 126 3015 0 534]
D2-n8-np28 3703.9 2537.8 33,564.0 12,304.6 52,110.3 [0 0 0 0 0 0 0 0]
D2-n9-np32 3055.2 2868.5 27,531.9 10,205.6 43,661.2 [0 0 3 0 0 0 0 491 0]
D2-n10-np27 4740.3 3132.3 44,906.9 16,213.1 68,992.6 [0 0 0 621 0 43 0 0 0 0]
D2-n11-np30 4385.9 3498.5 34,267.1 12,159.8 54,311.3 [0 0 327 837 0 1710 0 0 0 186 0]
D2-n12-np33 4069.7 3890.2 38,261.2 13,028.4 59,249.5 [0 288 0 0 0 0 0 79 0 0 0 0]
D2-n13-np24 4802.7 3928.2 35,392.5 13,317.9 57,441.3 [0 0 0 0 0 2904 0 0 0 231 126 0 0]
D2-n14-np26 4684.9 4166.3 40,934.5 15,344.6 65,130.3 [0 0 0 0 0 0 0 899 31 159 0 0 198 0]
D2-n15-np28 4653.2 4507.8 34,640.8 12,666.5 56,468.3 [0 0 0 483 0 0 0 2163 0 0 0 333 533 0 0]
D2-n16-np30 4909.3 4911.2 42,115.5 14,982.7 66,918.7 [0 0 0 0 0 0 0 0 766 0 0 0 579 246 0 0]
D2-n17-np32 4871.0 5222.0 36,893.4 13,317.9 60,304.3 [0 0 0 0 0 0 0 1660 25 0 0 0 0 0 0 0 0]
D2-n34-np33 8940.6 9375.2 57,978.7 19,759.7 96,054.2 [0 0 1320 0 0 0 2871 0 0 0 0 0 0 1764 0 0

0 0 2667 2708 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

6. Conclusions

In this study, an extension and different solution methods are proposed for the Refrigerated
Routing Problem (RRP) [6], a generalization of the Traveling Salesman Problem in which fuel
consumption should be minimized.

Differently from the literature on the Pollution Routing Problem, a refrigerated vehicle is
considered such that the fuel consumption depends on both traction and refrigeration requirements.
For the refrigeration load, the transmission and the infiltration components are considered,
which depend on outdoor climate conditions, so that a multi-period model is required to tackle
different temperatures along a day and different seasons. Traction fuel requirements are modelled
following the CMEM approach, dividing them into the weight, engine and speed modules and
considering a multi-period speed profile to account for congestion. In our extension, arbitrary waiting
times at clients are allowed, in order to delay departure whenever beneficial to gain more favourable
traffic conditions. The driver wage is also added to refuelling cost as a main component of the objective
function to be minimised.

For the extended RRP, a mathematical formulation and a new constraint programming model
are proposed, together with simple but effective local search based metaheuristics, namely Late
Acceptance Hill Climbing. We implemented a parametrised instance generator which uses real data
about weather conditions and we tested our solution approaches on two datasets of instances up
to 34 customers. To evaluate the performance of the LAHC algorithm, we compared it with exact
methods that implement the MIP and CP models. The obtained results show that LAHC is able to
derive the optimal or best solution on all instances in short computational time.

Comparison of different traffic scenarios has shown how the speed profile plays a major role on
activating waiting time at clients, independently of the wage cost structure adopted. Departure delays,
in facts, are triggered only for sensible variations in speed values between consecutive time slots,
as typical of urbanised areas in rush hours. In this case, the time-dependent wage, which is the most
adopted in literature, limits waiting times at clients, since benefits on traction fuel requirements are
smoothed by driver cost increase. For a fixed wage cost policy, instead, waiting times grow in order to
gain the best overall energy efficiency, since improvement on traction requirements exceeds worsening
on refrigeration ones due to longer delivery durations. Finally, a wage cost based on travelled distance
leads to balance the need of reducing the route length with the opportunity of delays at clients to avoid



Energies 2020, 13, 6214 23 of 24

traffic congestion, because of the impact on fuel consumption for traction, thus leading to intermediate
behaviour in terms of delaying departures from clients.

Future work will be devoted to extend the problem formulation to the multi-vehicle case and
develop hybrid approaches that integrates local search with CP or MIP techniques, in order to solve
instances with a fleet of vehicles and a larger number of customers.
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20. Koç, Ç.; Bektaş, T.; Jabali, O.; Laporte, G. The fleet size and mix pollution-routing problem. Transp. Res. Part
B Methodol. 2014, 70, 239–254. [CrossRef]

21. De, A.; Kumar, S.K.; Gunasekaran, A.; Tiwari, M.K. Sustainable maritime inventory routing problem with
time window constraints. Eng. Appl. Artif. Intell. 2017, 61, 77–95. [CrossRef]

22. De, A.; Wang, J.; Tiwari, M. Fuel Bunker Management Strategies Within Sustainable Container Shipping
Operation Considering Disruption and Recovery Policies. IEEE Trans. Eng. Manag. 2019. [CrossRef]

23. Zhang, G.; Habenicht, W.; Spieß, W. Improving the structure of deep frozen and chilled food chain with tabu
search procedure. J. Food Eng. 2003, 60, 67–79. [CrossRef]

24. Rong, A.; Akkerman, R.; Grunow, M. An optimization approach for managing fresh food quality throughout
the supply chain. Int. J. Prod. Econ. 2011, 131, 421–429. [CrossRef]

25. Zanoni, S.; Zavanella, L. Chilled or frozen? Decision strategies for sustainable food supply chains. Int. J.
Prod. Econ. 2012, 140, 731–736. [CrossRef]

26. Aiello, G.; La Scalia, G.; Micale, R. Simulation analysis of cold chain performance based on time-temperature
data. Prod. Plan. Control 2012, 23, 468–476. [CrossRef]

27. Accorsi, R.; Gallo, A.; Manzini, R. A climate driven decision-support model for the distribution of perishable
products. J. Clean. Prod. 2017, 165, 917–929. [CrossRef]

28. Hsu, C.I.; Hung, S.F.; Li, H.C. Vehicle routing problem with time-windows for perishable food delivery.
J. Food Eng. 2007, 80, 465–475. [CrossRef]

29. Novaes, A.; Lima, O.F., Jr.; De Carvalho, C.; Bez, E. Thermal performance of refrigerated vehicles in the
distribution of perishable food. Pesqui. Oper. 2015, 35, 251–284. [CrossRef]

30. Nethercote, N.; Stuckey, P.J.; Becket, R.; Brand, S.; Duck, G.J.; Tack, G. MiniZinc: Towards A Standard CP
Modelling Language. In International Conference on Principles and Practice of Constraint Programming (CP 2007);
Springer: Berlin/Heidelberg, Germany, 2007; pp. 529–543.

31. Barth, M.; Scora, G.; Younglove, T. Modal emissions model for heavy-duty diesel vehicles. Transp. Res. Rec.
2004, 1, 10–20. [CrossRef]

32. Lafaye De Micheaux, T.; Ducoulombier, M.; Moureh, J.; Sartre, V.; Bonjour, J. Experimental and numerical
investigation of the infiltration heat load during the opening of a refrigerated truck body. Int. J. Refrig. 2015,
54, 170–189. [CrossRef]

33. Kuo, Y. Using simulated annealing to minimize fuel consumption for the time-dependent vehicle routing
problem. Comput. Ind. Eng. 2010, 59, 157–165. [CrossRef]

34. Di Gaspero, L.; Rendl, A.; Urli, T. Balancing Bike Sharing Systems with Constraint Programming. Constraints
2016, 21, 318–348. [CrossRef]

35. Burke, E.K.; Bykov, Y. The late acceptance Hill-Climbing heuristic. Eur. J. Oper. Res. 2017, 258, 70–78.
[CrossRef]

36. Schulte, C.; Tack, G.; Lagerkvist, M.Z. Modeling and Programming with Gecode; Corresponds to Gecode 6.2.0;
2019. Available online: https://www.gecode.org/doc-latest/MPG.pdf (accessed on 15 July 2020).

37. Di Gaspero, L.; Schaerf, A. EASYLOCAL++: An object-oriented framework for flexible design of local search
algorithms. Softw. Exp. 2003, 33, 733–765. [CrossRef]

38. Urli, T. json2run: A tool for experiment design & analysis. arXiv 2013, arXiv:1305.1112.
39. Birattari, M.; Yuan, Z.; Balaprakash, P.; Stützle, T. F-race and iterated F-race: An overview. In Experimental

Methods for the Analysis of Optimization Algorithms; Springer: Berlin, Germany, 2010; pp. 311–336.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.cie.2019.106011
http://dx.doi.org/10.1016/j.cor.2011.08.013
http://dx.doi.org/10.1016/j.trb.2014.09.008
http://dx.doi.org/10.1016/j.engappai.2017.02.012
http://dx.doi.org/10.1109/TEM.2019.2923342
http://dx.doi.org/10.1016/S0260-8774(03)00019-0
http://dx.doi.org/10.1016/j.ijpe.2009.11.026
http://dx.doi.org/10.1016/j.ijpe.2011.04.028
http://dx.doi.org/10.1080/09537287.2011.564219
http://dx.doi.org/10.1016/j.jclepro.2017.07.170
http://dx.doi.org/10.1016/j.jfoodeng.2006.05.029
http://dx.doi.org/10.1590/0101-7438.2015.035.02.0251
http://dx.doi.org/10.3141/1880-02
http://dx.doi.org/10.1016/j.ijrefrig.2015.02.009
http://dx.doi.org/10.1016/j.cie.2010.03.012
http://dx.doi.org/10.1007/s10601-015-9182-1
http://dx.doi.org/10.1016/j.ejor.2016.07.012
https://www.gecode.org/doc-latest/MPG.pdf
http://dx.doi.org/10.1002/spe.524
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Sustainable Routing: A Literature Overview
	Problem Description and Formulation
	Solution Methods
	Constraint Programming Model
	Local Search
	Search Space, Initial Solution and Cost Function
	Neighborhood Relations
	Late Acceptance Hill Climbing Metaheuristic


	Results
	The Reference Scenario
	Computational Analysis
	Cost and Energy Performance for the Basic Reference Scenario 
	Analysis of a Traffic-Congested Scenario
	Sensitivity Analysis
	Modelling Different Wage Structures

	Conclusions
	References

