Downloaded 12/16/20 to 158.110.104.28. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

SIAM J. NUMER. ANAL. © 2020 Society for Industrial and Applied Mathematics
Vol. 58, No. 5, pp. 3010-3039

CONVERGENCE ANALYSIS OF COLLOCATION METHODS FOR
COMPUTING PERIODIC SOLUTIONS OF
RETARDED FUNCTIONAL DIFFERENTIAL EQUATIONS*

ALESSIA ANDOT AND DIMITRI BREDAT

Abstract. We analyze the convergence of piecewise collocation methods for computing periodic
solutions of general retarded functional differential equations under the abstract framework recently
developed in [S. Maset, Numer. Math., 133 (2016), pp. 525-555], [S. Maset, SIAM J. Numer. Anal.,
53 (2015), pp. 2771-2793], and [S. Maset, STAM J. Numer. Anal., 53 (2015), pp. 2794-2821]. We rig-
orously show that a reformulation as a boundary value problem requires a proper infinite-dimensional
boundary periodic condition in order to be amenable to such analysis. In this regard, we also high-
light the role of the period acting as an unknown parameter, which is critical since it is directly linked
to the course of time. Finally, we prove that the finite element method is convergent, while we limit
ourselves to commenting on the infeasibility of this approach as far as the spectral element method
is concerned.
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1. Introduction. Periodic behaviors emerge quite often in the dynamical analy-
sis of systems. Their importance is even greater when dealing with complex and real-
istic models portraying natural phenomena, such as, e.g., the evolution of epidemics
or population dynamics. Some form of delay is usually intrinsic in their description,
and this is definitely the case we are focused on.

While the subject of periodic solutions is well settled for ordinary differential
equations as far as computation, continuation and bifurcation are considered (see,
e.g., the package MatCont [2] as a representative of the state of the art), relevant the-
ory and computational tools have not yet reached full maturity for delay equations.
Among the main references for delay differential equations is DDE-Biftool [1, 23],
where the computation of periodic solutions is based on the work [21], extending the
classic piecewise orthogonal collation methods already used for the case of ordinary
differential equations (see, e.g., [5, 6]). But when it comes to dealing with more com-
plicated systems, involving also renewal or Volterra integral and integro-differential
equations, the lack is evident [13, 14].

The present work was originally guided by the need to fill this gap, trying to
extend the numerical collocation [21] to renewal equations (REs). Besides the basic
aspects concerning implementation and computation, effort was initially devoted to
providing sources from the literature for the analysis of the error and the relevant
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convergence. In realizing that even these sources are lacking or at least not general
(see section 1.2 below), we decided to tackle a full investigation starting from the
basic case of retarded functional differential equations (RFDEs), mainly inspired by
the recent trilogy of papers [29, 30, 31], which deals with the numerical solution of
boundary value problems (BVPs).

The outcome, to the best of the authors’ knowledge, is the first rigorous and
fully detailed analysis of error and convergence of piecewise collocation methods for
the computation of periodic solutions of general RFDEs. Let us anticipate that the
proposed approach is based on collocating the derivative of the solution following [31]
and in view of extension to REs as discussed in section 2.2.

In this introduction we start in section 1.1 by deriving two equivalent BVP for-
mulations for general RFDEs in view of computing periodic solutions. A discussion
of the relevant literature is presented in section 1.2. Aims, contributions, and results
of the analysis we propose are summarized in section 1.3. Finally, some notation on
relevant function spaces is introduced and suitably discussed in section 1.4.

The rest of the paper is organized into three main parts, namely section 2, deal-
ing with the validation of the required theoretical assumptions; section 3, presenting
the discretization and validating the required numerical assumptions; and section 4,
concerning the final convergence analysis. Some closing remarks are given in section
5. Let us finally highlight that the full-length version of the present work is available
in [4]. Tt includes a technical appendix collecting results used in the proofs developed
in the abovementioned main sections, as well as other important parts as suitably
discussed throughout the text.

1.1. Boundary value problems. Let d be a positive integer, a,b € R with
a < b and F([a,b], R?) := {f : [a,b] — R4}.
Let us consider the RFDE

(L.1) y'(t) = G(y+),

where G : Y — R? is a function defined on a state space Y C F([—,0],R%) for 7 > 0 a
given maximum delay. As usual [18, 24], the state y; € Y is defined as

(1.2) yo(0) i=y(t +0). o€ l-70,

and the time derivative in (1.1) is intended from the right.

The goal is to compute a periodic solution of (1.1), assuming its existence. As this
solution is unknown, so is its period, say, w > 0. To deal with this lack of information
one usually resorts to a scaling of time; see, e.g., [21]. Although numerically conve-
nient, this scaling plays an essential role in the analysis of convergence, a role that to
the best of our knowledge has not received the deserved attention in the literature,
possibly because not even the general form (1.1) has been adequately considered (in
favor of maybe more practical instances like g(y(t),y(t — 7)) or similar ones). Let us
then define s, : [-7,0] = R as t = s,,(t) := t/w, which transforms (1.1) into

(1.3) Y (t) = wG(y: 0 50)

by y(t) := y(s;(t)) = y(wt) = y(t). In particular, if y is an w-periodic solution of
(1.1), correspondingly y is a 1-periodic solution of (1.3) and vice versa. Recall that
periodic solutions are defined on the whole line.

The state of (1.3) should lie in F([-r,0],R%) for 7 := s,(7) = 7/w unknown, so
that it would change according to the concerned periodic solution of (1.1). To avoid
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this variability, we choose as a state space a set Y C F([—1,0], R?), defining y; € YV’
as

(1.4) y(0) =yt +0), 0e[-1,0].

Indeed, if 7 < w then r < 1 and thus we deal with an enlarged state space. Otherwise,
as long as 7 is finite, we can always refer to a sufficiently large multiple of the period
in order to fall into the previous case. Finally, with respect to (1.2),

(1.5) 0 = s.(0) =

g
w
for o € [—7,0] as far as 0 € [-r,0] C [-1,0].

Remark 1.1. Let us anticipate that in case of numerical approximation through
iterative methods requiring an initial guess of the solution (as is the case for numerical
continuation; see below), if the initial guess of w is less than or too close to 7, then
one can start from kw with a suitable integer k& > 1.

A periodic solution is usually characterized through a BVP, obtained by consid-
ering (1.3) over one period, viz. [0,1], together with a periodicity condition and a
phase condition to remove translational invariance; see, e.g., [21] again. In the case of
RFDEs like (1.3), the evaluation of y through y; in G may regard time instants (or
intervals) falling to the left of [0,1]. If so, one possibility is to exploit the implicitly
assumed periodicity to bring the evaluation back to the desired domain. This corre-
sponds to defining the periodic extension 3 : [—1,1] — R% of y : [0,1] — R?, and then
the periodic state g; € Y according to (1.4), i.e., for ¢ € [0, 1],

(1.6)

oyt +0), t+0 0,1,
yi(0) = {y(t+0+ 1), t+6¢e[-1,0),

recalling that 7 < w, i.e., § € [-1,0]. Note that in view of the fact that the right-
hand side G of (1.1) acts properly on the original state space Y, (1.5) and (1.6) lead
to considering

nyS (0') = y(t‘i’sw(O’))’ t+5w(0') € [Oal]a
T gt + sw(0) £ 1), t+ su(0) € [-1,0),

for o € [—7,0]. With the above device, the relevant BVP reads
y'(t) =wG(@iosw,), tel01],
(1.7) y(0) = y(1),
p(y) = 0.
The solution y of (1.7) is intended as an element of a set Y= C F([0, 1], R?). Moreover,
p: YT — R denotes the phase condition, which we assume to be linear, continuous,

and able to eliminate translational invariance. For example, a trivial phase condition
is one of the form y;(0) = g for some k € {1,...,d} and a given § € R. An integral
phase condition is one of the form fol yT'(t)7'(t)dt = 0, where 7 is a given reference
1-periodic solution. Either ¢ or § is available in the natural continuation framework
where periodic solutions are usually computed [19]: indeed, the former may be a
coordinate of the equilibrium giving rise to a limit cycle through a Hopf bifurcation;
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the latter may be the periodic solution computed at the previous continuation step.
Note that in (1.7) the periodicity condition (i.e., the first of the boundary conditions)
concerns only the values of the solution at the extrema of [0, 1] since the periodicity
is included in the right-hand side through (1.6). As such, it is a condition in R9.

Alternatively to (1.7), one can still consider a BVP for the original scaled equation
(1.3) by imposing the periodicity to the states at the extrema of the period, rather
than to the solution values:

Y (t) =wG(yros,), tel0,1],
(1.8) Yo = Y1,

p(yljo,) = 0.

In this case the solution y is intended as an element of a set Y+ C F([—1, 1], R%) and
the periodicity condition concerns the state space Y.

1.2. Literature. The literature on the numerical computation of periodic solu-
tions of delay equations through relevant BVPs is rather rich (also for neutral and
state-dependent problems). Let us suggest [31, section 1.1] for a detailed account. By
far most of the works concern formulation (1.7) [6, 7, 8, 9, 10, 11, 12, 20, 21, 27, 29,
30, 31, 33], while only a few address formulation (1.8) [22, 28, 36]. A short discussion
on the two equivalent alternatives can be found in [21, section 2], where the name
Halanay’s BVP for (1.8) is also recalled from [26]. Finally, let us note that very few
papers deal with theoretical error and convergence analyses, e.g., [8, 20]. In partic-
ular, [8] does not consider explicitly periodic problems or the presence of unknown
parameters, while [20] deals with linear problems and assumes the period to be known
(and equal to 1). For further references on these and other aspects see [29, 30, 31],
which represent thorough research on the subject and tackle the solution of BVPs as
fixed point problems, furnishing a solid framework for the convergence analysis. The
approach proposed in [31] is quite abstract, while a more concrete collocation frame-
work is illustrated in [29, 30]. However, the treatment is devoted to general BVPs, not
necessarily restricted to the periodic case, which is never considered explicitly indeed.

1.3. Aims, contributions, and results. The aim of the present work is to
develop a rigorous and fully detailed analysis of error and convergence of piecewise
collocation methods for the computation of periodic solutions of general RFDEs by
following the abstract approach discussed in [31].

In the following sections we try to apply this general framework to both (1.7) and
(1.8). Note that the former formulation is the periodic instance of the side condition
considered in [31] (page 526), while (1.8) is not even mentioned therein. In spite of
this, we show that only the latter is amenable of the treatment in [31], while the
former fails to satisfy (some of) the required assumptions. Therefore, in what follows
we give formal proofs only for (1.8), reserving comment about (1.7) up to the point
in section 2 where it definitively fails to fit into [31].1

Let us clarify that the contributions of this investigation are represented by the
developments of proofs of the validity of the theoretical (section 2) and numerical
(section 3) assumptions required to apply the abstract approach of [31], in the case of
periodic BVPs. On the one hand, “This task is far from trivial” [29, p. 2791]. On the

ILet us remark that beyond the mentioned (technical) deficiencies, the authors are not aware of
any numerical reasons for the failure of formulation (1.7), which is indeed the most widely used for
simulations.
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other hand, we soon anticipate that in the periodic case the period plays the role of
an unknown parameter of the problem. Although unknown parameters are explicitly
considered in [31], what is neglected therein is that the unknown period is linked to
the course of time and thus to the domain of the BVP. Exactly this fact is a cause
of major troubles in the effort of validating the above assumptions. The hypotheses
on the right-hand side and on the discretization under which such assumptions are
validated are listed at the beginning of section 2.2 and of section 3.1.

The discretization considered in [31] consists in the collocation of the derivative
of the solution, devoted mainly to neutral problems. Here we keep on following this
same technique even if we restrict our treatment to nonneutral equations. On the one
hand, the adaptation to the periodic case is itself far from being trivial. On the other
hand, in view of our original motivation, exactly this strategy extends to the case of
REs by interpreting the derivative of the solution of a neutral RFDE as the solution
of a corresponding RE. As the analysis of the case of nonneutral RFDESs has revealed
itself to be complicated under this framework, we leave the extensions to neutral and
REs as the logical steps to be developed in the future.

Concerning the method and its convergence, as the former is based on piece-
wise collocation (following the traditional practical approaches in both MatCont and
DDE-Biftool), convergence can be potentially attained by either the finite element
method (FEM) or the spectral element method (SEM). It turns out that the frame-
work of [31] can be used to prove the convergence of the FEM, leading to the expected
results about the order of convergence under suitable regularity assumptions. This is
the main content of section 4, namely Theorem 4.3. As for the SEM, although not
used in practical implementations and therefore marginal to our primary interest, it
is not yet clear if the current analysis can lead to proving convergence. A discussion
on this aspect is contained in section 4.4.

1.4. Notation and function spaces. Prior to starting, let us fix some notation,
mainly relevant to the choices of subsets of F([a,b],R?) in view of (1.7) and (1.8).
In particular, we use B* in place of F for measurable and bounded functions and
BY> for continuous functions with measurable and bounded first derivative. Let us
remark again that time derivatives are intended from the right. If | - | denotes a norm

in finite-dimensional spaces and || f||oc := supse(q) [f(¢)] is the uniform norm, then
B>([a,b],R%) and B»*([a,b], R?) become Banach spaces respectively with
(1.9) [z == flloes I fllBroe =1 flloo + [1f lloo-

Occasionally, we may use also C for continuous functions and C' for continuously
differentiable ones, with || f|lc = || fllco and || f|lct = || f|loo + || f]|cc again. Also other
spaces will be temporarily introduced for a tentative analysis of (1.7), and in case of
product spaces U = Uy x Uy we choose

(1.10) |- Mo = max{[| - flo, || - llva }

which makes U a Banach space if both U; and Us are.

In addition, for U,V normed spaces, according to [3, Definition 1.1.5] we denote
by DA(u) € L(U,V) the Fréchet differential at u € U of a map A : U — V, where
L(U,V) is the set of linear bounded operators U — V', equipped with the induced
norm

Au
(1.11) |Allvev = sup | Aully:
wern{oy lullo
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We denote also by CY(U,V) the set of maps A : U — V which are continuously
differentiable in the sense of Fréchet, i.e., their Fréchet derivative DA is continuous
as a map U — L(U,V). Finally, for a Banach space X, B(z,r) denotes the closed
ball of center z € X and radius r > 0.

We close this introduction motivating the choices above about measurable and
bounded functions instead of continuous ones, the latter being a (if not the) standard
for REFDEs. Among the main reasons is the fact that, concerning formulation (1.7), for
any t € [0,1) the map 6 — 7z(0) introduced in (1.6) is continuous if and only if y(0) =
y(1), a condition satisfied by solutions of (1.7). Otherwise, a jump discontinuity with
jump y(0)—y(1) appears at = —t, in which we have continuity only from the right by
virtue of (1.6). Thus the classical choice Y = C([—7,0], R?) would lead the right-hand
side G in (1.1) to act outside its domain in those cases where the periodic boundary
condition y(0) = y(1) is not satisfied, due to the trick of recovering periodicity through
(1.6). In this respect, we anticipate indeed that in the following analysis of convergence
such situations occur, either because boundary conditions other than the periodic one
may be imposed (e.g., in Proposition 2.7 below), or simply because we must deal
with neighborhoods of the sought periodic solution, which by no means contain only
functions satisfying the periodic boundary condition. Nevertheless, it is exactly this
lack of continuity that leads to the inapplicability of the approach in [31] as we show
in section 2.2.

As far as formulation (1.8) is concerned, instead, continuity is guaranteed by the
usual definition of solution of RFDEs, given that an initial value problem is implicitly
defined through (the yet unknown) yo. Nevertheless, the problem illustrated above
would arise for the first derivative. Indeed, the latter is not necessarily continuous
at 0 even if one chose to work with Y = C*([~7,0], R?), unless the extra condition
¥'(07) = G(v) were imposed to any v € Y. In section 2.2 we show that the choice B*
for the derivative is thus necessary and that at the same time the lack of continuity
for the latter is balanced by the use of right-hand derivatives with respect to time, as
is correct in the field of RFDEs.

Finally, let us remark that measurable and bounded functions can be used in the
theory of RFDEs if one slightly weakens the notion of solution [18, section 0.2].

2. The abstract approach toward fixed point problems. We first summa-
rize the main ingredients of the abstract approach proposed in [31] to numerically
treat BVPs for RFDEs, described therein for neutral problems. The backbone of the
methodology consists in translating the BVP into a fixed point problem. In section
2.1 we apply this translation to the two equivalent formulations (1.7) and (1.8). In
section 2.2 we deal with the validation of the theoretical assumptions required in [31]
to use the framework developed therein for the relevant error and convergence analy-
ses. As for the first formulation we show that it cannot satisfy the third of these
assumptions (Proposition 2.4 below), unless we restrict the relevant spaces by adding
specific constraints. Nevertheless, these additional constraints immediately cause the
failure of the fourth and last of these assumptions (Proposition 2.7 below). As for the
second formulation, instead, all the required theoretical assumptions can be satisfied
under reasonable regularity hypotheses on G in (1.1), and thus we give the relevant
formal proofs. In particular, the last of these assumptions appears tricky to satisfy, to
the point that its proof is among the main contributions of the present work, although
part of the tools on which it relies are dealt with in [4, section 2.3].

The general BVP considered in [31] has the form
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U= ‘F(g(uaa);uvﬂ)a
B(G(u,a),u, 8) = 0.

The first line represents the functional equation of neutral type, and the second line
represents the boundary condition. u is the derivative of the concerned solution v, the
former living in a Banach space U C F([a, b], R?), the latter living in a normed space
V C F([a,b],R?). The operator G : U x A — V represents a (linear) Green operator
which reconstructs the solution v = G(u, @) given its derivative u and a value « in a
Banach space A containing the range of the solution; a classic example is

(2.1) G(u,a)(t) =« +/ u(s)ds, t€a,b],

for some ¢ € [a,b], in which case @ = v(c¢). [ is a vector of possible parameters,
usually varying together with the solution and living in a Banach space B. The
function F : V x U x B — U is the right-hand side of the concerned equation while
B:VxUxB — A xB represents the boundary condition. The latter usually includes
a proper boundary condition on the solution (the component in A) and a further
condition posing the necessary constraints on the parameters (the component in B).

Eventually, in [31], the so-called problem in abstract form (PAF) consists in find-
ing (v*,5*) € V x B with v* := G(u*, o*) and (u*,a*,8*) € U x A x B such that

(2.2) (u*,a, %) = ®(u, 0", 57)
for : Ux AxB— U x A xB given by

F(G(u, o), u,
(2.3) O (u,a, f) == ( (6w, ), . 5) > .

(O[,ﬂ) - B(g(uva)auvﬂ)

In what follows we always use the superscript * to denote quantities relevant to fixed
points.

2.1. Equivalent formulations. Let us start with formulation (1.7). In this
case the domain of the BVP is [a,b] = [0,1]. We choose U = U; and V = V; for
U;,V; C YTt and Y1 as introduced in section 1. We choose also A = A; = R?. The
only unknown parameter is the original period; therefore we fix B = B; = R and use
w in place of 3 once for all (recall anyway that the sought period w* is assumed to be
positive). The Green operator G = G is chosen as the operator G; : Uy x A — Y+
with action similar to (2.1); in particular we define

(2.4) Gi(u,a)(t) =« —|—/O u(s)ds, te][0,1].

Then the solutions of (1.7) are exactly the pairs (v*,w*) € V; x By with v* :=
Gi(u*,a*) and (u*, a*,w*) € Uy x A; x B the fixed points of the map ®; : U; x Ay x
B; — Uy x Ay x By defined by

wG(G1(u,a). o sy,)
Oy (u, 0, w) := G1(u, a)(1)
w _p(gl(u>a))

Above « plays the role of v(0), and v. denotes the map t — v; according to (1.4),
about which we recall also (1.6) and the comments closing section 1.4. With the above

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/16/20 to 158.110.104.28. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLOCATION FOR PERIODIC SOLUTIONS OF RFDEs 3017

choices it follows that (1.7) leads to an instance of (2.3) with F = F; : V; xUy xBy —
U; and B=B; : V; x U; x B; — A1 x By given respectively by

v(0) - v(1)>

Fi(v,u,w) = wG(T 0 sy,), Bi(v,u,w) = (
p(v)

Note that the problem is not neutral. Moreover, the boundary operator is linear and
includes both the periodicity and the phase conditions, none of which depend on w.

Now let us consider (1.8). The domain of the BVP is again [a,b] = [0,1], but
in this case we choose U=Uy, CY+t, V=V, CY* and A=A, CY for Y, YT,
and Y* as introduced in section 1, as well as B = B, = R. Let us remark that in
[31] the treatment is restricted to the case where A is finite-dimensional, so that this
alternative formulation brings in this novelty explicitly. Accordingly, we define the
Green operator G = Gy as the operator Gy : Uy x Ay — Y+ given by

¥(0) —I—/O u(s)ds, ¢€][0,1],
Y(t), t e [-1,0].

Note that G is to the operator V first introduced in [16]. Then the solutions of (1.8)
are exactly the pairs (v*,w*) € Va x By with v* := Gy(u*,9*) and (u*,¢*,w*) €
UQ X Ag X ]BQ the fixed pOil’ltS of the map (bg : U2 X AQ X BQ — Ug X A2 X Bg given by

wG(Ga(u,v). 0 8)
(26) %(U,l/hw) = gz(uﬂ/}h
w — p(g2 (U, T/))

Above 1 plays the role of vg. With these choices it follows that (1.8) leads to an
instance of (2.3) with F = Fa : VoxUgxBy — U and B = By : VoxUs xBy — AgxBy
given respectively by

(2.5) Ga(u, ) (t) :=

[0,1])

@7 F2(v,u,0) := wG(v. 0 50), Ba(v,u,w) := (UO fon > :
p(v]j0,1))

Again, the boundary operator is linear and independent of either w or w. Finally,
note that with regard to the elements of A we slightly modified the notation with
respect to the previous one for (1.7), since now they are states ¥ € Ay C Y rather
than solution values o € A; = RY.

2.2. Validation of the theoretical assumptions. Several theoretical assump-
tions are required in [31] to apply the convergence framework proposed therein. We
state them as propositions regarding the present context, furnishing proofs of their
validity for formulation (1.8) under specific choices of the concerned spaces (and their
relevant norms as indicated in section 1.4) and regularity properties of the right-
hand side G in (1.1). For ease of reference throughout the text, we collect below the
corresponding hypotheses.?

(T1) Y = B=([~7,0],R%), Y = B>®([-1,0],R%).
(T2) Uy = B>=([0,1],R%), Vo = BL°([-1,1],R?), Ay = BL>([-1,0], R%).
(T3) G :Y — RY is Fréchet-differentiable at every y € Y.

2See section 4.3 for more practical forms of G.
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(T4) G € C'(Y,R?) in the sense of Fréchet.
(T5) There exist r > 0 and x > 0 such that |DG(y) — DG(vy o sy )
k|ly — vf 0 8+ ||y for every y € B(v} o s+, 7), uniformly in ¢ € [0, 1].
As far as formulation (1.7) is concerned, instead, we just comment on possible similar
proofs as anticipated in section 1.

Let us also remark that other assumptions required in [31], this time concerning
numerical aspects, are dealt with in section 3.1, after the discretization scheme is
presented.

The first theoretical assumption in [31], viz. Assumption AFB (page 534), con-
cerns the Fréchet-differentiability of the operators F and B appearing in (2.3). The
latter, given also the linearity of p, is linear in the second of (2.7), hence Fréchet-
differentiable. As for the former in the first of (2.7) we prove the following, where we
underline that the derivative with respect to the period is intended from the right since
the period affects the course of time in the domain of the state space through (1.5)
and derivatives with respect to time are defined from the right as already remarked
(note that s, (o) is increasing with respect to w).

PROPOSITION 2.1. Under (T1), (T2), and (T3) F2 in the first of (2.7) is Fréchet-
differentiable, from the right with respect to w, at every point (0,1,&) € Vo x Uy X
(0, +00) and

|]Rd<—Y <

(2.8) DFo (0,0, 0)(v,u,w) = La(+;0,0)v. 0 8 + wMa(+;0,0)
for (v,u,w) € Vo x Uy X (0, +00), where, fort € [0,1],

(2.9) Lo(t;v,w) := wDG (v 0 5y,)
and
(2.10) My (t;v,w) = G(vy 0 8y,) — La(t;v,w)V) 0 8y * S /w-

Proof. According to [3, Definition 1.1.1], let us directly prove that for DFs in
(2.8) through (2.9) and (2.10) we get, for w > 0,

2.11) | F2(0 4+ v, 4+ u, &+ w) — Fo(0,4,0) — DF2(0, 4, 0) (v, u, w)]||u,

= o ([[(v; u, W)[lvs x> xB,) -
As for the left-hand side, by using (2.7), the choice of Uy in (T2) leads to evaluating

(@4 w)G((D+v)t 0 Sgtw) — WG (D 0 8g) — ODG (4 0 85) vt 0 S

(2.12) —wG (D 0 85) + wDG(0y 0 55,)0; © S+ S

= (0 +w)[G((D+v)t 0 8p4w) — G(D¢ 0 54)]

—ODG (0 0 85)v 0 S + wWDG (V4 0 85)0; 0 85 - S

for t € [0,1]. (T3) allows us to write
(2.13) G((0 4 )t © 864w) — G(0¢ 0 55) = DG(0¢ 0 55)€" + o([|€"[|v)

for £ := (0 + v)¢ 0 Sp4w — Dt © Su; see, e.g., [3, (ii), p. 10]. So we are led to consider
&' (o) for every o € [—7,0] given the choice of Y in (T1). Then (1.2) gives

£1(0) = 8(t + s0(0)) — Dt + 55(0)) + vt + 5040 (0))

(2.14)
=0t + sa(0))n(o) + o(In(o)]) + v(t + s64w(0))
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for n(o) := sg+w(0)—ss (o), where we applied Taylor’s theorem with Peano’s reminder
to © thanks to the choice of Vs in (T2). Since

(2.15) no)=o/(w+w)—oc/&=—s3(0) w/(@+w)>0

_w

follows from (1.5), substitution into (2.14) leads to & = —0; 0 s - 86 * 555 + vt ©
So+w + o(w) with [|€f|ly = O(w + ||v|]v,). Substitution first into (2.13) and then into
(2.12) leads to

(@4 w)G((D+ V)t 0 Sgpw) — WG (Vg 0 Sg) — DG (Vg 0 8,) 4 © S
—wG (D 0 85) + wDG(Dy 0 85,)0; © 8 - Se

. ) . w
= (& + w)DG(D; 0 55) (—vg 08585 = + v 0 8¢

+o(w+ ||v]lv,) — DG (04 0 55 )ve 0 Sg + wDG (D 0 85,)0; © S - Se
= o(w +[[vllv,) + Ow - [[v]lv,)-

The thesis follows as [|(v, 4, w)||v,xUs xB, = max{||v|v,, [|u|lu,,|w|} holds by (1.10). O

As far as formulation (1.7) is concerned, one can try to follow the proof given
above for (1.8) to eventually realize that the key step is (2.14), where the application of
Taylor’s theorem is subject to the differentiability of v;. The latter is not guaranteed
due to (1.6); recall the relevant comments at the end of section 1.4. Yet it is still
possible to obtain the result under the similar hypothesis (T2) since we consider
derivatives with respect to time only from the right and n(c) is indeed positive in
(2.15).

The second theoretical assumption in [31], viz. Assumption A® (page 534), con-
cerns the boundedness of the Green operator G appearing in (2.3).

PROPOSITION 2.2. Under (T2), Go defined in (2.5) is bounded.
Proof. Following (1.11), we have that

G2 (u, 9)llv, _ max{[[9(0) + fy u(s) dslloc + [|ulloc, [[¥]]as }
[1(w, ) [0, % max{||ull,, [[¢la, }
< max{[[¥]loc + [lulloo + [[tloos [[¥]loo }

- max{|[u]loc, [¢[loc}
holds for all nontrivial (u,1) € Uz x Ag. Then ||Ga||v,«u,xa, < 3 easily follows. 0O

Note, however, that the PAF requires the range of G to lie in V for the fixed point
problem to be well-posed: indeed, G provides the first argument to F; recall (2.3).
In this respect, it is not difficult to see that G, verifies this requirement under (T2)
and by considering that derivatives with respect to time are always from the right
(otherwise there would be lack of differentiability at 0).

As far as formulation (1.7) is concerned, under the similar hypothesis (T2), one
similarly obtains

G (u a)lv, _ lla+ Jo uls) dslloc + [[ulloe _ Jo] + [[ulloo + f[ulloo

(s @) [y s max{|lullv,, [lafla,} T max{fulle, laf}

for all nontrivial (u,«) € Uy x Ay and G in (2.4).
Since G is linear, it is also Fréchet-differentiable. Consequently, Proposition 2.1
guarantees the Fréchet-differentiability of the fixed point operator (2.6) as stated next.
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COROLLARY 2.3. Under (T1), (T2), and (T3) @5 in (2.6) is Fréchet-differentiable,
from the right with respect to w, at every point (u,¥,w) € Us X Ay x (0,+00) and

(5 Ga (i, 1)), @) Ga (u, ). 0 56, + WM (5 Ga (11, 99), &)
D@g(ﬁ,l[),&))(u7w,w) = g2(u7¢)1
w = p(G2(u, ¥)j0,1])

for (u, v, w) € Ua x Ag x (0,400), £4 in (2.9) and My in (2.10).

Proof. The only nonlinear component of ® in (2.6) is the first one, i.e., the one
in Uy given by F; in the first of (2.7). The result follows from Proposition 2.1. ]

1.7)
given that the range of G, is in Vy if we let Uy = B>([0,1],R%) and V; = B1°°([0,1]
R?) similarly to (T2).

The third theoretical assumption in [31], viz. Assumption Az*1 (page 536), con-
cerns the local Lipschitz continuity of the Fréchet derivative of the fixed point operator
at the relevant fixed points. In this respect, let (u*,¢*,w*) € Uy X Ay X By be a fixed
point of @5 in (2.6) and let y* be the corresponding 1-periodic solution of (1.1). Recall
that w* is meant to be positive.

PROPOSITION 2.4. Under (T1), (T2), (T3), and (T5), there exist ro € (0,w*)
and k9 > 0 such that

It is not difficult to argue that the same result holds also for formulation (

3
3

| D®o(u, 1), w) = DPo(u*, 1*,w*) ||y x s xBasTs x As x (0,400)
< HQH(“& Q;Z]aw) - (U*vw*ch*)HU'zXAQXBz

for all (u,,w) € B((u*,¥*,w*),rs).
Proof. In this proof we set for brevity v := Ga(u, ), v* := Ga(u*,¥*), and v :=

Ga(,v). Following (1.11), we prove that there exist ro > 0 and kg > 0 such that
HD(I)Q(ua wa OJ)(@, 1&7 a)) - D¢2<U*a ¢*’ W*)(aa &a a)) ||U2 X Ao X Bo
< ’i2H<ﬂv'lZ}aw)”U2><A2><Bz : ||(ua¢aw) - (U*vw*7W*)||U2><A2><Bz

for all (u,v,w) € B((u*,*,w*),re) and all (u,9,w) € Us x Ay x (0,+00). From
Corollary 2.3 it is clear that, given the linearity of both G and p, we need to monitor
only the first component of D®,, i.e., the one in Us. Then, by defining

(2.16) P(t) := wDG(vs 0 8,)0t 0 Sy — W DG (V) © §yx )t © S,

(2.17) Q) = ©[G(vy 0 5,,) — G(v] 0 84+ )],

and

(2.18) R(t) := —@0[DG (vt 0 8,)0} 0 54 - 85 — DG} 0 5,2 )0} 0 8 - 5,+]

through (2.9) and (2.10), we are led to bound |P(t) + Q(t) + R(t)| for all ¢ € [0, 1]
given the choice of Uy in (T2). Let us start with (2.16), which we schematically
rewrite as P(t) = (Al + AQ)(Bl + Bg)(cl + 02) — AQBQCQ = A13101 + AlBng +
AlBgcl + AlBQCQ + A2B101 + AQBlcQ + AQBQOl for A1 =W — w*, A2 = w*,
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By := DG(vs 0 5,,) — DG(vf 0 Syyx ), B := DG(vf 0 8y»), C1 := T4 0 8, — Ut © Sy%, and
Cy := Uy 05,+. Eventually, one can show [4, Proposition 2.4] that every triple A, B;C},
in P(t) contains a factor of index 1, which is always bounded by some constant
times [|(u, ¥, w) — (u*, P*, w*)||u, x4, xBs, as well as a C-term, whose bounds always
contain ||(%,),®)||u,xa,xB,- Therefore, there exist ro p € (0,w*) and ko p > 0
such that | Plu, < fo,p (@ %) v xagxs, - |36, w) = (u*,6%,0%) 0y g, for
all (u,¥,w) € B((u*,¢¥*,w*),r2 p). Actually, it is enough to choose rp p = r/2 for
r in (T5), while the constant o p can be recovered from the analysis above, though
with some technical efforts. We can then proceed similarly for R in (2.18), while we
can proceed directly for @ in (2.17). We omit the lengthy technical details by referring
to the proof of [4, Proposition 2.4]. O

Remark 2.5. The proof of [4, Proposition 2.4] shows that the Lipschitz constant
Ko grows unbounded as w* — 0.

As far as formulation (1.7) is concerned, it is not difficult to realize that the above
proof would fail because of the analogous term Cf, i.e.,

G1 (1, @)g 0 Sy — G1 (U, @) g © Sy

Indeed, as already observed, the function G (@, &), is always discontinuous at 6 = —t,
preventing the achievement of the necessary Lipschitz condition. Alternatively, a
possible remedy is that of restricting to the spaces

(2.19) U, = B=([0,1],RY) := {u € B>([0,1],R%) : /1 u(s)ds = 0}
and
(2.20) V1 = BL*([0,1],RY) := {v € BY*°([0,1],RY) : v(0) = v(1)}.

These choices guarantee that Gy (i, &); is not only continuous but also Lipschitz con-
tinuous thanks to the constraint of zero mean imposed to the derivative u. Note,
however, that the same constraint gives v(1) = v(0) = « for v = Gy (u, @) according
to (2.4). The latter fact impedes satisfying the next theoretical assumption as will be
evident later on.

As a final comment regarding this assumption, we note that it is not directly
used in this work, even though its validity is required in section 3.1 for a suitable
approximation Gjs in place of G. Since the proof is unchanged, we prefer to give it
here in full detail so as to follow the presentation in [31]. Observe that the comment
given above about the failure of formulation (1.7) holds unaltered since the mentioned
critical step is independent of G or G ;.

The fourth (and last) theoretical assumption in [31], viz. Assumption Ax*2 (page
536), concerns the well-posedness of a linear(ized) inhomogeneous version of the PAF
(2.2). Tts validity can be proved under (T1) and (T2) again, together with (T4) and an
additional requirement, which is, for instance, a consequence of the hyperbolicity of the
periodic solution at hands. Let us remark that the latter is a standard assumption
in the context of application of the principle of linearized stability (see, e.g., [18,
Chapter XIV] or [24, Chapter 10]), in which one derives information on the stability
of the concerned periodic solution by investigating the stability of the zero solution
of (1.3) linearized around the periodic solution itself. Let us observe that, on the one
hand, stability analysis is among the main motivations supporting the computation
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of periodic solutions. On the other hand, the linearization of (1.1) around the w*-
periodic solution y* leads to considering the linear homogeneous RFDE

(2.21) Y () = La(t; v, w*)ys 0 sy

for £5 in (2.9). Under (T4) the associated initial value problem is well-posed and we
denote by Ty (t,s) : Y — Y the relevant (forward) evolution operator for s € R and
t > s. Let us note that T5(1,0) represents the corresponding monodromy operator,
i.e., the operator advancing the state solution of one period. Then hyperbolicity
implies the required additional hypothesis of 1 being a simple Floquet multiplier, i.e.,
a simple eigenvalue of Ty (1,0), besides having no other Floquet multipliers on the
unit circle.

Remark 2.6. 1 is always a Floquet multiplier due to linearization. Indeed, as a
general fact the derivative of a solution of a nonlinear problem is always a solution of
the problem obtained by linearizing around this solution. Consequently, if the latter
is periodic, the linearized problem has a periodic solution.

In the following we refer to Proposition 2.4 also for the relevant notation. It is
also convenient to introduce the abbreviations

(2.22) L5 = Lo( 0", w"), M = Ma (0", w").

Let us anticipate that the proof is not very difficult, if not for showing that a non-
generic case (k1 = 0 in the proof below) is ruled out since it leads to a contradiction.
Although this case is seemingly innocuous, the proof that it cannot hold is not as
immediate and thus we leave its treatment to [4, section 2.3], giving here the fact as
granted. Below o(A) denotes the spectrum of an operator A.

PROPOSITION 2.7. Under (T1), (T2), and (T4), if 1 € o(T5(1,0)) is simple,
then the linear bounded operator Iy, xa,xp, — D®a2(u*,*,w*) is invertible, i.e., for
all (ug,%o,wo) € Us X Ay X By there exists a unique (u,1),w) € Uy X Ag X By such
that

u = L35G (u,1). 0 S+ + WM + ug,
(223) w - g2(u7¢)1 + '(/}07
p(Ga(u, ¥)lj0,1)) = wo-

Proof. The proof is based on treating (2.23) as an initial value problem for v =

g2 (’LL7 ,(/)>7 i'e'a

(224) {’U/(t) = SS(t)Ut 0 Sy + wm;(t) + Uo(t),

vg =1

for t € [0,1], imposing then the boundary conditions in (2.23). Because the RFDE
in (2.24) is linear inhomogeneous with continuous linear part under (T4), for every
1) € Ay there exists a unique solution v whose state can be expressed through the
variation of constants formula vy = T3 (¢,0)y + fOt[TQ*(t,s)Xo] WIS (s) + uo(s)] ds,
t € [0,1], where Xo(0) := 0 if 6 € [—1,0) while X((0) := I if 0 = 0; see [24, section
6.2]. The first boundary condition in (2.23) gives then

(2.25) b= T5(1L,0) + / (T3 (1, 5) Xo) w5(s) + o(s)] ds + vp.
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Let now R and K be, respectively, the range and the kernel of Iy — T5(1,0). Then
(see, e.g., [24, section 8.2])

(2.26) Y=RoK

and, by the hypothesis on the multiplier 1, we can set K = span{p} for ¢ an eigen-
function of the multiplier 1 itself. Moreover, let us assume p(v(-;¢)|j0,1)) # 0 (see
Remark 2.8 below), where v(+; ¢) denotes the solution of (2.24) exiting from ¢.

From (2.25) let us define the elements & = fol [T5(1,8) Xo|M5(s) ds and & =
fol [T (1, 8)Xoluo(s)ds + g of Y, so that (2.25) becomes

(2.27) [Ty = T5(1,0)]¢ = wéi + &5

Note that 1y € Y since As C Y. From (2.26) it follows that £ can be written uniquely
as £§ =r1+ki1p where r1 € R and ky € R. Similarly, & = ro+kop. Then from (2.27)
it must be wéf + &5 € R, which implies wky + ko = 0. Therefore, by assuming k; # 0,
it follows that w = —ko/k; is the only possible solution. As anticipated, we show in
[4, section 2.3] that it cannot be otherwise, since k1 = 0 leads to a contradiction.
Eventually, let 7 be such that wé} + &5 = n — T5(1,0)n. Then every v satisfying
(2.27) can be written as 7 + Ap for some A € R. The value of A is fixed by imposing
the second boundary condition in (2.23), i.e., p(v(:;7)lj0,1]) + AP(v(;¥)|[0,1]) = wo-
Uniqueness follows from p(v(-;¢)|0,1)) # 0. 0

Remark 2.8. The condition p(v(-;¢)|j0,1)) # 0 is generic and not restrictive at all.
In any case, it is always possible to change p in order to meet the above requirement.

As for (1.7), it is immediate to verify that a similar result cannot be obtained
under the choices (2.19) and (2.20). Indeed, for every ap € A; one should find a
unique « € A, satisfying o = Gy (u, @)(1) + ag, but since u € Uy implies that u has
zero mean, it must necessarily be Gy (u, a)(1) = «, i.e., ag = 0. This fact definitively
proves the failure of the approach proposed in [31] with respect to formulation (1.7),
so that from now on we focus exclusively on formulation (1.8). In particular, in the
remainder of the work we drop the use of the index 2 to lighten the notation.

Remark 2.9. Concerning neutral problems as considered in [31], in the periodic
case the Fréchet-differentiability with respect to w would require differentiability in
U and, consequently, a larger norm. This in turn would hinder the Fréchet-differ-
entiability itself; recall (2.11). We go back to this observation in section 5 in view of
future extensions.

3. Discretization. As anticipated, [31] requires other assumptions besides the
theoretical ones validated in section 2.2, which concern the chosen discretization
scheme for the numerical method. Such scheme is defined by the primary and the
secondary discretizations. We first introduce these discretizations and then check in
section 3.1 the validity of the relevant numerical assumptions in [31]. Recall from the
end of section 2.2 that we deal only with formulation (1.8) and thus we remark again
that, to lighten the notation, we drop the index 2 used up to section 2 to distinguish
from formulation (1.7).

The primary discretization consists in reducing the spaces U and A to finite-
dimensional spaces Uy, and Aj, given a level of discretization L. This happens by
means of restriction operators pz :U — Uy, p;, : A — A and prolongation operators
75 U, — U, n; : AL — A, which extend respectively to

(3.1) RL:UxAxB—UpxApxB, Rp(u,,w):=(pfu,p;v,w)
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and
(32) PL:UL XALXE—)UXAXB, PL(’U,L,i/)L,w) = (WZ’UJL,WZQZJL,W).

All of them are linear and bounded. In the following we describe the specific choices
we make in this context, based on piecewise polynomial interpolation.

Starting from U, which concerns the interval [0, 1], we choose the uniform outer
mesh

(3.3) Qf =={tf =ih : i=0,1,...,L, h=1/L} C [0,1]
and inner meshes
(3.4) Qf ={tF, =t +ch - j=1,...om}Ct,,t]], i=1,...,L

where 0 < ¢; < -+ < ¢, < 1 are given abscissae for m a positive integer. Corre-
spondingly, we define

(3.5) Uy := ROFLm)xd

whose elements u;, are indexed as

(3.6) UL = (U1,0, U115+ s Ul my ey UL« - o s uL7m)T

with components in R?. Finally, we define, for u € U,

(3.7) piu = (u(0), u(tfl), e 7u(tirn), e ,u(t}f’l) e ,u(tzm))T e U

and, for uy, € Up, ﬂ'z_’U,L € U as the unique element of the space

(3.8) 0}, ={peC(0,1,RY) : ply+ o)€My, i=1,...,L}
such that
(3.9) mpun(0) =uro, miup(tf;) =wi; j=1,...,m,i=1,...,L.

Above TII,, is the space of R%valued polynomials having degree m and, when needed,
we represent p € H};m through its pieces as

(3.10) plyt t+](t):Zem,i,j(t)p(t;j), telo,1],

=174

7=0
where, for ease of notation, we implicitly set
(3.11) tho=t_y, i=1,...,L,

and {lp,,i.0,%m.i1;---slmim) is the Lagrange basis relevant to the nodes {txo} U
QJLFZ Observe that the latter is invariant with respect to i as long as we fix the
abscissae ¢j, j = 1,...,m, defining the inner meshes (3.4). Indeed, for every i =
Loy Ly lyii(t) = Ly (8=t ) /0), t € [t t]], where (€m0, lm1s- s Lmm}
is the Lagrange basis in [0, 1] relevant to the abscissae cg,¢1, ..., ¢y With ¢ := 0.
Moreover, it is useful to define also the associated Lebesgue constants as A, ; :=
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max e+ 4+ > im0 m,ij(®)], i =1,..., L, which turn out to be independent of i as
well:

3.12 A=A, = b i ()]

(3.12) , ES‘E;' J(®)]

Let us define also

(3.13) A = nax Zwm” ) =AL, :maxZw

111]]0 tEOl]

Similarly, for A, which concerns the interval [—1,0], we choose
(3.14) Qp ={t; =th—-1:4i=0,1,...,L, h=1/L} C [-1,0],
and
(3.15) Qp={ti; =t +ch :j=1,....m}Ct;,t;], i=1,...,L
Correspondingly, we define
(3.16) Ay = ROFLm)xd
with indexing

(317) ¢L = (7/)1,07 wl,la cee 7w1,ma v aqu,l cee aqu,m)T;
for ¢ € A,

(318)  ppv = (W(=1), 0ty a)s e U)o (L) - ()T € AL
and, for v;, € A, m ¢ € A as the unique element of the space

(3.19) M, :={p € C(~1,0,R?) : pl,- - €, i=1,... L}

11’

such that
(320) ’/TZI,ZJL(fl) :d)l,Oa ﬂZl/)L(t;j) :wi,ja j:L...,m, ’L:L,L

Elements in II  ~are represented in the same way as those of n; m by suitably
adapting both (3.10) and (3.11), so that also A,, in (3.12) and Al in (3.13) are
unchanged.

Remark 3.1. Let us note that more general choices can be made like, for instance,
nonuniform outer meshes, inner meshes varying with respect to the relevant interval,
different type and number of nodes, and so forth. Extensions to these cases is straight-
forward but rather technical, so that we omit the details. Observe, however, that in
practical applications adaptive meshes represent a standard, see, e.g., [21] for delay
differential equations or even [5] for ordinary differential equations. Moreover, abscis-
sae including the extrema of [0, 1] can also be considered, paying attention to put the
correct constraints at the internal outer nodes, i.e., t;t fori=1,...,L—1.

Remark 3.2. Let us underline that the range of the prolongation operator WZF is

in C([0,1],R?), hence it does not cover all of U. Nevertheless, later on and in the
convergence analysis of section 4 it will be clear that 7} p} is applied only to functions
which are at least continuous.
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In [4, Appendix A.1] we collect some classical results on interpolation in terms of
the primary discretization just introduced, which are frequently used in the proofs of
the forthcoming results. Other preparatory results are collected in [4, Appendix A.2].

Remark 3.3. As far as the convergence of the primary discretization is concerned
later on, we soon underline that we develop all the analysis for the FEM, i.e., under
the hypothesis of letting L — oo while keeping m fixed. This is also the traditional
approach followed in practical implementations, as, e.g., in MatCont for ordinary
differential equations [2] or in DDE-Biftool for delay differential equations [1], usually
combined with an adaptive selection of the outer mesh. On the other hand, the
convergence of the SEM, i.e., letting m — oo for fixed L, is only briefly accounted for
in section 4.4. We anticipate that we give only some insight because this approach is
out of our current primary interest since it is not widely used in practical applications.
However, it is not yet clear whether the convergence of the SEM is guaranteed under
the general framework of reference for the current work.

The secondary discretization consists in defining, for a given level of discretization
M, an operator Fj; that can be exactly computed, and is meant to be used in place
of F in the first of (2.7). In particular, we define F); through an approximated
version Gy of the right-hand side G of (1.1) as Far(u, ¥, w) := wGp(G(u, ). 0 sy,).
Correspondingly, @, is the operator obtained by replacing F in ® in (2.6) with its
approximated version, i.e., @5, : U x A x B — U x A x B defined by

WG (G(u,v). 0 54)
(3.21) Dps(u,p,w) = G(u,¥)1
w = p(G(u, ¥)jo,1))

The need for introducing G is due, for instance, to the presence in G of integrals
defining distributed delays, which might need indeed the application of suitable qua-
drature rules. A secondary discretization for G in (2.6) is instead unnecessary, since
it can be evaluated exactly in 77 Uy, x 7 Ay, according to (3.5) and (3.16). Similarly,
we assume that the operator p defining the phase condition in (1.8) can be evaluated
exactly in G(mf U, 77 Ar)|jo,1]). Let us note that in the case of integral phase condi-
tions the latter statement translates into applying the piecewise quadrature based on
the mesh of the primary discretization, which is indeed the standard approach used
in practical applications.
The two discretizations together allow us to define the discrete version

(322) (bL,M = RL(PMPLZULXALXB—)ULXAL x B
of the fixed point operator ® in (2.6) as

wpp Gy (G(Tfur, T Pr). 0 50)
O v(ur, ¥r,w) = pLG(mfur, T

w—p(G(rfur, 7 ¥L)l0)

Fixed points (u7 57, %7 ar w7 ar) of @10 can be found by standard solvers for non-
linear systems of algebraic equations. Then, in section 4, we consider the prolongation
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Pr(u7, s Y% 0 wi ar) as an approximation of a fixed point (u*, 9", w*) of @ in (2.6)
and, correspondingly, vy ;=G (W'L"uz M> T Y7 ) as an approximation of the solu-
tion v* = G(u*,¥*) of (1.8).

3.1. Validation of the numerical assumptions. We now proceed to prove
the validity of the numerical assumptions in [31] mentioned at the beginning of section
3. As done in section 2.2, for ease of reference throughout the text, we collect below
all the hypotheses that are used for proving the forthcoming results.

(N1) The primary discretization of the space U is based on the choices (3.3)—(3.9).

(N2) The primary discretization of the space A is based on the choices (3.14)—
(3.20).

(N3) For every positive integer M, Gy is Fréchet-differentiable at every y € Y.

(N4) For every positive integer M, Gy € C*(Y,R%) in the sense of Fréchet.

(N5) There exist r > 0 and k£ > 0 such that | DG (y) — DG (vf 0 S ) ||paey <
K|y — v o 8.+ |y for every y € B(v} o s,+,7), uniformly in ¢ € [0,1] and for
every positive integer M.

(N6) It holds that limps— e |G ar (V) 0 S+ ) — G(vf 08+ )| = 0 uniformly in ¢ € [0, 1].

(NT) Tt holds that limps oo |DGar(vF 0 S+ ) — DG (0] 0 84+ )||ray = 0 uniformly
in ¢ € [0,1].

Remark 3.4. The uniformity with respect to M of r and x in (N5) may appear
restrictive. However, as anticipated, among the main reasons to introduce G, is the
quadrature of distributed delays. Thus, if one considers right-hand sides G of the
form G(¢) = fET H(0,4(0)) df for some integration kernel H with locally Lipschitz
continuous derivative with respect to the second argument, then (T5) is satisfied
and also (N5) follows from the application of any convergent interpolatory formula.
The same argument holds also if G(¢) = g(fET H(0)y(0)de) for some g with locally
Lipschitz continuous derivative and any integration kernel H.

The first assumption to be verified in [31] is Assumption AFx B (page 535). Its
validity is proved next.

PROPOSITION 3.5. Under (T1), (T2), and (N3) Fas is Fréchet-differentiable,
from the right with respect to w, at every point (v,u,w) € V x U x (0,+00) and

DFp(0,0,0)(v,u,w) = Lpr(+;0,0)v. 0 g + wMar(+;0,0)

for (v,u,w) € Vx U x (0,400), where, fort € [0,1],

(3.23) L (t;v,w) := wDGp (v 0 8,)
and
(3.24) M (t;v,w) = Grr(ve 0 8y) — Lar(t;0,0)v5 0 84 - S/ w.

Proof. The proof goes as the one of Proposition 2.1, after replacing G with
GM. 0

As neither G nor p is affected by the secondary discretization, Proposition 3.5
guarantees the Fréchet-differentiability of the fixed point operator ®; in (3.21) as
stated next.

COROLLARY 3.6. Under (T1), (T2), and (N3) ®p in (3.21) is Fréchet-
differentiable, from the right with respect to w, at every point (u,¥,w) € U x A x
(0, +00) and
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e (56(a,9), )G (u,
D(I’M(ﬁﬂ/;a@)(uﬂlij) = g

for (u,¢,w) € U x A x (0,400), £ in (3.23) and My in (3.24).
Proof. The proof goes as the one of Corollary 2.3, after replacing G with Gy,
and therefore ® with ®,;. 0

The other two assumptions in [31], viz. CS1 and CS2 (page 537), represent stabil-
ity conditions on the chosen discretization. We stress that they concern the operator
PrR.®). Note that, differently from ®p, ps in (3.22), PR Py is defined on the
same space of ® in (2.6). Thus we use the former for computing the discrete approx-
imations and the latter to analyze their convergence. This and the relation between
all the relevant fixed points are arguments of section 4.

In what follows it is useful to define ¥, Uz ,y :UXx A XxB - U Xx A xB as

(3.25) V= Iyxaxs — P, Yy v = Iuxaxe — PLRL® .

Both are Fréchet-differentiable, the first thanks to Corollary 2.3 and the second thanks
to Corollary 3.6 and the linearity of both Pr, and Ry. It is also convenient to adopt
the abbreviations

(3.26) Ly = Lu(0%,w"), My, = Mar(50",w%)

in accordance with (2.22).
Assumption CS1 in [31] is somehow the discrete version of Az*1 therein, here
Proposition 2.4. It can be proved valid thanks to the following.

PROPOSITION 3.7. Under (T1), (T2), (N1), (N2), (N3), and (N5), there exist
r1 € (0,w*) and k > 0 such that

|1 DY ar(u, 1, w) — DU ar(u*, 0", w*) |usaxBeUs x A x (0,400)

S K"(u’waw) - (U*7’(/}*7W*)||U><A><]E

for all (u,,w) € B((u*,v*,w*),r1) and for all positive integers L and M.

Proof. By following the proof of Proposition 2.4, after replacing G with G, and
therefore ® with ®j;, we get that there exist r; € (0,w*) and k1 > 0 such that

HD@M(%%W) - D(I)M(u*71/)*7W*)||U><A><]E<—U><A><(O7+oo)
< kl(u, ¥, w) = (u, 9", w*)[luxaxs
for all (u,v,w) € B((u*,%*,w*),r1). In particular, we recall that we can choose

r1 = r/2 for r in (N5). By [4, Appendix A.1, Corollary A.3], the thesis follows
directly from the second of (3.25) by choosing k = k1 - max{A,, + A/, 1}. O

Remark 3.8. Note that « is independent of L thanks to [4, Appendix A.1, (A.6)];
rather, it depends on m. Moreover, it is also independent of M under (N5).

Assumption CS2 in [31] (page 537) is, in a certain sense, the discrete version of
Ax*2 therein, here Proposition 2.7. As for the latter, its proof is not immediate. Hence
we separate the result into several steps, the main one concerning the invertibility of
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DUy, ar(u*, 9*,w*). In principle, one could attempt to prove it by resorting to the Ba-
nach’s perturbation lemma, thus showing first that imy, ar—oc |[D¥r ar (u*, 9%, w*) —
DV (u*, ¥*, w*)|[uxaxBeUxAx (0,400) = 0. This in turn would require imz o [|(Ia —
7. pL)G(u,)1]|a = 0 through (3.1), (3.2), (3.21), and (3.25). The latter cannot hold
for all (u,v) € U x A given the choices of both U and A in (T2) due to the second
of (1.9). However, the Banach’s perturbation lemma, although of common use, rep-
resents just a sufficient criterion (yet fundamental: indeed we make use of it several
times). Therefore, in the following we prove the invertibility of DWp pr(u*, 9™, w™)
directly by following the lines of the proof of Proposition 2.7. To this aim, we first
need to show that the initial value problem for

(3.27) Y (t) = [rL P Lhry. © s (1)
is well-posed, and thus defining an associated evolution operator TE’M(t, $):Y =Y
is meaningful (for ¢, s € [0,1] and ¢ > s). In what follows we use the abbreviations
GTu = G(u,0), G 9 :=G(0,7),
(3.28) K*Fu = £*(GTu). o sy», K5~ = £5(G7 ). 0 sy,
Kt = 25,(Gtu). o5y, K= £5,(G ). 080
LEMMA 3.9. Under (T1), (T2), (T4), (N1), (N2), (N4), and (N7), there exist

positive integers L and M such that, for every L > L and every M > M, the initial
value problem

(3.29) {y/(t) = [7fpLLhry- 0 s0+] (1),  te€0,1],

Yo=1
for €Y has a unique solution yr, pr.
Proof. Set u(t) := y'(t) for ¢t € [0,1] and use y = G(u,v) according to (2.5). By
virtue of (3.28), (3.29) becomes

ot et R
u=mppLKar utmpp K ¥

Well-posedness is thus equivalent to the invertibility of Iy — ﬂfpilCEf :U - U,
for which we resort to the Banach’s perturbation lemma, since the invertibility of
Iy — K** : U — U is guaranteed by the well-posedness of the initial value problem
for (2.21) under (T4). The thesis follows by [4, Appendix A.2, Lemma A.6, (A.7)]. O

LEMMA 3.10. Under (T1), (T2), (T4), (N1), (N2), (N4), and (N7),

(3.30) i [[T7 0r(t ) = T(55) vy =0
L,M—o0

uniformly in t,s € [0,1], t > s. If, in addition, 1 € o(T*(1,0)) is simple with
eigenfunction ¢ normalized as ||¢||y =1 and r > 0 is such that 1 is the only eigenvalue
of T*(1,0) in B(1,7) C C, then there exist positive integers L and M such that, for
every L > L and every M > M, T£7M(1,O) has only a simple eigenvalue fif, pr in

B(1,r) and, moreover,
31 li -1 = li — =
(3.31) phm lppar—11=0, 0 dim e —elly =0,

where @ ar is the eigenfunction associated to pr, ar normalized as ||or, vy = 1.
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Proof. We give the proof for s = 0, the extension to s € (0,1) being straightfor-
ward.

Let G(u,v) be the solution of (2.21) exiting from a given ¥ € Y, where u satis-
fies u = £*G(u,v). o s,+. Correspondingly, thanks to Lemma 3.9, let G(ur i, %)
be the solution of (3.27) exiting from the same v, where uy as satisfies up p =
7 pE &4,G(ur ar, ). 0 . The relevant evolution operators are defined, for ¢ € [0, 1],
respectively, by T*(¢,0)y = G(u,v); and T} »,(t,0)¢ = G(ur, m,)e. By recalling
that G in (2.5) is linear we get 17 5,(t,0)1) — T*(¢,0)¢ = G(ur, pm — u,0);. Therefore,
(3.30) is equivalent to showing that

. 2 1. =
(3.32) L,z\ﬂmueL’MHU 0

for er, ar := up, p —u. By using (3.28) we have up pr = ﬂszIC}fuL,M +7T2’p2'l€";\/’[71/)
and u = K*+u + K*~t. Therefore e = mf pf Ky erar + TZ,M + 7 > Where
TZM = (nfpf Kyt — K5F)u and Ton = (rfpi Ky, — K57 ). We already
showed in the proof of Lemma 3.9 that Iy — TI'Z_IDZICR’[JF is invertible through the
Banach’s perturbation lemma. By the latter it is also possible to show that ||(Iy —
i K )  Hloew < 2||(Ty—K*+) 7 lu—y holds for L and M sufficiently large. Now
(3.32) follows since both ||TZ,M||U < ||7rz'p*L'IC}kV’[+ — K**|lyevullullu and H’”Z,MHU <
|7f Py — K* |lueall¥|la vanish by [4, Appendix A.2, Lemma A.6].

The second part follows from standard results on spectral approximation of linear
operators. In particular, (3.30) implies strongly stable convergence of ply =17 m (t,0)
to ply —T*(t,0) for every finite eigenvalue p of T*(¢,0) [17, Example 3.8 and Theorem
5.22] and the latter implies the final statement by [17, Proposition 5.6 and Theorem
6.7]. O

We are now in position to prove the invertibility of DWp, ar(u*, 9", w*), which
represents the first part of CS2 in [31]. The second part is proved as the final result
of this section.

PROPOSITION 3.11. Under (T1), (T2), (T4), (N1), (N2), (N4), (N6), and (N7),
there exist positive integers L and M such that, for every L > L and every M > M,
DU, v (u*, 9* w*) is invertible, i.e., for all (ug, o, wo) € U x A x B there exists a
unique (Up, p, YL m,wrm) € Ux A X B such that

up v = 7F L LG (UL L) © S +wp ] p My, 4 o,

(3.33) Yo =7 prG(ur n, Yo + o,
p(G(ur, %L, n)

0,1]) = Wo-
Proof. The proof follows the lines of that of Proposition 2.7, and we refer to the
proof of [4, Proposition 3.11] for a full elaboration. |

To complete the proof of the validity of CS2 in Proposition 3.13 below, we show
next that the inverse of DUy, pr(u*, 9™, w*) is bounded uniformly in both L and M.

LEMMA 3.12. Under (T1), (T2), (T4), (N1), (N2), (N4), (N6), and (N7), the
inverse of DU, pr(u®, ™, w*) is bounded uniformly in both L and M.

Proof. Proposition 3.11 guarantees that, given (ug,vg,wp) € U x A x B, there
exists a unique (ur ar, ¥ m,wr,m) € U x A x B satisfying

(3.34) DV ar(u*, 0", w*)(up,m,¥r,m, wr,n) = (uo, Yo, wo)-
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We thus need to show that ||(ur, ar, ¥ am, wr, m)|luxaxs is bounded uniformly in both
L and M. To this aim we prove that (ur ar,%¥r,m,wr, m) is related to the solution
of the collocation of (the secondary discretization of) an equivalent version of (2.23)
according to the primary discretization under (N1) and (N2). Indeed, we first need
to rearrange the terms of (2.23) to give a proper sense to the collocation problem
since, in general, u is not continuous therein (because of wug), while the range of 7rzr pj-j
contains only continuous functions (Remark 3.2). Consider then

z2=L£G(2,7). 0 8y + WM + £*G(ug, 1Y) © S,
(335) Y= g(277)1 + g(’U,o, qu)O)la
p(G(2,7)j0,1]) = wo — P(G(uo, o)

obtained from (2.23) by setting z := u — ug and v := 9 — 9. Let us observe that z
is continuous as it follows from the first equation in (3.35) under (T4). Similarly, we
rewrite (3.33) as

0,1])

2o = T pE LG (20,00, VLM )- © Sur +wi ] pE My
(3.36) + 7L p1 €3G (1o, o). © Sue,

Ye,m =7 pr9(zo,m, vo,m)1 + 7 pr G(uo, Yo)1,
P(G(zL 15 72,00)|po.11) = wo — P(G (w0, Yo)lj0,11)

for zp avr :=up,m — uo and yp ar = Y ar — Yo. It follows that
(3.37) uL,M = 6}57M + u, Yo,m = e€p T,

where eJL’_M = zp,m — 2 and e 5, = vr,m — 7 are the collocation errors of the
componerits in U and A, respectivély, given that (21 ar, Yo m,wr, ) is the collocation
solution of the secondary discretization of (3.35) according to (N1) and (N2). By
subtracting (3.35) from (3.36) we get

+ o+ s + - +
et =TLPL MG arv € ar) © Swr + Ew,, M FEL ars

(3.38) er = TrPL Gl er )t +
p(g(ef,Ma 6Z,M)|[0,1]) =0
for
Ew,L,M ‘= wL,Mnjp{zm*M — W™,
(3.39) b =17 01 L3,G (w0, o). © 5w — £°G (g, ¥o). © suv,
epa = (mppp — In)G (w0, ¥o)1.

By using (3.28) we rewrite the first two equations of (3.38) as

R + 4= — +

(3.40) {eL,M =7 pL Ky er.M + 7L Kar er.m T Ew,L,M TEL 0
’ - -~ + - —— - -
er.M = T P91 ermt 7L prY91 er.m TEL o

where we also used G(ef 1/, €7 1)1 = Gi et o + Gy ep a for

1+t
(341)  (GFeta)(0) = / et a(3)ds,  (Gr et an)(®) = e711(0)

)
0
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and t € [—1,0] according to the definition of G in (2.5). Allowing for a blockwise
definition of operators in U x A, which should be self-explaining in the following,
(3.40) becomes

+ ot per— + +
(eL,M> B (WLPLICM TP Ko ) (%,M) N <5w7L,M +5L,M>

— - _ _ + _ _ _ _ _ .
€r.m TLPLY91 T PLY9 €L.M Er,M

Now we look for a bound on the collocation error, and we are allowed to search for
a bound on H(ezyM, er m)lleqo.1),re)xa- Indeed, it is crucial to observe that ez,M is
continuous since so is z as already observed and zp as € Hzm. Moreover, also the
first two in (3.39) are continuous under (T4) and (N4). Let us also set for brevity

(3.42) ct = ([0,1],RY).

Note that existence and uniqueness of (eJLr €1 ) follows already from Propo-
sitions 3.11 and 2.7, so that the invertibility of the operator

(Ic+ 0) <7rgpg/c;‘vf i Ky
0

CTPxA—>CTxA
Ip

Tpp9l TreLOr
is already proved. Anyway, if we manage to prove that

- (W{pﬂc}kf ”ZFPJE’C?\/}>_<’C*’+ ’C*’>
TG mpp9r G G5

= 0’
L,M—oco

CH+xA+C+xA

then we can apply the Banach’s perturbation lemma to recover the bound

I+ 0\ (mnfpfKy wfpf i
0 I mppL9i TpeLGr

(3.43) ) CtxA+CtxA
I+ O Kot K=
<2 -
- KOIA> <Qf 91>
for sufficiently large L and M, which is also uniform with respect to both L and M.
Indeed, from Proposition 2.7 we already know that the operator

Ic+ O Kot Koo
- CT xA— Ot xA
( 0 IA> ( g G0 )
is invertible. [4, Appendix A.2, Lemma A.6, (A.7)] holds also if we replace U with
C™ since the norm is the same. The same holds for [4, Appendix A.2, Lemma A.6,
(A.8)]. Therefore, thanks to [4, Appendix A.2, Lemma A.9], (3.43) holds and we

obtain [[(ef yrrez allctxa < Ell(ew,ar + €7 arr€0.a0) |l xa for some constant
independent of L and M. Above, from (3.39) we have

(3:44)  ep ar = 7L pr (L3 — £5)G (w0, %0). 0 se + (7 pp — ) L£°G (w0, %0). © S0

-1

)

CtT xA+C+xA

so that 5Z,M vanishes as L, M — oo under (T4) and (N7) by [4, Appendix A.1,
Lemma A.1, (A.1)] and [4, Appendix A.2, Lemma A.7, (A.9)] (the first addend)
and by [4, Appendix A.1, Lemma A.1, (A.1)] again (the second addend). On the
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other hand, ¢} ,, does not necessarily vanish but is anyway bounded uniformly in
L and M since ug is the derivative of G(ug, )1 and, as such, it is not necessarily
continuous, even though it is bounded. Consequently, it is not difficult to argue that
ez arlla < llvbolla + 2[[uollu by taking into account for possible jumps in ug. It is left
to prove that e, 1 as either vanishes or is uniformly bounded. From (3.39) we have
Ew LM =wrMTEpL (O, — M) +wr ar (7 pf — In) M + (wr ar —w)IN*, in which the
third addend at the right-hand side vanishes since wy, ps — w thanks to [4, Appendix
A.2, Proposition A.8] and, therefore, the first and the second addends vanish as well
since wy, ps is uniformly bounded, thanks to the same arguments adopted for (3.44)
under (T4), (N6), and (N7) and also thanks to [4, Appendix A.1, Lemma A.1, (A.1)].

In the proof of [4, Appendix A.2, Proposition A.8], it is also shown that 1,
is bounded uniformly in both L and M. Finally, we obtain that |[(ur, ar, ¥ m,
wr M) |luxaxs is bounded uniformly in both L and M thanks to (3.37) and Proposi-
tion 2.7. ]

We now conclude by proving the validity of the second part of CS2 in [31].
PROPOSITION 3.13. Under (T1), (T2), (T4), (N1), (N2), (N4), (N6), and (NT),

. 1 . e el
(3.45) limz, a0 WH[D‘I’L,M(U %, 0] luxaxBeuxaxs
WL e (u*, ", w*) luxaxe =0,
where

1
ro(L, M) := min { 71,
20 =i (e oo )

with 1 and K as in Proposition 3.7.

Proof. Thanks to Lemma 3.12 and to the fact that r; and  in Proposition 3.7
are independent of L and M (recall indeed Remark 3.8), it remains to prove that
1L ar(u*, 9%, w*)|[luxaxe vanishes. We have

1V (u, 9", w) luxaxe < [[(Tuxaxs — PLRL)(u*, ¥, w*)|luxaxs
+[PLRL[®r (u*, 9", w*) — (u*, 9", w*)]luxaxs
since ®(u*, ¢¥*,w*) = (u*,¥*,w*). The second addend in the right-hand side above
vanishes under (N6) and (N7) and thanks to [4, Appendix A.1, Corollary A.3, (A.6)].

The first addend vanishes as well by [4, Appendix A.2, Lemma A.5], which shows in
particular that u* and ¥*’ are continuous. 0

(3.46)

4. Convergence analysis. In sections 2 and 3 we have proved the validity of all
the assumptions needed to use the method in [31] as applied to (1.8). In this section,
we first state two theorems which eventually ensure the convergence of the method in
view of Remark 3.3. For their proof we refer to the corresponding [31, Theorems 1 and
2]. Then we comment about the rate of convergence, which is elaborated in subsequent
sections. Section 4.3 includes some observations on the requirements (T3)—(T5) and
(N3)—(NT7) for concrete, specific instances of the right-hand side. Finally we give a
brief account of the SEM in section 4.4.

THEOREM 4.1 (see [31, Theorem 1, p. 538]). Under (T1), (T2), (T4), (N1),
(N2), (N4), (N5), (N6), and (NT7), there exists a positive integer N such that, for every

L,M > N, PLR.®y has a unique fized point (W} np, Y7 ap @7 ar) 0 B((u*,*,w*),
ro(L, M)) and
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II(fLZ,M@E,M@E,M) = (u*, ", w")luxaxs
< 2[[Dr a9 w)] " luxaxBeuxaxe
AL m (u, ", w)[luxaxs
holds for ro(L, M) defined as in Proposition 3.13. Moreover, we have the expansion
(ﬁE,Ma ii,M@E,M) — (u*,¥*, w*)
= —[DVp pr(u, %, w*)] 7 L g (u*, %, w*) + 61,0,
where
12,0 luxaxe <4k - [[D8 L (w, 9%, w)] " Ik axseuxaxe
N (W, " w ) [ Fxaxe

for k defined as in Proposition 3.7.
THEOREM 4.2 (see [31, Theorem 2, p. 539]). Under (T1), (T2), (T4), (N1),

(N2), (N4), (N5), (N6), and (NT), there exists a positive integer N such that, for all
L,M > N, the operator Ry, ® Pr, has a fized point (uva,wzyM,wz,M) and

||PL(U*L,M7¢Z,M7("}2,M) - (u*a ¢*aW*)||UXAXB

< 2[DY L ar(u*, Y%, w*)] HluxaxBeuxaxe
N ar(u*, %, w) luxaxs
and
Pr(uy ar %7 wioar) — (W, 9", w*)
= —[D\I/L,M(U*,1/1*,W*)]_1\I/L7M(u*,1/}*,w*) + 5L,M7

where 1, a1 is bounded as in Theorem 4.1. Moreover, if (4}, 5y, T/AJZ,MWDE,M) is another
fixed point of Rp®nsPr,, then

||PL('LAL*L,M71&Z,M7°DZ,M) — (u",Y",w")|luxaxs > r2(L, M)

and

ra(L, M)

2-max{||7 loevp llmy llacay 1}

H(@’i,m Z,Mva}z,M) - (“2,M7¢E,MaWZ,M)||UL xApxB >
for ro(L, K) defined as in Proposition 3.13. Finally,
H(UZ,MaWZ,M) — (v*, w*)||lvxs < 2-max{||G|lveuxa, 1}
(4.1) D@L ar(u*, 9%, w*)] " luxaxBevxaxs
WL (u*, 9%, w*) luxaxs.

Recall that Proposition 2.2 holds for the second factor in the right-hand side of
(4.1). More importantly, thanks to Lemma 3.12, the error on (v*,w*) is determined
by the last factor, namely the consistency error. For the latter, (3.46) in the proof of
Proposition 3.13 holds and, in view of [4, Appendix A.1, Corollary A.3], we can write

(4.2) 0L (u*, ", w*) luxaxe < er + max{A,, +A;,, 1 e,
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where the important terms are

(4.3) er = ||(Tuxaxs — PLRr)(u", ¥",w")|luxaxs
and
(4.4) en = || @ar(u*, ¥, w*) — @(u, Y, W) luxaxs-

We call these contributions respectively primary and secondary consistency errors,
and we analyze them separately in the following sections.

4.1. Primary consistency error. The error term £;, in (4.3) concerns only
the primary discretization and, according to (3.1), (3.2), and (1.10), we have e, <
max{||u* — 7} pfu*|lu, |v* — 7L pL¥*|la}. Therefore a bound on e, depends on the
regularity of both «* and ¥*, so that we prove the following result.

THEOREM 4.3. Let G € CP(Y,R%) for some integer p > 1. Then, Under (T1),
(T2), (N1), and (N2), it holds that u* € CP([0,1],R%), * € CP*L([-1,0],RY), v* €
Cerl([*lv 1}7Rd)7 and

(4.5) er =0 (hmin{mvp}) .

Proof. Recall that v* = G(u*,¢*) satisfies (1.8), hence its periodic extension
to [—1,00] is a periodic solution of (1.3). Given the existence of this solution, if
G is only continuous, then u* is continuous and v* is continuously differentiable in
[0, 4+00). It follows that ¢* is continuously differentiable by periodicity and, moreover,
¥*'(0) = u*(0) follows again by periodicity since v*’ is continuous at 1. This means
that v* is continuously differentiable in [—1, 1]. As a consequence, if p = 1, u* becomes
continuously differentiable and the whole reasoning can be repeated, proving the first
part of the result. This is a consequence of the well-known smoothing effect of RFDEs.

To prove (4.5), we observe first that

4.6 * + ot F ey < ||U*(m+1)||oo pmtl
(4.6) u* —7f piu ”U_W'
holds if p > m + 1, while
p
(4.7) |lu* —7fpfu|ly < (1+An) A @
LpL U > m 9 mp o

holds if p < m + 1, with ¢, a positive constant independent of m. (4.6) is a direct
consequence of the standard Cauchy interpolation reminder; see, e.g., [25, section
6.1, Theorem 2|. (4.7) is a direct consequence of Jackson’s theorem on best uniform
approximation; see, e.g., [29, (2.9) and (2.11)].

Second, similar results can be obtained for the component in A, by recalling
that || - ||a is given by the second of (1.9). Indeed, on the one hand, based on the
same arguments used above for (4.6) and (4.7), ||v* — 7 pp " |leo < [[op* ™Y o -
R+ /(m 4+ 1)1 holds if p > m, while [[¢* — 7L pr " [lec < (1 + Aw) (R/2)PF ¢, -
[|op* P+ || o /mPT holds if p < m, with ¢, a positive constant independent of m. On
the other hand,

«(m41)
B Cssil PP

(4.8) 1" =7 pp ™) lloo
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holds if p > m, while

* — = k\/ h i C;’/ *(P+1)
(49) 10"~ ozt o < Am () g P
holds if p < m, with ¢ a positive constant independent of m. In particular, (4.8)
follows by adapting the classical proof of the Cauchy interpolation reminder to the

first derivative of the reminder itself, while (4.9) follows similarly to [4, Appendix A.1,
Lemma A.2, (A.5)] thanks to [32, p. 331] and [34, Corollary 1.4.1]. 0

Let us note that even in the case that the periodic solution is smooth enough, i.e.,
p > m + 1, and assuming the absence of a secondary discretization, it turns out that
the consistency error in (4.2) is O(h™), in contrast to O(h™*1) as obtained in [29] (see
in particular the conclusions therein). According to formulation (1.8), it is clear from
the proof of Theorem 4.3 that this difference is due to the need of discretizing also the
infinite-dimensional space A, a circumstance that is only mentioned in [31], rather
than being concretely elaborated, and, simultaneously, to the fact that functions
in A must be differentiable due to the need of differentiating with respect to the
period, as already remarked several times. After all, formulation (1.7), in which A is
finite-dimensional, does not even satisfy all the required assumptions to develop this
convergence analysis.

4.2. Secondary consistency error. The error term €7 in (4.4) concerns only
the secondary discretization and, according to (2.6) and (3.21), it reduces to

(4.10) er = w|Gar (v 0 84 ) — G(UF 0 5,%)

lu-

Of course this error is absent in case a secondary discretization is not needed. Con-
versely, as already remarked, the latter is necessary when the equation contains dis-
tributed delays, in which case it is determined by applying suitable quadrature rules
to approximate the concerned integrals. Thus we can safely think that (4.10) is ba-
sically a quadrature error, and in this respect we can assume to choose a formula
that guarantees at least the same order of the primary consistency error (as far as
M varies proportionally to L). Alternatively, we can assume that (4.10) falls below a
given tolerance, say TOL, and accept the fact that the consistency error decays down
to TOL as fast as the primary consistency error.

4.3. Regularity hypotheses in concrete cases. In realistic delay models it
is frequent to encounter right-hand sides of the form G(v) = g(¢(0),¢(—7)). It is
easy to check that, in this case, (T3) and (T4) hold whenever both partial derivatives
of g exist and are continuous. Moreover, (T5) holds as well if such derivatives are
Lipschitz-continuous. Most frequently ¢ has an exact definition and does not need to
be discretized but, if it did, then gp; would need to fulfill the same regularity require-
ments for (N3)—(N5) to hold. Finally, (N7) holds if the corresponding convergence con-
dition holds for both the partial derivatives. The above observations can be extended
to the case of multiple discrete delays, i.e., G(v) = g(¥(0),¥(—71),...,¥(—7n)).

Right-hand sides featuring distributed delays are also common in literature. Re-
mark 3.4 already includes some observations on the regularity requirements in order to
satisfy the conditions up to (T5) and (N5). Note that using a convergent interpolatory
formula allows us to satisfy conditions (N6)—(N7) as well.

4.4. Convergence of the spectral element method. Let us recall from sec-
tion 1 and Remark 3.3 that two methods can be considered as far as the convergence
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of the proposed piecewise collocation strategy is concerned. In particular, with refer-
ence to the primary discretization under (N1) and (N2), the FEM consists in letting
L — oo while keeping m fixed, while the SEM consists in letting m — oo while keep-
ing L fixed. The analysis carried out in sections 3.1 and 4.1 is presented for the FEM.
Under this framework the final convergence result guarantees an error of magnitude
O(L~™) under suitable regularity conditions; see Theorem 4.3.

Unfortunately, as anticipated in Remark 3.3, we are not able to guarantee the
convergence of the SEM under this framework. Indeed, there are several points of the
analysis either in section 3.1 or in section 4.1 (as well as in [4, Appendix A]) which
fail for the SEM based on (N1) and (N2). Partial remedies can be advanced for some
of these points by refining the requirements of regularity, yet some others seem not
amenable to a definitive solution, or at least a simple one. In [4, section 4.4] we give
extended comments on this and related aspects, limiting here to observing that some
numerical experiments run by the authors indicate that indeed the SEM converges,
so that it is our conclusion that an error analysis different from the one proposed in
[29, 30, 31] is necessary for the periodic case. We may investigate this issue in the
future, recalling that the FEM is preferred (and used) in practical implementations.

5. Concluding remarks. Computing periodic solutions is a key issue in the
dynamical analysis of systems. Piecewise orthogonal collocation is perhaps the most
used technique, especially in a continuation framework. This paper is an attempt to
furnish a fully detailed and complete error analysis to prove the convergence of this
method in the context of RFDEs.

The main result is given in terms of the FEM method, whose error behaves as
O(L~™) for m the (fixed) degree of the piecewise polynomial and L the (increasing)
number of mesh intervals. Although this was largely expected, given the abundance
of experimental results in the literature, it is nowhere proved for a general equation
in this class. To close this gap we followed the abstract approach proposed in [29, 30,
31], converting the BVP into an operator fixed point problem. The effort consisted
in furnishing proofs of the validity of the (theoretical and numerical) assumptions
required to reach the final convergence result in [31]. Along the way, a main difficulty
was represented by the period of the concerned solution, showing up as an unknown
parameter linked to the course of time. The need for differentiating with respect
to parameters led to additional smoothness requirements for the functional spaces
involved in the analysis. Among the several consequences, the obtaining of one order
less than what was proved in [29] is perhaps the most evident (viz. m instead of m+1).
Moreover, (some of) these smoothness requirements caused also the impossibility of
applying the abstract framework of [31] to the classical BVP formulation (i.e., (1.7)),
thus requiring to work under periodic constraints formulated on the state space (i.e.,
(1.8)).

If the problem for RFDEs can be (optimistically) regarded as closed, this is far
from holding true for either the neutral case or the case of renewal (Volterra integral)
equations. Let us remark that precisely the latter class inspired the current research
(mainly driven by models of population dynamics), as it is not even considered in
continuation packages from the computational standpoint—not to speak about con-
vergence. At first sight the differentiability properties above mentioned seem to pose
serious obstacles in both these cases, and perhaps a substantial effort is required in
this direction. Nevertheless, the present work offers a first, solid background to start
elaborating a succeeding strategy toward the proof of convergence. The authors plan
to make this effort in the immediate future, as well as to substantiate the encouraging
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experimental results already obtained by extending the piecewise collocation to REs,
even coupled to RFDEs (for the target class of realistic models we have in mind see,
e.g., [13, 15, 35]).

As a final remark, we observe that the current contents are almost exclusively
devoted to the theoretical analysis. We have intentionally neglected to report on
implementation issues: on the one hand, the literature is not lacking from this point of
view; on the other hand, the collocation proposed here is definitely more meaningful
for neutral problems (as one collocates the derivative of the solution rather than
the solution itself). Nevertheless, the analysis is restricted to the retarded case to
focus on the peculiar aspects of periodic problems, as to understand how they affect
convergence. It is important to observe that exactly this collocation strategy is the
natural candidate to treat REs, whose solution can be seen somehow as the derivative
of (the solution of) a neutral RFDE. Eventually, this extension would also coincide
with that of [21], the latter representing perhaps the first choice to implement (and
indeed the one we adopted to perform the numerical tests).
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