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Abstract

We address the problem of the numerical bifurcation analysis of general nonlinear de-
lay equations, including integral and integro-differential equations, for which no software
is currently available. The pseudospectral discretization is applied to the abstract re-
formulation of equations with infinite delay to obtain a finite dimensional system of
ordinary differential equations, whose properties can be numerically studied with the
well-developed software. We explore the applicability of the method on some test models
and provide some numerical evidence of the convergence of the approximations.
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1. Introduction

Delay equations, including integral and integro-differential equations, play a funda-
mental role in mathematical models arising from different research fields, going from
engineering to physics and biology, because they allow to incorporate “memory” into the
model and to describe the effects of past events on the present time.

A specific application that we have in mind comes from ecological models of physio-
logically structured populations. These models can often be formulated as systems where
a nonlinear renewal equation describing the evolution of the total population birth rate is
coupled with a delay differential equation describing the evolution of the environmental
feedback variable, see for instance [20, 30] and references therein. Also a large class of
epidemiological models can be formulated as a nonlinear renewal equation for the force
of infection [3, 33, 35].

In many contexts, including the biological applications mentioned above, the investi-
gation focuses not on the solution of the initial value problem associated to the system,
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but rather on its long-term dynamics, including for instance equilibria, periodic solu-
tions, and chaotic behavior. This explains the importance of bifurcation analysis, viz.,
the study of how the dynamical properties of a system change under the variation of
model parameters.

The infinite-dimensionality and complexity of models with delay, especially in pres-
ence of nonlinear equations, make it usually impossible to investigate their properties
analytically. Instead, one has to rely on suitable numerical methods. For specific types of
equations, namely delay differential equations with discrete delays, the bifurcation analy-
sis can be performed with ad hoc numerical packages like, for instance, dde-biftool [23],
knut [40] or xpp [24]. For specific models of physiologically structured populations of
the type described above, some free software allows to perform the numerical analysis of
equilibria, including their continuation with respect to one parameter, the computation
of stability, and the analysis of evolutionary dynamics [15]. Moreover, some matlab
codes are available for the stability analysis of equilibria and periodic solutions of linear
delay equations [6, 7, 9]. But, to our knowledge, no software is currently available for
the numerical bifurcation analysis of general nonlinear delay equations like, for instance,
systems where a renewal equation is coupled with a delay differential equation.

In [4] the authors proposed a new perspective on the numerical bifurcation analysis of
nonlinear equations with finite delay by deriving a finite dimensional system of Ordinary
Differential Equations (ODEs) through the pseudospectral discretization approach. The
dynamics of the original system can be approximated by means of well-established soft-
ware for the bifurcation analysis of ODEs, for instance auto [22] or matcont [17, 28],
with no need of developing specific software for delay equations, see also [5] for an appli-
cation. The technique presented in [4] is based on the reformulation of the delay equation
as an Abstract Differential Equation (ADE). However, it restricts to the case of finite
maximal delay, although in many cases it is not possible, or not desirable, to bound the
maximal delay a priori. The aim of this paper is to extend the approach to equations
with infinite delay: like in the case of finite delay, the approximating finite dimensional
system of ODEs can be studied numerically with available software for ODEs, which,
as further advantage, is widely developed and allows for an advanced bifurcation anal-
ysis that includes, among others, bifurcations of equilibria and cycles, continuation of
homoclinic orbits and computation of normal forms.

To validate the approach, we will explore numerically its applicability and effective-
ness on some examples. With this purpose in mind, models coming from biological
applications provide particularly suitable test examples because in some cases they can
be equivalently formulated as systems of ODEs, following a procedure used already in [29]
and presented in [36] as “linear chain trick.” Recently, conditions under which a nonlin-
ear delay model can be reduced to a system of ODEs have been studied in [19, 31] with
special attention to applications to physiologically structured populations. The same
technique has also been exploited in the context of epidemiological models, see, e.g., [35].
The representation of a system with infinite delay as an equivalent system of ODEs pro-
vides a useful way to test quantitatively the numerical results obtained via the proposed
approximation technique.

The paper is organized as follows. In Section 2 we recall the basic definitions and
results on equations with infinite delay from the point of view of dynamical systems. In
Section 3 we describe the discretization approach: we approximate the state of the system
with an interpolating polynomial and we apply the collocation technique to a suitable
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ADE. This approach returns a finite dimensional system of ODEs approximating the
original equation. In Section 4 we test the method for the bifurcation analysis of some
test models, providing numerical evidence of the accuracy of the approximation.

2. Equations with infinite delay

Consider the system of delay equations{
x(t) = F (xt, yt)
dy
dt (t) = G(xt, yt),

t > 0, (1)

for x(t) ∈ RdX , y(t) ∈ RdY , with dX , dY ∈ N. The subscript t is a standard notation to
indicate the history of a given function up to time t: for all t ≥ 0, zt is defined by

zt(θ) := z(t+ θ), θ ≤ 0.

In the biological applications that we mainly consider, the first equation is usually a
Volterra integral equation, also referred to as a (nonlinear) renewal equation.

Let ρ > 0 be a scaling parameter such that F and G are continuous and sufficiently
smooth functions defined on the product space Xρ × Yρ, where Xρ, Yρ are spaces of
functions defined by

Xρ := L1
ρ(R−,RdX ) = {ϕ : R− → RdX | ϕ measurable,

∫ 0

−∞
eρθ|ϕ(θ)|dθ <∞}

Yρ := C0,ρ(R−,RdY ) = {ψ : R− → RdY | ψ continuous, lim
θ→−∞

eρθψ(θ) = 0}.

Here | · | is a norm in RdX or RdY depending on the context. (Xρ, ‖·‖1,ρ) and (Yρ, ‖·‖∞,ρ)
are Banach spaces with the weighted norms

‖ϕ‖1,ρ :=

∫ 0

−∞
eρθ|ϕ(θ)|dθ

‖ψ‖∞,ρ := sup
θ≤0

eρθ|ψ(θ)|.

Notice that, given 0 < ρ < ρ, the norms satisfy

‖ϕ‖1,ρ ≤ ‖ϕ‖1,ρ, ϕ ∈ L1
ρ(R−,Rd)

‖ψ‖∞,ρ ≤ ‖ψ‖∞,ρ, ψ ∈ C0,ρ(R−,Rd),

and the following inclusions hold:

L1
ρ(R−,Rd) ⊂ L1

ρ(R−,Rd)

C0,ρ(R−,Rd) ⊂ C0,ρ(R−,Rd).

Given ϕ ∈ Xρ and ψ ∈ Yρ, a solution of (1) with initial condition{
x(θ) = ϕ(θ)

y(θ) = ψ(θ),
θ ≤ 0, (2)
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is a couple (x, y) defined on (−∞, tf ], tf > 0, such that for all t ∈ (−∞, tf ] one has
xt ∈ Xρ, yt ∈ Yρ, and (x, y) satisfies (1) and (2) (see, for instance, [21, 32]). The choice
of the space of integrable functions is motivated by the fact that the solution x may be
discontinuous in t = 0 and by the interpretation in the context of models from ecology,
where the variable x usually denotes a rate. Notice, however, that for t > 0 the solution
x is defined pointwise, and not just almost everywhere. Moreover, if F is continuous,
so is x for t > 0. One reason for choosing the weighted norm is that we want constant
functions to belong to the state space.

Equations (1)–(2) define a dynamical system on the space Xρ × Yρ, where the semi-
group of solution operators S = {S(t)}t≥0 is defined by

S(t) : Xρ × Yρ → Xρ × Yρ
(ϕ,ψ) 7→ (xt, yt).

The infinitesimal generator of S is the operator A : D(A)(⊆ Xρ × Yρ) → Xρ × Yρ such
that

A(ϕ,ψ) = (ϕ′, ψ′), (ϕ,ψ) ∈ D(A) (3)

D(A) =

{
(ϕ,ψ) ∈ Xρ × Yρ | (ϕ′, ψ′) ∈ Xρ × Yρ and

{
ϕ(0) = F (ϕ,ψ)
ψ′(0) = G(ϕ,ψ)

}
, (4)

see [13, 14], where we use (ϕ′, ψ′) ∈ Xρ×Yρ as a shorthand notation to indicate that ϕ ∈
Xρ, ϕ is absolutely continuous with ϕ =

∫
η(θ) dθ, η ∈ Xρ, and ψ ∈ Yρ is continuously

differentiable with ψ′ ∈ Yρ. To avoid overloading the notation, we write A(ϕ,ψ) instead
of A((ϕ,ψ)). Notice that the action of A is linear and the nonlinearity of A stems from
the fact that the domain D(A) is not a linear subspace. By means of the operator A we
can define the ADE

d

dt
(u(t), v(t)) = A(u(t), v(t)), t > 0, (5)

for (u(t), v(t)) ∈ Xρ × Yρ. The ADE (5) together with the initial condition

(u(0), v(0)) = (ϕ,ψ) (6)

is equivalent to (1)–(2) in the sense that every solution x(t) ∈ RdX , y(t) ∈ RdY of (1)
with initial condition (2) defines a weak solution u(t) := xt ∈ Xρ, v(t) := yt ∈ Yρ of
(5)–(6) for all t ≥ 0 and vice versa, see [18] for details.

We are interested in the asymptotic behavior of the solutions of (1)–(2), and in par-
ticular in the stability properties of equilibria and periodic solutions. An important tool
in the investigation of stability is the principle of linearized stability, that characterizes
the local stability properties of a solution (x, y) of (1) in terms of the stability of the
zero solution of the system linearized at (x, y). While no general theory about lineariza-
tion at a periodic solution, like the Floquet theory for ODEs, has been developed yet
in the general case (but see [21] for the treatment of delay differential equations with
finite delay), the principle of linearized stability for equilibria of systems of type (1) with
infinite delay has been proved in [18] using a modification of the sun-star calculus devel-
oped in [10–12, 21]. We recall here the main details that will be useful later on in the
discretization procedure.
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We recall that an equilibrium of (1) is a constant solution x(t) = x ∈ RdX , y(t) =
y ∈ RdY , t ∈ R, such that {

x = F (x, y)
0 = G(x, y).

(7)

The linearization of (1) at (x, y) is the linear system{
x(t) = DxF (x, y)xt +DyF (x, y)yt
dy
dt (t) = DxG(x, y)xt +DyG(x, y)yt,

t > 0,

where DF = (DxF,DyF ) and DG = (DxG,DyG) denote the Fréchet derivative of F
and G, respectively. The Riesz representation theorem ensures that the linearized system
can be written as{

x(t) =
∫ +∞
0

k11(s)x(t− s) ds+
∫
R+
µ12(ds)y(t− s)

dy
dt (t) =

∫ +∞
0

k21(s)x(t− s) ds+
∫
R+
µ22(ds)y(t− s),

t > 0, (8)

where, for j = 1, 2,

sup
s≥0

e−ρs|kj1(s)| <∞,∫
R+

e−ρs|µj2(ds)| <∞.

In other words, the entries of kj1 are elements of the dual space X∗ρ , while the entries of
µj2 are elements of the dual space Y ∗ρ . Notice that the matrices k11 and µ12 map into

the space RdX , while k21 and µ22 map into the space RdY . In fact, the kernels kj1 have
additional regularity properties, as guaranteed by the following result, which we restate
here for convenience.

Theorem 1 ([18], Corollary 3.2). Let 0 < ρ < ρ and d ∈ N. Let H : Xρ × Yρ → Rd be
Fréchet differentiable at (ϕ,ψ) ∈ Xρ × Yρ ⊂ Xρ × Yρ with Fréchet derivative DH(ϕ,ψ)
represented by a kernel (k, µ). Then H is Fréchet differentiable at (ϕ,ψ) as a function
from Xρ × Yρ into Rd. Its Fréchet derivative is represented by (k, µ) and k belongs not
only to L∞ρ (R+,Rd×d) but also to L1

ρ(R+,Rd×d).

From now on, we will assume that ρ is chosen such that k11 ∈ L1
ρ(R+,RdX×dX ) and

k21 ∈ L1
ρ(R+,RdY ×dX ). Notice that, if (ϕ,ψ) is bounded (as, for instance, for equilibria

and periodic solutions), then (ϕ,ψ) ∈ Xρ × Yρ for any ρ > 0. Hence, if F and G are
defined on the maximal space Xρ × Yρ, the linearization (8) at (ϕ,ψ) can be interpreted
as a dynamical system on the smaller state space Xρ×Yρ. This ensures some flexibility in
the choice of the state space Xρ× Yρ that we will exploit in the numerical computations
to select the parameter ρ which improves the efficiency of the numerical scheme.

Let {T (t)}t≥0 be the linear semigroup associated to (8) and let A be its infinitesimal
generator. In [18] it was proved that every element λ of the spectrum of A belonging to
the right half-plane

Cρ := {λ ∈ C : <(λ) > −ρ}
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is an eigenvalue and satisfies the characteristic equation

detM(λ) = 0 (9)

with

M(λ) :=

(
IdX 0
0 λIdY

)
−
(
L(k11)(λ) L(µ12)(λ)
L(k21)(λ) L(µ22)(λ)

)
,

where L(·) denotes the Laplace transform of a function or the Laplace–Stieltjes transform
of a measure. The eigenfunctions (ϕ,ψ) corresponding to λ have the form

(ϕ(θ), ψ(θ)) = (c1, c2)eλθ, θ ≤ 0,

for some c1 ∈ CdX , c2 ∈ CdY , not both zero. Moreover, there are finitely many roots of
(9) in Cρ. This allows to prove the principle of linearized stability, which we restate here
for convenience.

Theorem 2 ([18], Principle of linearized stability). Assume that F and G are con-
tinuously Fréchet differentiable. Let (x, y) be an equilibrium of (1) and let (8) be the
linearization of (1) at (x, y).

(a) If all the roots of the characteristic equation (9) have negative real part, then (x, y)
is exponentially stable.

(b) If there exists at least one root of (9) with positive real part, then (x, y) is unstable.

Motivated by the theoretical results and in line with the case of finite delay [9], a
satisfactory discretization procedure should provide, when applied to linear equations,
a good approximation of the eigenvalues of A which lie in the half-plane Cρ, possibly
neglecting the part of the spectrum in C \ Cρ.

3. Pseudospectral discretization approach

Consider the system of nonlinear equations (1) and the equivalent ADE (5). We now
assume that ρ > 0 is fixed. Since no confusion arises, we drop the subscript ρ and de-
note the state space simply as X × Y . In analogy with the pseudospectral discretization
of equations with finite delay described in [4], our aim is to approximate the nonlinear
operator A defined in (3)–(4) with a finite dimensional operator acting on a finite dimen-
sional subspace XM × YM ⊂ X × Y . The following result motivates the choice of XM

and YM as the spaces of polynomials of degree M , since it ensures that they are dense
in the space of continuous functions, and hence it can be exploited in the approximation
of functions (ϕ,ψ) ∈ D(A).

Theorem 3 ([25], Theorem 6.1.4). Let ρ > 0 and ψ ∈ C0,ρ(R−,R). Then, for any ε > 0
we can find M ∈ N and a polynomial pM , of degree less than or equal to M , such that
for all θ ≤ 0

|ψ(θ)− pM (θ)|eρθ < ε.

In practice, computations with polynomials on the unbounded domain R− can lead
to unstable algorithms. Consequently, in order to have reliable implementations it is
recommended to work with weighted polynomials and functions vanishing at −∞, see
for instance [2, 25, 38, 39]. For this reason, in the next sections we project the ADE (5)
into a suitable subspace of L1(R−,RdX )× C0(R−,RdY ).
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3.1. Projection into the space of weighted functions

To simplify the notation, we denote w(θ) = eρθ and, for a given space of functions F ,
we call the space of weighted functions of F as

wF := {ϕ̂ | ϕ̂ = wϕ, ϕ ∈ F}.

Let X̂ := wX ⊆ L1(R−,RdX ) and Ŷ := wY ⊆ C0(R−,RdY ) be the spaces of weighted
functions of X and Y respectively, so that X̂ and Ŷ contain (equivalence classes of)
functions that vanish at −∞.

Multiplication with the weight function w defines the transformation

·̂ : X × Y → X̂ × Ŷ (10)

(ϕ,ψ) 7→ (ϕ̂, ψ̂) := (wϕ,wψ).

Notice that, for any function ϕ defined on R−, we have ϕ̂(0) = ϕ(0) and

wϕ′ = ϕ̂′ − w′

w
ϕ̂ = ϕ̂′ − ρϕ̂.

Let A be the operator (3)–(4). We introduce the functions F̂ , Ĝ defined on X̂ × Ŷ with
values in RdX and RdY respectively, such that

F̂ (ϕ̂, ψ̂) := F (ϕ̂/w, ψ̂/w)

Ĝ(ϕ̂, ψ̂) := G(ϕ̂/w, ψ̂/w),

and the operator Â : D(Â)(⊆ X̂ × Ŷ )→ X̂ × Ŷ such that

Â(ϕ̂, ψ̂) = (ϕ̂′ − ρϕ̂, ψ̂′ − ρψ̂), (ϕ̂, ψ̂) ∈ D(Â) (11)

D(Â) =

{
(ϕ̂, ψ̂) ∈ X̂ × Ŷ | (ϕ̂′, ψ̂′) ∈ X̂ × Ŷ and

{
ϕ̂(0) = F̂ (ϕ̂, ψ̂)

ψ̂′(0)− ρψ̂(0) = Ĝ(ϕ̂, ψ̂)

}
. (12)

It is easy to show that, defining û(t) := wu(t) and v̂(t) := wv(t) for all t ≥ 0, the
ADE (5) is equivalent to the following ADE in the space X̂ × Ŷ

d

dt
(û(t), v̂(t)) = Â(û(t), v̂(t)), t > 0. (13)

For linear systems (8), the linear operators A and Â have the same eigenvalues in Cρ
and the eigenfunctions associated to an eigenvalue λ are in one-to-one correspondence
according to the transformation (10). Indeed, by imposing the domain conditions (4) and
(12) it is easy to verify that the eigenvalues λ satisfy the same characteristic equation

(9) and the eigenfunctions of Â are (ϕ̂, ψ̂) with

(ϕ̂(θ), ψ̂(θ)) = (c1, c2)e(λ+ρ)θ, θ ≤ 0,

for c1 ∈ CdX , c2 ∈ CdY , not both zero.
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3.2. Pseudospectral discretization

Let M ∈ N be a fixed discretization index. We consider a mesh of nodes ΘM =
{θ0, θ1, . . . , θM} ⊂ R− such that

θM < · · · < θ1 < θ0 = 0.

We will come back to the choice of the collocation nodes in Section 3.3.
Let `j(θ), j = 0, . . . ,M be the Lagrange polynomials associated to ΘM ,

`j(θ) =
∏
k 6=j

θ − θk
θj − θk

, j = 0, . . . ,M.

Let Πd
M be the space of Rd-valued polynomials of degree less than or equal to M (notice

that Πd
M
∼= R(M+1)d).

Given Φ̂0 ∈ Rd and Φ̂ = (Φ̂T1 , . . . , Φ̂
T
M )T ∈ RMd (where the superscript T denotes

transposition, and we transpose twice in order to work with column vectors), we introduce

the interpolation operator ÎM : Rd × RMd → wΠd
M defined by

ÎM (Φ̂0, Φ̂)(θ) := w(θ)

M∑
j=0

`j(θ)
Φ̂j
w(θj)

, θ ≤ 0, (14)

see [42]. A function ϕ̂ : R− → Rd is approximated by the interpolating function ϕ̂M :=

ÎM (Φ̂0, Φ̂), where Φ̂j = ϕ̂(θj), j = 0, . . . ,M . Notice that both ϕ̂ and ϕ̂M vanish at
−∞, and the interpolation scheme (14) is exact on functions ϕ̂ ∈ wΠd

M . Moreover,
when ϕ̂ = wϕ, (14) is equivalent to approximating the function ϕ by the interpolating
polynomial IM (Φ0,Φ) ∈ Πd

M defined by

IM (Φ0,Φ)(θ) :=

M∑
j=0

`j(θ)Φj , θ ≤ 0,

where Φj := ϕ(θj) for j = 0, . . . ,M , and Φ = (ΦT1 , . . . ,Φ
T
M )T . The reason for working

with the operator ÎM is mainly numerical, for avoiding instabilities in the computa-
tions [25, 38].

We now define the finite dimensional subspaces X̂M = wΠdX
M ⊂ XM and ŶM =

wΠdY
M ⊂ YM , and we project the ADE (13) into X̂M × ŶM . We approximate the pair

(ϕ̂, ψ̂) ∈ D(Â) with (ϕ̂M , ψ̂M ) ∈ X̂M × ŶM , and we approximate the action of Â by
collocation on the nodes ΘM : in particular, we impose the action (11) on θ1, . . . , θM and
we reserve the node θ0 = 0 to impose the domain condition (12). The approximation of
Â is a finite dimensional operator represented by

ÂM : RMdX × RdY × RMdY → RMdX × RdY × RMdY .

Given an element (Φ, y,Ψ) ∈ RMdX × RdY × RMdY , the action of ÂM is

ÂM (Φ, y,Ψ) = (Ξ, z,Υ), (15)

8



where

Ξj = ÎM (x,Φ)′(θj)− ρΦj , j = 1, . . . ,M

z = Ĝ(ÎM (x,Φ), ÎM (y,Ψ))

Υj = ÎM (y,Ψ)′(θj)− ρΨj , j = 1, . . . ,M,

and x is implicitly defined by the nonlinear equation

x = F̂ (ÎM (x,Φ), ÎM (y,Ψ)). (16)

As will become clear later on, the reason for handling separately the domain condition
(16) is that we want to obtain an approximating system of ODEs. If F is linear in the
first argument (like, for instance, in many models from population ecology), then (16)

can be inverted explicitly by exploiting the linearity of ÎM , so that we can write

x = Ĥ(Φ, y,Ψ)

with

Ĥ(Φ, y,Ψ) =
[
IM − F̂ (w`0, ÎM (y,Ψ))

]−1 M∑
j=1

Φj
w(θj)

F̂ (w`j , ÎM (y,Ψ)).

Let us now introduce the variables Û(t) ∈ RMdX , V0(t) ∈ RdY , V̂ (t) ∈ RMdY for all
t ≥ 0. By means of the discrete operator ÂM we can write the system of ODEs

d

dt
(Û(t), V0(t), V̂ (t)) = ÂM (Û(t), V0(t), V̂ (t)), t > 0. (17)

Equation (17) is a finite dimensional approximation of the ADE (5) and therefore in the
following we will refer to it as the “discrete ADE.”

Given an initial condition

(Û(0), V0(0), V̂ (0)) = (Φ̂, ψ(0), Ψ̂),

we expect that, at any time t ≥ 0, the functions ÎM (U0(t), Û(t)) and ÎM (V0(t), V̂ (t))
approximate û(t) and v̂(t), respectively, where U0(t) = x is the solution of the implicit
equation

x = F̂ (ÎM (x, Û(t)), ÎM (V0(t), V̂ (t))). (18)

Anyway, here we are not interested in the convergence of the solutions of the initial
value problems, but we will focus on the dynamical properties of the system and the
approximation of the long-time behavior.

By exploiting the representation (14) of the interpolation operator ÎM , we can write
explicitly the operator ÂM (15) and the discrete ADE (17). We define the matrix D̂M :=

(d̂ij)i,j=1,...,M ∈ RM×M and the vector d̂M := (d̂10, . . . , d̂M0)T ∈ RM with elements

d̂ij :=

(
w(θ)

w(θj)
`j(θ)

)′ ∣∣∣
θi
, i = 1, . . . ,M, j = 0, . . . ,M.
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The differentiation matrix can be computed in an efficient and stable way, see for in-
stance [41–43]. Now, exploiting the linearity of differentiation, we can write explicitly
the operator (15) and substitute it into (17), to obtain the following representation of
the discrete ADE (suppressing time-dependence for clarity)

d
dt Û = d̂M ⊗ U0 + (D̂M ⊗ IdX )Û − ρÛ
d
dtV0 = Ĝ

(
ÎM (U0, Û), ÎM (V0, V̂ )

)
d
dt V̂ = d̂M ⊗ V0 + (D̂M ⊗ IdY )V̂ − ρV̂ ,

(19)

where ⊗ denotes the tensor product and, at any time t ≥ 0, U0(t) = x is the solution
of (18). System (19) has dimension d := MdX + (M + 1)dY . We stress also that when F
and G are bilinear maps, (19) is linear and the operator ÂM is represented by a matrix

in Rd×d.
It is important to notice that the matrix D̂M and the vector d̂M are completely defined

by the nodes ΘM and do not depend on the specific right-hand sides F̂ and Ĝ of the
delay equations under study. This makes it possible to write a code that automatically
constructs the main part of the discrete ADE (19) from the nodes once the discretization
index M is given, while the user only needs to specify the equations involving F̂ and Ĝ.

Since we aim at approximating the long-term behavior and the bifurcation properties
of systems of type (1), it is important to verify that the discrete ADE (19) preserves the
dynamical properties of the original equation at least for M large enough. In the case of
equilibria the correspondence is one-to-one, as proved in the following theorem.

Theorem 4 (Correspondence of equilibria). If the constant mapping (x, y) ∈ X × Y is

an equilibrium of (1), then (U, y, V ) ∈ Rd with

U j = xw(θj)
V j = yw(θj),

j = 1, . . . ,M, (20)

is an equilibrium of (19). Vice versa, if (U, y, V ) is an equilibrium of (19) and x is the
solution of

x = F̂ (ÎM (x, U), ÎM (y, V )), (21)

then (20) holds and (x, y) is an equilibrium of (1).

Proof. Assume (x, y) is an equilibrium of (1) and define (U, y, V ) as in (20). Then,

ÎM (x, U) = xw and ÎM (y, V ) = yw. Moreover

d̂M ⊗ x+ (D̂M ⊗ IdX )U − ρU = ÎM (x, U)′(ΘM )− ρU = xw′(ΘM )− ρU = 0,

and analogously
d̂M ⊗ y + (D̂M ⊗ IdY )V − ρV = 0.

Hence (U, y, V ) is an equilibrium of (19).
Assume now (U, y, V ) is an equilibrium of (19) and let x be defined by (21). Since

ÎM (x, U)/w is a polynomial of degree at most M and its derivative vanishes in θj , j =

1, . . . ,M , it follows that it is in fact constant, and hence ÎM (x, U) = xw. Analogously,

ÎM (y, V ) = yw, from which (20) follows. Finally, the equilibrium conditions (7) hold.
10



Thanks to Theorem 2, in order to prove that the discretization not only preserves
equilibria but also their local stability properties, we should compare the linearized sys-
tems and verify that the eigenvalues of the linear infinitesimal generator Â that lie in
Cρ are well approximated by the eigenvalues of ÂM for M large enough. It is easy to
show that the pseudospectral discretization commutes with linearization at an equilib-
rium. Hence, the problem reduces to proving that, for linear equations, the spectrum of
the discretized infinitesimal generator ÂM approximates the eigenvalues of Â in Cρ as
M → ∞, and that no spurious eigenvalues are introduced in Cρ by the discretization.
We leave for a future work the rigorous proof of convergence, which follows the lines
of [8], while in Section 4 we support this conjecture with some numerical tests.

3.3. The collocation nodes

The numerical procedure presented above can be applied for any choice of the nodes
ΘM . However, the collocation nodes are of great importance for the accuracy of the
approximation [37]. In our case, one possible choice is to look at the Gaussian nodes
associated to the Laguerre polynomials, which are orthonormal with respect to the ex-
ponential weight [38]. Since the node θ0 = 0 should belong to ΘM in order to include the
boundary condition defining the domain of the infinitesimal generator (cf. (4) or (12)),
we consider the nodes of Radau type, i.e., the abscissa corresponding to the extrema of
the Laguerre polynomials and the additional node θ0 = 0.

We also recall that, because the unbounded interval can be mapped onto itself via
multiplication with any positive factor, a finite set of nodes involves two different degrees
of freedom: the size of the mesh (determined by the index M) and a positive scaling
parameter (that will be linked to ρ), see, e.g., [2, 42]. We first introduce the standard
Laguerre–Gauss–Radau (LGR) nodes in R+ and then we will show how to suitably scale
the nodes in order to capture the asymptotic behavior of the functions of interest, which
belong to the space Xρ × Yρ.

Let Ln(s), n ∈ N, s ∈ R+, be the family of standard Laguerre polynomials of degree
n, orthonormal with respect to the weight e−s, i.e.,∫ +∞

0

e−sLm(s)Ln(s) ds = δmn, m, n ∈ N.

For further details about the properties of these polynomials and for the theory intro-
duced in this section, see [27, 38, 39] and references therein.

Given a discretization index M ∈ N, the classical LGR nodes {s0, . . . , sM} ⊂ R+ are
defined as the zeros of sL′M+1(s), i.e., s1, . . . , sM are the abscissa corresponding to the
extrema of LM+1(s) to which we add the node s0 = 0. Let ωj , j = 0, . . . ,M, be the
weights of the Gauss–Radau quadrature formula∫ +∞

0

e−sϕ(s) ds ≈
M∑
j=0

ϕ(sj)ωj ,

that evaluates exactly the weighted integral when ϕ ∈ Π2M . matlab codes for the
computation of the LGR nodes and the corresponding weights are available for instance
at [26, 41], see also [27, 38].
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We move now to the negative half line R−. We consider a positive scaling parameter
ρ > 0 and we define the scaled Laguerre functions L̂n(θ) = eρθLn(−2ρθ), n ∈ N, θ ≤ 0,
such that ∫ 0

−∞
L̂m(θ)L̂n(θ) dθ = δmn, m, n ∈ N.

Since limθ→−∞ L̂n(θ) = 0, working with Laguerre functions instead of Laguerre poly-
nomials allows to avoid unstable operations and round-off errors when computing the
corresponding nodes, quadrature weights and differentiation matrices as well as interpo-
lating functions, as remarked for instance in [2, 25, 38, 39]. On R−, we define the scaled
nodes

θj := − sj
2ρ
, j = 0, . . . ,M.

The corresponding Gauss–Radau quadrature formula is∫ 0

−∞
eρθϕ̂(θ) dθ =

M∑
j=0

ϕ̂(θj)ω̂j , (22)

where
ω̂j :=

ωj
2ρ
e−ρθj , j = 0, . . . ,M,

and it is exact on ϕ̂ = wϕ, with ϕ ∈ Π2M . The weights ω̂j can be computed with stable
algorithms [26, 27].

In the numerical simulations of the next section, we will exploit the freedom in the
choice of the state space Xρ × Yρ (cf. Theorem 1) to tune appropriately the scaling
parameter ρ in order to take advantage of the exactness of the quadrature formula (22).
Notice that in any case we should take 2ρ ≤ ρ, where ρ characterizes the maximal space
on which F and G are defined.

4. Numerical tests

In this section we want to validate numerically the technique and show how it can
be effectively exploited to study the bifurcation properties of nonlinear models of the
form (1) by applying available software for ODEs like the toolbox matcont [17, 28],
to the discrete ADE (19) obtained through pseudospectral discretization. We choose
matcont because it is compatible with the widespread software matlab, but we stress
that the discrete ADE can be analyzed with any bifurcation package for ODEs. Among its
many features, matcont performs the numerical continuation of equilibria and periodic
solutions with respect to one or two parameters, the computation of stability of the
attractors, and the automatic detection of singularities and bifurcation points on the
curves by computing suitable test functions. Moreover, it is possible to control the
accuracy in the output by means of matcont continuation options, that allow to impose
the desired tolerance on the nonlinear solvers and on the test functions. We will exploit
these possibilities for the bifurcation analysis of some nonlinear equations with infinite
delay. We will test the outcome quantitatively by exploiting the matcont tolerance
options to ensure a certain high accuracy in the output, and we will compare the results
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with some reference values obtained through an alternative equivalent formulation of the
models.

However, before dealing with nonlinear equations, it is important to remember that
the stability of an equilibrium is determined by the part of the spectrum of the infinites-
imal generator of the linearization (8) which lies in Cρ, and, as described in Section 2,
contains only eigenvalues. Hence, we will first consider linear equations and investigate
how accurately the eigenvalues of the associated linear operator Â are approximated by
the spectrum of the discrete operator ÂM when increasing the discretization index M .

4.1. Linear equations: approximation of eigenvalues

First of all we consider the trivial delay differential equation corresponding to dX = 0,
dY = 1, and G = 0,

dy

dt
(t) = 0, t > 0. (23)

The state yt belongs to Yρ for any ρ > 0. Let A0 : D(A0)(⊆ Yρ)→ Yρ be the infinitesimal
generator of the family of solution operators {T0(t)}t≥0, where

T0(t)(ψ)(θ) =

{
ψ(t+ θ) θ ∈ (−∞,−t]
ψ(0) θ ∈ (−t, 0].

The spectrum of A0 contains only the (simple) eigenvalue λ = 0 corresponding to the
constant eigenfunction ψ(θ) = c, for c ∈ C \ {0}.

Fix now an arbitrary ρ > 0 and let Â0,M be the pseudospectral discretization of Â0

on the nodes ΘM . In matrix notation,

Â0,M =

(
0 0 · · · 0

d̂M D̂M − ρIM

)
∈ R(M+1)×(M+1).

The matrix Â0,M has M + 1 eigenvalues counted with their multiplicity and, as

M →∞, one of them should approximate the unique eigenvalue of Â0, λ = 0. We want
to investigate how the other M eigenvalues are located with respect to Cρ, depending
on the choice of the collocation nodes. This is the main reason for including the trivial
equation (23) in our numerical tests.

In Figure 1(a) we plotted the computed spectrum of Â0,M for different values of M ,
with ρ = 0.5 and ρ = 1, when the collocation nodes are the LGR nodes defined in
Section 3.3. The eigenvalue λ = 0 is accurate to the machine precision eps, while the
other M eigenvalues are aligned along the vertical line <(λ) = −ρ of the complex plane.
We will refer to the latter as “uninteresting” eigenvalues, since they do not contribute
to the approximation of the spectrum of the infinitesimal generator in Cρ. The special

configuration of the eigenvalues of Â0,M for a given ρ > 0 suggests that the pseudospectral
discretization technique on LGR nodes is a good approach for the problem at hand.

The distribution of the uninteresting eigenvalues is strictly linked to the choice of the
collocation nodes, as we can see by comparing the upper and lower panels of Figure 1.
Figure 1(b) represents the eigenvalues of Â0,M for the same parameters M and ρ, but
where the nodes are the Laguerre–Gauss points (see, e.g., [38]), viz., the roots of sLM (s)
divided by the scaling constant −2ρ as explained in Section 3.3. We observe that for
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Figure 1: computed eigenvalues of Â0,M for ρ = 0.5 (dots) and ρ = 1 (crosses), for different values of M
and (a) Laguerre–Gauss–Radau and (b) Laguerre–Gauss collocation nodes.

both choices of the nodes the eigenvalue λ = 0 is approximated to the machine precision
eps and the other eigenvalues remain in the negative half of the complex plane, but in
the second case they expand into Cρ as M increases, thus possibly interfering with the
approximation of the true eigenvalues in Cρ. Such numerical evidence further motivates
our preference for LGR points as collocation nodes for the infinite delay.

We now consider a nontrivial linear equation for which the characteristic roots (which,
as explained in Section 2, coincides in Cρ with the eigenvalues of the linear infinitesimal

generator Â) are explicitly available, and we investigate numerically the convergence of
the eigenvalues of the discrete operator ÂM to those of Â when increasing the discretiza-
tion index M .

Consider the scalar linear delay differential equation

dy

dt
(t) = ay(t) +

∫ +∞

0

b(s)y(t− s) ds, t > 0,

for a ∈ R and b ∈ L1(R−,R). The corresponding characteristic equation is

λ = a+ L(b)(λ),

where L(b) is the Laplace transform of b. We now take an exponential kernel of the form

b(s) = b0e
−µs (24)
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for b0 ∈ R and µ > 0, so that the Laplace transform is explicitly available:

L(b)(λ) =
b0

λ+ µ
, for <(λ) > −µ.

By writing λ = α + iβ for α, β ∈ R, β ≥ 0, we can solve the characteristic equation
explicitly and get

α =
a− µ

2
, β2 = −b0 −

(
a+ µ

2

)2

. (25)

Notice that a necessary condition for the existence of characteristic roots is

b0 ≤ −
(
a+ µ

2

)2

.

The freedom in the choice of ρ (cf. Section 2) and the kernel (24) motivate to choose
ρ = µ/2, so that the quadrature formula (22) on the corresponding LGR nodes ΘM is
exact on functions ϕ̂ = wϕ, with ϕ ∈ Π2M . The discretization ÂM of Â is

ÂM =

(
a+B0 B1 . . . BM
d̂M D̂M − ρIM

)
∈ R(M+1)×(M+1), (26)

where

Bj := e−ρθj
∫ +∞

0

b(s)`j(−s) ds = b0ω̂j , j = 0, . . . ,M.

In what follows we test the convergence of the eigenvalues of ÂM (26) to the exact
characteristic roots λ = α + iβ (25) when increasing the discretization index M . We
choose different values of the parameters a, b0, µ, in order to investigate how the conver-
gence with respect to M is influenced by the multiplicity of λ, by the modulus and the
real part of λ, and by the choice of ρ. In all the cases we take α > −ρ.

The results are plotted in Figures 2–3: the left panels show the exact characteristic
roots λ and the computed eigenvalues of ÂM , while the right panels show the absolute
error in the approximation of λ when increasing M . In all the simulations, the uninterest-
ing eigenvalues are slightly perturbed from the vertical line <(λ) = −ρ. Our simulations
showed that the characteristic roots located to the left of the uninteresting eigenvalues
are not approximated by the discretization. Anyway, such roots are not relevant for sta-
bility and we did not include those tests here. When the characteristic roots are located
to the right of the uninteresting eigenvalues, all the error plots exhibit the typical trend
of spectral convergence, i.e., the error decays faster than O(M−k) for any k > 0. The nu-
merical simulations highlight three different aspects influencing the accuracy guaranteed
by a certain discretization index M .

(i) The accuracy in the approximation of λ depends on the multiplicity of λ as a root
of the characteristic equation, as proved in [8] in the case of finite delay. Indeed,
the complex conjugate pairs can be approximated to the machine precision eps by
taking M large enough, see Figure 2(b) and (c), whereas the convergence to the
double real eigenvalue stops at

√
eps, see Figure 2(a).

(ii) Fixed M , a smaller |λ| allows for better accuracy in the approximation, as emerging
from the comparison of Figure 3(a) and (b), where the complex conjugate pair of
eigenvalues have the same zero real part, but different modulus.
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(iii) Fixed M , a larger ρ allows for better accuracy, as emerging by comparing Fig-
ure 3(b) and (c), where we consider the same couple of imaginary eigenvalues, but
different values of ρ.

As a final remark, by comparing the simulations in this study with those performed
in [4, 5, 8] in the case of finite delay, we observe that the discretization of equations with
infinite delay requires in general higher values of M to reach the same accuracy.

4.2. A nonlinear delay differential equation

Now we turn our attention to nonlinear equations. We want to show with some
numerical examples how the pseudospectral discretization technique provides an effective
and flexible tool for studying numerically the bifurcation properties of delay equations
by using software for ODEs like, for instance, the continuation package matcont for
matlab.

Consider the nonlinear delay differential equation

dy

dt
(t) = −δAy(t) + b

∫ +∞

0

f
(n)
n/τ (s)e−δJs−ay(t−s)y(t− s) ds, (27)

where τ, n, a, b, δA, δJ are positive parameters and, given α > 0 and n > 0, f
(n)
α (s) is the

Gamma distribution

f (n)α (s) =
αnsn−1e−αs

Γ(n)
, s ≥ 0.

Equation (27) is studied in [1] as an equation describing the evolution of a single-species
adult population where the maturation age of an individual is continuously distributed
over time according to the Gamma distribution. The authors prove that, if n is large
enough, the nontrivial equilibrium undergoes two Hopf bifurcations when varying the pa-
rameter τ representing the expected maturation age. For smaller values of n no stability
switch occurs, the nontrivial equilibrium being locally asymptotically stable whenever it
exists positive.

If n ∈ N, by introducing the auxiliary variables

zj(t) :=

∫ +∞

0

αn

(n− 1)!
e−(α+δJ )ssje−ay(t−s)y(t− s) ds, j = 0, . . . , n− 1,

and using the technique explained in [19, 31, 36] we can formulate equation (27) equiva-
lently as the (n+ 1)-dimensional system of ODEs

dz0
dt = −(α+ δJ)z0 + αn

(n−1)!e
−ayy

dz1
dt = z0 − (α+ δJ)z1
...

dzn−1

dt = (n− 1)zn−2 − (α+ δJ)zn−1
dy
dt = bzn−1 − δAy.

(28)

The reformulation in terms of ODEs allows the comparison of the bifurcation analysis
performed with matcont on the pseudospectral discretization of (27) and on the system
of ODEs (28).
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We first applied matcont to obtain the numerical bifurcation diagram with respect
to the parameter τ . In Figure 4 we compared the diagram computed from system (28)
with the one computed from the pseudospectral discretization of (27) with M = 10
and ρ = (δJ + n/τ)/4, with matcont tolerance TOL= 10−10 and model parameters
specified in the caption. The parameter M is chosen to balance high accuracy and low
computational time. The parameter ρ is tuned in order to improve the accuracy of the
quadrature formula (22). In accordance with the theoretical analysis in [1], for n = 5 no
bifurcation is detected on the nontrivial equilibrium branch, see Figure 4, left panel. For
n = 7 (right panel), two Hopf bifurcation points H1 and H2 are detected at τ1 ≈ 1.55
and τ2 ≈ 3.13. matcont allows to continue the branch of periodic solutions arising from
a Hopf bifurcation point: the maximum and minimum value of the branch of periodic
orbits are also included in the figure. We stress the remarkable overlapping between
the bifurcation diagram of the pseudospectral discretization and the reference diagram
obtained from (28).

Differently from (28), the pseudospectral discretization of (27) allows to perform the
numerical continuation of the Hopf bifurcation curve in the two-parameter plane (τ, n)
with n ∈ R+. The computed curve is plotted in Figure 5, and clearly shows that the
stability switch through Hopf bifurcation is lost for small values of n, as proved in [1].

We finally studied the convergence of the Hopf bifurcation points detected during the
matcont continuation for n = 7 shown in Figure 4, right panel. Figure 7 (left) shows the
absolute error between the Hopf values computed from the pseudospectral discretization
of (27) and the reference values τ1 and τ2 computed from the system of ODEs (28),
when increasing the index M . All the simulations are performed with matcont tolerance
TOL= 10−10. The plot provides numerical evidence of the convergence of the bifurcation
points as M increases, and the error exhibits the typical spectral decaying behavior.

4.3. A physiologically structured population model

Consider the following model for a physiologically structured population, introduced
in [16] as a simplified version of the model for Daphnia presented in [34],

b(t) =
αS(t)

1 + S(t)

∫ +∞

0

e−µsb(t− s)`(s;St)2 ds

dS

dt
(t) = rS(t)

(
1− S(t)

K

)
− S(t)

1 + S(t)

∫ +∞

0

e−µsb(t− s)`(s;St)2 ds,

(29)

where α, µ, r,K are positive parameters and `(s;St) is the length of an individual that
has age s at time t, defined by

`(s;St) :=

∫ s

0

S(t− a)

1 + S(t− a)
e−a da.

By introducing the auxiliary variables

zj(t) :=

∫ +∞

0

b(t− s)e−µs`(s;St)j ds, j = 0, 1, 2,
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we can write the equivalent system of ODEs
dz0
dt = −µz0 + αSz2

1+S
dz1
dt = Sz0

1+S − (µ+ 1)z1
dz2
dt = 2Sz1

1+S − (µ+ 2)z2
dS
dt = rS

(
1− S

K

)
− Sz2

1+S ,

(30)

and b(t) = αSz2
1+S . Therefore we can again compare numerically the bifurcation analy-

sis performed with matcont on system (30) and on the pseudospectral discretization
of (29).

In Figure 6 we plotted the numerical bifurcation diagram of S with respect to the pa-
rameterK (left panel) and the existence and stability regions of the nontrivial equilibrium
in the plane (K,α) (right panel). The model parameters are specified in the caption.
In the figure, the bifurcation diagram of the pseudospectral discretization of (29) for
M = 20 and ρ = µ/2 is superimposed to the one of the reference system of ODEs (30),
showing a remarkable fit.

Figure 7 (right) shows the error in the detection of the transcritical bifurcation
(branching point of the equilibrium curve) KBP ≈ 2.02, and the Hopf bifurcation
KH ≈ 5.88, obtained from the pseudospectral discretization of (29) with parameter
values specified in the caption of Figure 6, compared to the reference values obtained
from system (30). The transcritical bifurcation point is approximated to the tolerance
10−8 already for M = 1, while the error in the Hopf shows spectral convergence when
increasing M .

5. Conclusions and open problems

This study takes a step forward towards the goal of a numerical toolbox for the au-
tomatic bifurcation analysis of nonlinear delay equations, including integral and integro-
differential equations. The pseudospectral discretization of equations with finite delay
proposed in [4] has been here extended to the case of unbounded delay, thus showing once
more the wide applicability of the approach. When applied to nonlinear delay equations,
the pseudospectral discretization technique provides an approximating system of ODEs
with several advantages:

• the technique applies to discrete and distributed delays, renewal and delay differ-
ential equations, finite and infinite delays (with a suitable choice of the collocation
nodes), thus ensuring a fair generality;

• the numerical evidence indicates a spectral convergence of the approximations when
increasing the discretization index M , so an index of order of tens is usually enough
to reach a satisfactory accuracy for applications;

• the bifurcation properties of the system can be numerically investigated with well-
established software for ODEs without requiring ad hoc software, thus allowing to
understand some properties that are otherwise impossible to study analytically;

• from the point of view of a user (who is familiar with bifurcation software for ODEs),
the major part of the system can be built automatically when the discretization
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index M is given: hence, this part of the algorithm can be implemented once for
all, and when studying a different model the user should only adapt the code by
substituting the specific right-hand side;

• the technique does not require a specific treatment or modification of the right-
hand sides of the delay equation, since they appear in the approximating system
simply as applied to interpolating polynomials.

All these reasons together suggest that the pseudospectral discretization approach is
suitable for providing to a wide public of users a numerical tool for studying mathemat-
ical models involving delays. Anyway, since the dimension of the discrete ADE (19) is
usually considerably larger than the dimension of the original delay equation, compu-
tational time may be significant. Especially complex applications like realistic models
of physiologically structured populations, which involve for example external ODEs for
the individual growth and time- or state-dependent maturation delays, may prove to be
challenging from a computational perspective, requiring a special treatment and opti-
mization of the codes. We are interested in carrying this analysis further on by testing
the technique on some realistic models.

The investigation contained in this paper is mainly numerical, aiming at providing
concrete evidence of the effectiveness and flexibility of the approach. The rigorous proof
that the discrete ADE reproduces the stability properties of the equilibria of the delay
equation is ongoing. The proof requires the theoretical analysis of the convergence of the
characteristic roots in the linear case and follows the ideas presented in [8].
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Figure 2: left: exact characteristic roots λ (25) (circles) and computed spectrum of Â50 (26) (crosses).
Right: log-log plot of the absolute error in the approximation of the characteristic roots when increasing
M . The set of parameter values are µ = 2, ρ = 1 and (a) a = 1, b0 = −2.25, corresponding to λ = −0.5;
(b) a = 1, b0 = −4.5, corresponding to λ = −0.5 ± 1.5i; (c) a = 3, b0 = −12.5, corresponding to
λ = 0.5 ± 2.5i.
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Figure 3: same as Figure 2, with parameter values (a) a = 2, b0 = −5, µ = 2, ρ = 1, corresponding to
λ = ±i; (b) a = 2, b0 = −8, µ = 2, ρ = 1, corresponding to λ = ±2i; (c) a = 4, b0 = −20, µ = 4, ρ = 2,
corresponding to λ = ±2i.
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Figure 4: bifurcation diagram of y with respect to τ , including the maximum and minimum value of the
stable periodic orbit arising from the Hopf points, of the system of ODEs (28) (continuous line) and of
the pseudospectral discretization of (27) with M = 10 and ρ = (δJ + n/τ)/4 (crosses), with matcont
tolerance TOL= 10−10 and model parameters δA = 0.5, δJ = 1, a = 7, b = 350, and (left) n = 5,
(right) n = 7.
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Figure 5: Hopf bifurcation curve in the parameter plane (τ, n) computed from the pseudospectral dis-
cretization of (27), with parameters specified in the caption of Figure 4.
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Figure 6: left: bifurcation diagram of S with respect to K, including the maximum and minimum value
of the stable periodic orbit arising from the Hopf point, of the system of ODEs (30) (continuous line)
and of the pseudospectral discretization of (29) with M = 20 and ρ = µ/2 (crosses), with matcont
tolerance TOL= 10−10 and model parameters α = 10, r = 3, µ = 1. Right: transcritical (lower curve)
and Hopf (upper curve) bifurcation curves in the parameter plane (K,α).

100 101
10−10

10−7

10−4

10−1

M
100 101

10−10

10−7

10−4

10−1

M

Figure 7: left: log-log plot of the absolute error between the Hopf bifurcation points τ1 ≈ 1.55 (crosses)
and τ2 ≈ 3.13 (circles) computed from the system of ODEs (28) and the values obtained by pseudospec-
tral discretization of (27), increasing the index M , with n = 7 and the other parameters specified in the
caption of Figure 4. Right: log-log plot of the absolute error between the transcritical bifurcation point
KBP ≈ 2.02 (circles) and the Hopf bifurcation point KH ≈ 5.88 (crosses) computed from the system
of ODEs (30) and the values obtained by pseudospectral discretization of (29), increasing the index M ,
with parameters specified in the caption of Figure 6.
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