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Equivalence principles played a central role in the development of general relativity. Furthermore,
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competing theories of gravitation. This has led to a flourishing of different, and inequivalent, formu-
lations of these principles, with the undesired consequence that often the same name, “equivalence
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I. INTRODUCTION

The overwhelming majority of textbooks on general
relativity contains, at some stage, a discussion of the
principle of equivalence.1 It often happens, however,
that the formulations of the principle that one finds
in the various textbooks differ from each other. The
problem arises, then, as to whether they are equiva-
lent.

In fact, they are not, and the most scrupulous
authors carefully distinguish between “weaker” and
“stronger” versions. Nevertheless, it often remains
unclear, to the student, which are exactly the impli-
cations of each formulation, both in terms of physical
content and mathematical structure. (More generally,
a survey of the conceptual difficulties encountered by
students when learning about the equivalence princi-
ple is found in Ref. 2.) The goal of the present paper
is to contribute to a clarification of these issues.

Apart from reasons related to the pedagogy of gen-
eral relativity, however, there is also another moti-
vation for this effort. It might be useful to be able
to classify the ceaselessly growing collection of alter-
native theories of gravity not only in terms of their
mathematical structure, but also using simple state-
ments about the general behaviour of physical sys-
tems, thus providing a possible connection with ex-
periments. This is the way in which the equivalence
principle has been used de facto in the last half cen-
tury. Each of the various inequivalent formulations
of the principle identifies a different class of theories,

with different fundamental mathematical contents. Of
course, it is clear that this programme demands each
version of the equivalence principle to be formulated
unambiguously (see, e.g., Ref. 3 for an extended dis-
cussion on this issue).
The plan of the paper is the following. We first

present, in Sec. II, the hierarchy of principles, from the
simplest (Newton’s equivalence principle) to the most
complex (the strong equivalence principle). Then, in
Sec. III, we discuss the logical relationships among
such statements. In Sec. IV we spell out the structural
role of equivalence principles within gravitational the-
ories. Section V contains some comments about Ein-
stein’s original formulation of the principle, and about
future perspectives of a possible renaissance of the
equivalence principles. Indeed, the vast and intricate
landscape of modified and extended theories of grav-
ity emerged so far under the pressure of the latest
wealth of cosmological data strongly calls for new, ef-
fective selection rules, among which the unforgotten
equivalence principles may play a key role.

II. EQUIVALENCE PRINCIPLES

We want to give an operational formulation of the
various versions of the principle of equivalence, one
which makes reference only to the behaviour of phys-
ical systems, without involving theoretical parapher-
nalia like the notion of a metric, a connection, etc.
The reason behind this choice is that we do not want
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to select general relativity from the outset, and wish
instead to keep our statements as general as possi-
ble, so that we can cover at once theories which use
very different mathematical structures. The only ex-
ception to this rule concerns spacetime itself, which
we regard as a smooth manifold M (usually taken as
four-dimensional), equipped with some notion of past
and future. Physical fields are geometric (tensorial or
spinorial) objects over M . This framework includes,
of course, all theories modelled after general relativ-
ity, but is wide enough to cover also, e.g., Newton’s
theory of gravity, reformulated à la Cartan.4 An ob-
server is idealised as a future-directed smooth causal
curve on M , and a reference frame in some spacetime
region U ⊆ M is a congruence of observers in U .
Another due preliminary warning: unfortunately,

there is no general agreement about the terminology.
For example, our “Einstein’s equivalence principle”
(see Sec. II D below) is sometimes called the “weak
equivalence principle”, and sometimes the “strong
equivalence principle”. This confusion is more com-
mon in the older literature, but still persists nowadays
in spite of some attempts at establishing a common
glossary.5 We basically adhere to the nomenclature
presented in Will’s influential book,6 which follows
the proposal in Ref. 5. The specific formulation of
the various principles is, however, suitably rephrased
to suit the logic of our discussion.

A. Newton’s equivalence principle

All viable theories of gravity must reduce, in some
limit, to Newton’s theory,7 so we begin recalling the
basic elements of the latter. The Newtonian gravita-
tional potential Φ(x, t) obeys Poisson’s equation

∇2Φ = 4πGρ , (1)

where G is Newton’s constant, and ρ(x, t) is the den-
sity of active gravitational mass (the property of mat-
ter playing the role of “source” for gravity, analogous
to the “active electric charge” that generates an elec-
tric field). The equation of motion for a particle8 with
inertial mass mi in a gravitational field with potential
Φ is

mi ẍ(t) = −mg∇Φ(x(t), t) , (2)

where x(t) is the particle position at time t, and mg is
the particle passive gravitational mass (the property
that expresses how a particle “feels” a given gravita-
tional field, analogous to the “passive electric charge”
one has inside the expression of the Lorentz force).
In principle, the active and passive gravitational

masses express different properties, and might well be

distinct. If one requires, however, that the action-
reaction principle holds in the Newtonian limit, it is
easy to see that they must coincide up to an irrel-
evant universal coefficient.9 Thus, from now on we
shall identify them, and speak only of a “gravitational
mass” mg.
On the other hand, the basic principles of dynam-

ics do not say anything about possible relations be-
tween mi and mg. Indeed, these quantities express,
in principle, very different properties of a body. Ex-
periments, however, show that they are also propor-
tional to each other, through a universal coefficient,
with great accuracy, and can therefore be made equal
by a suitable choice of units. Loosely speaking, this
means that every form of matter-energy responds to
gravity in the same way. This remarkable fact was es-
tablished by Newton,10 who observed that simple pen-
dula whose bobs are made of different materials and
have different weights, but all having the same length,
oscillate with the same period.11 (Strictly speaking,
this method tests the equality between mi and mg

only indirectly, as a consequence of the universality of
free fall within Newtonian dynamics. However, that
mi = mg can be verified independently, without con-
sidering falling bodies; see Sec. III.12) It is therefore
appropriate to call this empirical fact

Newton’s equivalence principle (NEP): In the
Newtonian limit, the inertial and gravitational masses
of a body are equal.

Note that NEP is formulated in such a way that its
validity can be tested also for theories other than New-
ton’s. The requirement that one works in the Newto-
nian limit, is because only in those conditions one can
unambiguously identify, in general, an inertial and a
gravitational mass. Indeed, mi and mg are eminently
Newtonian quantities, whose definition might turn out
to be problematic in other theories.

B. Weak equivalence principle

The next version of the equivalence principle is
nothing but the old, empiric law of universality of free
fall; a lively relic of Galilei’s grand achievements.13

The statement reads:

Weak equivalence principle (WEP): Test parti-
cles with negligible self-gravity behave, in a gravita-
tional field, independently of their properties.

It is understood that the particles are not subject to
any force of non-gravitational origin. Of course, it
is important that the notion of “test particles with
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negligible self-gravity”, used in the statement, be ab-
solutely clear and unambiguous. By a “test parti-
cle”, we mean one which does not back-react on the
surrounding environment (although it is acted upon
by the environment itself, of course). This notion is
clearly valid only within some approximation.
Establishing what “negligible self-gravity” means is

a bit more tricky. For this purpose, it is convenient to
define the dimensionless parameter

σ :=
Gm

c2r
, (3)

where m denotes the mass of the body (it does not
matter whether inertial or gravitational, if the two
masses are very close to each other), and r is a conve-
nient measure of its size.14 The parameter σ expresses
the ratio between the gravitational energy of the body
(of order Gm2

g/r) and its rest energy mic
2, so it is a

good indicator of the presence and amount of self-
gravity. For pebbles, planets, or even a star like the
Sun, σ is very small, whereas it becomes of order one
for compact objects such as neutron stars or black
holes. Indeed, since σ is of the same order of magni-
tude as the ratio between the Schwarzschild radius of
a body and its size r, it can also be regarded as an
indicator of the compactness of the body.
Note that the two notions of “test particle” and

“negligible self-gravity” are logically independent. A
pebble is, with excellent approximation, a test particle
in the gravitational field of the Earth, and its self-
gravity is negligible. However, the Moon has σ ≪ 1,
but for several purposes cannot be regarded as a test
body, as it affects the gravitational field of the Earth in
a non-negligible way. And a micro black hole (i.e., one
having a very small mass) might well be considered
a test particle, although its parameter σ attains the
maximum possible value, regardless of m.

C. Gravitational weak equivalence principle

Removing the condition that self-gravity be negli-
gible, one obtains the

Gravitational weak equivalence principle
(GWEP): Test particles behave, in a gravitational
field and in vacuum, independently of their properties.

Of course, the GWEP includes the WEP, which cor-
responds to the limit σ → 0. Note that the condition
that we are dealing with a test particle has not been
relaxed, though. The reason is that, if one were con-
sidering also bodies whose back-reaction on the envi-
ronment is non-negligible, it would be impossible to
compare their behaviour and then establish whether

it is, or is not, the same. In other words, the very
notion of a universal behaviour requires that the en-
vironment is unchanged when different particles are
considered, and this can happen only if they are test
particles.
On the other hand, the formulation of the GWEP

contains the explicit restriction to an empty back-
ground, which was not present in the WEP. The rea-
son is that, since now we are considering particles
whose own gravitational field is non-negligible, they
would exert some force on whatever surrounding mat-
ter might be present. By the action-reaction prin-
ciple, there would then be a force on the particle as
well, which would make its world-line deviate from the
one of a particle with no self-gravity, thus undermin-
ing universality. Removing the restriction to vacuum,
thus, no theory would satisfy the GWEP.15

D. Einstein’s equivalence principle

The principles presented so far all refer only to
the mechanical behaviour of particles. The following
statement covers instead all non-gravitational physics.

Einstein’s equivalence principle (EEP): Funda-
mental non-gravitational test physics is not affected,
locally and at any point of spacetime, by the presence
of a gravitational field.

Again, a few words of explanation are in order. By
“non-gravitational test physics” we mean, of course,
processes involving the mechanics of particles and con-
tinua, thermodynamics, electromagnetism, etc., pro-
vided that they do not affect a pre-existing back-
ground gravitational field (or do not create a non-
negligible one, in case there is none). Thus, particles,
fluids, fields, and so on, are all considered “test enti-
ties” from the gravitational point of view.
When we say that a phenomenon is “not affected,

locally, by the presence of a gravitational field”, we
mean the following. Imagine to set up an experiment
taking place in a sufficiently small spacetime region
U , where a gravitational field exists, and to record
the results. Then, it is always possible to choose a
suitable reference frame, in a region U ′ where gravity
is absent, whose observers will find the same results
when performing the experiment following the same
procedure. In most textbooks, EEP is formulated
in terms of the equivalence between a locally non-
rotating, freely-falling frame in a gravitational field
and an inertial frame in the absence of gravity. This
is, probably, the simplest situation, and it is fine to
use it for pedagogical purposes. It should be clear,
however, that other choices are possible (for instance,
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choosing a suitably accelerated frame in the absence
of gravity to simulate a gravitational field), and that
the general idea at the basis of EEP is the correspon-
dence between local frames in a gravitational field and
frames in the absence of gravity.

The statement of EEP, and the explanation pro-
vided, contain the slippery terms “locally” and “suffi-
ciently small”. The catch is that, in fact, physical pro-
cesses in a gravitational field do unfold differently than
in the absence of gravity. Sometimes, it is claimed
that any difference can be detected only by exper-
iments performed over finite scales of distance and
time, and that such differences become smaller and
smaller as the size of U decreases. This would suffice
to justify a condition about locality in the statement
of the principle. The claim as it stands, however, is
just plainly wrong. For example, consider an experi-
ment where the distance ℓ between two nearby freely-
falling particles is measured, and consider the quantity
ℓ̈/ℓ, where a dot denotes the derivative with respect
to proper time, or to a convenient laboratory time.
In an inhomogeneous gravitational field, this quantity
does not vanish, in general, even in the limit ℓ → 0,
although it does vanish identically in the absence of
a gravitational field. Indeed, such quantity is propor-
tional to a component of the tidal tensor ∂2Φ/∂xi ∂xj ,
which is obviously a local object characterising the
gravitational field.16 Other examples of experiments
performed within arbitrarily small spacetime regions,
whose result depends on whether there is, or there
is not, a gravitational field, have been provided in
Ref. 17. It is easy to realise, however, that in all such
cases one is dealing with the behaviour of systems
that are not elementary, but composite. Hence, the
need to restrict the statement of EEP to “fundamen-
tal physics” (clearly, an unsatisfactory requirement,
given our ignorance of the basic laws).

The statement above of EEP is general, and is
compatible, in principle, with any spacetime struc-
ture. To the best of our knowledge, however, the
laws of physics in the absence of gravity are Poincaré-
invariant. This means that they are invariant both un-
der spacetime translations, and under the action of the
Lorentz group (containing spatial rotations and arbi-
trary boosts).18 For this reason, EEP is often stated
within this more specific context, as the joint require-
ment of the WEP, the “local position invariance”, and
the “local Lorentz invariance” for non-gravitational
test experiments.6

E. Strong equivalence principle

Just as removing from the WEP the condition that
self-gravity be negligible leads us to the GWEP, we
can extend EEP to include also gravitational phenom-
ena.

Strong equivalence principle (SEP): All test fun-
damental physics (including gravitational physics) is
not affected, locally, by the presence of a gravitational
field.

At first, this statement sounds odd. How can gravi-
tational physics not be affected by the presence of a
gravitational field? However, as it happens for EEP,
the physical processes considered here must be re-
garded as test experiments over a background that is
not significantly affected by them. Thus, the kind of
gravitational experiments to which the SEP applies
can be, for example, the mutual attraction between
two sufficiently light bodies, or the detection of a weak
gravitational wave. The principle then says that, even
if such experiments are performed within some back-
ground gravitational field, it is always possible to find
observers who will (locally) record the same results,
when performing the same experiments in the absence
of such a background field. This is by no means ob-
vious or granted, in a non-linear theory of gravity as
general relativity, where distant masses could have a
non-trivial effect on local gravitational processes.19

As for EEP, also for the SEP it is common to find,
in the literature, a formulation that makes directly
reference to the Minkowskian structure of spacetime
in the absence of gravity. Thus, the SEP is imple-
mented requiring local position invariance and local
Lorentz invariance for all test experiments (including
those involving gravity), together with the validity of
the GWEP.6

III. RELATIONSHIP BETWEEN THE

VARIOUS FORMULATIONS

Obviously, the various principles introduced in the
previous section are not all equivalent. We now anal-
yse their mutual relationships.
It is easy to realise that the WEP implies NEP.

For, if NEP were false, then the universality of free-
fall would not hold even in the Newtonian approxi-
mation, so the WEP would also be false. In fact, the
two principles are often identified, as if the validity
of NEP guaranteed that also the WEP hold. This
is, however, not true. Only as long as the two kinds
of masses enter in the equations of motion through
their ratio mi/mg alone, as it happens in Newton’s
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theory, does NEP imply the universality of free-fall.
If different sorts of combinations of mi and mg are al-
lowed, then spurious instances of the masses crop up
and generically the WEP fails.20 It should be noted,
in this respect, that although NEP is usually tested
through the WEP (see, e.g., Newton’s experiments
with pendula, already mentioned in Sec. II A), the
proportionality between mi and mg can be established
making use of procedures not involving the WEP. For
example, mi can be measured applying a known non-
gravitational force to the body, and measuring its ac-
celeration; mg can be measured weighing the body on
a spring scale.

In an empty background, the GWEP implies NEP
for self-gravitating bodies. Conversely, if NEP fails for
self-gravitating bodies, then the GWEP is violated.
This is indeed a rather common subject of investiga-
tion. Given a gravitational theory in which the WEP
holds, it is possible to verify whether NEP holds as
well for a body with non-negligible self-gravity. For
this purpose, it is appropriate to distinguish NEP from
its extension to self-gravitating bodies — we shall call
the latter Gravitational NEP (GNEP). Calculations
show that, although in general relativity mi = mg al-
ways, this is a rather exceptional situation (see Ref. 21
for the failure of the GNEP in Brans–Dicke theory).
An interpretation of this result is that, contrary to
what happens in general relativity, in many alterna-
tive theories gravitational energy does not respond to
gravity as the other forms of energy do. It is worth
noticing, in this respect, that experiments such as
those involving the laser ranging of a self-gravitating
body like the Moon, which measure the dependence
of the body’s orbit on the ratio mg/mi, actually test
the GNEP, rather than the GWEP.

One easily realises, also, that EEP implies the WEP.
Indeed, EEP guarantees that the behaviour of a freely-
falling particle in a gravitational field is, locally, in-
distinguishable from that of a free particle in the ab-
sence of gravity (in the sense, discussed in Sec. II D,
that there are two reference frames whose observers
see the same type of motion for the particles). Since
the behaviour of free particles is universal, it follows
that also freely-falling particles behave in a universal
way.22 By the same token, the SEP implies the GWEP
(and of course EEP).

Whether the WEP implies EEP is still an open is-
sue, usually referred to as Schiff’s conjecture.5,6 This
claim has never been proved in full generality but only
within some simple model contexts, such as compos-
ite bodies bound via classical electrodynamics in a
spherically symmetric gravitational background.6,23 If
it were correct, one could also establish a connection
between the GWEP and EEP (at least, in an empty

background), using the implication “GWEP⇒WEP”
as a first step.
A rationale behind Schiff’s conjecture, is that “test

particles” are ultimately compound objects, held to-
gether by forces of various nature. It is not obvious
that, if such forces were sensitive to the presence of
a gravitational field (that is, if EEP were false), a
universal behaviour for “test particles” could emerge.
Whence the possibility that a violation of EEP could
entail a violation of the WEP, which would be logi-
cally equivalent to the statement “WEP ⇒ EEP”.
In spite of this circumstantial evidence, however,

one should keep in mind that a universal emergent be-
haviour, independent of the details of the underlying
microphysics, is what one often observes for macro-
scopic systems, and that something similar might
happen for the mechanical behaviour of test bodies.
Which means that a sound proof of the conjecture is
definitely needed before any definitive statement could
be drawn.
As we said, the SEP is just EEP extended to test

gravitational phenomena, of which the free-fall of a
test body with self-gravity is only a particular case.
An interesting problem is then whether adding the
GWEP to EEP one recovers the full SEP. To our
knowledge, this “gravitational version” of Schiff’s con-
jecture has never been formulated before. If correct, it
would establish the GWEP as the key element of the
SEP, the one distinguishing the latter from EEP. Note
that the conjecture is not that the GWEP implies the
SEP, but that the SEP is equivalent to the union of
the GWEP and EEP. To better understand this point,
one might consider, for example, the propagation of a
weak gravitational wave. Of course, the GWEP has
nothing to say about such phenomenon, which does
not involve any gravitational self-interaction, and thus
cannot be used to infer what the propagation on a
curved spacetime is, knowing the one on a flat back-
ground. Still, a weak gravitational wave is equivalent
to a spin-2 field, to which EEP can be applied.

IV. THEORETICAL ROLE OF THE

EQUIVALENCE PRINCIPLES

In this section, we elucidate how the equivalence
principles enter in the construction of a theory of grav-
ity, in terms of the mathematical structure they sug-
gest.
The role of the WEP in theory building is to hint

that the response to a gravitational field can be de-
scribed by an affine connection on spacetime — that
is, by a rule for parallel-transporting a vector along a
path on M . For later convenience, we denote such a
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mathematical structure by Γ. The logic behind this
daring association goes as follows. Universality of free-
fall indicates that the worldlines of test particles in a
gravitational field do not depend on the particle prop-
erties, but only on their gravitational environment.
Therefore, a gravitational field is associated with a set
of preferred lines in spacetime, which can be consid-
ered the autoparallel lines of some connection Γ (i.e.,
those lines whose tangent vector, parallel-transported
along the line itself, remains tangent).24 When there is
no gravitational field, the preferred worldlines reduce
to the straight-line inertial motions of Newtonian me-
chanics and special relativity, which correspond to a
fixed, flat connection Γ0. Conversely, in the presence
of a gravitational field, the connection is, in general,
dynamical and curved, as implied by elementary con-
siderations about tidal forces.

It is perhaps worth remarking that identifying grav-
ity with spacetime geometry is not a compulsory step,
but follows from adopting a view in which all uni-
versal features are ascribed to geometry.25 According
to this philosophy, the universal behaviour of freely-
falling test particles is better explained by spacetime
geometry than by a physical field (gravity) which cou-
ples to all bodies in the same way.26

At this stage, we still have wide freedom in con-
structing a theory of gravity. In the so-called met-
ric theories (of which general relativity is an exam-
ple), one assumes that, since in the absence of gravity
spacetime possesses a Minkowski metric η — of which
Γ0 is the Riemannian connection — the same link
holds when a gravitational field is present. Thus, the
non-flat Γ is regarded as the Riemannian connection of
a spacetime metric g, different from η and dependent
on the matter environment. The WEP alone, how-
ever, is not enough to justify these further steps. For
instance, Newton-Cartan’s theory includes the WEP,
yet it is based on a non-metric affine connection — in
fact, there is no spacetime metric in Newton-Cartan’s
theory.

The role of EEP is exactly to fill in this gap. To-
gether with the independent information that, in the
absence of gravity, the physical laws fit within the
framework of special relativity, it tells us that the
structure of the spacetime associated with a gravi-
tational field must be locally Minkowskian. In other
words, the curved connection Γ must be locally indis-
tinguishable from the flat Riemannian connection of
the Minkowski metric η. (Of course, what “locally”
exactly means depends both on the curvature scale
and on the degree of accuracy required.) This is possi-
ble if and only if Γ itself is the Riemannian connection
of some metric g.

However, EEP allows us to go farther than this.

That Γ is the Riemannian connection of some met-
ric, could be derived from the simpler requirement
that local chronogeometric measurements (i.e., mea-
surements that can ultimately be reduced to those
of spatial distances and time intervals) do not re-
veal the presence of a gravitational field. But EEP
says more; namely, that this must be the case for all
non-gravitational fundamental physical phenomena,
i.e., that fundamental non-gravitational physics in a
curved spacetime is locally Minkowskian. Therefore,
not only does EEP select metric theories of gravity;
it also provides us a powerful prescription for writing
the various physical laws in a curved spacetime, viz.,
for coupling gravity to the other fundamental physical
phenomena.27

It is worth pointing out that, sometimes, this pre-
scription is misleadingly understood as a rule for
“minimal coupling”, i.e., the idea that the basic equa-
tions of physics in the presence of gravity differ from
their counterparts in flat spacetime only by the re-
placements η → g and, correspondingly, ∂ → ∇. This
is, however, not always correct. Strictly speaking,
what EEP requires is that, under given conditions,
physical phenomena in a sufficiently small region of
spacetime unfold in the same way when there is, or
there is not, a gravitational field. This is clearly a con-
dition on solutions , rather than on equations , which
can be implemented, mathematically, requiring that
the local structure of the Green function associated
with a physical law be the same in a curved and in
a flat spacetime. That the prescription on the Green
function is not equivalent to the one on the equations,
and that it is the former which is correct, can easily be
seen by analysing the case of a scalar field.28 Minimal
coupling can lead to all sort of local bizarre behaviour
(massive fields propagating along the light-cone, mass-
less fields propagating inside it). This would allow an
experimenter to tell the presence of a gravitational
field working on arbitrarily small regions, in manifest
violation of EEP. On the contrary, the requirement on
the Green function automatically guarantees that any
solution behaves, locally, as if spacetime were flat.

Summarising: both the WEP and EEP hint at the
mathematical structure of spacetime in the presence of
gravity. Moreover, EEP can be turned into a prescrip-
tion for writing down physical laws in a gravitational
field, once they are known in Minkowski spacetime.
What do then the GWEP and the SEP say, in addi-
tion to this all?

Among the metric theories of gravity selected by
EEP, one can further distinguish the so-called purely
metric theories, in which gravity is exclusively de-
scribed by the metric g alone. Thus, non-purely met-
ric theories contain other types of gravitational fields,
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in addition to g. This is the case, for instance, for the
Brans–Dicke theory, where gravity is described by the
metric and by a scalar field.
It turns out that the GWEP is satisfied only by

purely metric theories. A detailed formal proof of
this statement can be found in Ref. 15. Physically,
what happens is the following. In a non-purely met-
ric theory, the mass-energy of a self-gravitating body
acquires a dependence also on the extra gravitational
fields (e.g., the scalar field for the Brans–Dicke the-
ory). In a non-trivial background, where such ex-
tra fields are not constant, this dependence produces
a force, which makes the motion of the body non-
geodesic.
It is worth mentioning that this restriction is highly

non-trivial, because in four dimensions it pins down
just Einstein’s theory (with an arbitrary cosmologi-
cal constant). Indeed, other seemingly purely metric
theories of gravity, whose Lagrangian contains higher
powers of curvature — in contrast to the Einstein–
Hilbert one, which is just the Ricci scalar —, are ac-
tually scalar-tensor theories in disguise.15 Since Ein-
stein’s theory is the only one known to satisfy the
SEP, it then seems that the “gravitational Schiff con-
jecture” formulated at the end of Sec. III is correct.

V. CONCLUDING REMARKS

We have seen that the various formulations of the
equivalence principle form a hierarchy (or rather, a
nested sequence of statements narrowing down the
type of gravitational theory), from the simple NEP
to the sophisticated SEP.
It is worth adding that, within such a hierarchy,

the principles can also be broadly separated into two
classes. Some of them (NEP, WEP, and GWEP) are
just statements about properties and the behaviour
of particular physical systems. The others (EEP and
SEP) can be reformulated as general “impossibility
principles”. More specifically, EEP and the SEP for-
bid the detection of a gravitational field by means of
local experiments (albeit restricted to those of a fun-
damental type). In this sense, they are very similar to
the relativity principle, which forbids the detection of
one’s state of motion by internal experiments within
the class of inertial frames.
Remarkably, this was Einstein’s original view of

the equivalence principle.29 He regarded the indistin-
guishability, through internal experiments, between
an accelerated laboratory in Minkowski spacetime and
a laboratory at rest in a suitable gravitational field,
on a similar footing as the principle of special rela-
tivity. He thought that, just as the latter establishes

the relative character of velocity (hence, the equiva-
lence between all inertial frames), so the equivalence
principle establishes that also acceleration is a relative
quantity. With this interpretation, the equivalence
principle generalises the principle of relativity from
the class of inertial frames to frames in arbitrary mo-
tion — indeed, this is the origin of the name “general
relativity” for Einstein’s theory of gravity.

A caveat is in order, at this point. To maintain Ein-
stein’s view, the equivalence between an accelerated
laboratory in the absence of gravity, and a laboratory
at rest in a gravitational field (or between an inertial
laboratory and a freely-falling one) should be exact .
This is not the case, for several reasons. As we saw
in Sec. II D, the presence of curvature requires one
to restrict attention to sufficiently small regions (in-
finitely small, in principle) and to phenomena that
are sufficiently elementary, otherwise the difference
between the two situations can be detected. Clearly,
adding these conditions weakens considerably the in-
terpretation of EEP and the SEP as generalised prin-
ciples of relativity, which is probably why their role
in the presentations of the theory changed over the
years. To be fair, Einstein never used this “punc-
tual” version of the principle, and used to speak of
the equivalence between a uniformly accelerated labo-
ratory in Minkowski spacetime and a laboratory sup-
ported within a uniform gravitational field. Yet, since
the latter concept is ill-defined even within the con-
text of general relativity itself,30 this line of reasoning
is nowadays somewhat discredited, except as an ap-
proximate heuristic tool.

There is however, at the present time, a new rea-
son for going back to the equivalence principles. The
puzzling picture of the universe emerging from the
latest cosmological data,31 has in the last years pro-
pelled a renewed interest in alternative theories of
gravity, leading to a whole new blossoming of novel
ideas and suggestions. Furthermore, the surprising
duality between gravitation in an anti-de Sitter bulk
spacetime in five dimensions, and a conformal field
theory on the four-dimensional boundary of the AdS
bulk32 has motivated studies of gravitation in higher
dimensions, where general relativity is no longer the
only non-trivial, purely metric, theory of gravity with
second-order field equations — actually, in more than
four dimensions there is a whole hierarchy of actions
leading to at most second-order field equations for the
metric, the so-called Lanczos–Lovelock actions.33 This
new complexity seems to require one or more “order-
ing principles” to classify theories of gravity, some-
how identifying what makes general relativity “spe-
cial” (apart from simplicity, of course). The GWEP
as described in this paper seems to provide a reason-
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able starting point in this sense, because it selects
exactly the Lanczos–Lovelock theories appropriate to
the given spacetime dimensionality.15

The fact that the GWEP appears so selective, sug-
gests a possible interpretation of it in terms of the
non-linearity of the gravitational field equations. Al-
though the WEP is often postulated for the mo-
tion of particles in a gravitational field (one assumes
that the world-lines of freely-falling test particles are
geodesics), in some theories one can actually derive
the equations of motion for small self-gravitating bod-
ies from the gravitational field equations alone.34,35

The logic is then the following: the field equations
for gravity dictate the motion of small self-gravitating
bodies, which includes also the motion of particles
with negligible self-gravity as a limiting case. In this
sense, the GWEP (and, of course, the WEP) can be
regarded as a constraint on the field equations them-
selves. In such theories, there is no freedom to pos-
tulate the equations of motion, even for test particles
without self-gravity. This is the case, for instance,
in general relativity.34,35 Not all gravitational theo-
ries, however, are powerful enough to do so. Basically,
the equations of motion for a small body follow from
the gravitational field equations if the latter imply lo-
cal energy-momentum conservation, which amounts
to four equations. For this to happen, the theory
should be invariant under arbitrary coordinate trans-
formations (the so-called diffeomorphism invariance)
— a requirement equivalent to asking that it does not
contain non-dynamical quantities.36 This condition, in
turn, implies that the equations for the gravitational
field must be sufficiently “complicated”.37 Moreover,
since for a self-gravitating body the local conservation
of energy-momentum must include also the energy-
momentum content of the body’s own gravitational
field, no linear field equation can do the job. Hence,
if the GWEP has to be a consequence of the gravita-
tional field equations, the theory of gravity must be
non-linear.38

Actually, one can say more. The SEP implies that,
for test gravitational experiments, the gravitational
background is locally irrelevant — the outcome is in-
distinguishable from that of an identical experiment
performed in Minkowski spacetime. This is not what
one would expect in an arbitrary non-linear theory.19

Thus, the GWEP and the SEP play the role of selec-
tion rules which, among the metric theories of gravity
individuated by EEP, seem to single out only those
which posses a “minimal non-linearity”, in a quite pre-
cise sense. Remarkably, this property seems to charac-
terise the purely metric theories, and more specifically
those of the Lanczos–Lovelock class (which, in four
spacetime dimensions, reduce to Einstein’s gravity).

This conclusion appears to agree with a recent pro-
posal for a formal statement of SEP.39,40 As is well-
known, the formalism behind many theories of gravity
(including general relativity) can be interpreted in the
spirit of gauge theories of fundamental interactions.41

Here, the connection plays the role of the gauge po-
tential, whereas the field strength is represented by
the curvature. Within this framework, the “natural”
form of the field equations is not a statement on the
curvature (as in Einstein’s theory), but rather on its
first covariant derivative, namely

∇dRabc
d = κ jabc , (4)

where Rabc
d is the Riemann tensor, κ is a coupling

constant, and jabc is a current playing the role of
source for gravity.42 Gravity then appears as the
Yang–Mills field associated with the Lorentz group. In
particular, the non-linearity of the field equations (4)
— hence, the gravitational self-interaction — is as-
sociated with the fact that the Lorentz group is non-
Abelian. In the words of Ref. 39: “Gravitons gravitate
like gluons glue.” In vacuum, Eq. (4) reduces to

∇dRabc
d = 0 , (5)

which still contains, however, the information about
the non-linearity of the gravitational field.
Remarkably, upon implementing Eq. (5) as a set of

constraints on an asymptotically flat, spherically sym-
metric metric representing a weak, stationary gravi-
tational field, one finds exactly the same conditions
that guarantee the validity of the GWEP (more ex-
actly, of NEP for self-gravitating bodies).39,40 Since
the GWEP is one of the ingredients of the SEP, Eq. (5)
was then suggested in Ref. 39 as a necessary condi-
tion for the SEP to hold. Although the soundness of
this proposal has still to be confirmed in general, it
is tantalising to see again a connection between non-
linearity and the SEP. An extension of this proposal
to other theories of gravity, and to higher dimensions,
might thus reveal new unexpected links between the
GNEP, the GWEP, and the SEP.
The path to a deep understanding of the “family

tree” of gravitation theories is probably still long and
tortuous, but perhaps the equivalence principles, or
their modern offspring, will have a word to say in this
story.
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