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nodes or in improving the bound of the LP relaxations.

© 2015 Elsevier B.V. All rights reserved.

1. Optimization and local search

One of the most effective ways to solve an NP-hard combinatorial optimization problem is to formulate it as an integer
program, which is in turn solved by branch and bound [1]. Let the formulation be

zIP := min{c x : x ∈ S} (1)
where S = {x : A x ≥ b, x ≥ 0, x ∈ Zn

}. Moreover, let P = {x : A x ≥ b, x ≥ 0} and P I
= conv(S).

Valid inequalities (also called cuts) can be added to (1) to strengthen the quality of the LP bound to be used in the branch-
and-bound. The process of solving a combinatorial optimization problem with the addition of valid cuts is called branch-
and-cut [2].

Local search is a general framework for finding good (not necessarily optimal) solutions of an optimization problem [3,4].
In local search, a neighborhood function N (s) is specified, which, for a feasible solution s, defines a set of feasible solutions
‘‘close’’ to s. A local optimum is a solution s∗ such that c s∗ ≤ c s for all s ∈ N (s∗). Clearly, an optimal solution of the problem
is also a local optimum for each possible neighborhood but not vice-versa. Local search heuristics usually work by quickly
finding as many local optima as possible, and then returning the best one.

The results presented in this paper are based on the following observation:
Given a local search neighborhoodN , a global optimum of the problemmust also be a local optimum for N . This is therefore
an additional constraint on the global optimum.

If it is possible to express the above constraint via linear inequalities, we call each such linear constraint a local search
inequality (LSI). Basically, local search inequalities are constraints saying that, for each move which changes a feasible
solution x into a feasible solution x′

∈ N (x), it must be c x′
≥ c x. These constraints are valid for local optima (and hence for

global optima), but may be violated by some other feasible solutions in P I . Therefore, they cut through the set P I and are not
valid inequalities in the usual sense.

We mention that the idea of using inequalities that are not valid for all feasible solutions but only for some subsets of
solutions can be also found in other settings. As examples of such inequalities, we cite the logic cuts which can be found in
[5,6] and the conditional inequalities appearing in [7].
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Fig. 1. A feasible set with two neighborhood functions N 1 (a) and N 2 (b). In (a) neighbor points are obtained by moving vertically or horizontally; in (b)
by moving diagonally. The objective function is max x1 + x2 and the local optima are the black dots. PN1 is shown in (c) and PN2 is shown in (d). PN1 ∩ PN2

is shown in (e) which has only two local optima points, one of which is the global optimum.

Given a neighborhood function N , let X(N ) be the set of incidence vectors of all local optima for N , and let PN
=

conv(X(N )). Then, a LSI is nothing but a valid inequality for PN . The polytope PN is contained in P I , and if k distinct neigh-
borhood functions are considered, the optimal solutions in P I are contained in PN1 ∩ PN2 ∩ · · · ∩ PNk . In Figs. 1(a) and (b) a
feasible set is shown with two neighborhood functions N 1 and N 2. The neighborhood functions are schematically shown
at the left of the figures (in the first case neighbor points are obtained moving vertically or horizontally; in the second case
moving diagonally). If the objective function is max x1 + x2 then the local optima are the black dots. In Figs. 1(c) and (d)
we can see PN1 and PN2 . In Fig. 1(e) we see PN1 ∩ PN2 which has only two local optima points, one of which is the global
optimum.

From our computational experiments, we have noticed that X(N1) ∩ X(N2) ∩ · · · ∩ X(Nk) is typically much smaller
than S, even for k = 2, 3. For example, consider the problem of finding the optimal TSP tour over the first 13 nodes of the
TSPLIB instance fri26. We computed the local optima for three simple neighborhood functions defined by the moves that
exchange two consecutive cities along the tour (N1), exchange any two cities along the tour (N2) and remove two edges from
the tour and reconnect the two resulting paths (N3). Then, among the 239,500,800 tours, there are 432,507 local optima for
N1, 7,293 local optima for N2 and 3 local optima for N3. Moreover, X(N1) ∩ X(N2) ∩ X(N3) has just 2 elements, and they
are both global optima.

Local search inequalities are, by their nature, very general, since they apply whenever a local optimality condition can be
expressed by linear inequalities. In this paper,wewill focus on the Traveling Salesman (TSP), on theMaximumCut (Max-Cut)
and on the Maximum Satisfiability problems (Max-SAT).

In a sense, LSIs are ‘‘formulation-independent’’, i.e., they can be added to any formulation whose variables include the
variables appearing in the LSIs. For instance, there are several distinct formulations for the TSP which have, among their
variables, binary variables xij associated to the edges of the graph (see [8]). Then, if we have a set of LSIs involving only the
edge variables, they could be added to any of these formulations.

Another nice property of LSIs is that, as long as the neighborhood function is relatively simple (such as exchanging the
order of two elements in a permutation), the number of corresponding inequalities is fairly small, and LSIs can be directly
added to the formulation without the need of a separation algorithm. We will see examples of this type later on. On the
other hand, for more complex neighborhood functions, it may be the case that there is an exponential number of LSIs, but
still they can be dealt with in polynomial time via a separation algorithm. We will see examples of this type as well.

The remainder of the paper is organized as follows. In Section 2 we describe two neighborhoods for the Symmetric
TSP and some corresponding LSIs. In Section 3 and Section 4 we describe LSIs for the Max-Cut and the Max-SAT prob-
lems, respectively. In Section 5 we report the results of some computational experiments. Some conclusions are drawn in
Section 6.

Notation. We will adopt the following notation. For a graph G = (V , E) and a set of nodes S ⊂ V , we denote by δ(S) the set
of edges with one endpoint in S and the other in V \ S. With a slight abuse of notation, we write δ(v) instead of δ({v}) when
|S| = 1. By N(v) we denote the set of neighbors of v ∈ V , i.e. N(v) := {u : uv ∈ E}. If x are variables of a linear program
with indices in a set I , and J ⊆ I , by x(J) we denote the sum


i∈J xi.
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Fig. 2. 2-OPT and SWAP moves.

2. The Traveling salesman problem

The (symmetric) Traveling salesman problem (TSP) is the following problem: Given an undirected graph G = (V , E),
with costs ce on the edges e ∈ E, find a hamiltonian tour τ minimizing c(τ ) :=


e∈τ ce. Without loss of generality, we can

assume G is the complete graph Kn and V = {1, . . . , n}.
The TSP is a widely known problem on which almost all combinatorial optimization approaches have been tried [9].

Almost all ILP formulations for the TSP employ, among others, binary variables xe, associated to the edges e ∈ E, to select
the edges of the tour (for a survey about TSP formulations see [10]).

A popular and very effective formulation consists in minimizing


e∈E ce xe subject to the degree constraints (2) and the
subtour elimination constraints (3):

x(δ(v)) = 2 v ∈ V (2)
x(δ(S)) ≥ 2 S ⊆ V : 2 ≤ |S| ≤ n − 2. (3)

We have used this formulation in our computational experiments to test the effectiveness of LSIs. Several local search
neighborhoods have been proposed for the TSP [11]. In this section we consider the following two:

2-OPTNeighborhood:Given a tourH = (v1, v2, . . . , vn, v1), remove two edges and replace themwith two new ones,
to obtain a new tour. For instance, replacing the edges vivi+1 and vjvj+1 in H yields the new tour

H ′
= (v1, . . . , vi, vj, vj−1, . . . , vi+1, vj+1, . . . , v1)

(see Fig. 2(a)).

(Node) SWAPNeighborhood:Given a tourH = (v1, v2, . . . , vn, v1), pick any two vertices and exchange themwithin
the tour. For instance, swapping the vertices vi and vj in H yields the new tour

H ′
= (v1, . . . , vi−1, vj, vi+1, . . . , vj−1, vi, vj+1, . . . , v1)

(see Fig. 2(b)).

The 2-OPT neighborhood can be generalized to k-OPT, in which k edges are removed and replaced by some other edges
yielding a new tour. It can be observed that the SWAP move is in fact a special type of 4-OPT move, in which four edges are
removed and replaced by four new ones.

Wewill now present LSIs based on the above neighborhoods. The inequalities of the first family, called 2-OPT inequalities,
are LSIs based on the fact that an optimal tour cannot be improved by a 2-OPT move. Similarly, the SWAP inequalities state
that an optimal tour cannot be improved by a SWAP move.

2-OPT inequalities

Denote by P2O the convex hull of the incidence vectors of the local optimal solutions for the 2-OPT neighborhood. In this
section we introduce some inequalities that are valid for P2O.

Given any subset S of V with four nodes (without loss of generality we hereafter assume S = {1, 2, 3, 4}), we partition
E(S) := {ij ∈ E : i, j ∈ S} in three disjoint pairs of edges, i.e., the horizontal edges α, the crossing edges β and the vertical
edges γ (see Fig. 3). Without loss of generality we assume c(α) ≥ c(β) ≥ c(γ ) where c(p) is the cost of pair p for each
pair p = α, β, γ . Given the labeling of the nodes as in Fig. 3, we have α = {12, 34}, β = {14, 23} and γ = {13, 24}. In the
following we denote by x(α) := x12 + x34, x(β) := x14 + x23 and x(γ ) := x13 + x24.

Proposition 1. Assume

c(α) > c(β) ≥ c(γ ).

Then the inequality

x(α) ≤ 1 (4)

is valid for P2O.
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Fig. 3. Partition of E({1, 2, 3, 4}) in α, β and γ .

Proof. Let x̄ be the incidence vector of a feasible tour τ . Then, if x̄(α) = 2, the two edges in α could be removed from τ and
replaced by either the edges in β or those in γ to obtain a better tour. Hence, τ would not be a local optimum. �

Proposition 2. Assume

c(α) ≥ c(β) > c(γ ).

Then the inequality

x(α) + x(β) ≤ 2 (5)

is valid for P2O.

Proof. Let x̄ be the incidence vector of a feasible tour τ . If ¯x(α)+ ¯x(β) ≥ 3, then τ either contains both α edges and an edge
of β , or it contains both β edges and an edge of α. In the first case, by replacing the edges α with γ wewould obtain a better
tour. Similarly, in the second case, we could obtain a better tour by replacing β with γ . �

From the degree constraints (2) and the subtour elimination inequalities (3) it follows that any incidence vector of a tour
satisfies the condition

(x(α) = 0) ∨ (x(β) = 0) ∨ (x(γ ) = 0) . (6)

Proposition 3. Assume

c(α) > c(β) > c(γ ).

Then the following inequalities are valid for P2O:

2 x(α) + x(β) + xeγ ≤ 3 for each eγ
∈ γ (7)

2 x(α) + 2 xeβ1
+ xeβ2

+ x(γ ) ≤ 4 for each eβ

1 , eβ

2 ∈ β, eβ

1 ≠ eβ

2 (8)

3 x(α) + 2 x(β) + x(γ ) ≤ 5. (9)

Proof. Let x̄ be the incidence vector of a 2-OPT local optimum tour τ . By (6) x̄(α) = 0 or x̄(β) = 0 or x̄(γ ) = 0. In the first
case, all the inequalities are satisfied because of the subtour elimination constraint x̄(α) + x̄(β) + x̄(γ ) ≤ 3 induced by
the set S = {1, 2, 3, 4}. In the second case, they follow from Proposition 1. In the third case, they follow from Propositions 1
and 2. �

We notice that for each inequality of type (7)–(9) one can find a feasible fractional solution that satisfies that inequality
as an equality while satisfies each other inequality and the subtour elimination constraints strictly.

We have also derived the inequalities (7)–(9) directly by computing all facets of the projection of the polytope P2O. The
inequalities (7)–(9) are indeed facet defining. There are other facet defining inequalities but they are less effective. Consid-
ering the set of six arcs α ∪ β ∪ γ , there are 27 incidence vectors of subsets belonging to tours, and 7 of them are not local
optima (assuming the ordering in Proposition 3). The inequalities (7) and (9) cut all non local optima and the inequalities
(8) cut all but one. The other inequalities (not listed here) cut less non local optima. In particular one cuts none of the non
local optima. It turns out that it is a subtour inequality.

The next proposition introduces a new family of inequalities with an exponential number of elements.

Proposition 4. Assume

c(α) ≥ c(β) > c(γ ).

Then for each subset T of nodes such that 1, 2 ∈ T and 3, 4 ∉ T the inequality

x(δ(T )) ≥ 2 x(β) (10)

is valid for P2O.
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Table 1
The TSP instance of the example.

1 2 3 4 5 6 7 8

1 – 100 159 102 146 165 219 670
2 100 – 68 8 40 61 135 62
3 159 68 – 76 55 74 62 116
4 102 8 76 – 45 64 134 27
5 146 40 55 45 – 25 111 63
6 165 61 74 64 25 – 88 59
7 219 135 62 134 111 88 – 86
8 670 62 116 27 63 59 86 –

(a) Root solution. (b) Subproblem solution.

Fig. 4. LP solutions for the example.

Proof. Let x̄ be the incidence vector of a 2-OPT local optimum tour τ . If x̄(β) ≤ 1, then inequality (10) is dominated or equal
to the subtour elimination constraint induced by T . Assume x̄(β) = 2. Since, despite the fact that c(γ ) < c(β), the local
optimal tour τ uses both edges in β , then τ must contain a path p′ between 1 and 3 and a path p′′ between 3 and 4. Therefore,
the cut δ(T ) contains, besides the edges of β , at least one edge of p′ and at least one edge of p′′, thus at least 4 = 2 x̄(β) edges
of τ . �

Separating 2-OPT LSI. Each set of four nodes identifies one inequality of type (4), (5) and (7)–(9) and an exponential number
of inequalities of type (10). As a consequence, the O(n4) inequalities (4), (5) and (7)–(9) can be either added to the initial
model or separated in polynomial time by a direct check. On the other hand, the separation of inequalities (10) requires the
adoption of a cutting plane approach. For each set of four nodes, they can always be labeled as 1, 2, 3, 4 in such a way that
c(α) ≥ c(β) ≥ c(γ ). If c(β) > c(γ ) the separation problem of (10) with respect to these nodes is the following.

Separation problem for inequalities (10): Given x̂ ∈ R|E| and nodes 1, 2, 3, 4 for which condition

c12 + c34 ≥ c14 + c23 > c13 + c24
holds, find, if it exists, a subset T ⊆ V , with 1, 2 ∈ T , 3, 4 ∉ T such that


e∈δ(T ) x̂e < 2 (x̂14 + x̂23).

The above separation problem can be solved in polynomial time as a maximum flow problem as follows. Define a di-
rected graph Ḡ = (V̄ , Ē) with n − 2 nodes, where two special nodes s and t are obtained by contraction of {1, 2} and {3, 4},
respectively, and the remaining n − 4 nodes correspond to the other nodes of G. For each ij ∈ E with i, j ∉ {1, 2, 3, 4}, the
arcset Ē contains both arcs (i, j) and (j, i) with capacity x̂ij. Moreover, Ē contains an arc (s, i), for each i ≠ 3, 4, with capacity
x̂1i + x̂2i, an arc (j, t), for each j ≠ 1, 2, with capacity x̂3j + x̂4j and the arc (s, t) with capacity x̂13 + x̂14 + x̂23 + x̂24 (note that
arcs with zero capacity can in fact be omitted from Ē). Clearly, each subset T̄ of nodes of Ḡ containing s and not t corresponds
to a subset T of nodes of G with 1, 2 ∈ T and 3, 4 ∉ T . Moreover, the capacity of the cut δ(T̄ ) in Ḡ is equal to the left hand
side of inequality (10) evaluated in x̂. Therefore inequalities (10) are satisfied by x̂ if and only if the minimum cut separating
s from t in Ḡ has capacity at least 2 x̂(β). By the max flow-min cut theorem, a cut of minimum capacity separating s and t in
Ḡmay be found by solving a maximum flow problem.

We remark that when x̄(β) ≤ 1 the inequalities (10) are dominated by the subtour elimination constraints. We note
the interesting fact that there may be solutions that do not violate subtour inequalities but violate both comb inequalities
[12] and local search inequalities. These solutions can be cut off by local search inequalities without the need of resorting to
separation routines for comb inequalities. In the following example we show an occurrence of this fact.
An example.Wenowdescribe the effect of the 2-OPT local search inequalitieswhen added to the subtour eliminationmodel
of the TSP. Consider the instance over 8 nodes reported in Table 1. The root node solution x∗ is shown in Fig. 4(a) where a
solid line represents an edge of value 1 and a dashed line represents an edge of value 0.5. The value of x∗ is 512.5 and the
solution does not violate any 2-OPT local search inequality. After branching on the edge 13, we consider the subproblem in
which x13 = 0. The optimal solution x̂ of the subtour elimination relaxation is shown in Fig. 4(b) and has value 514. This
solution satisfies all subtour inequalities but violates the comb inequality given by the handle {2, 3, 5} and the teeth {1, 2},
{5, 6} and {3, 7}, i.e.

x23 + x25 + x35 + x12 + x56 + x37 ≤ 4.
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Moreover, x̂ violates local search inequalities of types (5) and (7), (8) and (9) corresponding to the four nodes 1, 2, 3, 4. In
this case c(α) = c12 + c34 = 176, c(β) = c14 + c23 = 170 and c(γ ) = c13 + c24 = 167. We have

x̂(α) + x̂(β) = 1 + 1.5 = 2.5 > 2,
2x̂(α) + x̂(β) + x̂24 = 2 + 1.5 + 0 = 3.5 > 3
2x̂(α) + 2x̂14 + x̂23 + x̂(γ ) = 2 + 2 + 0.5 + 0 = 4.5 > 4,
3x̂(α) + 2x̂(β) + x̂(γ ) = 3 + 3 + 0 = 6 > 5.

Moreover, x̂ violates the inequality of type (10) corresponding to the set T = {1, 2} separating {1, 2} from {3, 4}. Indeed
x̂(β) = 1.5while the cut δ(T ) has capacity 2 < 2×1.5 = 3.We observed that after the addition of any of the corresponding
violated inequalities the new solution is the global optimum tour (1, 4, 8, 7, 3, 6, 5, 2, 1) of value 516.

SWAP inequalities

Let us consider the SWAP neighborhood, in which a new tour τ ′ is obtained from a given one τ by exchanging any two
nodes i and j in τ (see Fig. 2 with i := vi and j := vj).

Proposition 5. All local optima with respect to the SWAP neighborhood satisfy the following LSIs:
k≠j

cikxik +


k≠i

cjkxjk ≤


k≠i

cikxjk +


k≠j

cjkxik i, j ∈ V . (11)

Proof. Suppose that in a local optimum tour x the nodes i and j are not adjacent. Hence the value of the lhs is the value of the
two edges incident to i plus the value of the two edges incident to j in the tour x. This is the value of the edges that the SWAP
move would delete from the tour. Now note that cikxjk represents the cost of going from k to i when k is adjacent to j in the
tour. In other words, the tour passes through the edge jk, but we exploit this fact to pick up the cost of the edge ik, which
will be brought into the tour by the SWAP move. Hence the rhs is the value of the new edges. Then the inequality simply
states the local optimality of x. If i and j are adjacent in the tour the inequality is still valid. The edge ij, which is present also
after the SWAP move, does not enter (11) and the lhs and the rhs amount to the cost of two edges, instead of four. �

While in the inequalities (11) the coefficients of the variables are given by the edge costs, in the 2-OPT LSIs the variables
have low-value constant coefficients (either 1, 2 or 3). Usually, having low coefficients is preferable, as in LP relaxations
variables with high coefficients tend to assume small fractional values. We then propose the following ‘‘combinatorial’’
version of the SWAP inequalities in which all variables have coefficient 1.

Proposition 6. For each choice of six nodes i′, i, i′′, j′, j, j′′ such that

ci′i + cii′′ + cj′j + cjj′′ > cj′i + cij′′ + ci′j + cji′′

the following LSI must be satisfied by each SWAP local optimum:

xi′i + xii′′ + xj′j + xjj′′ ≤ 3. (12)

Proof. If all four variables were equal to 1, it would mean that the tour visits i′, i, i′′ in sequence and j′, j, j′′ in sequence. By
swapping i and j we would then obtain a better tour. �

Both inequalities (11) and (12) can be separated by complete enumeration in polynomial time (or directly added to the
model) as there are O(n2) inequalities (11) and O(n6) inequalities (12).

3. The Max-Cut problem

Given an undirected graph G = (V , E), the cardinality Max-Cut problem requires finding a subset S ⊂ V such that |δ(S)|
is maximum. The problem is strongly NP-hard [13]. A possible neighborhood for Max-Cut is the following:

k-FLIP Neighborhood: Given a solution S ⊂ V , pick a subset A of k nodes and ‘‘flip their color’’ (i.e., if a node is in S
move it to V \ S, while if it is V \ S move it to S).

We note that a k-flip on a subset A of nodes changes the state only of edges in δ(A). In particular, an edge e ∈ δ(A) belongs
to the cut after the move if and only if it was not in the cut before.

Consider any formulation of the problem which, possibly among others, has variables xij for each pair i, j in V such that
xij = 1 iff |S ∩ {i, j}| = 1. Note that a subset of these variables correspond to the edges of E. It is immediate to verify that
each local optimum has to satisfy the following local search inequalities:

e∈δ(A)

xe ≥


|δ(A)|

2


A ⊂ V . (13)



82 G. Lancia et al. / Discrete Optimization 16 (2015) 76–89

In particular, the case |A| = 1 is the most commonly used in local search procedures for Max-Cut, and the corresponding
1-FLIP LSIs are

e∈δ(i)

xe ≥


|δ(i)|
2


i ∈ V . (14)

For |A| = 2, (13) become the following 2-FLIP LSIs

x(δ(i)) + x(δ(j)) − 2 [ij ∈ E] xij ≥


|δ({i, j})|

2


i ∈ V , j ∈ V , i ≠ j (15)

where [ij ∈ E] = 1 if ij ∈ E and 0 otherwise.
From (15) one can derive other, possibly stronger, families of local cuts by separately considering the cases xij = 0

and xij = 1. We call these LSIs the I2-FLIP (standing for ‘‘Improved 2-FLIP’’). For each pair of vertices a, b ∈ V , we define
N(a − b) := N(a) \ (N(b) ∪ {b}) and N(a + b) := (N(a) ∪ N(b)) \ {a, b}. In other words N(a − b) is the set of vertices,
different from b, that are adjacent to a but not to b and N(a + b) is the set of vertices that are adjacent to the subset {a, b}.

Let us consider the case that, in a feasible solution, xij = 0. Then i and j are on the same shore of the cut and xik = xjk for
each k ≠ i, j. The constraints (15) can be used to derive a family of inequalities, each of which is of the general form

k∈N(i+j)

|N(k) ∩ {i, j}| xak ≥


|δ({i, j})|

2


(1 − xij) (16)

where, for each k ∈ N(i + j), a can be any index in the set {i, j}. Note that the left hand side of (16) corresponds to the sum
x(δ(i))+ x(δ(j)) since for each k ∈ N(i)∩N(j) it is xik + xjk = 2 xak = |N(k)∩ {i, j}|xak for each a = i, j. The inequalities (16)
are trivially satisfied when xij = 1.

Since for each pair i, j and k ∈ N(k) ∩ {i, j} the variable xak could be either xik or xjk, there are an exponential number of
inequalities (16). These inequalities have a simple separation algorithm. Namely, given a fractional solution x̄, to obtain the
most violated inequality for a pair i, j, we set a = i if x̄ik ≤ x̄jk and a = j otherwise.

Let us now consider the case that, in a feasible solution, xij = 1. Then i and j are on different shores and each vertex
k ∈ N(i) ∩N(j) contributes exactly one edge to the cut (either ik or jk), and this remains true also after the 2-FLIP. However,
for all the remaining edges in δ({i, j}) an edge is in the new cut if and only if it was not in the cut before. Therefore, at a local
optimum at least half of them are in the cut. This can be enforced via the following constraints:

k∈N(i−j)

xik +


k∈N(j−i)

xjk ≥


|N(i) ⊖ N(j)|

2


xij (17)

where the symbol ⊖ denotes the symmetric difference of two sets. Note that all the inequalities (17) are trivially satisfied
when xij = 0.

The literature for Max-Cut includes integer programming [14–17] and semidefinite programming [18] approaches. In
general, semidefinite programming is the best approach for dense graphs, while branch-and-cut is usually themost effective
procedure when the graphs are very sparse. In our experiments we used the following well-known triangle inequalities
formulation [14]. The (binary) variables of this formulation are xij for each pair of vertices i, j, while the constraints are

xjk − xij − xik ≤ 0 (18)

xik − xij − xjk ≤ 0 (19)

xij − xik − xjk ≤ 0 (20)

xij + xjk + xik ≤ 2 (21)

for all triples of vertices i, j, k.

4. The Max-SAT problem

Given n Boolean variables v1, . . . , vn, a literal is either a variable vi or its negation v̄i. A clause is the disjunction of a set
of literals, and a Boolean formula, in conjunctive form, is the conjunction of a set of clauses. A clause is satisfied by a truth
assignment of the variables if at least one of its literals is true. The Maximum Satisfiability (Max-SAT) problem requires to
find an assignment of truth values for all the variables which satisfies the maximum number of clauses in a given Boolean
formula.

With a slight abuse of terminology, we will identify a clause with its underlying set of literals, so that we will write l ∈ C
meaning that the literal l appears in the clause C .

Given a Boolean formula with variables v1, . . . , vn and clauses C1, . . . , Cm, for each variable vi we denote by C+(vi) :=

{j : vi ∈ Cj} the set of indices of the clauses containing the literal vi, by C−(vi) := {j : v̄i ∈ Cj} the set of indices of the
clauses containing the literal v̄i and define C(vi) := C+(vi) ∪ C−(vi). Similarly, we denote by V+(Cj) := {i : vi ∈ Cj} and
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by V−(Cj) := {i : v̄i ∈ Cj} the sets of indices of the variables whose literal vi and, respectively, v̄i appears in Cj and define
V (Cj) := V+(Cj) ∪ V−(Cj).

The Max-SAT problem can be formulated as the following ILP problem with 0–1 variables x1, . . . , xn associated to the n
Boolean variables and 0–1 variables y1, . . . , ym associated to the m clauses. The meaning of the x variables is that xi = 1
when vi is set to TRUE, while yj = 1 when clause Cj is satisfied.

max


j

yj

yj ≤


i∈V+(Cj)

xi +


i∈V−(Cj)

(1 − xi) j = 1, . . . ,m

xi, yj ∈ {0, 1} i = 1, . . . , n, j = 1, . . . ,m. (22)

We consider the following neighborhood for Max-SAT:

1-FLIP Neighborhood: Given a truth assignment for all the variables, pick a variable vi and change its truth value.

It is immediate to verify that each local optimum has to satisfy the following LSIs, called 1-FLIP inequalities:
j∈C(vi)

yj ≥


|C(vi)|

2


i = 1, . . . , n. (23)

Indeed, if this were not the case for a variable vi, by swapping the truth value of vi we would obtain a better solution.
This idea can be strengthened by observing that the best assignment for the variable vi can guarantee to satisfy the largest
between the set of clauses C+(vi) and C−(vi). Therefore, we obtain the following LSI:

j∈C(vi)

yj ≥ max{|C+(vi)|, |C−(vi)|} i = 1, . . . , n.

If we are willing to add more variables, then these LSIs can be further strengthened as follows. For each variable vi and
each clause Cj, j ∈ C(vi), we introduce a new 0–1 variable zij such that zij = 1 if and only if Cj is satisfied by a variable
different from vi (irrespective of vi satisfying Cj). Hence,

zij = max


max

r∈V+(Cj)\{i}
xr , max

r∈V−(Cj)\{i}
1 − xr


,

which leads to the |Cj| linear inequalities:

zij ≥ xr r ∈ V+(Cj) \ {i}
zij ≥ 1 − xr r ∈ V−(Cj) \ {i}
zij ≤


r∈V+(Cj)\{i}

xr +


r∈V−(Cj)\{i}

(1 − xr).
(24)

Hence the following LSIs are valid for the 1-FLIP local optima:
j∈C(vi)

yj ≥ |C+(vi)| +


j∈C−(vi)

zij ∀ i = 1, . . . , n (25)


j∈C(vi)

yj ≥ |C−(vi)| +


j∈C+(vi)

zij ∀ i = 1, . . . , n. (26)

Indeed, given a truth assignment, by setting vi = TRUE and keeping all the other variables at their values, we obtain a
truth assignment for which all clauses in C+(vi) are satisfied while all the clauses in C−(vi) which are satisfied by variables
different from vi remain satisfied. This explains the inequalities (25). A similar argument applies to setting vi = FALSE for the
inequalities (26).We call the inequalities (25) and (26) I1-FLIP, for Improved 1-FLIP. They require to add


j |V (Cj)| variables

and


j |V (Cj)| constraints to the original model.
Instead of introducing the z variables and the constraints (25) and (26), one can use an equivalent formulation with

an exponential number of constraints that allows for an easy separation algorithm. Note that, by (24), we can replace the
variable zij in (25) with either xr , for any r ∈ V+(Cj)\ {i}, or 1− xr , for any r ∈ V−(Cj)\ {i}, and still obtain a valid inequality.
By doing this for all clauses j ∈ C−(vi) we obtain a family of valid inequalities of the form, for i = 1, . . . , n,

j∈C(vi)

yj ≥ |C+(vi)| +


j∈C−(vi)

∆

r(j), V+(Cj)


xr(j) +


j∈C−(vi)

∆

r(j), V−(Cj) \ {i}


(1 − xr(j)) (27)
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where, for each j ∈ C−(vi), r(j) can be any index in V (Cj) \ {i} and ∆(a, A) denotes a function which, for an element a and a
set A, is 1 if a ∈ A and 0 otherwise. Furthermore, for each solution (x̄, ȳ, z̄), each variable-index i and each j ∈ C−(vi), there
is at least a choice of the index r(j) ∈ V (Cj) \ {i} such that

z̄ij = ∆

r(j), V+(Cj)


x̄r(j) + ∆


r(j), V−(Cj) \ {i}


(1 − x̄r(j))

holds.
Similarly, for each i = 1, . . . , nwe can replace constraints (26) with the equivalent family of constraints

j∈C(vi)

yj ≥ |C−(vi)| +


j∈C+(vi)

∆

r(j), V+(Cj) \ {i}


xr(j) +


j∈C+(vi)

∆

r(j), V−(Cj)


(1 − xr(j)) (28)

containing an element for each choice of indices r(j), j ∈ C+(vi), in the sets V (Cj) \ {i}.
We remark that, although there is an exponential number O(nm) of inequalities (27) and (28), these inequalities allow

for a trivial separation algorithm. Indeed, given a solution (x̄, ȳ) of the LP relaxation of (22), for each variable-index i and for
each j ∈ C(vi) we can easily compute an index r̄(j) that achieves the maximum

max


max

r∈V+(Cj)\{i}
x̄r , max

r∈V−(Cj)\{i}
1 − x̄r


.

It is easy to see that the indices r̄(j), where j ∈ C−(vi) for (27) and j ∈ C+(vi) for (28), determine the most violated
constraints, if any exists. We call the inequalities (27)–(28) SI1-FLIP, standing for Separated I1-FLIP.

5. Computational experiments

In this sectionwe describe the computational experiments inwhichwe tried to assess the effectiveness of the local search
inequalities. We ran some tests for the TSP problem, Max-Cut and Max-SAT. The results are discussed in Sections 5.1–5.3,
respectively. In our tests we used CPLEX version 12.1 as the LP-solver, called by a general-purpose branch-and-cut code that
we developed. In general, the branch-and-bound search strategywas depth-first, while the branching variable was themost
fractional. An exception to this branching rule, that turned out to be quite effective, was adopted for the Max-Cut problem,
and is described in Section 5.2.

In order to study the effectiveness of LSIs, we have used two fundamental measures: the running time and the total
number of nodes explored in the search-tree. Both measures were evaluated with and without the addition of LSIs. Clearly,
the two measures are correlated, since to a decrease in the number of nodes explored should correspond a decrease in the
running time, which is, ultimately, our main goal. However, there is a trade-off to evaluate: in some cases the addition of
LSIs can lead to fewer nodes explored, but at the same time it increases the computational work at each node. As a result the
overall running time can increase. When this phenomenon happened, we noticed that most of the times the running time
did not increase by much, while the number of nodes was quite smaller. Hence, there is the hope that by fine-tuning all the
work done at each node other than the LP-solution (e.g., by avoiding similar/identical re-computations at different nodes,
for example with the use of suitable global data structures or incremental computations from a node to its descendants,
etc.) the running time can be further decreased. We did not perform this type of fine tuning, but have elected to report both
the running time and the number of nodes explored in our computational experiments.

The goal of the experiments is, loosely speaking, to ‘‘see if LSIs work’’. Hence the way we present the results reflects this
goal. If (T0,N0) are the running time and number of nodes explored without LSIs, and (T ,N) are the same parameters after
the addition of LSIs, it makes sense adding LSIs if either T < T0 or N < N0, and this independently of the actual values of
T0,N0, T ,N . We have therefore decided to normalize all values so that T0,N0, T ,N , being irrelevant, are not reported, while
we report the percentages pT and pN of increment or decrement of T and N with respect to T0 and N0, namely

pT =
T − T0

T0
× 100, pN =

N − N0

N0
× 100.

This normalization has a practical advantage. In particular, it allows us to run the experiment across different hardware
platforms (clearly, after making sure that we use the same CPLEX version, and the same random seeds, so that all runs
would be identical on different machines except for the actual running time). Due to the number of experiments and the
overall computing time needed, this parallelism allowed us to complete our experiments in a shorter amount of time.

In general, for each problem, we consider a set of instances that are first solved without LSIs (thus, returning the base
reference values of T0’s and N0’s) and then solved again with the addition to the model of different type of LSIs (individually
or together). A first table reports the percentage of increment/decrement of each LSI with respect to the base reference
values. In a second table, we report, for each LSI, howmany times the model with that particular LSI turned out to yield the
minimum running time and/or number of search nodes. We call this the number of wins for that strategy, so that this table
makes it easier to appreciate which is the best overall strategy, among not having LSIs, or having a particular type of LSIs.
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Table 2
TSPLIB instances solved with different LSIs.

pr124 ch130 d198 kroA100 kroE100 kroA150 kroB150 bier127 pr136 pr152

SWAP pT −57.1 −50.0 +8.1 0 −42.9 −12.5 +39.6 −46.0 +20.1 −18.7
pN −75.0 −66.6 −17.7 −39.6 −49.6 −40.4 −9.5 −67.2 −22.4 −43.6

2OPT (4) pT −64.3 −27.8 −11.7 −66.7 −57.1 −58.3 −59.4 −50.7 −22.9 −76.3
pN −72.2 −33.2 −17.5 −70.7 −61.0 −61.5 −63.3 −55.7 −25.9 −80.5

2OPT (5) pT −21.4 −5.56 −8.1 −46.2 −42.9 −12.5 −43.0 −37.3 −5.5 −23.0
pN −28.1 −9.16 −12.2 −48.7 −36.4 −16.3 −45.6 −42.4 −6.8 −26.2

2OPT (7) pT −71.4 −44.4 +2.7 −79.5 −71.4 −60.4 −45.9 −71.0 −21.7 −69.1
pN −78.6 −53.0 −12.2 −83.3 −68.5 −66.0 −72.8 −76.5 −24.0 −74.2

2OPT (8) pT −50.0 −27.8 −16.2 −71.8 −57.1 −50.0 −53.1 −61.6 −30.1 −38.1
pN −59.2 −33.2 −20.4 −75.3 −62.2 −53.1 −56.9 −66.6 −23.3 −43.4

2OPT (9) pT −64.3 −44.4 −15.3 −71.8 −57.1 −45.8 −55.1 −79.1 −28.7 −51.8
pN −68.0 −49.2 −20.4 −76.3 −60.5 −52.4 −59.2 −82.6 −20.5 −57.4

2OPT
(10)

pT −57.1 −61.1 −38.7 −59.0 −71.4 −39.6 −62.8 −64.8 −64.5 −56.8

pN −71.1 −73.3 −46.1 −76.6 −71.9 −53.1 −71.7 −75.5 −55.5 −67.7
All pT −71.4 −50.0 −0.9 −66.7 −42.9 −33.3 −19.3 −48.1 −43.8 −66.9

pN −87.6 −78.3 −38.4 −88.3 −72.3 −68.2 −66.7 −79.2 −53.0 −85.6

Table 3
With LSI vs without LSI.

LSI Time Nodes

SWAP 7/10 10/10
2OPT (4) 10/10 10/10
2OPT (5) 10/10 10/10
2OPT (7) 9/10 10/10
2OPT (8) 10/10 10/10
2OPT (9) 10/10 10/10
2OPT (10) 10/10 10/10
All 10/10 10/10

Table 4
Wins for different LSIs.

LSI Time Nodes

None 0/10 0/10
SWAP 0/10 0/10
2OPT (4) 1/10 0/10
2OPT (5) 0/10 0/10
2OPT (7) 4/10 1/10
2OPT (8) 0/10 0/10
2OPT (9) 1/10 1/10
2OPT (10) 5/10 2/10
All 1/10 6/10

5.1. TSP

To test our LSIs for the TSP, we used a Branch-and-Cut code which was run on ten instances from the TSPLIB [19]. The
instances were randomly chosen among those of small/moderate size. The basic reference ILP model was (2)–(3) i.e., degree
constraints and subtour inequalities. In Table 2 we report the computational results for our seven families of LSIs over
the ten TSPLIB instances. Each row is labeled with one type of LSI, and is relative to the basic model with the addition of
the corresponding LSI. Each family of LSIs is added to the model by a separation procedure which determines the violated
inequalities. The first row refers to SWAP LSI, while the other rows are labeled each with the reference to the relative 2OPT
LSI (from 2OPT (4) to 2OPT (10)). The last row, labeled ‘‘all’’, corresponds to the basicmodel with the addition of all the above
LSIs together.

For each column, we highlight in boldface the entries yielding the best running time and number of nodes in the search
tree. It can be seen that there is always a LSI that beats the basic TSP model without LSIs. Furthermore, a look at the table by
rows shows that the addition of each LSI would, on average, yield an improvement over the basic TSP model.

This result is detailed in Table 3, where we report for each family of LSIs how many times the basic model plus the
corresponding LSIs outperforms the model without the LSIs. It can be seen that each type of LSIs yields an improvement
over most instances. In fact, most LSIs yield an improvement over all instances.

In Table 4 we report, for each type of LSI, the number of times it yields the best performance over the 10 instances (notice
that, since different types of LSIs can yield the same performance, the sum of these values over all the LSIs can exceed 10).
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Table 5
Max Cut random instances.

G(30, 0.5) G(30, 0.75) G(40, 0.5)
pT pN pT pN pT pN

min −31.5 −51.6 −8.6 −0.8 −13.2 −11.2
No LSI/BC max +10.0 0.0 +4.3 +0.4 +30.9 0.0

avg −4.1 −3.9 −1.2 −0.1 +0.3 −1.9
min −12.5 −38.7 −22.6 −41.4 −25.8 −35.4

1-FLIP/BF max +116.2 +41.9 +48.8 +10.8 +52.6 +42.1
avg +27.5 +1.5 −1.0 −26.8 +11.6 −3.9
min −23.3 −38.7 −32.7 −49.8 −32.1 −43.0

1-FLIP/BC max +87.5 +27.9 +9.1 −19.8 +36.7 +12.9
avg +19.7 −3.8 +17.1 −39.9 −0.3 −15.9
min −19.2 −38.7 −19.0 −47.2 −13.4 −30.2

I2-FLIP/BF max +150.0 +74.4 +62.5 −6.0 +65.9 +52.6
avg +48.4 +15.4 +11.6 −30.3 +23.0 +3.9
min −12.3 −38.7 −60.2 −68.1 −27.8 −43.5

I2-FLIP/BC max +130.0 +37.2 −5.8 −38.7 +34.6 +15.5
avg +35.3 −0.9 −31.8 −58.4 +1.7 −15.8

Table 6
Max-Cut: the number of wins for different LSIs strategies.

G(30, 0.5) G(30, 0.75) G(40, 0.5)
Time Nodes Time Nodes Time Nodes

No LSI/BF 7/20 6/20 0/20 0/20 3/20 1/20
No LSI/BC 13/20 10/20 0/20 0/20 6/20 2/20
1-FLIP/BF 1/20 5/20 1/20 0/20 1/20 2/20
1-FLIP/BC 2/20 13/20 1/20 0/20 7/20 7/20
I2-FLIP/BF 1/20 5/20 0/20 0/20 0/20 0/20
I2-FLIP/BC 0/20 7/20 18/20 20/20 3/20 11/20

It can be noted that the best improvement in the running time is achieved by using LSIs 2OPT (10) alone (five times out of
ten), while the second best are 2OPT (7). With respect to the number of explored nodes, the best savings are achieved when
all the LSIs are included together to the model. In this case, as one can deduce from last row of Table 2, the average number
of nodes with the LSIs is less than a third of the number without the LSIs.

5.2. Max-Cut

In a second run of tests we considered the Max-Cut problem, in which the basic model was the maximization of


ij∈E xij
under the triangle inequalities (18)–(21).

For this problemwe introduced also an ad-hoc branching strategy, alternative to the standard choice of branching on the
most fractional variable. This strategy has combinatorial motivations, described below. Let us call BF the standard branching
on fractional variables and BC the new branching strategy. In our computational tests, the basic model for Max-Cut was
extended in five ways, i.e., one by using the BC strategy on the model without LSIs, and the other four corresponding to all
the combinations of adding to it one of the two LSIs and using BF or BC .
A branching scheme for Max-Cut. Consider a node of the search tree, and let F0 and F1 be the set of variables that can only
assume the values 0 and, respectively, 1 in any feasible solution at the node. Let F = F0 ∪ F1. We recall that in the Max-Cut
model the variables correspond to binary relations between the nodes, i.e., xij = 0 if i and j are on the same shore of the cut,
and xij = 1 otherwise. Some of the variables in F have been fixed to their values by the branching constraints leading to the
node, while others are forced to their values by logical implications. In particular, consider the connected components of
the graph GF := (V , F) (note that GF is not necessarily a subgraph of G, but rather of the complete graph over V ). It is easy
to see that each connected component of GF is a clique. Note that we can explicitly add the constraints xab = 0/1 for all the
variables in F that are not explicitly fixed by branching constraints. This is better from a practical point of view, even if these
constraints are in fact already implied by constraints (18)–(21).

For the branching rule, it makes sense to choose the fractional variable whose setting will force the largest number of
unfixed variables to assume fixed values. The first time we branch, only one variable becomes fixed and so we choose the
most fractional variable, as usual. At later branching decisions, however, we use a strategy similar to Prim’s strategy for the
Minimum Spanning Tree problem. Namely, at the generic branching, we have only one connected component in F , say C , of
size ≥1, while all other components are isolated nodes. By branching on a variable xab such that ab ∈ δ(C), there will be |C |

variables that will assume fixed values, since C will be added a new node and become a clique of size |C |+ 1. The branching
rule is therefore the following: among the fractional LP variables xab with ab ∈ δ(C), choose the most fractional.

In our tests, we generated some random instances inwhichwe set the density (i.e., probability that an edge belongs to the
instance) to 1

2 and 3
4 (this implies an average degree of 1

2 (n− 1) and 3
4 (n− 1) respectively). In Table 5 we report the results
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Table 7
2SAT results.

Instance 1-FLIP I1-FLIP SI1-FLIP
pT pN pT pN pT pN

sz60.300.1.cnf −6.8 −35.1 −60.2 −90.4 −81.4 −90.4
sz60.300.2.cnf 0 −30.4 −50.0 −87.0 −83.3 −87.1
sz60.300.3.cnf +40.0 −6.7 +20.0 −68.0 −40.0 −67.9
sz60.300.4.cnf +28.6 −12.7 −28.6 −84.1 −71.4 −78.9
sz60.300.5.cnf 0 −41.4 −47.4 −86.7 −78.9 −86.8
sz60.300.6.cnf 0 −34.5 −47.6 −84.0 −76.2 −83.9
sz60.300.7.cnf −25.0 −42.7 −53.1 −88.1 −78.1 −88.1
sz60.300.8.cnf 0 −32.2 −59.2 −89.1 −80.3 −89.0
sz60.300.9.cnf −37.1 −54.4 −62.9 −91.1 −83.1 −91.2
sz60.300.10.cnf −6.3 −34.3 −31.2 −83.8 −75.0 −84.1
sz60.400.1.cnf +48.3 −16.4 −18.1 −89.8 −68.7 −89.8
sz60.400.2.cnf −4.5 −51.4 −78.4 −96.9 −91.3 −96.9
sz60.400.3.cnf +41.6 −23.2 −57.3 −93.4 −82.6 −93.4
sz60.400.4.cnf +7.0 −34.0 −46.9 −90.6 −77.2 −90.6
sz60.400.5.cnf −27.9 −54.0 −74.1 −95.8 −88.8 −95.8
sz60.400.6.cnf −23.7 −51.3 −76.3 −95.8 −88.8 −95.8
sz60.400.7.cnf −26.7 −64.9 −78.3 −95.7 −90.1 −95.7
sz60.400.8.cnf 0 −45.8 −72.0 −95.2 −87.3 −95.1
sz60.400.9.cnf −13.5 −37.5 −76.4 −95.5 −88.9 −95.5
sz60.400.10.cnf −43.8 −62.5 −80.0 −96.9 −91.0 −96.8
sz60.500.1.cnf +90.3 −26.5 −43.3 −95.3 −77.7 −95.3
sz60.500.2.cnf +43.1 −39.0 −83.0 −98.0 −92.7 −98.0
sz60.500.3.cnf +24.6 −36.7 −98.9 −98.1 −93.5 −98.1
sz60.500.4.cnf +4.9 −47.3 −83.0 −98.3 −93.4 −98.4
sz60.500.5.cnf −11.7 −51.3 −91.5 −98.9 −95.8 −98.9
sz60.500.6.cnf −6.1 −56.6 −85.8 −98.0 −93.1 −98.0
sz60.500.7.cnf −14.6 −49.6 −81.2 −97.7 −91.8 −97.6
sz60.500.8.cnf −68.0 −84.4 −97.7 −99.6 −98.8 −99.6
sz60.500.9.cnf −26.3 −59.4 −94.5 −99.3 −97.2 −99.3
sz60.500.10.cnf −54.9 −80.6 −78.3 −97.8 −92.0 −97.7

over 60 instances. There are 40 instanceswith 30 nodes, half with density 0.5, and half with density 0.75. Furthermore, there
are 20 instances with 40 nodes and density 0.5, which was the largest size which the model could tackle in a reasonable
amount of time on ourmachine (i.e., within about one hour per instance). The table has three columns, one per each instance
family, and five rows, each depending on the LSIs and the branching strategy used. The referencemodel is the basic ILPmodel
with standard branching BF . For each instance family and combination of LSI/branching, we report the minimum, average,
and maximum of the relative increment of time and nodes of the search tree with respect to the reference model. In each
column we highlighted the best relative increment. Since there are only O(n) 1-FLIP LSIs, there is no need for a separation
algorithm and they were all added to the model. The I2-FLIP LSIs, on the other hand, were separated.

In Table 6 we consider each combination of LSIs and branching rule, and see howmany times, over all instances, it yields
the best result. It appears that for this particular problem, the best results are achieved by using the branching strategy BC ,
and that LSIs become more effective as the size of the graphs grows (either because of a larger number of edges or nodes
or both). For the smallest graphs, the best results as far as running time is concerned are obtained by using the basic model
without LSIs, while the greatest savings in nodes are achieved by using the 1-FLIP LSIs. For the 30-nodes graph at density
0.75, the best running times and search nodes are obtained by using I2-FLIP LSIs. For the 40-nodes graphs, the best running
times are obtained with 1-FLIP LSIs, while the fewer search tree nodes are obtained with the I2-FLIP LSIs.

5.3. Max-SAT

The experiments for Max-SAT problems were run on instances taken from the literature. In particular, they are instances
from ‘‘The Second Evaluation of Solvers’’ (MaxSAT-2007), an affiliated event of the Tenth International Conference on Theory
and Applications of Satisfiability Testing [20]. There are 2SAT and 3SAT instances, with either n = 40 or 60 variables over
m = 300, 400, 500 and 600 clauses (each file name specifies the values of n and m for an instance. In our table, we have
reported the original file names, as from [20]).

In Table 7 we report the results of LSIs for the 30 instances of 2SAT. In the comparisons, the ILP reference model for SAT
is (22). As it can be observed, the inequalities SI1-FLIP allow the greatest savings in running times on all but one instance
(for which I1-FLIP yields the best running time). For some instances, such as sz60.500.8, the running time and number of
nodes are almost two orders of magnitude smaller than when LSIs are not added to the model.

In Table 8 we report a summary of the LSIs performance over all 30 instances, grouped by instance size. It can be seen
that I1-FLIP and SI1-FLIP allow similar savings with respect to the number of nodes, but using SI1-FLIP is better as far as the
running time is concerned.
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Table 8
2SAT aggregate results.

1-FLIP I1-FLIP SI1-FLIP
pT pN pT pN pT pN

min −37.1 −54.4 −60.2 −90.4 −81.4 −90.4
sz60_300 max +40.0 −6.7 +20.0 −68.0 −40.0 −67.9

avg −0.7 −32.4 −42.0 −85.2 −74.8 −84.7
min −43.8 −64.9 −78.4 −89.8 −91.3 −89.8

sz60_400 max +48.3 −16.4 −18.1 −89.8 −68.7 −89.8
avg −4.3 −44.1 −65.8 −94.6 −85.5 −94.6
min −68.0 −84.4 −97.7 −99.3 −92.7 −99.3

sz60_500 max +90.3 −26.5 −43.3 −95.3 −77.7 −95.3
avg −1.8 −53.2 −82.4 −98.1 −92.6 −98.1

Table 9
3SAT results.

1-FLIP SI1-FLIP
Instance pT pN pT pN

cnf3.40.400.907721 +18.75 +0.64 +9.38 −5.99
cnf3.40.400.907722 +14.29 −7.74 +4.76 −14.87
cnf3.40.400.907723 +46.43 +13.08 +3.57 −14.77
cnf3.40.400.907724 −29.89 −41.22 +13.22 −14.56
cnf3.40.400.907725 +14.46 −4.29 +9.04 −9.84
cnf3.40.400.907726 +24.18 +9.52 +10.99 −10.15
cnf3.40.400.907727 +9.78 −10.37 +8.70 −8.66
cnf3.40.400.907728 −11.25 −25.80 +12.50 −7.65
cnf3.40.400.907729 +31.58 +8.94 +10.53 −1.66
cnf3.40.400.907730 +16.67 −4.49 +16.67 −3.33
cnf3.40.600.359121 +10.64 −11.10 +9.80 −34.17
cnf3.40.600.359122 +0.93 −19.64 +14.81 −20.44
cnf3.40.600.359123 +27.33 +3.16 +4.53 −33.60
cnf3.40.600.359124 +49.23 +18.82 +12.31 −11.17
cnf3.40.600.359125 +22.04 −1.83 +7.95 −34.61
cnf3.40.600.359126 +47.21 +21.39 +0.97 −40.63
cnf3.40.600.359127 +17.88 −6.09 +12.73 −20.42
cnf3.40.600.359128 +72.45 +38.42 +17.14 −12.03
cnf3.40.600.359129 −14.69 −32.89 +4.88 −35.07
cnf3.40.600.359130 +35.62 +4.38 +15.07 −18.82

Table 10
3SAT aggregate results.

LC1 LC3
pT pN pT pN

min −29.89 −41.22 +3.57 −14.87
cnf3.40_400 max +46.43 +13.08 +16.67 −1.66

avg +13.50 −6.17 +9.93 −9.15
min −14.69 −32.89 +0.97 −40.63

cnf3.40_600 max +72.45 +38.42 +17.14 −11.17
avg +26.86 +1.46 +10.02 −26.10

In Table 9 we report the results for the 20 instances of 3SAT. Due to the very large size of the LP when inequalities I1-FLIP
are added to the model, we have only considered the LSIs 1-FLIP and SI1-FLIP. For 3SAT the results are quite worse than for
2SAT. In particular, while the addition of LSIs causes almost invariably a decrease in the number of search tree nodes, only
for 3 out of 20 instances there is an improvement in the running time when LSIs are added to the model. While this always
happens with 1-FLIP LSIs, it can be seen from Table 10 that, on average, SI1-FLIP are better than I1-FLIP with respect to the
running times. However, the best model for 3SAT is the one without LSIs.

6. Conclusions

In this paper we have described a new type of inequalities, the local search inequalities, which impose local optimality
conditions that all global optima must satisfy. LSIs are not valid inequalities in the usual sense, but they can be added to ILP
models to improve their performance. We have seen that, for some ILP models, the number of search nodes explored, as
well as the total time needed to obtain the optimal solution, can be reduced with the use of LSIs.
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LSIs are very general and ‘‘formulation independent’’, i.e., the same LSI can be added to many different formulations as
long as such formulations include the variables of the LSI.

Our computational experiments have shown that the addition of LSIs can be quite beneficial in improving some basic,
simple, ILP models for the optimization problems that we considered. To better assess the impact of LSIs in branch-and-
bound schemes it would be important to embed LSIs in state-of-the-art branch-and-cut codes for TSP, Max-Cut and Max-
SAT, where the underlying ILP models are more sophisticated than the ones we considered.

In this paper we have limited ourselves to laying out the basic ideas and performing some preliminary tests. We believe
that presenting a theoretical idea and ‘engineering’ the same idea into an existing code are two separate tasks. Of course the
idea must have some good computational behavior, or otherwise it is useless, and so we have carried out the tests with this
purpose, but there may be a long way before improving and tuning the idea. This should be matter of future research.
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