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On hypercyclic fully zero-simple

semihypergroups

Mario De Salvo∗ Domenico Freni† Giovanni Lo Faro‡

Abstract

Let I the class of fully zero-simple semihypergroup (H, ◦) generated by
a hyperproduct of elements in H. In this paper we study some properties
of residual semihypergroup (H+, ?) of (H, ◦). Moreover, we find sufficint
conditions for (H, ◦) and (H+, ?) to be cyclic.

Keywords: semihypergroups, simple semihypergroups, fully semihypergroups.
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1 Introduction

Algebraic hyperstructures are a suitable generalization of classical algebraic
structures. In a classical algebraic structure, the composition of two elements
is an element, while in an algebraic hyperstructure, the composition of two ele-
ments is a set. Many authors have been working on this field and in [5] numerous
applications are recalled on algebraic hyperstructures such as: geometry, hyper-
graphs, binary relations, lattices, fuzzy sets and rough sets, automata, cryp-
tography, codes, median algebras, relation algebras, artificial intelligence, and
probabilities. The semihypergroups are the simplest algebraic hyperstructures
which possess the properties of closure and associativity. Nowadays some schol-
ars have studied different aspects of semihypergroups [2, 3, 8, 9, 19, 20, 22, 23, 24]
and interesting problems arise in the study of their so called fundamental re-
lations [1, 7, 16, 21, 25], which lead to analyze conditions for their transitiv-
ity, and minimal cardinality problems. In [16] the authors find all simple and
zero-simple semihypergroups of size 3, whose the fundamental relation β is not
transitive, apart of isomorphisms. This semihypergroups of size 3 are used in
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[8, 9, 10, 11, 12] to characterize the fully simple semihypergroups and the fully
zero-simple semihypergroups having all hyperproducts of size ≤ 2. In particu-
lar, in paper [11] the authors have proved that if (H, ◦) is a hypercyclic simple
semihypergroup, that is generated by a hyperproduct of elements in H, the
relation β is transitive. Consequently we have that in every fully simple semi-
hypergroup the size of every hyperproduct is ≤ 2. This fact is not true for the
fully zero-simple semihypergroups, many examples are found in this paper.

The plan of this paper is the following: After introducing some basic defi-
nitions and notations to be used throughout the paper, in Section 2, we prove
that if (H, ◦) is a hypercyclic fully zero-simple semihypergroups generated by
hyperproduct P and (H+, ?) is the residual semihypergroup of (H, ◦) then the
relation βH+ is transitive. Moreover, if (H, ◦) is generated by hyperproduct
P then (P ∩ P 2) − {0} = ∅. In Section 3, we introduce the definition of
rank for a hyperproduct P , that is the smallest positive integer k such that
P ∩ P k+1 − {0} 6= ∅. By means of this notion, we characterize the subsemihy-

pergroup P̂ generated by a special hyperproduct P , called strong, and in Section
4 we analize properties of the fully zero-simple semihypergroup generated by a
strong hyperproduct. In particular, we prove that if (H, ◦) is a fully zero-simple
semihypergroup generated by a strong hyperproduct P of rank a prime number
r then (H, ◦) is cyclic. In this case, the rank can be seen as a generalization of
the concept of period in group theory. It is known that if G is a cyclic group of
size a prime number r then every element different from identity is a generator
of G. The same property is true for semihypergroups in Theorem 4.1, but the
commutative property of cyclic groups does not generally hold, see example in
Remark 4.1.

1.1 Basic definitions and results

Let H be a non-empty set and P ∗(H) be the set of all non-empty subsets of H.
A hyperoperation ◦ on H is a map from H × H to P ∗(H). For all x, y ∈ H,
the subset x ◦ y is called the hyperproduct of x and y. If A,B are non-empty
subsets of H then A ◦B =

⋃
x∈A,y∈B x ◦ y.

A semihypergroup is a non-empty set H endowed with an associative hyper-
product ◦, that is, (x ◦ y) ◦ z = x ◦ (y ◦ z) for all x, y, z ∈ H.

A non-empty subset K of a semihypergroup (H, ◦) is called a subsemihyper-
group of (H, ◦) if it is closed with respect to multiplication, that is, x ◦ y ⊆ K
for all x, y ∈ K. If (H, ◦) is a semihypergroup, then the intersection

⋂
i∈I Si of

a family {Si}i∈I of subsemihypergroups of (H, ◦), if it is non-empty, is again a
subsemihypergroup of (H, ◦). For every non-empty subset A ⊆ H there is at
least one subsemihypergroup of (H, ◦) containing A, e.g., H itself. Hence the
intersection of all subsemihypergroups of (H, ◦) containing A is a subsemihy-

pergroup. We denote it by Â, and note that it is defined by two properties:

1. A ⊆ Â;

2. if S is a subsemihypergroup of H and A ⊆ S, then Â ⊆ S.
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Furthermore, Â is characterized as the algebraic closure of A under the hyper-
product in (H, ◦), namely we have Â =

⋃
n≥1A

n. Moreover, if H is finite, the

set
{
r ∈ N− {0} |

⋃r
k=1A

k =
⋃r+1

k=1A
k
}

has minimum m ≤ |H| and then, it is

known that

Â =

m⋃
k=1

Ak =

m+1⋃
k=1

Ak = ... =

|H|⋃
k=1

Ak. (1)

If x ∈ H, we suppose ◦x1 = {x} and ◦xn = x ◦ . . . ◦ x︸ ︷︷ ︸
n times

for all integer n > 1. We

refer to x̂ =
⋃

n≥1 ◦xn as the cyclic subsemihypergroup of (H, ◦) generated by
the element x. It is the smallest subsemihypergroup containing x.

If K is a subsemihypergroup of (H, ◦), it is said hypercyclic if there exists a

hyperproduct P of elements in K such that K = P̂ .
If (H, ◦) is a semihypergroup, an element 0 ∈ H such that x◦0 = {0} (resp.,

0 ◦ x = {0}) for all x ∈ H is called right zero scalar element or right absorbing
element (resp., left zero scalar element or left absorbing element) of (H, ◦). If 0
is both right and left zero scalar element, then 0 is called zero scalar element or
absorbing element.

A semihypergroup (H, ◦) is called simple if H ◦ x ◦H = H, for all x ∈ H.
A semihypergroup (H, ◦) with an absorbing element 0 is called zero-simple

if H ◦ x ◦H = H, for all x ∈ H − {0}.

Given a semihypergroup (H, ◦), the relation β∗ of H is the transitive closure
of the relation β = ∪n≥1βn, where β1 is the diagonal relation in H and, for
every integer n > 1, βn is defined recursively as follows:

xβny ⇐⇒ ∃(z1, . . . , zn) ∈ Hn : {x, y} ⊆ z1 ◦ z2 ◦ . . . ◦ zn.

The relations β, β∗ are called fundamental relations on H [25]. Their relevance
in semihypergroup theory stems from the following facts [21]: The quotient set
H/β∗, equipped with the operation β∗(x)⊗ β∗(y) = β∗(z) for all x, y ∈ H and
z ∈ x ◦ y, is a semigroup. Moreover, the relation β∗ is the smallest strongly
regular equivalence on H such that the quotient H/β∗ is a semigroup.

The interested reader can find all relevant definitions, many properties and
applications of fundamental relations, even in more abstract contexts, also in
[4, 5, 6, 14, 15, 17, 18, 21, 25].

A semihypergroup (H, ◦) is said to be fully zero-simple if it fulfills the fol-
lowing conditions:

1. All subsemihypergroups of (H, ◦) ((H, ◦) itself included) are zero-simple.

2. The relation β in (H, ◦) and the relation βK in all subsemihypergroups
K ⊂ H of size ≥ 3 are not transitive.
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Since in all semihypergroups of size ≤ 2 the relation β is transitive, it follows
that every fully zero-simple semihypergroup has size ≥ 3.

We denote by F0 the class of fully zero-simple semihypergroups. We use 0 to
denote the zero scalar element of each semihypergroup (H, ◦) ∈ F0. Moreover,
we use the notation H+ to indicate the set of nonzero elements in H, that is,
H+ = H − {0}. Finally, for reader’s convenience, we collect in the following
lemma some preliminary results from [9].

Lemma 1.1. Let (H, ◦) ∈ F0 then we have:

1. H ◦H = H;

2. if S is a subsemihypergroup of H such that 0 6∈ S, then |S| = 1. Moreover,
if |S| ≥ 2 then the zero element of S is 0;

3. there exist x, y ∈ H+ such that 0 ∈ x ◦ y;

4. for every sequence z1, . . . , zn of elements in H+ we have
∏n

i=1 zi 6= {0};

5. the set H+ equipped with hyperproduct a?b = (a◦b)∩H+, for all a, b ∈ H+,
is a semihypergroup.

By points 2. and 4. of Lemma 1.1 we deduce the following result:

Corollary 1.1. Let S be a subsemihypergroup of H ∈ F0, then we have:

1. if 0 6∈ S then there exists a ∈ H+ such that S = {a} and a ◦ a = {a};

2. if |S| = 2 then there exists a ∈ H+ such that S = {a, 0} and {a} ⊆ a ◦a ⊆
{0, a}.

From point 5. of Lemma 1.1, we know that the set of nonzero element H+

of a fully 0-simple semihypergroup (H, ◦) is a simple semihypergroup equipped
with hyperoperation a?b = (a◦ b)∩H+, for all a, b ∈ H+. This semihypergroup
is called residual semihypergroup of (H, ◦).

The following results have been proved in [13]:

Theorem 1.1. Let (H, ◦) ∈ F0. For all x ∈ H, we have (x, 0) ∈ β. Moreover
H/β∗ is trivial.

Lemma 1.2. Let A,B be two non-empty subsets of (H, ◦) ∈ F0 different from
the singleton {0}. We have:

1. (A− {0}) ? (B − {0}) = A ◦B − {0}.

2. If (A, ◦) is a subsemihypergroup of (H, ◦) then (A− {0}, ?) is a subsemi-
hypergroup of (H+, ?).

3. If 0 ∈ A and (A−{0}, ?) is a subsemihypergroup of (H+, ?) then (A, ◦) is
a subsemihypergroup of (H, ◦).
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4. If A+ = A− {0} and (Â, ◦), (Â+, ?) are the subsemihypergroups of (H, ◦)
and (H+, ?) generated from A and A+ respectively, then Â+ = Â− {0}.

Proposition 1.1. Let (H+, ?) the residual semihypergroup of (H, ◦) ∈ F0 and
[0, 0]H = {(a, b) ∈ H ×H | a = 0 or b = 0}. Then we have βH+ = β − [0, 0]H .

2 Hypercyclic semihypergroup in F0

In paper [11] the authors introduced the definition of hypercyclic semihyper-
group and studied a class of semihypergroups (H, ◦) such that for all hyper-

products P of elements in H the subsemihypergroup P̂ is hypercyclic. In this
section we study some properties of the hypercyclic semihypergroups in F0. For
reader’s convenience we denote with I0 the subclass of hypercyclic semihyper-
groups in F0.

Proposition 2.1. If (H, ◦) ∈ I0 is generated by hyperproduct P , then (H+, ?)
is hypercyclic generated by P+ = P − {0} and βH+

is transitive.

Proof. If (H, ◦) ∈ F0 is generated from the set P , then H = P̂ and, for
Lemma 1.2, the residual semihypergroup (H+, ?) is generated from P+ = P −
{0}. Therefore (H+, ?) is a simple hypercyclic semihypergroup. By Theorem
3.1 in [11], the relation βH+ is transitive. �

Corollary 2.1. If (H, ◦) ∈ I0 and a, b, c are three elements in H such that
(a, b) ∈ β, (b, c) ∈ β and (a, c) /∈ β, then b = 0.

Proof. By Theorem 1.1, we have that a 6= 0 and c 6= 0, otherwise (a, c) ∈ β.
If, for absurd, b 6= 0, then a, b, c ∈ H+ and, for Proposition 1.1, (a, b) ∈ βH+

and (b, c) ∈ βH+ . Now, for Proposition 2.1, we obtain that (a, c) ∈ βH+ , that is
impossible because βH+

⊆ β and (a, c) /∈ β. Therefore, b = 0. �

Theorem 2.1. If (H, ◦) ∈ I0 then
∣∣∣H+/β

∗
H+

∣∣∣ ≥ 2.

Proof. For absurd, let |H+/β
∗
H+
| = 1. If a, b ∈ H, we can distinguish two

cases: 1) a = 0 or b = 0; 2) a 6= 0 and b 6= 0. In the first case, by Theorem 1.1,
we have that (a, b) ∈ β. In the second case, for the hypothesis |H+/β

∗
H+
| = 1

and Proposition 2.1, we obtain that (a, b) ∈ βH+
⊆ β. Thus, we have that

(a, b) ∈ β, for all a, b ∈ H. Therefore, we conclude that β is transitive, that is
an absurdity. �

By Corollary 1.1, if (H, ◦) ∈ F0 and K ⊂ H is a subsemihypergroup of size
|K| < 3 then there exists an element c ∈ K such that c ∈ cc. Now we will
prove that if |K| ≥ 3 and K is hypercyclic generated by hyperproduct P then
(P ∩ P 2)− {0} = ∅. We give the following result:

Lemma 2.1. Let (H, ◦) ∈ F0. If P is a hyperproduct of elements in H such
that (P ∩ P 2)− {0} 6= ∅, then (P k ∩ P k+1)− {0} 6= ∅ for every integer k ≥ 1.
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Proof. By hypothesis the thesis is true for k = 1. Therefore, we suppose
it is true for k ≥ 1 and let a ∈ (P k ∩ P k+1) − {0} 6= ∅. Obviously we have
aP ⊆ P kP = P k+1 and aP ⊆ P k+1P = P k+2, hence aP ⊆ P k+1 ∩P k+2. From
Lemma 1.1(4), we obtain that aP 6= {0} since a 6= 0 and P 6= {0}. Thus, we
have that (P k+1 ∩ P k+2)− {0} 6= ∅. �

Proposition 2.2. If (H, ◦) ∈ I0 is generated by hyperproduct P then we have
(P ∩ P 2)− {0} = ∅.

Proof. For absurd we suppose that (P ∩ P 2) − {0} 6= ∅. By Lemma 2.1 we
have (P k ∩ P k+1) − {0} 6= ∅ for every integer k ≥ 1. From Lemma 1.2 (1), if
P+ = P − {0} then we obtain

?P k
+ ∩ ?P k+1

+ = (P k − {0}) ∩ (P k+1 − {0}) = (P k ∩ P k+1)− {0} 6= ∅.

Moreover, by Proposition 2.1, the semihypergroup (H+, ?) is hypercyclic gen-
erated from P+ and βH+ is transitive. Now, if x, y ∈ H+ then there exist two
integers m,n ≥ 1 such that x ∈ ?Pm

+ and y ∈ ?Pn
+. If m = n then (x, y) ∈ βH+ .

If m 6= n we can suppose that m < n and (?Pm+k
+ ∩ ?Pm+k+1) − {0} 6= ∅,

for every k ∈ {0, 1, . . . , n − m − 1}. Therefore, there exist n − m elements
z0, z1, . . . , zn−m−1 ∈ H+ such that

{x, z0} ⊆ ?Pm
+ , {z0, z1} ⊆ ?Pm+1

+ , . . . , {zn−m−1, y} ⊆ ?Pn
+.

In consequence, xβH+z0βH+z1βH+ . . . βH+zn−m−1βH+y and (x, y) ∈ βH+ since
βH+

is transitive. Thus, for every x, y ∈ H+ we have (x, y) ∈ βH+
and

|H+/β
∗
H+
| = 1. This fact is impossible by Theorem 2.1. �

As immediate consequence of the preceding proposition, we can state the
following result:

Corollary 2.2. Let (H, ◦) ∈ F0 and let K ⊆ H be a hypercyclic subsemihyper-
group of size |K| ≥ 3. If P is a hyperproduct of elements in K − {0} such that

K = P̂ then (P ∩ P 2)− {0} = ∅.

3 Strong hyperproduct

Let (H, ◦) ∈ F0 and let K ⊆ H be a subsemihypergroup generated by P with
|K| ≥ 3. Since (K, ◦) ∈ F0, by Lemma 1.1 we have K = K ◦ K =

⋃
n≥2 P

n,
hence there exists an integer s ≥ 2 such that (P ∩ P s) − {0} 6= ∅. This fact
suggests the following definition:

Definition 3.1. Let (H, ◦) be a semihypergroup and let P be a hyperproduct
of elements in H. The smallest positive integer k such that P ∩P k+1−{0} 6= ∅
is called to be the rank of P. If no such k exists, then we say P has rank 0.

Clearly, by Corollary 2.2, if K is a hypercyclic subsemihypergroup of (H, ◦) ∈
F0, with size |K| ≥ 3, and P is a hyperproduct of elements inK such thatK = P̂
then the rank of P is ≥ 2 .
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In this section we will use the notion of rank to determine a sufficient con-
dition for a hypercyclic semihypergroup (H, ◦) ∈ I0 to be cyclic.

Definition 3.2. Let (H, ◦) ∈ F0, an element c ∈ H is called quasi-idempotent
if c 6= 0 and {c} ⊆ c ◦ c ⊆ {0, c}.
Definition 3.3. Let (H, ◦) ∈ F0. A hyperproduct P of elements in H is called
strong if it fulfills the following conditions:

1. P does not contain any quasi-idempotent element of H.

2. The subsemihypergroup P̂ owns a quasi-idempotent element.

3. If c ∈ P̂ is a quasi-idempotent element then P s−{0} = {c}, for all integers
s such that c ∈ P s.

An immediate consequence of the previous definition and points 2., 4. of
Lemma 1.1 is the following result:

Proposition 3.1. Let (H, ◦) ∈ F0. If P is a strong hyperproduct then 0 ∈ P̂
and |P̂ | ≥ 3.

Proposition 3.2. Let (H, ◦) ∈ F0 and let P be a strong hyperproduct. The

semihypergroup P̂ owns one and only one quasi-idempotent element.

Proof. Since P is a strong hyperproduct P̂ owns a quasi-idempotent element
c1. If there exists another quasi-idempotent element c2 ∈ P̂ , then there exist
two positive integers s1 and s2 such that P s1−{0} = {c1} and P s2−{0} = {c2}.
Obviously we have

{c1} = cs21 − {0} = (P s1)s2 − {0} = (P s2)s1 − {0} = cs12 − {0} = {c2}
and so c1 = c2. �

Corollary 3.1. Let (H, ◦) ∈ F0 and let P be a strong hyperproduct of elements

in H. If c is the quasi-idempotent element in P̂ and s ∈ N − {0} then P s is a
strong hyperproduct if and only if c 6∈ P s.

Next table shows a fully zero-simple semihypergroup with two quasi-idem-
potent elements c1, c2 and two strong hyperproducts P and Q such that c1 ∈ P̂
and c2 ∈ Q̂.

Example 3.1. Let H = {0, 1, 2, 3, 4, 5, 6} and let ◦ be the hyperproduct defined
in the following table:

◦ 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 0, 3 0, 3 0, 1, 2 5, 6 0, 4, 6 0, 4, 5, 6
2 0 0, 3 0, 3 0, 1, 2 0, 4, 6 5, 6 0, 4, 5, 6
3 0 0, 1, 2 0, 1, 2 3 0, 4, 5, 6 0, 4, 5, 6 0, 4, 5, 6
4 0 2, 3 0, 1, 3 0, 1, 2, 3 0, 6 0, 6 0, 4, 5
5 0 0, 1, 3 2, 3 0, 1, 2, 3 0, 6 0, 6 0, 4, 5
6 0 0, 1, 2, 3 0, 1, 2, 3 0, 1, 2, 3 0, 4, 5 0, 4, 5 0, 6
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We have (H, ◦) ∈ F0. The elements 3, 6 are quasi-idempotent, the hyperproducts

P = 1◦3, Q = 4◦6 are strong of rank two and we have 3 ∈ P̂ , 6 ∈ Q̂. Moreover,
we note that (H+, ?) is a not commutative simple semihypergroup and H+/β

∗
H+

is isomorphic to semigroup
1 2

1 1 2
2 1 2

Proposition 3.3. Let (H, ◦) ∈ F0 and let P be a strong hyperproduct of rank
r. Then we have r ≥ 2.

Proof. Let c be the quasi-idempotent element in P̂ and s ≥ 2 the minimum
integer such that P s − {0} = {c}. If for absurd we suppose P ∩ P 2 6= ∅ then
P s−1 ∩ P s − {0} 6= ∅ and so c ∈ P s−1. By definition of strong hyperproduct,
we have P s−1 − {0} = {c}. That is a contradiction for the minimality of s. �

We are ready to prove the following result

Proposition 3.4. Let (H, ◦) ∈ F0 and let P be a strong hyperproduct of rank
r. Then r is the minimum positive integer such that P r −{0} = {c}, where c is

the quasi-idempotent element in P̂ .

Proof. Since c ∈ P̂ there exists a minimum positive integer s such that
P s − {0} = {c}. Hence {c} = (P s)r − {0} = (P r)s − {0} and c ∈ P̂ r. Clearly,
there exists a minimum positive integer t such that P rt − {0} = {c}. Suppose,
for absurd, that t ≥ 2. By point 4. of Lemma 1.1, we have P (t−1)r−1 6= {0}.
Moreover, since (P ∩ P r+1)− {0} 6= ∅, we obtain

∅ 6= ((P ∩P r+1)−{0})◦P (t−1)r−1−{0} ⊆ (P (t−1)r∩P tr)−{0} ⊆ P (t−1)r∩{c}.

By Definition 3.3, it follows P (t−1)r − {0} = {c}, that is a contradiction for
the minimality of element t. Therefore t = 1 and P r − {0} = {c}. Now, let
s a positive integer such that P s − {0} = {c}, then ∅ 6= P ∩ P r+1 − {0} =
P ∩ cP − {0} = P ∩ P s+1 − {0} and so s ≥ r. Therefore, r is the minimum
positive integer such that P r − {0} = {c}. �

Proposition 3.5. Let (H, ◦) ∈ F0. If P is a strong hyperproduct of elements
in H of rank r then there exists a positive integer t ≤ 2r such that 0 ∈ P t.

Proof. Let c be the quasi-idempotent element in P̂ . From Definition 3.2
and Proposition 3.4, we have c ∈ c ◦ c ⊆ {0, c} and c ∈ P r ⊆ {0, c}. Moreover,

by Proposition 3.1, we know that 0 ∈ P̂ , hence we can distinguish two cases:
0 ∈ P 2r or 0 6∈ P 2r. In the first case we have the thesis. In the second
case, we obtain c ◦ c = {c} = P r. Now, there exists an integer m ≥ 1 such
that 0 ∈ Pm. If m > 2r, by euclidean division, there exist two non-negative
integers q, n such that m = qr + n with q 6= 0 and 0 ≤ n < r. We have
n 6= 0 otherwise 0 ∈ Pm = P qr = (P r)q = cq = {c}. Hence we deduce
0 ∈ Pm = P qr+n = (P r)q ◦ Pn = cq ◦ Pn = c ◦ Pn = P r ◦ Pn = Pn+r and so
0 ∈ Pn+r with n+ r < 2r. �
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Corollary 3.2. Let (H, ◦) ∈ F0. If P is a strong hyperproduct of elements in

H of rank r then P̂ =
⋃2r

k=1 P
k.

Proof. Let c be the quasi-idempotent element in P̂ . For all m > 2r there
exist q, n ∈ N such that m = qr+n, q ≥ 2 and 0 ≤ n < r. By Proposition 3.4, if
n = 0 then Pm = (P r)q ⊆ {0, c}q ⊆ {0, c} ⊆ {0}∪P r. Otherwise, if n 6= 0 then
we have Pm = (P r)q ◦ Pn ⊆ {0, c}q ◦ Pn ⊆ ({0} ∪ cq) ◦ Pn = {0} ∪ (cq ◦ Pn) =
{0} ∪ ({0, c} ◦ Pn) = {0} ∪ c ◦ Pn = {0} ∪ P r ◦ Pn = {0} ∪ Pn+r. Hence, for

Proposition 3.5, we obtain Pm ⊆
⋃2r

k=1 P
k and P̂ =

⋃2r
k=1 P

k. �

Lemma 3.1. Let (H, ◦) ∈ F0 and let P be a strong hyperproduct of elements in

H of rank r. If c is the quasi-idempotent element of P̂ then we have

1. P̂ = ({c} ∪ c ◦ P ∪ c ◦ P 2 ∪ ... ∪ c ◦ P r−1);

2. c ◦ P i − {0} = P i ◦ c− {0} for every i ∈ {1, 2, ..., r};

3. (c ◦ P )i − {0} = c ◦ P i − {0} for every i ∈ {1, 2, ..., r};

4. (c ◦ P i) ◦ (c ◦ P j)− {0} = c ◦ P i+j − {0}, for every i, j ∈ {1, 2, ..., r};

5. (P i ∩ P j)− {0} = ∅, for every i, j ∈ {1, 2, ..., r} and i 6= j;

6. c 6∈ c ◦ P i − {0}, for every i ∈ {1, 2, ..., r − 1};

7. (c ◦ P i ∩ c ◦ P j)− {0} = ∅, for all i, j ∈ {1, 2, ..., r − 1} and i 6= j;

8. P i ⊆ c ◦ P i, for every i ∈ {1, 2, ..., r − 1}.

Proof. For Corollary 3.2, we can put P̂ = P ∪ P 2 ∪ ... ∪ P 2r.

1. Since P̂ = (P̂ )r = P r ∪ P r+1 ∪ ... ∪ P 2r2 , by Proposition 3.4 it results:

P r − {0} = {c}
P r+1 − {0} = c ◦ P − {0}
. . . . . . . . . . . .

P 2r−1 − {0} = c ◦ P r−1 − {0}
P 2r − {0} = c ◦ P r − {0} = {c} = P r − {0}.

At this point, taking in account Proposition 3.5, the assertion follows
immediately.

2. Since {c} = P r − {0} we have

c ◦ P i − {0} = P r ◦ P i − {0} = P i ◦ P r − {0} = P i ◦ c− {0}.

3. By item 2. we have (c ◦P )i−{0} = (c ◦ P ) ◦ (c ◦ P ) ◦ . . . ◦ (c ◦ P )︸ ︷︷ ︸
i times

−{0} =

c ◦ c ◦ . . . ◦ c︸ ︷︷ ︸
i times

◦P ◦ P ◦ . . . ◦ P︸ ︷︷ ︸
i times

−{0} = c ◦ P i − {0}.
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4. By item 2., (c◦P i)◦ (c◦P j)−{0} = c◦c◦P i ◦P j−{0} = (c◦P i+j)−{0}.

5. For absurd let (P i ∩ P j)− {0} 6= ∅ for some i, j ∈ {1, 2, ..., r} with i 6= j.
Supposing i < j we obtain (P r−j+i ∩P r−j+j)−{0} 6= ∅, hence (P r−j+i ∩
P r)− {0} 6= ∅. Since P r − {0} = {c} we have c ∈ P r−j+i − {0}, that is a
contradiction because r is the minimum integer such that {c} ∈ P r−{0}.

6. Let i ∈ {1, 2, ..., r − 1}. Since c ◦ P − {0} = P r+1 − {0}, we have

(P ∩P r+1)−{0} 6= ∅ ⇒ (P ∩ c ◦P )−{0} 6= ∅ ⇒ (P i ∩ (c ◦P )i)−{0} 6= ∅.

Moreover, by item 3. we obtain P i ∩ c ◦ P i − {0} 6= ∅. Now, if c ∈
(c ◦ P )i − {0} then c ◦ P i − {0} = P r ◦ P i − {0} = P r+i − {0}, hence
c◦P i−{0} = P r+i−{0} = {c}. Consequently we have c ∈ P i−{0}, that
is impossible because i < r. Thus c 6∈ c ◦ P i − {0}.

7. For absurd, we suppose that there exists i, j ∈ {1, 2, ..., r− 1}, with i 6= j,
such that (c ◦ P i ∩ c ◦ P j) − {0} 6= ∅. Let i < j, by item 3. we obtain
(c ◦ P r−j+i ∩ c ◦ P r−j+j)− {0} 6= ∅. Being c ◦ P r − {0} = {c}, it follows
that c ∈ c ◦ P r−j+i − {0}. Since r − j + i < r, by item 6., we have a
contradiction.

8. Let i ∈ {1, 2, . . . , r − 1} and a ∈ P i. From item 1., there exists an integer
s, with 1 ≤ s ≤ r− 1, such that a ∈ c ◦P s. Clearly it results c ◦ a ⊆ c ◦P i

and c ◦ a ⊆ c ◦ P s. Therefore, by 4. of Lemma 1.1 we have ∅ 6= c ◦ a ⊆
(c ◦ P i ∩ c ◦ P s). Moreover, for item 7., i = s and a ∈ c ◦ P i. �

Remark 3.1. From Lemma 3.1, if P is a strong hyperproduct of rank r, of ele-
ments in a fully zero-simple semihypergroup, then P̂ is partitioned by the family
of subsets

{
{c} , c ◦ P , c ◦ P 2, ..., c ◦ P r−1}, where c is the quasi-idempotent el-

ement of P̂ .

Lemma 3.2. Let (H, ◦) ∈ F0 and let P be a strong hyperproduct of rank r, with c

quasi-idempotent element in P̂ . If Q is a hyperproduct such that ∅ 6= Q−{0} ⊆ P
then:

1. Q is a strong hyperproduct with c ∈ Q̂, having the same rank r of P ;

2. c ◦Qi − {0} = c ◦ P i − {0}, for all i ∈ {1, 2, . . . , r − 1};

3. Q̂ = P̂ .

Proof.

1. From Proposition 3.4 we have Qr−{0} ⊆ P r−{0} = {c} and so Qr−{0} =

{c} and c ∈ Q̂. Clearly c 6∈ Q because Q ⊆ P and c 6∈ P . Moreover,
by point 3. of Definition 3.3, if c ∈ Qs − {0} then c ∈ P s − {0} and
Qs − {0} = P s − {0} = {c}. Hence Q is a strong hyperproduct of (H, ◦)
and c is quasi-idempotent element in Q̂. From Proposition 3.4, if t is
the rank of Q then t ≤ r because Qr − {0} = {c}. Moreover, since
{c} = Qt − {0} ⊆ P t − {0}, by point 3. of Definition 3.3 and Proposition
3.4, we have P t − {0} = {c} and r ≤ t, therefore r = t.
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2. Let b be an element in P −{0}. We have b◦Qr−1−{0} ⊆ b◦P r−1−{0} ⊆
P r−{0} = {c} and so b◦Qr−1−{0} = {c}. Moreover, by item 1. we have
b ◦ c− {0} = b ◦ (Qr − {0})− {0} = b ◦ (Qr−1 − {0}) ◦ (Q− {0})− {0} =
c ◦ (Q − {0}) − {0} = c ◦ Q − {0} and so b ◦ c − {0} = c ◦ Q − {0},
for all b ∈ P − {0}. Thus, by point 2. of Lemma 3.1, we deduce that
c ◦P −{0} = P ◦ c−{0} = (P −{0}) ◦ c−{0} =

⋃
b∈P−{0}(b ◦ c)−{0} =⋃

b∈P−{0}(b ◦ c−{0}) = c ◦Q−{0}. Hence c ◦P −{0} = c ◦Q−{0}. The
proof of item follows from point 4. of Lemma 3.1.

3. The result follows from previous item 2 and point 1. of Lemma 3.1. �

4 Semihypergroup in F0 generated by a strong
hyperproduct

In this section we consider hypercyclic fully simple semihypergroup generated
by a strong hyperproduct. For reader’s convenience we give the following

Definition 4.1. A semihypergroup (H, ◦) ∈ I0 is called S-hypercyclic if there

exists a strong hyperproduct P such that H = P̂ .

Example 4.1. Next table shows a S-hypercyclic semihypergroup (H, ◦) ∈ I0.
For notational and descriptive simplicity we denote A = {0, 1}, B = {0, 2, 3, 4},
C = {0, 5, 6} and D = {0, 7, 8}.

◦ 0 1 2 3 4 5 6 7 8
0 0 0 0 0 0 0 0 0 0
1 0 1 B B B C C D D
2 0 B 0, 5 C C D D A A
3 0 B C C C D D A A
4 0 B C C C D D A A
5 0 C D D D A A 2, 3, 4 B
6 0 C D D D A A 2, 3 2, 4
7 0 D A A A B B C C
8 0 D A A A B 2, 4 C C

The elements 1 is quasi-idempotent and, for example, P = 6 ◦ 7 is a strong
hyperproduct of rank four. Also the elements 2, 3, 4, 7, 8 can be regarded as
strong hyperproducts of rank four and H = P̂ = â, for all a ∈ {2, 3, 4, 7, 8}. In
this case H+/β

∗
H+

is isomorphic to group Z4.

Proposition 4.1. Let (H, ◦) ∈ I0 be a S-hypercyclic semihypergroup generated
by the strong hyperproduct P of rank r and let c the quasi-idempotent element
of H, we have

1. If a ∈ P − {0} then a is strong hyperproduct of rank r and H = â.
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2. If Q is a hyperproduct of elements in H+ then c ∈ Q̂. Moreover, if c ∈ Q
then Q − {0} = {c}. Otherwise, if c 6∈ Q then Q is strong and has rank
≤ r.

3. For every Q and T strong hyperproducts of elements in H+, we have c ◦
Qi∩c◦T i−{0} = ∅ or c◦Qi−{0} = c◦T i−{0}, for all i ∈ {1, 2, ..., r−1}.

4. The element c is the only identity of (H, ◦).

5. The residual semihypergroup (H+, ?) of (H, ◦) is a cyclic semihypergroup
with identity.

Proof.

1. Immediate consequence of Lemma 3.2.

2. Let a ∈ P − {0} and let Q =
∏n

i=1 αi be a hyperproduct of elements in
H+. From point 1., H = â and for every element αi there exists an integer
qi such that αi ∈ aqi . Clearly we have Q =

∏n
i=1 αi ⊆

∏n
i=1 a

qi = au,
where u =

∑n
i=1 qi. Hence, Qr − {0} ⊆ (au)r − {0} = (ar)u − {0} = {c}

and so c ∈ Q̂. Now, if c ∈ Q then c ∈ Q ⊆ au and we have au − {0} =
{c} = Q− {0}. Moreover, if c 6∈ Q and c ∈ Qs − {0} then c ∈ Qs − {0} ⊆
(au)s − {0} = aus − {0} and so {c} = aus − {0} = Qs − {0}. Hence Q is
a strong hyperproduct and rank of Q is ≤ r.

3. If c◦Qi∩c◦T i−{0} = ∅ the thesis follows. Otherwise, if c◦Qi∩c◦T i−{0} 6=
∅ then there exists a ∈ H+ − {c} such that a ∈ c ◦Qi and a ∈ c ◦ T i and
so, by point 2. of Lemma 3.2, c ◦Qi − {0} = c ◦ a− {0} = c ◦ T i − {0}.

4. By item 2., the element b is a hyperproduct strong for every b ∈ H+−{c}.
From Lemma 3.1 (1.), we have b̂ = {c} ∪ c ◦ b ∪ ... ∪ c ◦ bs−1, where s is
the rank of b. Hence there exists i ∈ {1, 2, . . . , s− 1} such that b ∈ c ◦ bi.
Clearly c ◦ b − {0} ⊆ c ◦ bi − {0} and, by item 7. of Lemma 3.1, we have
i = 1 and b ∈ c ◦ b. In the same way, by item 2. of Lemma 3.1, we obtain
b ∈ b ◦ c. Hence b ∈ c ◦ b ∩ b ◦ c for all b ∈ H+. Obviously, we have also
c ◦ 0 = 0 ◦ c = {0}, hence c is an identity of (H, ◦). If c′ ∈ H − {0, c} is
another identity and Q = c◦c′, for item 2., we have {c, c′} ⊆ Q−{0}={c}
and c = c′. Hence the element c is the only identity of (H, ◦).

5. By point 1. and Lemma 1.2 (1) the semihypergroup (H+, ?) is cyclic.
Moreover, from previous point 4., the element c is an identity of (H+, ?).
�

Proposition 4.2. Let (H, ◦) ∈ I0 a S-hypercyclic semihypergroup generated
by the strong hyperproduct P of rank r and suppose r is a prime number, then

ĉ ◦ Ph = H for all h ∈ {1, 2, ..., r − 1}.

Proof. By item 6. of Lemma 3.1 and the preceding proposition, c ◦ P i is a
strong hyperproduct for all i ∈ {1, 2, ..., r − 1}. Let now h ∈ {1, 2, ..., r − 1}.
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By item 1. of Lemma 3.1, we need to prove that c ◦ P j ⊆ ĉ ◦ Ph, for every
j ∈ {1, 2, ..., r − 1}. Since r is a prime number, the congruence hx = j(mod r)
has exactly one solution s 6= 0 (mod r). Thus hs = j + kr and so

c ◦ P j+kr − {0} = c ◦ Phs − {0}.

By points 2., 3. and 4. of Lemma 3.1, we have c ◦ Phs − {0} = cs ◦ Phs − {0} =
(c ◦ Ph)s − {0}. Hence c ◦ P j+kr − {0} = (c ◦ Ph)s − {0}. Clearly, if k = 0 we

have c ◦ P j ⊆ ĉ ◦ Ph, otherwise if k 6= 0 then c ◦ P j − {0} ⊆ c ◦ P j ◦ c− {0} =
c ◦ P j ◦ (P r)k − {0} = c ◦ Phs − {0} = (c ◦ Ph)s − {0} and also in this case

c ◦ P j ⊆ ĉ ◦ Ph. �

Theorem 4.1. Let (H, ◦) ∈ I0 a S − hypercyclic semihypergroup generated
by a strong hyperproduct P of rank a prime number r and having c as quasi-
idempotent element, then:

1. Every element a ∈ H+−{c} is a strong hyperproduct of rank r and H = â.

2. For every strong hyperproduct Q of H, Q̂ = H and Q has rank r;

3. (H+, ?) is a cyclic semihypergroup generated by every a ∈ H+ − {c};

4. H+/β
∗
H+

is a cyclic semigroup.

Proof.

1. Let a ∈ H+ − {c}, then by item 1. of Lemma 3.1, there exists h ∈
{1, 2, ..., r − 1}, such that a ∈ c ◦ Ph. By Proposition 4.2, we have

ĉ ◦ Ph = H. Moreover c 6∈ c ◦ Ph and so, from Lemma 3.2, H = â.

2. Consequence of item 1.

3. Consequence of Lemma 1.2 (4) and item 1.

4. Immediate since (H+, ?) is a cyclic semihypergroup.

�

Remark 4.1. In Example 4.1, the S-hypercyclic semihypergroup (H, ◦) is gen-
erated by a strong hyperproduct P of rank four, while the elements 5 and 6
are strong hyperproducts of rank two and do not generate (H, ◦). This fact
shows that the hypothesis rank of P is a prime number in Theorem 4.1 can not
be deleted. The following product table shows a S-hypercyclic semihypergroup
(H, ◦) generated by a strong hyperproduct P of rank three.

◦ 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 1 0, 2, 3, 4 0, 2, 3, 4 0, 2, 3, 4 0, 5, 6 0, 5, 6
2 0 0, 2, 3, 4 0, 5, 6 5, 6 0, 5, 6 0, 1 0, 1
3 0 0, 2, 3, 4 0, 5, 6 0, 5, 6 5, 6 0, 1 0, 1
4 0 0, 2, 3, 4 5, 6 0, 5, 6 0, 5, 6 0, 1 0, 1
5 0 0, 5, 6 0, 1 0, 1 0, 1 0, 2, 3 0, 4
6 0 0, 5, 6 0, 1 0, 1 0, 1 0, 2, 3, 4 0, 2, 3, 4
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By previous theorem, we have H = â, for every a ∈ H+ − {1}, where 1 is the
quasi-idempotent element of H. We note that if G is a group then every element
a is a strong product and if a is a torsion element its rank is the period of the
element a. Therefore the rank can be seen as a generalization of the concept
of period. Moreover it is known that if G is a cyclic group of size a prime
number r then every element different from identity is a generator of G. The
same property is true for semihypergroups in Theorem 4.1, but the commuta-
tive property of cyclic groups does not generally hold. The hyperoperation in
previous example is not commutative.
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