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ABSTRACT
This exploratory study focuses on key concepts and their as-
sessment in K–9 computer science education. After review-
ing the state of affairs with respect to CS in K–9 education
in seven countries, we analyzed the key concepts in local
curriculum documents and guidelines, and interviewed K–9
teachers in two countries about their teaching and assess-
ment practices. Moreover, we investigated the ‘task based
assessment’ approach of the international Bebras compe-
tition by classifying the conceptual content and question
structure of Bebras tasks spanning five years. Our results
show a variety in broadness and focus in curriculum docu-
ments, with the notion of algorithm as a significant common
concept. Teachers’ practice appears to vary, depending on
their respective backgrounds. Informal assessment practices
are predominant, especially in the case of younger students.
In the Bebras tasks, algorithms and data representation were
found to be the main concept categories. The question struc-
ture follows specific patterns, but the relative frequencies of
the patterns employed in the tasks vary over the years. Our
analysis methods appear to be interesting in themselves, and
the results of our study give rise to suggestions for follow-up
studies.

1. INTRODUCTION
Computer science (CS) is no longer a subject area only

relevant for a narrow group of professionals, but rather is
a vital part of general education that should be available
to all children and youth. CS “develops students’ compu-
tational and critical thinking skills and shows them how to
create, not simply use, new technologies. This fundamental
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knowledge is needed to prepare students for the 21st century,
regardless of their ultimate field of study or occupation.”1

Nevertheless, whereas digital literacy is considered a natu-
ral component of K–9 education, the extent to which key
concepts of CS are included varies greatly, ranging from CS
being a compulsory or elective subject to not being covered
at all.

The aim of this report is to contribute to the discussion on
what CS at K–9 level can entail, and guide teachers, teacher
educators, and curriculum developers in making informed
decisions with regard to teaching and assessing CS knowl-
edge and competencies for this particular range of school
levels, characterized by critical developments of pupils’ cog-
nitive abilities.

We will address the CS concepts themselves, but also their
assessment. We will approach these themes from three per-
spectives: curriculum standards, teachers’ practice and in-
ternational competitions. In Section 2 we will explore these
perspectives. In Section 3 we will review a collection of cur-
riculum documents, viz. national curricula, standards and
guidelines. The analytic part of our research focuses on
concepts and assessment in curriculum documents, teach-
ers’ practice, and Bebras tasks. Our research questions are
formulated in Section 4. Section 5 describes our method.
The results are organized according to the data sources: see
sections 6, 7, and 8. The final section 9 contains our conclu-
sions a discussion.

2. BACKGROUND

Computing and Computational Thinking
The first ACM model curriculum for K–12 CS was pre-
sented in 1993 and updated in 2003 [83]. The latter states
that K–12 curricula should include“programming, hardware
design, networks, graphics, databases and information re-
trieval, computer security, software design, programming
languages, logic, programming paradigms, translation be-
tween levels of abstraction, artificial intelligence, the limits

1Why K-12 computer science? on code.org and com-
putinginthecore.org



of computation [...], applications in information technology
and information systems, and social issues.”

More recently, the Computer Science Teachers Associa-
tion (CSTA) in the U.S. has developed the CSTA K–12 CS
Standards [74]. These standards contain five strands: Com-
putational thinking, Collaboration, Computing Practice and
Programming, Computers and Communication Devices, and
Community, Global and Ethical Impacts. The Exploring CS
model curriculum [41] covers six areas: Human-Computer
Interaction, Problem Solving, Web Design, Introduction to
Programming, Computing and Data Analysis, and Robotics.

In addition to these recommended curricula, CS has been
introduced in official national curricula in several countries.
Nevertheless, although there are several commonalities in
the recommended and required curricula, there is still no
consensus with regard to what teaching CS in K–12 means.

A recent trend is an increased focus on the role and na-
ture of CS at K–12 level. Initiatives such as code.org, Hour
of Code and Europe Codeweek are promoting CS and pro-
gramming among educators, parents, and students. Individ-
ual persons and large industries engage in active discussions
acknowledging the importance of guaranteeing basic knowl-
edge in CS for everyone. But if we are to teach CS in K–9,
the question arises what exactly should be taught. After
all, CS is a multifaceted field involving several dimensions
in terms of concepts, capabilities and skills. A few propos-
als have been made to characterize suitable concept matter,
e.g., by the organizations CAS and CSTA.

The extent to which programming may be beneficial to de-
velop general problem-solving skills is still subject to debate,
see, e.g., [68, 56]. Feurzeig et al. argue, for instance, that
the need for rigorous thinking can be a reason to introduce
programming in schools [32], whereas other authors stress
the importance of creativity (e.g., [70]). An additional issue
is how to achieve “language independence,” often considered
a desirable feature to assess programming competences [80].

If on the one hand several educators agree that program-
ming is crucial for appreciating a computational perspective,
a major objection is that it is unsuitable for lower levels of
education, as pointed out e.g. in [61]. Nevertheless, pro-
gramming is implied by all sorts of artifacts, such as board
games, visual programming tools, robots and various toy
logic devices. Furthermore, even the scope of programming
is now broader than it used to be: its practice can be seen
as a means of self-expression and social participation [51,
73], a component of a new form of literacy [17, 85], a tool
for developing creativity [11], a way for to widen experience
and experiment with personal ideas [10], an instrument to
foster children’s metacognition [69].

Especially at the earlier school levels, CS ideas can also
be introduced in the classroom through unplugged, or partly
unplugged, approaches. This is in fact the perspective of
the CS Unplugged project [6], that has then inspired sev-
eral educators and that we can also find in other project
such as Informatik erLeben [66] and Abenteuer Informatik
[38]. As observed by Hu, however, we should be careful
since if “the mainstream of computational thinking is think-
ing about process abstraction, then Jean Piaget’s Stages of
Cognitive Development may suggest that this thinking skill
cannot be effectively taught until adolescence age” [47].

Overall, a general picture about the state of CS educa-
tion in several countries is drawn in the special issue of the
Transactions on Computing Education: Perspectives and

Visions of Computer Science Education in Primary and Sec-
ondary (K–12) Schools. In particular, according to the edi-
tors “there is a convergence towards computational thinking
as a core idea of the K–12 curricula” and that “programming
in one form or another, seems to be absolutely necessary for
a future oriented CSE” [48] (added emphasis).

Computational thinking (CT) is indeed an interesting per-
spective for early computing education. This term was in-
troduced by Jeannette Wing [89], who later defined it as
those “thought processes involved in formulating problems
and their solutions so that the solutions are represented in
a form that can be carried out by an information-processing
agent” [90], a way of thinking characterized by different lay-
ers of abstraction. Although there is not full agreement on
how to define CT, a few organizations have tried to come
up with a more accurate characterization, notably [34, 35].

The CSTA and ISTE [22, 50] have proposed a definition
of CT suitable for use in K–12 education, identifying nine
essential concepts: data collection, data analysis, data repre-
sentation, problem decomposition, abstraction, algorithms,
automation, parallelization and simulation. Skills related to
these concepts are not limited to CS or computing subjects,
but can be practiced and developed within all disciplines,
which is crucial for broadening participation. ISTE has also
developed an operational definition for CT as a problem-
solving process with peculiar features.

Among other contributions coming from educators, Lee
et al. [57] identify abstraction, automation and analysis as
the key features in order for young pupils to deal with novel
problems. They then suggest three possible approaches to
introduce CT for the K–8 levels. Moreover, further ap-
proaches to infuse CT in early education in the light of
learning theories are considered, e.g., in [21, 47] and a broad
survey of the CT perspective in the context of K–9 education
can be found in [63].

Approaches to assessment
Valid assessment is a crucial part of successful teaching and
learning activities. A major issue, however, is to design as-
sessment instruments that can be validated to actually as-
sess the intended learning outcomes (see, e.g., constructive
alignment [8]). In Tew and Guzdial’s words, while “many
STEM disciplines have standard validated assessment tools
[...], computer science does not have” similar “tools, and
practitioners must devise their own instruments each time
they want to investigate student learning” [80].

As a matter of fact, assessment practices seem to vary
a lot. To this point, most assessment research in CS has
focused on programming concepts [28, 64, 80, 88] and, for
understandable reasons, mainly on tertiary level. Efforts
have ranged from concept inventories [79] to the use of tax-
onomies [75, 77, 82] and specialized exams. A cognitive
assessment method for measuring problem solving and pro-
gram development skills has been proposed by Deek et al.
[29].

Another promising approach can be found in the inter-
national Bebras contest (www.bebras.org) in which CS con-
cepts are addressed using compact, well designed tasks. An
interesting question is how this “tasklet-based assessment”
works as well as how it can be applied to a wider range of
concepts.

Many K–12 teachers reportedly use projects or practical
assignments [43]. This preference fits closely to the epis-



temic view of computer science as an engineering discipline
[7]. Such teaching methods clearly cover learning outcomes
connected to, e.g., ‘designing’ or ‘programming’.

Students are expected to use relevant concepts in design
tasks. There is also strong evidence, however, that the re-
lation between conceptual knowledge and designing is re-
ciprocal. Science pupils who are involved in designing arte-
facts and are using relevant concepts and ways of scientific
reasoning (e.g., from structure to function) would achieve
deeper conceptual and technological understanding [27, 36,
55, 86]. In particular, students learn about computing con-
cepts while doing programming assignments, e.g. [65]. It re-
mains unclear, however, how to effectively assess and mon-
itor development of conceptual understanding in practical
contexts without disturbing the authentic design setting (by,
e.g., letting students do a pencil and paper test).

Real developers constantly analyse and test their inter-
mediate products [16]. Testing such preliminary results and
explaining the reasoning steps appear to be crucial for the
learning process [5, 53] and are potential starting points
for assessment. Some promising exploratory experiments
in computer science have been carried out, both based on
explanations and justification of intermediate products [44]
and on the results themselves [87].

Several assessment instruments are based on the SOLO [9]
and (revised) Bloom’s taxonomies [1]. The former considers
five levels of understanding: pre-structural, uni-structural,
multi-structural, relational and extended abstract. The lat-
ter addresses the abilities to remember, understand, apply,
analyze, evaluate and create, as well as the knowledge di-
mensions of factual knowledge, conceptual knowledge, pro-
cedural knowledge and metaknowledge. Meerbaum et al.
devised an assessment instrument addressed to middle-school
students learning to program in Scratch based on the SOLO
and Bloom’s taxonomies [65].

The relevance of devising assessment instruments is also
pointed out by Werner et al., in that efforts “to engage K–
12 students in” computational thinking “are hampered by a
lack of definition and assessment tools” [87]. (And among
the few attempts in this direction, we can mention the frame-
work in [11].) Moreover, according to Grover and Pea [45],
without “attention to assessment,” computational thinking
“can have little hope of making its way successfully into any
K–12 curriculum.”

Teacher practice and teacher knowledge
Teachers’ classroom practice is generally believed to be in-
fluenced by their knowledge and beliefs, e.g. [15, 67]. The
relationship between knowledge and practice appears to be
reciprocal: teacher knowledge is developed through an inte-
grative process of action and reflection (cf. [72]).

The notion of pedagogical content knowledge (PCK) was
introduced by Shulman [76] in order to try to describe the
features of the teaching practice in a particular subject mat-
ter. In this author’s view PCK is “the knowledge of teachers
to help others learn”, including “the ways of representing
and formulating the subject that makes it comprehensible
to others.”

In the model by [62], four aspects of PCK with respect to
a certain topic are distinguished: (a) knowledge about learn-
ing goals and objectives connected to the topic, (b) knowl-
edge about students’ understanding of the topic, (c) knowl-
edge about instructional strategies for teaching the topic,

and (d) knowledge about ways to assess students’ under-
standing of the topic.

Eliciting PCK from teachers is not easy, however, since it
tends to be tacit and usually the reasons motivating a par-
ticular instructional strategy are not explicitly articulated
or shared with colleagues [60]. Several methods have been
proposed, including interviews (e.g., [46]), Pedagogical ex-
perience Repertoires, PaP-eRs, [59], classroom observations
(e.g., [4, 39]) and reflective journals (e.g., [91]).

As pointed out in [80], PCK has mainly been investigated
for science education, whereas there are few studies in the
fields of computing and ITs. However, a PCK perspective
appears to be fruitful to explore the professional knowledge
of CS teacher, as demonstrated by a large German project
on the teaching of CS in schools [49], as well as by more
focused investigations in the areas of programming [71, 2,
31] and UML design [54].

A promising instrument in this respect is the Content Rep-
resentation (CoRe) format [59], aimed at capturing key ideas
within a topic as well as the teachers’ knowledge about each
idea. According to the authors, indeed, two main elements
characterize the PCK: the Content Representation (CoRe),
i.e. an overview of the particular content taught, and some-
thing related to a teacher’s Pedagogical and Professional-
experience Repertoire (PaP-eR). This kind of instrument is
based on eight questions that cover the PCK aspects ad-
dressed in [62]. In particular, Loughran et al. [60] originally
introduced the CoRe format as an interview tool.

In the present study, questions from the CoRe tool ap-
peared useful to elicit information about teachers’ practice
(and potentially their underlying knowledge and beliefs) with
respect to concepts taught (cf. PCK aspect (a)) and assess-
ment (cf. PCK aspect (d)).

The Bebras competition
Bebras is an international initiative, which started in 2004
in Lithuania (http://www.bebras.org), and whose goal is to
promote informatics particularly among teachers and stu-
dents of all ages. The main idea of Bebras is to organize
online contests consisting of a set of short questions called
Bebras tasks (or tasklets, more recently). The tasks are
categorized according to age groups and levels in school as
follows:

(0) Primary, 8-9 years (grade 3-4)

(I) Benjamin, 10-12 years (grade 5-6)

(II) Kadets, 13-14 years (grade 7-8)

(III) Junior, 15-16 years (grade 9-10)

(IV) Senior, 17-19 years (grade 11-13)

The task based assessment style in the international Be-
bras contest is of particular interest [18]. The vast majority
of these tasks can be answered without prior knowledge of
informatics but are clearly related to informatics concepts.
To solve those tasks, participants use algorithmic concepts
and are required to think about information, discrete struc-
tures, computation, and data processing. Each Bebras task
can both demonstrate an aspect of informatics and test the
informatics experience and ability of the participant.

Goals and Approaches
The Bebras contest has two leading principles: (1) Prob-
lem solving is the individual capacity of using cognitive pro-



cesses to compare and solve real, cross-disciplinary situa-
tions where the solution path is not immediately obvious
[19], and (2) Interest and engagement are very important in
problem solving [23, 24].

When teaching computer programming and more gen-
erally informatics via problem solving, it is important to
choose interesting tasks (problems) to motivate students in
the search of possible solution/s. Thus, one should try to
present problems from various spheres of science and life, as
close as possible to real life and with suitably chosen situa-
tions. Besides, the Bebras organizing committee has stated
that cognitive, social, cultural and cross-cultural aspects are
very important in the use of technology. This has led to the
following guidelines for those who prepare the questions:

• Put strong emphasis on the influence of IT/ICT on
culture and language;

• Help educational community to support school stu-
dents who can use computer science in most creative
and profound way;

• Develop students’ ability to derive pleasure and satis-
faction through intellectual life while thinking about
efficient and effective use of applications of IT/ICT in
everyday experience.

There are also some basic criteria for writing Bebras tasks,
namely: (1) the task can be solved within 3 minutes; (2) the
problem statement is easy to understand; (3) the task can
be presented in a single screen page; and (4) the task is
independent from specific systems.

Tasks can be of different types, starting from the most
common questions on IT/ICT and their applications in ev-
eryday life or including specific integrated problems related
to history, languages, arts, and, of course, mathematics. It is
also very important to choose the problems so that the par-
ticipants in the competition are not influenced by the digital
tools (such as operating systems or the computer programs)
they are experienced with.

The topics of the Bebras contests on informatics and com-
puter literacy [25] are as follows:

• Information (INF) – conception of information, its rep-
resentation (symbolic, numerical, graphical), encod-
ing, encrypting;

• Algorithms (ALG) – action formalization, action de-
scription according to certain rules;

• Computer systems and their application (USE) – in-
teraction of computer components, development, com-
mon principles of program functionality, search en-
gines, etc.;

• Structures and patterns (STRUC) – components of dis-
crete mathematics, elements of combinatorics and ac-
tions with them;

• Social effect of technologies (SOC) – cognitive, legal,
ethical, cultural, integral aspects of information and
communication technologies;

• Informatics and information technology puzzles (PUZ)
– logical games, mind maps, used to develop technology-
based skills.

This classification considers the tasks from the students’
(or the “normal task-solver”) point of view. Although other
themes are not excluded, the contribution of CT concepts to
Bebras topics is considerable. In this report we will classify
Bebras tasks with respect to these CT concepts in order
to analyse the Bebras contribution to the implemention of
computer science in K–9 education.

3. K–9 CURRICULA AND GUIDELINES

Introduction
In this section we summarize the state of affairs of various
curricula in a number of countries. We a number of model
curricula in order to identify the key CS concepts and learn-
ing outcomes that are commonly agreed upon as part of
early (primary and lower secondary) general education at
different levels.

For countries having a fixed curriculum the description
is of course easier and shorter while countries not having a
compulsory general model need a more articulated descrip-
tion to take care of some meaningful scenarios.

Australia
In 2009, the Australian and State Governments decided to
develop a joint curriculum (at that point each state had
its own version) and a final consultation draft was released
in 2012. The integration of the state curricula happened
quickly in core subjects (English, Mathematics and Science)
which were implemented in 2012-13. In 2014-15 they ex-
tended the implementation to Languages, Arts and Social
Sciences.

Up to this point, the only computing content in the school
curricula was in the IT electives subjects in high school.
However, the Australian curriculum introduced computing
at primary level (influenced by UK developments). The “F–
10 Australian Curriculum: Technologies”, where F-10 stands
for “from Foundation to 10 grade”, was fully developed and
published on the Australian Curriculum website 2 by the
end of 2013 as ‘Available for use; awaiting final endorsement’
and Australian states and territories can use the curriculum,
as they choose. This curriculum describes two distinct but
related subjects:

• Design and Technologies, in which students use de-
sign thinking and technologies to generate and produce
designed solutions for authentic needs and opportuni-
ties. For example, students may explore how to build
a bridge, or design a basic tool.

• Digital Technologies, in which students use computa-
tional thinking and information systems to define, de-
sign and implement digital solutions. For example,
students may do an animation or design a web page.

We should note that Digital Technologies was the only
new subject, but with limited hours allocated to it, it is
expected it will be taught in combination with other topics.
Relating to Computer Science, learning development from
F-10 supports the understanding of the utility of technology,
as well as the development of problem solving skills and an
abstract understanding of Computer Science.

2http://www.australiancurriculum.edu.au/
technologies/rationale



The Curriculum content descriptors are organised around
a series of Year level ‘bands’, from Foundation to Year 10.
The development of both digital literacy and computational
thinking commences in the F-2 band. In F- 2 (5 to 8 years
old), learning is based around developing an understanding
of the relationship between real and virtual worlds, the use of
technology in communication and the importance of precise
instructions (logical sequencing) and simple problem solving
in the digital world.

In Years 3-6 (8–12 years old), students are guided to de-
velop a wider understanding of the impact of technology, in-
cluding family and community considerations, and are able
to work on, and communicate about, more complex and
elaborate problems and projects. From Year 3, i.e. 8 years
old, students are introduced to visual programming lan-
guages, such as MIT’s Scratch.

Across Years 7-10 (12 to 16 years old), students move be-
yond their initial community and are required to consider
broader ethical and societal considerations. In this band,
students should be able to solve sophisticated problems us-
ing technology, and develop an understanding of complex
and abstract processes. From Year 7, students are intro-
duced to general-purpose programming languages, such as
Python and JavaScript (this is what the document recom-
mends but in practice this is not happening yet, and teachers
using high level languages are usually engaged IT teachers
which have used Scratch in years 6-8 and have a small group
of keen students in level 9-10).

We should note adoption and implementation was patchy
in 2014 but most primary schools have started to explore
implementation in 2015.

Finland
In Finland, CS was part of the upper secondary curricu-
lum (grades 10–12) until the early 2000s, but was then com-
pletely removed. Instead ICT was to be integrated in all
subjects. Here we use ICT as a synonym of the expression
digital literacy as it was defined in the ACM & Informat-
icsEuropeReport, 2013. Quite naturally, this ICT shift re-
sulted in a heavy focus on using computers and tools instead
of CS aspects, as teachers were not used to or trained in the
latter.

In 2016, Finland will get a new national curriculum for
general education (grades 1–9), where special attention has
been paid to recognizing future competence needs. The cur-
rent draft emphasizes the need for students to acquire basic
knowledge about ICT and its development and effects on dif-
ferent areas of our society. More specifically, the following
skills are mentioned:

• Understanding central concepts and principles of how
ICT works and is used and learn how to use ICT for
creating artifacts of their own. Programming is explic-
itly included in mathematics education, starting with
students giving instructions to each other in grades 1–
2, gradually moving towards graphical programming
environments in grades 3–6 and using programming
languages in grades 7–9. Programming should, how-
ever, not only be limited to mathematics, but also be
integrated in other subjects.

• Using ICT in responsible and safe ways

• Using ICT to look up information, which is clearly
related to data collection and analysis.

• Using ICT for communication and networking.

In addition to these ICT-related skills the draft also high-
lights several general and cross-curricular skills that can be
related to CT abilities:

• Looking up, evaluating, modifying, producing and shar-
ing information and ideas. Here exploratory and cre-
ative ways of working are considered important as they
facilitate practice of these skills.

• Viewing and critically analyzing things from different
perspectives.

• Being open to new solutions, using their imagination
and combining different perspectives in order to find
innovative solutions.

• Learning new things through e.g. play, games, physical
activity and experiments.

The upcoming introduction of programming in the core
curriculum has resulted in different initiatives facilitating
and supporting this reform. For instance, a teacher guide
called Koodi2016 (Code 2016) was published in early June
2014 with both state and industry support [58]. The Min-
istry of Culture and Education supports STEM education
for 6-16 year olds through a six-year long project (LUMA
SUOMI), in which programming plays an important role.
The National Board of Education, which is in charge of
the curricula reform, provides funding for professional de-
velopment aimed at in-service teachers as well as projects
related to the use of programming environments and tools
in schools.

As for now, there is no particular focus on including CT
aspects, computing, or programming in pre-service teacher
training. Given the upcoming reform, this will have to be
changed to make sure that newly graduated teachers have
the knowledge and skill set needed to confidently teach the
required curriculum.

Italy
Since 2007, the Italian school system is undergoing a broad
reform process, some aspects of which remain to be final-
ized. The reform is meant to change both the educational
approach and the curricular organization.

The duration of compulsory education in Italy is now up
to 16 years of age. For the grades K–9, CS and digital tech-
nologies are not in the scope of a specific subject (though
for grades 6-8 there should be an emphasized presence of in-
formatics activities in the subject called Technologies). The
national curricular recommendations state that these con-
tents should pertain to two rather broad areas:

• A cross-disciplinary key citizenship digital competence
area: proficiency and critical attitude in the use of
ICTs for work, life, communication; use of computer
to retrieve, assess, retain, produce, present, share in-
formation as well as to cooperate through the Internet.
This area spans over the whole period of compulsory
education. (The Italian Ministry for Education has in-
deed adopted the “Recommendation of the European
Parliament and of the Council” of 12/18/2006 on key
competences for lifelong learning – 2006/962/EC.)



• A general technology subject area, that includes the use
of the most common ICT tools and, “if possible,” some
computer and/or robot programming: proficiency and
critical attitude toward the psychological, social and
cultural impact of ICTs; if possible, introduction to
programming with simple languages, to create and de-
velop projects.

The reference to programming and robots is an attempt to
acknowledge several (seemingly) successful experiences pro-
moted by enthusiastic, self-motivated (as well as self-taught)
teachers.

An independent informatics subject, taught by qualified
teachers, is included in the first year (grade 9) or in the
first two years (grades 9–10) in the curriculum of scientific
and technical secondary schools. As to the basic compe-
tences at the end of compulsory instruction for the scientific-
technological area, the national recommendations just state
that “[...] beyond the mastery of ICT tools, often acquired
out of the school, it is necessary to develop a critical attitude
[...] w.r.t. their social and cultural impact, some awareness of
the relational and psychological implications of the way they
are used, as well as of their effects for the environment and
health; this crucial educational task is to be shared among
the different disciplines” and that “whenever possible, stu-
dents can be introduced to simple and flexible programming
languages in order to develop a taste for creation and for the
accomplishment of projects (interactive web sites, exercises,
games, utility applications) and in order to understand the
relationships between source code and resulting behavior.”

According to the general framework of the education of
pre-service teachers, drawn in 2010, prospective primary
school teachers, as well as middle school teachers of mathe-
matics and sciences and of technology, will learn only some
very basic digital literacy and are not prepared to properly
deal with CS fundamental concepts.

For K–9 education a novelty is a three years ministerial
project “Program your future” launched in September 2014
that has two main objectives:

1. to “provide schools with a set of simple, playful and
easy-to-access tools in order for the students to learn
basic computer science concepts” and

2. to“experiment the structural introduction of basic com-
puter science concepts in the schools through program-
ming” in a playful context this being the simplest and
most enjoyable way to develop computational think-
ing. The activities are for a large extent code.org ac-
tivities enriched with an online assistance big effort
where CS-teachers in secondary schools are volunteer
in assisting their colleagues in K–9 education. The
project’s “ambition is that education in computational
thinking will be introduced” as a curricular school sub-
ject.

Lithuania
In Lithuania CS is called Informatics(informatika). As a
part of the Education Reform in 1997, the Informatics core
curriculum went through a major revision and it was ex-
panded from teaching two years to four years (34 hours per
year, in total 136 hours) with more focus on application
and the processing of information (mainly, text processing,
spreadsheets, simple computer graphics program).

Themes Hours Subjects is inte-
grated into

Introduction to com-
puter application

10

Principles of computer
use

6

Drawing with computer 4 Art:10
Text and keyboard 14 Mother tongue:10
Internet and electronic
mail

10 Mother tongue:4;
Foreign language:10

Modeling with Logo 24

Table 1: Distribution themes and time for 5–6 grades

Grades 9–10 Basic topics
Elements of
algorithms and
programming

Conception of algorithm, ways of writ-
ing; Programming languages, compil-
ers; Preparation of algorithms, coding
and running the program;
Dialog between program and user; En-
tering and output of data, printing
formats; Main actions of algorithms:
assignment, loop; Simple data types;
Stages of program development; Con-
trol data and correctness of program;
Programming style and culture; Sim-
plest algorithms and their program-
ming.

Table 2: The optional module on programming for grades 9–
10

Since 2005, the main attention in Lithuanian schools is
being paid to satisfy user’s needs and to develop computer
literacy. Subject title “Informatics” was changed to “Infor-
mation Technologies”.

Teaching of the basics of informatics as a mandatory part
has been reduced by this change of focus. Students get fa-
miliar with the basic knowledge on informatics in grade 5
or 6, when they have a Logo or Scratch course (see Table 1)
and in grades 9 and 10 with focus on understanding simple
algorithms and coding. The teaching process in Lithuania
depends very closely on the knowledge and activeness of the
teachers themselves.

There are three optional modules for grades 9 or 10: Pro-
gramming, Web design and Desktop publishing. Only the
first module is focused in CS concepts. This 34-hours mod-
ule on introducing algorithms and programming has been
implemented for grades 9 or 10 in high school. The course
is aimed at summarizing and systematizing students’ knowl-
edge on algorithms and drawing attention to their applica-
tion and programming (see Table 2).

Netherlands
In the Netherlands, educational objectives are described in
rather general terms, and schools have the discretion to inde-
pendently implement the objectives in the classroom. Often
there are guides containing detailed interpretation of the ob-
jectives, but it is not compulsory to comply with them. In
practice, publishers interpret the core objectives and pub-
lish textbooks which are used as a basis for the teaching
activities.



The learning objectives for primary education (ages 4–
12) are summarized in 58 general core objectives describing
goals for the Dutch, Frisian, and English languages, arith-
metic/math, world and personal orientation, arts and phys-
ical education [52]. Only 10 of these objectives contain as-
pects of CT, for example, as follows:

Dutch language:
4. Students learn to find information in informative and

instructive texts, including schemes, tables and digital re-
sources 6. Students learn to order (rank, arrange) informa-
tion and opinions when reading school and study texts and
other instructive texts, and when reading other systemati-
cally ordered sources, among others digital sources

Arithmetic/math:
24. The students learn to solve practical and formal math-

ematical problems and to clearly demonstrate their reason-
ing

World and personal orientation:
Where possible, these learning objectives should be com-

bined with other learning objectives. For example, consider
[...], measuring and processing information in, among other
things, tables, timeline and charts (arithmetics/math), [...],
but in particular, (45.) students learn to develop, design,
implement/execute and evaluate solutions to technical prob-
lems.

The learning objectives for grades 7–9 are summarized in
58 general core objectives describing goals for the Dutch and
English languages, arithmetic/math, man and nature, man
and society, arts and culture and movement and sports.

Similarly to primary school, ten of these objectives contain
some aspects of CT and these are discribed in similar terms.

Computer Science (called Informatica in the Netherlands)
is an elective subject in grades 10–12 of HAVO (senior gen-
eral secondary education which spans grades 7– 11 and pre-
pares students for higher professional education), and VWO
(pre-university education which spans grades 7–12 and is
geared towards further education at a university).

Recently, initiatives have been employed to explore the
possibilities of introducing elements of Computer Science
into K-9 education [81].

UK/England
In England a Programme of Study for a new subject in the
curriculum, Computing, was unveiled in September 2013,
after a period of consultation following the disapplication
of the previous ICT curriculum in January 2012. This was
implemented as part of a revised National Curriculum for all
subjects in September 2014. The changes in England have
been well documented recently, for example [13, 14].

The Computing curriculum for England has the following
aims:

Students:

• can understand and apply the fundamental principles
and concepts of computer science, including abstrac-
tion, logic, algorithms and data representation

• can analyse problems in computational terms, and have
repeated practical experience of writing computer pro-
grams in order to solve such problems

• can evaluate and apply information technology, includ-
ing new or unfamiliar technologies, analytically to solve
problems

Key Stage 1 2 3 4 5
Grades (US) K1 K2–5 K6–8 K9–10 K11–12

Table 3: Key Stages

• are responsible, competent, confident and creative users
of information and communication technology (DfE
2014)

The new National Curriculum is interesting itself as it
is so short and there is no ‘fleshing out’. Assessment lev-
els have been removed. Education is very political in the
UK. The philosophy of the government is around increasing
teacher autonomy by being less prescriptive about how the
curriculum is interpreted (in all subjects).

Computing has three elements: computer science (first
two bullet points), IT (third bullet point) and Digital Lit-
eracy (fourth bullet point). One of the issues of the im-
plementation of this curriculum is how to incorporate all
three elements seamlessly. The three elements of Comput-
ing emanated from the Royal Society Report, Shut Down or
Restart [37]. There is a strong emphasis towards computa-
tional thinking in the programme of study.3

Our curriculum is implemented in Key Stages. The rela-
tionship with other countries’ grades system can be seen in
Table 3.

There is a need for teacher development around the new
curriculum because the introduction of a new subject has
coincided with a political move towards a much less detailed
curriculum.

The Computing curriculum in England is based on and
heavily influenced by the Computer Science curriculum doc-
ument produced by Computing At School in 2012, which
was the result of two years’ work by Computing At School
(CAS) members around what should be taught in school if
Computing was ever introduced. At the time of writing this
none of the members of CAS ever dreamt that this would
actually become a reality. The speed of change has been
remarkable.

Scotland, Northern Ireland and Wales have their own Ed-
ucation departments and their own curricula. Scotland and
Northern Ireland have their own awarding bodies. Scotland
has a Computing Science curriculum which it has had for
many years although this was reviewed and a new curricu-
lum launched in ???2010?. Scotland’s curriculum is very dif-
ferent to the English curriculum, whereas Wales and North-
ern Ireland teach ICT.

United States
There is no national curriculum for K-8 computer science in
the U.S., in part because the curricular standards have to be
approved at the state level. Many states in the U.S. follow
the Common Core Standard4. The Common Core includes

3The programme of study can be found
in full (it only runs to 3/4 pages), at
https://www.gov.uk/government/publications/
national-curriculum-in-england-computing-programmes-of-
study/
national-curriculum-in-england-computing-programmes-of-
study
4http://www.corestandards.org/



standards for English and math5 and in those standards
there are mentions of technology literacy and mathemati-
cal reasoning skills that could be considered computational
thinking. Details of this were provided in the working group
report from 2014.

There are several groups that have worked to put together
curricula for K–12 that could be used by U.S. teachers. The
CSTA and Code.org are among the groups. Code.org has
put together materials for K–56 as well as teacher training
opportunities. They also have training opportunities and
modules for CS in science and CS in math at the middle
school level available7. The materials are intended to be
aligned with the Common Core to make them more accessi-
ble for teachers. The CSTA materials are less detailed and
include articles and activities developed for K–88.

There is a national standard of sorts at the high school
(9–12) level in the form of Advanced Placement computer
science. As of 2016 there will be two AP computer science
classes (one in Java programming and the other called CS
principles that includes a lot of CT). Both offer students
who complete the classes and earn a high enough grade on
the associated test college credit.

4. AIM OF THE STUDY
In the analytic part of this study we investigate K–9 edu-

cation from three curriculum perspectives (cf. [42, 84]). We
will review the intended computing curriculum expressed in
K–9 standards and curricula recommendations. Moreover,
we will investigate the curriculum as it is actually imple-
mented, by exploring the concepts covered in practice. Fur-
thermore we address what is (provably) attained, by analyz-
ing assessment practices in schools. Finally we investigate
Bebras tasks, in particular is to identify which concepts they
address and what type of assessment is involved.

Our research questions were as follows:

1. Which concepts and ideas are present in K–9 curriculum
documents?

2. Which concepts and ideas are taught in practice? Which
assessment practices are used?

3. Which concepts are assessed in Bebras tasks? How can
the assessment format of these tasks be characterized?

We have addressed these questions in an exploratory case
study involving curriculum documents from England, the
United States and Italy, teachers from England and Italy,
and Bebras tasks from the contests between 2010 and 2014.

5. METHOD
In this exploratory study, we have analyzed the concep-

tual content of curriculum documents and teachers’ school
practice, as well as the ways this content is assessed in school
practice and the Bebras competition. To this end, we per-
formed a document analysis, conducted interviews with K–9
teachers, and completed a conceptual analysis of a collection
of Bebras tasks.

We will describe our method in more detail below, orga-
nized by the data sources used.
5http://www.corestandards.org/read-the-standards/
6http://code.org/educate/k5
7http://code.org/educate/curriculum
8http://csta.acm.org/Curriculum/sub/CSK8.html

Curriculum documents
In order to analyze the concepts and ideas, we constructed
a classification of computer science subjects into knowledge
categories. Our classification is based on the ‘knowledge ar-
eas’ in the ACM/IEEE Computer Science Curricula report
[83]. Although these guidelines are meant for higher edu-
cation, the description of the content areas is useful for our
classification, since they contain a recent overview of the
field, certainly covering the secondary school topics. More-
over the ACM/IEEE document contains detailed specifica-
tions of the knowledge areas, which was valuable in the cod-
ing process.

We have clustered the knowledge areas into a conveniently
small number of categories suitable to classify CS content
for secondary education, providing enough detail to distin-
guish variations in content. This approach has proved to be
useful in analyzing teachers’ survey responses with curricu-
lum suggestions [3] and analyzing curriculum guidelines [78].
Our classification differs only slightly from the one used by
Barendsen et al. [3].

Table 4 gives an overview of the knowledge categories,
referring to the ACM/IEEE document for more detailed de-
scriptions. Note that the knowledge area Software Develop-
ment Fundamentals (SDF) is spread over four categories.

The documents analyzed in this preliminary report are

• CAS curriculum, K–9 part

• CSTA curriculum, K–9 part

• English (EN) national curriculum, K–9 part

• Italian (IT) guidelines, K–8 part

For comparison purposes, we also looked at the French and
Dutch national curricula for grades 9-12, as these countries
don’t have any formal K–9 programme or informal guidelines
for K–9 CS education.

In the first phase, each document was subjected to open
coding [20], extracting literal concepts and ideas from the
curriculum texts. In the second (more axial, cf. [20]) cod-
ing phase similar codes were merged into one, slightly more
abstract, code. Then the resulting codes were grouped into
the general knowledge categories mentioned earlier.

For the coding of the CAS and CSTA documents we have
made use of on Steenvoorden’s [78] work.

To get a global idea about the focus of the documents, we
looked at the number of occurences of codes in each category.
We view the distribution of occurences over the categories
as an indication of the relative importance of the categories.
We then explored the document contents through a more
detailed analysis of the documents with respect to selected
categories, using the frequencies and codes as pointers to
relevant text segments.

Teacher Interviews
The aim of this part of the study was to establish some
pointers to the nature of the implemented curriculum and
the achieved curriculum, by conducting a small number of
interviews about teachers’ practice in terms of some of the
concepts and ideas and also their assessment strategies with
reference to these concepts.

To draw on some concrete and detailed examples, we de-
cided to conduct a small number of interviews with practis-



knowledge cat-
egory

included ACM/IEEE knowledge areas

Algorithms Algorithms and Complexity (AL)
Parallel and Distributed Computing
(PD)
Algorithms and Design (SDF/AL)
Remark: concepts about data struc-
tures are covered by Data

Architecture Architecture and Organization (AR)
Operating Systems (OS)
System Fundamentals (SF)

Modeling Computational Science (CN)
Graphics and Visualisation (GV)

Data Information Management (IM)
Fundamental Data Structures
(SDF/IM)

Engineering Software Engineering (SE)
Development Methods (SDF/SE)
Remarks: contains also ideas on col-
laboration; concepts without an engi-
neering component are covered by Pro-
gramming

Intelligence Intelligent Systems (IS)
Mathematics Discrete Structures (DS)
Networking Networking and Communication (NC)
Programming Programming Languages (PL)

Platform Based Development (PBD)
Fundamental Programming Concepts
(SDF/PL)

Security Information Assurance and Security
(IAS)
Remark: concepts about privacy are
covered by Society

Society Social Issues and Professional Practice
(SP)

Usability Human-Computer Interaction (HCI)

Table 4: Knowledge categories for curriculum analysis

ing teachers, using the well-established Content Representa-
tion (CoRe) methodology [60], originally intended to iden-
tify aspects of pedagogical content knowledge [76]. For this
exercise, it was important to focus on teachers where there
was an actual curriculum in place at K–9; we surmised that
working with a small number of teachers who were actively
engaged with teaching Computing with this age group was
important to compare with what has been identified earlier
in the intended curriculum.

Based on the analysis of curriculum documents, we se-
lected three knowledge areas to focus on for the purpose of
our interviews: Algorithms, Programming and Security.

Following the CoRe methodology [60], for each of the cho-
sen categories, we presented the teacher with the concepts
found in the preliminary analysis. The English teachers were
asked to indicate which of these appear in their lessons and
to select three concepts from these (or other“big Ideas”). On
the other hand, the Italian teachers were asked to indicate
up to three “big Ideas” for each of the selected categories,
possibly drawing them from the concepts found in the cur-
ricula.

The CoRe methodology uses 8 questions for a concept to
determine the nature and extent of a teachers’ pedagogi-
cal content knowledge (PCK). Because the focus of the re-
search was on concepts and assessments only, we considered
only learning goals (questions 1–3) and assessment (question
8). We therefore omitted questions 4–7 which directly asked
about teaching. Thus, our questions were the following:

CoRe Question 1: What do you intend the students to
learn about these concepts?

CoRe Question 2: Why is it important for students to
know this?

CoRe Question 3: What else do you know about this
concept (that you do not intend stu-
dents to know yet)?

CoRe Question 8: Specific ways of ascertaining stu-
dents’ understanding or confusion
around this idea.

Given the small number of teachers that could realistically
be interviewed, it was not possible to achieve a representa-
tive sample. Indeed, the K–9 range has many age groups,
and it is likely to be the case that teachers have different
levels of content knowledge about computing. Instead, in
this small-scale study we focused on two different national
frameworks and interviewed a group of teachers with teach-
ing experience covering a reasonable range of age groups.
This in-depth approach provided a means to explore prac-
tices, issues and problems, and allowed us to test our PCK-
based elicitation method.

England was chosen for one group of teachers because the
Programme of Study for Computing [30] (DfE, 2013) has
been taught in schools across England since at least Septem-
ber 2014 and teachers can speak directly about their practice
in delivering the intended curriculum. Italy was chosen as
an alternative curriculum because there are teachers with
experience of teaching at this level, despite the Informatics
curriculum not being mandatory.

We interviewed the following teachers.
In England:

• 1 KS1 teacher (Grades K-1);

• 3 KS2 teachers (Grades 2-5);



• 1 KS3 teacher (Grades 6-8).

In Italy:

• 3 elementary school teachers (K-5);

• 3 middle school teachers of Mathematics and Science
(K6-8), one of whom is also teaching computing topics
in primary school;

• 2 high-school teachers, one with experience of teach-
ing in elementary and middle school, the second being
involved for several years in teacher training as well as
in (K-13) educational projects.

In England the interview processes followed the ethics
guidelines of the British Educational Research Association
[12]. Teachers took part in interviews voluntarily and were
provided with full information with respect to the study and
use of their data. They gave permission for audio recordings
to be made and transcribed. In Italy the process has been
less formal, but also the Italian teachers accepted voluntarily
to participate in the interviews and had essentially the same
preliminary information about the study and our approach.

The interview transcripts were coded using the concepts
identified in the curriculum comparison analysis. This was
not done using an inductive analysis but we allowed our-
selves to add new codes where necessary. With regard to
coding for themes related to assessment we used an induc-
tive coding approach.

Bebras Task Analysis
For this report we considered Bebras tasks between 2010
and 2014. We obtained all of the recommended and elective
tasks for each of those years, and the following table shows
the total number of tasks by year as well as the breakdown
by level of task relevant to this report.

Year Total tasks Level 0-II
2010 139 65
2011 126 99
2012 124 84
2013 150 120
2014 129 101
All 668 469

All tasks from the five years have been analysed.
In this work we are interested in considering two things

regarding the Bebras tasks:

• What type of concepts are assessed in the tasks?

• What type of assessment is used in the tasks?

Because of the recent interest in computational thinking
we focus on using CT terms to classify the Bebras tasks,
and that analysis is presented in this section. Regarding as-
sessment it is important to keep in mind that the Bebras
tasks are multiple-choice questions. Using multiple-choice
questions to assess CT concepts can be challenging so we
consider the issue of how the Bebras contest organizers have
structured the questions. We focus on the CT concept of
algorithms in particular and classify the structure of ques-
tions addressing that concept. The final section presents
the results of our analysis of the structure of Bebras tasks
involving algorithms.

CT concepts classification
The definition of the expression CT used in this report is
the one developed together by the International Society for
Technology in Education (ISTE) and by the American Com-
puter Science Teachers Association (CSTA), suitable for use
in K–12 education. This definition of CT identifies nine es-
sential concepts: data collection, data analysis, data repre-
sentation, problem decomposition, abstraction, algorithms,
automation, parallelization and simulation. Skills related
to these concepts “are not limited to CS or STEM but can
be practiced and developed within all disciplines, which is
crucial for broadening participation” [63].

When classifying the type of CT found in each Bebras
task, we used a deductive process. The concepts as defined
by the ISTE and CSTA were used as the starting point of an
analyic coding procedure (cf. [20, 40]). Team members in-
dependently coded each Bebras task using one of the terms.
This coding was then reviewed by another team member,
who marked any disagreements regarding the classification.
The disagreements were discussed until the conflicts could
be resolved. The result of the discussion was the production
of an operational definition of each CT term. Table 5 gives
for each CT concept a short operative description used to
identify where the concept applies in particular Bebras tasks.

It should be noted that the operational definitions we use
are in some cases identical or nearly identical with the in-
formation provided by the CSTA and the ISTE. In some
cases we provided more elaboration on the concepts, which
may have extended the problems to which the terms can be
applied. There were no problems that introduced CT termi-
nology not represented in the CSTA and ISTE document.
However, it should be noted that Bebras tasks sometimes
address pure ICT literacy, and those questions were marked
as such.

Question structure classification
In classifying the structure of Bebras tasks we focused on
tasks that were labeled with the CT category of algorithms.
There were several reasons for this. First, the term is a
broad one that allows the inclusion of a variety of tasks.
However, since so many Bebras tasks involved algorithms in
one form or another, it was necessary to limit the scope of the
classification in order to be feasibly completed. We therefore
limited our classification to Bebras tasks that involved only
the category of algorithms. Tasks that were classified with
multiple CT terms were not considered.

We used an inductive process when considering the struc-
ture of Bebras tasks involving purely algorithms concepts.
A member of the team read each task in the relevant years
and produced a classification for the questions, including a
description for the classification. The classification scheme
was discussed with other team members and slightly refined
before all of the tasks were classified, see Table 6. The clas-
sification of each relevant task was completed by one team
member and then reviewed by at least one other team mem-
ber. Conflicts were resolved during a discussion period be-
fore the final classification for the task was determined.

6. RESULTS: CURRICULUM DOCUMENTS
The distribution of code occurrences found in the docu-

ments is displayed in Table 7.
These absolute numbers reflect the respective sizes of the



CT category CSTA and ISTE (2011) Operative definition for Bebras
Data collection Collect data from and exper-

iment; find a data source for
a problem area.

Find a data for a problem area.

Data analysis Write a program to do ba-
sic statistical calculations on
a set of data; analyze data
from an experiment.

Take data and transform it to solve a problem. Often
there is some statistical analysis involved in the transfor-
mation, although the statistics do not have to be sophis-
ticated.

Data representation Use data structures such
as array, linked list, stack,
queue, graph, hash table,
etc.

Take data and put it into a specified format. Includes
descriptions of data that involve particular structures. It
may involve understanding the implications of graphs or
other representations on the solution of a problem.

Problem decomposition Define objects and methods;
define main and function.

Breaking a problem or task into smaller pieces to enable
an easier or better solution.

Abstraction Use procedures to encapsu-
late a set of often repeated
commands that perform a
function; use conditionals,
loops, recursion, etc.

Problems that ask for the creation of a formula. The
distillation of broader ideas out of narrower concepts.
Finding rules that apply to a given problem. Finding
a pattern to model some behavior. Identifying essential
facts about a structure or problem to verify correct an-
swers.

Algorithms & procedures Study classic algorithms;
implement an algorithm for
a problem area.

Solving maximization, minimization, or other optimiza-
tion problems. Following a step-by-step procedure. Ver-
ifying potential solutions as valid or invalid. Encoding
or encryption/decryption problems, including the appli-
cation of an encryption scheme to a sample set of data.
Debugging solutions and finding errors in a solution. Ap-
plying a set of rules to determine specific values. Choos-
ing or verifying pseudocode or code.

Automation No information specified. No instances found.
Parallelization Threading, pipelining, di-

viding up data or task in
such a way to be processed
in parallel.

Scheduling problems.

Simulation Algorithm animation, pa-
rameter sweeping.

Tasks that are interactive and involve building and ex-
ploring a solution.

Table 5: Operative description of CT concepts in Bebras tasks.



Question struc-
ture

Description

Constraint A description of some rules (possibly
with a diagram about the rules) and the
addition of a constraint on those rules
along with a listing of possible scenarios
that achieve that constraint

Formula identi-
fication

A description of a problem that in-
volves a formula and a question that
asks for a specific answer involving the
underlying formula

Optimization A set of rules (and possibly a diagram
relevant to those rules) along with a op-
timization question (minimize or maxi-
mize) and then a listing of possible val-
ues

Ordering A list of objects and properties of ob-
jects with a definition of the relation-
ship between those properties and then
a listing of possible orderings of the ob-
jects

Procedures A set of procedures and a situation
involving the procedures along with a
goal to achieve or a set of commands
given and then a listing of the possible
ways the goal can be achieved or the re-
sults that the commands produced. It
may involve debugging the procedures

Sequencing A description of a situation along with
a sequence of actions that occur in that
situation and then a list of possible re-
sults of the sequencing

Verification A description of a problem and then a
listing of possible solutions to the prob-
lem with a request to verify which is
correct/incorrect

Table 6: Classification categories for Bebras tasks.

K–9 K–9 K–9 K–9 9–12 9–12
CSTA CAS EN IT FR NL

Algorithms 14 36 15 16 13 13
Engineering 13 13 1 0 4 10
Architecture 12 26 5 3 14 13
Society 10 2 3 3 5 0
Programming 9 17 7 6 15 3
Intelligence 6 1 0 0 2 0
Modelling 6 0 2 3 0 2
Mathematics 5 1 1 8 8 0
Security 5 2 1 1 0 1
Data 2 24 7 13 28 12
Graphics 2 0 0 0 4 0
Networking 2 32 7 0 14 4
Usability 1 0 1 0 0 3
Rest 0 0 0 0 1 4
Total 87 154 50 53 108 65

Table 7: Occurrences of codes within the knowledge cate-
gories

K–9 K–9 K–9 K–9 9–12 9–12
CSTA CAS EN IT FR NL

Algorithms 16% 23% 30% 30% 12% 20%
Engineering 15% 8% 2% 0% 4% 15%
Architecture 14% 17% 10% 6% 13% 20%
Society 11% 1% 6% 6% 5% 0%
Programming 10% 11% 14% 11% 14% 5%
Intelligence 7% 1% 0% 0% 2% 0%
Modelling 7% 0% 4% 6% 0% 3%
Mathematics 6% 1% 2% 15% 7% 0%
Security 6% 1% 2% 2% 0% 2%
Data 2% 16% 14% 25% 26% 18%
Graphics 2% 0% 0% 0% 4% 0%
Networking 2% 21% 14% 0% 13% 6%
Usability 1% 0% 2% 0% 0% 5%
Rest 0% 0% 0% 0% 1% 6%

Table 8: Distribution of codes over the knowledge categories
(relative frequencies)

documents. For example, the English national and Italian
documents are written in a more compact style than the
CAS curriculum. Table 8 gives the relative weights of the
respective categories.

The distribution of concept occurrences for the K–9 doc-
uments is visualized in Figure 1.

The global concept distribution suggests that all four K–9
documents give substantial attention to algorithmic aspects,
especially CAS, EN and IT. Programming is seen in the doc-
uments in comparable fractions. The enigineering aspect is
absent in the Italian guidelines, and does not play an impor-
tant role in EN either. CSTA seems to have more emphasis
on societal aspects than the other two documents. Hard-
ware (architecture) and Networks receive relatively much
attention in the CAS curriculum, whereas the Mathematics
contribution in IT appears to be exceptionally substantial.
Societal aspects are not very prominent in CAS, in favour of
the more technical aspects (Engineering, Networks). These
categories appear to be the main differences between CAS
and EN.

Below, we will explore the Algorithms category in some
detail and discuss a selection of the other categories in a
more global way.

The codes assigned in this category during the second
phase are:

CSTA: algorithm, search algorithm, algorithm sharing, in-
struction set, abstraction, multiplicity, information sharing,
complexity, decomposition, instruction sequence, resource,
sort algorithm, parallelization.

CAS: input, instruction, task, sequence, steps, multiplic-
ity, repetition, problem solving, algorithm representation,
concurrency, ambiguity, decision, selection, component, ab-
straction, data processing, algorithm, output, precision, de-
composition, instruction set.

EN: abstraction, algorithm, data processing, decomposi-
tion, input, instruction, output, problem solving, repetition,
searching, selection, sequence, sorting.

IT: sorting, sequencing, plan description, order, problem
solving, procedures, decision trees, algorithmic procedures,
top down, problem solving trees, finding paths in graph,
algorithm, combinatorial algorithms, problem formalization,
problem decomposition.

The K–9 documents mention algorithmic building blocks
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Figure 1: Visualization of concept distributions.

(such as steps, sequence, choice, selection):
“Algorithms are sets of instructions for achieving goals,

made up of pre-defined steps” (CAS);
“Algorithms can include selection (if) and repetition (loops)”

(CAS);
“Describe and analyze a sequence of instructions being fol-

lowed” (CSTA).
Algorithms are connected with problem solving aspects

such as decomposition and abstraction:
“Problem formalization and problem decomposition into

subproblems” (IT);
“Use abstraction to decompose a problem into sub prob-

lems” (CSTA).
The CSTA and Italian document moreover indicate spe-

cific types of algorithms, such as searching and sorting:
“Act out searching and sorting algorithms” (CSTA);
“(. . . ) design of simple combinatorial algorithms” (IT);
“Simple algorithmic procedures (sorting, calculating, logi-

cal relationships in real situations)” (IT).
For the English national curriculum, searching and sorting

are optional subjects.
Finally, the CSTA and CAS curricula refer to paralleliza-

tion aspects:
“Describe the process of parallelization as it relates to prob-

lem solving” (CSTA);
“Computers can ‘pretend’ to do more than one thing at

a time, by switching between different things very quickly”
(CAS).

The Italian guidelines do not contain Engineering aspects
such as specifications, debugging and testing. The CAS
document appears to focus on ‘technical’ aspects such as
requirements, verification, and testing:

“Programs are developed according to a plan and then tested.
Programs are corrected if they fail these tests” (CAS).

The CSTA curriculum focuses on general aspects (design-
ing, evaluating) and emphazises development of artifacts in
a team:

“Problem statement and exploration, examination of sam-
ple instances, design, implementing a solution, testing, eval-
uation” (CSTA);

“Collaboratively design, develop, publish, and present prod-
ucts” (CSTA);

“(. . . ) using collaborative practices such as pair program-
ming (. . . )” (CSTA).

With respect to Programming, CAS, EN and CSTA men-
tion program elements like variables and control structures,
CSTA being the least elaborate of the three:

“The difference between constants and variables in pro-
grams (CAS)”

“(. . . ) work with variables” (EN);
“They can use a variety of control structures” (CAS);
“Implement problem solutions using a programming lan-

guage, including: looping behavior, conditional statements,
logic, expressions, variables, and functions” (CSTA).

The CAS curriculum points at different kinds of program-
ming errors:

“Understanding the difference between errors in program
syntax and errors in meaning” (CAS).

The Italian guidelines do not explicitly mention program
elements, but only contain suggestions on programming lan-
guage level: pseudocode and hypertext. None of the K–9
documents refers to the concept of recursion.

In the Data category, the CAS curriculum stresses the
distinction between data and information:

“There are many different ways of representing a single
thing in a computer” (CAS);

“Many different things may share the same representation”
(CAS).

The CSTA curriculum refers to representation details only
in the grade 9–12 part. However, K–9 students should be
able to:

“[. . . ] represent data in a variety of ways” (CSTA).
The Italian guidelines approach this category from the

point of view of application areas and users:
“Representation of knowledge: building and reading double-

entry tables” (IT);
“Simple notions about the digital representation of non-

textual information (sound, images, etc.)” (IT);
“Linguistic applications: inflection and concordance tables

(nouns and adjectives, articles and prepositions, articles and
prepositions)” (IT);

“Family trees” (IT).
Several aspects related to computer science and Society

are covered in the K–9 curricula. The CSTA curriculum is
most explicit, including technology impact, career, ethical
and legal issues, and privacy:

“Identify interdisciplinary careers that are enhanced by
computer science” (CSTA);

“Describe ethical issues that relate to computers and net-
works (e.g., security, privacy, ownership, and information
sharing)” (CSTA).

The CAS and English national curriculum refer to societal
impact in a more global way, including general keywords
such as ethics and privacy:



“Social and ethical issues raised by the role of computers
in our lives” (CAS).

“(. . . ) including protecting their online identity and pri-
vacy” (EN).

The Italian guidelines and English national curriculum
concern responsible use of the internet:

“Rules and guidelines for a responsible and correct use of
the information available on the web; netiquette for web nav-
igation and e-mail” (IT).

“(. . . ) recognise inappropriate content, contact and con-
duct, and know how to report concerns” (EN).

7. RESULTS: TEACHER INTERVIEWS

England
Teachers were asked for some basic information about their
teaching experience and then presented with a list of top-
ics taken directly from the Algorithms and Programming
sections of the National Curriculum (DfE, 2014) at KS1–
KS3. No questions were asked about security as this is not
included in the English Programme of Study in the form cat-
egorised as security within the ACM curriculum. There are
some elements of privacy and internet safety within the En-
glish Programme of Study that do not fall into the security
category as defined in the above section on curriculum. Ta-
ble 9 gives an overview of the teachers initially interviewed
in England. Between them they teach the whole K–9 cur-
riculum but none of them teachers all of it. They have a
variety of backgrounds in Computing. Anna, Beatrice and
Fiona are class teachers in primary school and teach Com-
puting as one of many other subjects; David is a Computing
coordinator in a primary school who teaches all the children
from 4–11 in the school, mostly team teaching with the class
teacher. Eliza is a secondary school teacher who has been
teaching Computing to children from 16–18 for 11 years and
has gradually introduced Computing lower down the school
over the last few years as the curriculum has changed.

Teachers were asked to look at a list of topics provided
from the Computing programme of study and asked to iden-
tify what they do and do not teach and this information is
shown in Table 9. They were also asked to select three topics
that they were happy to talk about in more depth, and these
are indicated by shading in the table. It would be expected
that Eliza teaches at least the bottom half of the list and
that Anna only teaches a few items from the beginning of
the list, as the list moves from KS1 to KS3. On the whole
this is true, although David claims to teach the material that
is in the curriculum for 11–14 year olds although he teaches
in a primary school. The curriculum includes the fact that
students should learn about computational abstractions at
Key Stage 2 (age 7–11) and some of the teachers were not
sure what this meant.

Teachers were asked to choose topics that they felt they
wanted, or felt confident, to talk about. Optionally they
were able to elect their own topics to talk about — fol-
lowing the idea of Big Ideas from the CoRe methodology
(Loughran et al, 2014). From the table it can be seen that
3 of the 5 teachers wanted to talk about creating simple
programs, and three out of 5 wanted to talk about either
debugging programs or detecting errors in algorithms. This
indicates firstly that these areas are those they feel they are
competent to talk about, but also has the side-effect of skew-
ing our data to be in the area of simple programming and

debugging. It is therefore not surprising that all teachers
then mentioned debugging when they came to asking them
the CoRe questions.

One of the teachers with a strong background in Comput-
ing chose her own areas — Decomposition and Algorithms
Design and Planning — as the ones she wanted to discuss,
according to the CoRe methodology.

When coding the data we used the codes that were al-
ready established by the examination of the curricula from
different countries. The teachers then responded to the ques-
tions in the areas that they had chosen and Table 10 shows
the occurrence of different themes in their data, once coded.
We added more categories as we came across them, but in
essence our new categories were around teachers’ beliefs and
practices relating to pedagogy (these are discussed later in
this section).

Teachers’ characteristics
The teachers interviewed had different backgrounds and at-
titudes towards the new curriculum.

Anna – Anna is an experienced teacher who not only
teaches her own class, but has also participated in national
initiatives to support primary teachers in England. Based
on her extensive experience as IT developer, Anna holds firm
beliefs on importance of teaching rigorous work flow, (rep-
resented by, e.g. the concept of decomposition) right from
the start in KS1 and KS2 where she teaches. For each prob-
lem, she wants her students to “slow down, break it up, and
look at each bit” rather than “just bash the buttons” or “just
do things”. She teaches her students concepts she considers
important for all of computing while considering what the
students will learn in subsequent key stages.

Beatrice – Beatrice is relatively new to teaching but en-
thusiastic about learning to teach Computing:

“As a new teacher I am still learning a lot about these
topics. I am the only teacher in my school who understands
anything about Computing so I don’t think there is a lot of
confidence around about teachers in schools.”

Beatrice does not know anything more about the subjects
she discussed than her KS2 students. When asked about the
importance of learning about these concepts, she reiterates
the importance of learning the computing concepts well and
emphasizes the importance for students to understand them
in order to be better equipped in their everyday life. She
does not refer to the computing curriculum as a whole and
the groundwork that is being laid in KS2 for the coming
computing education in subsequent key stages.

David – David is a specialist primary Computing teacher
who has responsibility for Computing teaching across the
whole school. The model adopted at his school is for him
to “team teach” with class teachers so that they can learn
to teach Computing from his model. He has expertise be-
yond what he is teaching the chldren and believes that an
important aspect of delivering the curriculum content is re-
silience children can potentially build up through learning
to debug. He also uses a range of assessment techniques to
try to capture the learning of the students.

Eliza – Eliza is an experienced Computing teacher who has
an industry background and has taught Computing up to
grade 12 for 11 years. Eliza has a clear picture of the whole of
the computing curriculum for all the key stages and beyond.
She intends to equip her students well for the learning and
understanding of computing in coming key stages and plans
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Age group taught 4-7 4-11 7-11 7-11 11-14 (18)
Computing knowledge (S/M/W) S M W W S
Hours teaching Computing/week 1 10+ 2–3 1 10+
Years teaching 10 6 2 10 11
Years teaching Computing 10 2 2 2 11

Algorithms
Implementing algorithms as programs Yes Yes Yes Yes Yes
Following precise and unambiguous instructions Yes Yes Yes Yes Yes
Using logical reasoning to explain how simple algorithms work Yes Yes Yes Yes Yes
Detect and correct errors in algorithms Yes Yes Yes Yes Yes
Design and use computational abstractions Yes Yes Not yet No Not sure
Understand key algorithms that reflect computational thinking
(eg sorting and searching)

Yes Yes Yes No Yes

Programming
Create simple programs Yes Yes Yes Yes Yes
Debug simple programs Yes Yes Yes Yes Yes
Use sequence in programs Yes Yes Yes Yes Yes
Use selection in programs No Yes No Yes Yes
Use repetition in programs Yes Yes Yes Yes Yes
Write programs that control physical systems Yes Yes No No Yes
Write programs that simulate physical systems Yes No No No No
Use two or more programming languages (one of them textual) No Yes No No Yes
Make appropriate use of data structures such as lists or arrays No Yes No No No
Use procedures and functions in programs No Yes No No Yes

Specific (Algorithms)
Decomposition (chosen by Anna) Yes
Algorithm Design and Planning (chosen by Anna) Yes

Table 9: What teachers do and do not teach in England.
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Total

ALG algorithm Y Y Y Y Y 5
ENG debugging Y Y Y Y Y 5
ALG instruction Y Y Y Y 4
PRO program Y Y Y Y 4
ALG decomposition Y Y Y 3
ALG output Y Y Y 3
ALG sequence Y Y Y 3
ENG correctness Y Y Y 3
ENG design Y Y Y 3
ALG logic Y Y 2
ALG precision Y Y 2
ALG problem solving Y Y 2
ALG repetition Y Y 2
ALG steps Y Y 2
ENG testing Y Y 2
PRO logic error Y Y 2
PRO syntax error Y Y 2

Table 10: The occurrence of different themes in teachers’ data
(England).

and designs her teaching accordingly. In her words, “I think
it is important that you don’t miss any foundations in their
training because that’s what creates the gaps.”

Fiona – Fiona is an experienced teacher who is relatively
new to Computing but is undergoing training to become
a primary Computing specialist. While Fiona considers it
important to teach her students good problem solving skills,
she is not sure as to what exactly to teach them: “I do
wonder whether debugging may change into creating the bugs
themselves, [. . . ] we have to be careful with what we are
equipping them with [. . . ] we have had children in the past
by the time they reach the end of Key Stage 2 have been able
to bypass certain security systems that we have in school.”
She believes children need to learn computing to be able
to understand technology rather than only use it. She does
not mention content knowledge beyond what she teaches the
students.

Themes
It can be seen in Table 10 that all five teachers discuss the
terms algorithm and instruction and talk about debugging to
some degree. In the next sections we look at some particular
themes emerging from the interviews in terms of concepts
teachers discuss under these headings:

• Algorithms

• Programming

• Debugging and the notion of correctness

Learning about algorithms
All teachers discussed algorithms at some level. For ex-
ample, with the youngest children, Anna described that
“the word algorithm has something to do with steps and in-
structions and getting something right.” For Anna, just the
familiarity with the word is what is needed at this early

stage. . .“so we talk about an algorithm for making a Lego
structure or making a drink. It’s a word that I’m trying to
get them to be aware of in their general vocabulary.” Anna
refers to the Bloom’s taxonomy and the importance of knowl-
edge and terminology as a lower-level skill for young chil-
dren.

With children who are slightly older, the teachers describe
that they use both the words algorithm and instructions and
ask children to show their understanding by being able to
identify the outcome of the algorithm: “so they need to be
able to understand what the algorithm is for, so what the
instructions are for, what the outcome is” (Beatrice).

David is the only teacher who linked the teaching of algo-
rithms directly to computational thinking:

“. . . how it helps with their computational thinking and how
it will help them see things more logically and be able to
develop their own algorithmic thinking better and all of those
sorts of things” (David).

At the secondary level, there is more expectation that chil-
dren should be familiar with algorithms for particular tasks
such as sorting and searching. Eliza describes a range of
algorithms that she introduces her students to, and is aware
that there are many different algorithms and that students
should try to understand them.

“So personally I would go quite slowly and do a lot of
different algorithms so I would do the Intelligent Piece of
Paper with the noughts and crosses and then sorts of things
like that. . . ” (Eliza).

Eliza then discusses established algorithms that she would
or would not introduce students to before the age of 14
(Grade 8):

“There are lots of nice searches and sorts in programming
that are quite structured and you can build from one to the
next one. . . I might do a binary search with a key stage 3
group if it was a quick group, but I might stick with the linear
search. Sorting – will do a bit sorting with them but nothing
complicated like quicksort algorithms or anything like that.
Probably I wouldn’t even go as far as a bubble sort just do a
simple insertion sort or something like that – with a pack of
cards” (Eliza).

Debugging and the concept of correctness
Debugging was mentioned frequently throughout the inter-
views. It is clearly a skill that teachers feel is important
for children to master. “They need to know what debugging
means, so debugging is obviously correcting the algorithm
and making the program correct so that it works correctly”
(Beatrice).

Teachers are also able to see the cross-curricular benefits
of being able to debug for other subject areas, and as a wider
skill, as shown in this comment by David: “And for me on a
child development level I suppose that’s a much bigger win,
that’s why debugging is a really useful thing for them to have”
(David).

The teacher teaching the youngest children, Anna, was
very enthusiastic about getting children to design and plan
before working and not tinker, and linked this to the diffi-
culties that teachers have with debugging:

“When I’m talking to teachers and they say it’s a night-
mare when it comes to debugging I ask them do you have
an algorithm for them to go back to? And they go ‘a what’”
(Anna).

Another of the primary teachers wants her students to



be able to understand an algorithm sufficiently to be able
to predict if it would or would not run — some notion of
correctness — and thus be able to debug before running:
“. . . before they run that code, be able to identify whether
there may be errors in it straightaway” (Fiona). The idea
of developing skills in predicting errors is commented on by
other teachers:

“I want children to be able to look at work, whether it’s
their own or somebody else’s, be able to see what the output
of it is and when there are errors be able to work back from
the output to be able to find the errors and hopefully correct
them. So there may be some logical errors in there, there
may be some syntactical errors and be able to tweak those so
that they can then get a program function” (David).

This is actually quite a difficult skill for the primary school
students to master, depending of course on the complextiy
of the algorithm; overall the emphasis on debugging and cor-
rectness can support children in developing some resilience
and ability to keep trying when something is not successful:

“And I see the debugging element of computing as a really
good way of developing their resilience and their determina-
tion skills” (David).

Programming
All teachers talked about programming at some level. For
the youngest age group, Jane talked about programming
robots such as the BeeBot. Other primary teachers men-
tioned children using Scratch from age 7–11, with secondary
school using a combination of Scratch and a text-based lan-
guage. Teachers are clear that programming is important,
as Lizzie comments: “I just think it’s important in this day
and age when everything is programmed that they understand
what it means and what goes on behind it in order for them
to understand the world around them” (Lizzie).

In terms of programming concepts, only one of the teach-
ers mentioned variables or assignment. One teacher chose to
talk about teaching sequence as a concept. Three teachers
said that they taught selection but only one mentioned it
in their interview. In contrast all teachers of all age groups
taught repetition, to some degree.

Teachers had some differing opinions on the extent to
which children should tinker and explore when learning pro-
gramming or whether they should always plan and design.
For example, Anna feels strongly that even young children
should design an algorithm before any hands-on work with
BeeBot or whatever tool they are using:

“That’s what I want them to learn: don’t just go for the
hacking. Sit back and have a little think about what you can
work out that you want it to do and how it might work. . . if
they’re in literacy they write a plan. In DT they do their
plan. In science they do a plan. Perhaps in art they don’t,
but even then we make them think about it. Why do we let
them do it in computing?” (Anna).

In contrast, Beatrice feels that exploring is a better way
for children to learn concepts such as repetition:

“We use repeat, we use forever — I give them the oppor-
tunity to experiment with the different ones. I think that
they should . . . be given an outcome and then they can figure
out what all the different coding and all the different colours
mean . . . only by just experimenting — otherwise — if they
don’t learn it themselves. . . that ‘forever means that that can
always keep happening’ — if they don’t experiment with that
— I don’t think I could just teach them like ‘Look you use
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Total

Observation Y Y Y Y Y 5
Open-ended task Y Y Y Y Y 5
Questioning Y Y Y Y Y 5
Giving buggy code Y Y Y Y 4
Screenshots of code Y Y Y 3

Table 11: Teachers’ assessment strategies (England).

Forever, this is what it means’ — they need to experience it”
(Beatrice).

However, Beatrice has been identified as having less con-
tent knowledge. Some teachers have developing content
knowledge as new primary teachers of Computing; the result
is that it is difficult for them to clearly express what chil-
dren learn with respect to programming with appropriate
technical language.

“. . . and they need to understand the coding, and how the
coding works, in all the different colours, to be able to create
the program, and understand how it works” (Beatrice).

Teachers working at primary school discuss visual envi-
ronments as a suitable tool for teaching programming, with
David reporting that he does not feel that text-based pro-
gramming is appropriate at primary school. At secondary
school, it is felt that text-based programming is more ap-
propriate, as Eliza reports: “So really at KS3 I want them
to be exposed to the syntax of a language, to be exposed to
the structures of a language” (Eliza).

However she explains that visual environments have their
uses at the beginning of secondary school as long as they are
taught with constructs that map easily on to a text-based
language.

Assessment
Teachers were asked, for each topic that they chose: “What
are the specific ways of ascertaining students’ understanding
or confusion around this idea.” A range of strategies were
suggested — we have summarised them as shown in Table
11.

As can be seen in the table all teachers talk about ob-
serving the children to find out how much they have learned
about algorithms and programming: “The ones that make
more progress are the ones who sit back and map it out. A
lot of it is just watching and giving them activities” (Anna,
teaching age 4–7). At all ages, observation is a key formative
assessment tool: “Just by going and looking at what they are
creating” (Beatrice, teaching age 7–11).

Another key mechanism being used to assess childrens’
progress is through talking to them, questioning them and
asking them to talk about their own progress:

“Talking to them. . . and saying what can you see that’s
working, which bits do you think are working and which bits
do you think aren’t working, why that might be and why do
you think and using some of those probing or open ended
questions can be quite a useful way of judging their under-
standing” (David).

“Asking them how they would code a program. How would
they put the algorithm and coding together to make some-



thing work. From asking them those questions I would defi-
nitely be able to identify whether they knew what they were
talking about, they would know the colours of instructions
that they would need to use. I think I could easily assess
them by talking to them about what they have created and
how they did it” (Beatrice).

Another strategy used is self and peer assessment: “I want
children to be able to look at work, whether it’s their own or
somebody else’s, be able to see what the output of it is and
when there are errors be able to work back from the output
to be able to find the errors and hopefully correct them. So
there may be some logical errors in there, there may be some
syntactical errors and be able to tweak those so that they can
then get a program function” (Eliza).

Giving them opened-ended tasks and then asking them
questions are key aspects of formative assessment: “Why
are you doing that? Do you have one of these?” (Anna).
Teachers used open-ended tasks or programming tasks to
help children practice the skills they needed and implement
algorithms as programs:

“I have a lot of task-based sheets – we teach a topic and
then we give them a task to do on that topic, so there’s an
awful lot of. . . here’s a little algorithm go away and write
it. . . here’s a little algorithm, have a go at that one” (Eliza).

In terms of summative assessment, teachers talking about
photographic evidence of what the children have achieved
at primary school, and having some multiple-choice tests
or homework at secondary school, but across all interviews
there was a greater emphasis on formative assessment or
assessment in order to support students’ progress.

“We did take photos of things that they’d fixed or things
they had broken and bits and pieces like that and again sort
of throw that up on the blogs” (David).

“I do the multiple choice exercises and I do tests and I set
the homeworks where they write in Python and when they do
bug-checks – so I’m trying to cover all different angles to get
a grip on which bits they didn’t understand of each task. But
they are all different – each individual will misunderstand
something in their own individual way” (Eliza).

Fixing errors is an other activity that can lead to assess-
ment as it enables teachers to see how good children are
at trouble-shooting: four out of the five teachers mentioned
this:

“I think giving them bad stuff has got a really valuable place
to play. In terms of their assessment you are then looking at
whether they are able to rectify the problems and I suppose
that blurs into the debugging skills. . . ” (David).

In summary, teachers focus on trying to ascertain chil-
drens’ understanding to a large extent without formal test-
ing: “It’s when a child gets that lightbulb moment — that’s
when the real power comes — being able to capture those,
in assessment terms” (David). Teachers are obviously able
to employ a range of assessment strategies to this end. Pro-
cesses for summative assessment at primary level are less
evident in the teachers interviewed.

Italy
The Italian teachers who accepted to take part in the in-
terview received an outline with the general areas and the
intended questions a few days before the appointment. To-
gether with the interview scheme, they were also given a few
notes about the following curricular material:

• the (thin) national recommendations on digital compe-

tence and technology areas, see Section 3;

• a tentative document with more comprehensive poten-
tial guidelines for (Italian) compulsory education;

• the ACM/CSTA models of computing curricula [74];

• the recent national computing curricula of UK [33].

(Actually, one of the teachers could only see these notes at
the beginning of the interview).

Two primary school teachers were interviewed together;
all the other individually, either directly or via Skype. At the
beginning of the conversations, the teachers described their
experience. Then each interview proceeded according to the
proposed scheme. The teachers could however interpret the
questions freely, to some extent, in the light of their real
views. The interviews lasted from 1 hour and 15 minutes to
about 2 hours and a half.

Teachers’ characteristics
The teachers come from a very wide area of northern Italy.
In conformity with the national education systems, they are
usually enabled to teach at only one of three levels: primary
(K-5), lower secondary (K6-8), or high school (K9-13). Some
of them, however, have been able to teach at different levels
within special institutional or inter-institutional cooperation
projects.

Most of the teachers do not have a strong background in
computing, but have learnt what they know about this sub-
ject precisely for instructional purposes. The information in
the header of table 12 roughly characterizes the sample of
teachers interviewed in Italy.

Alessandro and Roberto are experienced primary school
teacher. They introduced Logo in the mid-80s and have since
then been interested in introducing programming in elemen-
tary education. Sonia is a young primary school teacher. She
completed her degree five years ago with a teacher intern-
ship program on computing topics addressed to 5th graders,
that included programming in Scratch and Logo. Then she
continued to cooperate with her colleagues on this subject.

Francesco, Lorenzo and Martina are middle school teacher
of Mathematics and Science. Francesco regularly teaches a
variety of computing-related topics, including programming
in Scratch, BeeBot and Lego robots both to his students
(K6-8) and, in team teaching, to elementary school children
(K-5). Lorenzo teaches a little computing: an introduction
to miscellaneous informatics topics and an extracurricular
(elective) Scratch lab. Martina is an enthusiastic teacher,
who has been responsible for the information/web services
used in her school for about 15 years. Besides being involved
in basic digital literacy programs (word processing, spread-
sheet, presentation programs, use of browsers, construction
of web pages), at present she works in cooperation with a
team of scholars in computer science education.

Maurizio is an experienced high-school teacher of Infor-
matics, with a very strong background in computer sci-
ence. He has also been teaching computing topics in pri-
mary and lower secondary schools for the last 6 years (special
projects), namely using Scratch (mostly K5, but also lower
grades), Lego robots (K8) and GIS (K7). Finally, Giuseppe
worked for several years as a teacher of Mathematics and
Physics in the high school, where he introduced comput-
ing subjects since the 80s, within the National Informatics
Project (PNI) initiative that gave him the opportunity to



develop a broad knowledge of the foundations of computer
science. He then turned to teacher training and to the study
of pedagogical issues arising in mathematics and comput-
ing at all levels of instruction, which led him to cooperate
in educational projects with elementary and middle school
teachers.

In the Italian context where the national recommenda-
tions are quite vague, the main concern of teachers appears
to be the potential of computing topics and abilities to at-
tain general, trans-disciplinary educational objectives.

As the teachers remark:
“Primary school has usually taken a pre-disciplinary ap-

proach, in contrast to the lower secondary level [...]. And
above all, in my view, primary school should limit as far as
possible any ‘formalization’ of the disciplines” (Alessandro).

“My aim is not to train prospective computer scientists or
experts about robots. I don’t care at all about this. I care
that [pupils] see what there is in the world and are able to
choose. And that they learn some method. Teamwork is
fundamental for me, this is essential. And the fact that they
have a logic in the work they do, that they can explain what
they do” (Francesco).

“The important [aspects] are fondness, enthusiasm [...],
discovery, curiosity [...]. And [...], as usual but important,
cooperation, teamwork. And I might add respect for the work
of others” (Maurizio).

The sample of teachers interviewed in Italy have quite di-
verse backgrounds, namely: Science of Education, as usual,
to teach in the elementary school; Agricultural Science, Bi-
ology, Computer Science, Mathematics and Physics in the
case of middle and high school. Also the paths that led them
to choosing to teach a bit of computing and programming
are varied and often interesting. Alessandro, for instance,
looks back to his first experiences:

“The educational, pedagogical approach” of Papert’s ‘con-
structionism’“has really changed my perspective. In the mid-
80s I had the opportunity to work in one of the first schools
[...] that created a Logo lab, with the Commodore 64. [...]
Thus, I had one of the very first experiences in my area and,
I think, in Italy too. I came back in my school [...] and I
suggested to develop a lab also there. [...] I learned Logo by
myself, and then I started to explore with the children” the
potential of Logo.

Then, Alessandro explains the role of computing in his
pedagogical view: “In the primary school the approach surely
cannot be rigid. [...] It should be an ‘immersive’ approach,
in some respect, i.e.: I build a challenging environment, I
bring you within this environment, I encourage you to for-
mulate projects and I help you — I’m a mentor, I give you
advice. [...] Scratch is the real descendant of Logo, in terms
of educational philosophy. [...] What it has actually added is
the ‘2.0’ social environment. That was the big step forward.”

Sonia, on the other hand, follows a more standard, struc-
tured approach, but cares about the children’s attitude to-
ward the computing devices: “I’ve noticed that the children
at the computer tend to be passive. They see the computer
as something ‘intelligent’, something far out of their grasp,
and they don’t know that it is some people who wrote the
programs, who made it work.”

To mention also a couple of meaningful excerpts concern-
ing the middle school, Francesco seems to take an ‘engineer-
ing’ perspective: “I want them to realize what it means to de-
sign, the difference between production and design. [...] And

then the technical report in which they analyze the starting
point, the problem, the solution, the project.”

And Martina cares about the implications of the evolution
of ITs for her subject: “Looking at what’s going on, for exam-
ple, around 3D printing [...] I came across a problem: well, I
must change the approach to the teaching of solid geometry,
since by doing it in the standard way, the boys won’t be able
to deal with something so nice, so creative, potentially, [...]
something that will be in their houses.”

Themes
Tables 12 and 13 report the “big ideas” — or sometimes
“relevant abilities” — explicitly suggested by the teachers
(shading) or simply emerging from the analysis of the tran-
scripts (white background). It should be noticed that the
listed “ideas” are those deemed to be most important by
the interviewed teachers, but are by no means exhaustive of
their learning objectives (consequently, the option“No”does
not appear in the table cells). Of course, the teachers were
unaware of the choices of their colleagues.

As an overall picture, we can see that not all the items in-
dicated by the Italian teachers can be categorized precisely
as “ideas”. On the one hand, they do not appear to care
much about specific disciplinary concepts. Rather, they are
interested in the development of mental structures, general
competences and abilities with trans-disciplinary potential
that cannot be easily formalized. On the other hand, they
tend to propose operational tasks, that may result in con-
crete experiences for their pupils and tangible products.

Moreover, as far as the “security” area is concerned, the
teachers are mostly interested in social and individual safety
issues, rather than in its technical implications that fall in
the corresponding category of the ACM/IEEE curricular
models [74] — see table 13.

Also the Italian data were coded using the concepts iden-
tified in the curriculum comparison analysis as well as a few
additional categories taking into account the teachers’ be-
liefs and pedagogical practices. The occurrence of different
themes is summarized in table 14.

Learning about algorithms
All teachers discussed algorithms in some respect and, in
particular, considered this broad category from the view-
points of procedural thinking, problem solving and design.
A selection of the teachers’ comments follows.

In the earliest stages of instruction the focus is on chil-
dren’s active, bodily experience. In Giuseppe’s words: “In
the elementary school children, before conceiving any algo-
rithm, should be educated to follow procedures, to concretely
‘do’ such things. [...] For the children of first and even
second grade there are several prerequisites. Otherwise they
won’t be able to think of a real algorithm. They’ll struggle.”

Indeed, according to Roberto, usually kids’ approach to
(their) procedures is not mindful: “In terms of children’s
experience, I see that they don’t use an algorithm because
they proceed by trial and error. [...] They go there, they
begin to tinker, they do... but they aren’t aware of what they
have done. [...] So they don’t have an algorithm.”

Teachers appear to be especially concerned with the con-
nections of algorithms with problems and problem solving
practice.

“A first important idea, a basic one, which is in my opin-
ion at the root of algorithms, is to identify the problem. [...]
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Age group taught 6–11 6–11 6–11 6–14 11–14 11–14 8–19 (6–19)
Computing knowledge (Srong/Middle/Weak) M M M M M M S S
Hours teaching Computing/week (average) 1 < 1 (3) 4–5 < 1 1 18 n.a.
Years teaching (nearly) 30 30 5 10 10 15 20 30
Years teaching Computing (nearly) 30 30 3 5 5 10 20 30

Algorithms: procedures
Practicing procedural tasks (K-3) Yes Yes
Introspection and verbalization of procedures (K-8) Yes Yes
Sequencing the operations in the right order (K-8) Yes Yes Yes Yes Yes
Understanding the logic of algorithms (K-8) Yes Yes
Understanding conditional and iteration (K6-8) Yes
Thinking in terms of whole strategy (K-5) Yes

Algorithms: problem solving
Decomposing problems into smaller parts (K-8) Yes Yes Yes Yes
Problems that can/cannot be solved by algorithms (K-5) Yes
Generalizing to several problem instances (K4-8) Yes Yes Yes Yes
Different procedures can lead to the same result (K4-5) Yes Yes Yes
Logical relationships between processed data (K-8) Yes

Algorithms: design
Providing a clear ‘workflow’ to follow (K-5) Yes
Modeling simple behavior (K6-8) Yes Yes
Describing algorithms in different languages (K6-8) Yes
Compactness and effectiveness of a solution (K-5) Yes Yes Yes Yes

Programming: language
Knowing the typical basic operations (K-8) Yes
Building blocks and syntax of a formal language (K-5) Yes Yes
Universality of the main constructs (K-5) Yes
Using different languages (K-8) Yes Yes Yes

Programming: coding
Formalizing accurately and precisely (K-8) Yes Yes Yes Yes Yes
Modifying code for self-expression (K-5) Yes Yes
Programming to implement models of behavior (K6-8) Yes
Coping with debugging tasks (K-8) Yes Yes Yes

Programming: design patterns
Understanding the role of control structures (K-8) Yes Yes Yes Yes Yes
Procedure parameters (K-5) Yes Yes Yes
Using a counter (K-5) Yes
Absolute assignment vs. operator assignment (K6-8) Yes

Data: representation
Knowing that there are different types of data (K6-8) Yes Yes
Representation of spatial information (K6-8) Yes Yes
Data coding in files (K6-8) Yes

Data: interpretation
Data vs. information (K6-8) Yes
Knowing reliable sites (K-5) Yes
Evaluating data sources (K-8) Yes Yes Yes Yes Yes

Data: collection and organization
Basic use of a search engine (K6-8) Yes Yes Yes
Logical organization of data (K6-8) Yes Yes
Organization of files and folders (K6-8) Yes
Architecture of digital documents (K6-8) Yes

Table 12: What Italian teachers focus on. (Giuseppe is a teacher trainer.)
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Age group taught 6–11 6–11 6–11 6–14 11–14 11–14 8–19 (6–19)

Security: technical issues
Saving a backup copy of work done (K-8) Yes
Issues related to password and authentication (K6-8) Yes Yes
Treatment of network data (K6-8) Yes

Security: personal safety ad social issues
How to behave in digital environments (K-8) Yes Yes Yes
Protecting personal identity and data (K6-8) Yes Yes
Positive vs. negative behavior in social networks (K6-8) Yes
Being aware of cyber-bullying (K-8) Yes Yes
Copyright and licensing implications (K6-8) Yes Yes

Other topics
Basic operations of an operating system (K6-8) Yes
Cooperation in virtual communities (K-8) Yes Yes
Caring about enthusiasm-cooperation-respect (K-8) Yes

Table 13: What Italian teachers focus on (continued).

To distinguish the problem from its variables items. [...]
That is, to recognize the problem in itself, the core of the
problem, I don’t know, what is common to problems that
may look different” (Martina).

“I think it’s fundamental to figure out what’s the problem
to be addressed” (Francesco).

“I would say that the primary school should endeavor to
find the situations, the tasks, the environments in which, for
example, children are led to distinguish between those prob-
lems that can be solved by an algorithm and those that can-
not. [...] Because often the kids get confused in this respect”
(Alessandro).

The relationships between algorithms and problems in-
clude the idea that I can explore different algorithms to solve
the same problem and then it is important to ask, as sug-
gested for instance by Giuseppe, “if I can get the same result
by a different procedure, in a different way, by following a
different path.”

Another aspect on which the teachers insist is the need of
precision, accuracy: “In an algorithm there is a sequence of
operations to be carried out in a strict, inescapable order, in
the sense that if you change the sequence, you get a different
result. That is, you cannot do things in a haphazard way,
you have to choose the right sequence of operations to get a
correct output” (Martina).

Interestingly, algorithms are also viewed as a means to
devise models, “intended as a simplified representation of
a complex system. [...] The most important thing is that
[children] understand that in order to deal with a complex
situation they have to build a model” (Maurizio).

Programming
A variety of reasons are mentioned to account for the ed-
ucational value of programming. According to Alessandro,
programming is important, first of all, because “it is a form
of self-expression.” For Roberto, “the child is usually moody,
emotional, [...] impulsive,” so programming“should help him

to be rational.”
“Learning a programming language, from a certain point

of view, allows you to better understand the world. You have
an additional tool for understanding the world” (Maurizio).

Only one teacher seems to be a little skeptical about the
role of standard formal programming in early education:
“When it comes to connections between language structures
and some reality — because problem-solving is essentially
this — with children and pupils [...] we have to start from
the language structures that are more familiar to them. [...]
We made a mistake, when we started using Logo in the el-
ementary school, because [...] the language syntax was too
strict, with spacing, with brackets, and so on. [...] It wasn’t
a simple language for them” (Giuseppe).

Often, in primary school, programming is introduced as
‘storytelling’: “There is much programming work before. So:
What story do I invent? What I want to do? What is the
main character? Where?. . . The plot, in short. And that’s
programming for me” (Roberto).

We then proceed with a few excerpts addressing a selec-
tion of the various aspects discussed by teachers.

To begin with, the features of precision and accuracy of
a programming language have been taken into account by
most of the teachers. For instance: “Precision of language.
And correctness of the language, too: If you swap those two
things you don’t get the same result” (Roberto).

Quite unexpectedly, we can find frequent remarks about
the benefits of being exposed to more than one programming
language.

“About programming my concern is that they understand
that there are languages with which you can give instructions
to a machine. And you can do it using Logo, using Scratch,
or using any language” (Sonia).

“About programming my concern is that they learn to use
different languages, that they understand what are the very
key elements of programming” (Francesco).

“Important idea: to understand terms and syntax of a for-
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Age group taught 6–11 6–11 6–11 6–14 11–14 11–14 8–19 (6–19) Total

ALG: algorithm Y Y Y Y Y Y Y Y 8
PRO: program Y Y Y Y Y Y Y 7
ALG: sequence/order Y Y Y Y Y 5
ALG: abstraction/generalization Y Y Y Y Y 5
ALG: precision/formalization Y Y Y Y Y 5
ENG: design Y Y Y Y Y 5
PRO: control structure Y Y Y Y Y 5
DAT: data Y Y Y Y Y 5
OTH: evaluation of data source Y Y Y Y Y 5
ALG: problem decomposition Y Y Y Y 4
ENG: evaluation/efficacy Y Y Y Y 4
PRO: variable Y Y Y Y 4
PRO: language Y Y Y Y 4
ENG: pair programming/team work Y Y Y Y 4
DAT: data organization Y Y Y Y 4
ALG: procedural task Y Y Y 3
ALG: algorithm logic Y Y Y 3
ENG: testing/debugging Y Y Y 3
NET: search engine/data collection Y Y Y 3
MOD: modeling/simulation Y Y 2
ALG: input/output Y Y 2
ENG: exploration/heuristics Y Y 2
PRO: implementation/coding Y Y 2
PRO: syntax/program structure Y Y 2
DAT: data representation Y Y 2
DAT: type Y Y 2
DAT: table Y Y 2
ALG: selection/repetition Y 1
ALG: problem solving/feseability Y 1
ALG: algorithm representation Y 1
ENG: work plan Y 1
ALG: instruction set Y 1
PRO: constant Y 1
DAT: data vs. information Y 1

Table 14: The occurrence of different themes as teachers’ focus (Italy).



mal language, a visual one and a textual one — to see both
examples. [...] To have an idea of a textual one is important
as well, in my opinion, in order to develop abstraction, and
then to get to the point. [...] And also knowing different
numbering systems has the same logic” (Martina).

Variables are considered to be a hard topic, both for pri-
mary and middle school. As stated by Lorenzo, “In Scratch,
for example, you have two instructions: to assign a value
and to increment (decrement) it.” However, pupils find it
difficult “to understand in what circumstances to assign a
value” and in what circumstances to change it. So, accord-
ing to the teachers, the main use of variables is in order to
represent procedure parameters.

Also the educational potential of debugging is worth con-
sidering, particularly in the middle school: “An important
aspect is ‘debugging’. Once you have written the program,
you have run it. . . Well, you don’t have to take the fact that
it doesn’t work as a defeat. It is a starting point anyway,
to be able to solve the problem, that is, to see what was
wrong. Debugging is important from the educational, ped-
agogical viewpoint. . . There is a procedure, you have tried to
formalize it, may be the procedure is wrong or maybe the
formalization is wrong, isn’t it? [...] Just as an approach
to problems, to difficulties. The real problems are like that”
(Martina).

Italian teachers, like their English colleagues, do not fully
agree on the implications of explorative tinkering vs. more
rigorous planning when learning to program. In Roberto’s
perspective, for instance, a major educational objective is
precisely to overcome the trail-and-error approach, whereas
Maurizio reports: “I also allow the boy [...] to proceed by
trial-and-error, to tinker, possibly without much reasoning.
Somehow heuristically.”

Finally, although all teachers agree on the need of foster-
ing cooperation among kids and pupils, they show contrast-
ing opinions as to the actual implementation of pedagogical
strategies such as pair-programming or the like.

“I read the results of some research according to which the
children perform better if they work in group in front of a
single iPad. I totally disagree about this. [...] Collaborative
learning must be a choice as well as an achievement. That
is, if I have to work with others, and I must be in a group
with others, [...] I may do everything myself or [...] leave it
all to the others. If I have already made my own experiences,
I have something to say, then I can choose to join others and
share my knowledge, my skills with them” (Alessandro).

“Usually the children do these activities in pairs, or in
larger groups of 4–5 people. A child is never working alone
to develop a program, to figure out an algorithm. Usually we
apply cooperative learning” (Sonia).

Assessment
The teachers mention a range of possible assessment strate-
gies, which are summarized in table 15, and their effort to
view the implications of computing education (at the consid-
ered level of instruction) from a more abstract educational
perspective seems interesting to consider.

Relative to the primary school, the observations span sev-
eral elements, including some aspects of the pupil’s behav-
ior: “Assessment is always global, not just of the final prod-
uct. You take into account all aspects, at least in elementary
school” (Sonia). Or: “The assessment is not about what they
produce, but about what is their way of behaving in different

situations” (Roberto).
“If I have to assess a child’s learning about programming,

I have to know whether and how often he makes debugging.
[...] For example, if a program doesn’t work, does he drop it
and restart anew? Or does he apply some techniques, some
strategies in order to try to find the errors? [...] Does he
usually borrow pieces of code from other projects in order to
develop his own projects? This is a usual [helpful] practice
today” (Alessandro).

In the middle school, on the other hand, the assessment
tends to be more formal and to address technical features,
even for an open-ended task: “I assess the pupils on the
final project, for example. That is by using a structured
evaluation grid. For the final project I use an evaluation
grid, that I also give them for self-assessment” (Francesco).

There are also attempts to evaluate students’ ability to de-
compose a problem into smaller parts: “You assign a prob-
lem that has been discussed, that has already been broken
down, and you can see if the student is able to do the same
thing again. And then you assign a problem that may look
completely different to him, but such that the underlying al-
gorithm is actually similar. . . But I would assess precisely
his ability to break it down” (Martina). Maybe by proceed-
ing in the opposite direction, and asking students: “Try to
envisage a problem whose solution can be represented by this
structure” (Martina).

Finally, an example of summative assessment of debugging
skills: “Debugging can be assessed. Just give him a simple
little program, maybe of 4, 6, 20 lines of code, and see how
they behave. Maybe one of the tasks is straightforward to do
on paper; then something that requires a couple of additional
steps; and in the third case, instead, the task is more complex
because, maybe, you have to stop the program at different
points, to split it up. . . ” (Martina).

8. RESULTS: BEBRAS TASKS ANALYSIS

CT concepts classification
Table 16 shows the distribution of CT concepts in the 2010,
2011, 2012, 2013, and 2014 Bebras tasks. Note that any
individual task could be coded using more than one CT term
so that the percentages total to more than 100.

For the purposes of this report we are interested in the
tasks assigned to lower grades, so in Table 17 we show the
CT classification for tasks in levels 0 through II.

The relative importance of the various CT concepts in
each year can be seen in the charts in Figure 2.

Since there were many terms that occurred together, for
example algorithms and data representation, it was useful to
consider groups of CT categories. To capture that informa-
tion all possible tuples of categorizations were considered.
The following lists show all of the possible tuples organized
by complexity.

Pairs:

• algorithms, abstraction

• algorithms, data analysis

• algorithms, data representation

• algorithms, parallelization

• algorithms, problem decomposition
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Age group taught 6–11 6–11 6–11 6–14 11–14 11–14 8–19 (6–19) Total

Observation (process, result, product) Y Y Y Y Y Y 6
Questioning (teacher’s/peers’ questions) Y Y Y Y 4
Questionnaire/quiz/test Y Y Y 3
Structured task Y Y Y 3
Open-ended task (individual/group work) Y Y 2
Contest Y Y 2
Report (project/lab) Y 1
Problem-solving test (transdisciplinary) Y 1
Code Y 1
Giving buggy code Y 1

Table 15: Teachers’ assessment strategies (Italy).

CT term 2014 % 2013 % 2012 % 2011 % 2010 %
abstraction 6 5% 27 18% 37 30% 26 21% 11 8%
algorithms 99 77% 118 79% 87 70% 75 60% 59 42%
data analysis 6 5% 4 3% 3 2% 7 6% 8 6%
data collection 1 < 1% 0 0% 0 0% 0 0% 2 1%
data representation 70 54% 46 31% 33 27% 33 26% 71 51%
parallelization 2 2% 2 1% 2 2% 2 2% 0 0%
problem decomposition 7 5% 3 2% 0 0% 3 2% 8 6%
simulation 7 5% 18 12% 3 2% 15 12% 6 4%
literacy 1 <1% 3 2% 6 5% 17 14% 15 11%
Total tasks 129 150 124 126 139

Table 16: Distribution of CT concepts in the 2010 – 2014 Bebras tasks.

CT term 2014 % 2013 % 2012 % 2011 % 2010 %
abstraction 3 3% 20 17% 20 24% 18 18% 6 9%
algorithms 77 76% 96 80% 59 70% 57 58% 29 44%
data analysis 5 5% 4 3% 3 4% 5 5% 2 3%
data collection 1 <1% 0 0% 0 0% 0 0% 1 2%
data representation 56 55% 38 32% 19 23% 26 26% 35 54%
parallelization 2 2% 2 2% 0 0% 1 1% 0 0%
problem decomposition 4 4% 1 <1% 0 0% 2 2% 4 6%
simulation 5 5% 17 14% 2 2% 14 14% 2 3%
literacy 0 0% 2 2% 6 7% 14 14% 6 9%
Total tasks 101 120 84 99 65

Table 17: Distribution of CT concepts in the 2010 – 2014 Bebras tasks, Levels 0 – II only.
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Figure 2: Distributions of types of CT for the earlier (0–II) school/age levels by year.



Figure 3: Overlap of CT term for the earlier (0–II) school/age
levels for all four years.

• algorithms, simulation

• abstraction, data representation

• data analysis, data representation

• data analysis, problem decomposition

• data collection, data representation

• data representation, problem decomposition

• data representation, simulation

Triples:

• algorithms, data analysis, problem decomposition

• algorithms, data representation, abstraction

• algorithms, data representation, simulation

• algorithms, problem decomposition, simulation

Table 18 shows the differences in distributions of groups
of CT tasks by year for the earlier levels (0 – II). There
were many tuples that were infrequent, so any tuple that
constituted less than 4% of the data in all years considered
was discarded. Put another way, the only rows that are
displayed are those that included at least one year that had
the indicated tuple in at least 4% of the data. Figure 3 shows
the intersection between the three top categories for the K-
9 level (0-II) tasks of all four years. We should note that
many tasks describe navigational problems, i.e. find a path
in a maze, or the shortest way to reach a given point, which
most students will find familiar in real life. Hence, this is
reflected in the high frequency (100 tasks over 4 years) that
have both Algorithms and Data representation.

Question structure classification
All of the Bebras tasks in years 2010, 2011, 2012, 2013,
and 2014 that had been labeled with the CT concept of
algorithms were classified for problem structure. Table 19
shows the problem classification for all years, including all
levels (0 – IV).

The bar graph in figure 4 shows the distribution of the
types of algorithms questions found in the 2010, 2011, 2012,
2013, and 2014 Bebras contests. Only the younger groups
(0–II) were considered since that is the focus of this report.

9. CONCLUSION AND DISCUSSION
The analytic part of our report focused on the following

research questions:

1. Which concepts and ideas are present in K–9 curriculum
documents?

2. Which concepts and ideas are taught in practice? Which
assessment practices are used?

3. Which concepts are assessed in Bebras tasks? How can
the assessment format of these tasks be characterized?

As to Question 1, the following patterns emerge from the
analysis of the national recommendations and guidelines.
From a global perspective, there is a significant difference
in broadness, with the CSTA model at one extreme, cover-
ing a variety of topics, and the Italian informal guidelines
at the other extreme, mainly focusing on few someway “tra-
ditional” areas, namely algorithms, programming, and their
relationships with maths and data.

The CAS curriculum, on the other hand, is character-
ized by an emphasis on technical concerns, specifically in
the areas of programming, engineering (proceduralization of
tasks), architectures and networking.

Algorithms represent a significant concern in all consid-
ered documents. However, whereas all documents mention
the general ideas about algorithms, there is considerable dif-
ference in the number and variety of suggested examples.

Programming, overall, is given a similar relative weight in
terms of reported items. The CAS recommendations appear
to stress the technical aspects of programming more than
others.

Societal issues are most prominent in the CSTA model,
whereas security is hardly considered in all documents.

The concept classification procedure turned out to be quite
useful to analyze and compare curriculum documents writ-
ten in a variety of styles. It will be interesting to apply our
method to other curriculum documents. The coding was
done by three researchers. Some parts were coded by two
researchers independently, who later compared their clas-
sifications. These comparisons showed a high inter-coder
agreement. In a follow-up analysis we intend to investigate
reliability in a more formal way.

The findings of our exploratory study with respect to
Question 2 suggest that, at least in England, the intended
curriculum is becoming the implemented curriculum to a
large extent. Teachers are able to select areas of algorithms
and programming that they are teaching at an appropriate
level.

Depending on subject knowledge, education and any ex-
perience working in the IT industry, teachers’ answers vary.
We observed that it was necessary for a teacher to have a
good content knowledge to be able to see the big picture of
the whole of the computing curriculum and to see the direc-
tion the teacher was heading with their computing educa-
tion. Some teachers recognize the importance of the subject
in the future lives of their students rather than the impor-
tance of learning a particular concept in relation to the rest
of the curriculum.

By the same token, some teachers cannot see beyond the
level at which they are teaching because of their burgeoning
content knowledge; others are able to see the boundary be-
tween what can be taught above and below the age of pupils
they are teaching.



CT tuple 2014 % 2013 % 2012 % 2011 % 2010 %
(abstraction, algorithms) 1 1% 11 9% 7 8% 8 8% 0 0%
(abstraction, data representation) 2 2% 4 3% 0 0% 5 5% 2 3%
(algorithms, data representation) 37 37% 23 19% 12 14% 10 10% 13 20%
(algorithms, simulation) 0 0% 10 8% 1 1% 7 7% 1 2%

Table 18: Most common groupings of CT concepts in the 2010 – 2014 Bebras tasks, Levels 0 – II only.

Question structure
2014 2013 2012 2011 2010

0-IV 0-II 0-IV 0-II 0-IV 0-II 0-IV 0-II 0-IV 0-II
constraint 9 6 10 9 5 5 11 7 4 1
formula identification 2 1 3 2 0 0 0 0 4 2
optimization 10 8 17 12 10 9 6 6 7 3
procedures 5 4 3 2 10 5 0 0 5 2
verification 2 2 21 19 19 15 16 13 11 5
sequencing 9 7 4 3 3 3 4 4 0 0
ordering 2 1 1 0 2 1 0 0 0 0

Table 19: Question structure classifications for algorithms tasks in 2010–2014 for all levels and for (0-II) levels only.
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Figure 4: Distribution of the structure of algorithms questions found in the 2010 – 2014 Bebras contests.



A variety of assessment strategies are being used (e.g. ob-
servations, questioning and test), which are age appropriate.
The teachers feel comfortable with these forms of assess-
ment. For many of them it is more difficult to assess the un-
derstanding of algorithms than programming abilities. The
older the students, the more formal assessment methods and
tests get employed.

The fact that the Italian national recommendations are
still quite vague might be an explanation for the variety of
concepts taught by Italian teachers, besides the differences
in the teachers’ backgrounds. The main concern of teachers
appears to be the potential of computing topics and abilities
to attain general, trans-disciplinary educational objectives.

The small sample of teachers can be seen as a limitation
of the study. The data elicited by the four CoRe questions
is surprisingly rich, however, which provided us an in-depth
view about the teachers’ beliefs and reasoning underlying
their classroom practice (cf. [2]). We intend to pursue this
direction of analysis further. Moreover, we think it will be
worthwhile extending this part of the research to investigate
teachers’ practice in other countries.

As to Question 3, the most common CT concepts in the
Bebras tasks are algorithms. Questions classified using the
term algorithms represented, e.g., 77% of all tasks and 76%
of lower-level tasks in 2014. The next most common CT
concept was data representation with 54% of all tasks and
55% of lower-level tasks in 2014. Abstraction and simulation
were also popular concepts, although they were not seen as
consistently across all years as the other two concepts. There
were no consistent or noticeable differences between the CT
classifications for all tasks versus lower-level tasks.

There was an interesting decline in the popularity of literacy-
related tasks through the years analysed. Literacy tasks
were common in the earlier years and became much less fre-
quent in later years. In particular, 10.8% of all 2010 tasks,
13.5% of all 2011 tasks, 4.8% of all 2012 tasks, 2% of all 2013
tasks, and < 1 % of all 2014 tasks were classified as being
related to literacy. We hypothesize that this is related to
the stronger interest in CT skills in schools during the time
period considered.

When combinations of CT terms are considered, the most
common tuples involved abstraction, algorithms, and data
representation. The most commonly paired terms were al-
gorithms and data representation, in part because the rep-
resentation of the data for a problem can have an impact
on the algorithm approach used in a problem. Abstraction
and algorithms, abstraction and data representation, and
algorithms and simulation were other popular pairings, al-
though the importance of each tuple varied a bit through the
years. Part of the reason why simulation was somewhat in-
consistently represented was related to the use of interactive
exercises in the Bebras question sets. In some years these
interactive questions were more common than in others, and
interactive questions were more likely to be classified as sim-
ulations by the team members. Again, no large or consistent
differences are visible between the classifications for all tasks
versus the classifications for lower-level (0 – II) tasks.

We have constructed a classification for question types.
Among the algorithms-related tasks verification questions
were the most common in all years except for 2014. In 2014
the most common type of algorithms question was optimiza-
tion, which was quite popular in other years ranking second
for 2010, 2012, and 2013. Constraint questions were also

popular, ranking second for 2011, tied for third in 2012, and
third in both 2013 and 2014. It was interesting to note that
tasks classified as procedures were relatively uncommon ex-
cept in 2012.

It makes some sense that verification questions are popu-
lar for a contest structured around multiple-choice questions.
Providing participants with a description of a problem and
then asking them to choose among possibilities for the cor-
rect answer or scenario is natural in that format. It’s also
easy to understand why optimization questions would be
popular since many computing problems ask for the min-
imization or maximization of particular values. What is
more surprising is the relatively uncommon use of proce-
dures questions, given how important programming is in the
later curricula in schools and universities. That the Bebras
tasks do not emphasize this more suggests that the con-
test organizers may be focusing more broadly on computing
concepts and trying to deemphasize programming-specific
tasks.

Our findings regarding assessment practice showed that
teachers find it difficult to assess students’ understanding
of the concept of algorithm. The predominant presence of
algorithmic aspects in Bebras tasks might make this ‘tasklet
based assessment’ interesting for K–9 teachers.

We expect that the Bebras community might also benefit
from our analysis of tasks from previous contests. Indeed,
the classification system might be useful to future task de-
velopers. Moreover, it would be interesting to investigate
whether our task classification can be used to refine existing
transnational comparative studies such as [26].
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