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Abstract In this paper we study the problem of the global existence (in time) of weak,

entropic solutions to a system of three hyperbolic conservation laws, in one space dimension,

for large initial data. The system models the dynamics of phase transitions in an isothermal

fluid; in Lagrangian coordinates, the phase interfaces are represented as stationary contact

discontinuities. We focus on the persistence of solutions consisting in three bulk phases

separated by two interfaces. Under some stability conditions on the phase configuration and

by a suitable front tracking algorithm we show that, if the BV-norm of the initial data is

less than an explicit (large) threshold, then the Cauchy problem has global solutions.
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algorithm
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1 Introduction

This paper concludes a long analysis, begun in [1, 2], concerning the global existence in

time of weak entropy solutions for a system of conservation laws modeling phase transitions in a

fluid. More precisely, the focus of the analysis is on the persistence of solutions with stationary

interfaces.

The system under consideration consists of three equations, namely,




vt − ux = 0 ,

ut + p(v, λ)x = 0 ,

λt = 0 ,

(1.1)

where the state variables (v, u, λ) ∈ Ω :=]0, +∞[×R × [0, 1] denote the specific volume, the

velocity and the mass-density fraction of the vapor in the fluid, respectively. System (1.1) is

∗Received February 21, 2015.
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the conservative part of a more complex model first introduced in [11], one of whose novelties

lies in the pressure p, which depends not only on v but also on λ. More precisely, the pressure

is prescribed by the law

p(v, λ) =
a2(λ)

v
, (1.2)

where the C1 function a is assumed to be strictly positive in [0, 1]. For example, we can take

p = (1 + λ)k/v for some positive constant k.

A related example of pressure law occurs in the theory of (non-isothermal) ionized gases.

In that case, we have p = (1 + α)RT/mv, where R, m and T are the universal gas constant,

the molecular mass and the temperature, respectively, while α is the ionization degree; if α = 0

the gas is not ionized. In that model, however, α is usually assigned as a given function of both

p and T by Saha’s law [12] while, in the case under consideration, the mass-density fraction λ

is understood as an independent variable.

System (1.1) is strictly hyperbolic in Ω; the eigenvalues ±a/v are genuinely nonlinear while

0 is linearly degenerate. As a consequence, the field associated to this latter eigenvalue supports

contact discontinuities, which are understood in the model as phase interfaces.

The Cauchy problem for (1.1) includes the initial data

(vo(x), uo(x), λo(x)) , vo(x) ≥ v > 0, x ∈ R. (1.3)

The global existence (in time) of solutions to the initial-value problem for any strictly hyperbolic

system of conservation laws whose eigenvalues do not change type is well-known and can be

proved either with the Glimm scheme or with a front tracking algorithm, see [7, 8]. The case of

large initial data is a challenging problem and can be tackled only for special systems; then, the

issue is to find classes of initial data with (large) total variation for which global solutions to

the Cauchy problem exist. This topic was studied in [18] and [19] in the case of the isothermal,

respectively isentropic, p-system, see also [9, 10]; these results were extended in the seminal

papers [16, 17] to the case of nonisentropic gas dynamics. We also refer to [14] for the extension

of Nishida’s result to the initial-value problem in Special Relativity.

As far as (1.1)–(1.3) is concerned, a positive answer was first given in [3] and then in [5].

In particular, in the former paper an explicit threshold of the BV-norm of the initial data was

provided in order to have the global existence of solutions. Moreover, both papers require a sort

of balance of the BV-norm of the initial data: the larger the variation of (vo, uo), the smaller

the variation of λo and vice-versa. It would be interesting to prove whether or not, for general

BV-data, the solution exists globally in time. Motivated by the techniques introduced in [3],

we considered in [1] the special case of initial data (1.3) where

λo(x) =





λℓ if x < 0 ,

λr if x > 0 ,

which models the dynamics of a two-phases fluid. In order to deal with this particular frame-

work, an original Riemann solver was proposed by which we proved the global existence of

solutions for a wide class of large initial data. Such results improved by far those of [3] when

adapted to that setting. We briefly mention that the problem of smooth perturbations of

Riemann-type solutions has been studied by many authors, see for instance [15].
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The next step regarded the case of initial data with two phase interfaces, namely,

λo(x) =






λℓ if x < a ,

λm if a < x < b ,

λr if x > b ,

(1.4)

where λℓ, λm, λr are constant in [0, 1] and a < b are the location of the waves; denote aℓ = a(λℓ),

am = a(λm), ar = a(λr). Clearly, this case is much more complicated than the previous one,

because of the possible bouncing back and forward of the waves in the middle region [a, b]. In

[2] we answered in the positive to the above issue by assuming the condition am < min{aℓ, ar};
if v is fixed, then the pressure in the middle region is lower than the pressure in the outside

regions. We also recovered the results of [1] by passing to the limit when either am → aℓ or

am → ar. To give a physical flavor to the problem, assume for a moment that the function a(λ)

is increasing with λ, as is the interesting case in modeling. Then the condition above also means

that the mass-density fraction of vapor inside [a, b] is less than outside: for brevity, we address

to this case as the drop case. We refer to [1–3] for more details on the model and references.

In this paper, we deal with the two remaining cases, namely,

either am > min{aℓ, ar} or aℓ < am < ar,

since the case aℓ > am > ar can be deduced by the latter. Reminding of the previous physical

interpretation, we shall loosely address to these cases as the bubble case and the increasing-

pressure case, respectively. As in [2], we introduce two special Riemann solvers. Both of them

replace the standard non-physical waves [7] by waves defined through integral curves; this allows

us to attach these waves to the phase waves. Then, following again the lines of [2], we introduce

an “asymmetrical” Glimm functional F , in the sense that its interaction potential Q takes

into account only certain shock waves approaching the phase waves while, on the contrary, all

rarefaction waves approaching the phase waves are included. We point out that the definition

of F differs in each of the three cases mentioned above.

A key feature of both [2] and the current paper is the possible occurrence of a stability

condition, depending on the case under consideration, to control interactions in the middle

zone. More precisely, such a condition is needed both in the drop and in the increasing-pressure

cases and imposes bounds to the strengths of the phase waves. However, in the bubble case we

require no stability condition and, as a consequence, any phase wave is admitted.

The plan of the paper is the following. The main result is stated in Section 2. In Section 3

we introduce the Riemann solvers, the composite waves and, at last, we define the functional

F ; we also recall some background facts from [1–3]. Sections 4 and 5 focus on the bubble and

on the monotone-pressure cases, respectively; in particular, we prove there that the functional

F decreases at every interaction. The last Section 6 deals with the two cases at the same time;

by showing the convergence of the front tracking algorithm we conclude the proof of the main

result.

2 Main Results

In this section we state the main results of this paper, which concerns the existence of solu-

tions to the Cauchy problem (1.1)–(1.3), (1.4). Under the notation defined in the Introduction,
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we set

η = 2
am − aℓ

am + aℓ

, ζ = 2
ar − am

ar + am

. (2.1)

The quantities η and ζ range over ] − 2, 2[ ; they are the strengths of the two contact discon-

tinuities (see (3.4) below) that support the phase interfaces of the model, located at x = a

and x = b, respectively. We denote by L,M,R the three regions separated by η and ζ in the

(x, t)-plane, see Figure 1.

As already mentioned in the Introduction, we focus on the bubble case, which corresponds

to consider η > 0 and ζ < 0, and on the increasing-pressure case, which corresponds to both

η > 0 and ζ > 0.

ζη

x = a x = b

M RL

Fig.1 The two phase waves with strengths η and ζ in the (x, t)-plane and the regions L,M,R.

In order to state the existence theorem, we introduce some threshold functions. First, as

in [1, 2], we define the strictly decreasing function

K(r) :=
2

1 + r
log

(
1 +

2

r

(
1 +

√
1 + r

))
, r ∈ R

+ , (2.2)

which plays a key role in the main results; we notice that lim
r→0+

K(r) = +∞ and lim
r→+∞

K(r) = 0.

Moreover, as in [2], we need another function related to the stability of the two phase waves

configuration, which differs from that in [2]. In the bubble case it is

Hb(|η|, |ζ|) :=
4

4 − |ηζ| max

{
|η| 2 + |ζ|

2 − |ζ| , |ζ|
2 + |η|
2 − |η|

}
, (2.3)

Fig.2 The domain Dc in the (|η|, |ζ|)-plane
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for (|η|, |ζ|) ∈ Db := [0, 2[×[0, 2[ . As for the increasing-pressure case, the definition of the

function Hc as well as that of its domain Dc is more complicated though explicit; we refer to

(5.23) and (5.22) below, respectively, and to Figure 2 for a picture of Dc. We can immediately

observe that in the bubble case the pair (|η|, |ζ|) can vary inside the whole square [0, 2[×[0, 2[ ,

while in the increasing-pressure case they can cover only a portion of it.

We denote po(x) = p (vo(x), λo(x)). The following theorem states the global in time exis-

tence of solutions in the bubble and in the increasing-pressure case. Notice that the statement

is the same in both cases.

Theorem 2.1 Assume (1.2) and consider initial data (1.3), (1.4). Let D = Db and

H = Hb in the bubble case, D = Dc and H = Hc in the increasing-pressure case. Moreover,

assume that for η, ζ as in (2.1), the pair (|η|, |ζ|) belongs to D. If

TV (log(po)) +
1

min{aℓ, am, ar}
TV (uo) < K (H(|η|, |ζ|)) (2.4)

holds, then the Cauchy problem (1.1)–(1.3), (1.4) has a weak entropic solution (v, u, λ) defined

for t ∈ [0, +∞). If η = ζ = 0 the same conclusion holds with K (H(|η|, |ζ|)) replaced by +∞ in

(2.4).

Moreover, the solution is valued in a compact set and (v(t, ·), u(t, ·)) ∈ L∞([0,∞[;BV(R)).

The sub-level sets Sh = {(|η|, |ζ|) ∈ D : H(|η|, |ζ|) < h}, h > 0, of the function H play an

important role in condition (2.4), see for instance Figure 3 in the bubble case. Indeed, condition

(2.4) holds for every (|η|, |ζ|) ∈ Sh if

TV (log(po)) +
1

min{aℓ, am, ar}
TV (uo) < K(h),

since K is decreasing. When h = 2, we have K(2) = 2 log(2+
√

3)/3 and the case is particularly

significative; let us consider, for example, the bubble framework. As in the drop case [2], the

domain S2 includes the segments [0, 2[ on each axis, but the 2-level set of Hb is no more the

graph of the function ζ(|η|) = 2(2 − |η|)/(2 + |η|), see Figure 3.

Fig.3 Sets of level c of the function Hb: cases c = 1, 2, 3; the thin line is the curve ζ = ζ(|η|)



6 ACTA MATHEMATICA SCIENTIA Vol.35 Ser.B

3 Preliminaries and Functionals

In this section we collect some preliminary results from [1–3], focusing on the front tracking

algorithm used to construct the approximate solutions. Moreover, we introduce some function-

als needed to estimate the total variation of such solutions.

First, we recall some basic notions. System (1.1) is strictly hyperbolic with two genuinely

nonlinear characteristic fields (of family 1 and 3) and a linearly degenerate one of family 2. For

i = 1, 3, the i-th right Lax curves through the point Û = (v̂, û, λ̂) ∈ Ω are

v 7→
(
v, û + 2a(λ̂)h(εi), λ̂

)
, v > 0 , (3.1)

where εi denotes the strength of an i-wave,

ε1 =
1

2
log
(v

v̂

)
, ε3 =

1

2
log

(
v̂

v

)
, (3.2)

and h is the function defined by

h(ε) =





ε if ε ≥ 0 ,

sinh ε if ε < 0 .
(3.3)

Rarefaction waves have positive strength, while shock waves have negative strength. The wave

curve for the second characteristic field through Û ∈ Ω is given by

λ 7→
(

v̂
a2(λ)

a2(λ̂)
, û, λ

)
, λ ∈ [0, 1],

and the strength of a 2-wave is

δ = 2
a(λ) − a(λ̂)

a(λ) + a(λ̂)
. (3.4)

We solve the Riemann problems by means of some Pre-Riemann solvers, which are intro-

duced in the following proposition. We use the symbols ‘L’ and ‘I’ to denote Lax and Integral

curves, respectively. For i = 1, 3 and θi ∈ {L, I}, we define the functions

Θi =





h if θi = L ,

Id if θi = I .
(3.5)

Proposition 3.1 (Pre-Riemann solvers) Fix θi ∈ {L, I}, for i = 1, 3. There exists a

map Rθ1θ3
: Ω × Ω → R×] − 2, 2[×R such that for any two states U− = (v−, u−, λ−), U+ =

(v+, u+, λ+) ∈ Ω we have

Rθ1θ3
(U−, U+) = (ε1, δ, ε3) , (3.6)

where ε1, δ, ε3 represent waves of family 1, 2, 3, respectively, satisfying the following relations:

ε3 − ε1 =
1

2
log

(
p+

p−

)
, a−Θ1(ε1) + a+Θ3(ε3) =

u+ − u−

2
, δ = 2

a+ − a−

a+ + a−

. (3.7)

We denoted a± = a(λ±), p± = p(v±, λ±).

We refer to [2, Proposition 3.1] for a proof of the previous result. In a few words, Proposi-

tion 3.1 states the existence of four Pre-Riemann solvers RLL, RII , RLI and RIL, that prescribe

how to solve a Riemann problem with i-waves taken along (Lax or integral) i-curves, for i = 1, 3.

In particular, RLL is the solver of [1, 3] that employs Lax curves.
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We use a front tracking algorithm [7] to build up the approximate solutions to (1.1)–(1.3),

(1.4). The first step in the construction consists in taking a sequence (vν
o , uν

o)ν∈N of piecewise-

constant functions with a finite number of jumps, that approximate the initial data (1.4) in

the sense of [2, Section 4]. We choose two parameters σ = σν > 0, ρ = ρν > 0 and proceed

as follows. At time t = 0 we apply the solver RLL at each jump of the approximated initial

data; we split rarefactions into a finite number of rarefaction shocks, each of size ≤ σ, whose

speed equals the characteristic speed at the right state (see [2, Section 4] for more details).

Then, an approximate solution (vν , uν , λ)(·, t) is defined until the first time two wave fronts

interact and a new Riemann problem arises. In the case of interaction between two fronts of

families 1 or 3, we again use RLL and adopt the following strategy to approximate outgoing

rarefaction waves: they are prolonged as a single discontinuity if they already existed before

the interaction, otherwise they are split into a fan of waves as before. On the other hand, when

solving an interaction of a wave of family 1 or 3 with a 2-wave δ, we possibly make use of a

method that attaches certain reflected waves to δ; the outcome is a wave of the same family of

the incoming one and a stationary composite wave, which is defined below.

Definition 3.2 (Composite wave [2]) Consider two states U− = (v−, u−, λ−) and U+ =

(v+, u+, λ+) of Ω, with λ− 6= λ+. The composite wave δ0 = (δ1
0 , δ, δ

3
0) connecting U− to U+ is

the stationary wave defined by δ0 = RII(U−, U+). We write |δ0| = |δ1
0 | + |δ3

0 |.

δ1

0 δ δ3

0

︸ ︷︷ ︸
δ0

(a)

�
�
�
�
�
��

B
B

B
B
B

BB

δ1

0 δ δ3

0

(b)

Fig.4 A composite wave δ0 in the (x, t)-plane: in (a) it is drawn as three parallel close lines,

while the auxiliary picture (b) is used to determine the states in the interactions

Notice that in Definition 3.2 the waves δ1
0 , δ3

0 are given zero speed and δ0 reduces to a 2-wave as

long as δ1
0 = δ3

0 = 0. Hence, instead of dealing with 2-waves, we are left with composite waves

belonging to a fictitious 0-family.

When a wave front of family 1 or 3 with strength δi interacts with a composite wave δ0 =

(δ1
0 , δ, δ3

0) at t > 0, we exploit two different procedures to solve the emerging Riemann problem

of states U−, U+. We indicate by Ii(ε)(U) the integral curves of family i = 1, 3, parametrized by

ε and of origin U ∈ Ω; then, we define Ũ− = I1(δ
1
0)(U−) and Ũ+ = I3(−δ3

0)(U+). Here follows

a description of the Riemann solvers; for a proof of the following facts see [2, Proposition 3.7].

(1) Accurate Riemann solver. If |δi| ≥ ρ, then the solution is formed by waves ε1, ε0, ε3,

where (ε1, δ, ε3) = RLL(Ũ−, Ũ+) and ε0 = δ0.

(2) Simplified Riemann solver. If |δi| < ρ, then we distinguish case i = 1 and i = 3:

i) for i = 1, the solution is formed by waves ε1, ε0 such that (ε1, δ, ε3) = RLI(Ũ−, Ũ+) and

ε0 = (δ1
0 , δ, δ

3
0 + ε3);
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ii) for i = 3, the solution is formed by waves ε0, ε3 such that (ε1, δ, ε3) = RIL(Ũ−, Ũ+) and

ε0 = (δ1
0 + ε1, δ, δ

3
0).

We emphasize that Θi = h in all cases and the following relations are verified:

ε3 − ε1 =





−δ1 if i = 1,

δ3 if i = 3,
a−Θ1(ε1) + a+Θ3(ε3) =





a+Θ1(δ1) if i = 1,

a−Θ3(δ3) if i = 3,
(3.8)

sgn εi = sgn δi, sgn εj =





sgn δ · sgn δi if i = 1,

−sgn δ · sgn δi if i = 3.
(3.9)

We recall the interaction estimates [2, Lemma 5.2 and 5.4]. For i = 1, 3, we denote by εi

the strength of the transmitted wave and by εj, j = 1, 3, j 6= i, the strength of the reflected

one (even in case of interaction with a composite wave treated by the Simplified solver).

Lemma 3.3 (Interaction estimates) For the interaction between two waves at time t > 0

we have the following; let i, j = 1, 3, j 6= i.

(1) Assume that an i-wave δi interacts with a composite wave δ0 = (δ1
0 , δ, δ3

0). If |δi| ≥ ρ,

we have

|εi − δi| = |εj | ≤
1

2
|δiδ| and |ε0 − δ0| = 0, (3.10)

while, if |δi| < ρ, it holds

|εi − δi| = |ε0 − δ0| = |εj | ≤






Co

2
|δiδ| if δi < 0 and either (i = 1, δ > 0) or (i = 3, δ < 0),

1

2
|δiδ| otherwise,

(3.11)

where

Co = Co(ρ) =
sinh ρ

ρ
. (3.12)

(2) If two waves αi and βj of different families interact with each other, then,

|εi| = |αi| , |εj | = |βj | . (3.13)

(3) Assume that two waves αi and βi of the same family interact. If both αi and βi are

shocks, then the reflected wave εj is a rarefaction, while the transmitted wave εi is a shock and

satisfies

|εi| > max{|αi|, |βi|} . (3.14)

If αi and βi have different signs, e.g. αi < 0 < βi, then the reflected wave is a shock, both the

amounts of shocks and rarefactions of the i-th family decrease across the interaction and one

has

|εj | ≤ c(αi) · min{|αi|, |βi|} , c(z) =
cosh z − 1

cosh z + 1
. (3.15)

About the term in Co in (3.12), we notice that Co(ρ) > 1 for any ρ > 0 and Co(ρ) → 1+ for

ρ → 0+.

Now, we introduce some functionals needed to prove the boundedness of the total variation

of the approximate solutions. Using indices ℓ, m, r to refer to waves in L,M,R, respectively,

we define

Lℓ,m,r =
∑

i=1,3, δi>0

δi∈L,M,R

|δi| + ξ
∑

i=1,3, δi<0

δi∈L,M,R

|δi| ,
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where ξ > 1 is a parameter to be determined. We denote

L = Lℓ + Lm + Lr , L0 = |η0| + |ζ0|

and

L̄ = L̄ℓ + L̄m + L̄r =
∑

i=1,3

δi∈L

|δi| +
∑

i=1,3

δi∈M

|δi| +
∑

i=1,3

δi∈R

|δi| =
1

2
TV (log p(t, ·)) − |η0| − |ζ0| .

In the following sections we also introduce the interaction potential

Q = Qℓ + Qm + Qr (3.16)

and specify Qℓ,m,r, that differ in the bubble case and in the increasing-pressure case. The

resulting functional

F = L + L0 + Q (3.17)

is equivalent to the total variation of the approximate solutions and has an asymmetrical char-

acter in a double sense: firstly, it depends on the phases and, secondly, shocks and rarefactions

play a different role. As for the latter, not only shocks are weighted by ξ (a procedure of [4]

also exploited in [1, 2]), but the contributions of certain shock waves from Q are dropped. This

is due to the fact that in the interaction of some shocks with a 0-wave we have that ∆L is

already nonpositive; more precisely, from (3.8) it follows that such unnecessary waves are either

3-shocks interacting with a 2-wave δ > 0 or 1-shocks interacting with a 2-wave δ < 0. On the

contrary, rarefaction waves are always counted in Q if they approach a phase wave. As shown

in Figure 5, the total variation of the solutions increases going towards the more liquid regions.

�
��

@
@I

@
@I

�
��

η0 ζ0

TV decreases

TV increases

(a)

�
��

�
��

@
@I

@
@I

η0 ζ0

TV decreases

TV increases

(b)

Fig.5 How the total variation varies for interactions with the phase waves in the bubble

case (a) and in the increasing-pressure case (b)

In the potentials Qℓ,m,r we insert some positive weights Kℓ,m,r
η,ζ that keep track of the regions

of provenience (L,M,R) of the approaching waves and of the 0-wave approached (η0 or ζ0),

see Figure 6.

In the next sections we show that the functional F decreases across any interaction, under

suitable conditions on the parameters ξ, Kℓ,m,r
η,ζ and ρ, which differ in the bubble case and in

the increasing-pressure case. In the proof we fix mo > 0 and assume that, for i = 1, 3, the size

δi of any i-shock satisfies

|δi| ≤ mo . (3.18)
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Such parameter is necessary in our proof to relate the total variation of the initial data uo, po

to the sizes of the phase waves.
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Kℓ
η

Kℓ
ζ Km

η Km
ζ

Kr
ζ

Kr
η

η0 ζ0

Fig.6 The parameters Kℓ,m,r
η,ζ

4 The Bubble Case

In this section, we prove the decreasing of the functional F in (3.17) in the bubble case,

where the phase-dependent interaction potentials are defined by

Qℓ =
(
Kℓ

η|η| + Kℓ
ζ |ζ|
) ∑

δ3>0

δ3∈L

|δ3| + ξKℓ
ζ

∑

δ3<0

δ3∈L

|δ3ζ| ,

Qm = Km
η

( ∑

δ1>0

δ1∈M

|δ1η| + ξ
∑

δ1<0

δ1∈M

|δ1η|
)

+ Km
ζ

( ∑

δ3>0

δ3∈M

|δ3ζ| + ξ
∑

δ3<0

δ3∈M

|δ3ζ|
)

,

Qr =
(
Kr

η |η| + Kr
ζ |ζ|
) ∑

δ1>0

δ1∈R

|δ1| + ξKr
η

∑

δ1<0

δ1∈R

|δ1η| .

As previously mentioned, the interaction potential Q in (3.16) lacks certain shock waves: pre-

cisely, 3-shocks interacting with η0 and 1-shocks interacting with ζ0, see Figure 7. In the next

two propositions we list the conditions on the parameters ξ, Kℓ,m,r
η,ζ and ρ needed for the decrease

of F .

�����:

��������������:
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����*

XXXXXXXXXXXXy

XXXXXy

R

R, S R, S

R, S

R, S
R

η0 ζ0

Fig.7 The waves considered in Q for the bubble case

Proposition 4.1 Assume that at time t > 0 a wave δi, i = 1, 3, interacts with one of the

composite waves η0 or ζ0. Then, ∆F (t) ≤ 0 provided that

ξ ≥ 1, Km
ζ , Km

η ≥ 1,
ξ − 1

2
≤ Kr

ζ , Kℓ
η, Km

η ≤ Kr
η , Km

ζ ≤ Kℓ
ζ, (4.1)
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1 + Km
η

|η|
2

− Km
ζ ≤ 0, 1 + Km

ζ

|ζ|
2

− Km
η ≤ 0, (4.2)

Co(ρ) ≤ 2ξ

ξ + 1
min{Km

ζ , Km
η }. (4.3)

ζ0
η0

A
A

A
A

δ1

ζ0

�
�
�

ε3

@
@

@

ε1

M RL

(a)

ζ0

�
�
�
�

δ3
η0

ζ0

�
�

�

ε3

A
A

A

ε1

M RL

(b)

Fig.8 Interactions of 1- and 3-waves with ζ0 solved by means of the Accurate solver.

The fronts carrying the composite waves are represented by a single line

Proof Since the two cases give symmetric conditions, we only analyze interactions in-

volving ζ0; see Figure 8. By (3.8) and (3.9) we have




ε3 − ε1 = −δ1, |ε1| − |δ1| = −|ε3| , if i = 1,

ε3 − ε1 = δ3, |ε3| − |δ3| = |ε1| , if i = 3 .

i = 1. If the interacting wave is a rarefaction, then by (3.10) we have

∆L + ∆L0 =






ξ|ε3| + |ε1| − |δ1| = (ξ − 1)|ε3| ≤
ξ − 1

2
|δ1ζ| if |δ1| ≥ ρ,

|ε3| + |ε1| − |δ1| = 0 if |δ1| < ρ,

and ∆Q = Km
η |ε1η|−Kr

η |δ1η|−Kr
ζ |δ1ζ|. Therefore, since |ε1| ≤ |δ1| by the interaction estimates,

∆F ≤






(
Km

η − Kr
η

)
|δ1η| +

[ξ − 1

2
− Kr

ζ

]
|δ1ζ| if |δ1| ≥ ρ,

(
Km

η − Kr
η

)
|δ1η| − Kr

ζ |δ1ζ| if |δ1| < ρ,

which is nonpositive by (4.1)3,4. Instead, if the interacting wave is a shock, then in both the

accurate and simplified cases we have ∆L + ∆L0 = |ε3| + ξ|ε1| − ξ|δ1| = −(ξ − 1)|ε3| and

∆Q = ξ(Km
η |ε1| −Kr

η |δ1|)|η|. As a consequence, ∆F ≤ −(ξ − 1)|ε3|+ ξ(Km
η −Kr

η)|δ1η|, which

is ≤ 0 by (4.1)1,4.

i = 3. If the interacting wave is a rarefaction, then by the interaction estimates (3.10) ∆L +

∆L0 = |ε3| + |ε1| − |δ3| = 2|ε1| ≤ |δ3ζ| and

∆Q =





Km
η |ε1η| − Km

ζ |δ3ζ| if |δ3| ≥ ρ,

−Km
ζ |δ3ζ| if |δ3| < ρ.

Then,

∆F ≤





[
1 + Km

η

|η|
2

− Km
ζ

]
|δ3ζ| if |δ3| ≥ ρ,

[
1 − Km

ζ

]
|δ3ζ| if |δ3| < ρ,
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which is nonpositive by (4.1)2, (4.2)1. On the other hand, if the interacting wave is a shock,

then

∆L + ∆L0 =





ξ|ε1| + ξ|ε3| − ξ|δ3| = 2ξ|ε1| ≤ ξ|δ3ζ| if |δ3| ≥ ρ,

|ε1| + ξ|ε3| − ξ|δ3| = (ξ + 1)|ε1| ≤ (ξ + 1)
Co

2
|δ3ζ| if |δ3| < ρ,

and

∆Q =





ξ
(
Km

η |ε1η| − Km
ζ |δ3ζ|

)
if |δ3| ≥ ρ,

−ξKm
ζ |δ3ζ| if |δ3| < ρ.

Therefore,

∆F ≤





ξ

[
1 + Km

η

|η|
2

− Km
ζ

]
|δ3ζ| if |δ3| ≥ ρ,

[
(ξ + 1)

Co

2
− ξKm

ζ

]
|δ3ζ| if |δ3| < ρ,

which is nonpositive by (4.2)1, (4.3)1. �

Proposition 4.2 Consider the interaction at time t > 0 of two waves of the same family

1 or 3 and assume (3.18). Then, ∆F (t) ≤ 0 provided that

1 ≤ ξ ≤ 1

c(mo)
, Km

ζ ≤ ξ − 1

|ζ| , Km
η ≤ ξ − 1

|η| , (4.4)

Kr
η |η| + Kr

ζ |ζ| ≤ ξ − 1, Kℓ
η|η| + Kℓ

ζ|ζ| ≤ ξ − 1. (4.5)

Proof First, we consider the interactions taking place in M, see Figure 9. For brevity,

we only deal with the case of interactions between two 3-waves α3 and β3 giving rise to ε1 and

ε3 (the 1-waves case is analogous).

η0 ζ0

�
�

�
�α3









 β3

�
��

ε3

@
@@

ε1

L M R

Fig.9 Interactions of 3-waves in M

If both α3 and β3 are shocks, then ε1 is a rarefaction by Lemma 3.3 and, as in [1, Proposition

5.8], we have

∆L + |ε1|(ξ − 1) = 0 , (4.6)

for any ξ ≥ 1. Moreover, we have

∆Q = Km
η |ε1η| − ξKm

ζ |ε1ζ| ≤ Km
η |ε1η| , ∆F ≤

[
−(ξ − 1) + Km

η |η|
]
|ε1|

and F is non-increasing by (4.4)1,3. On the other hand, when the two interacting waves are of

different type, for example α3 < 0 < β3, as in [1, Proposition 5.8], by (4.4)1 one can deduce

that

∆L + ξ(ξ − 1)|ε1| ≤ 0 . (4.7)
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If ε3 is a rarefaction, then ∆Q = ξKm
η |ε1η| + Km

ζ (|ε3| − ξ|α3| − |β3|) |ζ|; on the other hand, if

ε3 is a shock, ∆Q = ξKm
η |ε1η|+Km

ζ (ξ|ε3| − ξ|α3| − |β3|) |ζ|. Therefore, by Lemma 3.3 in both

cases it holds

∆Q ≤ ξKm
η |ε1η| , ∆F ≤ ξ

[
−(ξ − 1) + Km

η |η|
]
|ε1|

and F decreases by (4.4)1,3. The analysis of the interactions between 1-waves requires symmet-

rically the condition Km
ζ ≤ (ξ − 1)/|ζ|.

Next, we analyze the case of interactions taking place in R, the case of interactions in L
being analogous. By (4.4)1 it is easy to verify that F decreases when two 1-waves interact.

η0 ζ0

�
�

�
�α3









 β3

�
��

ε3

@
@@

ε1

L M R

Fig.10 Interactions of 3-waves in R

Now, we consider the interactions between 3-waves (see Figure 10). When the interacting waves

α3, β3 are both shocks we have (4.6), while in the other two cases estimate (4.7) still holds under

condition (4.4)1. If α3, β3 < 0 we have

∆Q = Kr
η |ε1η| + Kr

ζ |ε1ζ| , ∆F =
[
−(ξ − 1) + Kr

η |η| + Kr
ζ |ζ|
]
|ε1| ,

while if, for example, α3 < 0 < β3 we have

∆Q = Kr
η ξ|ε1η| , ∆F ≤ ξ

[
−(ξ − 1) + Kr

η |η|
]
|ε1| .

Consequently, F is non-increasing by (4.5)1. The condition Kℓ
η|η| + Kℓ

ζ |ζ| ≤ ξ − 1 is required

for the interactions occurring in the region L. �

Now, we can determine the order of choice of the parameters. To simplify the analysis,

we can let Km
η = Kr

η and Km
ζ = Kℓ

ζ , since the final result does not change otherwise. Once

η, ζ have been fixed, we choose in turn: mo, ξ, Km
η and Km

ζ , Kr
ζ and Kℓ

η; finally, we choose

ρ (i.e. Co). First, notice that the conditions in (4.2) identify the set in the (Km
η , Km

ζ )-plane

represented in Figure 11. Hence, by (4.2) we deduce

Km
η ≥ 1 + Km

ζ

|ζ|
2

≥ 1 +
|ζ|
2

(
1 + Km

η

|η|
2

)
and Km

ζ ≥ 1 + Km
η

|η|
2

≥ 1 +
|η|
2

(
1 + Km

ζ

|ζ|
2

)
,

that imply

Km
η ≥ 1 + |ζ|/2

1 − |ηζ|/4
and Km

ζ ≥ 1 + |η|/2

1 − |ηζ|/4
. (4.8)

In particular, by replacing the inequality sign by equality in (4.8) we get the coordinates of the

intersection point V between the two lines of Figure 11. Notice also that (4.8) implies (4.1)2.

Since we have chosen Km
η = Kr

η and Km
ζ = Kℓ

ζ , conditions (4.5) imply (4.4)2,3. By (4.1)3

and (4.5)1, we get Km
η |η| + (ξ − 1)|ζ|/2 ≤ ξ − 1, which is equivalent to

Km
η

|η|
1 − |ζ|/2

≤ ξ − 1 ; (4.9)
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Fig.11 Graphical representation of conditions (4.2) for |η| = 1/2 and |ζ| = 3/2

similarly, by (4.1)3 and (4.5)2 we get

Km
ζ

|ζ|
1 − |η|/2

≤ ξ − 1 . (4.10)

By (4.8), (4.9) and (4.10) it follows that ξ must satisfy the inequality

ξ ≥ 1 + max

{
1 + |ζ|/2

1 − |ζ|/2

|η|
1 − |ηζ|/4

,
1 + |η|/2

1 − |η|/2

|ζ|
1 − |ηζ|/4

}
.

This condition must match with (4.4)1; then, recalling (2.3) we must require

1 + Hb(|η|, |ζ|) ≤ ξ ≤ 1

c(mo)
, (4.11)

which is a condition that relates mo to |η|, |ζ|. When one of the phase waves tends to zero,

Hb(|η|, |ζ|) tends to the other one and we completely recover the results of [1].

Summarizing, we choose the parameters as follows and keep strict inequalities for later

need; let (|η|, |ζ|) ∈ Db be given.

• First, we fix mo such that

1 + Hb(|η|, |ζ|) <
1

c(mo)
(4.12)

and take ξ in the interior of the interval given by (4.11).

• In the (Km
η , Km

ζ )-plane we choose a point in the affine cone defined by (4.2) and suffi-

ciently close to V ; moreover, we require

Km
η

|η|
1 − |ζ|/2

< ξ − 1 and Km
ζ

|ζ|
1 − |η|/2

< ξ − 1 . (4.13)

• We choose Kr
η = Km

η , Kℓ
ζ = Km

ζ and, then, by (4.13) we choose Kr
ζ and Kℓ

η such that

ξ − 1

2
< Kr

ζ <
ξ − 1

|ζ| − Km
η

|η|
|ζ| and

ξ − 1

2
< Kℓ

η <
ξ − 1

|η| − Km
ζ

|ζ|
|η| . (4.14)

• Finally, we choose ρ such that (4.3) holds.

Now, we can prove the global in time decreasing of the functional F .
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Proposition 4.3 Let mo > 0 satisfy (4.12). Moreover, assume that ξ, Kℓ,m,r
η,ζ and ρ

satisfy (4.11)–(4.14) and (4.3). Then, the following two statements hold.

i) Local Decreasing. For any interaction at time t > 0 between two waves satisfying (3.18),

it holds

∆F (t) ≤ 0 .

ii) Global Decreasing. If

L̄(0) ≤ moc(mo) (4.15)

and the approximate solution is defined in [0, T ], then F (0) ≤ mo, ∆F (t) ≤ 0 for every t ∈ (0, T ]

and (3.18) is satisfied.

Proof The first statement has been proved above. As for the second assertion, let us

denote by Lℓ,m,r
iR and Lℓ,m,r

iS the partial sums in Lℓ,m,r due to i-rarefaction waves (iR) and

i-shock waves (iS), respectively. By (4.4)2,3 we have

Fm(0) = Lm(0) + Qm(0) ≤ Lm(0)
(
1 + max{Km

η |η|, Km
ζ |ζ|}

)
≤ ξ2L̄m(0) .

Moreover, from (4.5) it follows

F ℓ(0) ≤ Lℓ
1R(0) + Lℓ

1S(0) + Lℓ
3R(0)

(
1 + Kℓ

η|η| + Kℓ
ζ |ζ|
)

+ Lℓ
3S(0)

(
1 + Kℓ

ζ |ζ|
)
≤ ξ2L̄ℓ(0) ,

F r(0) ≤ Lr
3R(0) + Lr

3S(0) + Lr
1R(0)

(
1 + Kr

η |η| + Kr
ζ |ζ|
)

+ Lr
1S(0)

(
1 + Kr

η |η|
)
≤ ξ2L̄r(0) .

Then,

F (0) = F ℓ(0) + Fm(0) + F r(0) ≤ ξ2L̄(0) .

For a fixed t ≤ T , suppose by induction that F (τ) ≤ mo and ∆F (τ) ≤ 0 for every 0 < τ < t,

interaction time. Then, the inequality ∆F (t) ≤ 0 implies that

F (t) ≤ F (0) ≤ ξ2L̄(0) .

Hence, by (4.15) the size of a shock δi (i = 1, 3) at time t satisfies

|δi| ≤
1

ξ
F (t) ≤ ξL̄(0) ≤ 1

c(mo)
L̄(0) ≤ mo

and (3.18) is verified. �

5 The Increasing-Pressure Case

In this section, we prove the decreasing of the functional F in (3.17) in the increasing-

pressure case. As before, we first introduce the following interaction potentials

Qℓ =
(
Kℓ

η|η| + Kℓ
ζ |ζ|
) ∑

δ3>0

δ3∈L

|δ3| ,

Qm = Km
η |η|

( ∑

δ1>0

δ1∈M

|δ1| + ξ
∑

δ1<0

δ1∈M

|δ1|
)

+ Km
ζ |ζ|

∑

δ3>0

δ3∈M

|δ3| ,

Qr =
(
Kr

η |η| + Kr
ζ |ζ|
)(∑

δ1>0

δ1∈R

|δ1| + ξ
∑

δ1<0

δ1∈R

|δ1|
)

.
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The interaction potential Q in (3.16) lacks the 3-shocks interacting with η0 and with ζ0, see

Figure 12. The next proposition, which is analogous to Proposition 4.1, gives a first list of

conditions that guarantee the decrease of F .

�����:
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η0 ζ0

Fig.12 The waves considered in Q for the increasing-pressure case

Proposition 5.1 Assume that at time t > 0 a wave δi, i = 1, 3, interacts with one of the

composite waves η0 or ζ0. Then, ∆F (t) ≤ 0 provided that

ξ ≥ 1 , Km
η ≥ 1 , Km

η ≤ ξ − 1

|η| , (5.1)

(ξ − 1

2
− Kℓ

η

)
|η| + (Km

ζ − Kℓ
ζ)|ζ| ≤ 0 , (1 − Kr

ζ )|ζ| +
(

Km
η

(
1 +

|ζ|
2

)
− Kr

η

)
|η| ≤ 0 , (5.2)

ξ − 1

2
+ Km

η ξ
|η|
2

− Km
ζ ≤ 0, 1 + Km

ζ

|ζ|
2

− Km
η ≤ 0 , (5.3)

(
(ξ + 1)

Co

2
− ξKr

ζ

)
|ζ| + ξ

(
Km

η

(
1 +

Co

2
|ζ|
)
− Kr

η

)
|η| ≤ 0 , (ξ + 1)

Co

2
− ξKm

η ≤ 0 . (5.4)

Proof Both in the case of interaction with η0 and ζ0, by (3.8), (3.9) we have




ε3 − ε1 = −δ1, |ε1| − |δ1| = |ε3| , if i = 1,

ε3 − ε1 = δ3, |ε3| − |δ3| = −|ε1| , if i = 3 .

However, in this case we have to treat separately the interactions with the phase waves, since

the interaction potential Q is not symmetric with respect to η0 and ζ0.

Interactions with η0. Assume i = 1. If δ1 is a rarefaction, then ∆L + ∆L0 = 2|ε3| ≤ |δ1η| and

∆Q =





Km
ζ |ε3ζ| − Km

η |δ1η| if |δ1| ≥ ρ,

−Km
η |δ1η| if |δ1| < ρ.

Hence,

∆F ≤





[
1 + Km

ζ

|ζ|
2

− Km
η

]
|δ1η| if |δ1| ≥ ρ,

[
1 − Km

η

]
|δ1η| if |δ1| < ρ.

Then, ∆F ≤ 0 by (5.3)2 and (5.1)2. On the other hand, if δ1 is a shock then

∆L + ∆L0 =





2ξ|ε3| ≤ ξ|δ1η| if |δ1| ≥ ρ,

(ξ + 1)|ε3| ≤
Co

2
(ξ + 1)|δ1η| if |δ1| < ρ
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and ∆Q = −ξKm
η |δ1η|. Hence,

∆F ≤






ξ
[
1 − Km

η

]
|δ1η| if |δ1| ≥ ρ,

[
(ξ + 1)

Co

2
− ξKm

η

]
|δ1η|, if |δ1| < ρ,

which is nonpositive by (5.1)2 and (5.4)2.

Now, let i = 3. If δ3 is a rarefaction, then

∆L + ∆L0 =






(ξ − 1)|ε1| ≤
ξ − 1

2
|δ3η| if |δ3| ≥ ρ,

0 if |δ3| < ρ,

and ∆Q = Km
ζ |ε3ζ| − Kℓ

η|δ3η| − Kℓ
ζ |δ3ζ|. Then, since |ε3| ≤ |δ3| we have

∆F ≤





[(ξ − 1

2
− Kℓ

η

)
|η| + (Km

ζ − Kℓ
ζ)|ζ|

]
|δ3| if |δ3| ≥ ρ,

(Km
ζ − Kℓ

ζ)|δ3ζ| − Kℓ
η|δ3η| if |δ3| < ρ,

and F decreases by (5.2)1. If δ3 is a shock, then in any case we get ∆F = −(ξ − 1)|ε1| ≤ 0 by

(5.1)1.

Interactions with ζ0. Assume i = 1. If δ1 is a rarefaction, then ∆L + ∆L0 = 2|ε3| ≤ |δ1ζ| and

∆Q = Km
η |ε1η| − Kr

η |δ1η| − Kr
ζ |δ1ζ| in both the Accurate and the Simplified case. Hence, by

(5.2)2 we have

∆F ≤
[
(1 − Kr

ζ )|ζ| +
(

Km
η

(
1 +

|ζ|
2

)
− Kr

η

)
|η|
]
|δ1| ≤ 0.

On the other hand, if δ1 is a shock, then

∆L + ∆L0 =





2ξ|ε3| ≤ ξ|δ1ζ| if |δ1| ≥ ρ,

(ξ + 1)|ε3| ≤
Co

2
(ξ + 1)|δ1ζ| if |δ1| < ρ,

and ∆Q = ξKm
η |ε1η| − ξKr

η |δ1η| − ξKr
ζ |δ1ζ|. Thus,

∆F ≤






ξ

[
(1 − Kr

ζ )|ζ| +
(

Km
η

(
1 +

|ζ|
2

)
− Kr

η

)
|η|
]
|δ1| if |δ1| ≥ ρ,

[(
(ξ + 1)

Co

2
− ξKr

ζ

)
|ζ| + ξ

(
Km

η

(
1 +

Co

2
|ζ|
)
− Kr

η

)
|η|
]
|δ1| if |δ1| < ρ,

which is nonpositive by (5.2)2 and (5.4)1.

Assume i = 3. If δ3 is a rarefaction, then

∆L + ∆L0 =





(ξ − 1)|ε1| ≤
ξ − 1

2
|δ3ζ| if |δ3| ≥ ρ,

0 if |δ3| < ρ,

and

∆Q =





ξKm
η |ε1η| − Km

ζ |δ3ζ| if |δ3| ≥ ρ,

−Km
ζ |δ3ζ| if |δ3| < ρ.
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Hence,

∆F ≤





[
ξ − 1

2
+ Km

η ξ
|η|
2

− Km
ζ

]
|δ3ζ| if |δ3| ≥ ρ,

−Km
ζ |δ3ζ| if |δ3| < ρ,

which is nonpositive by (5.3)1. If, instead, δ3 is a shock, then ∆L + ∆L0 = −(ξ − 1)|ε1| and

∆Q =





Km
η |ε1η| if |δ3| ≥ ρ,

0 if |δ3| < ρ.

Then,

∆F ≤





−(ξ − 1)|ε1| + Km
η |ε1η| if |δ3| ≥ ρ,

−(ξ − 1)|ε1| if |δ3| < ρ,

which is nonpositive by (5.1)1,3. �

As for an interaction between two waves of the same family, Proposition 4.2 still holds with

the current functional F . Therefore, the conditions required on the various parameters are

(4.4), (4.5). We omit the proof, since it can be carried out as above.

Here, we make some comments on the conditions (5.1)–(5.4) and (4.4), (4.5); finally, we

establish the order in which we can choose the parameters.

First, notice that (5.1)2 is implied by (5.3)2. Secondly, we can rewrite (5.2) as

ξ − 1

2
|η| + Km

ζ |ζ| ≤ Kℓ
η|η| + Kℓ

ζ |ζ| , Km
η

(
1 +

|ζ|
2

)
|η| + |ζ| ≤ Kr

η |η| + Kr
ζ |ζ| . (5.5)

Putting together (5.5)2 with (4.5)2 and (5.5)1 with (4.5)1, we have

Km
η

(
1 +

|ζ|
2

)
|η| + |ζ| ≤ Kr

η |η| + Kr
ζ |ζ| ≤ ξ − 1 , (5.6)

ξ − 1

2
|η| + Km

ζ |ζ| ≤ Kℓ
η|η| + Kℓ

ζ|ζ| ≤ ξ − 1 , (5.7)

then (4.4)2,3 are implied by (5.2) and (4.5). Moreover, by (5.3) we have

Km
η ≥ 1 + Km

ζ

|ζ|
2

, Km
ζ ≥ ξ − 1

2
+ ξKm

η

|η|
2

, (5.8)

that give the following lower bounds on Km
η and Km

ζ :

Km
η ≥ 1 + (ξ − 1)|ζ|/4

1 − ξ|ηζ|/4
, Km

ζ ≥ (ξ − 1) + ξ|η|
2(1 − ξ|ηζ|/4)

. (5.9)

Remark that (5.8) represents an affine cone in the (Km
η , Km

ζ )-plane under the condition

ξ ≤ 4

|ηζ| . (5.10)

The vertex is the point whose coordinates are given by (5.9). Hence, Km
η and Km

ζ must be

chosen in the non-empty intervals identified by (5.6), (5.9)1 and (5.7), (5.9)2, respectively. This

means that (5.7), (5.9)2 give the condition

ξ − 1

2
|η| + (ξ − 1) + ξ|η|

2(1 − ξ|ηζ|/4)
|ζ| ≤ ξ − 1, (5.11)
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while (5.6), (5.9)1 give the condition

1 + (ξ − 1)|ζ|/4

1 − ξ|ηζ|/4

(
1 +

|ζ|
2

)
|η| + |ζ| ≤ ξ − 1. (5.12)

We introduce the notation |η| = x, |ζ| = y and ξ − 1 = z. Then, by (5.10) we rewrite (5.11)

and (5.12) as, respectively,

xy

4
(2 − x)z2 +

[
y(x + 1) − (2 − x)

(
1 − xy

4

)]
z + xy ≤ 0 , (5.13)

xy

4
z2 +

[xy

8
(4 − y) − 1

]
z +

(
1 +

y

2

)
x + y

(
1 − xy

4

)
≤ 0. (5.14)

We also denote a(x, y) = xy(2 − x)/4, b(x, y) = y(x + 1) − (2 − x) (1 − xy/4), c(x, y) = xy,

d(x, y) = xy/4, e(x, y) = xy(4− y)/8−1 and f(x, y) = (1 + y/2)x+ y (1 − xy/4) so that (5.13)

and (5.14) become, respectively,

a(x, y)z2 + b(x, y)z + c(x, y) ≤ 0 , (5.15)

d(x, y)z2 + e(x, y)z + f(x, y) ≤ 0 . (5.16)

Notice that the coefficients a, c, d, f are positive, e is negative and b may change sign. In order

that each equations associated to (5.15) and (5.16) have distinct solutions, the discriminants

b2 − 4ac and e2 − 4df must be strictly positive. If b < 0, such solutions are positive. Thus,

about (5.13) we require

y(x + 1) − (2 − x)
(
1 − xy

4

)
+ xy

√
2 − x < 0 , (5.17)

while about (5.14) we impose
[xy

8
(4 − y) − 1

]2
− xy

[(
1 +

y

2

)
x + y

(
1 − xy

4

)]
> 0 . (5.18)

By a numerical comparison, we see that the set defined by (5.17) is included in that defined by

(5.18). Under (5.17) and (5.18), we denote by

z1,2(x, y) =
(2 − x)(1 − xy/4) − y(x + 1) ±

√
[y(x + 1) − (2 − x)(1 − xy/4)]2 − x2y2(2 − x)

xy(2 − x)/2
(5.19)

the two positive solutions of the equation associated to (5.15) and by

z3,4(x, y) =
1 − xy(4 − y)/8 ±

√
[xy(4 − y)/8 − 1]2 − xy[(1 + y/2)x + y(1 − xy/4)]

xy/2
(5.20)

the solutions of the equation associated to (5.16). Hence, by (5.10), (5.13) and (5.14) we get

1 + max {z1(x, y), z3(x, y)} < ξ < 1 + min

{
z2(x, y), z4(x, y),

4

xy
− 1

}
. (5.21)

Therefore, we can define the domain Dc represented in Figure 2 as

Dc = {(|η|, |ζ|) = (x, y) : (5.21) holds} (5.22)

and the function

Hc(|η|, |ζ|) = max {z1(|η|, |ζ|), z3(|η|, |ζ|)} . (5.23)

By (4.4)1 we find the condition that relates mo to |η|, |ζ|, i.e.,

1 + Hc(|η|, |ζ|) <
1

c(mo)
. (5.24)
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As a final remark, we notice that (5.4)1 is equivalent to
(

ξ + 1

2ξ
Co − Kr

ζ

)
|ζ| +

(
Km

η

(
1 +

Co

2
|ζ|
)
− Kr

η

)
|η| ≤ 0 . (5.25)

Then, by taking ρ sufficiently small (since Co(ρ) → 1 if ρ → 0+) and ξ > 1, (5.25) is implied

by (5.2)2.

For the choice of the parameters we proceed as follows.

• We fix |η|, |ζ| such that

1 + max {z1(|η|, |ζ|), z3(|η|, |ζ|)} < 1 + min

{
z2(|η|, |ζ|), z4(|η|, |ζ|),

4

|ηζ| − 1

}
. (5.26)

Then, we fix mo such that (5.24) hold and, in turn, we choose ξ satisfying both (5.21) and

1 + Hc(|η|, |ζ|) < ξ <
1

c(mo)
, (5.27)

so that (4.4)1 holds.

• We choose Km
η , Km

ζ such that (5.3) holds; in particular, we take (Km
η , Km

ζ ) sufficiently

close to the vertex of the cone and satisfying (5.6)–(5.9), i.e., such that

1 + (ξ − 1)|ζ|/4

1 − ξ|ηζ|/4
≤ Km

η <
ξ − 1 − |ζ|

(1 + |ζ|/2)|η| ,

(ξ − 1) + ξ|η|
2(1 − ξ|ηζ|/4)

≤ Km
ζ <

ξ − 1 − (ξ − 1)|η|/2

|ζ| .

(5.28)

Then, we choose Kℓ
η = Kℓ

ζ , Kr
η = Kr

ζ such that

(ξ − 1)|η|/2 + Km
ζ |ζ|

|η| + |ζ| ≤ Kℓ
η = Kℓ

ζ <
ξ − 1

|η| + |ζ| ,

Kη
m

(
1 + |ζ|/2

)
|η| + |ζ|

|η| + |ζ| ≤ Kr
η = Kr

ζ <
ξ − 1

|η| + |ζ| .

(5.29)

Thus, (4.5) and (5.2) hold; hence, also (4.4)2,3 are verified.

• Finally, we choose ρ such that Co(ρ) verifies (5.4).

In the next proposition, we claim the global in time decreasing of the functional F . The

proof is omitted since it is analogous to that of Proposition 4.3.

Proposition 5.2 Let mo > 0 satisfy (5.24). Moreover, assume that ξ, Kℓ,m,r
η,ζ and ρ

satisfy (5.21)–(5.29) and (5.4). Then, the following two statements hold.

• Local Decreasing. For any interaction at time t > 0 between two waves satisfying (3.18),

it holds

∆F (t) ≤ 0 .

• Global Decreasing. If

L̄(0) ≤ moc(mo) (5.30)

and the approximate solution is defined in [0, T ], then F (0) ≤ mo, ∆F (t) ≤ 0 for every t ∈ (0, T ]

and (3.18) is satisfied.
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6 End of the Proof of Theorem 2.1

In this last section, we conclude the proof of Theorem 2.1 and add some final comments.

The proof fits in the general framework detailed in [2]; hence, we only outline the most important

changes.

First, as in [2, Section 6] the front tracking algorithm used to construct the approximate

solutions is well-defined and converges. Moreover, it is consistent in the sense that the total

size of the non-physical waves carried by the composite waves vanishes with ν. In brief, to

estimate this quantity we use the notion of generation order, i.e., we attach an index k ≥ 1

to each wave generated in the construction. Then, according to each k, we introduce suitable

functionals Lk, Qk, Fk simply by referring the functionals L, Q, F to waves with order k. In

particular, following the same steps as in [1, 2], in both cases we can prove that

F̃k(t) =
∑

j≥k

Fj(t) ≤ µk−1F1(0), (6.1)

where µ ∈ ]0, 1[ is either µb or µc. More precisely, in the bubble case we find

µb = max

{
1 + Km

ζ |ζ|
2Km

η − 1
,

1 + Km
η |η|

2Km
ζ − 1

,
ξ

1 + 2Kℓ
η

,
ξ

1 + 2Kr
ζ

,
1 + Km

η |η|
ξ

,
1 + Km

ζ |ζ|
ξ

,

1 + Kℓ
η|η| + Kℓ

ζ |ζ|
ξ

,
1 + Kr

η |η| + Kr
ζ |ζ|

ξ
,

Co

ξ(2Km
η − Co)

,
Co

ξ(2Km
ζ − Co)

}
;

while in the increasing-pressure case we have

µc = max

{
1 + Km

ζ |ζ|
2Km

η − 1
,

ξ(1 + Km
η |η|)

1 + 2Km
ζ

,
1 + Km

η |η|
ξ

,
1 + Kℓ

η(|η| + |ζ|)
ξ

,
1 + Kr

η(|η| + |ζ|)
ξ

,

ξ|η|/2

(Kℓ
η − 1/2)|η|+ (Kℓ

ζ − Km
ζ )|ζ| ,

|ζ|/2

(Kr
ζ − 1/2)|ζ|+ [Kr

η − Km
η (1 + |ζ|/2)]|η| ,

Co|ζ|/2

ξ(Kr
ζ − Co/2)|ζ| + ξ[Kr

η − Km
η (1 + Co|ζ|/2)]|η| ,

Co

ξ(2Km
η − Co)

}
.

In both cases, simple calculations show that µ < 1 because of our choice of keeping strict

inequalities in the final parts of Sections 4 and 5. We exploit formula (6.1) to show that the

total size of the composite waves tends to zero, as follows. We have

[total size of composite waves]

≤ [size of composite waves of order ≥ k] + [size of composite waves of order < k]

≤ µk−1 · F1(0) +
ρ

2
Co(ρ)(|η| + |ζ|) [number of fronts of order < k]

≤ µk−1 · mo +
ρ

2
Co(ρ)(|η| + |ζ|) [number of fronts of order < k] . (6.2)

Then, (6.2) is less than 1/ν if we choose k sufficiently large to have the first term less than

1/(2ν) and ρ = ρν(mo) small enough to have the second term less than 1/(2ν).

End of the proof of Theorem 2.1 As in the proof of [2, Theorem 2.1], in the bubble

case (increasing-pressure case) by (2.4) and (4.15) ((5.30), respectively) we prove that

L̄(0) ≤ 1

2
TV (log(po)) +

1

2 min{aℓ, am, ar}
TV (uo) . (6.3)
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Now, by (4.12) ((5.24), respectively) and (6.3) we look for an mo satisfying both inequalities

below:

H(|η|, |ζ|) <
1

c(mo)
− 1 =

2

coshmo − 1
=: w(mo) , (6.4)

TV (log(po)) +
1

min{aℓ, am, ar}
TV (uo) < 2moc(mo) =: z(mo) . (6.5)

Recall from [2] that w(r) is strictly decreasing and z(r) is strictly increasing, for r ∈ R
+.

Moreover, we have K(r) = z
(
w−1(r)

)
, see (2.2). Hence, by (2.4) one can choose mo such that

(6.4), (6.5) hold in both the cases. Therefore, we can conclude as in [7] and Theorem 2.1 is

completely proved. �

As in [2], we want to compare the results obtained here in the bubble casewith that of [3].

More precisely, we set x = |η|, y = |ζ| and we claim that

Hb(x, y) ≤ x + y for 0 ≤ x + y < 1/2. (6.6)

Since Hb is a symmetric function of x and y, it suffices to verify that in the common domain it

holds
(2 + x)4y

(2 − x)(4 − xy)
< x + y . (6.7)

By simplifying expression (6.7), we find that it is equivalent to

x2y + xy2 − (2xy + 2y2 + 4x + 8y) + 8 > 0 ,

which will be satisfied if xy + y2 +2x+4y < 4. Since x < 1/2− y, this last inequality is verified

if (
1

2
− y

)
y + y2 + 2

(
1

2
− y

)
+ 4y < 4 ,

that is when y < 6/5. Therefore, (6.6) holds and, since K is decreasing, we have

K (Hb(|η|, |ζ|)) > K (|η| + |ζ|)

in the common domain |η| + |ζ| < 1/2. Hence, Theorem 2.1 improves [3, Theorem 2.2] in the

bubble case.
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