
06 May 2024

Università degli studi di Udine

Original

Untwisting two-way transducers in elementary time

Publisher:

Published
DOI:10.1109/LICS.2017.8005138

Terms of use:

Publisher copyright

(Article begins on next page)

The institutional repository of the University of Udine (http://air.uniud.it) is provided by ARIC services. The
aim is to enable open access to all the world.

Availability:

Institute of Electrical and Electronics Engineers Inc.

This version is available http://hdl.handle.net/11390/1174043 since 2021-03-19T12:36:19Z

Untwisting two-way transducers in elementary time

Félix Baschenis˚, Olivier Gauwin˚, Anca Muscholl˚ and Gabriele Puppis˚
˚Université de Bordeaux, LaBRI, CNRS

Abstract—Functional transductions realized by two-way trans-
ducers (equivalently, by streaming transducers and by MSO
transductions) are the natural and standard notion of “reg-
ular” mappings from words to words. It was shown recently
(LICS’13) that it is decidable if such a transduction can be
implemented by some one-way transducer, but the given algo-
rithm has non-elementary complexity. We provide an algorithm
of different flavor solving the above question, that has double
exponential space complexity. We further apply our technique
to decide whether the transduction realized by a two-way
transducer can be implemented by a sweeping transducer, with
either known or unknown number of passes.

1. Introduction

Since the early times of computer science, transducers
have been identified as a fundamental notion of computation,
where one is interested how objects can be transformed
into each other. Numerous fields of computer science are
ultimately concerned with transformations, ranging from
databases to image processing, and an important issue is to
perform transformations with low costs, whenever possible.

The most basic form of transformers are devices that
process an input and produce outputs during the process-
ing, using finite memory. Such devices are called finite-
state transducers. Word-to-word finite-state transducers were
considered in very early work in formal language theory [1],
[11], [22], and it was soon clear that they are much more
challenging than finite-state word acceptors - the classical
finite-state automata. One essential difference between trans-
ducers and automata over words is that the capability to
process the input in both directions strictly increases the
expressive power in the case of transducers, whereas this
does not for automata [20], [23]. In other words, two-way
word transducers are strictly more expressive than one-way
word transducers.

We consider in this paper functional transducers - non-
deterministic transducers that compute functions from words
to words (also called one-valued in the literature). Two-
way functional transducers capture very nicely the notion
of regularity in this setting. Regular word functions, i.e.
functions computed by functional two-way transducers, in-
herit many of the characterizations and algorithmic prop-
erties of the robust class of regular languages. Engelfriet
and Hoogeboom [12] showed that monadic second-order

This work was partially supported by the projects ExStream (ANR-13-JS02-
0010) and DeLTA (ANR-16-CE40-0007).

definable graph transductions, restricted to words, are equiv-
alent to two-way transducers — this justifies the notation
“regular” word functions, in the spirit of classical results
in automata theory and logic by Büchi, Elgot, Rabin and
others. Recently, Alur and Cerný [2] proposed an enhanced
version of one-way transducers called streaming transducers,
and showed that they are equivalent to the two previous
models. A streaming transducer processes the input word
from left to right, and stores (partial) output words in finitely
many, write-only registers.

Two-way transducers raise challenging questions about
resource requirements. One crucial resource is the number
of times the transducer needs to re-process the input word.
In particular, the case where the input can be processed
in a single pass, from left to right, is very attractive as it
corresponds to the setting of streaming, where the (possibly
very large) inputs do not need to be stored in order to be
processed. Recently, it was shown in [14] that it is decidable
whether the transduction defined by a functional two-way
transducer can be implemented by a one-way transducer.
However, the decision procedure of [14] has non-elementary
complexity, and it is natural to ask whether one can do better.
We gave in [3], [4] an exponential space algorithm in the
special case of sweeping transducers: head reversals are only
allowed at the extremities of the input. However, sweeping
transducers are known to be strictly less expressive than
two-way transducers.

In this paper we provide an algorithm of elementary
complexity for deciding whether the transduction defined
by a functional two-way transducer can be implemented by
a one-way transducer: the decision algorithm has double
exponential space complexity, and an equivalent one-way
transducer (if it exists) of triple exponential size can be con-
structed. The known lower bound [3] is double exponential
size. We also adapt our techniques to characterize sweeping
transducers within the class of two-way transducers.

Related work. Besides the papers mentioned above, there
are several recent results around the expressivity and the
resources of two-way transducers, or equivalently, stream-
ing transducers. First-order definable transductions were
shown to be equivalent to transductions defined by aperi-
odic streaming transducers [15] and to aperiodic two-way
transducers [7]. An effective characterization of aperiodicity
for one-way transducers was obtained in [13].

In [4], [10] the minimization of the number of reg-
isters of deterministic streaming transducers, resp., passes
of functional sweeping transducers, was shown to be de-
cidable. An algebraic characterization of (not necessarily

978-1-5090-3018-7/17/$31.00 c©2017 European Union

functional) two-way transducers over unary alphabets was
provided in [8]. It was shown that in this case sweeping
transducers have the same expressivity. The expressivity
of non-deterministic input-unary or output-unary two-way
transducers was investigated in [17].

Overview. Section 2 introduces basic notations for two-
way transducers, and Section 3 states the main result. Sec-
tion 4 is devoted to the effect of pumping on outputs, and
Section 5 introduces the main tool for our characterization.
Section 6 handles the construction of an equivalent one-
way transducer. Finally, Section 7 describes a procedure to
decide whether a functional transducer is equivalent to a
sweeping transducer. Missing proofs can be found in the
extended version [5].

2. Preliminaries

Two-way automata and transducers. We start with some
basic notations and definitions for two-way automata (resp.,
transducers). We assume that every input word u “ a1 ¨ ¨ ¨ an
has two special delimiting symbols a1 “ $ and an “ % that
do not occur elsewhere: ai R t$,%u for all i “ 2, . . . , n´1.

A two-way automaton A “ xQ,Σ,$,%, δ, q0, F y has a
finite state set Q, finite input alphabet Σ, transition relation
δ Ď Q ˆ pΣ Y t$,%uq ˆ Q ˆ tleft, rightu, initial state
q0 P Q, and set of final states F Ď Q. By convention,
left transitions on $ are not allowed. A configuration of A
has the form u q v, with uv P t$u ¨ Σ˚ ¨ t%u and q P Q.
A configuration u q v represents the situation where the
current state of A is q and its head reads the first symbol
of v (on input uv). If pq, a, q1, rightq P δ, then there is a
transition from any configuration of the form u q av to the
configuration ua q1 v, which we denote u q av a,right

ÝÝÝÑ ua q1 v.
Similarly, if pq, a, q1, leftq P δ, then there is a transition from
any configuration of the form ub q av to the configuration
u q1 bav, denoted as ub q av a,left

ÝÝÝÑ u q1 bav. A run on w is
a sequence of transitions. It is successful if it starts in the
initial configuration q0 w and ends in a configuration w q
with q P F — note that this latter configuration does not
allow additional transitions. The language of A is the set of
input words that admit a successful run of A.

The definition of two-way transducers is similar to that
of two-way automata, with the only difference that now there
is an additional output alphabet Γ and the transition relation
is a finite subset of QˆpΣYt$,%uqˆΓ˚ˆQˆtleft, rightu,
which associates an output over Γ with each transition of
the underlying two-way automaton. Formally, given a two-
way transducer T “ xQ,Σ,$,%,Γ, δ, q0, F y, we have a
transition of the form ub q av a,d|w

ÝÝÝÑ u1 q1 v1, outputting w,
whenever pq, a, w, q1, dq P δ and either u1 “ uba, v1 “ v or
u1 “ u, v1 “ bav, depending on whether d “ right or d “
left. The output associated with a run ρ “ u1 q1 v1

a1,d1|w1
ÝÝÝÑ

. . . an,dn|wn
ÝÝÝÑ un`1 qn`1 vn`1 of T is the word outpρq “

w1 ¨ ¨ ¨wn. A transducer T defines a relation consisting of
all pairs pu,wq such that w “ outpρq, for some successful
run ρ on u.

q0 q1 q2

q3q4

q5 q6 q7 q8

a1, right a2, right

a3, left

a2, left

a1, right

a2, right a3, right a4, right

a1 a2 a3 a4Input word:

Positions:

Run:

0 1 2 3 4

p0, 0q p1, 0q p2, 0q

p2, 1qp1, 1q

p1, 2q p2, 2q p3, 0q p4, 0q

Figure 1. Graphical presentation of a run by means of crossing sequences.

The domain of T , denoted dompT q, is the set of input
words that have a successful run. For transducers T , T 1, we
write T 1 Ď T to mean that dompT 1q Ď dompT q and the
transductions computed by T , T 1 coincide on dompT 1q.

We say that T is functional if for each input u, at most
one output w can be produced by any possible successful
run on u. Finally, we say that T is one-way if it does not
have transition rules of the form pq, a, w, q1, leftq.
Crossing sequences. The first basic notion is that of
crossing sequence. We follow the convenient presentation
from [18], which appeals to a graphical representation of
runs of a two-way transducer where each configuration is
seen as point (location) in a two-dimensional space. Let
u “ a1 ¨ ¨ ¨ an be an input word (recall that a1 “ $ and
an “ %) and let ρ be a run of a two-way automaton (or
transducer) T on u. The positions of ρ are the numbers from
0 to n, corresponding to “cuts” between two consecutive
letters of the input. For example, position 0 is just before
the first letter a1, position n is just after the last letter an, and
any other position x, with 1 ď x ă n, is between the letters
ax and ax`1. We say that a transition u q v a,d

ÝÝÝÑ u1 q1 v1

of ρ crosses position x if either d “ right and |u| “ x, or
d “ left and |u1| “ x. A location of ρ is any pair px, yq
for which there are at least y ` 1 transitions in ρ crossing
position x; the component y of a location is called level.
Each location is associated a state. Formally, we say that q
is the state at location ` “ px, yq in ρ, and we denote this
by writing ρp`q “ q, if the py` 1q-th transition that crosses
x ends up in state q. The crossing sequence at position x of
ρ is the tuple ρ|x “ pq0, . . . , qhq, where the qy’s are all the
states at locations of the form px, yq, for y “ 0, . . . , h.

As suggested by Fig. 1, any run can be represented
as an annotated path between locations. For example, if a
location px, yq is reached by a rightward transition, then
the head of the automaton has read the symbol ax; if it is
reached by a leftward transition, then the head has read the
symbol ax`1. Note that in a successful run ρ every crossing
sequence has odd length and every rightward (resp. leftward)
transition reaches a location with even (resp. odd) level.
We identify four types of transitions between locations,
depending on the parities of the levels, see Fig. 1. Hereafter,
we will identify runs with the corresponding annotated paths

between locations.

px, 2yq px`1, 2y1q

px, 2y`1q px`1, 2y1`1q

px, 2yq

px, 2y`1q

px, 2y`1q

px, 2y`2q

ax`1, right

ax`1, left

ax`1, left

ax, right

It is also convenient to define a total order � on the locations
of a run ρ by letting `1 � `2 if `2 is reachable from `1
by following the path described by ρ — the order � on
locations is called run order. Given two locations `1 � `2
of a run ρ, we write ρr`1, `2s for the factor of the run that
starts in `1 and ends in `2. Note that the latter is also a
run and hence the notation out

`

ρr`1, `2s
˘

is permitted. Two
runs ρ1, ρ2 can be concatenated, provided that ρ1 ends in
location px, yq, ρ2 starts in location px, y1q, such that y1 “ y
pmod 2q and px, yq, px, y1q are labelled by the same state.
We denote by ρ1ρ2 the run resulting from concatenating ρ1
with ρ2. Clearly, we have ρr`1, `2s ρr`2, `3s “ ρr`1, `3s for
all locations `1 � `2 � `3.
Normalization. Without loss of generality, we will assume
that successful runs of functional transducers are normal-
ized, meaning that they never visit two locations with the
same position, the same state, and both either at even or
at odd level. Indeed, if this were not the case, say if a
successful run ρ visited two locations `1 “ px, yq and
`2 “ px, y

1q such that ρp`1q “ ρp`2q and y, y1 are both even
or both odd, then the output produced by ρ between `1 and
`2 should be empty, as otherwise by repeating the factor
ρr`1, `2s of ρ we could obtain successful runs that produces
different outputs on the same input, thus contradicting the
assumption that the transducer is functional. Now that we
know that the output of ρ produced between `1 and `2 is
empty, we could drop the factor ρr`1, `2s, thus obtaining a
successful run with the same output. So in every normalized
successful run, crossing sequences are at most 2|Q|´1 long.

We define hmax “ 2|Q|´1. Moreover, by cmax we denote
the maximal length of the output of a transition.

3. Two-way transducers versus one-way trans-
ducers

In this section we state our main result, which is the
existence of an elementary algorithm for checking whether
a two-way transducer is equivalent to some one-way trans-
ducer. We call such transducers one-way definable. Before
doing so, we discuss a few examples.

Example 1. We consider two-way transducers that accept
any input u from a given regular language R and output
the word uu. We will argue how, depending on R, these
transducers may or may not be one-way definable.
1) If R “ pa ` bq˚ there is no equivalent one-way

transducer, as the output language is not regular. If R is
finite, then the transduction mapping u P R to uu can

be implemented by a one-way transducer that guesses
u (this requires as many states as the size of R), checks
the input, and outputs two copies of the guessed word.

2) A special case of transduction with finite domain
is given by Rn “ ta0 w0 ¨ ¨ ¨ a2n´1 w2n´1 :
a0, . . . , a2n´1 P ta, buu, where n P N and each wi is
the binary encoding of the counter i “ 0, . . . , 2n ´ 1.
It is easy to see (cf. Proposition 15 [3]) that the trans-
duction mapping u P Rn to uu can be implemented
by a two-way transducer with quadratically many states
w.r.t. n, while every equivalent one-way transducer has
at least 22

n

states, since it needs to guess a word of
length 2n.

3) Consider now the periodic language R “ pabcq˚.
The function that maps u P R to uu can be easily
implemented by a one-way transducer: it suffices to
output two letters (i.e., ab, ca, bc, in turn) for each
input letter, while checking that the input is in R.

Example 2. We consider a slightly more complicated
transduction that is defined on input words of the form
u1 # . . . # un, where each factor ui is over the alphabet
Σ “ ta, b, cu. The output is w1# . . .#wn, where each wi is
either ui ui or ui, depending on whether or not ui P pabcq˚
and ui`1 has even length (with un`1 “ ε).

The obvious way to implement the transduction is by
means of a two-way transducer that performs multiple
passes on the factors of the input: a first left-to-right pass
is performed on ui #ui`1 to produce the first copy of ui
and to check whether ui P pabcq˚ and |ui`1| is even; if so,
a second pass on ui is performed to produce another copy
of ui.

The transduction can also be implemented by a one-way
transducer: when entering a factor ui, the transducer guesses
whether or not ui P pabcq˚ and |ui`1| is even; depending
on this it outputs either pabc abcq

|ui|

3 or ui, and checks that
the guess is correct.

We state now the main result of our paper:

Theorem 3. There is an algorithm that from a functional
two-way transducer T constructs in triple exponential time
a one-way transducer T 1 with the following properties:
‚ T 1 Ď T ,
‚ dompT q “ dompT 1q iff T is one-way definable.
Moreover, the second property above can be checked in
double exponential space w.r.t. |T |.

A similar characterization for a much more restricted
class of transducers (sweeping transducers) appeared in [3].
The proof of Theorem 3, however, is more technical, as it
requires a better understanding of the structure of the runs
of two-way transducers and a non-trivial generalization of
the combinatorial arguments from [3].

The proof of the above theorem spans along the next
three sections. In Section 4, we present the basic concepts
for reasoning on runs of two-way automata. This includes
the definition of a finite semigroup for describing the shapes
of two-way runs, as well as Ramsey-type arguments that

are used to bound the length of the outputs produced by
pieces of runs without loops. In Section 5 we provide the
main combinatorial arguments for characterizing one-way
definability. The crucial notion will be that of inversion,
that captures behaviours of the two-way transducer that are
problematic for one-way definability. Finally, in Section 6
we exploit the combinatorial results and the Ramsey-type
arguments to derive the existence of suitable decompositions
of runs that lead to the construction of equivalent one-way
transducers.

4. Untangling runs of two-way transducers

This section is devoted to the structure of runs of two-
way transducers. Whereas the classical transformation of
two-way automata into one-way automata based on crossing
sequences is rather simple, for transducers we need a more
detailed analysis of runs because of the additional outputs.
In a nutshell, one-way definability is related to periodicities
(with bounded periods) in the output, and these periodicities
are generated by loops in the run. We will actually work
with so called idempotent loops, that generate periodicities
in the output in a “nice” way. We will derive the existence
of idempotent loops with bounded outputs using Ramsey-
based arguments.

We fix throughout the paper a functional two-way trans-
ducer T , an input word u, and a successful run ρ of T on
u. We assume that ρ is normalized, i.e., every state occurs
at most once in each crossing sequence of ρ at levels of a
given parity.

For simplicity, we denote by ω the length of the input
word u. We will consider intervals of positions of the form
I “ rx1, x2s, with 0 ď x1 ă x2 ď ω. The containment
relation Ď on intervals is defined by rx3, x4s Ď rx1, x2s if
x1 ď x3 ă x4 ď x2.
Factors, flows, and effects. A factor of a run ρ is a contigu-
ous subsequence of ρ. A factor intercepted by an interval

I “ rx1, x2s

0

1

2 0

13

4 2

3

4

α

β

γ

δ

ζ

Figure 2. Intercepted factors.

I “ rx1, x2s is a maximal factor
of ρ that visits only positions
x P I , and never uses a left
transition from position x1 or a
right transition from position x2.

Fig. 2 on the right gives an
example of an interval I that in-
tercepts the factors α, β, γ, δ, ζ.
The numbers that annotate the
endpoints of the factors repre-
sent their levels.

Every factor α intercepted by an interval I “ rx1, x2s
is of one of the four types below, depending on its first
location px, yq and its last location px1, y1q:
‚ α is an LL-factor if x “ x1 “ x1,
‚ α is an RR-factor if x “ x1 “ x2,
‚ α is an LR-factor if x “ x1 and x1 “ x2,
‚ α is an RL-factor if x “ x2 and x1 “ x1.
In Fig. 2 we see that α is an LL-factor, β, δ are LR-factors,
ζ is an RR-factor, and γ is an RL-factor.

Definition 4. Let ρ be a run and I “ rx1, x2s an interval
of ρ. Let hi be the length of the crossing sequence ρ|xi for
both i “ 1 and i “ 2.

The flow FI of I is a directed graph with set of nodes
t0, . . . ,maxph1, h2q ´ 1u and set of edges consisting of all
py, y1q such that there exists a factor of ρ intercepted by I
that starts at location pxi, yq and ends at location pxj , y1q,
for i, j P t1, 2u.

The effect EI of I is the triple pFI , c1, c2q, where ci “
ρ|xi is the crossing sequence at xi.

For example, the interval I of Fig. 2 has the flow graph
0 ÞÑ 1 ÞÑ 3 ÞÑ 4 ÞÑ 2 ÞÑ 0. It is easy to see that every
node of a flow FI has at most one incoming and at most
one outgoing edge. More precisely, if y ă h1 is even, then
it has one outgoing edge (corresponding to an LR- or LL-
factor intercepted by I), and if it is odd it has one incoming
edge (corresponding to an RL- or LL-factor intercepted by
I). Similarly, if y ă h2 is even, then it has one incoming
edge (corresponding to an LR- or RR-factor), and if it is
odd it has one outgoing edge (corresponding to an RL- or
RR-factor).

In the following we consider generic effects that are
not necessarily associated with intervals of specific runs.
The definition of such effects should be clear: these are
triples consisting of a graph (called flow) and two crossing
sequences of lengths h1, h2 ď hmax, with sets of nodes of
the form t0, . . . ,maxph1, h2q ´ 1u, that satisfy the in/out-
degree properties stated above.

It is convenient to distinguish the edges in a flow based
on the parity of the source and target nodes. Formally, we
partition any flow F into the following subgraphs:
‚ FLR consists of all edges of F between pairs of even

nodes,
‚ FRL consists of all edges of F between pairs of odd

nodes,
‚ FLL consists of all edges of F from an even node to

an odd node,
‚ FRR consists of all edges of F from an odd node to an

even node.
We denote by F (resp. E) the set of all flows (resp. ef-

fects) augmented with a dummy element K. We equip
both sets F and E with a semigroup structure, where the
corresponding products ˝ and d are defined below (similar
definitions appear in [6]). We need this semigroup structure
in order to identify idempotent loops, that play a crucial role
in our characterization of one-way definability.

Definition 5. For two graphs G,G1, we denote by G ¨G1 the
graph with edges of the form py, y2q such that py, y1q is an
edge of G and py1, y2q is an edge of G1, for some node y1
that belongs to both G and G1. Similarly, we denote by G˚
the graph with edges py, y1q such that there exists a (possibly
empty) path in G from y to y1.

The product of two flows F, F 1 is the unique flow F ˝F 1

(if it exists) such that:
‚ pF ˝ F 1qLR “ FLR ¨ pF

1
LL ¨ FRRq

˚ ¨ F 1LR,
‚ pF ˝ F 1qRL “ F 1RL ¨ pFRR ¨ F

1
LLq

˚ ¨ FRL,

I

α

β

γ

δ

ζ

I copy of I

α

β
α

γ

δ
β

γ

ζ
δ

ζ

I 2 copies of I

α

β
α

γ

δ
β

α
γ

ζ
δ

β

γ

ζ
δ

ζ

Figure 3. Pumping a loop in a run.

‚ pF ˝ F 1qLL “ FLL Y FLR ¨ pF
1
LL ¨ FRRq

˚ ¨ F 1LL ¨ FRL,
‚ pF ˝ F 1qRR “ F 1RR Y F 1RL ¨ pFRR ¨ F

1
LLq

˚ ¨ FRR ¨ F
1
LR.

If no flow F ˝ F 1 exists with the above properties, then we
let F ˝ F 1 “ K.

The product of two effects E “ pF, c1, c2q and E1 “
pF 1, c11, c

1
2q is either the effect E dE1 “ pF ˝ F 1, c1, c12q or

the dummy element K, depending on whether F ˝ F 1 ‰ K
and c2 “ c11.

For example, let F be the flow of interval I in
Fig. 2. Then pF ˝ F qLL “ tp0, 1q, p2, 3qu, pF ˝ F qRR “

tp1, 2q, p3, 4qu, and pF ˝F qLR “ tp4, 0qu — one can quickly
verify this with the help of Fig. 3.

It is also easy to see that pF , ˝q and pE ,dq are finite
semigroups, and that for every run ρ and every pair of
consecutive intervals I “ rx1, x2s and J “ rx2, x3s of
ρ, FIYJ “ FI ˝ FJ and EIYJ “ EI d EJ . In particular,
the function E that associates each interval I of ρ with
the corresponding effect EI can be seen as a semigroup
homomorphism.

Note that, in a normalized successful run, there are at
most |Q|hmax distinct crossing sequences and at most 4hmax

distinct flows, since there are at most hmax edges in a flow,
and each one has one of the 4 possible types LL, . . . ,RR.
Hence there are at most p2|Q|q2hmax distinct effects.
Loops and components. Loops of a two-way run are the ba-
sic building blocks for characterizing one-way definability.
We will consider special types of loops, called idempotent
loops, when showing that outputs generated in non left-to-
right manner are essentially periodic.

Definition 6. A loop of ρ is an interval L “ rx1, x2s whose
endpoints have the same crossing sequences, i.e. ρ|x1 “
ρ|x2. It is said to be idempotent if EL “ EL d EL and
EL ‰ K.

For example, the interval I of Fig. 2 is a loop, if one assumes
that the crossing sequences at the borders of I are the same.
However, by comparing with Fig. 3, it is easy to see that I
is not idempotent. On the other hand, the loop consisting of
2 copies of I is idempotent.

Given a loop L “ rx1, x2s and a number m P N, we can
introduce m new copies of L and connect the intercepted
factors in the obvious way. Fig. 3 shows how to do this for

L

α1

α2

α3

β1

β2

β3

γ1

L 2 copies of L

α1

α2
α1

α3
α2

α1

α3
α2

α3

β1

β2

β1

β3
β2

β1

β3
β2

β3

γ1 γ1 γ1

Figure 4. Pumping an idempotent loop with three components.

m “ 1 and m “ 2. The operation that we just described is
called pumping, and results in a new run of the transducer
T on the word

pumpm`1
L puq :“ ur0, x1s¨

`

urx1`1, x2s
˘m`1

¨urx2`1, ωs .

We denote by pumpm`1
L pρq the pumped1 run on

pumpm`1
L puq.

The goal in this section is to describe the shape of the
pumped run pumpm`1

L pρq (and the produced output as well)
when L is an idempotent loop. We will focus on idempotent
loops because pumping non-idempotent loops may induce
permutations of outputs that are difficult to handle. For
example, if we consider again the non-idempotent loop I
to the left of Fig. 3, the factor of the run between β and
γ (to the right of I , highlighted in red) precedes the factor
between γ and δ (to the left of I , again in red), but this
ordering is reversed when a new copy of I is added.

When pumping a loop L, subsets of factors intercepted
by L are glued together to form longer factors intercepted
by the unioned copies of L. The concept of component that
we introduce below aims at identifying the groups of factors
that are glued together.

Definition 7. A component of a loop L is any strongly
connected component of its flow FL (note that this is also
a cycle, since every node in it has in/out-degree 1). Given
a component C, we denote by minpCq (resp. maxpCq) the
minimum (resp. maximum) node in C. We say that C is left-
to-right (resp. right-to-left) if minpCq is even (resp., odd).
An pL,Cq-factor is a factor of the run that is intercepted by
L and corresponds to an edge of C.

For example, the loop I of Fig. 3 contains a single compo-
nent C “ t0 ÞÑ 1 ÞÑ 3 ÞÑ 4 ÞÑ 2 ÞÑ 0u which is left-to-
right. Another example is given in Fig. 4, where the loop
L has three components C1, C2, C3 (ordered from bottom
to top): α1, α2, α3 are the pL,C1q-factors, β1, β2, β3 are the
pL,C2q-factors, and γ1 is the unique pL,C3q-factor.

We will usually list the pL,Cq-factors based on their
order of occurrence in the run.

1. Using similar constructions, one could remove a loop L from a run
ρ, resulting in the run pump0Lpρq. As we do not need this, the operation
pumpL will always be parametrized by a positive number m` 1.

The following lemma describes the precise shape and
order of such factors when the loop L is idempotent. It can
be used to reason on the shape of runs obtained by pumping
idempotent loops.

Lemma 8. If C is a left-to-right (resp. right-to-left) com-
ponent of an idempotent loop L, then the pL,Cq-factors
are in the following order: k LL-factors (resp. RR-factors),
followed by one LR-factor (resp. RL-factor), followed by k
RR-factors (resp. LL-factors), for some k ě 0.

We also need to introduce the notions of anchor (Def. 9)
and trace (Def. 10).

Definition 9. Let C be a component of an idempotent
loop L “ rx1, x2s. The anchor of C inside L, denoted2

anpCq, is either the location
`

x1,maxpCq
˘

or the location
`

x2,maxpCq
˘

, depending on whether C is left-to-right or
right-to-left.

Intuitively, the anchor anpCq of a component C of L is the
source location of the unique LR- or RL-factor intercepted
by L that corresponds to an edge of C (recall Lemma 8).
In Fig. 4 the anchors are represented by the black dots.

Definition 10. Let C be a component of some idempotent
loop L and let pi0, i1q, pi1, i2q, . . . , pik´1, ikq, pik, ik`1q be
a cycle of C, where i0 “ ik`1 “ maxpCq. For every
j “ 0, . . . , k, let βj be the factor intercepted by L that
corresponds to the edge pij , ij`1q of C. The trace of C
inside L is the run trpCq “ β0 β1 ¨ ¨ ¨ βk (note that this is
not necessarily a factor of the original run ρ).

Intuitively, the trace trpCq is obtained by concatenating
the pL,Cq-factors together, where the first factor is the
(unique) LR-/RL-factor that starts at the anchor anpCq and
the remaining ones are the LL-factors interleaved with the
RR-factors.

For example, by referring again to the components
C1, C2, C3 of Fig. 4, we have the following traces: trpC1q “

α2 α1 α3, trpC2q “ β2 β1 β3, and trpC3q “ γ1.
As shown by the following proposition, iterations of

idempotent loops translate to iterations of traces trpCq of
components.

Proposition 11. Let L be an idempotent loop of ρ with
components C1, . . . , Ck, listed according to the order of
their anchors: anpC1q � ¨ ¨ ¨ � anpCkq. For all m P N,
we have

pumpm`1
L pρq “ ρ0 trpC1q

m ρ1 ¨ ¨ ¨ ρk´1 trpCkq
m ρk

where
‚ ρ0 is the prefix of ρ that ends at anpC1q,
‚ ρi is the factor ρranpCiq, anpCi`1qs, for all 1 ď i ă k,
‚ ρk is the suffix of ρ that starts at anpCkq.

For example, referring to the left hand-side of Fig. 4,
the run ρ0 goes until the first location marked by a black

2. In denoting the anchor — and similarly the trace — of a component
C inside a loop L, we omit the annotation specifying L, since this is often
understood from the context.

dot. The runs ρ1 and ρ2, resp., are between the first and
the second black dot, and the second and third black dot.
Finally, ρ3 is the suffix starting at the last black dot. The
pumped run pumpm`1

L pρq for m “ 2 is depicted to the right
of Fig. 4.
Ramsey-type arguments. We conclude the section by de-
scribing a technique that can be used for bounding the
length of the outputs produced by factors of the run ρ. This
technique is based on Ramsey-type arguments and relies on
Simon’s “factorization forest” theorem [9], [24], which we
recall below.

Let X be a set of positions of ρ. A factorization forest
for X is an unranked tree, where the nodes are intervals I
with endpoints in X , labelled with the corresponding effect
EI , the ancestor relation is given by the containment order
on intervals, the leaves are the minimal intervals rx1, x2s,
with x2 successor of x1 in X , and for every internal node
I with children J1, . . . , Jk, we have:
‚ I “ J1 Y ¨ ¨ ¨ Y Jk,
‚ EI “ EJ1 d ¨ ¨ ¨ d EJk ,
‚ if k ą 2, then EI “ EJ1 “ ¨ ¨ ¨ “ EJk is an idempotent

of the semigroup pE ,dq.
We will make use of the following three constants

defined from the transducer T : the maximum number cmax

of letters output by a single transition, the maximal length
hmax “ 2|Q| ´ 1 of a crossing sequence, and the maximal
size emax “ p2|Q|q2hmax of the effect semigroup pE ,dq.
By B “ cmax ¨ hmax ¨ p2

3emax ` 4q we will denote the main
constant appearing in all subsequent sections.

Theorem 12 (Factorization forest theorem [9], [24]). For
every set X of positions of ρ, there is a factorization forest
for X of height at most 3emax.

It is easy to use the above theorem to show that every
run that produces an output longer than B contains an
idempotent loop with non-empty output. Below, we present
a result in the same spirit, but refined in a way that it can be
used to find anchors of components of loops inside specific
intervals.

In order to state it formally, we need to consider sub-
sequences of ρ induced by sets of locations that are not
necessarily intervals. Recall that ρr`1, `2s denotes the fac-
tor of ρ delimited by two locations `1 � `2. Similarly,
given any set Z of (possibly non-consecutive) locations,
we denote by ρ | Z the subsequence of ρ induced by Z.

I “ rx1, x2s

`1

`2
A transition of ρ | Z is a tran-
sition from some ` to `1, where
both `, `1 belong to Z. The out-
put outpρ | Zq is the concatena-
tion of the outputs of the transi-
tions of ρ | Z (in the order given
by ρ). An example of subrun
ρ | Z is represented by the thick
arrows in the figure to the right,
where Z “ r`1, `2s X pI ˆ Nq.
Theorem 13. Let I “ rx1, x2s be an interval of positions,
K “ r`1, `2s an interval of locations, and Z “ K X pIˆNq.

L2 L1

anpC1q

anpC2q

Figure 5. An inversion with components intercepting the highlighted fac-
tors.

If
ˇ

ˇoutpρ | Zq
ˇ

ˇ ą B, then there exist an idempotent loop L
and a component C of L such that
‚ x1 ă minpLq ă maxpLq ă x2 (in particular, L Ĺ I),
‚ `1 � anpCq � `2 (in particular, anpCq P K),
‚ outptrpCqq ‰ ε.

5. Inversions and periods

As suggested by Examples 1 and 2, a typical phe-
nomenon that may prevent a transducer from being one-way
definable is that of a non-periodic inversion. An inversion
essentially corresponds to a long output produced from right
to left. The main result in this section is Proposition 16,
that shows that for a one-way definable transduction, the
output between the locations delimiting an inversion must
have bounded period.

Definition 14. An inversion of ρ is a tuple pL1, C1, L2, C2q

such that
‚ Li is an idempotent loop, for both i “ 1, 2,
‚ Ci is a component of Li, for both i “ 1, 2,
‚ anpC1q � anpC2q,
‚ anpCiq “ pxi, yiq, for both i “ 1, 2, and x1 ě x2,
‚ both outptrpC1qq and outptrpC2qq are non-empty.

Fig. 5 gives an example of an inversion involving the loop
L1 with its first component and the loop L2 with its second
component (we highlighted the anchors and the factors
corresponding to these components).

Definition 15. A word w “ a1 ¨ ¨ ¨ an has period p if ai “
ai`p for all pairs of positions i, i` p of w.

For example, w “ abc abc ab has period 3.
One-way definability of functional two-way transducers

essentially amounts to showing that the output produced by
every inversion has bounded period. The proposition below
shows a slightly stronger periodicity property, which refers
to the output produced inside the inversion extended on
both sides by the trace outputs. We will need this stronger
property later, when dealing with overlapping portions of
the run delimited by different inversions.

Proposition 16. If T is one-way definable, then for every
inversion pL1, C1, L2, C2q of a successful run ρ of T , the
word

out
`

trpC1q
˘

out
`

ρranpC1q, anpC2qs
˘

out
`

trpC2q
˘

has period p that divides both |outptrpC1qq| and
|outptrpC2qq|. Moreover, p ď B.

The basic combinatorial argument for proving Proposi-
tion 16 is a classical result in word combinatorics called Fine
and Wilf’s theorem [16]. Essentially, the theorem says that,
whenever two periodic words w1, w2 share a sufficiently
long factor, then they have as period the greatest common
divisor of the two original periods. Below, we state a slightly
stronger variant of Fine-Wilf’s theorem, which contains an
additional claim showing how to align a common factor of
the words w1, w2 so as to form a third word w3 that contains
a prefix of w1 and a suffix of w2. The additional claim will
be fully exploited in the proof of Proposition 26.

Lemma 17 (Fine-Wilf’s theorem). If w1 “ w11 w w21 has
period p1, w2 “ w12 ww

2
2 has period p2, and the common

factor w has length at least p1 ` p2 ´ gcdpp1, p2q, then w1,
w2, and w3 “ w11 ww

2
2 have period gcdpp1, p2q.

Two further combinatorial results are central in the
proof of Proposition 16. The first one is a result of Kor-
telainen [19], later improved and simplified by Saarela [21].
It is related to word equations with iterated factors, like those
that arise from considering outputs of pumped versions of
a run. To improve readability, we highlight the important
iterations of factors inside the considered equations.

Theorem 18 (Theorem 4.3 in [21]). Consider a word equa-
tion

v0v
m
1 v2 ...vk´1v

m
k vk`1 “ w0w

m
1 w2 ...wk1´1w

m
k1 wk1`1

where m is the unknown and vi, wj are words. Then the set
of solutions of the equation is either finite or N.

The second combinatorial result considers a word equa-
tion with iterated factors parametrized by two unknowns
m1,m2 that occur in opposite order in the left, respectively
right hand-side of the equation. This type of equation arises
when we compare the output associated with an inversion
of T and the output produced by an equivalent one-way
transducer T 1.

Lemma 19. Consider a word equation of the form

v
pm1,m2q

0 vm1
1 v

pm1,m2q

2 vm2
3 v

pm1,m2q

4 “ w0w
m2
1 w2w

m1
3 w4

where m1,m2 are the unknowns, v1, v3 are non-empty
words, and vpm1,m2q

0 , v
pm1,m2q

2 , v
pm1,m2q

4 are words that may
contain factors of the form vm1 or vm2 (for some word v).
If the above equation holds for all m1,m2 P N, then the
words v1 vm1

1 v
pm1,m2q

2 vm2
3 v3 are periodic with period

gcdp|v1|, |v3|q, for all m1,m2 P N.

The last ingredient used in the proof of Proposition
16 is a bound on the period of the output produced by
an inversion. For this, we introduce a suitable notion of
minimality of loops and loop components:

Definition 20. Consider pairs pL,Cq consisting of an idem-
potent loop L and a component C of L.

‚ On such pairs, we define the relation Ă by pL1, C 1q Ă

pL,Cq if L1 Ĺ L and at least one pL1, C 1q-factor is
contained in some pL,Cq-factor.

‚ A pair pL,Cq is output-minimal if for all pairs
pL1, C 1q Ă pL,Cq, we have outptrpC 1qq “ ε.

Note that the relation Ă is not a partial order in general
(it is however antisymmetric). Lemma 21 below shows that
the length of the output trace of C inside L is bounded
whenever pL,Cq is output-minimal.

Lemma 21. For every output-minimal pair pL,Cq,
|outptrpCqq| ď B.

Proof sketch. We use a Ramsey-type argument here: if
|outptrpCqq| ą B, then Theorem 13 can be applied to
exhibit an idempotent loop strictly inside L and a component
C of it with non-empty trace output. This would contradict
the output-minimality of pL,Cq.

We remark that the above lemma cannot be used
directly to bound the period of the output produced
by an inversion. The reason is that we cannot assume
that inversions are built up from output-minimal pairs.

L2 L1

anpC1q

anpC2q

An example is given
in the figure to the
right, which shows a
run where the only in-
version pL1, C1, L2, C2q

contains pairs that are not
output-minimal: the fac-
tors that produce long
outputs are those in red,
but they occur outside
ρranpC1q, anpC2qs.

We are now ready to sketch the proof of Proposition 16.

Proof sketch of Proposition 16. In the first half of the proof
we pump the two loops L1 and L2 so that we obtain
also loops in the assumed equivalent one-way transducer
T 1. We then consider the outputs of the pumped runs
of T and T 1, which contain iterated factors parametrized
by two natural numbers m1,m2. As those outputs must
agree due to the equivalence of T and T 1, we get an
equation as in Lemma 19, where the word v1 belongs to
outptrpC1qq

` and the word v3 belongs to outptrpC2qq
`.

Lemma 19 shows that the word described by the equa-
tion has period p dividing gcdp|v1|, |v3|q, and Lemma 17
shows that p even divides |outptrpC1qq| and |outptrpC2qq|.
Finally, we use Theorem 18 to transfer the periodicity
property from the word of the equation to the word w “

outptrpC1qq outpρranpC1q, anpC2qsq outptrpC2qq produced
by the original run of T . This is possible because the word
of the equation is obtained by iterating factors of w. In par-
ticular, by reasoning separately on the parameters that define
those iterations, and by stating the periodicity property as
an equation in the form required by Theorem 18, we show
that the periodicity equation holds on all parameters, and
thus in particular on w.

`1

`x

`2

Z
�
`x

Z
�

`x

`1

`2

Z�

Z�

Figure 6. Outputs that need to be bounded in a diagonal and in a block.

In the second half of the proof we show that the period
p is bounded by B. This requires a refinement of the
previous arguments and involves pumping the run of T
simultaneously on three different loops. The idea is that by
pumping we manage to find inversions with some output-
minimal pair pL0, C0q. In this way we show that the period p
also divides outptrpC0qq, which is bounded by B according
to Lemma 21.

6. One-way definability

Proposition 16 is the main combinatorial argument for
characterizing two-way transducers that are one-way defin-
able. In this section we provide the remaining arguments.
Roughly, the idea is to decompose every successful run ρ
into factors that produce long outputs either in a left-to-
right manner (“diagonals”), or based on an almost periodic
pattern (“blocks”).

We say that a word w is almost periodic with bound p
if w “ w0 w1 w2 for some words w0, w2 of length at most
p and some word w1 of period at most p.

We illustrate the following definition in Fig. 6.

Definition 22. Consider a factor ρr`1, `2s of the run, where
`1 “ px1, y1q, `2 “ px2, y2q, and x1 ď x2. We call ρr`1, `2s
‚ a diagonal if for all x P rx1, x2s, there is a location

`x at position x such that `1 � `x � `2 and the words
outpρ | Z

�
`x
q and outpρ | Z

�
`x
q have length at most

B, where Z �
`x
“ r`x, `2s X

`

r0, xs ˆ N
˘

and Z
�
`x
“

r`1, `xs X
`

rx, ωs ˆ N
˘

;
‚ a block if the word outpρr`1, `2sq is almost periodic

with bound B, and outpρ | Z�q and outpρ | Z�q have
length at most B, where Z� “ r`1, `2s X

`

r0, x1sˆN
˘

and Z� “ r`1, `2s X
`

rx2, ωs ˆ N
˘

.

Intuitively, the output of a diagonal ρr`1, `2s can be simu-
lated while scanning the input interval rx1, x2s from left
to right, since the outputs of ρ | Z �

`x
and ρ | Z

�
`x

are
bounded. A similar argument applies to a block ρr`1, `2s,
where in addition, one exploits the fact that the output is
almost periodic. Roughly, the idea is that one can simulate
the output of a block by outputting symbols according to a
periodic pattern, and in a number that is determined from the
transitions on urx1, x2s and the guessed (bounded) outputs
on Z� and Z�.

The general idea for turning a two-way transducer T
into an equivalent one-way transducer T 1 is to guess (and

u1 # u2 # u3 # u4

`1

`2

`3

`4

`5

Figure 7. A decomposition of a run of a two-way transducer.

check) a factorization of a successful run of T into factors
that are either diagonals or blocks, and properly arranged
following the order of positions.

Definition 23. A decomposition of ρ is a factorization
ś

i ρr`i, `i`1s of ρ into diagonals and blocks, where `i “
pxi, yiq and xi ă xi`1 for all i.

The one-way transducer T 1 whose existence is stated
by Theorem 3 simulates T precisely on those inputs u that
have some successful run admitting a decomposition. To
provide further intuition on the notion of decomposition, we
consider again the transduction of Example 2 and the two-
way transducer T that implements it in the most natural
way. Fig. 7 shows an example of a run of T on an input of
the form u1 #u2 #u3 #u4, where u2, u4 P pabcq˚, u1 u3 R
pabcq˚, and u3 has even length. The factors of the run that
produce long outputs are highlighted by the bold arrows. The
first and third factors of the decomposition, i.e. ρr`1, `2s and
ρr`3, `4s, are diagonals (represented by the blue/rightward
hatched areas); the second and fourth factors ρr`2, `3s and
ρr`4, `5s are blocks (represented by the red/leftward hatched
areas).

Theorem 24. Let T be a functional two-way transducer.
The following are equivalent:

P1) T is one-way definable.
P2) For all inversions pL1, C1, L2, C2q of all successful

runs of T , the word

out
`

trpC1q
˘

out
`

ρranpC1q, anpC2qs
˘

out
`

trpC2q
˘

has period p ď B dividing |outptrpC1qq|, |outptrpC2qq|.
P3) Every successful run of T admits a decomposition.

The implication from P1 to P2 was already shown in
Proposition 16. The rest of this section is devoted to prove
the implications from P2 to P3 and from P3 to P1. The
issues related to the complexity of the characterization will
be discussed further below.

From periodicity to existence of decompositions
(P2ÑP3). As usual, we fix a successful run ρ of T . We will
prove a slightly stronger result than the implication from P2
to P3, namely: if every inversion of ρ satisfies the periodicity
property stated in P2, then ρ admits a decomposition (note
that this is independent of whether other runs satisfy or
not P2). To identify the blocks of a possible decomposition

of ρ we consider a suitable equivalence relation between
locations:

Definition 25. A location ` is covered by an inversion
pL1, C1, L2, C2q if anpC1q � ` � anpC2q. We define the
relation S by letting ` S `1 if `, `1 are covered by the
same inversion. We define the equivalence relation S˚ as
the reflexive and transitive closure of S.

Locations covered by the same inversion pL1, C1, L2, C2q

yield an interval w.r.t. the run ordering �. Thus every non-
singleton S˚-class can be seen as a union of such intervals,
say K1, . . . ,Km, that are two-by-two overlapping, namely,
KiXKi`1 ‰ H for all i ă m. In particular, a non-singleton
S˚-class is an interval of locations witnessed by a series
of inversions pL2i, C2i, L2i`1, C2i`1q such that anpC2iq �

anpC2i`2q � anpC2i`1q � anpC2i`3q.
The next result exploits the shape of a non-singleton

S˚-class, the assumption that ρ satisfies the periodicity
property stated in P2, and Lemma 17, to show that the output
produced inside an S˚-class has bounded period.

Proposition 26. If ρ satisfies the periodicity property stated
in P2 and ` � `1 are two locations in the same S˚-class,
then out

`

ρr`, `1s
˘

has period at most B.

The S˚-classes considered so far cannot be directly
used as blocks for the desired decomposition of ρ, since
the x-coordinates of their endpoints might not be in the
appropriate order. The next definition takes care of this,
by enlarging the S˚-classes according to x-coordinates of
anchors.

Definition 27. Let K “ r`, `1s be a non-singleton S˚-class,
let anpKq be the restriction of K to the locations that are
anchors of components of inversions, and let XanpKq “ tx :
Dy px, yq P anpKqu be the projection of anpKq on positions.
We define blockpKq “ r`1, `2s, where
‚ `1 is the latest location px, yq � ` such that x “

min
`

XanpKq

˘

,
‚ `2 is the earliest location px, yq � `1 such that x “

max
`

XanpKq

˘

(note that the location `1 exists since ` is the anchor of the
first component of an inversion, and `2 exists for similar
reasons).

Lemma 28. If K “ r`, `1s is a non-singleton S˚-class, then
ρr`1, `2s is a block, where r`1, `2s “ blockpKq.

Proof sketch. The periodicity of outpρr`, `1sq is obtained
by applying Proposition 26. Then Theorem 13 is applied
twice: first to bound outpρr`1, `sq and outpρr`1, `2sq (hence
proving that outpρr`1, `2sq is almost periodic with bound
B), and second, to bound outpρ | Z�q and outpρ | Z�q, as
introduced in Definition 22.

The next lemma shows that blocks do not overlap along
the input axis:

Lemma 29. Suppose that K1 and K2 are two different non-
singleton S˚-classes such that ` � `1 for all ` P K1 and

`1 P K2. Let blockpK1q “ r`1, `2s and blockpK2q “ r`3, `4s,
with `2 “ px2, y2q and `3 “ px3, y3q. Then x2 ă x3.

For the sake of brevity, we call S˚-block any factor
of the form ρ | blockpKq that is obtained by applying
Definition 27 to a non-singleton S˚-class K. The results
obtained so far imply that every location covered by an
inversion is also covered by an S˚-block (Lemma 28),
and that the order of occurrence of S˚-blocks is the same
as the order of positions (Lemma 29). So the S˚-blocks
can be used as factors for the decomposition of ρ we are
looking for. Below, we show that the remaining factors of
ρ, which do not overlap the S˚-blocks, are diagonals. This
will complete the construction of a decomposition of ρ.

Formally, we say that a factor ρr`1, `2s overlaps another
factor ρr`3, `4s if r`1, `2s X r`3, `4s ‰ H, `2 ‰ `3, and
`1 ‰ `4.

Lemma 30. Let ρr`1, `2s be a factor of ρ that does not
overlap any S˚-block, with `1 “ px1, y1q, `2 “ px2, y2q,
and x1 ă x2. Then ρr`1, `2s is a diagonal.

Proof sketch. If ρr`1, `2s is not a diagonal, we can find a
location `1 � ` � `2 for which |outpρ | Z �

` q| ą B and
|outpρ | Z

�
` q| ą B (recall Definition 22). By applying again

Theorem 13, we derive the existence of an inversion between
`1 and `2, and thus of an S˚-block overlapping ρr`1, `2s.

From decompositions to one-way definability (P3ÑP1).
Hereafter, we denote by U the language of words u P

dompT q such that all successful runs of T on u admit a
decomposition.

So far, we know that if T is one-way definable (P1), then
U “ dompT q (P3). This reduces the one-way definability
problem for T to the containment problem dompT q Ď U .
We will see later how the latter problem can be decided in
double exponential space by further reducing it to checking
the emptiness of the intersection of the languages dompT q
and U A, where U A is the complement of U .

The next proposition says that a one-way transducer T 1
of triple exponential size can be constructed such that

T 1 Ď T and dompT 1q Ě U.

In particular, the existence of such a transducer T 1 proves
the implication from P3 to P1 of Theorem 24. It also proves
the second item of Theorem 3, because when T is one-way
definable, U “ dompT q, and hence T and T 1 are equivalent.

Intuitively, given an input u, the one-way transducer T 1
guesses a successful run ρ of T on u and a decomposition
of ρ, and then use the decomposition to simulate the output
produced by ρ. Note that T 1 accepts at least all the words of
U , possibly more. As a matter of fact, it would be difficult
to construct a transducer whose domain coincides with
U , since checking membership in U involves a universal
quantification.

Proposition 31. Given a functional two-way transducer T ,
one can construct in 3EXPTIME a one-way transducer T 1
such that T 1 Ď T and dompT 1q Ě U .

Deciding one-way definability. Recall that T is one-way
definable iff dompT q Ď U , so iff dompT q X U A “ H. The
lemma below exploits the characterization of Theorem 24
to show that the language U A can be recognized by an NFA
UA of triple exponential size. The lemma actually shows that
the NFA recognizing U A can be constructed using double
exponential workspace.

Lemma 32. Given a functional two-way transducer T , one
can construct in 2EXPSPACE an NFA recognizing U A.

Proof. Consider an input word u. By Theorem 24 we know
that u P U A iff there exist a successful run ρ of T on u and
an inversion I “ pL1, C1, L2, C2q of ρ such that no positive
number p ď B is a period of the word

wρ,I “ out
`

trpC1q
˘

out
`

ρranpC1q, anpC2qs
˘

out
`

trpC2q
˘

.

The latter condition on wρ,I can be rephrased as follows:
there is a function f : t1, . . . ,Bu Ñ t1, . . . , |wρ,I |u such
that wρ,Irfppqs ‰ wρ,Irfppq ` ps for all positive numbers
p ď B. Recall that B “ cmax ¨ hmax ¨ p2

3emax ` 4q, where
hmax “ 2|Q| ´ 1, emax “ p2|Q|q2hmax , and Q is the state
space of the two-way transducer T . This means that the
run ρ, the inversion I, and the function f described above
can all be guessed within double exponential space, namely,
using a number of states that is at most a triple exponential
w.r.t. |T |. In particular, we can construct in 2EXPSPACE an
NFA recognizing U A.

As a consequence of the previous lemma and of The-
orem 24, we have that the emptiness of the language
dompT q X U A, and hence the one-way definability of T ,
can be decided in 2EXPSPACE:

Corollary 33. The problem of deciding whether a functional
two-way transducer is one-way definable is in 2EXPSPACE.

7. Definability by sweeping transducers

A two-way transducer is called sweeping if every suc-
cessful run of it performs reversals only at the extremities
of the input word, i.e. when reading the symbols $ or
%. Similarly, we call it k-pass sweeping if it is sweeping
and every successful run performs at most k ´ 1 reversals.
Clearly, a 1-pass sweeping transducer is the same as a one-
way transducer.

In this section we are considering the following question:
given a functional two-way transducer, is it equivalent to
some k-pass sweeping transducer? We call such transducers
k-pass sweeping definable. If the parameter k is not given
a priori, then we denote them as sweeping definable trans-
ducers.

In [4] we built up on the characterization of one-way
definability for (the restricted class of) sweeping transduc-
ers [3] in order to determine the minimal number of passes
required by sweeping transductions. Essentially, the idea
was to consider a generalization of the notion of inver-
sion, called k-inversion, and proving that k-pass sweeping
definability is equivalent to asking that every k-inversion
generates a periodic output.

We show that we can follow the same approach for
two-way transducers. More precisely, we first define a co-
inversion in a way similar to Definition 14, namely, as a
tuple pL1, C1, L2, C2q consisting of two idempotent loops
L1, L2, a component C1 of L1, and a component C2 of L2

such that
‚ anpC1q � anpC2q,
‚ outptrpC1qq, outptrpC2qq ‰ ε, and
‚ anpCiq “ pxi, yiq for i “ 1, 2, then x1 ď x2.
The only difference compared to inversions is the ordering
of the positions of the anchors, which is now reversed.

Alternating inversions and co-inversions leads to:

Definition 34. A k-inversion is a tuple I “ pI0, . . . , Ik´1q,
where Ii “ pLi, Ci, L

1
i, C

1
iq is either an inversion or a

co-inversion depending on whether i is even or odd, and
anpC 1iq � anpCi`1q for all i ă k ´ 1.
A k-inversion I is safe if for some 0 ď i ă k, the word

out
`

trpCiq
˘

out
`

ρranpCiq, anpC
1
iqs

˘

out
`

trpC 1iq
˘

has period p ď B dividing |outptrpCiqq| and |outptrpC 1iqq|.

Similar to the characterization of k-pass sweeping defin-
ability in [4], we show now the following characterization
for 2-way transducers, using Theorem 24 as a black-box:

Theorem 35. Let T be a functional two-way transducer and
k ą 0. The following are equivalent:
1) T is k-pass sweeping definable.
2) All k-inversions of all successful runs of T are safe.
The problem of deciding whether the above conditions hold
is in 2EXPSPACE; more precisely, it can be decided in
double exponential space w.r.t. |T | and in polynomial space
w.r.t. k.

Proof sketch. A proof of this result (modulo the necessary
changes in complexity due to the new characterization) can
be found in [4]. Here we present in an informal way the
main steps of the proof.

Proving the implication from 2) to 1) boils down to
factorize a successful run ρ of T into factors ρ1, . . . , ρk
in such a way that, for every odd (resp. even) index i, ρi
contains only inversions (resp. co-inversions) that are safe,
namely, that yield periodic outputs. We use the constructions
presented in Section 6 to simulate the output of each factor
ρi with a one-way transducer, which scans the input either
from left to right or from right to left, depending on whether
i is odd or even.

The implication from 1) to 2) amounts at showing
that every k-inversion is safe under the assumption that T
is k-pass sweeping definable. The proof builds upon the
characterization of one-way definability. More precisely, we
consider a successful run of T and the corresponding run of
an equivalent k-pass sweeping transducer T 1 that produces
the same output. We then pump those runs simultaneously
on all loops L1, . . . , L2k that form the k-inversion. By
reasoning as in the proof of Proposition 16, we derive a
periodicity property that shows that the k-inversion is safe.

Finally, the 2EXPSPACE complexity of the decision
problem follows from reducing k-pass sweeping definability
to the emptiness of the language dompT q X U A, where U
is now the language of words u P dompT q such that all
k-inversions of all successful runs on u are safe. As usual
the latter problem is solved by constructing an NFA that
recognizes U A by guessing a successful run ρ of T and an
unsafe k-inversion of ρ.

A similar problem, called sweeping definability, con-
cerns the characterization of those transductions that are
definable by sweeping transducers, but this time without
enforcing any bound on the number of passes (or reversals).
Of course the latter problem is interesting only when the
transductions are presented by means of two-way transduc-
ers. Below we show that the sweeping definability problem
reduces to the k-pass sweeping definability problem, when
we set k large enough.

Theorem 36. A functional two-way transducer T is sweep-
ing definable iff it is k-pass sweeping definable, for k “
2hmax ¨ p2

3emax ` 1q.

Proof sketch. The right-to-left implication is trivial. For the
converse direction we sketch the proof idea. Suppose that T
is not k-pass sweeping definable, for k “ 2hmax ¨p2

3emax`1q.
By Theorem 35, there exists a successful run ρ of T and an
unsafe k-inversion I of ρ. One can exploit the fact that k is
large enough to find an idempotent loop L and an intercepted
factor of it that covers two consecutive (co)inversions of I.
Then, by pumping the loop L, one can introduce arbitrar-
ily long alternations between inversions and co-inversions,
thus showing that there are successful runs with unsafe k1-
inversions for all k1 ą 0. By Theorem 35, this proves that
T is not sweeping definable.

Corollary 37. The problem of deciding sweeping definabil-
ity of a functional two-way transducer is in 2EXPSPACE.

Another consequence is that it is decidable in
2EXPSPACE whether a functional two-way transducer
is equivalent to some two-way transducer performing a
bounded number of reversals in every run. Indeed, in [4]
we proved that a functional transducer is k-pass sweeping
definable iff it is pk ´ 1q-reversal definable.

Other classes of transducers are amenable to charac-
terizations via similar techniques. For example, we may
consider an even more restricted variant of transducer, called
rotating transducer. This is a sweeping transducer that
emits output only when moving from left to right. Such
a transducer is called k-pass if it performs at most k passes
from left to right. To characterize those transductions that are
definable by k-pass rotating transducers it suffices to mod-
ify slightly the definition of k-inversion, by removing co-
inversions. Formally, one defines a rotating k-inversion as a
tuple I “ pI0, . . . , Ik´1q, where each Ii “ pLi, Ci, L1i, C 1iq
is an inversion and anpC 1iq � anpCi`1q for all i ă k ´ 1.
The analogous of Theorems 35 and 36 would then carry
over.

8. Conclusions

It was shown recently [14] that it is decidable whether a
given two-way transducer can be implemented by some one-
way transducer, however the complexity of the algorithm is
non-elementary.

The main contribution of our paper is a new algorithm
that solves the above question with elementary complexity,
precisely in 2EXPSPACE. The algorithm is based on a
characterization of those transductions, given as two-way
transducers, that can be realized by one-way transducers.
The flavor of our characterization is different from that
of [14]. The approach from [14] is based on a variant of
Rabin and Scott’s construction [20] of one-way automata,
and on local modifications of the two-way run. Our approach
relies instead on the global notion of inversions and on
combinatorial arguments, and is inspired by our previous
result for sweeping transducers [3]. The technical challenge
in this paper compared to [3] is however significant, and
required several involved proof ingredients, ranging from
the type of loops we consider, up to the decomposition of
the runs.

Our characterization based on inversions yields not only
an elementary solution for the problem of one-way defin-
ability, but also for definability by sweeping (resp. rotat-
ing) transducers, with either known or unknown number of
passes. All characterizations above are effective, and can be
decided in 2EXPSPACE.

Acknowledgment: The authors would like to thank Ismaël
Jecker for fruitful discussions on this topic.

References

[1] A. Aho, J. Hopcroft, and J. Ullman. A general theory of translation.
Math. Syst. Theory, 3(3):193–221, 1969.

[2] R. Alur and P. Cerný. Expressiveness of streaming string transducers.
In FSTTCS, volume 8 of LIPIcs, pages 1–12. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2010.

[3] F. Baschenis, O. Gauwin, A. Muscholl, and G. Puppis. One-way
definability of sweeping transducer. In FSTTCS, volume 45 of LIPIcs,
pages 178–191. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2015.

[4] F. Baschenis, O. Gauwin, A. Muscholl, and G. Puppis. Minimiz-
ing resources of sweeping and streaming string transducers. In
ICALP, volume 55 of LIPIcs, pages 114:1–114:14. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2016. Full version available at
https://hal.archives-ouvertes.fr/hal-01274992.

[5] F. Baschenis, O. Gauwin, A. Muscholl, and G. Puppis. Untwisting
two-way transducers in elementary time, 2017. Full version available
at https://arxiv.org/abs/1701.02502.

[6] J. Birget. Two-way automaton computations. RAIRO - Theoretical
Informatics and Applications, 24(1):47–66, 1990.

[7] O. Carton and L. Dartois. Aperiodic two-way transducers and FO-
transductions. In CSL, volume 41 of LIPIcs, pages 160–174. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

[8] C. Choffrut and B. Guillon. An algebraic characterization of unary
two-way transducers. In MFCS, volume 8634 of LNCS, pages 196–
207. Springer, 2014.

[9] T. Colcombet. Factorisation forests for infinite words. In FCT, volume
4639 of LNCS, pages 226–237. Springer, 2007.

[10] L. Daviaud, P. Reynier, and J. Talbot. A generalised twinning property
for minimisation of cost register automata. In LICS, pages 857–866.
ACM, 2016.

[11] S. Eilenberg. Automata, Langages and Machines. Academic Press,
1976.

[12] J. Engelfriet and H. J. Hoogeboom. MSO definable string trans-
ductions and two-way finite-state transducers. ACM Trans. Comput.
Logic, 2(2):216–254, 2001.

[13] E. Filiot, O. Gauwin, and N. Lhote. First-order definability of rational
transductions: An algebraic approach. In LICS, pages 387–396. ACM,
2016.

[14] E. Filiot, O. Gauwin, P. Reynier, and F. Servais. From two-way
to one-way finite state transducers. In LICS, pages 468–477. IEEE
Computer Society, 2013.

[15] E. Filiot, S. N. Krishna, and A. Trivedi. First-order definable string
transformations. In FSTTCS, volume 29 of LIPIcs, pages 147–159.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2014.

[16] N. Fine and H. Wilf. Uniqueness theorems for periodic functions.
Proceedings of the American Mathematical Society, 16:109–114,
1965.

[17] B. Guillon. Sweeping weakens two-way transducers even with a
unary output alphabet. In NCMA, volume 318 of books@ocg.at, pages
91–108. Österreichische Computer Gesellschaft, 2015.

[18] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 1979.

[19] J. Kortelainen. On the system of word equations
x0ui1x1u

i
2x2 . . . u

i
mxm “ y0vi1y1v

i
2y2 . . . v

i
mym

(i “ 0, 1, 2, . . .) in a free monoid. Journal of Automata,
Languages and Combinatorics, 3(1):43–57, 1998.

[20] M. Rabin and D. Scott. Finite automata and their decision problems.
IBM J. Res. Dev., 3(2):114–125, 1959.

[21] A. Saarela. Systems of word equations, polynomials and linear alge-
bra: a new approach. European Journal of Combinatorics, 47(5):1–
14, 2015.

[22] M. Schützenberger. A remark on finite transducers. Information and
Control, 4(2-3):185–196, 1961.

[23] J. Shepherdson. The reduction of two-way automata to one-way
automata. IBM J. Res. Dev., 3(2):198–200, 1959.

[24] I. Simon. Factorization forests of finite height. Theoretical Computer
Science, 72(1):65–94, 1990.

