
19 April 2024

Università degli studi di Udine

Original

Assertion-based analysis via slicing with ABETS (system description)

Publisher:

Published
DOI:10.1017/S1471068416000375

Terms of use:

Publisher copyright

(Article begins on next page)

The institutional repository of the University of Udine (http://air.uniud.it) is provided by ARIC services. The
aim is to enable open access to all the world.

Availability:
This version is available http://hdl.handle.net/11390/1105165 since 2021-03-23T10:28:44Z

Under consideration for publication in Theory and Practice of Logic Programming 1

Assertion-based Analysis via Slicing with ABETS∗
(System Description)

M. ALPUENTE, F. FRECHINA, J. SAPIÑA
DSIC-ELP, Universitat Politècnica de València

D. BALLIS
DIMI, University of Udine

Abstract

We present ABETS, an assertion-based, dynamic analyzer that helps diagnose errors in Maude programs.
ABETS implements trace and program slicing to automatically create reduced versions of the executed
programs and runs in which any information that is not relevant to the bug currently being diagnosed is
removed. In addition, ABETS employs runtime assertion checking to automate the identification of bugs
so that whenever an assertion is violated, the system automatically infers accurate slicing criteria from the
failure. We summarize the main services provided by ABETS, which also include a novel assertion-based
facility for program repair that tries to automatically fix buggy programs when a state invariant is refuted.
Finally, we provide an experimental evaluation that shows the performance and effectiveness of the system.

1 Introduction

Bug diagnosis is a time-consuming and, most often, tedious manual task that forces developers
to painstakingly examine large volumes of complex execution traces while trying to locate the
actual cause of observable misbehaviors. This paper describes a dynamic program analyzer called
ABETS, which aims to mitigate the costs of diagnosing errors in concurrent programs that are
written in Maude.

Maude is a language and a system that efficiently implements Rewriting Logic (RWL) (Mese-
guer 1992), which is a logic of change that seamlessly unifies a wide variety of models of concur-
rency. Thanks to its logical basis, Maude provides a precise mathematical model, which allows
it to be used as a declarative language and as a formal verification system. Maude supports rich
formal specification, equational rewriting, and logical reasoning modulo algebraic axioms (such
as associativity, commutativity, and identity), providing tools for a number of formal techniques
that include theorem proving, protocol analysis, state space exploration, deductive verification,
model transformation, constraint solving, and model checking. The execution traces generated by
Maude (and by Maude tools, including the standard Maude debugger) are complex objects to ana-
lyze since they may contain a huge number of compound rewrite steps that, however, omit crucial
information for debugging such as the application of algebraic axioms (which is concealed within

∗ This work has been partially supported by the EU (FEDER) and Spanish MINECO grant TIN2015-69175-C4-1-R, and
by Generalitat Valenciana PROMETEOII/2015/013. J. Sapiña was supported by FPI-UPV grant SP2013-0083.

2 M. Alpuente et al.

Maude’s equational matching algorithm). While this maximizes efficiency and is certainly justi-
fied during the program operation, it further complicates the debugging. The dynamic analyzer
ABETS described in this paper facilitates the debugging of Maude programs. It does it by drasti-
cally simplifying the size and complexity of the analyzed programs and runs while unveiling all
relevant information for debugging, which is done by a fruitful combination of runtime assertion
checking and slicing that was originally formalized in (Alpuente et al. 2016). In assertion-based
slicing, the Maude program to be analyzed is supplemented with a set of logical assertions that
are checked at runtime. Upon an assertion failure, an accurate set of discordant positions (called
symptoms) is computed by comparing the computed erroneous state within the expected state pat-
tern (as defined by the violated assertion), with the comparison being performed by using least
general generalization modulo the algebraic axioms of the operators involved (Alpuente et al.
2014). By filtering out everything but the distilled disagreements, a so-called slicing criterion is
synthesized that accurately identifies the (position of the) faulty information in the erroneous last
state of the trace. Then, in order to locate the source of the error, a trace slicing procedure is au-
tomatically triggered that backpropagates the anomalous information. This is done by recursively
computing the origins or antecedents (Field and Tip 1994) of the observed positions while re-
moving everything but the computed antecedents at each step. The given combination of runtime
checking and slicing yields a self-initiating, enhanced dynamic slicing technique that traverses the
program execution and makes every single computation detail explicit while revealing only and
all data in the trace that contribute to the criterion observed. As a by-product of the trace slicing
process, an executable, dynamic program slice is also automatically extracted that captures the
program subset that is concerned with the error.

Assertion-based slicing is efficiently implemented in ABETS for both Maude and Full Maude
(Clavel et al. 2007), which is a powerful extension of Maude that provides support for object-
oriented specification and advanced module operations. The major strength of the system is that
no criterion or error symptom must be identified in advance because the assertions (or more pre-
cisely, their runtime checks) are used to synthesize the slicing criteria. This is a significant im-
provement over more traditional, hand-operated slicing in which the criteria for slicing need to be
manually fixed.

Contributions. The basic algorithms behind ABETS were introduced in (Alpuente et al. 2016),
where we evaluated them on a prototypical implementation of the system. This work describes
the latest, full-fledged ABETS implementation, which improves system efficiency as well as the
generality/flexibility of the overall technique. Specifically,

• We provide a thorough description of those novel implementation details and optimizations
that have boosted the system performance.

• We report a new in-depth experimental evaluation of the system that assesses critical as-
pects of the tool such as the assertion-checking and slicing capabilities, and its input/output
performance, which is a usual weakspot of tools developed in (Full) Maude.

• We outline an experimental repair technique that automatically suggests program correc-
tions to fix the program faults that are detected whenever an assertion that models a state
invariant is refuted. The corrected rules are guarded by (a suitable instance of) the state
invariant so that the repaired rule is fired only if the invariant is fulfilled.

• The ABETS dynamic analyzer is publicly available at http://safe-tools.dsic.upv.

Assertion-based Analysis via Slicing with ABETS 3

es/abets, where it can be downloaded and locally installed as a novel, stand-alone console
application, or it can be remotely used via a user-friendly web interface.

Plan of the paper. After some preliminaries in Section 2, the ABETS system is described in
Section 3. Section 4 describes an analysis session with ABETS. Section 5 reports on those im-
plementation choices and optimizations that have considerably improved the tool performance.
Experimental results are given in Section 6. A brief discussion of related tools and concluding
remarks are provided in Section 7. For optimizing our system we developed some new high-
performance Maude operations that are summarized in Appendix. The appendix is not intended
for publication but only meant to facilitate the review.

2 Modeling Concurrent Systems in Maude: A Leading Example

Concurrent systems can be formalized through Maude programs. A Maude program essentially
consists of two components, E and R, where E is a canonical (membership) equational theory
that models system states as algebraic entities (i.e., terms of an algebraic data type), and R is a
set of rewrite rules that define transitions between states. Algebraic structures often involve ax-
ioms like associativity (A), commutativity (C), and/or identity (U) of function symbols, which
cannot be handled by ordinary term rewriting but instead are handled implicitly by working with
congruence classes of terms. Representatives of these congruence classes are chosen for practical
implementation purposes, and the standard pattern matching of term rewriting is replaced by so-
phisticated, equational matching algorithms that are specific to the equational theories in use. This
is why the membership equational theory E is decomposed into a disjoint union E =∆]Ax, where
the set ∆ consists of (conditional) equations and membership axioms (i.e., axioms that assert the
type or sort of some terms) that are implicitly oriented from left to right as rewrite rules (and
operationally used as simplification rules), and Ax is a set of algebraic axioms (i.e., distinguished
equations that define commonly occurring properties such as associativity, commutativity, and
identity for some program operators). These axioms are only used for Ax-matching and implicitly
expressed as function attributes.

The concurrent system evolves by rewriting states using equational rewriting, i.e., rewrit-
ing with the rewrite rules in R modulo the equations and axioms in E (Meseguer 1992). More
precisely, execution traces (i.e., system computations) correspond to rewrite sequences t0

r0−→E

t1
r1−→E . . ., where t r−→E t ′ denotes a transition (modulo E) from state t to t ′ via the rewrite rule

of R that is uniquely labeled with r. Note that each single transition t r−→E t ′ is computed as a
rewrite chain t →∗

∆
(t↓∆)

r−→ t ′, where the prefix t →∗
∆
(t↓∆) is an equational simplification se-

quence that rewrites t into its canonical (i.e., irreducible) form (t↓∆) using the oriented equations
in ∆. Although advisedly omitted in our notation, all rewrites in the chain (either applying r or
any of the equations in ∆) are performed modulo Ax.

The following Maude program will be used as a running example throughout the paper.

Example 2.1
Let us introduce a (faulty) rewrite theory that specifies a simplified1stock exchange concurrent
system, in which traders operate on stocks via limit orders, that is, orders that set the upper bound

1 Maude’s syntax is hopefully self-explanatory. Due to space limitations and for the sake of clarity, we only highlight
those details of the system that are relevant to this work. A complete Maude specification of the stock exchange model
is available at the ABETS website at http://safe-tools.dsic.upv.es/abets.

4 M. Alpuente et al.

(price limit) at which traders want to buy stocks. When the stock price drops until it equals the
price limit, the associated order is opened and the trader buys the stocks at the price limit. An
order is automatically closed and the associated stocks are sold when the stock price P exceeds
the purchase price limit L in a predetermined profit target PT (i.e., P−L≥ PT) or L−P exceeds a
predetermined stop loss SL (i.e., L−P≥ SL).

eq [prefT] : PreferredTraders = ’T2 .
cmb [premT] : tr(TID,C) : PremiumTrader if TID in PreferredTraders .
rl [next-rnd] : R : SS | TS | OS => R + 1 : updP(R+1,reSeed(R+1),SS) | TS | OS .
crl [open-ord] :

R : (st(SID,P),SS) | (tr(TID,C),TS) | (ord(OID,TID,SID,L,PT,SL,close),OS) =>
R : (st(SID,P),SS) | (tr(TID,C - P),TS) | (ord(OID,TID,SID,L,PT,SL,open),OS)
if P == L .

crl [close-ord-SL] :
R : (st(SID,P),SS) | (tr(TID,C),TS) | (ord(OID,TID,SID,L,PT,SL,open),OS) =>
R : (st(SID,P),SS) | (tr(TID,C + L - SL),TS) | OS
if P <= L - SL .

crl [close-ord-PT] :
R : (st(SID,P),SS) | (tr(TID,C),TS) | (ord(OID,TID,SID,L,PT,SL,open),OS) =>
R : (st(SID,P),SS) | (tr(TID,C + L + PT),TS) | OS
if P >= L + PT .

eq [updP] : updP(R,S,(st(SID,P),SS)) =
if (rndDelta(R * S) rem 2) == 0
then st(SID,S + rndDelta(R * S)),updP(R,S + 1,SS)
else st(SID,S - rndDelta(R * S)),updP(R,S + 1,SS)
fi .

eq [updP-owise] : updP(R,S,empty) = empty [owise] .

Fig. 1. (Conditional) rewrite rules and equations modeling the stock exchange system.

Within our system model, variable names are fully capitalized, while names that begin with
the symbol ’ are constant identifiers for traders, stocks and orders. System states have the form
R : SS | TS | OS, where R is a natural number (called round) that models the market time
evolution, and SS, TS, and OS are sets2 of stocks, traders, and orders, respectively.

Stocks are modeled as terms st(SID,P) with SID being the stock identifier and P being the
current stock price. Traders are modeled as tr(TID,C), where TID is the trader identifier and C
is the trader’s available capital. We consider two classes of traders: premium traders and ordinary
(or non-premium) traders. Premium traders are allowed to buy even if they run out of capital.
Premium traders are identified by the conditional membership axiom premT (see Figure 1) that
simply checks whether the trader identifier belongs to the (hard-coded) list PreferredTraders,
which in this example just contains the premium trader ’T2.

Orders are specified by terms of the form ord(OID,TID,SID,L,PT,SL,ST), which record the
order identifier OID, the trader identifier TID, the stock identifier SID, the stock price limit L, the
profit target PT, the stop loss SL, and the order status (which can be either open or close). For
simplicity, an order allows a single stock to be traded at a time. This is not a limitation since
multiple stocks can be managed by multiple orders.

Basic operations of the stock exchange model (i.e., market time evolution, opening and clo-
sure of orders) are implemented via the rules and equations of Figure 1. The open-ord rule

2 To specify sets of X-typed elements, we instantiate the Maude parameterized sort Set{X}, which defines sets as asso-
ciative, commutative, and idempotent lists of elements that is simply written as (e1, . . . ,en). The empty set is denoted
by the constant symbol empty.

Assertion-based Analysis via Slicing with ABETS 5

opens a trader order only if the stock price P equals the order price limit L. Once the order has
been opened, the stock price is subtracted from the trader’s capital, thereby updating the capi-
tal. Furthermore, the order status changes from close to open. Note that, in the set of stocks
(st(SID,P),SS), the stock st(SID,P) is distinguished from all other stocks SS in the system.
Similarly, the close-ord-SL rule closes a trader order for the stock SID and removes it from
the current state when the SID stock price drops under the L−SL stop loss threshold. The trader’s
capital is then updated by adding the amount paid by the trader when the order was issued (i.e., the
price limit L). The capital is also decreased by the predetermined stop loss SL. The close-ord-PT
rule is similar and closes an order when its stock price satisfies the profit target. Finally, the
next-rnd rule models the time evolution by simply increasing the round number by one and then
automatically updating the stock prices by means of the function updP, which randomly increases
or decreases the stock prices via the naïve pseudo-random number generator rndDelta that is
re-seeded at the beginning of each round with the round tick R+1.

Note that the specification given in Figure 1 contains two sources of error. First, the func-
tion updP is flawed because it could generate negative stock prices, which are meaningless and
should be disallowed. Second, the rule open-ord does not check if the available capital of a non-
premium trader is enough to cover the order price limit. For instance, for the ordinary Trader ’T,
the following reachability goal (which can be solved in Maude via the search command3)

(1 : st(’S,8) | tr(’T,9) | ord(’O,’T,’S,12,4,3,close)) =>* R : SS | tr(’T,C) | OS .

computes (among other solutions) the substitution {R/3, SS/st(’S, 12), C/-3, OS/ord(’O,
’T, ’S, 12, 4, 3, open)} that witnesses the existence of an execution trace that starts from
the specified initial state and ends in a final state with a faulty, negative capital C=-3.

3 Assertion-based Program Analysis with ABETS

ABETS implements an automated trace slicing technique based on (Alpuente et al. 2014) that
facilitates the analysis of Maude programs by drastically reducing the size and complexity of
entangled, textually-large execution traces. The technique first uncovers data dependences within
the execution trace T w.r.t. a slicing criterion (i.e., a set of selected symbols in the last state of
T) and then produces a trace slice T • of T in which pointless information that is detected to be
irrelevant w.r.t. the chosen criterion (i.e., symbols in T that are not origins or antecedents of the
observed symbols) is replaced with the special variable symbol •.

Unlike the original trace slicing methodology of (Alpuente et al. 2014) where the slicing cri-
terion must be manually determined in advance by the user, ABETS encompasses a runtime
assertion-checking mechanism (which is built on top of the slicing engine) that was originally
formalized in (Alpuente et al. 2016) and preserves the program semantics. This mechanism al-
lows the slicing criteria to be automatically inferred from falsified assertions, thereby offering a
more automatic support to the analysis of erroneous programs and traces.

While we employ equational unification modulo axioms to implement the origin-tracking pro-
cedure that properly backtracks the data dependencies along the trace, we use the generalization

3 Given a (possibly) non–ground term s, Maude’s search command checks whether a reduct of t is an instance (modulo
the program equations and axioms) of s and delivers the corresponding (equational) matcher as the computed solution.

6 M. Alpuente et al.

(i.e., anti-unification) algorithm modulo axioms of (Alpuente et al. 2014) to identify semantic dis-
agreements of the program behavior w.r.t. the assertions. Also, the new program autofix capability
of ABETS, described in Section 3.2, employs unification modulo axioms to generate adequate
conditions for the buggy program rules.

3.1 Assertion-based Slicing in ABETS: Core Functionality

ABETS supports two types of assertions: system assertions and functional assertions.

i) System assertions: Their general syntax is S{ϕ}, where S is a term (called state template), and ϕ

is a logic formula in conjunctive normal form ϕ1∧ . . .∧ϕn. Roughly speaking, a system assertion
S{ϕ} defines a state invariant that must be satisfied by all system states that match (modulo the
equational theory E) the state template S.

Example 3.1
The following system assertion specifies that the capital of ordinary traders must be non-negative
in every system state of the trace:

tr(TID:TraderID,C:Int) { ordinary(tr(TID:TraderID,C:Int)) implies C:Int >= 0 }

where the new predicate ordinary(T) checks whether T is a non-premium trader in the Maude
program of Example 2.1:

op ordinary : Trader -> Bool .
eq ordinary(tr(TID:TraderID,C:Int)) = not(tr(TID:TraderID,C:Int) :: PremiumTrader) .

ii) Functional assertions: Their general form is I {ϕin} → O {ϕout} where I,O are terms, and
ϕin,ϕout are logic formulas in conjunctive normal form. Intuitively, functional assertions specify
pre- and post-conditions over the equational simplification t →∗

∆
(t↓∆) that heads the rewriting

t r−→E t ′ of any term t in the system trace by providing: (i) an input template I that t can match
and a pre-condition ϕin that t can meet; (ii) an output template O that the canonical form (t↓∆) of t
has to match and a post-condition ϕout that (t↓∆) has to meet (whenever the input term t matching
I meets ϕin).

Example 3.2
Consider again the Maude program of Example 2.1. The functional assertion

updP(R:Nat,S:Nat,(st(SID:StockID, P:Int),SS:Set{Stock})) { P:Int >= 0 }

-> (st(SID:StockID, P’:Int),SS’:Set{Stock}) { P’:Int >= 0 }

specifies that stock market fluctuations modeled by function updP generate non-negative stock
prices provided that the input stock prices are also non-negative.

The satisfiability of the provided assertions can be checked in two different modes, either as
a synchronous (and trace-storing) procedure that incrementally executes, checks, and potentially
slices execution traces at runtime, or as an asynchronous (off-line) procedure that processes a
previously computed execution trace against the set of provided assertions. In ABETS, system
traces can be easily generated by providing both an initial and a final reachable state. As for
equational simplification traces, they can be generated by simply providing the initial term, which
is then simplified to its irreducible form.

Assertion-based Analysis via Slicing with ABETS 7

Synchronous as well as asynchronous assertion checking is implemented via equational rewrit-
ing that automatically reduces all matched assertions to Boolean truth values.

Example 3.3
Consider the Maude program of Example 2.1 and the execution trace T = s0

next-rnd−→ s1
open-ord−→ s2

that starts in the initial state

s0 = 1 : (st(’S1,23), st(’S2,8)) | (tr(’T1,9), tr(’T2,20)) | ord(’O1,’T1,’S2,12,4,3,close)

and ends in the state

s2 = 2 : (st(’S1,4), st(’S2,12)) | (tr(’T1,-3), tr(’T2,20)) | ord(’O1,’T1,’S2,12,4,3,open)

The negative capital of the ordinary trader ’T1 in the state s2 is demonstrably wrong by the
refutation of the system assertion of Example 3.1. Hence, ABETS automatically computes the
slicing criterion tr(’T1,-3) that pinpoints this faulty information and produces the trace slice
T • of Figure 2, which represents a partial view of the system evolution that focuses on T1’s
trading actions and exposes the erroneous behaviour of the open-ord rule to user inspection.

1 : st(• ,•),st(• ,•) | tr(’T1,9),• | (ord(• ,’T1,• ,12,• ,• ,close))
next-rnd•→ • : • ,st(• ,12)) | tr(’T1,9),• | ord(• ,’T1,• ,12,• ,• ,close)
open-ord
•→ • : • | tr(’T1,-3),• | •

Fig. 2. Trace slice for automatically synthesized criterion tr(’T1,-3).

ABETS also provides a handy way to automatically synthesize refined slicing criteria by means of
special variables (whose name begins with]) that can be used in the assertions to indicate pieces
of the matched term that the user does not want to observe along the generated trace slice. For
instance, if we replace TID:TraderID with]TID:TraderID in the system assertion of Example
3.1, we compute the refined criterion tr(•,-3) for the trace T of Example 3.3. A more detailed
analysis session with ABETS can be found in Section 4.

3.2 Additional Analysis Features

In addition to the described automatic slicing technique, ABETS provides the following additional
services and features:

Backward/forward incremental trace slicing and trace inspection. ABETS supports stepwise
user-directed, backward and forward incremental refinements of the slicing. This allows the com-
puted slices to be further sliced (downwards or upwards) to create smaller and smaller slices of
both program and trace, which helps isolate the meandering antecedents or descendants modulo
the equations and axioms of any given expression in the trace.

Within ABETS, the user can easily inspect traces in full detail by expanding each state transi-
tion into its complete rewrite chain that contains equational simplification and algebraic axioms
and built-in operator applications, which are usually hidden in the traces delivered by existing
Maude tools, including the Maude interpreter. The recursive inspection of the conditions that are

8 M. Alpuente et al.
×Trace information

State Label Original trace Sliced trace

1 'Start updP(1 + 2, reSeed(1 + 2), (st('S1, 4),st('S2, 12))) updP(1 + 2, reSeed(1 + 2), (st(•, •),st(•, •)))

2 builtIn updP(3, reSeed(1 + 2), (st('S1, 4),st('S2, 12))) updP(3, reSeed(1 + 2), (st(•, •),st(•, •)))

3 builtIn updP(3, reSeed(3), (st('S1, 4),st('S2, 12))) updP(3, reSeed(3), (st(•, •),st(•, •)))

4 re­seed updP(3, 3 + 3, (st('S1, 4),st('S2, 12))) updP(3, 3 + 3, (st(•, •),st(•, •)))

5 builtIn updP(3, 6, (st('S1, 4),st('S2, 12))) updP(3, 6, (st(•, •),st(•, •)))

6 fromBnf updP(3, 6, (st('S2, 12),st('S1, 4))) updP(3, 6, (st(•, •),st(•, •)))

7 updP
if rndDelta(3 * 6) rem 2 == 0 then st('S1, 6 + rndDelta(3 * 6)),upd
P(3, 6 + 1, st('S2, 12)) else st('S1, 6 + ­ rndDelta(3 * 6)),updP(3, 6 + 1, s
t('S2, 12)) fi

if rndDelta(3 * 6) rem 2 == 0 then •,updP(3, 6 + 1, st(•, •)) else • fi

8 builtIn
if rndDelta(18) rem 2 == 0 then st('S1, 6 + rndDelta(3 * 6)),upd
P(3, 6 + 1, st('S2, 12)) else st('S1, 6 + ­ rndDelta(3 * 6)),updP(3, 6 + 1, s
t('S2, 12)) fi

if rndDelta(18) rem 2 == 0 then •,updP(3, 6 + 1, st(•, •)) else • fi

9 builtIn if rndDelta(18) rem 2 == 0 then st('S1, 6 + rndDelta(18)),updP(3, 6 + 1, s
t('S2, 12)) else st('S1, 6 + ­ rndDelta(3 * 6)),updP(3, 6 + 1, st('S2, 12)) fi

if rndDelta(18) rem 2 == 0 then •,updP(3, 6 + 1, st(•, •)) else • fi

10 builtIn if rndDelta(18) rem 2 == 0 then st('S1, 6 + rndDelta(18)),updP(3, 6 + 1, s
t('S2, 12)) else st('S1, 6 + ­ rndDelta(18)),updP(3, 6 + 1, st('S2, 12)) fi

if rndDelta(18) rem 2 == 0 then •,updP(3, 6 + 1, st(•, •)) else • fi

...

40 builtIn st('S1, 10),if 9 rem 2 == 0 then st('S2, 7 + 9),updP(3, 7 + 1, empty) else s
t('S2, 7 + ­ (3488238119 rem 10)),updP(3, 7 + 1, empty) fi

•,if 9 rem 2 == 0 then • else st(•, 7 + ­ (3488238119 rem 10)),• fi

41 builtIn st('S1, 10),if 9 rem 2 == 0 then st('S2, 7 + 9),updP(3, 7 + 1, empty) else s
t('S2, 7 + ­9),updP(3, 7 + 1, empty) fi

•,if 9 rem 2 == 0 then • else st(•, 7 + ­9),• fi

42 builtIn st('S1, 10),if 1 == 0 then st('S2, 7 + 9),updP(3, 7 + 1, empty) else st('S
2, 7 + ­9),updP(3, 7 + 1, empty) fi

•,if 1 == 0 then • else st(•, 7 + ­9),• fi

43 builtIn st('S1, 10),if false then st('S2, 7 + 9),updP(3, 7 + 1, empty) else st('S
2, 7 + ­9),updP(3, 7 + 1, empty) fi

•,if false then • else st(•, 7 + ­9),• fi

44 builtIn st('S1, 10),st('S2, 7 + ­9),updP(3, 7 + 1, empty) •,st(•, 7 + ­9),•

45 toBnf st('S1, 10),st('S2, ­9 + 7),updP(3, 1 + 7, empty) •,st(•, ­9 + 7),•

46 fromBnf st('S1, 10),st('S2, ­9 + 7),updP(3, 7 + 1, empty) •,st(•, ­9 + 7),•
...

52 toBnf st('S1, 10),st('S2, ­2) •,st(•, ­2)

Total size: 4340 bytes 949 bytes

Reduction Rate: 79%

Fig. 3. Extended view of (a fragment of) the computed trace slice (making explicit the application of
built-in operators and algebraic axioms) after refuting the functional assertion of Example 3.2.

evaluated in conditional rewrite steps is also available for thorough exploration.

×Query information

States where the query st(_ , ­ ?) was satisfied:

The relevant data have been automatically inferred
according to the provided query.

You can add/change the inferred data in the selected state:

st('S1, 10),st('S2, -2)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50 51 52

Fig. 4. Result of the trace query st(_, - ?).

Trace querying and manip-
ulation. This feature allows
information of interest to be
searched in huge execution
traces by undertaking a query
that specifies a template for
the search (see Figure 3). This
query is a filtering pattern with
wildcards that define irrelevant
symbols by means of the under-
score character () and relevant
symbols by means of the ques-
tion mark character (?). In ad-

dition, traces and trace slices can be manipulated using their meta-level representation to be ex-
ported to other Maude tools. The meta-representation of terms can be visually displayed, which is
particularly useful for the analysis of object-oriented computations where some object attributes
can only be unambiguously visualized in the meta-level (desugared) states.

Fig. 5. Computation graph generated from initial
state s0 of Example 3.3 (partial view).

Computation graph exploration. To help
identify traces of interest for asynchronous
checking, ABETS supports two different rep-
resentations of the computation space for
a given initial term: the (standard) tree

Assertion-based Analysis via Slicing with ABETS 9

representation that is provided by default
and a graph representation of the state
space that can improve user’s understand-
ing of the program behavior (see Fig-
ure 5).

Autofix of program rules. ABETS is pro-
vided with an automatic program repair fa-
cility that suggests fixes to potentially buggy
rewrite rules whenever ABETS detects a
faulty system state of a trace T that does
not satisfy a system assertion S{ϕ}. Roughly
speaking, the technique transforms the rewrite
rule that is responsible for the system assertion failure (i.e., the last applied rule in T that “em-
beds” the state pattern S), by adding a constrained instance of the logic formula ϕ into the con-
ditional part of the rule. Such an instance is computed by using Maude’s built-in variant-based
unification modulo axioms (Durán et al. 2016) to unify S with (a renamed apart version of) the
right-hand side of the rewrite rule under examination. Let us see a simple example.

Example 3.4
Consider a Maude program that includes the following rewrite rule r together with the system
assertion c(2,g(1,Z)) {Z < 3}. Assume that the symbol c is declared commutative.

crl [r] : f(X,Y) => c(g(X,Y),2) if X > 0 .

The execution trace f(1,3) r→ c(g(1,3),2) is erroneous since the formula Z < 3 does not hold
in the state c(g(1,3),2). Indeed, the second argument of g is not lower than 3.

The repair proceeds by first computing a unifier (modulo commutativity of the operator c)
between the state pattern c(2,g(1,Z)) and the right-hand side of r (i.e., c(g(X,Y),2)), which
is θ ={X/1, Z/Y}; then, the condition of r is augmented by adding the formula {Z < 3}, which
is constrained by the bindings of θ , thereby computing the following fix:

crl [rfix] : f(X,Y) => c(g(X,Y),2) if X > 0 /\ ((X := 1 and Z := Y) implies Z < 3) .

which is then simplified into

crl [rfix] : f(X,Y) => c(g(X,Y),2) if X > 0 /\ ((X := 1 implies Y < 3) .

×Program slice

 eq [updP-owise] : updP(R,S,empty) = empty [owise] .

 rl [next-rnd] : R : SS | TS | OS => R + 1 : updP(R + 1,reSeed(R + 1),SS) |

 TS | OS .

 crl [open-ord] : R : (st(SID,P),SS) | (tr(TID,C),TS) | (ord(OID,TID,SID,L,

 PT,SL,close),OS) => R : (st(SID,P),SS) | (tr(TID,C - P),TS) | (ord(OID,

 TID,SID,L,PT,SL,open),OS) if P == L .

 crl [close-ord-SL] : R : (st(SID,P),SS) | (tr(TID,C),TS) | (ord(OID,TID,

 SID,L,PT,SL,open),OS) => R : (st(SID,P),SS) | (tr(TID,C + L + (- SL)),

 TS) | OS if P <= L - SL .

 crl [close-ord-PT] : R : (st(SID,P),SS) | (tr(TID,C),TS) | (ord(OID,TID,

 SID,L,PT,SL,open),OS) => R : (st(SID,P),SS) | (tr(TID,C + L + PT),TS) |

 OS if P >= L + PT .

endm

Fig. 6. Program slice computed after the system assertion
refutation.

Note that the generated condition
Cfix of a repaired rule rfix might
not be satisfiable, which makes the
rule completely useless since it can-
not be applied. Hence, the original
rule can be simply removed and a
warning message be issued to the
user, who can try to fix the bug by
writing a new rule or by relaxing the
refuted assertion. This is not imple-
mented in ABETS yet because there

10 M. Alpuente et al.

is no SMT solver currently linked to
Maude 2.7. We are currently work-
ing on providing Mau-Dev with a
SMT backend.

Program Slicing. ABETS delivers a program slice that includes all and only the rules/equations
applied in the computed trace slice which exposes the error (see Figure 6).

4 An Analysis Session with ABETS

Let us analyze the running stock exchange Maude specification described in Section 2 w.r.t. the
assertions formalized in Examples 3.1 and 3.2, and the initial system state s0 of Example 3.3. We
consider the synchronous checking modality that non-deterministically expands all Maude steps
that originate from the initial state s0. In this mode, ABETS allows the analysis coverage to be
tuned by choosing to check either a single branch of the execution tree, or all of the branches
up to a given depth. By default, the depth of the deployed computation tree is set to 10 and
the number of nodes to be checked is set to 100K. After the example code is loaded, we start this
session by choosing to analyze all branches of the computation tree for s0. By pressing the CHECK
button, ABETS immediately discovers within the tree an erroneous equational simplification trace
that leads to the canonical form st(’S1,10),st(’S2,-2), where the functional assertion of
Example 3.1 is falsified due to the negative price for stock ’S2. A functional error symptom that
unambiguously signals the anomalous stock price -2 for ’S2 is then issued by the tool, and the
slicing criterion •,st(• ,-2) for the identified faulty trace is automatically synthesized. Then,
the trace slice shown in Figure 3 is delivered, unequivocally signaling the malfunction of the stock
price update function updP and its ancillary functions.

ABETS also allows us to querying the trace (see Figure 4) and to interactively navigate back
and forth through the delivered trace slice to thoroughly inspect the origins (or influences upon)
and the impact (or consequences) of the malfunction (see Figure 7). Moreover, by selecting

ABETS[+

s51 toBnf

st('S1, 10),st('S2, -2),(empty).Set{Stock}

s52
st('S1, 10),st('S2, -2)

s•51
•,st(•, -2),•

s•52
•,st(•, -2)

Z Y Slice a `

Zoom: ­ 100% + States 51­52 of 52

 Enter your query here and press enter.

Fig. 7. Navigable trace slice after refuting the functional assertion.

the Show trace
information op-
tion in the main
menu, we can
access: (i) an in-
strumented ver-
sion of the input
trace that shows
each rule/equa-
tion/axiom trans-
formation step in

a fine-grained way; (ii) several views of the computed trace slice that support different program
comprehension levels (e.g., it is possible to hide/expose the state transformations given by alge-
braic axiom applications); (iii) a Maude meta-representation of the computed trace slice. On the
other hand, all rewrite steps, including equational simplification steps and built-in operator appli-
cation steps, can be easily inspected by accessing the show transition information option in the
context menu of each state. The accessible information includes: (i) the rule or equation applied,

Assertion-based Analysis via Slicing with ABETS 11

(ii) the computed substitution, and (iii) the position in the state where the rule was applied. More-
over, for conditional rewrite steps, an in-depth analysis of the condition proofs can be accessed
through the inspect condition option of the same menu. A convenient explore computation space
option of ABETS’s context menu provide access to tree and graph representations of (the gener-
ated fragment of) the computation space for initial state s0 (see Figure 5).
After correcting the faulty updP equational definition, if we re-execute the analysis, we can also
discover the system assertion violation described in Example 3.3. Also, the following fix for the
open-ord rule is suggested:

crl [oo-fix] : R : (st(SID,P),SS) | (tr(TID,C),TS) | (ord(OID,TID,SID,L,PT,SL,close),OS) =>
R : (st(SID,P),SS) | (tr(TID,C - P),TS) | (ord(OID,TID,SID,L,PT,SL,open),OS)

if P == L /\ ordinary(tr(TID,C) implies ((C - P) >= 0)) .

Note that the rule oo-fix corrects the buggy original rule since it allows ordinary traders to
open orders only if their capital C covers the stock price P.

Finally, by running the program slice option, the rewrite rules next-round and open-ord (and
dependent statements) are automatically isolated and highlighted (see Figure 6).

5 Implementation Details and Optimizations

The architecture of ABETS consists of the following: (i) a Maude-based slicer and constraint-
checker core that can run at both Maude and Full Maude levels interchangeably; (ii) a scalable,
high-performance NoSQL database powered by MongoDB that endows the tool with memoiza-
tion capabilities in order to improve the response time for complex and recurrent executions; (iii)
a RESTful Web service written in Java that is executed by means of the Jersey JAX-RS API; and
(v) an intuitive user interface that is based on AJAX technology and written in HTML5 canvas
and Javascript. ABETS contains about 3500 lines of Maude code, 1000 lines of C++ code, 1000
lines of Java code, and 3000 lines of Javascript code. The system has been (re-)implemented by
primarily focusing on its performance, including improvements for both the analysis and for the
input and output operations.

Analysis optimizations. One of the many features of ABETS is its ability to manipulate all the
relevant information regarding the application of equations, algebraic axioms, and built-in oper-
ators at the meta-level, which is a feature that is not supported by Maude. We implemented this
extension in a new developer version of the Maude system called Mau-Dev4 without affecting the
efficiency of the latest Maude 2.7 release. Also, to boost the system performance, the functions
that are more frequently used in ABETS have been reimplemented in C++ as new, highly efficient,
built-in Mau-Dev (meta-level) operations that are listed in the appendix.

I/O optimizations. Maude’s efficient parser allows very large initial calls to be efficiently
parsed in just a few milliseconds. In contrast, Full Maude’s parser is entirely developed in Maude
itself; hence, its efficiency can be seriously penalized when dealing with mixfix operator def-
initions due to extensive backtracking. As a result, ABETS initial calls that contain large and
complex execution traces as arguments typically took some minutes to be loaded into our pre-
vious system (Alpuente et al. 2016). We have overcome this drawback by dynamically creating

4 Mau-Dev is publicly available at http://safe-tools.dsic.upv.es/maudev

12 M. Alpuente et al.

a devoted module that defines unique placeholder constants that are subsequently reduced to the
actual arguments of the initial (Full Maude) call. This module is loaded prior to starting the Full
Maude’s execution loop. Thus, by taking advantage of the ability of Full Maude to access pre-
viously loaded Maude modules, the entire call can be parsed directly in Maude, except for its
top-most operator.

The output of ABETS executions typically consists of a Maude term of sort String, repre-
sented in JSON (JavaScript Object Notation) format, that collects all the computed information
(e.g., the source-level and meta-level representation of the original trace and the sliced trace, the
associated program slice, and transition information between subsequent trace states). This output
string is later processed by the ABETS front-end to offer a more friendly, visual representation.
A naïve handling of the output string can be particularly time-consuming when dealing with huge
execution traces that contain a large number of (complex) states. Since efficient output handling
is crucial not to penalize the overall performance of the system, (meta) string conversion has also
been implemented in C++, which achieves (on average) one order of magnitude speedup for the
output operations w.r.t. (Alpuente et al. 2016).

Some experiments that highlight the efficiency gain of the optimized system w.r.t. (Alpuente
et al. 2016) are shown in Section 6.

6 Experimental evaluation

To evaluate the performance of the ABETS system, we introduced defects in several Maude pro-
grams endowed with assertions and used the system to detect assertion violations. We bench-
marked ABETS on the following collection of Maude programs, which are all available and fully
described within the ABETS Web platform: Bank model, a conditional Maude specification that
models a distributed banking system; Blocks World, a Maude encoding of the classical AI plan-
ning problem that consists of setting one or more vertical stacks of blocks on a table using a
robotic arm; BRP, a Maude implementation of the Bounded Retransmission Protocol; Dekker, a
Maude specification of Dekker’s mutual exclusion algorithm; Maze, the nondeterministic Maude
specification of a maze game where multiple players walk, jump, or collide while trying to reach a
given exit point; Philosophers, a Maude specification of the classical Dijkstra concurrency exam-
ple; Rent-a-car (fm), a Full Maude program that models the logic of a distributed, object-oriented,
online car-rental store; Stock Exchange, the leading example of this article; Stock Exchange (fm),
a Full Maude, object-oriented version of the Stock Exchange example; Webmail, a Maude spec-
ification of a rich webmail application that provides typical login/logout functionality, system
administration capabilities, email management, etc. We note that ABETS automatically identifies
theories that do not require Full Maude capabilities so that the highest possible analysis perfor-
mance is achieved without incurring unnecessary costs.

In our experiments, we empirically evaluate both the effectiveness and performance of ABETS
by (synchronously) checking each program against an assertional specification that contains at
least one failing assertion. This way, an erroneous execution trace Tε is delivered and subse-
quently simplified into a trace slice T •

ε w.r.t. slicing criteria that are automatically inferred. The
experiments were conducted on a 3.3GHz Intel Xeon E5-1660 with 64GB RAM.

The achieved results are summarized in Table 1. For each benchmark program, we show the
(average) slowdown per assertion check introduced by checking assertions during the trace gen-
eration process; the inference time for synthesizing the slicing criterion (in ms) the size of

Assertion-based Analysis via Slicing with ABETS 13

Table 1. Synchronous assertion-checking performance analysis

Program Slowdown (ms/check) Inference Time (ms) Size Tε (kB) Size T •
ε (kB) Reduction

Bank Model 0.05 2 9.536 1.236 87%
Blocks World 0.04 1 0.279 0.046 84%
BRP 0.03 1 0.792 0.269 67%
Dekker 0.09 2 8.268 0.286 97%
Maze 0.05 1 2.747 0.423 85%
Philosophers 0.04 1 5.244 1.990 62%
Rent-a-car (fm) 0.09 5 5.507 0.115 98%
Stock Ex. 0.06 3 46.423 4.153 91%
Stock Ex. (fm) 0.09 5 195.397 20.862 89%
Webmail app 0.18 9 133.460 7.823 94%

the detected, erroneous execution trace Tε (in kilobytes); the size of the sliced execution trace
T •

ε (in kilobytes); and the reduction rate achieved (which quantitatively measures the amount
of irrelevant information that has been removed from the original trace Tε in T •

ε).
Obviously, the slowdown of the whole checking process depends on the number of assertions

that are contained in the specification and particularly on the degree of instantiation of their asso-
ciated patterns; patterns that are too general can result in a large number of (often) unprofitable
evaluations of the logic formulas involved since the number of possible matchings (modulo ax-
ioms) with the system’s states can grow very quickly. The slowdown can also be affected by
the complexity of the user-defined predicates involved in the functional and system assertions to
be checked. Of course, the more instantiated and “computationally light” the assertions are, the
better the assertion checking performance is. Our experimental results indicate that the overhead
due to assertion checking is reasonably low. Actually, our figures reveal very small slowdowns
(0.07 ms/check on average), which is 70% of the average slowdown of (Alpuente et al. 2016) (0.1
ms/check) for the very same benchmark programs.

Our experiments also show very small synthesis times for the slicing criteria that grow linearly
with the size of the erroneous state. This is particularly evident in the case of Webmail App,
whose states are quite large (about 20 times the size of the Stock Ex. states). With regard to the
time required to perform the slicing, our implementation is quite time efficient; the elapsed times
are small even for very complex traces and also scale linearly. For example, running the slicer for
a 50kB trace of a Maude program with about 150 rules and equations with ACU rewrites takes
less than a few milliseconds. As for the trace slices that are automatically delivered by ABETS
the reduction rates range from 98% to 62%, with an average reduction rate of 85%, which greatly
facilitates the isolation and analysis of the faulty code.

Finally, the generation, parsing and output of traces (and trace slices) has been greatly improved
in the current version of ABETS. This is not evident in synchronous mode because the input/out-
put operations handle single state transitions. But when we run our benchmarks in asynchronous
mode, which performs I/O offline on the whole input execution trace, the average I/O cost goes
down drastically w.r.t. our previous implementation (from 5 minutes to 0.6s, for input/output sizes
of about 5 Mb in the case of the Webmail specification).

7 Conclusion and Related Work

ABETS combines run-time assertion checking and automated (program and execution trace)

14 M. Alpuente et al.

transformations for improving the debugging of programs that are written in (Full) Maude, an
expressive rule-based language that supports: 1) functional, concurrent, logic, and object-oriented
computations; 2) rich type structures with sorts, subsorts and overloading; 3) equational rewriting
and reasoning modulo axioms such as commutativity, associativity-commutativity, and associativity-
commutativity-identity. As future work, we plan to augment the system capabilities by first ex-
tending its foundations to deal with (folding variant) narrowing, a recent addition to Maude that
efficiently supports (built-in) semantic unification and symbolic reachability analysis of terms
with logical variables, where suitable substitutions must be computed for the variables in both,
the origin and the destination terms of reachability goals (Durán et al. 2016).

Assertions have been considered in (constraint) logic programming, functional programming,
and functional-logic programming (see (Hermenegildo et al. 2012; Chitil 2011; Antoy and Hanus
2012) and references therein). However, we are not aware of any assertion-based, dynamic slicing
system that is comparable to ABETS for either declarative or imperative languages. Actually,
none of the correctness tools in the related literature integrate trace slicing and assertion-based
reasoning to automatically identify, simplify, inspect, and repair faulty code and runs.

A detailed discussion of the literature related to this work can be found in (Alpuente et al.
2016; Alpuente et al. 2014). Here, we focus on assertion-checking tools supporting logical rea-
soning modulo axioms, which are the closest to our work. In (Durán et al. 2014), the validator tool
mOdCL is described that checks OCL constraints on UML models encoded as Maude prototypes.
If a constraint is violated, the execution is aborted and an error is reported that signals the state
and the constraint involved. In contrast to ABETS, mOdCL does not simplify (either manually
or automatically) the execution trace that reaches the erroneous state or the program itself in any
way. The (rewriting logic) semantic framework K (Roşu 2015) supports assertion-based analysis
and runtime verification based on Reachability Logic (RL), a particular class of first-order for-
mulas with equality that consist of (Boolean) terms with logical variables and constraints over
them. These formulas, called patterns, specify those concrete configurations matching the pattern
algebraic structure and satisfying its constraints. Pattern formulas, written π ∧φ , are used to ex-
press (and reason about) static state properties, similarly to our system assertions S{ϕ}. As for
our functional assertions I {ϕin} → O{ϕout}, they slightly remind more sophisticated RL formu-
las P ⇒P ′, where P,P ′ are patterns. However, the formula P ⇒P ′ specifies that any state
satisfying P transits (in zero or more steps) into a state satisfying P ′; hence it is evaluated on
system computations, in contrast to our functional assertions, which predicate on equational sim-
plifications. While our formulas are quantifier-free and intended for assertion-based debugging of
Maude computations, RL formulas are used in K for deductive and algorithmic verification. To
the best of our knowledge, no K tool has been devised to support trace slicing and slicing-based
program debugging and correction. For execution, debugging, and model checking, K seman-
tics has been traditionally compiled into Maude. A textual debugger that works with different K
backends is currently under development.

References

ALPUENTE, M., BALLIS, D., FRECHINA, F., AND ROMERO, D. 2014. Using Conditional Trace Slicing for
improving Maude Programs. SCP 80, Part B, 385 – 415.

ALPUENTE, M., BALLIS, D., FRECHINA, F., AND SAPIÑA, J. 2016. Debugging Maude Programs via
Runtime Assertion Checking and Trace Slicing. JLAMP. To appear.

Assertion-based Analysis via Slicing with ABETS 15

ALPUENTE, M., ESCOBAR, S., ESPERT, J., AND MESEGUER, J. 2014. A Modular Order-Sorted Equational
Generalization Algorithm. Inf. and Comp. 235, 98–136.

ANTOY, S. AND HANUS, M. 2012. Contracts and Specifications for Functional Logic Programming. In
PADL 2012. LNCS, vol. 7149. Springer, 33–47.

BARRETT, C., CONWAY, C. L., DETERS, M., HADAREAN, L., JOVANOVIĆ, D., KING, T., REYNOLDS,
A., AND TINELLI, C. 2011. CVC4. In CAV 2011. LNCS, vol. 6806. Springer, 171–177.

CHITIL, O. 2011. A Semantics for Lazy Assertions. In PEPM 2011. ACM, 141–150.

CLAVEL, M., DURÁN, F., EKER, S., LINCOLN, P., MARTÍ-OLIET, N., MESEGUER, J., AND TALCOTT, C.
2007. All About Maude: A High-Performance Logical Framework. Springer.

DURÁN, F., EKER, S., ESCOBAR, S., MARTÍ-OLIET, N., MESEGUER, J., AND TALCOTT, C. 2016. Built-
in Variant Generation and Unification, and their Applications in Maude 2.7 (System Description). In
IJCAR 2016. To appear.

DURÁN, F., ROLDÁN, M., MORENO-DELGADO, A., AND ÁLVAREZ, J. M. 2014. Dynamic Validation of
Maude Prototypes of UML Models. In SAS 2014 - Essays Dedicated to Kokichi Futatsugi. LNCS, vol.
8373. Springer, 212–228.

FIELD, J. AND TIP, F. 1994. Dynamic Dependence in Term rewriting Systems and its Application to Pro-
gram Slicing. In PLILP 1994. LNCS, vol. 844. Springer, 415–431.

HERMENEGILDO, M. V., BUENO, F., CARRO, M., LÓPEZ-GARCÍA, P., MERA, E., MORALES, J. F., AND
PUEBLA, G. 2012. An overview of Ciao and its design philosophy. TPLP 12, 1-2, 219–252.

MESEGUER, J. 1992. Conditional Rewriting Logic as a Unified Model of Concurrency. TCS 96, 1, 73–155.

ROŞU, G. 2015. From Rewriting Logic, to Programming Language Semantics, to Program Verification. In
LRC 2015 - Festschrift Symposium in Honor of José Meseguer. LNCS, vol. 9200. Springer, 598–616.

16 M. Alpuente et al.

Appendix

This appendix summarizes the Maude (meta-level) operations that we developed in C++ to fur-
ther optimize the execution of ABETS. The appendix is only intended to facilitate the review: a
description of the operations can be found at http://safe-tools.dsic.upv.es/maudev and
the code is publicly available in Mau-Dev as standard Maude meta-level operations.

op metaMap : Module Term -> String .
Given M and t, metaMap delivers a sophisticated string representation of the term t where each
string character in the representation has a shortcut to the corresponding subterm of t. This is key
for efficiently dealing with term slices, particularly in the presence of mixfix operators.

op metaReducePath : Module Term Bool -> ITrace .
Given a Maude module M, a term t and a Boolean expression b, metaReducePath delivers an
instrumented trace of sort ITrace that contains the precise equational simplification sequence for
t in M augmented with the computed substitutions and contexts. For the case when b is true, the
applied membership axioms are also included in the trace.

op metaAssociative : Module Term -> Bool .
Given M and t, metaAssociative returns true if the topmost operator of t is associative or
false otherwise. This operation dramatically improves the isAssociative function defined
in Full Maude by directly inspecting a specific flag in the C++ term representation of t (while
isAssociative matches t with the possibly large list of operator definitions in M.)

op metaCommutative : Module Term -> Bool .
It is the analogous of the metaAssociative operation for the comm attribute.

op metaConstructor : Module Term -> Bool .
Given M and t, metaConstructor returns true if the topmost operator of t is a constructor sym-
bol of M that is identified by means of the ctor attribute.

op metaIdentity : Module Term ~> Term? .
Given M and t, metaIdentity delivers the identity element of the topmost symbol of t or
noIdentity if no such term exists. Analogously, the associated right (resp. left) identity element
can be obtained by means of the metaRightIdentity (resp. metaLeftIdentity) operation.
For terms with symbols obeying both left and right identity, all three operations deliver the same
result.

op metaString : Module Term Bool -> String .
Given M, t, and the Boolean expression b, metaString returns a term of sort String that pro-
vides the source-level (resp. meta-level) representation of t for the case when b is true (resp.
false), which highly outspeeds its Maude counterpart.

