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Abstract

Between the microscopic domain ruled by quantum gravity, and
the macroscopic scales described by general relativity, there might be
an intermediate, “mesoscopic” regime, where spacetime can still be ap-
proximately treated as a differentiable pseudo-Riemannian manifold,
with small corrections of quantum gravitational origin. We argue that,
unless one accepts to give up the relativity principle, either such a
regime does not exist at all — hence the quantum-to-classical transi-
tion is sharp —, or the only mesoscopic, tiny corrections conceivable
are on the behaviour of physical fields, rather than on the geometric
structures.
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“Spacetime” is a powerful word in physics. It refers simultaneously to
some “grand stage”, where all phenomena can unfold, but also to a dy-
namical entity itself, governed by Einstein’s equations. Mathematically, it
is an umbrella term encompassing both “pre-physical” structures (dimension,
topology, differentiable structure etc., usually absorbed into the notion of
an appropriate smooth manifold), and objects with a physical interpretation
(the metric, the curvature, a temporal orientation, etc.) [1].

Yet, the same word also evokes a theoretical landscape far from being set-
tled. Our present model of spacetime as a pseudo-Riemannian differentiable
manifold can be considered satisfactory and efficient from cosmological scales
down to particle physics scales (energies of at least 1020 eV, from ultra-high
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energy cosmic rays). However, quantum fluctuations emerging at microscopic
level are expected to shatter the classical structure of space and time at small
scales (frequently, one refers to the Planck length ℓP ∼ 10−33 cm). This might
imply changes in the physical fields and/or in the “pre-physical” structures,
with a strong dependence on the model adopted [2].

In principle, any such microscopic variation of the classical scheme might
propagate upwards to a “transition” scale ℓ much larger than the Planck
one. It could thus entail mesoscopic modifications of spacetime [3], already
within our present experimental window, where much effort is focussed to
provide tight constraints [4]. The picture is then the following: below ℓP,
spacetime (or whatever replaces it) can no longer be modelled after a pseudo-
Riemannian differentiable manifold, which provides instead an accurate de-
scription at scales larger than ℓ. In the mesoscopic region between ℓP and ℓ,
such model may still be viable, provided that appropriate (small) corrections
be applied to the laws of physics and/or to the geometrical objects. Just to
give one example, in the context of Causal Sets theory [3], ℓ is a non-locality
scale bridging the gap between the microscopic causal network at the Planck
scale, and the macroscopic, smooth spacetime manifold.

It is fair to ask, then, what could be the common features of the cor-
rections expected to emerge in this mesoscopic regime. To begin with, we
notice that the scale ℓ is certainly much smaller than any curvature radius
associated with macroscopic gravitational fields. At the same time, it is much
larger than the Planck length, where quantum gravitational effects become
relevant. These are exactly the conditions under which we would expect
special relativity to hold. Therefore, any mesoscopic-regime deviation from
standard physics induced by the sub-Planckian behaviour of spacetime, ei-
ther can show up as corrections to the physical laws in ordinary Minkowski
spacetime, or, more radically, can be ascribed to changes of the Minkowskian
structure itself. In order to understand which possibilities are there for the
latter deviations, we shall tinker with the founding pillars of special relativity.

To begin with, it is worth stressing that the features of relativistic kine-
matics admit two possible interpretations. One can believe that they reveal
some underlying “spacetime structure”, which surfaces through the dynam-
ics of observers and measuring devices, but exists independently of these
systems. However, this conclusion is not mandatory, and one can also take
a less elaborate view, in which “spacetime structure” is just a convenient no-
tion to express structural properties of measurements. Thus, space and time
are just bookkeeping devices useful to organise such measurements, rather
than physical entities on their own. In this sense, whether there is or not
a regime in which it makes sense to speak of a spacetime, depends on the
feasibility (in principle) of these operations. This is the view that lies, often
implicitly, behind most derivations of the Lorentz transformation, and is the
one we shall adopt in the following.

2



A postulate lying at the very foundations of classical, non-gravitational
physics is that, in any given region of spacetime, one can find at least one
system of observers, define procedures for synchronising clocks, and choose
units for length, such that the distance between any two observers does
not depend on time, and that such distances satisfy the Euclidean axioms.
Moreover, clocks are chosen to measure time in such a way that the most
elementary laws of physics take their simplest form [5].

These assumptions are seldom made explicitly, but are fundamental in
the development of both Newton’s and Einstein’s mechanics. We shall refer
to them collectively as postulate (A). Among many other things, they allow
us to describe events using the Lorentzian frames germane to all treatments
of relativistic kinematics, i.e. an ordered set of coordinates xa (a = 1, 2, 3, 4,
with x4 = t), with the following operational meaning: the differences ∆xa =
xaQ − xaP for some ordered pair of events (P,Q) are values of distances and
durations measured by the observers.

Lorentzian frames differing from each other by spatial rotations and trans-
lations, and by time translations, are physically equivalent — they corre-
spond to the same system of observers, for which (A) is supposed to hold.
Experience, however, suggests that such a system of observers is not unique:
if (A) holds for a system of observers, then it holds also for any other system
whose observers have all the same constant velocity with respect to the first
system. We shall call this postulate (B).

We can then consider the maps x′a = fa
(

x1, x2, x3, x4;v
)

, relating the
Lorentzian coordinates of an event in two frames adapted to the two systems
of observers (v is the velocity of the second frame with respect to the first
one). It has been known for more than a century, starting from the pioneer-
ing work by von Ignatowsky, that the form of the maps fa can be derived
assuming only four hypotheses [4, 6, 7]:

(i) Spatial and temporal homogeneity (equivalence of all locations in space,
and instants of time);

(ii) Spatial isotropy (equivalence of all directions in space);

(iii) Principle of relativity (absence of a preferred frame — mathematically,
this property bestows a group structure on the functions fa);

(iv) Pre-causality (the temporal ordering of events occurring at the same
spatial location in one frame cannot be reversed in another frame).

The result is the Lorentz transformation, containing an undetermined con-
stant with the meaning of an invariant speed. The latter might in principle
be infinite (yielding the Galilei transformation), but experiments show that
it coincides with the speed of light in vacuum.

Summarising, the Minkowskian structure is a consequence of postulates
(A) and (B), and of assumptions (i)–(iv). Therefore, a mesoscopic regime
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exists where spacetime structure deviates from the special relativistic one,
only if at least one of these postulates/assumptions does not hold. This
point is worth stressing, for Lorentz invariance is often identified with the
relativity principle. Actually, a violation of any of the assumptions above
would result in a departure from Lorentz invariance. Let us then explore the
various possibilities.

The most robust assumption in the list above is probably pre-causality
(iv). Dropping it is almost tantamount to giving up the possibility of doing
physics, so we shall keep it. Note that this claim does not express any belief
about possible fundamental properties of time, but is only a requirement
about clock measurements, and their use in coordinating physical phenom-
ena.

One obvious option is to relinquish the principle of relativity (iii), which
results in a vast catalogue of proposals [8]. However, many eminent models
of quantum/emergent gravity enforce this principle at the very fundamental
level [2, 9], and quite tight experimental constraints have been cast [4].

A breakdown of isotropy at a kinematical level — assumption (ii) — is
fully compatible with the relativity principle and theoretically viable, pro-
vided that one trades the pseudo-Riemannian metric for a pseudo-Finslerian
one, the manifold structure of spacetime remaining intact [7, 10]. Yet, the
onset of a privileged direction in space is not the kind of effect one would
expect to emerge from an underlying quantum regime.

We are thus left, among assumptions (i)–(iv), only with spatial and tem-
poral homogeneity (i). The technical role of this hypothesis is to make the
functions fa linear in the xa. Indeed, this is a very powerful implication: once
linearity is established, no room is left for any constant with dimensions other
than a speed. It seems, then, that (i) is the ingredient to give up if one wants
to recover some kind of scale dependence, with some fundamental length like
ℓP appearing in the fa. Relaxing homogeneity/linearity, however, amounts
to abandoning the operational interpretation of the coordinates x′a, for the
differences ∆x′a no more account for any duration and/or length in a given
reference frame. If the relativity principle (iii) is still supposed to hold, this
is true also for the coordinates xa — for those in any frame, actually. But
the possibility to set up coordinates with a straightforward operational inter-
pretation is a very basic assumption, guaranteed by postulate (A). It results
that any attempt to weaken homogeneity demands a radical redefinition of
ground-level concepts.

We have shown that, if one assumes that spacetime in the mesoscopic
regime still obeys postulates (A), (B), plus hypotheses (i)–(iv), then it has a
full Minkowskian structure, and it makes no sense at all to call it “mesoscopic”.
In this case, if anything unforeseen crops up at a microscopic level, it does
so abruptly, as in a second-order phase transition.
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On the other hand, if one wants to keep the relativity principle (iii), but
is nevertheless open to abandoning one of the other hypotheses, then the only
convincing possibility is to relax the very postulate (A). The spacetime struc-
ture at scales smaller than ℓ would thus be significantly different from that
in the macroscopic domain — “mild” deformations (such as, e.g., those ac-
counting for spatial anisotropy [7]) are not enough. This might lead, among
other effects, to radically new phenomenology, such as that accounted for
by (possibly curved) non-commutative phase space, and/or non-associative
velocity space [11]. But this regime would not be “mesoscopic” in any mean-
ingful way, as strong effects on large scale physics would be generically ex-
pected [12]. Similarly, a scenario containing nonlocal defects [13] would not
allow for an operational construction of spacetime, if one assumes that such
defects could also alter the worldlines of observers.

The above argument can be rephrased in terms of symmetries of the
physical laws. If (A), (B), and (i)–(iv) all apply, we must expect strictly
Poincaré-invariant laws, at any scale down to ℓP. If, on the other hand, at
least one of our postulates/assumptions breaks down around ℓ, the laws of
physics will no longer be Poincaré-invariant at smaller scales. If isotropy and
the relativity principle are not affected, such symmetry breaking can only be
severe — not necessarily unviable, but potentially tightly constrained.

Remarkably, exact Poincaré invariance does not prevent a priori the onset
of new physics in the mesoscopic regime. It is still possible that the very
mechanisms leading to the sudden emergence of a classical spacetime end
up introducing new Lorentz- and translation-invariant terms in the standard
physical laws, suppressed by coefficients depending on powers of some ℓ —
hence, negligible at macroscopic scales (see, e.g., [3]).

“Spacetime” is a powerful word indeed. When seen as a “grand stage”
for physical phenomena, we ought to either take it as is, or rebuild it from
scratch — it seems to offer no place for intermediate regimes. As a synonym
for physical laws and their symmetries, however, it can provide room for a
potentially rich, unforeseen phenomenology.
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