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Abstract. The growth of a population subject to maturation delay is mod-
eled by using either a discrete delay or a delay continuously distributed over

the population. The occurrence of stability switches (stable-unstable-stable)

of the positive equilibrium as the delay increases is investigated in both cases.
Necessary and sufficient conditions are provided by analyzing the relevant char-

acteristic equations. It is shown that for any choice of parameter values for

which the discrete delay model presents stability switches there exists a max-
imum delay variance beyond which no switch occurs for the continuous delay

model: the delay variance has a stabilizing effect. Moreover, it is illustrated

how, in the presence of switches, the unstable delay domain is as larger as lower
is the ratio between the juveniles and the adults mortality rates.

1. Introduction. In population dynamics, processes like maturation are often
modeled by introducing a discrete time delay into the equations. This means that
it is implicitly assumed that the maturation delays are distributed over the popu-
lation by a δ-Dirac distribution or, in other words, that each individual within the
population is subject to the same maturation delay. The resulting Delay Differen-
tial Equations (DDEs) with discrete delay are then studied to derive the qualitative
mathematical properties of the model, like stability of equilibria or existence of
stability switches, as function of the discrete delay taken as parameter.

The use of a discrete delay, sometimes, might be seen as a rough approximation in
modeling the delay distribution over a large size population. Of course, it may look
much more realistic to assume the delay continuously distributed by a continuous
distribution function, with a mean delay equal to the discrete delay and a positive
variance giving account for the delay difference among individuals.

A question arises: are these two approaches for modeling the delay, i.e., discrete
and continuous, equivalent from the point of view of the qualitative dynamical
properties of the model? More precisely, the same biological model will have the
same qualitative dynamical properties if modeled either by a discrete delay or by a
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continuously distributed delay function with mean value equal to the discrete delay
but with a positive delay variance?

To answer we consider a quite widely studied population model with nonlinear
Ricker birth rate function and discrete maturation delay τ , where the positive equi-
librium undergoes stability switches like stability-instability-stability as τ increases
(see [4, 6, 8] and the references therein). We formulate it as a sequence of models,
each with maturation delay distributed by the continuous Gamma distributions [5],
all with the same mean delay value equal to the discrete delay value τ , but with
a decreasing variance as the Gamma shape parameter n increases. As n → ∞ we
recover the discrete delay model.

Besides the natural differences concerning the equilibrium values and their ex-
istence domains, we show that a threshold value n∗ exists s.t. for n ≤ n∗, that
means for a sufficiently large delay variance, the stability switches behavior is lost
and the equilibrium remains asymptotically stable for all mean delay values τ in the
equilibrium existence domain. The stability switches behavior of the discrete delay
model reappears as the shape parameter becomes larger than n∗ or, equivalently,
as the delay variance becomes sufficiently small. In other words, it looks like that
large delay variances stabilize the equilibrium. In addition, we show existence of
parameters thresholds on stability that are independent of n, i.e., they hold for both
the discrete and the continuous delay models.

The paper is organized as follows. In Section 2 we present the model of interest
from [6], where a discrete delay is considered. Then we show how to interpret this
model as the limit of a sequence of models with continuously distributed delay.
In Section 3 we tackle the local stability analysis of both the trivial and positive
equilibria for the model with discrete delay, proving the existence of the thresholds
mentioned above. In Section 4 we perform the same analysis on the sequence
of models with continuously distributed delay, illustrating the effects of the delay
variance on the stability properties. Some concluding remarks end the work in
Section 5.

2. The single species delay model. In [6] the DDE

N ′(t) = B(N(t− τ))N(t− τ)e−d1τ − dN(t) (1)

is proposed to model the time evolution of a single species adult population. B(N)N
is the birth rate function, d ∈ (0,+∞) is the death rate constant of the adult
population, d1 ∈ (0,+∞) is the death rate constant during the maturation life
stage and τ ∈ [0,+∞) is the constant maturation time of new born individuals.
Furthermore, B(N) is assumed to be the Ricker function B(N) = be−aN [4] with
constants a, b ∈ (0,+∞). Thus (1) takes the form

N ′(t) = be−aN(t−τ)N(t− τ)e−d1τ − dN(t). (2)

For convenience we introduce the parameter η := log (b/d) in place of b and assume

(A1) η > 0,

which is the same as b > d. Then (2) reads

N ′(t) = deη−d1τ−aN(t−τ)N(t− τ)− dN(t). (3)

Of course (3) can also be written as

N ′(t) = d

+∞∫
0

F (s)eη−d1s−aN(t−s)N(t− s)ds− dN(t), (4)
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where F (s) is the δ-Dirac distribution at τ , namely F (s) = δ(s− τ).
Alternatively, for the distribution function F (s) we can choose from the Gamma

distributions

F (n)
α (s) =

αnsn−1e−αs

(n− 1)!
, s ∈ [0,+∞), (5)

with shape parameter n ∈ N := {1, 2, . . .} and rate parameter α ∈ (0,+∞). Every
element of the two-parameters family (5) is a continuous distribution, normalized
as

+∞∫
0

F (n)
α (s)ds = 1, (6)

with mean value

µ :=

+∞∫
0

sF (n)
α (s)ds =

n

α

and variance

σ2 :=

+∞∫
0

(s− µ)2F (n)
α (s)ds =

n

α2
.

By choosing α = n/τ for τ > 0 in (5), we obtain a sequence {F (n)
n/τ (s)}n∈N of con-

tinuous distribution functions with constant mean value τ and decreasing variance

τ2/n as n increases. Correspondingly, the substitution of F (s) in (4) by F
(n)
n/τ (s)

leads to the family of DDEs

N ′(t) = d

+∞∫
0

F
(n)
n/τ (s)eη−d1s−aN(t−s)N(t− s)ds− dN(t), n ∈ N, (7)

where the delay is continuously distributed around the mean maturation time τ
with variance τ2/n. Since

lim
n→∞

F
(n)
n/τ (s) = δ(s− τ),

the sequence of DDEs (7) with continuously distributed delay tends to the DDE
(3) with discrete distributed delay as n→∞. In the sequel, we call (3) the discrete
delay model and (7) the continuous delay model. Moreover, τ is considered as a
varying parameter, w.r.t. which we aim at studying the qualitative properties of
the equilibria such as existence, stability and stability switches.

3. The discrete delay model. The DDE (3) describes the single species model
with a discrete delay. Its equilibria are the solutions N∞ of

dN
(
eη−d1τ−aN − 1

)
= 0.

The trivial equilibrium N∞0 = 0 exists for all values of the parameters. A nontrivial
equilibrium

N∞+ (τ) =
η − d1τ

a
exists positive iff τ ∈ [0, τ∞+ ) for

τ∞+ :=
η

d1
. (8)
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The latter justifies assumption (A1), by which τ∞+ > 0. Notice also that N∞+ (τ∞+ ) =
N∞0 . We use the superscript ∞ to remember that (3) is the limit case of (7) as
n→∞.

Linearization of (3) at an equilibrium N∞ leads to the DDE

x′(t) = −dx(t)− d(aN∞ − 1)eη−d1τ−aN
∞
x(t− τ)

and to the associated characteristic equation

λ+ d+ d(aN∞ − 1)eη−d1τ−aN
∞
e−λτ = 0, (9)

whose solutions λ ∈ C are called characteristic roots. At the trivial equilibrium
N∞0 , (9) becomes

G∞0 (λ; τ) = 0 (10)

for

G∞0 (λ; τ) := λ+ d− deη−d1τe−λτ , τ ∈ [0,+∞). (11)

At the positive equilibrium N∞+ , (9) becomes

G∞+ (λ; τ) = 0 (12)

for

G∞+ (λ; τ) := λ+ d+ d(η − d1τ − 1)e−λτ , τ ∈ [0, τ∞+ ). (13)

3.1. Stability and bifurcation analysis of the equilibria N∞. For the trivial
equilibrium the following holds.

Theorem 3.1. If τ ∈ [0, τ∞+ ) then N∞0 is unstable. If τ ∈ (τ∞+ ,+∞) then N∞0 is
locally asymptotically stable.

Proof. Let τ be fixed in [0, τ∞+ ), i.e., η − d1τ > 0 by (8). By considering (11) as
a continuous function of the real variable λ ∈ [0,+∞), we have G∞0 (0; τ) < 0 and
limλ→+∞G∞0 (λ; τ) = +∞. Continuity then implies the existence of at least one
positive λ+ s.t. G∞0 (λ+; τ) = 0, thus proving the first statement.

Now let τ be fixed in (τ∞+ ,+∞), i.e., η − d1τ < 0 by (8). Let λ = µ ± iω be a

root of (10). Hence µ must satisfy µ = d(eη−d1τe−µτ cosωτ − 1) and µ ≥ 0 gives
raise to a contradiction, thus proving the second statement.

For the positive equilibrium we proceed as follows. In Theorem 3.2 we analyze
the stability at τ = 0. In Theorem 3.3 we show that, as τ increases, stability
switches may occur only through imaginary conjugate roots crossings. Then, we
characterize these switching values of τ as zeros of suitable functions in Theorem
3.4, showing in Theorem 3.5 that they can actually occur and in Theorem 3.6 that
they give raise to Hopf bifurcations. Till here, the analysis follows the lines of
[1, 4, 6]. Instead, in the last part of this section, we derive additional results by
using a different function. This second approach is the one adopted also in Section
4.1 for the continuous model. In the sequel we assume

(A2) η > 2.

Theorem 3.2. N∞+ (0) is locally asymptotically stable.

Proof. For τ = 0 (13) becomes G∞+ (λ; 0) = λ+ dη, whose only root is λ = −dη < 0
thanks to (A1).



DISCRETE OR DISTRIBUTED DELAY? 23

Theorem 3.3. N∞+ (τ) may have a stability switch in (0, τ∞+ ) only if (12) admits a
pair of imaginary conjugate roots λω(τ) := ±iω(τ) in some nonempty set in (0, τ∞+ ).
Then, necessarily, this set is (0, τ∞ω ) for

τ∞ω :=
η − 2

d1
(14)

and ω(τ) = ω∞(τ) for

ω∞(τ) := d
√

(η − d1τ)(η − d1τ − 2). (15)

Proof. By Theorem 3.2, N∞+ (τ) can lose stability in (0, τ∞+ ) only if by increasing
τ above zero a characteristic root λ(τ) crosses the imaginary axis left to right.
Since G∞+ (0; τ) = d(η − d1τ) = daN∞+ (τ) > 0 for all τ ∈ (0, τ∞+ ), only complex
conjugate pairs can possibly cross the imaginary axis. Let then consider (12) for
λ = λω(τ) := iω(τ) for ω(τ) ∈ (0,+∞) without loss of generality, which gives

(iω(τ) + d)eiω(τ)τ = −d(η − d1τ − 1). (16)

Following the approach in [1], a necessary condition is that ω(τ) satisfies

ω(τ)2 + d2 = d2(η − d1τ − 1)2 (17)

for some τ ∈ (0, τ∞+ ). Under Assumption (A2), τ∞ω in (14) is positive, hence (15) is
well defined for τ ∈ (0, τ∞ω ) and it is the unique solution of (17).

Prior to go on we notice that the function ω∞ defined in (15) is continuous and
positive in (0, τ∞ω ). It can be continuously extended by setting

ω∞(0) = d
√
η(η − 2) > 0 (18)

and ω∞(τ∞ω ) = 0. Moreover,

ω∞′(τ) = −d
2d1(η − d1τ − 1)

ω∞(τ)
< 0 (19)

for τ ∈ (0, τ∞ω ),

ω∞′(0) = −dd1(η − 1)√
η(η − 2)

< 0

and

lim
τ↑τ∞ω

ω∞′(τ) = −∞. (20)

Finally,

ω∞′′(τ) = − d4d2
1

ω∞(τ)3
< 0. (21)

Theorem 3.4. A pair of simple imaginary conjugate roots λ∞∗ := ±iω∞(τ∞∗ ) of
(12) exists at τ = τ∞∗ iff S∞k (τ∞∗ ) = 0 for some k ∈ N0, where

S∞k (τ) := τ − (2k + 1)π

ω∞(τ)
+

1

ω∞(τ)
arctan

(
ω∞(τ)

d

)
(22)

is defined in (0, τ∞ω ) and ω∞ is given by (15). As τ crosses τ∞∗ left to right, this pair
crosses the imaginary axis left to right if δ∞(τ∞∗ ) = 1 or right to left if δ∞(τ∞∗ ) =
−1, where

δ∞(τ) := sign

(
dRe(λ)

dτ

∣∣∣∣
λ=λ∞∗

)
= sign

(
dS∞k (τ)

dτ

∣∣∣∣
τ=τ∞∗

)
. (23)
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Proof. Theorem 3.3 states that possible imaginary conjugate roots necessarily have
imaginary part given by (15). Its proof is based on the necessary condition (17)
obtained by equating the squared moduli of both sides of (16). Then sufficiency
follows from an argument condition on (16), namely

arg
(

(iω∞(τ) + d)eiω∞(τ)τ
)

= (2k + 1)π (24)

for some k ∈ Z. Since

arg
(

(iω∞(τ) + d)eiω∞(τ)τ
)

= arctan

(
ω∞(τ)

d

)
+ ω∞(τ)τ, (25)

the first statement follows by defining (22) and by observing that k ∈ N0 since ω∞

is positive. The second statement follows from [1, Theorem 4.1] and [6, Theorem
2.1].

The following result gives a sufficient condition to guarantee the existence of
zeros of (22). It is based on observing that S∞0 (τ) > S∞k (τ) for τ ∈ (0, τ∞ω ) and
k ∈ N and that

S∞0 (0) :=
1

ω∞(0)

[
arctan

(
ω∞(0)

d

)
− π

]
< 0. (26)

Then if S∞0 has no zeros in (0, τ∞ω ), N∞+ (τ) is locally asymptotically stable for all
τ ∈ [0, τ∞+ ) by virtue of Theorem 3.4. Otherwise, to guarantee the existence of
zeros, it is sufficient to prove that S∞0 is positive in some nonempty set in (0, τ∞ω )
since

lim
τ↑τ∞ω

S∞0 (τ) = −∞, (27)

as it follows from (22). This can actually occur as shown next.

Theorem 3.5. If η, d and d1 satisfy(
d

d1

)2

ȳ2(η − ȳ)(η − ȳ − 2) > π2 (28)

for

ȳ :=
3(η − 1)−

√
(η − 1)2 + 8

4
, (29)

then S∞0 is positive in some nonempty set in (0, τ∞ω ).

Proof. The simplest sufficient condition to have S∞0 positive in some nonempty set
in (0, τ∞ω ) is τω∞(τ) > π or, equivalently by (15),

d2τ2(η − d1τ)(η − d1τ − 2) > π2.

The latter can be rewritten as f(y) > π2 for

f(y) :=

(
d

d1

)2

y2(η − y)(η − y − 2)

and y := d1τ . Notice that τ ∈ (0, τ∞ω ) implies y ∈ (0, η−2). It is not difficult to show
that f is positive in (0, η−2) and reaches its unique relative and absolute maximum
at ȳ given in (29), thus proving that (28) is sufficient for the final statement.



DISCRETE OR DISTRIBUTED DELAY? 25

Notice that it is always possible to satisfy (28) since the left-hand side is an
increasing function of η and d1 can be chosen independently. Moreover, Theorem
3.5 can be generalized to provide a sufficient condition for the existence of zeros of
S∞k for any k ∈ N: it is enough to rework the proof given for k = 0 by substituting
(2k + 1)π for π in the right-hand side of (28).

Theorem 3.6. If η, d and d1 satisfy (28), then there exist τ∞∗1 , τ
∞
∗2 ∈ (0, τ∞ω ) with

τ∞∗1 < τ∞∗2 s.t. N∞+ (τ) is locally asymptotically stable for τ ∈ [0, τ∞∗1 ) ∪ (τ∞∗2 , τ
∞
+ ),

unstable for τ ∈ (τ∞∗1 , τ
∞
∗2 ) and two Hopf bifurcations occur for τ increasing in

[0, τ∞+ ), the first at τ∞∗1 towards instability and the second at τ∞∗2 towards stability.

Proof. From (26), (27) and Theorem 3.5 we know that S∞0 has at least two zeros
τ∞∗1 < τ∞∗2 in (0, τ∞ω ). From (22) we have

S∞0
′(τ) = 1 +

ω∞′(τ)

ω∞(τ)2

[
π − arctan

(
ω(τ)

d

)
+

dω∞(τ)

d2 + ω∞(τ)2

]
and

S∞0
′′(τ) =

ω∞′′(τ)ω∞(τ)− 2ω∞′(τ)2

ω∞(τ)3

[
π − arctan

(
ω(τ)

d

)
+

dω∞(τ)

d2 + ω∞(τ)2

]
− 2dω∞′(τ)

2

[d2 + ω∞(τ)2]2
.

The latter is negative by (21). This implies uniqueness of the two zeros τ∞∗1 , τ
∞
∗2

and, moreover, that S∞0
′(τ∞∗1 ) > 0 and S∞0

′(τ∞∗2 ) < 0. Then, according to (23)
and by considering τ ∈ [0, τ∞ω ) as a bifurcation parameter, Theorem 3.4 provides
transversality conditions for two potential Hopf bifurcations, see [7, Section 6.2]: the
first at τ∞∗1 towards instability and the second at τ∞∗2 towards stability. To conclude
that these are indeed Hopf bifurcations, hypothesis (H) in the same reference has
to be verified, i.e., there are no characteristic roots which are integer multiples of
±iω∞(τ∞∗1 ), respectively of ±iω∞(τ∞∗2 ). But this is easily checked by noticing that
the necessary condition (17) cannot be satisfied for both±iω∞(τ∞∗1 ) and±ikω∞(τ∞∗1 )
for any k > 1 since the right-hand side is independent of ω∞ (the same holds at
τ∞∗2 ).

The proof is completed by virtue of Theorem 3.2 and by the above analysis of
S∞0 , which implies that no other crossing is possible in [0, τ∞ω ), nor in [τ∞ω , τ∞+ ),
where (15) is not positive or neither defined.

Example 1. Some values of the parameters of (2) satisfying (28) are a = 7, d = 0.5,
d1 = 1 and b = 350. In fact, it follows that η = 6.5510 . . ., ȳ = 2.6057 . . . and
d2ȳ2(ȳ − η)[ȳ − (η − 2)]/d2

1 = 13.0281 . . . > 9.8696 . . . = π2. The thesis of Theorem
3.6 is represented in Figure 1, where the real part of the rightmost root of (12)
is plotted as a function of τ . The computation of the characteristic roots is done
with the numerical method in [2, 3]. For τ = 0 we have λ = −3.2755 . . ., according
to (the proof of) Theorem 3.2 the only root is indeed −dη. The Hopf bifurcations
occur at τ∞∗1 = 0.7602 . . . and τ∞∗2 = 4.0379 . . .. Eventually, N∞+ (τ) exists positive
up to τ∞+ = 6.5510 . . ., value at which it undergoes a transcritical bifurcation with
the trivial equilibrium. In fact, the rightmost root is λ = 0 (and it becomes positive
beyond τ∞+ ).
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Figure 1. real part of the righmost root of (12) for varying τ and
for the values of the parameters in Example 1.

Now, as anticipated, we follow a similar approach but based on a function differ-
ent from (22). We define from (25) the function

ϕ∞(τ) := ω∞(τ)τ + arctan

(
ω∞(τ)

d

)
(30)

for τ ∈ (0, τ∞ω ). The search for stability switches through the zeros of (22) is
equivalent to look for the solutions of

ϕ∞(τ) = (2k + 1)π. (31)

This is clear either from (24) or from (22) given that ω∞ is positive, in fact:

ω∞(τ)S∞k (τ) = ϕ∞(τ)− (2k + 1)π. (32)

Then it immediately follows that all the previous results based on S∞k can be equiv-
alently proved by using ϕ∞. In particular, the crossing rule (23) becomes

δ∞(τ) := sign

(
dRe(λ)

dτ

∣∣∣∣
λ=λ∞∗

)
= sign

(
dϕ∞(τ)

dτ

∣∣∣∣
τ=τ∞∗

)
(33)

as it follows by differentiating (32) w.r.t. τ at τ = τ∞∗ .
The advantage now is that ϕ∞ is independent of k ∈ N and that we can

also prove additional stability properties. To this aim observe first that ϕ∞ is
continuous and positive in (0, τ∞ω ). It can be continuously extended by setting

ϕ∞(0) = arctan
√
η(η − 2) > 0 and ϕ∞(τ∞ω ) = 0. Moreover,

ϕ∞′(τ) = ω∞(τ) + ω∞′(τ)τ +
dω∞′(τ)

d2 + ω∞(τ)2

for τ ∈ (0, τ∞ω ),

ϕ∞′(0) =
dη(η − 1)(η − 2)− d1

(η − 1)
√
η(η − 2)

(34)
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follows from (18) and from the fact that ω∞ is the unique solution of (17) by
Theorem 3.3 and

lim
τ↑τ∞ω

ϕ∞′(τ) = −∞ (35)

follows from (20). Finally,

ϕ∞′′(τ) = 2ω∞′(τ) + ω∞′′(τ)τ +
dω∞′′(τ)

d2 + ω∞(τ)2
− 2dω∞(τ)ω∞′(τ)2

[d2 + ω∞(τ)2]2
< 0 (36)

follows from (19) and (21). Now, the two complementary assumptions

(A4) η(η − 1)(η − 2) ≤ d1/d;
(A5) η(η − 1)(η − 2) > d1/d;

decide the monotonicity of ϕ(n) according to the following.

Lemma 3.7. Under (A4) ϕ∞ monotonically decreases from its absolute maximum
ϕ∞(0) at τ = 0. The latter is also relative iff (A4) holds with equality.

Proof. ϕ∞′ is monotone decreasing by virtue of (36). Since (A4) implies ϕ∞′(0) ≤
0 thanks to (34), it follows that also ϕ∞ is monotone decreasing. The second
statement is then trivial.

Lemma 3.8. Under (A5) there exists a unique τ̄∞ ∈ (0, τ∞ω ) s.t. ϕ∞′(τ̄∞) = 0.
Moreover, ϕ∞(τ̄∞) = max

τ∈[0,τ∞ω ]
ϕ∞(τ).

Proof. Again, ϕ∞′ is monotone decreasing by virtue of (36). Thanks to (34), (A5)
now implies ϕ∞′(0) > 0 which, together with (35), gives the thesis.

Finally, additional stability results follow directly from Lemma 3.7 and Lemma
3.8.

Theorem 3.9. Under (A4) N∞+ (τ) is locally asymptotically stable for all τ ∈
[0, τ∞+ ).

Proof. For all τ ∈ (0, τ∞ω ), Lemma 3.7 ensures ϕ∞(τ) ≤ ϕ∞(0). Since ϕ∞(0) =

arctan
√
η(η − 2) < π/2, it follows that for any k ∈ N0 (31) cannot have solutions

and hence stability switches cannot occur. The proof is completed by Theorem
3.2.

Theorem 3.10. Under (A5) let k̄∞ ∈ Z be the largest integer s.t. ϕ∞(τ̄∞) >
(2k̄∞ + 1)π for τ̄∞ in Lemma 3.8. If k̄∞ < 0 then N∞+ (τ) is locally asymptotically

stable for all τ ∈ [0, τ∞+ ). If k̄∞ ≥ 0 then there exist two sequences of delays
{τ∞∗1,k}k=0,1,...,k̄∞ and {τ∞∗2,k}k=0,1,...,k̄∞ , respectively increasing and decreasing in

(0, τ∞ω ) and separated by τ̄∞, i.e.,

τ∞∗1,0 < τ∞∗1,1 < · · · < τ∞∗1,k̄∞ < τ̄∞ < τ∞∗2,k̄∞ < · · · < τ∞∗2,1 < τ∞∗2,0, (37)

s.t.

sign

(
dϕ∞(τ)

dτ

∣∣∣∣
τ=τ∞∗1,k

)
= 1, k = 0, 1, . . . , k̄∞,

and

sign

(
dϕ∞(τ)

dτ

∣∣∣∣
τ=τ∞∗2,k

)
= −1, k = 0, 1, . . . , k̄∞,

so that N∞+ (τ) is locally asymptotically stable for τ ∈ [0, τ∞∗1,0)∪(τ∞∗2,0, τ
∞
+ ), unstable

for τ ∈ (τ∞∗1,0, τ
∞
∗2,0) and two Hopf bifurcations occur for τ increasing in [0, τ∞+ ), the

first at τ∞∗1,0 towards instability and the second at τ∞∗2,0 towards stability.
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Proof. The proof is based on the equivalence of the existence of imaginary conjugate
crossing roots to the existence of solutions of (31), which, in turn, follows from (32)
and the first part of Theorem 3.4. Since ϕ∞(τ̄) is the maximum of ϕ∞ by virtue of
Lemma 3.8, condition (36) provides the full statement. In fact, if k̄∞ < 0 then no
crossing is possible and the thesis follows from Theorem 3.2. Otherwise, 2(k̄∞ + 1)
crossings occur according to the delay values in (37). More precisely, by denoting
with µ∞(a, b) the total multiplicity of characteristic roots in the right-hand side of
the complex plane for τ ∈ (a, b), we have

µ∞(0, τ∞∗1,0) = 0,
µ∞(τ∞∗1,0, τ

∞
∗1,1) = 2,

µ∞(τ∞∗1,1, τ
∞
∗1,2) = 4,

· · ·
µ∞(τ∞∗1,k̄∞−1

, τ∞∗1,k̄∞) = 2k̄∞,

µ∞(τ∞∗1,k̄∞ , τ
∞
∗2,k̄∞) = 2(k̄∞ + 1),

µ∞(τ∞∗2,k̄∞ , τ
∞
∗2,k̄∞−1

) = 2k̄∞,

· · ·
µ∞(τ∞∗2,2, τ

∞
∗2,1) = 4,

µ∞(τ∞∗2,1, τ
∞
∗2,0) = 2,

µ∞(τ∞∗2,0, τ
∞
+ ) = 0.

by virtue of (33), (23), the second part of Theorem 3.4 and together also with
Theorem 3.2 and the fact that no crossing is possible in [τ∞ω , τ∞+ ).

We illustrate Theorem 3.10 by way of two examples, one in Figure 2 for d > d1

and the other in Figure 3 for d < d1. The latter, in particular, refers to the same
parameter values used in Example 1.

0
0

1

2

3

4

5

6

7

8

τ
∞

∗1,0 τ
∞

∗1,1 τ
∞

∗1,3 τ̄
∞

τ
∞

∗2,3 τ
∞

∗2,2 τ
∞

∗2,1 τ
∞

ω
τ
∞

∗2,0

τ
∞

∗1,2

ϕ∞/π

Figure 2. Theorem 3.10, intersections (37) of ϕ∞ in (30) with
(2k + 1)π, k = 0, 1, . . . , k̄∞, where k̄∞ = 3 for a = 7, b = 350,
d = 1, d1 = 0.25: τ∞∗1,0 = 0.3828 . . ., τ∞∗2,0 = 15.3584 . . ., τ∞ω =
15.4317 . . ..
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0

1

2

τ
∞

∗1,0 τ
∞

∗2,0 τ
∞

ωτ̄
∞

ϕ∞/π

Figure 3. Theorem 3.10, intersections (37) of ϕ∞ in (30) with
(2k + 1)π, k = 0, 1, . . . , k̄∞, where k̄∞ = 0 for a = 7, b = 350,
d = 0.5, d1 = 1: τ∞∗1,0 = 0.7603 . . ., τ∞∗2,0 = 4.0379 . . ., τ∞ω =
4.5511 . . ..

4. The continuous delay model. The DDE (7) describes the single species model
with a continuously distributed delay, according to the Gamma distribution (5)
with shape parameter n ∈ N and rate parameter α = n/τ ∈ (0,+∞). The latter
is meaningful only if the mean delay value τ is positive. Also the variance τ2/n is
positive then.

In the sequel, to compare the sequence of continuous models (7) with the discrete
model (3) (i.e., Gamma distributions vs δ-Dirac distribution), we use the same
parameters and the relevant assumptions of Section 3. Accordingly, we use the
superscript (n) to remember that (3) is the limit case of (7) as n→∞.

Now let n be fixed. The equilibria of (7) are the solutions N (n) of

dN

 +∞∫
0

F
(n)
n/τ (s)eη−d1s−aNds− 1

 = 0.

The trivial equilibrium N
(n)
0 = 0 exists for all values of the parameters. A nontrivial

equilibrium

N
(n)
+ (τ) =

η − log

(
1 +

d1τ

n

)n
a

, (38)

exists positive iff τ ∈ (0, τ
(n)
+ ) for

τ
(n)
+ :=

n

d1
(eη/n − 1). (39)

The latter justifies again assumption (A1), by which τ
(n)
+ > 0. Note that (38)

follows from the normalization (6) of the Gamma distribution:

+∞∫
0

F
(n)
n/τ (s)e−d1sds =

(
n

n+ d1τ

)n +∞∫
0

F
(n)
d1+n/τ (s)ds =

(
1 +

d1τ

n

)−n
.
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Notice also that N
(n)
+ (τ

(n)
+ ) = N

(n)
0 . Moreover, limτ↓0N

(n)
+ (τ) = η/a = N∞+ (0):

in fact, when the delay is absent, the discrete and the continuous models coincide.

In this sense, we can continuously extend N
(n)
+ (τ) at τ = 0. Finally, for later

convenience, we rewrite (38) as

N
(n)
+ (τ) =

η − log en(d1τ)

a
,

where en is the (possibly complex-valued) function

en(z) :=
(

1 +
z

n

)n
(40)

and, clearly,

lim
n→∞

en(z) = ez. (41)

Linearization of (7) at an equilibrium N (n) leads to the DDE

x′(t) = −dx(t)− d(aN (n) − 1)

+∞∫
0

F
(n)
n/τ (s)eη−d1s−aN

(n)

x(t− s)ds

and to the associated characteristic equation

λ+ d+ d(aN (n) − 1)

+∞∫
0

F
(n)
n/τ (s)eη−d1s−aN

(n)

e−λsds = 0. (42)

Besides constants, the integral in (42) is the Laplace transform of F
(n)
n/τ (s)e−d1s,

which exists provided that

(A3) Re(λ) > −(n/τ + d1), n ∈ N.

Under this assumption, (42) reads

λ+ d+ d(aN (n) − 1)
eη−aN

(n)

en((d1 + λ)τ)
= 0. (43)

At the trivial equilibrium N
(n)
0 , (43) becomes

G
(n)
0 (λ; τ) = 0 (44)

for

G
(n)
0 (λ; τ) := λ+ d− d eη

en((d1 + λ)τ)
, τ ∈ (0,+∞). (45)

At the positive equilibrium N
(n)
+ , (43) becomes

G
(n)
+ (λ; τ) = 0 (46)

for

G
(n)
+ (λ; τ) := λ+ d+ d(η − log en(d1τ)− 1)

en(d1τ)

en((d1 + λ)τ)
, τ ∈ (0, τ

(n)
+ ). (47)

The next result shows how equilibria and relevant characteristic equations of (7) vary
by increasing the shape parameter n ∈ N at τ fixed or, equivalently, by decreasing
the variance τ2/n of the Gamma distribution.
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Theorem 4.1. The following limits hold:

lim
n→∞

τ
(n)
+ = τ∞+ ,

lim
n→∞

N
(n)
+ (τ) = N∞+ (τ), τ ∈ [0, τ∞+ ),

lim
n→∞

G
(n)
0 (λ; τ) = G∞0 (λ; τ), λ ∈ C, τ ∈ [0,+∞),

lim
n→∞

G
(n)
+ (λ; τ) = G∞+ (λ; τ), λ ∈ C, τ ∈ [0, τ∞+ ).

Proof. The first limit is trivial from (39), all the others follow by applying (41) to
the relevant functions. Notice that the second and the last limits are well posed

since the sequence {τ (n)
+ }n∈N is monotone decreasing, so that τ∞+ < τ

(n)
+ for all

n ∈ N.

4.1. Stability and bifurcation analysis of the equilibria N (n). For the trivial
equilibrium the analogous of Theorem 3.1 holds.

Theorem 4.2. If τ ∈ (0, τ
(n)
+ ) then N

(n)
0 is unstable. If τ ∈ (τ

(n)
+ ,+∞) then N

(n)
0

is locally asymptotically stable.

Proof. Let τ be fixed in (0, τ
(n)
+ ). Then en(d1τ) < eη easily follows from (39). By

considering (45) as a continuous function of the real variable λ ∈ [0,+∞) we have

G
(n)
0 (0; τ) = d

(
1− eη

en(d1τ)

)
< 0

and limλ→∞G
(n)
0 (λ; τ) = +∞. Continuity then implies the existence of at least one

positive λ+ s.t. G
(n)
0 (λ+; τ) = 0, thus proving the first statement.

Now let τ be fixed in (τ
(n)
+ ,+∞). Let λ = µ ± iω be a root of (44). Hence µ

must satisfy

µ = d

(
eη

ρn
cosnθ − 1

)
(48)

for ρ := |z|, θ := arg z and

z := 1 +
(d1 + µ)τ ± iωτ

n
.

Assume by contradiction that µ ≥ 0, which implies |z| ≥ 1 + d1τ/n and hence

ρn ≥ en(d1τ). Since τ > τ
(n)
+ ensures en(d1τ) > eη by (39), (48) gives the absurd

µ < 0, thus proving the second statement.

An analogous of Theorem 3.2 can also be proved, with the attention that (7) is
not defined for τ = 0 since the rate parameter α = n/τ ∈ (0,+∞) of the Gamma

distribution has sense only for τ > 0. Nevertheless, we have seen that N
(n)
+ (τ) can

be continuously extended at τ = 0. Hence, the following theorem concerns the limit

τ ↓ 0 in (0, τ
(n)
+ ) for all n ∈ N.

Theorem 4.3. N
(n)
+ (τ) is locally asymptotically stable for τ ∈ (0, τ

(n)
+ ) sufficiently

close to zero.

Proof. From (47) and (41) we have limτ↓0G
(n)
+ (λ; τ) = λ + dη, whose only root is

λ = −dη < 0 thanks to (A1).

Now we state and prove an analogous of Theorem 3.3.
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Theorem 4.4. N
(n)
+ (τ) may have a stability switch in (0, τ

(n)
+ ) only if (46) admits

a pair of imaginary conjugate roots λω := ±iω(τ) in some nonempty set in (0, τ
(n)
+ ).

Then, necessarily, this set is (0, τ
(n)
ω ) for

τ (n)
ω :=

n

d1

(
e(η−2)/n − 1

)
(49)

and ω(τ) = ω(n)(τ), where ω(n)(τ) is s.t. t(n)(τ) := ω(n)(τ)2 is the unique positive
root of the polynomial equation

Tn+1(t; τ) = 0, (50)

where

Tn+1(t; τ) :=

n+1∑
ν=0

qν(τ)tν

has coefficients

qn+1(τ) =

(
τ

n+ d1τ

)2n

, (51)

qν(τ) =

[
ν

n+ 1− ν
+ d2

(
τ

n+ d1τ

)2
](

n

ν

)(
τ

n+ d1τ

)2(ν−1)

(52)

for ν = n, . . . , 1 and

q0(τ) = −d2[η − log en(d1τ)][η − log en(d1τ)− 2]. (53)

Proof. By Theorem 4.3, N
(n)
+ (τ) can lose stability in (0, τ

(n)
+ ) only if by increasing τ

above zero a characteristic root λ(τ) crosses the imaginary axis left to right. Since

G
(n)
+ (0; τ) = d(η − log en(d1τ)) = daN

(n)
+ (τ) > 0 for all τ ∈ (0, τ

(n)
+ ), only complex

conjugate pairs can possibly cross the imaginary axis. Let then consider (46) for
λ = λω(τ) := iω(τ) for ω(τ) ∈ (0,+∞) without loss of generality, which gives

(iω(τ) + d)
en((d1 + iω(τ))τ)

en(d1τ)
= −d(η − log en(d1τ)− 1). (54)

A necessary condition is that ω(τ) satisfies

(ω(τ)2 + d2)

∣∣∣∣en((d1 + iω(τ))τ)

en(d1τ)

∣∣∣∣2 = d2(η − log en(d1τ)− 1)2

for some τ ∈ (0, τ
(n)
+ ). By using (40) the latter reads

(ω(τ)2 + d2)

[
1 +

(
ω(τ)τ

n+ d1τ

)2
]n

= d2(η − log en(d1τ)− 1)2 (55)

which, by applying the Newton binomial expansion, is transformed into (50) for
t = t(τ) = ω(τ)2. Since all the coefficients (51) and (52) are positive functions of

τ ∈ (0, τ
(n)
+ ), a positive root of (50) requires that the last coefficient (53) is negative.

Hence it must be η − log en(d1τ)− 2 > 0, which holds true only if τ ∈ (0, τ
(n)
ω ) for

τ
(n)
ω in (49). Clearly, τ

(n)
ω < τ

(n)
+ , while τ

(n)
ω > 0 by virtue of (A2). It remains

to prove that under this condition (50) admits a unique positive solution. Indeed,
Tn+1(0; τ) = q0(τ) < 0 and the positivity of all the coefficients (51) and (52) implies
limt→+∞ Tn+1(t; τ) = +∞ and T ′n+1(t; τ) > 0 for all t ≥ 0.
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Prior to go on we notice that the function ω(n)(τ) =
√
t(n)(τ) defined through

the unique positive solution t(n)(τ) of (50) for τ ∈ (0, τ
(n)
ω ) is known only implicitly.

This is a major difference w.r.t. ω∞(τ) in (15) of Theorem 3.3. Nevertheless, we can
still recover some useful properties for a later use. First, ω(n)(τ) is continuous since
roots of polynomials are continuous functions of the polynomial coefficients and it is
positive by definition. Second, it can be continuously extended by setting ω(n)(0) =

d
√
η(η − 2) > 0 and ω(n)(τ

(n)
ω ) = 0. The former can be seen either directly from

(55) or by solving (50) explicitly when τ = 0. The latter is a consequence of (53),

since q0(τ
(n)
ω ) = 0. Finally, we differentiate (55) w.r.t. τ to find ω(n)′(τ). After

lengthy calculations, we get

ω(n)′(τ) = − [d1A(τ) + nτω(n)(τ)
2
C(τ)]nB(τ)

ω(n)(τ)C(τ)(n+ d1τ)[A(τ) + nτ2B(τ)]
, (56)

where, for brevity, we introduced the continuous and positive functions

A(τ) := (n+ d1τ)2 + (ω(n)(τ)τ)2,

B(τ) := d2 + ω(n)(τ)
2
,

C(τ) := η − log en(d1τ)− 1.

They are defined for τ ∈ (0, τ
(n)
ω ) with straightforward continuous extensions to the

closed interval:

A(0) = n2, A(τ
(n)
ω ) = n2e2(η−2)/n,

B(0) = d2(η − 1)2, B(τ
(n)
ω ) = d2,

C(0) = η − 1, C(τ
(n)
ω ) = 1.

Notice that (56) proves that ω(n)(τ) is decreasing w.r.t. τ and, moreover,

ω(n)′(0) = −dd1(η − 1)√
η(η − 2)

= ω∞′(0) < 0

and lim
τ↑τ(n)

ω
ω(n)′(τ) = −∞.

Now, as anticipated, we complete the parallelism with the content of Section 3.1
by following the approach based on the similar function ϕ∞ defined there in (30).
In analogy, the function ϕ(n) defines the argument of the left-hand side of (54).
Hence, by recalling (40), we set

ϕ(n)(τ) := n arctan

(
ω(n)(τ)τ

n+ d1τ

)
+ arctan

(
ω(n)(τ)

d

)
(57)

for all τ ∈ (0, τ
(n)
ω ). The proof of the following result, which completes Theorem

4.1, is trivial.

Theorem 4.5. The following limits hold:

lim
n→∞

τ
(n)
ω = τ∞ω ,

lim
n→∞

ϕ(n)(τ) = ϕ∞(τ), τ ∈ (0, τ∞ω ).

The function ϕ(n) is continuous and positive in (0, τ
(n)
ω ). It can be continuously

extended by setting ϕ(n)(0) = arctan
√
η(η − 2) = ϕ∞(0) > 0 and ϕ(n)(τ

(n)
ω ) = 0.

Moreover, after some computations, direct differentiation and (56) lead to

ϕ(n)′(τ) =
nω(n)(τ)∆(τ)

(n+ d1τ)C(τ)[A(τ) + nτ2B(τ)]
, (58)
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where, for brevity again, we introduced the continuous functions

∆(τ) := C(τ)n[n+ (d1 − d)τ ]−D(τ),

D(τ) := E(τ) + F (τ)/ω(n)(τ)2,
E(τ) := n2d1τ + nd2

1τ
2 + dd1τ

2,
F (τ) := (n+ d1τ)(nd2d1τ + ndd1 + dd2

1τ).

They are defined for τ ∈ (0, τ
(n)
ω ) with straightforward continuous extensions at

τ = 0:

∆(0) =
n2[dη(η − 1)(η − 2)− d1]

dη(η − 2)
,

D(0) =
n2d1

dη(η − 2)
,

E(0) = 0,
F (0) = n2dd1.

On the other side E and F remains bounded and positive, while lim
τ↑τ(n)

ω
D(τ) =

+∞ and lim
τ↑τ(n)

ω
∆(τ) = −∞. The next result is the analogous of Theorem 3.4,

but based on the function ϕ(n).

Theorem 4.6. A pair of simple imaginary conjugate roots λ
(n)
∗ := ±iω(n)(τ

(n)
∗ ) of

(46) exists at τ = τ
(n)
∗ iff

ϕ(n)(τ
(n)
∗ ) = (2k + 1)π (59)

for some k ∈ N0 and ϕ(n) in (57). As τ crosses τ
(n)
∗ left to right, this pair crosses

the imaginary axis left to right if δ(n)(τ
(n)
∗ ) = 1 or right to left if δ(n)(τ

(n)
∗ ) = −1,

where

δ(n)(τ) := sign

(
dRe(λ)

dτ

∣∣∣∣
λ=λ

(n)
∗

)
= sign

(
dϕ(n)(τ)

dτ

∣∣∣∣
τ=τ

(n)
∗

)
. (60)

Proof. Theorem 4.4 states that possible imaginary conjugate roots necessarily have

imaginary part given by ω(n)(τ) =
√
t(n)(τ), where t(n)(τ) is the unique positive

solution of (50) for τ ∈ (0, τ
(n)
ω ). Its proof is based on the necessary condition (55)

obtained by equating the squared moduli of both sides of (54). Then sufficiency
follows from an argument condition on (54), which is precisely (59) for some k ∈ Z.
Then the first statement follows by observing that k ∈ N0 since ω(n) in (57) is
positive. To prove the second statement, we compute directly both sides of (60).
For the right-hand side, it is clear from (58) that

sign

(
dϕ(n)(τ)

dτ

∣∣∣∣
τ=τ

(n)
∗

)
= sign(∆(τ

(n)
∗ ))

= sign

(
C(τ

(n)
∗ )n[n+ (d1 − d)τ

(n)
∗ ]− n2d1τ

(n)
∗ − nd2

1τ
(n)
∗

2
− dd1τ

(n)
∗

2

− (n+ d1τ
(n)
∗ )(nd2d1τ

(n)
∗ + ndd1 + dd2

1τ
(n)
∗ )

ω(n)(τ
(n)
∗ )2

)
.

(61)

For the left-hand side of (60), let us first observe that

sign

(
dRe(λ)

dτ

∣∣∣∣
λ=λ

(n)
∗

)
= sign

Re

(
dλ

dτ

)−1
∣∣∣∣∣
λ=λ

(n)
∗

.
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Consider now the characteristic equation (46). Since

G
(n)
+ (λ

(n)
∗ ; τ

(n)
∗ ) = 0, (62)

it also follows that the total derivative w.r.t. τ vanishes:

Dτ G
(n)
+ (λ; τ)

∣∣∣
(λ;τ)=(λ

(n)
∗ ;τ

(n)
∗ )

= 0.

Then

(
dλ

dτ

)−1
∣∣∣∣∣
λ=λ

(n)
∗

= −

∂G
(n)
+ (λ; τ)

∂λ

∣∣∣∣∣
(λ,τ)=(λ

(n)
∗ ;τ

(n)
∗ )

∂G
(n)
+ (λ; τ)

∂τ

∣∣∣∣∣
(λ,τ)=(λ

(n)
∗ ;τ

(n)
∗ )

. (63)

By using (62) it turns out that

∂G
(n)
+ (λ; τ)

∂λ

∣∣∣∣∣
(λ,τ)=(λ

(n)
∗ ;τ

(n)
∗ )

= 1 +
nτ

(n)
∗ (λ

(n)
∗ + d)

n+ (d1 + λ
(n)
∗ )τ

(n)
∗

(64)

and

∂G
(n)
+ (λ; τ)

∂τ

∣∣∣∣∣
(λ,τ)=(λ

(n)
∗ ;τ

(n)
∗ )

=
λ

(n)
∗ + d

n+ d1τ
(n)
∗
·

[
nd1

C(τ
(n)
∗ )

+
n2λ

(n)
∗

n+ (d1 + λ
(n)
∗ )τ

(n)
∗

]
. (65)

By considering that λ
(n)
∗ = iω(n)(τ

(n)
∗ ) without loss of generality, substitution of

(64) and (65) into (63) leads, after suitable simplifications, to(
dλ

dτ

)−1
∣∣∣∣∣
λ=λ

(n)
∗

= −C(τ
(n)
∗ )(n+ d1τ

(n)
∗ )

n[d2 + ω(n)(τ
(n)
∗ )2]

·

{
d(n+ d1τ

(n)
∗ ) + τ

(n)
∗ [nd2 + (n+ 1)ω(n)(τ

(n)
∗ )2]

d1(n+ d1τ
(n)
∗ ) + iω(n)(τ

(n)
∗ )[d1τ

(n)
∗ + nC(τ

(n)
∗ )]

−i
ω(n)(τ

(n)
∗ )[n+ (d1 − d)τ

(n)
∗ ]

d1(n+ d1τ
(n)
∗ ) + iω(n)(τ

(n)
∗ )[d1τ

(n)
∗ + nC(τ

(n)
∗ )]

}
.

From the latter we recover by simple computations that

sign

Re

(
dλ

dτ

)−1
∣∣∣∣∣
λ=λ

(n)
∗


= −sign

(
d1(n+ d1τ

(n)
∗ ){d(n+ d1τ

(n)
∗ ) + τ

(n)
∗ [nd2 + (n+ 1)ω(n)(τ

(n)
∗ )2]}

−ω(n)(τ
(n)
∗ )2[n+ (d1 − d)τ

(n)
∗ ][d1τ

(n)
∗ + nC(τ

(n)
∗ )]

)

= sign

(
ω(n)(τ

(n)
∗ )2C(τ

(n)
∗ )n[n+ (d1 − d)τ

(n)
∗ ]

−ω(n)(τ
(n)
∗ )2

[
n2d1τ

(n)
∗ + nd2

1τ
(n)
∗

2
+ dd1τ

(n)
∗

2]
−(n+ d1τ

(n)
∗ )(nd2d1τ

(n)
∗ + ndd1 + dd2

1τ
(n)
∗ )

)
.

The second statement is thus proved by comparison with (61).
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By using the same arguments adopted in the proof of Theorem 3.6, it is clear that
the crossings mentioned in Theorem 4.6 are indeed Hopf bifurcations. Hence, it is

proved that possible stability switches of N
(n)
+ occur correspondingly to solutions

of (59) and vice-versa. It is left to see whether such solutions exist. To this aim, we
go back to the complementary assumptions (A4) and (A5) introduced in Section
3.1. Again, as we show next by mimicking Lemma 3.7 and Lemma 3.8, these
assumptions decide the monotonicity of the function ϕ(n). Surprisingly, both results
are independent of n. Recall from (58) that

sign
(
ϕ(n)′(τ)

)
= sign(∆(τ)).

Lemma 4.7. Under (A4) and for any n ∈ N, ϕ(n) monotonically decreases from
its absolute maximum ϕ(n)(0) at τ = 0. The latter is also relative iff (A4) holds
with equality.

Proof. Assumption (A4) ensures ∆(0) ≤ 0. To prove the result we show that ∆ is
always negative or at most it vanishes at τ = 0 only when (A4) holds with equality.
To this aim observe that

∆′(τ) = C ′(τ)n[n+ (d1 − d)τ ] + C(τ)n(d1 − d)−D′(τ) (66)

where

C ′(τ) = − nd1

n+ d1τ
< 0

and D′(τ) > 0 since E and F are monotonically increasing whereas ω(n) is mono-
tonically decreasing, recall (56). Let us distinguish three cases:

(i) d = d1: from (66) ∆′ is always negative and the thesis follows.

(ii) d > d1: let τ̃ := n/(d−d1). If τ̃ ≥ τ (n)
ω then τ < τ̃ and n+(d1−d)τ > 0 implies

again that ∆′ is always negative, giving the thesis. Otherwise, if τ̃ < τ
(n)
ω ,

then for τ ∈ [0, τ̃) we have n+(d1−d)τ > 0 and ∆′ is negative. So ∆ decreases

from ∆(0) ≤ 0 down to ∆(τ̃) = −D(τ̃) < 0. Finally, for τ ∈ [τ̃ , τ
(n)
ω ) we have

n+ (d1 − d)τ ≤ 0 and ∆ remains negative. The thesis holds again.
(iii) d < d1: it is not clear from the definition if ∆ can change sign. Assume that

τ0 exists in [0, τ
(n)
ω ) s.t. ∆(τ0) = 0. This implies

C(τ0) =
D(τ0)

n[n+ (d1 − d)τ ]
.

Then (66) reads

∆′(τ0) = − n2d1

n+ d1τ0
[n+ (d1 − d)τ0] +

D(τ0)(d1 − d)

n+ (d1 − d)τ0
−D′(τ0)

=
A1 +A2 +A3 +A4

n+ (d1 − d)τ0
,

where it is not difficult to recover

A1 = − n2d1

n+ d1τ0
[n+ (d1 − d)τ0]2,

A2 = E(τ0)(d1 − d)− E′(τ0)[n+ (d1 − d)τ0],

A3 =
F (τ0)(d1 − d)− F ′(τ0)[n+ (d1 − d)τ0]

ω(n)(τ0)
2 ,

A4 =
2F (τ0)ω(n)′(τ0)

ω(n)(τ0)
3 [n+ (d1 − d)τ0].
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The first addend A1 is clearly negative. So is A4 by recalling that F and ω(n)

are positive while ω(n) is decreasing. As for A2 and A3, direct calculations
show that

A2 = −d1τ
2
0 (d1 − d)(nd1 + d)− nd1[n2 + dτ0(nd1 + d)] < 0

and

ω(n)(τ0)
2
A3 = −n(1 + n)d2d1(n+ d1τ0)

−d1(nd2d1τ0 + ndd1 + dd2
1τ0)[n+ (d1 − d)τ ] < 0.

It follows that whenever ∆ vanishes, it crosses zero from above. Since ∆(0) ≤
0, the thesis follows.

Finally, in what above, the choice of n ∈ N is arbitrary.

Lemma 4.8. Under (A5) and for any n ∈ N, there exists a unique τ̄ (n) ∈ (0, τ
(n)
ω )

s.t. ϕ(n)′(τ̄ (n)) = 0. Moreover, ϕ(n)(τ̄ (n)) = max
τ∈[0,τ

(n)
ω ]

ϕ(n)(τ).

Proof. Assumption (A5) ensures ∆(0) > 0. Since lim
τ↑τ(n)

ω
∆(τ) = −∞, it follows

that there exists τ̄ (n) ∈ (0, τ
(n)
ω ) s.t. ∆(τ̄ (n)) = 0. To show uniqueness it is enough

to repeat the same arguments used for the three distinct cases in the proof of Lemma
4.7. In particular, the monotonicity of ∆ is preserved, which keeps cases (i) and (iii)
unchanged with the only difference that ∆(0) is shifted above zero, giving indeed
the existence and uniqueness of the zero τ̄ (n). Case (ii) holds as well by observing
that ∆(τ̃) = −D(τ̃) is still negative, giving existence and uniqueness of the zero
τ̄ (n) ∈ (0, τ̃). Finally, again, the choice of n ∈ N is arbitrary.

Additional stability results follow directly from Lemma 4.7 and Lemma 4.8 ex-
actly as Theorem 3.9 and Theorem 3.10 followed respectively from Lemma 3.7 and
Lemma 3.8 in Section 3.1 (hence the proofs are omitted).

Theorem 4.9. Under (A4) and for any n ∈ N, N
(n)
+ (τ) is locally asymptotically

stable for all τ ∈ (0, τ
(n)
+ ).

Theorem 4.10. Under (A5) and for any n ∈ N, let k̄(n) ∈ Z be the largest integer

s.t. ϕ(n)(τ̄ (n)) > (2k̄(n) + 1)π for τ̄ (n) in Lemma 4.8. If k̄(n) < 0 then N
(n)
+ (τ) is

locally asymptotically stable for all τ ∈ (0, τ
(n)
+ ). If k̄(n) ≥ 0 then there exist two

sequences of delays {τ (n)
∗1,k}k=0,1,...,k̄(n) and {τ (n)

∗2,k}k=0,1,...,k̄(n) , respectively increasing

and decreasing in (0, τ
(n)
ω ) and separated by τ̄ (n), i.e.,

τ
(n)
∗1,0 < τ

(n)
∗1,1 < · · · < τ

(n)

∗1,k̄(n) < τ̄ (n) < τ
(n)

∗2,k̄(n) < · · · < τ
(n)
∗2,1 < τ

(n)
∗2,0,

s.t.

sign

(
dϕ(n)(τ)

dτ

∣∣∣∣
τ=τ

(n)
∗1,k

)
= 1, k = 0, 1, . . . , k̄(n),

and

sign

(
dϕ(n)(τ)

dτ

∣∣∣∣
τ=τ

(n)
∗2,k

)
= −1, k = 0, 1, . . . , k̄(n),

so that N
(n)
+ (τ) is locally asymptotically stable for τ ∈ (0, τ

(n)
∗1,0)∪(τ

(n)
∗2,0, τ

(n)
+ ), unsta-

ble for τ ∈ (τ
(n)
∗1,0, τ

(n)
∗2,0) and two Hopf bifurcations occur for τ increasing in (0, τ

(n)
+ ),

the first at τ
(n)
∗1,0 towards instability and the second at τ

(n)
∗2,0 towards stability.
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Let us warn the reader not to interpret the last result as a guarantee of existence
of stability switches: this occur only if k̄(n) ≥ 0 for the given n. Indeed, even under

(A5) N
(n)
+ (τ) may preserve its local asymptotic stability for all τ ∈ (0, τ

(n)
+ ). Take,

e.g., n = 1: it is clear from (57) that (59) cannot be satisfied since ϕ(1)(τ) < π

for all τ ∈ (0, τ
(1)
+ ), hence no stability switch occurs. Given this, and considering

Theorem 4.5 and the results of Section 3.1, we may ask which is the threshold shape
parameter n∗ below or equal to which stability switches cannot occur and beyond
which stability switches must occur. Thanks to Theorem 4.10, we can give the
following definition:

n∗ := max
n∈N

{
ϕ(n)(τ̄ (n)) ≤ π < ϕ(n+1)(τ̄ (n+1))

}
.

Therefore, for any parameters choice that ensures delay stability switches of N∞+ (τ),

a threshold variance σ∗2 = τ2/n∗ exists s.t. larger variances σ2 = τ2/n (i.e., for

n < n∗) stabilize the corresponding equilibrium N
(n)
+ (τ). In Figure 4 we show that

n∗ = 2 for the same parameter values used in Figure 2. Similarly, in Figure 5
we show that n∗ = 6 for the same parameter values used in Figure 3. In Figure 6,
instead, we illustrate Theorem 4.5 for the parameter values of Figure 2 and Figure 4.
It can be appreciated how more crossings are correctly recovered by the continuous
model as n increases. Nevertheless, it is interesting to observe that a very large n
may be required to recover all the crossings, but a small n can suffice to recover
with good agreement the important crossings, i.e., those (with π) that give raise to
the only two possible stability switches as stated by Theorem 4.10.
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Figure 4. ϕ∞ in (30) (solid thick) and ϕ(n) in (57) for n = 2, 3

(solid thin) and a = 7, b = 350, d = 1, d1 = 0.25: τ
(3)
∗1,0 = 1.6116 . . .,

τ
(3)
∗2,0 = 3.9726 . . ., τ

(3)
ω = 31.4184 . . . and intersections with π show

that n∗ = 2 (inner panel: zoom of the left-bottom corner).

5. Conclusions. In this section we wish to point out which are the differences in
modeling the juvenile stage delay in a single species growth model by a discrete
delay τ through a δ-Dirac distribution or by a n-order Gamma distribution with
mean delay the same value τ but positive variance σ2 = τ2/n.
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Figure 5. ϕ∞ in (30) (solid thick) and ϕ(n) in (57) for n = 6, 7

(solid thin) and a = 7, b = 350, d = 0.5, d1 = 1: τ
(7)
∗1,0 = 1.5519 . . .,

τ
(7)
∗2,0 = 3.1303 . . ., τ

(7)
ω = 6.4109 . . . and intersections with π show

that n∗ = 6.
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Figure 6. Theorem 4.5, ϕ∞ in (30) (solid thick) and ϕ(n) in (57)
for n = 1, 10, 100, 1000 (solid thin) and a = 7, b = 350, d = 1,
d1 = 0.25.

First, a quantitative difference is evident: even if both the positive equilibria

N∞+ (τ) and N
(n)
+ (τ) assume the same value η/a for τ = 0, it occurs that for any

n ∈ N, the existence domain of the latter is wider than that of the former being

τ
(n)
+ > τ∞+ (and also N

(n)
+ (τ) > N∞+ (τ) for all τ ∈ (0, τ∞+ )). This fact reflects on

the relevant characteristic functions implying, e.g., that the delay domain where the
stability switches may occur is wider for the continuous model rather than for the

discrete one: τ
(n)
ω > τ∞ω , see Figure 2 vs Figure 4 and Figure 3 vs Figure 5 and the

relevant captions.
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A more qualitative discussion follows. The equation ruling the evolution of the
adults has a destabilizing contribution due to the maturation of the juveniles and
a stabilizing contribution due to the death of the adults (with mortality d). The
delay τ , responsible for the stability switches, is the juvenile maturation time. It
cuts exponentially the juveniles contribution (with mortality d1), either directly
in the discrete model or through a distributed integral in the continuous model.
Therefore, the destabilizing effect of the delay is as more evident as lower is the ratio
d1/d. This can be intuitively observed already by considering the complementary
assumptions (A4) and (A5). Indeed they can be read as

(A4) d1/d ≥ (d1/d)c;
(A5) d1/d < (d1/d)c;

for (d1/d)c := η(η − 1)(η − 2) and stability switches are possible only under the

latter, while under the former both the positive equilibria N∞+ (τ) and N
(n)
+ (τ)

are locally asymptotically stable in their existence domains. Nevertheless, even
when (A5) holds true, the effect of a reduced instability for increasing d1/d can be
appreciated. For the discrete model see Figure 2 and Figure 3 where, keeping a = 7
and b = 350 fixed, we have d1/d = 0.25 in the former and d1/d = 2 in the latter.
In fact, in the former case the total multiplicity of roots with positive real part can
reach the value 2(k̄∞+1) = 8, whereas in the latter case the same value is bounded
above by 2(k̄∞ + 1) = 2. For the continuous model, the same phenomenon can be
observed in Figure 4 and Figure 5 for the same values of the parameters: in the
former n = 3 is sufficient to recover the stability switches for d1/d = 0.25, whereas
n = 7 is necessary in the latter for d1/d = 2.

Moreover, given an adults mortality d, if the juveniles mortality d1 is sufficiently
high in the sense that (A4) holds, then the equilibria are asymptotically stable
independently of the delay variance. Notice that in the inequality (A4) an essential
role is played by the birth rate b through the parameter η. Opposite, when (A5)
holds, which occurs by either increasing b or by diminishing d1, the stabilizing effect
of the delay variance increases as the ratio d1/d decreases. Therefore, the difference
in the stable/unstable behaviors of the discrete and continuous distributions is as
lower as higher is the ratio d1/d, keeping fixed all the other parameters.

Finally, let us give some further comments on the general validity of the presented
study. The proposed research is based on the particular model (1), taken from [6]
for its simplicity as a prototype of single species population growth. Therefore,
we are not in the position of claiming general statements about general population
growth and neither this was our intention. In fact, the present study is not suffi-
cient to claim, e.g., that delay variance is always stabilizing. Opposite, the current
outcome allows us to warn that in general, when data about delay variance and
distribution are available, one should consider them carefully and incorporate them
in the modeling process. Indeed, as shown for model (1), discrete and continuous
formulations are not equivalent and the distributed framework appears more real-
istic and meaningful in the biological context. Instead, as for verifying a general
potential stabilizing role of delay variance, we should extend the present investi-
gation and relevant techniques to more general models such as, for instance, those
systems typical of epidemiology (see, e.g., the SIS model in [4, §4]). We reserve to
follow this direction in the future.

Future studies may be devoted also to the search of sharp estimates of n∗ based
solely on the values of the parameters.
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