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Abstract

The Standard Model of particle physics is a fundamental theory of the modern
physics, describing the elementary particles and their interactions. In the last 50
years it has been subject of several tests in order to validate it and put constraints on
its parameters. However, many aspects of the world around us are unclear and they
are not explained in the Standard Model. In order to improve our understanding of
some of these phenomena, the Large Hadron Collider carries on its work after the
Higgs boson discovery, searching for new physics beyond the Standard Model and
improving the model itself. A key role in this framework is carried out by the top
quark: it has a very large coupling to the Higgs boson and it is also predicted to
have large couplings to beyond Standard Model particles. In this contest the pro-
duction of tt̄tt̄ in proton-proton collisions has a special part, since it is a rare process
predicted by the Standard Model and many beyond Standard Model scenarios lead
to an enhancement of its cross section. In this thesis a particular channel of decay
is considered, the single lepton channel, analysing the data of the proton-proton
collisions at a centre of mass energy of 13 TeV collected in the period 2015-2018 by
the ATLAS detector at LHC. In order to improve the results already obtained in
the past, a multivariate analysis is performed to separate the SM tt̄tt̄ signal from
the main tt̄+jets background. Moreover, a purely Monte Carlo simulation-based
method is not expected to model well the tt̄+jets background in the high jet and
b-jet multiplicities regions considered in the thesis, and therefore a data-driven,
MC-assisted, approach is adopted to improve the prediction for this background:
the TRFtt̄ method. A profile likelihood fit is used for the measurement of the tt̄tt̄
signal strength µ = �tt̄tt̄/�SM

tt̄tt̄
. The result is µ = 3.5+0.7

�0.7(stat.)
+1.8
�1.8(syst.) = 3.5+1.9

�1.9,
which implies an observed (expected) significance of the signal over the background-
only hypothesis of 1.8� (0.5�). The corresponding measured cross section for the
tt̄tt̄ process is 42+23

�23 fb, compatible with the SM value within 1.3�. The result is also
compatible within 1� with the recent dilepton same-sign and multilepton channel
and the previous single lepton and dilepton opposite-sign channel analyses, which
fitted a signal strength of µ = 2.0+0.8

�0.6 and µ = 1.7+1.9
�1.7, respectively. At the time of

the submission of this thesis the current o�cial ATLAS result for the single lepton
and dilepton opposite-sign channel is not public; thence no comparison can be shown
in this thesis.
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Chapter 1

The Standard Model

The Standard Model of particle physics (SM) is a gauge quantum theory which
describes the elementary particles and their interactions in terms of the quan-
tum field dynamics. The SM was originally elaborated between 1960 and 1967
by S. Glashow [1], S. Weinberg [2] and A. Salam [3] combining electroweak and
strong interactions. Moreover, in the following years, the SM has been improved in
order to include the discoveries which were observed in those years, and the Higgs
mechanism, able to justify the mass of particles. Several experimental confirmations
of the SM were found starting from the 80’s, establishing this theory as the refer-
ence point for particle physics. The most important confirmations, among several
others, were the discovery of the W and Z bosons at CERN by Rubbia and Van
Der Meer in 1983 [4] and the discovery of the Higgs boson at CERN by ATLAS [5]
and CMS [6] collaborations in 2012. In this chapter the Standard Model will be
briefly introduced, discussing in particular the aspects that are more relevant for
this thesis.

1.1 Particles and interactions

The fundamental constituents of matter interact through four types of forces: the
electromagnetic, the weak, the strong and the gravitational one. The SM describes
all these interactions except for the gravitational force, which is, however, completely
negligible in particle physics experiments, and introducing another interaction (the
Higgs mechanism) in order to justify the mass of particles. The elementary particles
described by the SM are collected in Figure 1.1. There are two types of particles:
fermions, with semi-integer spin obeying Fermi-Dirac statistics, and bosons, with
integer spin obeying Bose-Einstein statistics. Fermions can be divided into leptons
and quarks according to their interactions, and each of them has a corresponding an-
tiparticle with the same mass, but opposite quantum numbers. Leptons are grouped
into three families, each formed by a charged lepton and the corresponding neutrino:
electron (e) and ⌫e, muon (µ) and ⌫µ, tau (⌧) and ⌫⌧ . Charged leptons can inter-
act through the weak and the electromagnetic force, while neutrinos can interact
only through the weak force. Quarks can interact through the electromagnetic, the
weak and the strong force, being the latter the dominant one; there are six di↵erent
flavours of quarks, grouped into three families: up and down, charm and strange,
top and bottom. They carry fractional electric charge and “live” only in bound
states, called hadrons, which can be divided in: mesons, made up of a quark and an
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Figure 1.1: Scheme of the elementary particles described in the SM.

antiquark, and baryons, formed by three quarks. Quarks have an additional quan-
tum number called colour, the charge of the strong interaction, which was originally
introduced to accommodate for the Pauli exclusion principle. The three interactions
considered in the SM are mediated by the force-carrier gauge bosons: the electro-
magnetic force by the photon (�), the weak force by W± and Z0, and the strong
force by gluons. Gluons and � are massless bosons, while W and Z are massive:
MW = 80.379± 0.012 GeV and MZ = 91.1876 ± 0.0021 GeV [7]. Each interaction is
described by a quantum field theory (QFT) based on a gauge group with a specified
Lie algebra, and the SM is itself a particular QFT based on the gauge group

GSM = SU(3)C ⇥ SU(2)L ⇥ U(1)Y , (1.1)

which will be explained in the following sections.

1.2 Quantum Electrodynamics

The electromagnetic (EM) 3-vector potential ~A and the scalar potential ' are not
unique for given fields ~E and ~B. So then, the transformations of the potentials which
preserve the fields are called gauge transformations and the associated invariance of
the Maxwell equations is called gauge invariance. The Maxwell equations for the
free EM field can be written in a Lorentz covariant form:

@µFµ⌫ = 0, (1.2)

where Fµ⌫ = @µA⌫ � @⌫Aµ is the EM field strength tensor, being Aµ = (',� ~A)
the 4-vector potential and @µ = (@/@t, ~r) the 4-vector di↵erential operator. For
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this potential the gauge transformation is simply Aµ ! Aµ +
1
e
@µ↵ (e is the electric

charge). The Lagrangian density of the free Maxwell field is:

LEM = �1

4
Fµ⌫F

µ⌫ . (1.3)

Consider then the Dirac Lagrangian for a fermion of mass m:

LD =  (x)(i�µ@µ �m) (x), (1.4)

where  (x) = ( 1(x), 2(x), 3(x), 4(x))T is the Dirac spinor,  (x) =  †(x)�0 and
�µ are the Dirac matrices. Such Lagrangian is invariant under the global symmetry
of the unitary Abelian group U(1):

 (x) !  0(x) = ei↵ (x). (1.5)

If ↵ is not a constant, but a function ↵(x) of the space-time, LD is not anymore
invariant under this continuous local transformation. However the invariance can
be recovered by coupling the Dirac field to the Maxwell field:

LD,EM =  (x)(i�µ(@µ � ieAµ)�m) (x), (1.6)

where (@µ�ieAµ) is the gauge covariant derivativeDµ. The complete gauge invariant
Lagrangian for the QED U(1) is then:

LQED = �1

4
Fµ⌫F

µ⌫ +  (x)(i�µDµ �m) (x) = LEM + LD + Lint, (1.7)

where the interaction term Lint = e �µAµ represents the interaction of the Dirac
field with the EM field.

1.3 Electroweak theory

The Electroweak theory (EW) is based on the same principle of gauge invariance
as QED and unifies the EM and weak interactions as two di↵erent manifestations
of the same fundamental interaction: SU(2)L ⇥ U(1)Y , where SU(2)L is the weak
isospin group which is non-Abelian and has three generators T1,2,3 = 1

2�1,2,3, that
are the Pauli matrices, and U(1)Y is the weak hypercharge group which is Abelian
and has one generator: Y/2. The electromagnetic interaction is a subgroup of the
electroweak group and its generator is a linear combination of the third component
of the weak isospin with the weak hypercharge:

Q = T3 +
Y

2
. (1.8)

The fermion spinors  are split up into right-handed and left-handed:

 R =
1

2
(1 + �5) 

 L =
1

2
(1� �5) ,

(1.9)

where �5 is proportional to the product of the four Dirac matrices. The weak isospin
current couples exclusively to left-handed fermions, implying a non-conservation of
Parity in weak interactions. Therefore fermions appear as families with left-handed
weak isospin T = 1/2 doublets and right-handed T = 0 singlets:
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In the doublets, neutrinos and up-type quarks (u, c, t) have the third component of
the weak isospin T3 = +1/2, while the charged leptons and down-type quarks (d, s,
b) have T3 = �1/2. Thence, members within a doublet carry the same hypercharge:
Y = �1 for leptons and Y = 1/3 for quarks. The SU(2)L ⇥ U(1)Y gauge group
requires the existence of four massless gauge bosons, of which two are charged under
the EM interaction and two are neutral. However, the short range of the weak force
suggests that the corresponding gauge bosons must be massive particles. In order to
include these observed masses, a spontaneous EW symmetry breaking mechanism is
implemented, giving mass to the three electroweak gauge bosons, W± and Z0, but
not to the photon, leaving the electromagnetic symmetry unbroken.

1.4 Spontaneous symmetry breaking: the Higgs
mechanism

The spontaneous symmetry breaking mechanism was introduced in the works of
Higgs, Englert, Brout, Guralnik, Hagen and Kibble [8]. Consider a complex scalar
field '(x) = ('1 + i'2) interacting with a real vector field Aµ(x) via the following
Lagrangian, invariant under a local U(1) transformation:

L = �1

4
Fµ⌫F

µ⌫ + (Dµ')
⇤Dµ'� V (|'|2), (1.10)

where Fµ⌫ is the field strength tensor, Dµ is the already defined covariant derivative
and V (|'|2) = �µ2|'|2+�|'|4 is the potential of a scalar field with real constants �
and µ. If � is negative, V has no stable minima. In case �µ2 > 0 and � > 0, V has
a unique stable minimum. When �µ2 < 0 and � > 0, V has two di↵erent minima
at |'| = µ/

p
2�, as can be seen in Figure 1.2. The minimum of the potential will

be at:
h'i0 = h0|'|0i = '0/

p
2, (1.11)

and the Lagrangian in Equation 1.10 can be expanded around the vacuum state:

'(x) =
1p
2
['0 + �(x) + i✓(x)] (1.12)

! L = �1

4
Bµ⌫B

µ⌫ +
1

2
(e'0)

2BµBµ +
1

2
(@µ�@

µ�)� µ2�2, (1.13)

where Bµ = Aµ � @µ✓/(e'0) and Bµ⌫ = @µB⌫ � @⌫Bµ stands for a simplified version
of the weak field strength tensor. This Lagrangian includes a massive vector field
Bµ with mass e'0 and a massive scalar field � with mass µ

p
2: the vector field has

“absorbed” the field ✓(x), becoming massive. The scalar field that appears is the
so-called Higgs field and the particle associated is the Higgs boson. The U(1) gauge
symmetry is no more apparent and it is spontaneously broken.
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Figure 1.2: Examples of a potential of the type V (|'|2) = �µ2|'|2 + �|'|4, with
� > 0 and two di↵erent choices for �µ2 [9].

1.4.1 Gauge boson masses

Such mechanism of spontaneous symmetry breaking is introduced in the EW theory
in order to give mass to the electroweak gauge bosons. Before the symmetry breaking
the Lagrangian is:

L = �1

4
F a

µ⌫
(F a)µ⌫ � 1

4
Bµ⌫B

µ⌫ + (Dµ')
†Dµ'� V ('†,'), (1.14)

where F a

µ⌫
= @µW a

⌫
� @⌫W a

µ
+ g2"abcWµbW⌫c is the SU(2)L field strength tensor,

being W a

µ
the corresponding gauge field; Bµ⌫ is the field strength tensor of U(1)Y ,

being Bµ the corresponding gauge field; "abc, with a, b, c = 1, 2, 3, are the structure

constants of SU(2), and V ('†,') = �('†'� 1
2v

2)
2
is the potential of the scalar

field, with v 2 R. The simplest choice for the scalar field is a doublet '(x) =

✓
'1

'2

◆

with hyperchage Y = 1. The covariant derivative acting on this scalar field is:

Dµ' = (@µ � ig2TaW
a

µ
� ig1

Y

2
Bµ)' (1.15)

where T a = 1
2�

a are the generators of SU(2)L with coupling strength g2, while Y
is the generator of U(1)Y with coupling strength g1. For the vacuum state a choice
can be:

W a

µ
= Bµ = 0; h'i0 =

✓
0
vp
2

◆
. (1.16)

Considering small perturbations around the ground state (see Equation 1.12) and
making a gauge transformation on this field to move to the unitary gauge, '(0)
becomes:

'(0) =

 
0

v+H(x)p
2

!
, (1.17)

with H(x) a scalar field. In this way four fields are introduced (two complex and
two real):

W±
µ

=
1p
2
(W 1

µ
⌥ iW 2

µ
);Zµ =

g2W 3
µ
� g1Bµp

g21 + g22
;Aµ =

g2W 3
µ
+ g1Bµp

g21 + g22
; (1.18)
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chosen in order to satisfy (W�
µ
)⇤ = W+

µ
and Z2

µ
+A2

µ
= (W 3

µ
)2 +B2

µ
. The covariant

derivative of Equation 1.15 can be written in terms of these fields, so then the
Lagrangian of the EW model can be rewritten after the spontaneously symmetry
breaking as:

L =� 1

4
F a

µ⌫
(F a)µ⌫ � 1

2
W+

µ⌫
W�,µ⌫ � 1

4
Zµ⌫Zµ⌫

+m2
W
W+

µ
W�,µ +

1

2
m2

Z
ZµZ

µ +
1

2
(@µH@

µH)� 1

2
m2

H
H2,

(1.19)

whereW±
µ⌫

= @µW±
⌫
�@⌫W±

µ
and Zµ⌫ = @µZ⌫�@⌫Zµ. Such Lagrangian describes the

massless EM field Aµ, the massive W±
µ

fields associated to the W bosons with mass

mW = g2v

2 , the massive Zµ field associated to the Z boson with mass mZ =
v

p
g
2
1+g

2
2

2 ,

and the massive H field associated to the Higgs boson with mass mH = v
p
2�. Since

the Higgs boson mass depends from the free parameter � (the Higgs self-coupling),
it can not be predicted by the theory. Instead, the masses of the W and Z bosons
can be connected one to each other via the weak mixing angle:

cos ✓W =
g2p

g21 + g22
;

mZ =
MW

cos ✓W
.

(1.20)

1.4.2 Fermion masses

The fermion masses can be generated via the Yukawa interaction which describes
the coupling between the Higgs field and the massless fermion fields. For example,
consider the coupling of the electron, which involves the left-hand electron doublet

Le

L
=

✓
⌫e
e

◆

L

, the Higgs doublet ' and the right-component of the electron field eR.

In this case the e↵ective Yukawa Lagrangian is:

Le

Y u
= �ge

�
L̄e

L
'eR + ēR'

†Le

L

�
. (1.21)

Considering then a spontaneously broken symmetry and small perturbations around
the vacuum state, such Lagrangian becomes:

Le

Y u
= �gevp

2
(ēLeR + ēReL)�

gep
2
(ēLeR + ēReL)H = �me(ēe)�

gep
2
(ēe)H, (1.22)

where the first term contains the electron mass (me = gev/
p
2) and the second one

describes the interaction between the fields. Including also the quarks interaction,
the Yukawa Lagrangian is:

Le

Y u
= ��ij

u
Q̄i

L
(i�2)'

⇤uj

R
� �ij

d
Q̄i

L
'dj

R
� �ij

e
L̄i

L
'ej

R
+ [h.c.], (1.23)

where [h.c.] means hermitian conjugate and �u,d,e are 3⇥3 complex matrices (Yukawa
matrices). They are not necessarily diagonal, so that in general a mixing between
di↵erent fermion generations is allowed. After the Higgs field acquires a vacuum
expectation value, the fermions become massive:

mf =
gfvp
2
, (1.24)
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where gf is the Yukawa coupling, obtained by diagonalizing the matrices �. It
describes at the same time the mass of the fermion and its coupling with the Higgs
boson. The mass eigenstates for the left-handed doublets do not coincide with the
eigenstates of the weak interaction of quarks; in fact, the quark fields can form mixed
combinations. The transformation of the mass eigenstates (d, s, and b) into weak
eigenstates (d0, s0 and b0) is regulated by the CKM (Cabibbo-Kobayashi-Maskawa)
matrix [10]:

0

@
d0

s0

b0

1

A=

0

@
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

A

0

@
d
s
b

1

A

a 3 ⇥ 3 unitary matrix, that can be parameterised by three mixing angles and a
CP-violating phase. The transition probability between di↵erent quark flavours is
described by the matrix elements, and it is proportional to |Vqq0 |2. Currently, the
best determination of the magnitudes of the CKM matrix elements is [7]:

VCKM '

0

@
0.97401 0.22650 0.00361
0.22636 0.97320 0.04053
0.00854 0.03978 0.999172

1

A

and so the CKM matrix is not diagonal, although the o↵-diagonal elements are
suppressed. By convention, the mixing takes place only between down-type quarks,
while the up-type mass matrix is diagonal. In the SM, neutrinos are assumed to be
massless, and so the same mixing for leptons does not happen. The experimental
evidence of massive neutrinos has risen the need of theories beyond the Standard
Model, introducing right-handed neutrinos.

1.5 Quantum Chromodynamics

The last piece of the Standard Model is the interaction between quarks and gluons,
a gauge theory called Quantum Chromodynamics (QCD), based on the unbroken
colour group SU(3)C [11]-[12]. The colour symmetry implies eight massless gauge
bosons called gluons (related to the generators of SU(3)C), which mediate the strong
interaction and couple only to colour charges. Quantum Chromodynamic has a non-
Abelian structure, and therefore the gluons also carry colour charge themselves and
can couple to each other. The Deep Inelastic Scattering (DIS) experiments involving
leptons and nuclei gave the first confirmation of the existence of a sub-structure in
nucleons. In particular, some aspects were underlined: the quarks are fermions with
1/2 spin and carry colour charge and fractional electric charge, gluons exist and do
not interact with electromagnetic or weak force. The QCD Lagrangian is:

LQCD = �1

4
Ga

µ⌫
(Ga)µ⌫ +

nfX

k

 ̄k(i�µDµ �mk) 
k

= �1

4
Ga

µ⌫
(Ga)µ⌫ +

nfX

k

 ̄k(i�µ@µ �mk) 
k + gs

nfX

k

 ̄k(�µTaG
a

µ
) k

= Lg + Lq + Lint,

(1.25)
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where a ranges from 1 to 8, Dµ is the covariant derivative and Ga

µ⌫
= @µGa

⌫
�@⌫Ga

µ
+

gsfabcGb

µ
Gc

⌫
indicates the field strength tensor. The SU(3) structure constant is

fabc, T a = 1
2�

a are the group generators in terms of the Gell-Mann matrices �a, and
nf is the number of independent quark fields (the six flavours). The Lagrangian
can be written as well as the sum of three pieces: Lg is the kinetic term for the
gluon massless field, Lq the kinetic term for the massive quark field, and Lint is the
interaction between gluons and quarks. Finally, gs (or ↵s = g2

s
/4⇡) is the strong

coupling constant and its size depends on the energy scale of the interaction (Q2): it
is small for large momentum transfers (asymptotic freedom [13]), and large for small
momentum transfers (colour confinement). At high energy, quarks can be described
as almost free particles, while the colour confinement at small energy binds quarks
together, not allowing the observation of free quarks and gluons.

Considering two colliding protons, their structures can be described as a set of
some point-like components (quarks and gluons), each carrying a fraction of the
total proton momentum. The production cross section can be seen as the product
of two terms: one at large momentum transfers (short distance) and one at small
momentum transfers (long distance). The former can be analysed in the perturba-
tive QCD frame, while for the latter it is necessary to introduce a parametrisation
through the Parton Distribution Functions (PDFs). For a proton A with a momen-
tum pA, the PDF is a function fa/A(x,Q2) of the relative momentum (x = pa

pA
) of the

parton in the direction of the proton momentum, and depends also on the energy
scale of the process Q. The proton-proton collision cross section is therefore:

�pApB!n =
X

q

Z
dxadxbfa/A(xa, Q

2)fb/B(xb, Q
2)�ab!n, (1.26)

where A and B denote the two protons. It is possible to rewrite the cross section in
terms of the strong coupling:

�pApB!n =
X

q

Z
dxadxbfa/A(xa, Q

2)fb/B(xb, Q
2)[�0 + ↵s(Q

2)�1 + · · · ], (1.27)

where �0 is the tree-level parton-parton cross section, �1 is the first order QCD
correction to the parton-parton cross section, and so on. In order to have a real-
istic prediction, higher orders of QCD corrections have to be employed. As stated
above, the partons can not be detected because of colour confinement: every parton
generated in the interaction undergoes a hadronisation process that produces a jet
of baryons and mesons which can be detected when they interact with matter. The
PDF is the probability density for finding a parton with a momentum fraction xa

of the proton momentum at a given factorisation scale µF . Their determination is
important in order to better understand the initial state of the colliding particles.
The PDFs can not be directly calculated, and must be determined using data from
di↵erent experiments: deep inelastic scattering, Drell-Yan events and jets produc-
tion. The fits to various sets of experimental data are performed within the evolution
scheme,

@f(x,Q2)

@ log(Q2)
=
↵s

4⇡

Z 1

x

dz

z
[Paa0f(

x

z
,Q2)], (1.28)

where Paa0 are the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi splitting functions [14]
and give the probability to have a transformation of the parton a with momentum
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x into parton a0 with momentum z, as a consequence of the emission of one or more
quarks or gluons. So, the PDFs measured at one scale can be used to predict the
results of experiments at other scales using Equation 1.28.

1.6 Beyond the Standard Model

The SM is a unitary and renormalisable theory, that can be used to perturbatively
calculate quantities describing processes at high energies. It incorporates 18 free
parameters:

• 9 Yukawa couplings for the fermion masses (six quark and three leptons);

• 4 parameters for the CKM matrix (three mixing angles and a CP-violating
phase);

• 2 parameters from EW symmetry breaking (the vacuum expectation value v
and the Higgs boson mass mH);

• 3 couplings g1, g2 and gs for the SM gauge groups U(1)Y , SU(2)L and SU(3)C ,
respectively.

At the currently accessible energy scales, the SM describes successfully the particle
physics processes, and its predictions have been verified with very high precision (at
SPS, LEP, SLAC, HERA, Tevatron and LHC accelerators). However, the Standard
Model does not explain some observations:

• the SM does not propose any proper candidate for the presence of Dark Matter
in the universe. Cosmological observations reveal that only 4% of the energy in
the universe is bright matter, that can be described within the SM. About 27%
should be Dark Matter, a type of matter that interacts only gravitationally
but not electromagnetically. Possible Dark Matter candidates are primordial
black holes, supersymmetric particles and massive neutrinos (weakly interact-
ing massive particles - WIMPs);

• neutrinos are treated as massless particles and their flavour mixing is not
considered;

• the prevalence of matter over antimatter. In fact the SM predicts an almost
equal amount for matter and antimatter, but there is obviousness of the op-
posite;

• the gravitational force is not included in the SM, although an explanation
could be the graviton, an hypothetical particle, not discovered yet, that should
mediate the gravitational force.

There is thence the need of new theories going beyond the Standard Model (BSM)
framework. Some attempts are done in the Supersymmetry (SUSY) and in the
Grand Unified Theory (GUT) frames, but there is still no experimental evidence
sustaining these theories.

9



1.7 The top quark

With a mass of 172.76 ± 0.30 GeV [7], the top quark is the heaviest elementary
particle in the SM. It is the Q = 2/3, T3 = 1/2 component of the weak-isospin
doublet containing the bottom quark. It was discovered in 1995 by the CDF and D0
Collaborations at Fermilab ([15]-[16]), almost 20 years after the b quark. Due to the
large mass, close to the scale of the EW symmetry breaking, it is also characterised
by a Yukawa coupling gt ⇡ 1, playing therefore a special role in the SM and in many
BSM theories. Being heavier than a W boson, the top quark is the only one that
can decay weakly (actually, it is its almost exclusively decay): t ! W + b. It has a
lifetime of about 5 · 10�25 s, so it can not form hadron states before decaying.

1.7.1 Top quark production

At hadron colliders, top quarks are produced predominantly in tt̄ pairs, through
gluon-gluon fusion (gg ! tt̄) or quark-antiquark annihilation (qq̄ ! tt̄), at the lead-
ing order (LO) in QCD. The Feynman diagrams of these processes are shown in
Figure 1.3. The production ratios depend from both the energy and the type of the
collision: at Tevatron (proton-antiproton at

p
s = 1.96 TeV) the leading process was

qq̄ annihilation (⇠85%), while at LHC (proton-proton at
p
s = 13 TeV) gg fusion

dominates the production (⇠90%). Predictions for the top quark production total
cross sections are available at next-to-next-to-leading order (NNLO), also including
next-to-next-to-leading-logarithmic (NNLL) soft gluon resummation: at LHC, as-
suming a top quark mass of 172.5 GeV, the cross section is �tt̄ = 831.8+19.8+35.1

�29.2�35.1 pb
(
p
s = 13 TeV), where the first uncertainty is from scale dependence and the second

from PDFs [7]. Figure 1.4 shows the current status of �tt̄ measurements, compared
with the theoretical prediction. The top quark can also be produced in di↵erent
ways, but with smaller cross sections: for example, it can be produced singly via the
weak interaction involving the Wtb vertex, or in a system of four top quarks (tt̄tt̄).

g

g

t̄

t

g

g

t̄

t

g

g

t̄

t

q̄

q

t̄

t

Figure 1.3: Leading order Feynman diagrams for tt̄ production in case of gg fusion
and qq̄ annihilation.
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Figure 1.4: Summary of LHC and Tevatron measurements of the tt̄ production
cross section as a function of the centre of mass energy compared to theoretical
calculations [17].

1.7.2 Top quark decay

As already discussed, the top quark does not form hadron states and decays into a b
quark and a W boson. While the former hadronises producing a jet of particles, the
latter can decay into a lepton and a neutrino (⇠ 1/3 of the cases), with all the three
lepton flavours being produced at equal rate, and in the remaining cases decays into
a quark-antiquark pair, which hadronise producing jets. According to the number
of leptons in the decay, the tt̄ pair can be identified from three di↵erent signatures
(see Figure 1.5):

• the all hadronic (or all jets) channel occurs when both the W bosons decay
into a qq̄ pair and corresponds to ⇠45.7% of the tt̄ decays. There are six jets
overall (at the LO), two from the b quarks and four from the light quarks
coming from the W boson decay;

• the single lepton (or `+jets) channel occurs when only one W boson decays
leptonically. It is characterised by one isolated lepton, a neutrino and four
jets. It corresponds to ⇠43.8% of the total decays;

• The dilepton channel occurs when both the W bosons decay into a lepton-
neutrino pair. There are two leptons (with opposite charges), two neutrinos
and two jets from b quarks. It makes the ⇠10.5% of the cases.
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Figure 1.5: Top quark pair branching fractions.

1.7.3 Four tops production

Besides having very large coupling to the Higgs boson, the top quark is predicted
to have large couplings to new particles and so it plays a special role in many
hypothetical BSM models. Because of the large top quark mass, the production
of tt̄tt̄ is one of the most di�cult mechanisms accessible at the LHC. It is a rare
process predicted by the SM and it has not been measured up to now. Many BSM
scenarios lead to an enhancement of the tt̄tt̄ cross section [18]. In fact, the SM four
top quark production cross section at NLO accuracy in QCD and EW couplings
at

p
s = 13 TeV is predicted to be �tt̄tt̄

SM
= 11.97+18%

�21% fb [19], and possible new
phenomena BSM may enhance the cross section over the SM prediction. At LHC,
at the current energy, the dominant mechanism for the production of tt̄tt̄ is gg fusion
with a fraction of the total rate of 94%, followed by the qq̄ annihilation with a 6%
fraction: Figure 1.6 shows the representative tree-level Feynman diagrams for both
mechanisms. As in the case of tt̄, the final state topology of a tt̄tt̄ event is determined
by the decays of each of the W bosons. In total, there are 35 possible final states1

which can be grouped into five classes of channels (see Figure 1.7):

• the all hadronic (full hadronic or all jets) channel occurs when all theW bosons
decay into a qq̄ pair. This implies the presence of 12 jets, out of which four
come from the b quarks. The branching ratio (BR) of this channel is the 31.1%;

• the single lepton (`+jets or 1L) channel occurs when only one W boson decays
leptonically. The final state is characterised by one charged lepton, 10 jets, out
of which four come from the b quarks, and missing energy due to the neutrino
(which can not be detected). It is the channel with the largest BR, 42.2%;

1Here leptons denote either electrons or muons, which can include those that have come from
a tau decay.
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Figure 1.6: Leading order Feynman diagrams for the tt̄tt̄ production in case of gg
fusion and qq̄ annihilation.

• the dilepton opposite-sign (or 2LOS) channel occurs when two W bosons
with di↵erent charges decay leptonically. The channel is characterised by two
opposite-sign charged leptons, eight jets, out of which four come from the b
quarks, and missing energy due to the neutrinos. It represents the 14.3% of
the decays;

• the dilepton same-sign (or 2LSS) channel occurs when two W bosons with the
same charges decay leptonically. The final state is composed by two same-sign
charged leptons, eight jets, out of which four come from the b quarks, and
missing energy due to the neutrinos. The BR is 7.2%;

• the multi-lepton (or ML) channel occurs when at least three W bosons decay
leptonically. In this case there are four jets from the b quarks, missing energy
from the neutrinos, and three leptons with two additional jets or four leptons
without additional jets. The BR is 5.3% (4.9% for ``` and 0.4% for ````).

The all hadronic and the 1L channels benefit form the largest BRs, but are
penalised by massive backgrounds, like tt̄ production associated with jets. Instead,
the ML channel has a very clean signature, but a very small BR. In general, the
searches for tt̄tt̄ production avoid the all hadronic channel because of the background
and group the other final states into two bigger channels: single lepton with dilepton
opposite-sign (1LOS) and dilepton same-sign with multilepton (SSML). Previous
searches for tt̄tt̄ production using LHC data at

p
s = 13 TeV were performed by

both the ATLAS ([20]) and CMS Collaborations ([21]), setting limits on the cross
section, but not yet measuring the process.

In the single lepton channel the main and most important background source
is the tt̄ process associated with jets (tt̄+jets). This background is irreducible and,
moreover, the current predictions do not provide a good description of data in such
extreme radiation regions. So a dedicated procedure is needed to cope this prob-
lem. Other important backgrounds are the single top quark production and the
W/Z bosons production associated with jets. Smaller contributions come from the
associated production of a gauge boson (W , Z or H) with tt̄ and from diboson
production. For these backgrounds, the simple Monte Carlo simulation is enough to
have good predictions.
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Figure 1.7: Branching ratio for the decays of tt̄tt̄.
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Chapter 2

LHC and the ATLAS experiment

The search for experimental confirmations to the Standard Model brought to the
development of new technologies and experimental setups. As precision tests were
performed, providing more stringent constraints on the SM parameters, new energy
regimes had to be explored. The Large Hadron Collider (LHC) was built in order
to address this need. LHC is a proton-proton collider started up in 2008 as the
latest addition to CERN’s accelerator complex. The accelerator characteristics will
be summarised in the first part of this chapter, while the second part is focussed on
the description of the ATLAS experiment.

2.1 The Large Hadron Collider

The LHC [22] is the world’s largest and most powerful particle accelerator. It was
built between 1998 and 2008 near Geneva, between Switzerland and France. It
has been installed in the underground tunnel which previously housed the Large
Electron-Positron Collider (LEP), a 26.7 km ring at an average depth of 100 m.
Being a hadronic collider, LHC can reach higher energies in the centre of mass
frame with respect to LEP, since energy losses due to the synchrotron radiation are
smaller. It can accelerate two proton beams, circulating in opposite directions, at
an energy of 14 TeV in the centre of mass (currently 13 TeV); it can also accelerate
heavy ion (lead) beams at a centre of mass energy of

p
s = 5.5 TeV. The beams

circulate in two di↵erent pipes in a regime of ultra high vacuum (10�7 Pa). They
are bent by NbTi superconducting magnets which produce a magnetic field above
8 T, cooled with superfluid helium to a temperature of -271.3 �C. Along the LHC
ring there are four points of collision, where the following experiments are located
(see Figure 2.1):

• ATLAS (A Toroidal LHC ApparatuS) [23];

• CMS (Compact Muon Solenoid) [24];

• ALICE (A Large Ion Collider Experiment) [25];

• LHCb (Large Hadron Collider beauty) [26].

Three further experiments are placed nearby the interaction points: LHCf (Large
Hadron Collider forward) [27], TOTEM (TOTal Elastic and di↵ractive cross section
Measurement) [28] and, from 2010, MoEDAL (MOnopole and Exotical Detector At
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Figure 2.1: The CERN accelerators complex with the four main LHC experiments.
Some lines are used to extract particles for non-LHC experiments [30].

the LHC) [29]. The principal aim of these experiments is the exploration of the high
energy physics frontier:

• ATLAS and CMS have been designed to study as many as possible events
produced in proton-proton collisions. They are both multifunctional detectors
to mainly investigate the SM physics (discover the Higgs boson) and search
for possible physics beyond the Standard Model (SUSY in particular);

• ALICE studies the strong interactions between heavy ions in a high energy
density regime (when matter is in a quark-gluon plasma state). The physics
programme also includes collisions with lighter ions and at lower energy and
the collection of data from proton-proton collision to provide references for the
heavy-ion programme;

• LHCb has been built to examine the heavy flavour physics, in particular to
search for new sources of CP violation beyond the SM in hadrons with bottom
and charm quarks;

• LHCf is close to the ATLAS detector and its goal is a better understanding
of cosmic rays. It makes use of the particles produced in collisions to simulate
cosmic rays in laboratory conditions;

• TOTEM is placed near CMS and its aim is to increase our knowledge on
protons, measuring those that emerge from the collision region with such a
small angle that the other experiments can not reveal them;

• MOEDAL is the latest experiment built (near LHCb) and it searches for mag-
netic monopoles.
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2.1.1 Accelerator structure

As shown in Figure 2.1, the proton beam acceleration is performed in separated
stages. The protons are produced by stripping electrons from a source of hydrogen
gas, extracted with an energy of 91 keV and then injected in the LINAC2. This is
a 36 m long linear accelerator which, using radio frequency (RF) quadrupoles and
focusing quadrupole magnets, brings protons to the energy of 50 MeV. During the
acceleration, protons are split in bunches interspersed by 25 ns (corresponding to
a frequency of 40 MHz) using RF cavities. Each bunch contains about 1.1 · 1011
particles. The beam is then brought to the Proton Synchrotron Booster (PSB), a
157 m long circular accelerator, in which the beam energy is increased up to 1.4 GeV.
Then, the protons reach the Proton Synchrotron (PS), a 628 m ring, which raises
the protons energy up to 25 GeV. Before entering in the LHC ring, the beam is
further accelerated by the Super Proton Synchrotron (SPS, a 6.9 km circumference
synchrotron) to the energy of 450 GeV. In the last stage of acceleration, inside the
LHC, eight radio frequency cavities bring both the proton beams to the present
energy of 6.5 TeV. Ions are instead produced in an ion-source, go through LINAC3
and the Low Energy Ion Ring (LEIR) before following the same path as the protons
from the PS.

Inside LHC, particles are constrained into a circular orbit by 1232 superconduct-
ing magnetic dipoles (Figure 2.2), producing a 8.36 T magnetic field transverse to
the beam direction. As stated before, the dipoles are cooled to a temperature of
1.9 K by a cryogenic system which exploits superfluid 3He. The generated field is
optimised in order to constrain both the beams, that are accelerated together in
two di↵erent, but nearby, pipes. Near the collision points, where the experiments
are located, the beams are further focused and collimated by a set of quadrupolar,
sextupolar and octupolar magnets.

Figure 2.2: Section of one of the magnetic dipoles used to bend and stabilise the
beam orbit [22].
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For a given process, the number of events generated per second (Ne) at the LHC
is simply:

Ne = L�e, (2.1)

where L is the instantaneous luminosity (number of collisions per unit of time and
transverse section of the beams) and �e is the cross section for the process. The
luminosity depends only on beam parameters:

L =
N2

b
nbfr�

4⇡✏n�⇤ F, (2.2)

where Nb is the number of particles per bunch, nb the number of bunches per beam,
fr the revolution frequency, � the relativistic factor, ✏n the normalised transverse
beam emittance, which describes the dispersion of the protons in the phase space,
�⇤ the beta function at the collision point, which describes the oscillation of the
bunches around the ideal orbit, and F the geometric luminosity reduction factor
due to the crossing angle at the interaction point. The peak of instantaneous lu-
minosity delivered to ATLAS during proton-proton collisions was reached in 2018:
21.0·1033 cm�2s�1, twice the designed luminosity.

The total number of interactions in a data acquisition is given by the integrate
luminosity, which depends on the instantaneous luminosity and the acquisition time.
The total integrated luminosity collected by ATLAS during the 13 TeV collisions
period (2015-2018, the so-called Run II) was 139 fb�1 (see Figure 2.3).

Figure 2.3: Integrated luminosity delivered to ATLAS (green), recorded (yellow),
and certified to be good quality data (blue) during 13 TeV collisions in the period
2015-2018 [31].
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2.1.2 Coordinate system

The coordinate system adopted by ATLAS, and by LHC in general, is a right-handed
Cartesian system where the nominal interaction point is the origin of the system.
The x-axis is defined as perpendicular to the beam in the origin and the positive
direction points to the centre of LHC. The y-axis is also perpendicular to the beam
and points upwards: the resulting x � y plane is the so-called transverse plane.
Finally, the z-axis is parallel to the beam direction.

The cylindrical structure of the ATLAS detector suggests to introduce some
quantities useful to better define the event:

• � = cot
⇣

x

y

⌘
is the azimuthal angle measured around the z-axis;

• ✓ = arctan
�
y

z

�
is the polar angle measured from the z-axis;

• y = 1
2 ln

⇣
E+pz

E�pz

⌘
is the rapidity, where E is the particle’s energy and pz is the

component of its momentum projected along the beam axis;

• the rapidity can be approximated in case of highly relativistic particles (m ⌧ p)
with the pseudorapidity ⌘ = � ln

�
tan ✓

2

�
, a quantity that is still invariant un-

der Lorentz boosts along the axis direction. The pseudorapidity is zero for
✓ = ⇡

2 , grows up approaching the beam pipe, and tends to infinity for ✓ = 0,
as shown in Figure 2.4;

• �R =
p

�⌘2 +��2 is the distance in the ⌘ � � space;

• pT = p sin ✓ is the transverse momentum of the particle;

• ET = E sin ✓ is the transverse energy of the particle.

In particular, pT and ET are more interesting variables than p and E, since for the
colliding partons in the initial state it can be assumed that the transverse component
is negligible compared to the longitudinal component and so pinit

T
= Einit

T
= 0, which

brings a constrain on the total transverse momentum and energy of the final states.

Figure 2.4: Variation of the pseudorapidity as a function of ✓.
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Figure 2.5: Digital view of the ATLAS detector with the indications of the various
sub-detectors [23].

2.2 The ATLAS detector

The ambitious physics program of LHC required to have new and sophisticated de-
tectors able to probe the proton-proton and ion-ion collisions. Two general purpose
detector, ATLAS and CMS, were built to cope the request and have two di↵erent
experiments investigating the Standard Model and Beyond physics. In order to
reach the goals they had to satisfy some general requirements:

• fast and radiation-hard components and electronics;

• high detector granularity;

• large acceptance in pseudorapidity and angular coverage;

• good charged-particle momentum resolution and reconstruction e�ciency;

• very good electromagnetic calorimeter for electron and photon identification
and measurements;

• very good hadronic calorimeter for jets and missing transverse energy mea-
surements;

• good muon identification and measurements;

• highly e�cient trigger to reject background events and achieve an acceptable
level of data stored.
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The ATLAS detector is shown in Figure 2.5. With the dimensions of 25 m in height
and 44 m in length and an overall weight of about 7000 tonnes, ATLAS is the
biggest detector at LHC. It has a cylindrical structure, with a central part called
barrel, closed by two end-caps: in this way the detector surrounds (almost) entirely
the interaction point.

As many other particle detectors, the structure of ATLAS is arranged in di↵erent
layers of subsystems, each of them with a specific target (see Figure 2.6):

• the Inner Detector (ID) is the closest system to the interaction point and
provides the reconstruction of the trajectory of the charged particles. Be-
ing embedded in a 2 T solenoidal magnetic field, the ID measures also the
momentum and the charge of those particles;

• the Electromagnetic Calorimeter (ECAL) surrounds the ID and its aim is the
measure of the energy of photons and electrons;

• the Hadronic Calorimeter (HCAL) envelops the ECAL and it is designed to
detect the energy of hadronic particles;

• the Muon Spectrometer (MS) is embedded in a toroidal magnetic field and it
reconstructs the momentum, the charge and the trajectory of muons.

In addition to this layer structure, three smaller detectors are placed in the forward
regions, in order to determine the luminosity delivered to ATLAS. A three-level
Trigger and Data Acquisition (TDAQ) system is implemented in order to read out
data from over 100 million electronic channels at a rate of approximately 40 MHz and
save physics events with a rate of about 1 kHz. The general performance goals are
summarised in Table 2.1. In the following sections, each detector will be described
in details.

Figure 2.6: Schematic representation of a typical high energy physics detector. It is
shown also how particles interact in the various subsystems.
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Detector component Required resolution ⌘ coverage
Measurement Trigger

Tracking �pT /pT = 0.05% pT � 1% ±2.5
EM calorimetry �E/E = 10%/

p
E � 0.7% ±3.2 ±2.5

Hadronic calorimeter(jets)
barrel and end-cap �E/E = 50%/

p
E � 3% ±3.2 ±3.2

forward �E/E = 100%/
p
E � 3.1% 3.1 < |⌘| < 4.9 3.1 < |⌘| < 4.9

Muon spectrometer �pT /pT = 10% at pT = 1 TeV ±2.7 ±2.4

Table 2.1: General performance goals of the ATLAS detector [23].

2.2.1 The Inner Detector

The ID is the innermost piece of ATLAS detector and it consists in three inde-
pendent but complementary subsystems: with reference to Figure 2.7, there are
two silicon detectors, the Pixel Detector and the SemiConductor Tracker (SCT),
surrounded by a gaseous detector, the Transition Radiation Tracker (TRT). The
overall dimensions are 6.2 m in length and 2.1 m in diameter, and it is embedded in
a magnetic field of 2 T generated by the Central Solenoid (CS). The main task of
the ID is the measurement of the tracks produced by the charged particles: thanks
to the magnetic field and the high precision of track reconstruction, it provides the
position, the transverse momentum and the charge of the particles and the positions
of primary and secondary vertices.

The Pixel Detector is the closest subsystem to the interaction point, being built
around the beryllium beam pipe. The basic element is the so-called pixel: a silicon
sensor with a surface of 50⇥400 µm2 and a thickness of 250 µm. A module contains
47232 pixels for a total of ⇠80.4·106 pixels in 1744 modules, arranged in three
barrel layers and two end-caps, each with three disk layers. The layers in the barrel
are placed at radii 50.5 mm (⇠13.2·106 pixels), 88.5 mm (⇠22.8·106 pixels) and
122.5 mm (⇠31.2·106 pixels). Each disk in the end-caps contains ⇠2.2·106 pixels
and they are placed at |z| = 495 mm, 580 mm and 650 mm from the centre. In this
way the Pixel Detector provides three measurement points for tracks in the |⌘| < 2.5
region with a spatial resolution of 10 µm ⇥ 115 µm. In 2014, before Run II, a fourth
layer was installed at a radius of 25.7 mm in the barrel region: the Insertable B-
Layer (IBL). It adds ⇠6.02·106 pixels, improving the track reconstruction and the
vertex measurement [33]. The supporting structure is made of thin carbon-fibre and
it is integrated with the cooling system, in order to not perturb significantly the
crossing particles, maintain a constant operating temperature of about -7 �C and
be radiation-hard (⇠800 kGy are expected during the detector life time).

The SemiConductor Tracker exploits the same silicon technology, being made of
silicon micro-strips with a pitch of 80 µm. The SCT is formed by 4088 modules, each
with an intrinsic accuracy of 17 µm⇥ 580 µm. The modules (2112) are distributed in
four coaxial cylinders (the barrel) with a length of 1498 mm, placed at radii between
299 mm and 514 mm, while the remaining 1976 modules are arranged in two end-caps
with nine disks each, placed between |z| = 853.8 mm and |z| = 2720.2 mm. The SCT
provides eight strip measurements (four space points) for particles originating in the
beam-interaction region. As the Pixel Detector, the SCT operates at a temperature
of about -7 �C.
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Figure 2.7: Schematic view of the ATLAS Inner Detector [23], [32].

The Transition Radiation Tracker is the ID outermost element. It includes
gaseous drift tubes (straws) alternated with transition radiation material, cover-
ing the 563 mm < |R| < 1066 mm region. With an average of 36 hits per tracks, the
TRT provides a continuous tracking with an accuracy of 130 µm in the R � � di-
rection, for particles with |⌘| < 2. The basic elements of the TRT are the polyimide
straw tubes of 4 mm diameter filled with a gas mixture (70% Xe, 27% CO2, and
3% O2) with 5 � 10 mbar over-pressure. The anodes are 31 µm diameter tungsten
(99.95%) wires plated with 0.5 � 0.7 µm gold and they are directly connected to
the front-end electronics. The free electrons created by the ionisation produced by
a charged particle undergo avalanche multiplication near the wire. The TRT barrel
contains up to 73 layers of straws interleaved with fibres, while 160 straw planes
are alternated with foils in the end-caps, providing particle identification: transition
radiation photons are emitted when a charged particle passes through the boundary
region between materials with di↵erent dielectric constants. This e↵ect is propor-
tional to the relativistic gamma factor and allows to distinguish between particles.
Unlike the other components of the ID, the TRT operates at room temperature,
needing therefore a system of insulators and heaters.

The Inner Detector is fully immersed in a magnetic field generated by the Central
Solenoid. The CS is designed to provide a 2 T axial field keeping the material thick-
ness in front of the EM calorimeter as small as possible (⇠0.66 radiation lengths, X0).
It operates at a temperature of 4.5 K. Its length is 5.8 m and its inner and outer
diameters are 2.46 m and 2.56 m. The single-layer coil is wound with a high-strength
NbTi conductor inside an aluminium support cylinder. The flux is returned by the
steel of the ATLAS hadronic calorimeter and its girder structure.

2.2.2 The calorimeter system

The ATLAS calorimeter system is made up of three di↵erent calorimeters (Fig-
ure 2.8): the Electromagnetic Calorimeter (ECAL or EM calorimeter), the Hadronic
Calorimeter (HCAL) and the Forward Calorimeter (FCal). These calorimeters ex-
ploit di↵erent techniques and materials, covering the range |⌘| < 4.9. Their main
task is to measure the particles energy and position. The calorimeter system has
also to provide good containment for electromagnetic and hadronic showers, and
to limit punch-through into the muon system. The EM calorimeter is designed for
precision measurements of electrons and photons. Its total thickness is more than

23



Figure 2.8: Schematic view of the ATLAS calorimeter system [23].

22 X0 in the barrel and more than 24 X0 in the end-caps: in this way the ECAL
is able to contain electrons and photons up to 1 TeV and almost 2/3 of a typical
hadronic shower. The rest of the calorimeter system is designed for the jet recon-
struction and Emiss

T
measurements. In fact, the thickness of the active calorimeter

(ECAL + HCAL), ⇠9.7 interaction lengths (�) in the barrel and ⇠10 � in the end-
caps, is enough to provide good resolution for high energy jets. The total thickness,
considering an additional 1.3 � from the outer support, is ⇠11 � in the barrel and
is su�cient to reduce punch-through below the irreducible level of prompt or decay
muons and to ensure a good Emiss

T
measurement. All the calorimeters use liquid

argon (LAr) as active detector medium: incident particles shower in the absorber
material, the LAr is ionised and electrons can drift in the gap where an electric field
is applied, inducing a signal in the read-out electrodes. The choice of the material
was done on the base of the intrinsic linear behaviour, the stability of response over
time and the intrinsic radiation-hardness of the LAr.

The EM calorimeter is divided into barrel (|⌘| < 1.475) and end-caps (1.375 <
|⌘| < 3.2), each one being inside its own cryostat, which keeps the argon temper-
ature at 88 K. Due to the position of the CS in front of the ECAL, they share
the same vacuum vessel in order to optimise the material distribution and increase
the performance. The barrel calorimeter is composed by two identical half-barrels,
separated by 4 mm at z = 0. The length of each half-barrel is 3.2 m, their inner
and outer diameters are 2.8 m and 4 m respectively, and each half-barrel weighs 57
tonnes. The end-caps are, instead, two wheels, 63 cm thick and 27 tonnes weight,
with internal and external radii of 330 mm and 2098 mm. They are divided into
two coaxial wheels separated by 3 mm: one covers the region 1.375 < |⌘| < 2.5, and
the other the region 2.5 < |⌘| < 3.2. The EM calorimeter is a lead-LAr detector
with accordion-shaped kapton electrodes and lead absorber plates: these elements
are laid out radially and folded so that the complete � symmetry without azimuthal
cracks is covered. Three layers of active material comes up in the |⌘| < 2.5 region,
while two are in the remaining regions. In Figure 2.9 a sketch of a barrel module
is shown: the first layer is finely segmented along ⌘, the second layer collects the
largest fraction of the energy of the electromagnetic shower, while the third layer
collects only the tail of such shower and is therefore less segmented. Each half-barrel
has been divided into 16 modules, each covering 22.5� in �. The total thickness of
a module depends from ⌘, varying from 22 X0 at ⌘ = 0 to 33 X0 at |⌘| = 1.3. The
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Figure 2.9: Sketch of an EM barrel module with the three di↵erent layers. The
granularity of the cells is also shown [23].

supporting structure is made of stainless-steel outer rings. The end-cap wheels are
divided into eight wedge-shaped modules. The total thickness of the end-caps varies
from 24 X0 to 38 X0 for the outer wheel, and from 26 X0 to 36 X0 for the inner
wheel. The EM calorimeters are complemented by presamplers, an instrumented
argon layer, which provides a measurement of the energy lost in front of the elec-
tromagnetic calorimeters, due to the interaction with the ID or the solenoid. The
presampler is 11 mm (5 mm) thick in the barrel (end-cap) and has no absorber
layer. The transition region between the barrel and end-cap, 1.37 < |⌘| < 1.52,
has a poorer performance because of the higher amount of passive material in front.
This region is often referred to as crack region.

The Hadronic Calorimeter can be divided into two parts that exploit di↵erent
techniques: the Tile Calorimeter (TileCal) and the Hadronic End-cap Calorimeter
(HEC). The TileCal is placed outside the ECAL and is made of a central part, the
barrel, covering the region |⌘| < 1.0 and two extended barrels which cover the range
0.8 < |⌘| < 1.7. It is a sampling calorimeter using steel as the absorber and scintil-
lating tiles as the active material. The mechanical structure of the tile calorimeter is
designed as a self-supporting, segmented structure comprising 64 modules. The Tile
Calorimeter extends from an inner radius of 2.28 m to an outer radius of 4.25 m.
The barrel is 5.8 m long, while each extended barrel is 2.6 m long. Radially, the
TileCal is segmented in three layers: approximately 1.5, 4.1 and 1.8 � thick for the
barrel and approximately 1.5, 2.6, and 3.3 � thick for the extended barrels. The total
detector thickness is then ⇠7.4 �. Two sides of the scintillating tiles are read out by
wavelength shifting fibres into two separate photomultiplier tubes. The gap region
between the barrel and the extended barrel is instrumented with special modules,
made of steel-scintillator sandwiches. Each HEC is divided into two wheels, placed
behind ECAL end-cap in the same cryostat. It covers the range 1.5 < |⌘| < 3.2.
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Each wheel is built from 32 identical wedge-shaped modules and is divided into two
segments in depth (so four layers per end-cap). The technology used is copper-LAr:
copper plates are interleaved with 8.5 mm LAr gaps. The modules of the front
wheels are made of 24 copper plates, each 25 mm thick, plus a 12.5 mm thick front
plate. In the rear wheels, the modules are made of 16 copper plates, each 50 mm
thick, plus a 25 mm thick front plate. The inner radius is 0.372 m for the first nine
plates and 0.475 m for the others, while the outer radius is constantly 2.03 m. A
stainless-steel structure supports the modules and the wheels.

The last piece of the calorimeter system is the Forward Calorimeter. It is placed
in the end-cap cryostats, recessed by about 1.2 m with respect to the EM calorimeter
front face. FCal covers the 3.1 < |⌘| < 4.9 region and it is ⇠10 � deep. In each
end-cap there are three 45 cm thick modules: the first, made of copper, is optimised
for electromagnetic measurements, while the other two, made of tungsten, measure
predominantly the energy of hadronic interactions. The electrode structure consists
of concentric rods and tubes parallel to the beam axis. The gap between the rod
and the tube varies from 0.269 mm to 0.508 mm and it is filled by the LAr, which
is used as sensitive medium.

2.2.3 The Muon Spectrometer

The MS is the outermost ATLAS sub-detector and it is made of di↵erent muon
chambers, schematised in Figure 2.10. The main purpose of the MS is the triggering
and measurement of muons, in particular of their track reconstruction and transverse
momenta evaluation. In order to allow this operation, the MS is immersed in a
toroidal magnetic field which bends the crossing muons: the tracks are measured
at three points away from the interaction point. Therefore, knowing the sagitta s,
it is possible to determine the transverse momentum: pT = L2qB/8s, where L is
the length of the trajectory in a constant magnetic field of intensity B and q is the
electric charge of the muon. The magnetic field is provided by the large barrel toroid
in the region |⌘| < 1.4 and by two smaller end-cap magnets for 1.6 < |⌘| < 2.7. In
the transition region (1.4 < |⌘| < 1.6) the deflection is due to a combination of the
barrel and end-cap fields. Such magnet configuration provides a field which is mostly
orthogonal to the muon trajectories. Each of the three toroids consists of eight coils
assembled radially and symmetrically around the beam axis. The overall size of the
barrel toroid system as installed is 25.3 m in length, with inner and outer diameters
of 9.4 m and 20.1 m, respectively. The end-cap toroids are 5.0 m in length, with
inner and outer diameters of 1.65 m and 10.7 m. The toroids work at a temperature
of 4.6 K, needing thence a cooling system which uses liquid helium. The barrel toroid
provides 1.5 to 5.5 T·m of bending power, while the end-cap toroids approximately
1 to 7.5 T·m.

In the barrel region, tracks are measured in chambers arranged in three cylin-
drical layers around the beam axis at radii of approximately 5 m, 7.5 m, and 10 m,
while in the transition and end-cap regions, the chambers are installed in planes
perpendicular to the beam, in four wheels located at distances of |z|⇠7.4 m, 10.8 m,
14 m, and 21.5 m. The measurements of the tracks is entrusted principally to
Monitored Drift Tubes (MDT), replaced by Cathode Strip Chambers (CSC) in the
2 < |⌘| < 2.7 region. The trigger system, instead, covers the range |⌘| < 2.4
and exploits Resistive Plate Chambers (RPC) in the barrel and Thin Gap Cham-
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Figure 2.10: Schematic view of the ATLAS Muon Spectrometer and of the magnet
system [23].

bers (TGC) in the end-caps. MDTs consist of three to eight layers of drift tubes
with a diameter of 29.970 mm, operating with Ar/CO2 gas at an absolute pressure
of 3 bar, which achieve an average resolution of about 35 µm per chamber in the z
direction. CSCs are used in the innermost tracking layer due to their higher rate
capability and time resolution. They are multi-wire proportional chambers with
cathode planes segmented into strips in orthogonal directions. The resolution of a
chamber is 40 µm in the R direction and about 5 mm in the transverse plane. RPCs
and TGCs provide bunch-crossing identification, well-defined transverse momentum
thresholds and measure the muon coordinates in the direction orthogonal to that
determined by the precision-tracking chambers. Both chamber types deliver signals
with a spread of 15-25 ns, thus providing the ability to tag the beam-crossing. An
RPC is a gaseous parallel electrode-plate (i.e. no wire) detector: two resistive plates
are kept parallel to each other at a distance of 2 mm and filled with a gas mix-
ture; the electric field between the plates allows the formation of an avalanche along
the ionising tracks towards the anode. TGCs are multi-wire proportional chambers
exploiting a gas mixture of CO2 and n-C5H12 for the ionisation process.

2.2.4 Forward detectors

In addition to the big structure described in the previous sections, three smaller
systems cover the ATLAS forward region [34]. The first two are used in order
to determine the luminosity delivered to the experiment, while the third one is
employed to determine the centrality of heavy-ion collisions.

LUCID (LUminosity measurement using Cherenkov Integrating Detector) [35]
detects inelastic proton-proton scattering in the forward direction. It consists of
16 polished aluminium tubes with a diameter of 15 mm which surround the beam
pipe and point toward the interaction point. The 1.5 m long tubes are filled with
C4F10 at a constant pressure of 1.2� 1.4 bar. There are two detectors installed, one
in each end-cap region of ATLAS, at a distance of approximately ±17 m from the
interaction point, and placed at a radial distance of approximately 10 cm from the
beam line, covering the range 5.6 < |⌘| < 6.0.

ALFA (Absolute Luminosity For ATLAS) [36] is located at ±240 m and it con-
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sists of scintillating fibre trackers located inside Roman pots which are designed to
approach as close as 1 mm to the beam. It provides a luminosity measurement
looking at elastic scattering at small angles (3 µrad).

The Zero-Degree Calorimeter (ZDC) [37] is located at ±140 m and it consists of
layers of alternating quartz rods and tungsten plates which measure neutral particles
at |⌘| � 8.3 in both proton-proton and heavy-ion collisions.

Moreover, the Beam Conditions Monitor (BCM) [38] monitors the stability of
the particle beam. It consists of four 8 ⇥ 8 mm2 diamond sensors arranged around
the beam pipe in a cross pattern at |z| = 1.84 m, corresponding to |⌘| = 4.2.

2.2.5 The trigger system

ATLAS uses a two-levels trigger (see Figure 2.11): a hardware-based level (L1) is
followed by a software-based High-Level Trigger (HLT). The HLT is composed by
the Level 2 (L2) trigger and the Event Filter (EF), so the trigger system can be also
described as a three-levels system.

The L1 performs the initial event selection based on reduced granularity signals
sent from the calorimeters and muon detectors, searching for high energy objects.
It reduces the event rate from the bunch-crossing rate of 40 MHz to 100 kHz. From
the calorimeters, the L1 receives information about transverse energies and isolation
of electrons, photons and jets. For muons, also the coincidence of hits among several
layers of the MS is taken into account. The L1 decision must reach the front-end
electronics within 2.5 µs after the bunch-crossing, providing Regions of Interest (RoI)
to the L2: these are the regions of the detector where possible trigger objects within

Figure 2.11: Functional diagram of the ATLAS Trigger and Data Acquisition system
in Run II [39].

28



the event are identified. The L2 performs similar measurements as the L1, but with
the full granularity and precision of calorimeters and muon chambers. The L2 uses
RoI information on coordinates, energy, and type of signatures, taking a decision
in less than 40 ms. The EF uses o✏ine analysis procedures to fully reconstruct
the event from all possible information coming from the sub-detectors and data
calibrations. It makes a decision in less than four seconds. At the end of the HLT
the average recording rate is ⇠1 kHz. Trigger rates can be controlled by changing
thresholds or applying di↵erent sets of selection cuts. After an event is accepted
by the L1 trigger, the data from the pipe-lines are transferred o↵ the detector to
the Readout Drivers (ROD). Digitised signals are formatted as raw data prior to
being transferred to the DAQ system, which receives and temporarily stores the
data in local bu↵ers. Those events selected by the L2 trigger are then transferred
to the event filter. Events selected by the EF are moved to permanent storage at
the CERN computer centre.

2.3 Performance of the ATLAS detector

The status of the ATLAS detector has been continuously monitored during all the
Run II of LHC, ensuring the performance and the stability of the measurements.
Table 2.2 summarises the number of electronic channels and the operational fraction
of each of the ATLAS sub-detectors at the end of the 2018 data-taking (end of
Run II).

Sub-detector Number of channels Approximate operational fraction
Pixels 92 · 106 95.7%
SCT 6.3 · 106 98.6%
TRT 350 · 103 97.2%
ECAL 170 · 103 100%
TileCal 5.2 · 103 99.5%
HEC 5.6 · 103 99.7%
FCal 3.5 · 103 99.8%
L1 Calo Trigger 7.2 · 103 99.9%
L1 RPC Trigger 383 · 103 100%
L1 TGC Trigger 320 · 103 99.9%
MDT 357 · 103 99.7%
CSC 31 · 103 93.0%
RPC 383 · 103 93.3%
TGC 320 · 103 98.9%

Table 2.2: Approximate values of the operational fraction of each of the ATLAS
sub-detectors, together with the number of the electronic channels involved.
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Chapter 3

Object reconstruction and event
selection

The search for tt̄tt̄ production in the 1L channel presented in this thesis involves
several physics objects, like electrons, muons, jets, b-jets and missing transverse
momentum. The events reconstructed form these objects are then required to pass
some selection cuts. Therefore in this chapter the event reconstruction and selection
are described.

3.1 Object reconstruction

A charged particle crossing the ATLAS detector may leave some hits in the di↵erent
layers of the Inner Detector which form a track, reconstructed using a �2-fit [40]. A
set of five parameters is used to characterise such track: d0 and z0, which are the
transverse and longitudinal impact parameters, � and ✓, which are the azimuthal and
polar angles, and q/pT , that is the charge over the transverse momentum. A two-
steps procedure is employed to find the hits belonging to a track. First, an inside-out
pattern recognition sequence, starting from seed space-points in the silicon detector,
propagates outwards to include hits from the TRT. Then, an outside-in pattern
recognition sequence (back-tracking) is applied, seeded in the TRT and extrapolated
inwards adding silicon layer hits. The final track candidates are moreover required
to fulfill a set of quality criteria.

The primary vertices are reconstructed by a dedicated algorithm in the HLT,
as well as by an o✏ine reconstruction algorithm. This way, each vertex found by
reconstructing the tracks is associated to a vertex candidate and the position is then
determined by a fit. The vertex that has the highest sum of the pT of its tracks is
considered as the primary vertex, while the others are assumed to be coming from
pile-up1 interactions or, in case they are far from the beam spot position, secondary
vertices, which may come for example from the decay of a b-hadron: during the
fragmentation process a b quark forms hadrons which can travel a few millimetres
from the collision point before they decay creating secondary vertices.

Electrons are reconstructed from clusters (energy deposits) in the electromag-
netic calorimeters associated to reconstructed tracks in the ID. The algorithms for
electron reconstruction are optimised fo the discrimination between signal, isolated

1The pile-up is the occurrence of several inelastic collisions during the same bunch-crossing.
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electrons and background electrons from photon conversion, object misidentification,
and hadron decays. Di↵erent sets of identification criteria based on information from
the calorimeter, the tracker and the matching between the tracker and the calorime-
ter, are used with di↵erent levels of background rejection and signal e�ciency. Elec-
trons passing all the identification requirements are called tight electrons, while loose
and medium electrons are those which pass only some of the above mentioned re-
quirements. The reconstruction and identification e�ciencies are determined with
the tag-and-probe method2 from J/ and Z boson decay events.

Muons are reconstructed using information from the muon spectrometer, the
ECAL system and the tracker. Depending from the information used, four di↵erent
types of muons can be defined:

• stand-alone muons, for which the trajectory is reconstructed only from the
MS and the track is extrapolated back to the point of closest approach to the
beam line;

• segment-tagged muons, which are those with a track in the ID associated with
at least one track in the MDT or CSC chambers;

• calorimeter-tagged muons which are those with a track in the ID and an energy
deposit in the calorimeter compatible with a minimum ionising particle;

• combined muons, for which the reconstruction is done using both the ID and
the MS. This is the muon definition which has been used in this thesis.

Also for the muons di↵erent sets of identification criteria can be used, leading to tight,
medium, loose, LowPt and HighPt muons. In this case as well, the reconstruction
and identification e�ciencies are determined with the tag-and-probe method from
J/ and Z boson decay events. For both muons and electrons, the momentum scale
and resolution are studied, introducing correction factors to the simulation.

Due to the colour confinement, quarks and gluons produced in the collisions can
not exist as free particles, so they undergo a hadronisation process that produces a
collimated stream of charged and neutral hadrons, called jet. Jets are characterised
by multiple energy deposits in the calorimeters and by the presence of several tracks
in the ID. The reconstruction of jets is done using algorithms that cluster together
adjacent particles. The criteria that such algorithms have to follow are two: they
have to be collinear and infrared safe; this means that the jet configuration is in-
dependent of the emission of a soft or collinear particle. In ATLAS the jet recon-
struction [41] starts from grouping together energy deposits in adjacent cells of the
calorimeter, creating a topocluster. Topoclusters are formed by a growing-volume
algorithm starting from a calorimeter cell with a highly significant seed signal. The
cells near the seed are aggregate to the topocluster if their energy deposit is greater
than a given threshold. This procedure is iteratively applied to further neighbours.
The total energy of the topocluster is the sum of the energy deposits of the cells
included, corrected with a local cluster weighting (LCW) calibration in order to take
into account the e↵ects of inactive material, non-compensation and out-of-cluster

2The tag-and-probe method exploits a resonance to find a tag lepton coming from that decay
which passes a very tight set of cuts and a matching probe lepton which, instead, passes a looser
set of cuts. The ratio between events with a positive match and the total number of events with
a tag lepton is the e�ciency of the looser set of cuts.
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leakage. The topoclusters are then grouped: a distance between two clusters is cal-
culated as �2

ij
= (yi � yj)2 + (�i � �j)2, where yi and �i are the rapidity and the

azimuth of the i-th cluster. If this distance is less than a certain value R, i and j
are merged in a single jet. The procedure is repeated until all clusters are either
part of a jet, or a jet itself. Practically the following distances are calculated [42]:

dij = min(k2p
ti
, k2p

tj
)
�2

ij

R2
, (3.1)

diB = k2p
ti
, (3.2)

where kti is the transverse momentum of the i-th cluster. If p = 1 one speak of
the kt algorithm, if p = 0 of the Cambridge/Aachen algorithm, and if p = �1 of
the anti-kt jet-clustering algorithm. If dij < diB i and j are combined in a single
entity, otherwise i is considered as a single jet and it is removed from the list of
entities. In this thesis jets are reconstructed using the anti-kt algorithm with a
radius requirement of R = 0.4.

Jets obtained with this procedure undergo a process of calibration and correction.
Since the jet energy is measured by the ECAL, the Jet Energy Scale (JES) calibration
consists of several consecutive stages derived from Monte Carlo (MC) simulations
in order to correct the mismodelling due to non-EM particles. The jet is corrected
to point back to the primary vertex, removing additional energy deposits coming
from pile-up. An additional Jet Vertex Tagger (JVT) procedure is useful to suppress
jets which originate from pile-up collisions, in particular when considering low-pT
jets: the scalar sum of the pT of tracks matched to the jet and originating from the
primary vertex is required to be at least 50% of the total pT of the tracks matched
to the jet. Further residual calibrations are derived using in-situ measurements and
applied sequentially.

For the aim of top physics, a critical point is the capability to reconstruct jets
coming from b quarks, discriminating b-jets from c- or light-jets. This type of dis-
crimination is called b-tagging and is made with algorithms which provide the proba-
bility that a jet is originating from a b quark. The key ingredient for b-tagging is the
relatively long lifetime of b-hadrons (⇠10�12 s) resulting in a significant mean flight
length (even some millimeters in some cases). This leads to measurable secondary
vertices and impact parameters of the decay products (see Figure 3.1).

The algorithm used in this thesis (MV2 [43]) is one of the most common and
powerful in ATLAS. It is a multivariate (MV) algorithm, consisting in a boosted
decision tree (BDT) that combines the output of the low-level taggers based on tracks
and vertices information. The BDT algorithm is trained using the ROOT Toolkit
for Multivariate Data Analysis (TMVA) [44] on a hybrid tt̄ + Z 0 sample. For the
sake of training, the c-jet fraction in the background sample is set to 7% (MV2c10),
with the remainder composed of light-jets. This allows the charm rejection to be
enhanced whilst preserving a high light-jet rejection. For this thesis, the chosen
fixed cut on the MV2c10 output, called working point (WP), corresponds to 77%
e�ciency to tag a b-jet, with a light-jet rejection factor of 110 and a c-jet rejection
factor of 5, as shown in Table 3.1.

Neutrinos do not interact at all with the detector, and so can be reconstructed
only using the di↵erence between the initial state and final state total momentum.
In fact, since the initial transverse momentum of the partons is zero, it has to be the
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Figure 3.1: Schematic view of a b-hadron decay inside a jet coming from a secondary
vertex.

b-jet e�ciency BDT output selection c-jet rejection light-jet rejection
60% > 0.94 23 1200
70% > 0.83 8.9 300
77% > 0.64 4.9 110
85% > 0.11 2.7 25

Table 3.1: Selection and c-jet and light-jet rejections corresponding to di↵erent b-jet
tagging e�ciency [45].

same for the final state. Candidate neutrinos are defined by the missing transverse

energy Emiss

T
=
q

(Emiss
x

)2 + (Emiss
y

)2; the two components are calculated as:

Emiss = Emiss

e
+ Emiss

µ
+ Emiss

jet
+ Emiss

soft
, (3.3)

where each term is the negative sum of all the object energies projected in the
considered direction. Emiss

soft
is the term taking into account the tracks not associated

to any reconstructed object.

3.2 Event selection

The selection of tt̄tt̄ events is a procedure divided in steps: after a preselection
based on data quality, trigger and physics objects, the selection for the 1L channel
chategorises the events in “regions”, depending on the number of jets and b-jets.

The quality of the events is checked to exclude those events with noise in the
calorimeters. In addition, events are requested to pass single electron or single muon
triggers, both for online and o✏ine reconstructed objects.

The objects reconstructed as described in the previous section undergo a process
of selection based on identification and isolation requirements, as recommended by
the ATLAS Collaboration and summarised in Table 3.2:

• for electrons, tight criteria are used for identification and isolation. Moreover,
electron candidates have to satisfy pT > 10 GeV and |⌘| < 2.47, with the
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Electrons Muons Jets b-jets
loose tight loose tight

pT [GeV] > 10 or > 28 > 10 or > 28 > 25 > 25
|⌘| < 1.37 or 1.52� 2.47 < 2.5 < 2.5 < 2.5

ID quality mediumLH tightLH medium
cleaning MV2c10
+JVT 77%

Isolation none FCTight none
FixedCutTight-

TrackOnly
Track vertex:
|d0/�d0 | < 5 < 3
|z0 sin ✓| [mm] < 0.5 < 0.5

Table 3.2: Summary of object identification and definitions criteria.

exclusion of the region 1.37 < |⌘| < 1.52 (known as “LAr crack region”),
where electrons are discarded. Scale factors for identification and isolation are
applied to the MC simulation in order to correct for the e�ciency di↵erences
between data and simulation;

• for muons, medium quality criteria are used for the identification, while tight
criteria are employed for the isolation. Moreover, muon candidates are re-
quested to have pT > 10 GeV and |⌘| < 2.5. As for electrons, scale factors are
applied to the MC simulation;

• as already described, jets are reconstructed using the anti-kt algorithm with
a radius requirement of R = 0.4. The JVT procedure is applied to jets with
pT < 60 GeV and |⌘| < 2.4. Then, jet candidates have to satisfy pT > 25 GeV
and |⌘| < 2.5;

• for b-jet tagging, the MV2c10 algorithm at WP=77% is employed. In or-
der to use the full b-tagging information, to each jet is associated also a
pseudo-continuous b-tagging score, that defines if the jet passes the b-tagging
working points of 85%, 77%, 70% and 60%, or if the jet does not pass any of
the previous WPs.

The selected objects have also to pass an overlap removal procedure, in order to
avoid double counting. For this procedure, loose criteria are employed:

• an electron candidate track overlapping with another electron or muon is re-
moved;

• a calorimeter muon sharing a track with an electron is removed;

• if the �R between a jet and an electron is smaller than 0.2, the jet is removed.
In cases of multiple jets fulfilling this criteria, only the closest jet (the one with
the smaller �R) is removed;

• electrons are removed if their distance with a jet is �R < 0.4;

• jets with less than three tracks and within �R < 0.2 of a muon are removed;
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Figure 3.2: Schematic view of the regions definition.

• a muon is removed if the distance between a jet and the muon is �R < 0.4 +
10 GeV/pµ

T
, with pµ

T
being the transverse momentum of the muon.

Jets that pass this procedure are calibrated and re-clustered using the anti-kt algo-
rithm with a radius requirement of R = 1.0, originating the so-called RC-jets. Such
jets are “trimmed” by removing all small-R jets within a reclustered jet that have
pT below 5% of the pT the RC-jet, suppressing further contributions from pile-up
and soft radiation. The resulting RC-jets that satisfy pT > 200 GeV and |⌘| < 2.0
are used to identify hadronically decaying top quark candidates, exploiting then the
peculiar jet-substructure of the tt̄tt̄ process.

To all the events that pass the data quality and object selection, a further selec-
tion is applied. At least one vertex formed from at least two tracks with pT > 0.4
GeV is required. The hard-scattering vertex is defined as the one with the high-
est summed track p2

T
. The transverse impact parameter divided by its estimated

uncertainty |d0|/�d0 is required to be lower than five (three) for electron (muon)
candidates. The longitudinal impact parameter must satisfy |z0 sin ✓| < 0.5 mm for
both lepton flavours. Jets are further cleaned from those coming from non-collision
background and from coherent noise or pathological cells in the calorimeter.

For the 1L channel, exactly one tight lepton satisfying pT > 28 GeV and at least
five jets among which at least two b-tagged are requested. Moreover, requirements
are made on Emiss

T
as well as on the transverse mass of the lepton3 to suppress the

background from multijet production: Emiss

T
> 20 GeV and Emiss

T
+mW

T
> 60 GeV.

According to the number of jets and b-jets, the events can be split in di↵erent regions
(see Figure 3.2): an event with n jets andm b-jets belongs to the njmb region. When
a region contains an exact number of jets it is labelled as exclusive (e), while if the
region contains at least a number of jets it is labelled as inclusive (i). So, for
example, 6je3be is the region with exactly six jets and exactly three b-jets, while
10ji4bi is the region with at least ten jets and at least four b-jets. For the purpose
of the background evaluation method that will be described later, the regions can
be classified as extraction regions, source regions, control regions and signal regions
(or tt̄tt̄-enriched).

3
m

W
T =

q
2plT · Emiss

T · (1� cos��), where p
l
T is the transverse momentum of the lepton and

�� is the azimuthal angle separation between the lepton and the direction of the missing transverse
momentum.
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Chapter 4

Data and Monte Carlo simulation
samples

The aim of this thesis is the search for tt̄tt̄ production in the 1L channel, confirming
the evidence recently provided by the ATLAS experiment in the SSML channel [46].
The dataset used comes from the full Run II pp collisions period, collected by the
ATLAS detector at

p
s = 13 TeV, from 2015 to 2018. It corresponds to an integrated

luminosity of 139.0 ± 2.4 fb�1. Monte Carlo techniques are employed to simulate
and predict the event evolution from the collision to particles detection, both for the
signal and the background processes, for which the MC simulation is assisted by a
data-driven method.

4.1 Event simulation

The ATLAS simulation infrastructure [47] can be divided into four steps: event
generation, detector simulation, digitisation and reconstruction.

The first, complex, part is the generation of events: the production of a set of
particles which can be passed to the detector simulation. Event generation can be
further divided into three substeps: hard-scattering, parton shower and hadronisa-
tion. In addition, this phase has to take into account the possibility of multiple
interactions in the same event. More in details:

• the hard-scattering or matrix element, the big circle and lines in red in Fig-
ure 4.1, is the collision between two partons. It includes the parton-parton
interaction at short distance, evaluated using perturbative QCD calculations,
and the long distance interaction, modelled by the PDFs. As already dis-
cussed, such PDFs can not be directly calculated, but are provided from vari-
ous collaborations fitting experimental data. For this thesis the PDF sets are
provided by the NNPDF collaboration [49];

• the parton shower (PS), the blue lines in Figure 4.1, is the emission of coloured
particles and photons by the scattered partons. The QCD theory allows three
types of possible branchings, q ! qg, g ! gg and g ! qq̄. Initial state radia-
tion (ISR) is the one emitted by the incoming partons before the scattering;

• the hadronisation process occurs after the PS emission, at energy scales com-
parable to the non perturbative limit of QCD, when partons are no more free
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Figure 4.1: Schematic representation of an event as produced by a MC simula-
tion [48].

particles and start to build hadrons (the light green ellipses in Figure 4.1),
which then decay (dark green circles). Two di↵erent models can be employed
to simulate the hadronisation, the Lund string fragmentation model [50] and
the cluster fragmentation model [51];

• in addition to the “main” parton-parton collision, other interactions can occur
originating a phenomenon known as multiple parton interactions (MPI) and
the so-called underlying event (UE), the purple lines and ellipse in Figure 4.1.
The energy of UEs is in general small and they are modelled using experimental
data.

This analysis makes use of di↵erent event generators, depending from the process.
For the matrix element computation, two generators are used:

• Powheg-Box [52] is a parton-level event generator computing matrix ele-
ments in perturbative QCD and using the Powhegmethod [53] for interfacing
NLO calculations with parton shower generators;

• MadGraph5 aMC@NLO [54] can simulate the matrix element for 2 ! n
hard scattering processes without any approximation. The NLO calculation
follows from the MC@NLO method [55] for the interface with parton shower
generators.

For the parton shower and hadronisation steps, and for the modelling of the under-
lying events, the following generators are used:
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• Pythia 8 [56] is a multi-purpose event generator, optimised for 2 ! 1 and
2 ! 2 hard scattering and it provides the PS, hadronisation and the decay of
the unstable particles, giving back a list of stable particles. In this thesis it is
not used for the matrix element computation;

• Herwig 7 [57] is another multi-purpose event generator, but in this thesis it
is used only for parton shower and hadronisation, being match with a di↵erent
generator for the hard scattering;

• EvtGen [58] is a generator specialised in the decays of bottom and charm
hadrons, and it runs after the previous generators in order to have an accurate
simulation for these processes;

• Sherpa [59] is a multi-purpose generator, specialised in multi-leg processes.
It is employed, in particular, for the production of vector bosons in association
with additional partons. In addition to the parton shower simulation, Sherpa
can be interfaced with inbuilt libraries, like Comix [59], or external ones, like
OpenLoops [60], for the matrix element calculation.

After the event generation, a detailed simulation of the ATLAS detector is
needed, in order to take into account its geometry and response. The simulation is
done with Geant4 [61] that covers the majority of the electromagnetic, hadronic
and optical processes, over a wide range of materials. The energy scale starts from
250 eV up to a few TeV. All aspects of the simulated process are included: the
geometry of the system, the materials involved, the generation of primary particles
of events, the tracking of particles through materials and external electromagnetic
fields, the interactions between particles, the response of sensitive detector com-
ponents, the generation of event data, the storage of events, the visualisation of
the detector and particle trajectories, and the capture for subsequent analysis of
simulation data. An alternative, less accurate but time saving, is provided by a
fast detector simulation making use of parameterised showers in the calorimeters
(FastCaloSim [62]).

In the digitisation step, the output of the detector simulation is converted to
the same format of the output of the real detector. Moreover, correction are ap-
plied so that the simulated particles selection e�ciencies, energy scales and energy
resolutions match those determined from data control samples.

The last step is the reconstruction, and it is made for the MC simulation in the
same way described in the previous chapter for real data.

4.2 Data and MC samples

As already mentioned the data used in this thesis correspond to the full Run II of
LHC, collected by the ATLAS detector between 2015 and 2018 at

p
s = 13 TeV

with stable beam conditions and with all detector systems operating normally. The
pile-up, so the average number of additional collisions per bunch crossing, ranged
between 14 and 38. The integrated luminosity is 139.0± 2.4 fb�1, determined using
the LUCID-2 detector [35]. Monte Carlo simulations are used to estimate the tt̄tt̄
signal acceptance and all the backgrounds.
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The tt̄tt̄ simulation is performed by the MadGraph5 aMC@NLO v2.6.2 gen-
erator at NLO1 accuracy in QCD with the NNPDF3.1NLO parton distribution
function [63]. The renormalisation (µR) and factorisation (µF ) scales are set to

be 1
4 ·
P

i

q
m2

i
+ p2

T,i
, where the sum runs over all the particles generated by the

ME calculation, according to Reference [19]. Top quarks are decayed at LO us-
ing MadSpin [64] to preserve all spin correlations. Pythia 8.230 is used for the
hadronisation and parton shower, with the A14 set of tuned parameters [65] and
the NNPDF2.3LO PDF set [66]. The decays of bottom and charm hadrons are
simulated using the EvtGen v1.6.0 program. Additional tt̄tt̄ samples are produced
replacing Herwig for parton shower or Sherpa for the full generation.

The main background, tt̄, is simulated with the Powheg-Box v2 generator at
NLO with the NNPDF3.0NLO PDF set and hdamp = 1.5 · mtop [67]. The hdamp

parameter controls the pT of the first additional emission beyond the LO Feynman
diagram in the parton shower and therefore regulates the high-pT emission against
which the tt̄ system recoils. The simulation is then interfaced with Pythia 8.230
using the A14 tune and the NNPDF2.3LO PDF set. The impact of the PS and
hadronisation model is evaluated by comparing the nominal setup with a sample
produced with the same ME generator, but interfaced with Herwig 7.04 using the
H7UE set of tuned parameters and the MMHT2014LO PDF set [68]. The uncer-
tainty due to the ME generator choice is estimated with the comparison between
the nominal setup with a sample generated with the same Pythia for PS but
a di↵erent hard-scattering calculator: MadGraph5 aMC@NLO v2.6.0 with the
NNPDF3.0NLO PDF. The mismodelling due to the choice of the value of hdamp

is evaluated comparing the nominal setup with an alternative one produced with
hdamp = 3.0 ·mtop.

The single top production is modelled with the Powheg-Box v2 generator at
NLO with the NNPDF3.0NLO PDF set. The overlap between the tt̄ and the tW
final state is removed using the diagram removal technique [69]. The events are
then interfaced with Pythia 8.230 using the A14 tune and the NNPDF2.3LO PDF
set. The tt̄ and single top simulated samples are normalised to the cross sections
calculated at NNLO in QCD, including the resummation of NNLL soft-gluon terms.

The tt̄Z production is simulated with the MadGraph5 aMC@NLO v2.3.3
generator at NLO with the NNPDF3.0NLO PDF set, interfaced with Pythia 8.210
using the A14 tune and the NNPDF2.3LO PDF set. The tt̄W production is modelled
using the Sherpa v2.2.1 generator with the NNPDF3.0NLO PDF set, interfaced
with Comix and OpenLoops for the ME calculation. The tt̄H production is gener-
ated with Powheg-Box at NLO with the NNPDF3.0NLO PDF set and interfaced
with Pythia 8.230 using the A14 tune and the NNPDF2.3LO PDF set. The tt̄WW
is modelled using MadGraph5 aMC@NLO at LO interfaced with Pythia 8.230
using the A14 tune and the NNPDF2.3LO PDF set. The rare top quark backgrounds
are normalised using their NLO theoretical cross sections.

Diboson production (V V ) is generated with Sherpa v2.2.1 interfaced with the
OpenLoops library and using NNPDF3.0NNLO PDF set and a dedicated set of
tuned parton-shower parameters developed by the Sherpa authors. This sample is
normalised to the theoretical cross sections calculated at NLO in QCD.

1As already mentioned in Section 1.7, LO stands for leading order, NLO for next-to-leading
order, NNLO for next-to-next-to-leading order and NNLL for next-to-next-to-leading-logarithmic.

40



ME PS
ME PDF

PS Tune � (fb)
PS PDF

MadGraph5 aMC@NLO Pythia NNPDF3.1NLO
A14 10.93+19.6%

�23.2%2.6.2 8.230 NNPDF2.3LO
MadGraph5 aMC@NLO Herwig NNPDF3.1NLO

H7UE 10.95+17.0%
�22.4%2.6.2 7.0.4 MMHT2014LO

Sherpa Sherpa NNPDF3.0NNLO
Author’s tune 11.15+3.3%

�17.9%2.2.8 2.2.8 NNPDF3.0NNLO

Table 4.1: A summary of tt̄tt̄ samples available. Cross sections quoted uncertainties
are due to the QCD scale choice. The matching between the ME and the PS is
MC@NLO in all the cases.

The production of Z+jets and W+jets is simulated with the Sherpa v2.2.2
generator interfaced with Comix and OpenLoops for the ME calculation. It uses
the NNPDF3.0NNLO PDF set and the dedicated set of tuned parameters developed
by the Sherpa authors. The samples are normalised to the NNLO cross sections.

In all Monte Carlo samples the top quark mass is set to 172.5 GeV and they
are processed with Geant4 in order to take into account the geometry and the
response of the ATLAS detector. Except for the samples generated with Sherpa,
the EvtGen v.1.2.0 program is used for the decay of bottom and charm hadrons.

All the samples are divided in campaigns in order to reflect the di↵erent data
conditions, triggers and pile-up between the years that compose the Run II: mc16a
corresponds to the period 2015 + 2016, for an integrated luminosity of 36.2 fb�1,
mc16d is the 2017 period, for an integrated luminosity of 44.3 fb�1, and mc16e
corresponds to the 2018 period, for an integrated luminosity of 58.5 fb�1.

4.3 Signal modelling

Besides the nominal MadGraph5 aMC@NLO + Pythia sample, two other sam-
ples have been simulated for the tt̄tt̄ process at NLO [70]. The settings are sum-
marised in Table 4.1.

As already described, the MadGraph5 aMC@NLO samples are generated at
NLO in QCD with a renormalisation and factorisation scales defined as HT/42. In
the nominal sample, this generator is interfaced to the Pythia 8 parton shower using
the A14 set of tuned parameters. The decays of bottom and charm hadrons are simu-
lated using EvtGen v1.6.0. The theoretical uncertainties due the QCD scale choice
are estimated varying the renormalisation and factorisation scale independently by
a factor of 0.5 and 2.0 with respect to the central value (HT/4). An alternative
NLO sample is also generated by showering the same events with Herwig 7 instead
of Pythia 8. Comparing these two samples provides an uncertainty related to the
showering model and NLO matching (pT -ordered versus angular-ordered) and the
hadronisation model (Lund string versus clustering). A third alternative sample is
generated at NLO accuracy in QCD with the Sherpa 2.2.8 generator using Comix
and OpenLoops. No additional partons are considered in the ME calculations. The
renormalisation and factorisation scales are set to HT/4. The PDF set used for the

2
HT is the scalar sum of the jet transverse momenta.
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Figure 4.2: Distributions of the jet and b-jet multiplicities, the scalar sum of
jets and b-jets pT (HT ) from MadGraph5 aMC@NLO + Pythia, Sherpa and
MadGraph5 aMC@NLO + Herwig tt̄tt̄ generation at NLO. All distributions
are normalised to one. The lower ratio is calculated with respect to the Mad-
Graph5 aMC@NLO + Pythia NLO distribution. The uncertainties shown re-
flect the finite sample statistics (solid lines) and the e↵ect of the di↵erent choices of
factorisation and renormalisation scales (shaded bands) [70].
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matrix element calculation is NNPDF3.0NNLO with a dedicated PS tuning devel-
oped by the Sherpa authors.

Figure 4.2 shows the comparison between the three signal samples, involving dif-
ferent generator choices, including the impact of varying the factorisation and renor-
malisation scales for MadGraph5 aMC@NLO + Pythia and Sherpa samples.
For all the samples the event selection cuts are applied to the objects as well as the
overlap removal procedure already described in Section 3.2.

The two MadGraph5 aMC@NLO samples predict similar jet and b-jet mul-
tiplicity shapes, while the Sherpa sample has a higher jet multiplicity on aver-
age. The jet momenta are relatively di↵erent among all generators. The Mad-
Graph5 aMC@NLO sample interfaced with Herwig 7 predicts softer jets com-
pared to Pythia 8, while Sherpa predicts harder jets compared to the Mad-
Graph5 aMC@NLO samples. For the MadGraph5 aMC@NLO + Pythia
sample, the shape uncertainty due to di↵erent choices of factorisation and renor-
malisation variations is relatively low in the jet pT distributions, but starts to be
relatively large in the jet multiplicity distributions. Instead, for the Sherpa sample,
while the shape uncertainty associated to the scale variations is low for the jet mul-
tiplicities, it becomes larger for the jet pT distributions, in particular for the Hjets

T

distribution (order of 20%). The tt̄tt̄ cross section is currently known at complete-
NLO (QCD and EW) accuracy using the MadGraph5 aMC@NLO framework
and is calculated as 11.97+18%

�21% fb, where the uncertainties are estimated by varying
the renormalisation and factorisation scales [19].

4.4 Background modelling: the TRFtt̄ method

A purely Monte Carlo simulation-based method is not expected to model well the
tt̄+jets background in high jet and b-jet multiplicities regions, which are the sig-
nal regions for this thesis, where the exact perturbative order calculations needed
to describe the relevant hard scattering features are still missing. Therefore, a
data-driven, MC-assisted, approach is adopted to improve the prediction for this
background. This estimate derives essentially from the method already used in the
ATLAS collaboration for the tt̄H ! bb̄ analysis [71], and is referred to as Tag Rate
Function (TRF) for multi-jet background. The method was used to estimate the
background from multi-jet events for an all-hadronic selection with a large number
of jets and three or four b-jets. Later, it was adopted and used for the estimate of the
tt̄+jets background in the previous ATLAS tt̄tt̄ 1LOS measurement [20], renamed
as tt̄ Tag Rate Function (TRFtt̄). The TRFtt̄ method measures the probability that
a jet is b-tagged, with the simplifying assumption that the probability of tagging an
additional jet is independent of the number of total jets. This assumption allows the
b-tagging probabilities to be measured in lower jets multiplicity regions, where sig-
nal contamination is expected to be low, and then applied in higher jets multiplicity
regions. Depending on the jet and b-tagged jet multiplicities the data are sepa-
rated into e�ciency extraction, source, control and signal regions (see Figure 4.3).
Extracted e�ciencies are applied to source regions to get yields in the higher b-jet
multiplicity regions with same jet multiplicity. This is done by reweighting events in
source regions by a factor, computed following TRF mathematics, which takes into
account, given the measured e�ciencies, of the probability for the event to populate
higher b-tagged jet multiplicities.
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Figure 4.3: Schematic view of the regions definition.

The e�ciencies are calculated as a function of jet variables, and propagated to the
other variables straightforwardly. The TRFtt̄ prediction is calculated also for the tt̄
Monte Carlo simulation, and the e�ciencies are applied to the MC simulated events
in source regions, deriving a pure MC correction factor: MCcorr = tt̄MC/tt̄

TRFtt̄
MC

.
This ratio multiplies the TRFtt̄ prediction on data in the same region for the same
predicted variable, acting as an e↵ective reweighting correction. An illustrative
example of the result of this procedure is displayed in Figure 4.4.

The e�ciency extraction regions correspond to those with exactly five jets. The
two jets with the highest b-tagging score are excluded in order to reduce the impact
from the two b-jets from the tt̄ decay. The e�ciencies for the � 4 b-jets regions
are evaluated excluding also the third highest b-tagged jet. The e�ciencies are
parametrised in terms of jet pT and �Rmin

jj
⇥Nj

3, looping over all the jets in data
events, after the subtraction of the minor backgrounds contributions, estimated via
the MC simulations. The b-tagging working point used for the estimation is MV2c10
77%. The e�ciencies are calculated separately for the three campaigns.

E�ciencies for di↵erent working points applied to di↵erent jets are also extracted,
used for the estimation of the pseudo-continuous b-tagging. For example, the nota-
tion 77% + 77% + 85% + 85% for the working point indicates that 77% working
point is required to be passed for the leading two b-tagged jets (mostly coming from
the tt̄ decay), while 85% is required from the third b-jet in the event on. The e�-
ciencies are used to promote events in data from source regions (those with exactly
two b-jets) to higher b-jet multiplicity regions at the same jet multiplicity: the final
TRFtt̄ weight estimates the probability of the event in 2b regions to be promoted to
the 3b (or � 4b) regions by tagging one (or two) of the non-tagged jets. The TRFtt̄

prediction in the � 4b regions sits on the TRFtt̄ prediction in the 3b regions.

3The variable �R
min
jj is the minimal distance in the ⌘ � � plane for the given jet with respect

to all the other jets in the event, weighted by the jet multiplicity.
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Figure 4.4: Illustrative example of the e↵ect of the TRFtt̄ method in the region
5je3be. On the left, the light-blue background is the simple MC prediction for
tt̄+jets. On the right, the same background is estimated using the TRFtt̄ method,
resulting in a much better agreement with the data.

For every jet in the event, the probability of that jet to be b-tagged by di↵erent
working points is calculated and a score is assigned based on these calculated prob-
abilities. Given the new reassigned scores, the multiplicity of b-jet for any working
point is recomputed. Therefore, the working point used for the TRFtt̄ estimation is
independent from the one used for b-jet definition and region classification, allowing
the prediction of any pseudo-continuous working point related variables.

The fully data-driven part of the method needs two assumptions: non-dependence
of the e�ciencies on jet multiplicity and absence of correlation between extra b-
tagged jets. Any departure from such assumptions is corrected by the introduction
of the MC correction factor. Using this correction factor it is also possible to exploit
all the systematic uncertainties associated to the tt̄ modelling to estimate the sys-
tematics on the TRFtt̄ prediction. The MC correction factors provide then better
closure to the method.

In Table 4.2 the yields of the di↵erent processes separated in the signal regions
are reported. For the tt̄+jets background, the complete TRFtt̄ prediction is used.
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9je3be 9je4bi 10ji3be 10ji4bi
tt̄tt̄ 23.0 ± 0.7 15.7 ± 0.8 24.7 ± 0.9 21.4 ± 1.2
tt̄ (TRFtt̄) 5211.8 ± 1489.3 1434.3 ± 617.7 2503.9 ± 774.9 867.2 ± 459.2
Single top 303.5 ± 97.9 67.4 ± 23.6 106.1 ± 35.3 27.7 ± 10.5
tt̄+X 137.6 ± 46.8 65.3 ± 22.4 66.0 ± 22.5 32.4 ± 11.1
V/VV+jets 143.7 ± 117.6 23.7 ± 19.5 73.3 ± 63.4 13.6 ± 12.0
Total 5819.6 ± 1497.9 1606.4 ± 618.9 2774.0 ± 778.0 962.3 ± 459.6
Data 5982 1426 2844 852

Table 4.2: Yields of the di↵erent processes in the four signal regions with the related
uncertainties.

4.5 Uncertainties

Several sources of systematic uncertainty a↵ect the measurement of the tt̄tt̄ cross
section. Such uncertainties can be split in experimental and theoretical, and among
the latter a special treatment is reserved to those related to the tt̄+jets background
prediction.

4.5.1 Experimental uncertainties

The uncertainty related to the luminosity of the full Run II is 1.7%. It is estimated
using the LUCID-2 detector [35], following the same procedure already used for
the Run I (2010-2012) [72]. The luminosity uncertainty (labelled as Luminosity)
is applied to all the samples generated by the MC simulators. Moreover, to take
into account the di↵erence in pile-up distributions between data and MC simula-
tions, a Pile-up uncertainty is applied to the MC samples. For leptons, some scale
factors are applied in order to correct the mismatch between data and MC on re-
construction, identification, isolation and trigger performances. Such scale factors
are estimated with the tag-and-probe method. More in details, the systematic un-
certainties associated to electrons are EL SF Trigger, EL SF Isol, EL SF Reco and
EL SF ID, in addition to those related to the energy scale (EG SCALE) and energy reso-
lution (EG RESOLUTION). For muons, the uncertainties are split in statistical and sys-
tematic components: MU SF Trigger STAT, MU SF Trigger SYST, MU SF Isol STAT,
MU SF Isol SYST, MU SF ID STAT, MU SF ID SYST, MU SF TTVA STAT and MU SF TTVA

SYST, with the last two referred to track-to-vertex association (TTVA). Another
group of uncertainties for muons is made of uncertainties related to inner detector
track smearing (MUON ID), muon spectrometer track smearing (MUON MS), charge-
independent scale momentum (MUON SCALE), and charge-dependent scale momentum
(MU SAGITTA RESBIAS). For jets, the JVT tool [73] is used to obtain the systematic
uncertainty associated to the jet vertex tagging, varying up and down the JVT
cut. This JVT uncertainty takes into account also the contamination from pile-up
jets after pile-up suppression. For the uncertainties on the jet energy scale (JES),
data from tests, simulations and collisions have been used [74]. This results in
a set of 23 uncertainties, which are grouped as follows: 13 e↵ective uncertainties
labelled as JET EffectiveNP (two detector-related, four modelling-related, three
mixing both aspects, four statistical-related), two uncertainties related to ⌘ inter-
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calibration labelled as JET EtaIntercalibration (one modelling-related and one
statistical-related), three uncertainties related to the flavour of the jet labelled as
JET Flavor and JET BJES, four uncertainties related to pile-up subtraction labelled
as JET Pileup, and one uncertainty for non-closure for fast simulation labelled as
JET RelativeNonClosure AFII. The jet energy resolution (JER) has been measured
separately for data and MC using in situ techniques. The expected fractional jet pT
resolution is obtained using the JER tool as a function of the pT and rapidity of the
given jet. A systematic uncertainty is defined as the quadratic di↵erence between the
jet energy resolutions for data and MC simulation. A total of five independent uncer-
tainties are used: four e↵ective uncertainties labelled as JET JER EffectiveNP and
one uncertainty labelled as JET JER DataVsMC AFII accounting for the di↵erence be-
tween data and simulation. For heavy flavour jets tagging, a total of 85 independent
systematic variations are used. Each of them is obtained after the diagonalisation of
the error matrix across every pairs of kinematic bins, which are used to derive heavy
flavour e�ciencies corrections. The obtained eigenvectors correspond to indepen-
dent variations and include by construction the proper correlations across di↵erent
kinematic regions. The b-jets identification e�ciency is described by 45 parameters
labelled as FTAG MV2c10 B[0-44], while the light-jets and c-jets tagging e�cien-
cies are described by 20 parameters each, labelled as FTAG MV2c10 Light/C[0-19].
Three independent systematic uncertainties are associated to the missing transverse
energy. They are estimated using the ability of the simulation to model this ob-
servable in events without real Emiss

T
, like Z ! e+e�. In that case, the presence

of Emiss

T
is due to resolution e↵ects. This non-compensation is measured in data

and compared to the simulations. The vectorial soft component is decomposed
into a parallel and perpendicular component relatively to the object-based Emiss

T
.

The first uncertainty, labelled as MET SoftTrk Scale, is related to the scale of the
parallel component, while the other two (labelled as MET SoftTrk ResoPara and
MET SoftTrk ResoPerp) are related to the resolution of parallel and perpendicular
components.

4.5.2 Non-tt̄ backgrounds uncertainties

An uncertainty of 5% is applied to the cross section of single top production, which
includes the t-channel, tW -channel and s-channel modes. For the tt̄ production in
association with a W , Z or H boson (denoted generally with tt̄+X) an uncertainty
of 15% on the cross sections of these processes is applied. A conservative uncertainty
is associated to the cross sections of V+jets and minor processes: it includes a 5%
from the normalisation of the cross section and an additional 24% normalisation
uncertainty added in quadrature for each inclusive jet multiplicity bin. In total it
amounts to ⇠70%. Moreover, to all the non-tt̄ background processes, an additional
flat uncertainty of 30% is applied in order to cover the uncertainty on the choice of
the generators.

4.5.3 tt̄ background uncertainties

The uncertainties on tt̄+jets process are evaluated comparing the nominal Powheg
+ Pythia simulation with three other MC simulations, covering the impact of the
di↵erent modellings of the matrix elements, parton shower, hadronisation and radi-
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ation. Each of the systematic uncertainties is chosen to be split by separating the
e↵ect on the di↵erent tt̄+jets flavour contributions, namely tt̄+� 1b (if at least one
jet is associated to a b-hadron not originated by the top quark decay), tt̄+� 1c (if at
least one jet is associated to a c-hadron not coming from the W decay) and tt̄+light
(in all the other cases). On each of these contributions the fully TRFtt̄ method is ap-
plied, deriving the corresponding e�ciencies and applying the proper MC correction
factors. The uncertainty related to the choice of the matrix element generator is es-
timated by comparing the predictions of Powheg and MadGraph5 aMC@NLO,
and showering them with the same Pythia version. This procedure leads to three
independent uncertainties (one for each flavour sub-process). For the uncertainty
related to the parton shower and hadronisation modelling, the sample produced
with Powheg is matched with two di↵erent PS generators: Pythia and Herwig.
This adds three other independent uncertainties. Finally, three uncertainties come
from the comparison of two samples generated with the same Powheg + Pythia,
but with di↵erent values for hdamp (1.5 ·mtop and 3.0 ·mtop), providing uncertainties
on the radiation modelling. In addition, a flat uncertainty of 50% is applied to the
normalisation of the tt̄+� 1b and tt̄+� 1c contributions separately to correct any
mismodelling related to tt̄ production in association with extra heavy flavour jets.
This leads to two uncertainties.
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Chapter 5

Multivariate Analysis

In the previous round of the tt̄tt̄ search [20], the main variable used for the discrim-
ination between the tt̄tt̄ signal and the background was the scalar sum of the jet
transverse momenta (HT ), since the signal events are characterised by higher values
of HT with respect to background (see Figure 5.1 for an example).

In this thesis, in order to improve the discrimination between the SM tt̄tt̄ signal
and the main tt̄+jets background, a multivariate analysis (MVA) is performed. In
particular, a boosted decision tree (BDT) is trained using the TMVA framework [44]
combining jets, b-tagging, leptons, missing energy and HT information. The BDT
is evaluated on all the samples described in the previous chapter and the output of
this procedure (the BDT score) is used in the fit step of the analysis. Moreover, a
Neural Network (NN) is trained with TMVA in order to have a comparison between
two di↵erent methods.

5.1 MVA introduction

Every physics event is characterised by a multitude of quantities, like four-vectors of
particles or energy deposits, which are commonly called input variables [75]. These
variables are in general correlated and none of them is enough sensitive to provide
alone a good separation between events that belong to the signal process and events
that, instead, are background. For this reason it is necessary to treat the input
variables in a fully multivariate way. The input variables describing an event can
be seen as a vector of dimension d: ~x = (x1, ..., xd). The goal of the multivariate
treatment is to construct a function y = f(~x) with properties that are useful for
identifying patterns from the events. In practice, the target is to obtain an approx-
imation of such function, f(~x, ~w), where ~w is a set of parameters. The two main
types of problems that are faced up with this approach are: the classification and
the regression. In former type the target is to estimate a discrete value from the
input variables, while in the latter one the goal is to estimate a continuous value.

The availability of vast amounts of data and the scientific progresses allowed the
development of automated computer algorithms for learning from data, the so-called
machine learning. It has origins in the pursuit of artificial intelligence, particularly
in Frank Rosenblatt’s creation of the perceptron around 1960 [76]. The primary
goal of learning is to predict correctly the future data, and the main advantage
of machine learning with respect to the conventional statistical approach is that
an approximating function is inferred automatically from the given data without
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Figure 5.1: Examples of the HT distributions in the first round of the analysis,
after preselection, for the total predicted background with the tt̄+jets background
estimated via MC simulation (shaded histogram) and signals for the 1L (5ji2bi
region) and the 2LOS (4ji2bi region) channels. The signals shown correspond to tt̄tt̄
production with SM kinematics (solid) and tt̄tt̄ production involving a four-fermion
contact interaction (dashed). The distributions are normalised to unit area [20].

requiring a priori information about the function. In machine learning, the best
approach to obtain f(~x, ~w) is the so-called supervised learning, in which the training
data set is formed by inputs and the corresponding outputs {~x, y}. This is because
the real outputs y contain the information about the input-output relationship that
the algorithm needs to learn. So, this training operation is necessary in order to
find the best ~w parameters that model the input-output relationship. Since f(~x, ~w)
is only an approximation of y, the information loss has to be minimised during the
training process. The information loss is quantified with a loss function L(y, f). The
machine learning algorithm minimises the average loss over the full training data set
(the so-called risk) and not the loss event by event. The risk function R(~w) measures
the cost of mistakes made in the predictions and finds the best ~w parameters. The
empirical risk (an approximation of the true risk) is defined as the average loss over
all (N) predictions:

R(~w) =
1

N

NX

i=1

L (yi, f(~xi, ~w)) . (5.1)

It is very common to use the mean squared error as risk function:

R(~w) = E(~w) =
1

N

NX

i=1

[yi � f(~xi, ~w)]
2. (5.2)

The optimisation can also take into account any constraint Q(~w), simply adding it
to the risk function to give the cost function:

C(~w) = R(~w) + �Q(~w), (5.3)

where � is a parameter that determines the strength of the constraint imposed.
The function f(~x, ~w) obtained with this method converges to the function f(~x)
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that minimises the true risk. In practice, it is not always possible to find the ab-
solute minimum, but only a local one. The constraint Q(~w) is used to have the
control of the model complexity (overfitting) and is known as regularisation. The
performance of the training is evaluated using a test data set, independent from
the training set. Two other important approaches to learning are unsupervised and
reinforcement learning. In the former approach, no targets are provided and the
algorithm finds associations among the inputs. In the latter, correct outputs are
rewarded and incorrect ones are penalised.

5.2 MVA methods

In the following, two MVA methods are going to be discussed in detail.

5.2.1 Neural networks

One of the most powerful and used MVAmethods is the feed-forward neural network,
also known as multilayer perceptron or artificial neural network. This method is
vaguely inspired on the biological neural networks (see Figure 5.2, on the left). It
consists of a collection of interconnected neurons arranged in layers (see Figure 5.2,
on the right). Each neuron processes the input signal with an activation function,
passing the result to the following layer. The first layer is the input layer and receives
the input variables. It is followed by one or more hidden layers. The last layer
outputs the final response of the network. Each interconnection is characterised
by a weight, and each neuron may have a bias or a threshold. The weights and
thresholds values are learned during the training phase. In general, the activation
function is non-linear. Considering, for example, the neural network represented in
Figure 5.2, the output is:

O(~x) = f(~x, ~w) = g

 
✓ +

X

j

wjhj

!
, (5.4)

where g is the activation function and hj are the outputs from the hidden layer:

hj = g

 
✓j +

X

i

wijxi

!
. (5.5)

There are multiple choices for the activation function, but the most used is the
sigmoid:

g(x) =
1

1 + e�x
. (5.6)

This function is linear around x = 0, non-linear for higher values of x, and saturates
for large values, mapping the input interval (�1,+1) onto [0, 1]. Therefore, the
linear model is a special case of this particular non-linear model. In general, the ac-
tivation function of the output layer can be di↵erent from those of the hidden layers.
The network weights and thresholds are determined by minimising the empirical risk
function, commonly the mean square error.

The choice of the neurons in the hidden layers depends on the density of data:
too few neurons lead to underfitting, and too many lead to overfitting. To avoid the
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Figure 5.2: On the left, the anatomy of a real neuron. On the right, a schematic
representation of a three-layer feed-forward neural network [75].

overtraining, there are many possibilities, like starting with large networks and then
pruning connections or adding a penalty term to the risk function to control the
complexity of the network. The most common algorithm for adjusting the weights
that optimise the classification performance of a neural network is the so-called
back propagation, where the desired output for every input event is known (so it is
a supervised learning method). Back propagation is used by all neural networks in
TMVA. Considering for simplicity a neural network with a single hidden layer with
an activation function g(x), and a linear activation function for the output layer,
the output is:

O =
nhX

j=1

y(2)
j
w(2)

j1 =
nhX

j=1

g

 
niX

i=1

xiw
(1)
ij

!
· w(2)

j1 , (5.7)

where ni and nh are the number of input and hidden neurons, w(1)
ij

is the weight

between input-layer neuron i and hidden-layer neuron j, and w(2)
j1 is the weight

between the hidden-layer neuron j and the output neuron. For each of the N
training events, the neural network output O is computed and compared to the
desired output y 2 [0, 1] (in classification 1 for signal events and 0 for background
events). The error function E is defined by:

E(~x1, ..., ~xN |~w) =
NX

a=1

Ea(~xa|~w) =
NX

a=1

1

2
(Oa � ya)

2, (5.8)

where ~w is the vector of weights. The minimisation of the error function is done
with the gradient descent method: starting from an initial set of weights ~w(⇢), the
weights are updated by moving a small distance in ~w-space into the direction �~r~wE
where E decreases most rapidly,

~w(⇢+1) = ~w(⇢) � ⌘~r~wE, (5.9)

where ⌘ is a positive parameter called learning rate. Since the target value is not
known for the hidden nodes, the error has to be propagated from the output node
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backwards to the hidden layer in order to perform the learning of the input-to-hidden
weights, and the chain rule for di↵erentiation is applied for the gradient descent. The
weights connected with the output layer are updated by

�w(2)
j1 = �⌘

NX

a=1

@Ea

@w(2)
j1

= �⌘
NX

a=1

(Oa � ya)y
(2)
j,a
, (5.10)

and the weights connected with the hidden layers are updated by

�w(1)
ij

= �⌘
NX

a=1

@Ea

@w(1)
ij

= �⌘
NX

a=1

(Oa � ya)
@g(xi,a, w

(1)
ij
)

@w(1)
ij

· w(2)
j1 . (5.11)

5.2.2 Decision trees

Decision trees use sequential cuts to perform the classification of the events. At
each step, the best cut is searched for and used to split the data, and this process
is continued recursively on the resulting fractions until a given stop condition is
fulfilled. A schematic representation of the process with a binary structure is shown
in Figure 5.3. Decision trees start at the root node, with the full training data set
containing signal and background events. At each iteration of the algorithm, and for
each node, it finds the best cut (the cut that gives the largest reduction in impurity)
and splits the data into two branch nodes. The stop to the splitting is done when no
further reduction in impurity is possible (or when the number of events is too small
to proceed further). A common choice for evaluating the impurity is the so-called
Gini index:

G = (s+ b)P (1� P ) =
sb

s+ b
, (5.12)

where P = s/(s+ b) is the signal purity, and s and b are the signal and background
counts at any step respectively. The node that terminates the process is called leaf.

In principle, the splitting could continue until each leaf node contains only sig-
nal or only background events, which could suggest that perfect discrimination is
achievable. However, such a decision tree would be strongly overtrained. To avoid
overtraining a decision tree must be pruned. Pruning is the process of cutting back
a tree from the bottom up after it has been built to its maximum size. Its purpose
is to remove statistically insignificant nodes and thus reduce the overtraining of the
tree.

Essentially, a decision tree creates M disjoint regions or a d-dimensional his-
togram with M bins of varying size, and a response value is assigned to each bin.
As the training data set becomes arbitrarily large and as the bin sizes tend to zero,
the predictions of the decision tree approach those of f(~x). The decision tree al-
gorithm is applicable to discrimination of n classes and the concept can be extend
from one tree to several trees which form a forest.

Decision trees are very popular because they are very simple to be implemented
and understood. They have also advantages like insensitivity to irrelevant variables
and invariance to one-to-one transformation of variables. On the other side, deci-
sion trees have some limitations like instability with respect to the training sample,
suboptimal performance and poor global generalisation. Fortunately, such problems
can be mitigated with ensemble learning techniques:
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Figure 5.3: A schematic representation of a binary decision tree with two input
variables x1 and x2 [75].

• boosting. Instead of seeking one high performance classifier, it is used an
ensemble of classifiers, that collectively have a boosted performance. For an
ensemble of N classifiers the prediction of the final one can be written as

f(~x, ~w) =
NX

n=1

↵nyn(~x, ~wn), (5.13)

where ~wn are the parameters of the n-th classifier and ↵n are the weighting
coe�cients. These coe�cients depend from the particular algorithm used. The
two most popular algorithms are AdaBoost (adaptive boost) andGradientBoost.
When applied to decision tree it gives rise to the so-called boosted decision
tree. As the boosting algorithms perform best on weak classifiers, pruning is
not necessary;

• bagging. This is a simple average of the outputs of N predictors, where each is
trained on a di↵erent randomly selected subset, drawn from a training sample
of M events. In the previous equation for boosting, ↵n = 1/N is the case of
bagging;

• random forest. As already mentioned, when many decision trees are trained
they origin a forest. If each one is trained on a randomly chosen subset of
variables at each split, they provide a random forest. The output for each event
is the average output of all trees. Further randomisation can be introduced
through the use of bootstrap samples as in the case of bagging.

The gradient boosting and bagging are the ensemble learning techniques which are
used in the BDT trained in this thesis, which is presented in the following section.
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Option Value Description
NTrees 1000 Number of trees in the forest
MaxDepth 1 Max depth of the decision tree allowed

MinNodeSize 2.5%
Minimum percentage of training events
required in a leaf node

nCuts 20
Number of grid points in variable range used
in finding optimal cut in node splitting

BoostType Grad Boosting type for the trees in the forest
Shrinkage 0.1 Learning rate for GradBoost algorithm

UseBaggedBoost True
Use only a random (bagged) subsample of all
events for growing the trees in each iteration

BaggedSampleFraction 0.5
Relative size of bagged event sample to
original size of the data sample

SeparationType GiniIndex Separation criterion for node splitting

Table 5.1: Summary of the TMVA options used in the training of the BDT.

5.3 BDT with TMVA

TMVA, acronym for Toolkit for Multivariate Analysis [44], provides a ROOT-
integrated [77] environment for the processing, parallel evaluation and application
of multivariate classification and multivariate regression techniques. All multivari-
ate techniques implemented in TMVA are supervised learning. They make use of
training events, to determine the mapping function that either describes a decision
boundary (classification) or an approximation of the underlying functional behaviour
defining the target value (regression). The mapping function can contain various
degrees of approximations and may be a single global function, or a set of local
models. The methods presented in the previous section are implemented in TMVA
with a large selection of options. TMVA is specifically designed for the needs of
high energy physics applications, and so it is a natural choice for the purpose of this
thesis. The simplicity and the good performances of BDT are the keys of the choice
of this method for the multivariate analysis. In particular, the MVA method uses a
BDT with 1000 trees, the boosting type is the GradientBoost with a learning rate
(shrinkage) of 0.1. A bagging procedure is also applied (using half of the original size
of the sample for growing the trees in each iteration). The evaluation of the impurity
makes use of the Gini index. Such options are summarised also in Table 5.1.

The training is done in four di↵erent regions separately: 9je3be, 9je4bi, 10ji3be
and 10ji4bi. The signal sample is provided by the MC simulation of the SM tt̄tt̄ pro-
cess at NLO in QCD (MadGraph aMC@NLO+Pythia), while the background
is the TRFtt̄ prediction without the MC correction factor. The events with negative
weights are not ignored, but fully exploited in the training. The events provided
are split in two subsamples by odd or even event number: one is used for the real
training, while the other is exploited for testing the overtraining. Then the two
subsamples are swapped and the procedure is repeated. The BDT is evaluated in
each sample (data and backgrounds) in order to associate a BDT score to each event
and separate the SM tt̄tt̄ signal from the tt̄+jets background, carefully taking the
correct BDT according to the event number. For the training 16 variables are used
as input:
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• overall activity in the transverse plan. The tt̄tt̄ production leads to central
collision with a more important transverse activity compared to tt̄+jets. In this
case the variables considered are the scalar sum of the pT of all objects (Hall

T
),

the pT of the most energetic jet, and the centrality of the event (
P

pT/
P

E);

• b-jet information. The tt̄tt̄ production leads to more energetic b-jet with re-
spect to tt̄+jets, where additional b-jets come from radiations. The variables
taken into account are the average invariant mass across all the triplets of
b-tagged jets, the minimum invariant mass among all pairs of b-tagged jets,
the minimum �R among all pairs of b-jets, the minimum �R among all pairs
of b-jet and a lepton and the sum of the pseudo-continuous b-tagging score of
the six leading jets ranked in MV2c10 score;

• jet information. The tt̄tt̄ production leads to more energetic jets with respect
to tt̄+jets for the same reason of above, and the radiation structure can be
exploited using jet-to-jet correlations. For this reason the number of jets is
used. Also the average �R across all pairs of jets and the invariant mass of
the triplet of jets that has the minimum �R1 are exploited;

• RC-jet information. Since tt̄tt̄ leads to more transverse objects, some of the
produced top quarks could be boosted enough to be contained in RC-jets,
while tt̄+jets produces less of this boosted topology. The considered variables
related to RC-jets are the number of such jets with a mass larger than 100
GeV, and the sum of the first (and second) kt splitting scale d12 (d23) of all
RC-jets, where dij is defined as in Equation 3.1;

• Emiss

T
and lepton-related information. The W boson from top quark decay

should be more transverse in tt̄tt̄ than in tt̄+jets, so the missing transverse
energy (Emiss

T
) and the W reconstructed transverse mass mT (`, Emiss

T
) are the

chosen variables.

Figure 5.4 shows the separation of each variable in the 10ji4bi region before the
splitting in even/odd events, i.e. the power a variable has to distinguish between
signal and background, and it does not depend from the method used. Figure 5.5
shows the ranking of the input variables in the 10ji4bi region for the training done
on even events. The ranking is done by TMVA according to the separation. From
these plots it is clear that the most discriminating variables are the sum of the
pseudo-continuous b-tagging score, those related to the RC-jets and those about
transverse quantities.

Table 5.2 collects the number of signal and background events in each region
in which the MVA is performed. Such events are split in two halves, one for the
training and the other for testing. Signal and background events used for the training
are further normalised in order to have the same amount of events in each of the
two samples. The integral of the ROC curve is also reported. The ROC (Receiver
Operating Characteristic) curve is a measure of how well a signal can be measured
against a background. The integral of such curve measures in percentage how much
signal is correctly obtained: the closer to 1, the better the modelling of the BDT
output.

1The �R value of a triplet of jets is defined as �Rijk =
q
�R

2
ij +�R

2
ik +�R

2
jk where, i, j

and k represent the indices of the three jets.
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Region Signal events Background events ROC (even) ROC (odd)
9je3be 254420 229328 0.795 0.804
9je4bi 171140 229328 0.800 0.809
10ji3be 371736 109048 0.781 0.777
10ji4bi 320702 109048 0.778 0.781

Table 5.2: Summary of the number of events in each region before the splitting,
with the ROC curve integral.

Figure 5.6 shows the overtraining test of the BDT in the 10ji4bi region for the
training done on even events: a good agreement between points (trained samples)
and curves (test samples) indicates a good training with low overtraining. In the
right tail, the BDT shows some overtraining in the samples, given the di↵erent values
of the trained points with respect to the test curves.

The plots shown in this chapter corresponding to the other training regions are
collected in Appendix C.

For comparison purposes, a neural network is also trained with TMVA and the
details are discussed in Appendix D.
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Figure 5.4: Separation of the variables used for the training in the 10ji4bi region.
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Figure 5.5: Ranking of input variables in terms of separation in the 10ji4bi region
for the training done on even events according to TMVA.
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Figure 5.6: Training response for the BDT in the 10ji4bi region for the training
done on even events.
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Chapter 6

Data analysis

The aim of this thesis is the search for SM tt̄tt̄ production at LHC in the 1L channel,
using data and the MC simulations described previously, and following the selection
and classification procedure presented in Chapter 3. The main tt̄+jets background
has been estimated with the TRFtt̄ method as explained in Chapter 4 and the MVA
procedure described in Chapter 5 has been used. For the purpose of the following
analysis, two control regions and four signal regions are exploited: 8je3be and 8je4bi
are the control regions, while 9je3be, 9je4bi, 10ji3be and 10ji4bi are the signal
regions. In the control regions, given the very low number of expected signal events,
no MVA has been trained, and the discriminating variable used is HT , while in the
signal regions the output of the MVA is used. Since the signal is expected to be very
small, a “blind” analysis strategy is adopted: the optimisation and the systematic
model must be established without fitting to data in signal regions, and fits to data
in background dominated regions have to be performed in order to validate the fit
model. The final result is obtained performing a fit only in the four signal regions
just defined.

6.1 Profile likelihood fit

The statistical analysis is based on a binned likelihood, as described in the follow-
ing [78]. For the sake of clarity, let us consider a fit done in only one region with a
signal and a single background: the number of signal events is S, while the number
of background events is B. The signal and background “shapes” are denoted as
fS(x) and fB(x), being x the discriminating variable. These are probability density
functions normalized so that

R
f(x)dx = 1. The parameter of interest is the signal-

strength µ, which is the ratio between the observed signal and the SM expectation:
µ = 0 corresponds to the background-only hypothesis, while µ = 1 corresponds to
the nominal signal-plus-background hypothesis. For a given data set {x1, ..., xn},
the probability of obtaining n events when µS +B are expected is modelled by the
Poisson distribution: P�(x) = �

n

n! e
��, with � = µS + B. Indeed, the probability

density depends also on fS(x) and fB(x). So then, the probability of µ given the
data set (the likelihood function) is:

L(µ) = P({x1, ..., xn}|µ) = Pois(n|µS +B)

"
nY

i=1

µSfS(xi) + BfB(xi)

µS +B

#
. (6.1)
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The maximum of L(µ) provides an estimator for µ. The formula can be simplified
taking the negative logarithm:

� lnL(µ) = (µS +B) + lnn!�
nX

i=1

ln [µSfS(xi) + BfB(xi)] . (6.2)

In this analysis the distributions are binned in histograms. For the j-th bin of width

�j, fS(xj) and fB(xj) are replaced by
⌫
S
j

S�j
and

⌫
B
j

B�j
, where ⌫S

j
and ⌫B

j
are the bin

content for the signal and the background, respectively. In this case, the likelihood
in terms of the individual bins is:

P(nb|µ) = Pois(ntot|µS+B)

"
Y

j

µ⌫S
j
+ ⌫B

j

µS +B

#
= Ncomb

Y

j

Pois(nb|µ⌫Sj +⌫Bj ), (6.3)

where Ncomb is a combinatorial factor taking into account the permutations in a
binned sample and can be neglected since it is constant.

The analysis makes use of multiple regions (r) and samples (s). The uncertainties
are included in the fit as nuisance parameters (NPs), and they can be constrained
or unconstrained (�rs). The statistical uncertainties are constrained NPs (�jrs) and
change the shape of the distribution (bin-by-bin). The systematic uncertainties are
constrained NPs (✓) and can produce normalisation (⌘rs(✓)) and shape (�jrs(✓))
variations of the samples. The luminosity uncertainty is considered as a parameter
aside (�), which a↵ects equally all the samples. The expected number of events in
a given bin in a region is then:

⌫jr(�, ✓, �) =
X

s

��jrs�rs(✓)⌘rs(✓)�jrs(✓), (6.4)

and the likelihood function becomes:

P(n,a|�,✓,�) =
Y

r

Y

j

Pois(njr|⌫jr)Gauss(L0|�,��)
Y

p2✓

fp(ap|✓p), (6.5)

where n is the total number of events, njr is the number of events in a bin in a region,
a are the values for ✓, L0 is the nominal luminosity, and fp(ap|✓p) is a constraint
term describing an auxiliary measurement ap that constrains the nuisance parameter
✓p and is usually assumed to be a normal Gaussian. The e↵ect of the variation
of the single NP on shape and normalisation of the distributions are given from
independent measurements for variations of ±1 standard deviation from zero. The
e↵ect on the distributions for intermediate values is obtained by linear interpolation.
The likelihood is maximised to estimate the values of NPs and µ from data.

The statistical analysis is then based on a binned likelihood function L(µ,✓)
constructed as a product of Poisson probability terms over all bins considered in the
search, those in the four signal regions. The signal-strength parameter µ is the tt̄tt̄
cross section normalised to the SM prediction. The nuisance parameters are imple-
mented in the likelihood function as Gaussian constraints and allow variations of the
expectations for signal and background according to the corresponding systematic
uncertainties, and their fitted values correspond to the deviations from the nominal
expectations that globally provide the best fit to the data. This procedure allows a
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reduction of the impact of systematic uncertainties on the search sensitivity. Individ-
ual sources of systematic uncertainty are considered to be uncorrelated. Correlations
of a given systematic uncertainty are maintained across processes. The statistical
uncertainty of the prediction, which incorporates the statistical uncertainty of the
MC events, is included in the likelihood as a single bin-by-bin � parameter. For op-
timisation reasons, nuisance parameters corresponding to systematic uncertainties
with an e↵ect smaller than 0.5% on a given sample are removed for that sample
(this procedure is referred to as “pruning”). A smoothing algorithm is applied to
the systematic variations. This is done in order to avoid bin-by-bin fluctuations re-
sulting from statistical fluctuations. Therefore, the algorithm iteratively rebins the
e↵ect of the systematic variation, as long as the number of counted slope changes
becomes less than a certain number (four for this analysis).

6.2 Studies on control regions

In order to validate the data-driven tt̄+jets background estimation, the agreement
between data and total background prediction is assessed in the di↵erent control
regions before any fit to data. Figure 6.1 shows the e↵ect of background modelling
with the TRFtt̄ method. As already discussed previously, the pure MC simulation is
not able to model well the main tt̄+jets background at high jet and b-jet multiplicity.
In fact, the disagreement between the data and the simulation is particularly evident:
in the low HT region the simulation underestimates data, while in the high HT

region it is the opposite. The TRFtt̄ method (with the MC correction factor) allows
to cope a big part of the mismodelling: in the 8je3be region it can recover an
excellent agreement, within the statistical uncertainty, while in the 8je4bi region
some tension is left. Such remaining disagreement is indeed covered implementing
the systematic uncertainties defined in Section 4.5. The result of this operation is
shown in Figure 6.2: in the 8je3be region the total uncertainty is around 25% along
all the HT spectrum, while it varies between 25% and 35% in the 8je4bi region. The
biggest contributions to the uncertainty come from the choice of the generators for
the tt̄+jets process: in particular, each flavour sub-process in parton shower and
radiation modelling introduces an uncertainty of ⇠10%. The bigger impact of the
PS with respect to the ME is due to the fact that the matrix element calculation for
the tt̄ process produces only four jets (five at NLO). Thence, all the other jets are
produced by the parton shower generator, which models their rates only at leading
logarithmic accuracy. Figure 6.3 displays the comparison of the expected yields
before the fit.
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Figure 6.1: Comparison of theHT distribution between the prediction from pure MC
simulated tt̄+jet events (upper plots) and from TRFtt̄ method (lower plots) applied
in the control regions. The hashed area represents the statistical uncertainty on the
background prediction. The last bin in all figures contains the overflow. The lower
panels show the bin-by-bin ratios of data with respect to the predictions.
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Figure 6.2: Comparison between data and prediction of the HT distributions in
the control regions prior to the fit to data. The tt̄+jet background is estimated
through the data-driven method, with the MC-correction applied. The hashed area
represents the combination of the statistical and systematic uncertainties on the
background prediction. The last bin in all figures contains the overflow.

Figure 6.3: Comparison of prediction to data in control regions prior to the fit to
data. The tt̄+jet background is estimated through the data-driven method. The
hashed area represents the combination of the statistical and systematic uncertain-
ties on the background prediction. The bottom panel displays the ratio of data to
the total prediction.
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6.2.1 Fit on control regions

Before looking the signal regions, the binned profile likelihood fit used for the search
of four top quark production signal is performed in the control regions in order
to inspect the expected constraints on the nuisance parameters in the fit to data.
The fit is performed to the HT distribution simultaneously in the control regions
with the signal-plus-background hypothesis and the results are shown in Figures 6.4
and 6.5. Figure 6.6 displays the constraints on the non-pruned nuisance parameters
from this fit. No strong constraints are observed: the most constrained NP is
the tt̄+ � 1b shape uncertainty on the choice of the matrix element generator,
which is constrained to 80%. Various pulls are observed on the nuisance parameters
associated to the theoretical uncertainties on the tt̄+jets background estimation.
The nuisance parameter related to the choice of the parton shower generator on
tt̄+ � 1b is pulled by a factor of (58 ± 87)%. The nuisance parameter related to the
choice of the matrix element generator on tt̄+light is pulled by a factor (-59 ± 84)%.
The nuisance parameters related to the uncertainty on the tt̄+ � 1b and tt̄+ � 1c
cross section are pulled by (-18 ± 97)% and (45 ± 93)%, respectively. A part for the
nuisance parameter related to the jet flavour composition, which is pulled by (28 ±
97)%, no other significant pull is observed on the nuisance parameters associated
to detector and jet-tagging uncertainties. The nuisance parameters are also ranked
according to their impact on the fitted value of the signal strength, when fixed to
their pre- and post-fit errors. The resulting ranking plot, showing at the same time
the impact on µ and the constraints of the 20 nuisance parameters with the highest
impact on the fitted value of µ, is reported in Figure 6.7, confirming the importance
of the uncertainties coming from the tt̄+jet modelling. The fitted signal strength
results to be µ = 4.68+19.30

�22.11, compatible with µ = 0 (background-only hypothesis),
as expected.
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Figure 6.4: Comparison between data and prediction of the HT distributions in the
control regions after the fit to data. The tt̄+jet background is estimated through the
data-driven method, with the MC-correction applied. The hashed area represents
the combination of the statistical and systematic uncertainties on the background
prediction. The last bin in all figures contains the overflow.

Figure 6.5: Comparison of prediction to data in control regions after the fit to data.
The tt̄+jet background is estimated through the data-driven method. The hashed
area represents the combination of the statistical and systematic uncertainties on
the background prediction. The bottom panel displays the ratio of data to the total
prediction.
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Figure 6.6: Fitted nuisance parameters under the signal-plus-background hypothesis
in the control regions only.
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Figure 6.7: Ranking plot from the fit to data in control regions under the signal-
plus-background hypothesis. The � parameters refer to statistical uncertainty on
the background model and are assumed to be Poisson-distributed NPs.
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6.2.2 BDT shape in control regions

In the control regions no BDT can be trained due to the low presence of signal.
However, the MVA trained in the signal regions can be evaluated in the control
regions to check the agreement between data and prediction in “signal-free” regions,
i.e. without spoiling the blind analysis. Figure 6.8 shows the distribution of the
MVA output in the control regions, before any fit. It is important to remark that
such regions are not included in the final fit to data, which will be presented in
the following sections. In particular, the BDT exploited for these plots is trained
on even events in 10ji3be and 10ji4bi regions. As expected, the BDT classifies the
events mostly as background (score < 0), with a rapidly decreasing slope. The
agreement between data and prediction reflects what was already evident from the
HT distributions presented in Figure 6.2: in the 8je3be region there is an excellent
agreement, while in the 8je4bi region there is some tension (order of 15%), which is
in any case covered by the uncertainty band.

Figure 6.8: Comparison between data and prediction of the BDT distributions in
the control regions prior to the fit to data. The tt̄+jet background is estimated
through the data-driven method, with the MC-correction applied. The hashed area
represents the combination of the statistical and systematic uncertainties on the
background prediction.
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6.3 Studies on Asimov data set

In order to inspect the expected constraints on the nuisance parameters in the fit
to data, before having the signal regions unblinded, a fit under the signal-plus-
background hypothesis is performed on the Asimov data set, i.e. a pseudo-data set
in which the observed values are set to the expected ones1. Only the signal regions
are included in the fit: 9je3be, 9je4bi, 10ji3be and 10ji4bi. Figures 6.9 and 6.10
show the distribution of the MVA output in the signal regions, before and after the
fit, respectively. Before the fit, the total uncertainty varies from ⇠25% to ⇠45%. As
for the control regions, the biggest contributions to the uncertainty come from the
choice of the generators for the tt̄+jet background: depending from the region con-
sidered, some flavour sub-processes can introduce an uncertainty even greater than
20% (the biggest impact belongs to the tt̄+light sub-process in the parton shower
choice, which contributes with the 25.8% in the 10ji4bi region). The constraints
on the nuisance parameters from the fit are shown in Figure 6.11. There is no
strong constraint coming from the nuisance parameters associated to detector and
jet-tagging uncertainties. Instead, some constraints are observed on the nuisance
parameters associated to the theoretical uncertainties on the tt̄+jet background es-
timation: the tt̄+ � 1b shape and normalisation uncertainties on the choice of the
parton shower generator are constrained to 64% and 58%, the tt̄+light shape un-
certainty on the choice of the parton shower generator is constrained to 51%, and
also the tt̄+light shape uncertainty on the choice of the ME generator is constrained
to 65%. Several other nuisance parameters related to these uncertainties are con-
strained to the range from 77% to 91%. The nuisance parameters are also ranked
according to their impact on the fitted value of the signal strength, when fixed to
their pre- and post-fit errors. The resulting ranking plot, showing at the same time
the impact on µ and the constraints of the 20 nuisance parameters with the highest
impact on the fitted value of µ, is reported in Figure 6.12: as already evidenced,
the most important systematic uncertainties are coming from the choice of the PS
generator for the tt̄+jet background estimation. The fitted signal strength results
to be µ = 1.00+1.92

�1.93. This result provides information about the uncertainty on the
µ value from the fit to data, which is then expected to be ⇠1.9.

Before the unblinding, the same fit has been performed in di↵erent subsets of
regions, in order to determine the sensitivity of the regions in terms of the uncer-
tainty on the fitted µ. The results are reported in Table 6.1. Two di↵erent paths are
followed. The first starts from the region with higher (expected) sensitivity, 10ji4bi,
adding the others one by one to see how much sensitivity is gained. The second,
instead, starts from the less (expected) sensitive region, 9je3be. This important step
is needed to establish which regions are safe to be unblinded before the full unblind-
ing, in order not to spoil the result of the o�cial 1LOS channel ATLAS analysis.
The criterion for this partial unblinding is based on the result of the previous round
of the analysis [20], in which the fitted µ was 1.7+1.9

�1.7. From this measurement, the
signal is smaller than µ = 3.6 at 1�. Assuming a fitted value of 3.6, it would be
still compatible with 0 (the background-only hypothesis), within 1� significance.
The regions can be unblinded, starting from the less sensitive one, as long as the
uncertainty on µ is greater than 3.6, still preserving the “blindness” of the full fit.

1From the short story “Franchise” by Isaac Asimov, where the election’s results are determined
by a single person, which results to have the average characteristics of the entire population.
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Figure 6.9: Comparison between Asimov data set and prediction of the BDT dis-
tributions in the signal regions prior to the fit to data. The tt̄+jet background is
estimated through the data-driven method, with the MC-correction applied. The
hashed area represents the combination of the statistical and systematic uncertain-
ties on the background prediction.
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Figure 6.10: Comparison between Asimov data set and prediction of the BDT distri-
butions in the signal regions after the fit to data. The tt̄+jet background is estimated
through the data-driven method, with the MC-correction applied. The hashed area
represents the combination of the statistical and systematic uncertainties on the
background prediction.
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Figure 6.11: Fitted nuisance parameters on Asimov data set under the signal-plus-
background hypothesis in the signal regions only.
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Figure 6.12: Ranking plot from the fit on Asimov data set under the signal-plus-
background hypothesis. The � parameters refer to statistical uncertainty on the
background model and are assumed to be Poisson-distributed NPs.

Regions Fitted µ
10ji4bi µ = 1.00+2.48

�2.56

10ji4bi+10ji3be µ = 1.00+2.30
�2.37

10ji4bi+10ji3be+9je4bi µ = 1.00+2.00
�2.03

10ji4bi+10ji3be+9je4bi+9je3be µ = 1.00+1.92
�1.93

9je3be µ = 1.00+5.69
�5.69

9je3be+10ji3be µ = 1.00+3.98
�4.20

9je3be+9je4bi µ = 1.00+3.49
�3.51

9je3be+9je4bi+10ji3be µ = 1.00+2.99
�3.03

Table 6.1: Results of the sensitivity tests performed in the di↵erent subsets of signal
regions.
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6.3.1 Studies on RC-jets splitting

An additional test on Asimov data set is done following the previous analysis recipe
and splitting the signal regions according to the di↵erent multiplicity of the RC-jets
with pT > 200 GeV (J): 0J , 1J , and � 2J . The Asimov fit is then performed
simultaneously in the 12 signal regions. Figures 6.13 and 6.14 show the distribution
of the MVA output before and after the fit, respectively. The constraints on the
nuisance parameters from the fit are shown in Figure 6.15. As in the case of the
previous Asimov fit, without the splitting in J multiplicity, there is no strong con-
straint coming from the nuisance parameters associated to detector and jet tagging
uncertainties, while some constraints are observed on the nuisance parameters as-
sociated to the theoretical uncertainties on the tt̄+jet background estimation. The
fitted signal strength results to be µ = 1.00+1.62

�1.62. Indeed, with this setup, some
of the modelling systematics get smoothed so much that they lose completely any
shape e↵ect (see for example Figure 6.16, where the shape e↵ect is dropped by the
smoothing). Removing the smoothing procedure allows to cope this problem (see
Figure 6.17), but the uncertainty on the value of µ increases to ⇠2.0. More so-
phisticated solutions to the problem could be a rebinning or a dedicated smoothing
procedure, in order to exploit the benefit of the splitting in J multiplicity. However
these possibilities are beyond the aim of this thesis, and thence the splitting in J
multiplicity is chosen to be not used in the rest of the analysis.
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Figure 6.13: Comparison between Asimov data set and prediction of the BDT dis-
tributions in the signal regions split in multiplicity of J prior to the fit to data.
The tt̄+jet background is estimated through the data-driven method, with the MC-
correction applied. The hashed area represents the combination of the statistical
and systematic uncertainties on the background prediction.
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Figure 6.14: Comparison between Asimov data set and prediction of the BDT distri-
butions in the signal regions split in multiplicity of J after the fit to data. The tt̄+jet
background is estimated through the data-driven method, with the MC-correction
applied. The hashed area represents the combination of the statistical and system-
atic uncertainties on the background prediction.
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Figure 6.15: Fitted nuisance parameters on Asimov data set under the signal-plus-
background hypothesis in the signal regions only.
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Figure 6.16: Pre-fit uncertainties associated to tt̄ parton shower in 10ji3be region
(on the top) and 10ji3be2Ji sub-region (on the bottom). Red points refer to the
original variation, with associated statistical error. The red solid line is obtained
by smoothing the uncertainty consistently with the statistical uncertainty of the
variation. The blue solid line is obtained by symmetrising the red one. Red and
blue solid lines give the uncertainty on the prediction.
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Figure 6.17: Pre-fit uncertainties associated to tt̄ parton shower in the 10ji3be2Ji
sub-region without the smoothing. Red points refer to the original variation, with
associated statistical error. The red solid line is obtained by smoothing the uncer-
tainty consistently with the statistical uncertainty of the variation. The blue solid
line is obtained by symmetrising the red one. Red and blue solid lines give the
uncertainty on the prediction.
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6.4 Fit to data

According to the blinding strategy illustrated in the previous pages, the signal re-
gions are unblinded gradually starting from the less sensitive one, preforming a fit to
data under the signal-plus-background hypothesis. Since the di↵erent fitted signal
strengths result to be compatible with both the background-only hypothesis (µ = 0)
and signal-plus-background hypothesis within 1� significance, a full unblinded fit is
performed in the four signal regions simultaneously: 9je3be, 9je4bi, 10ji3be and
10ji4bi. A first background-only hypothesis fit is performed to check the sensitivity:
it is found to be in good agreement with the Asimov indication, being about 1.8.
Then the signal-plus-background hypothesis fit is performed: Figure 6.18 displays
the comparison of the expected yields before and after the fit. Figures 6.19 and 6.20
show the distribution of the MVA output in the signal regions, before and after the
fit, respectively. As expected, the biggest contributions to the uncertainty come
from the choice of the generators for the tt̄+jet background. The constraints and
pulls on the nuisance parameters from the fit are shown in Figure 6.21. While no
strong constraint is observed on the NPs associated to detector and jet-tagging un-
certainties, they show some pulls: the JET RelativeNonClosure AFII NP is pulled
by a factor (14 ± 98)%, and the Pile-up NP is pulled by a factor (22 ± 99)%. The
nuisance parameters associated to the theoretical uncertainties on the tt̄+jet back-
ground estimation present both constraints and pulls, as expected from the studies
done in the control regions and with the Asimov data set. The nuisance parameter
related to the uncertainty on the tt̄+ � 1c cross section is pulled by (55 ± 80)%.
The nuisance parameter related to the choice of the parton shower generator on
tt̄+light shape is pulled by a factor -36% and constrained to 51%. The nuisance
parameter related to the choice of the parton shower generator on tt̄+ � 1c normal-
isation is pulled by a factor of (-42 ± 78)%. The tt̄+ � 1b shape and normalisation
uncertainties on the choice of the parton shower generator are constrained to 67%
and 54%, respectively, and the NP associated to the tt̄+ � 1b normalisation is also
pulled of a factor 39%. The tt̄+light shape uncertainty on the choice of the ME
generator is constrained to 66%, while the corresponding normalisation uncertainty
is pulled by a factor (-41 ± 85)%. As already discussed, it is not surprising that
the PS provides the biggest pulls and constraints, given the fact that it has to add
at least four jets modelled at leading logarithmic accuracy. The ranking of the 20
NPs with the highest impact on the fitted value of µ is reported in Figure 6.22, and
it reflects the considerations made above. Figure 6.23 shows the correlation matrix
of the most important nuisance parameters. The most significant correlations are
observed between the di↵erent tt̄ modelling uncertainties. The systematic uncer-
tainties with the largest impact on signal strength are coming from the choice of
the parton shower generator and the modelling of non-tt̄ processes. In the current
fit model, signal modelling uncertainties are not considered, due to the predomi-
nance of the tt̄ systematics. A rough estimation is given in Reference [19], resulting
in about 20%, as already observed in Section 4.3. Figures form 6.24 to 6.30 show
the variation and the impact in the di↵erent signal regions of the most important
systematics. The fitted signal strength results to be:

µ = 3.47+0.72
�0.70(stat.)

+1.75
�1.81(syst.) = 3.47+1.89

�1.94, (6.6)

which implies an observed (expected) significance of the signal over the background-
only hypothesis of 1.8� (0.5�). The corresponding measured cross section for the
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tt̄tt̄ process is then 41.5+22.6
�23.2 fb, compatible with the SM value within 1.3�. A final

test is performed injecting a value for µ simular to the observed one, both in Asimov
and real data configurations, in order to check the proper extraction of the signal by
the fit procedure. The µ injected is 3.5 and the fitted signal strength results to be
µ = 3.50+2.05

�2.05 and µ = 0.99+0.54
�0.55 for Asimov and real data, respectively, confirming

the goodness of the fit.
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Figure 6.18: Comparison of prediction to data in the four signal regions prior and
after the fit to data. The tt̄+jet background is estimated through the data-driven
method. The hashed area represents the combination of the statistical and system-
atic uncertainties on the background prediction. The bottom panels display the
ratio of data to the total prediction.
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Figure 6.19: Comparison between data and prediction of the BDT distributions
in the signal regions prior to the fit to data. The tt̄+jet background is estimated
through the data-driven method, with the MC-correction applied. The hashed area
represents the combination of the statistical and systematic uncertainties on the
background prediction.
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Figure 6.20: Comparison between data and prediction of the BDT distributions
in the signal regions after the fit to data. The tt̄+jet background is estimated
through the data-driven method, with the MC-correction applied. The hashed area
represents the combination of the statistical and systematic uncertainties on the
background prediction.
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Figure 6.21: Fitted nuisance parameters on data under the signal-plus-background
hypothesis in the signal regions.
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Figure 6.22: Ranking plot from the fit on data under the signal-plus-background
hypothesis. The � parameters refer to statistical uncertainty on the background
model and are assumed to be Poisson-distributed NPs.
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Figure 6.23: Correlations between the nuisance parameters from the fit on data
under the signal-plus-background hypothesis.
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Figure 6.24: Pre-fit uncertainties associated to tt̄+ � 1c cross section in the signal
regions. Red points refer to the original variation, with associated statistical error.
The red solid line is obtained by smoothing the uncertainty consistently with the sta-
tistical uncertainty of the variation. The blue solid line is obtained by symmetrising
the red one. Red and blue solid lines give the uncertainty on the prediction.
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Figure 6.25: Pre-fit uncertainties associated to the parton shower generator on
tt̄+light shape in the signal regions. Red points refer to the original variation,
with associated statistical error. The red solid line is obtained by smoothing the
uncertainty consistently with the statistical uncertainty of the variation. The blue
solid line is obtained by symmetrising the red one. Red and blue solid lines give the
uncertainty on the prediction.
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Figure 6.26: Pre-fit uncertainties associated to the parton shower generator on tt̄+ �
1c normalisation in the signal regions. Red points refer to the original variation,
with associated statistical error. The red solid line is obtained by smoothing the
uncertainty consistently with the statistical uncertainty of the variation. The blue
solid line is obtained by symmetrising the red one. Red and blue solid lines give the
uncertainty on the prediction.
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Figure 6.27: Pre-fit uncertainties associated to the parton shower generator on
tt̄+ � 1b shape in the signal regions. Red points refer to the original variation,
with associated statistical error. The red solid line is obtained by smoothing the
uncertainty consistently with the statistical uncertainty of the variation. The blue
solid line is obtained by symmetrising the red one. Red and blue solid lines give the
uncertainty on the prediction.
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Figure 6.28: Pre-fit uncertainties associated to the parton shower generator on tt̄+ �
1b normalisation in the signal regions. Red points refer to the original variation,
with associated statistical error. The red solid line is obtained by smoothing the
uncertainty consistently with the statistical uncertainty of the variation. The blue
solid line is obtained by symmetrising the red one. Red and blue solid lines give the
uncertainty on the prediction.
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Figure 6.29: Pre-fit uncertainties associated to the matrix element generator on
tt̄+light shape in the signal regions. Red points refer to the original variation,
with associated statistical error. The red solid line is obtained by smoothing the
uncertainty consistently with the statistical uncertainty of the variation. The blue
solid line is obtained by symmetrising the red one. Red and blue solid lines give the
uncertainty on the prediction.
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Figure 6.30: Pre-fit uncertainties associated to the matrix element generator on
tt̄+light normalisation in the signal regions. Red points refer to the original varia-
tion, with associated statistical error. The red solid line is obtained by smoothing
the uncertainty consistently with the statistical uncertainty of the variation. The
blue solid line is obtained by symmetrising the red one. Red and blue solid lines
give the uncertainty on the prediction.
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Conclusions

The production of tt̄tt̄ is one of the most rare processes accessible at LHC, given its
small cross section, predicted to be around 12 fb at NLO in QCD. It is also one of
the most interesting mechanisms, because many BSM phenomena may enhance the
cross section of this process. This thesis exploits the data collected by the ATLAS
detector at

p
s = 13 TeV, from 2015 to 2018, for an integrated luminosity of 139 fb�1,

performing the search in the single lepton channel. In the channel taken into account,
the most important background source is the tt̄+jets process. This process is not
modelled well by pure Monte Carlo simulations in the regions with high jet and b-
jet multiplicities. To address this problem, a data-driven, MC-assisted, approach is
adopted, exploiting the TRFtt̄ method: assuming that the probability of b-tagging
a jet is independent of the number of total jets, the b-tagging probabilities are
measured in low jets multiplicity regions and applied in the higher jets multiplicity
regions, where the signal is expected to be more prominent. In order to have a good
discrimination between the SM tt̄tt̄ signal and the tt̄+jet background, a multivariate
approach is adopted: 16 variables are used to train a boosted decision tree with
TMVA in the signal regions. A neural network is also trained in the most signal-
like region in order to set up a comparison between di↵erent MVA methods. Given
the small signal to background ratio, a “blind-analysis” approach is adopted: the
analysis strategy, its optimisation and the systematic model have to be established
on the Asimov data set in signal regions and real data in control regions, before
looking at data in the most sensitive regions. An important step is the evaluation
of the expected sensitivity, in order to be sure that the unblinding could be done
without spoiling the o�cial 1LOS ATLAS analysis. A binned profile likelihood fit is
then performed in the signal regions on the BDT output distributions. The measured
tt̄tt̄ signal strength µ = �tt̄tt̄/�SM

tt̄tt̄
results to be µ = 3.5+0.7

�0.7(stat.)
+1.8
�1.8(syst.) = 3.5+1.9

�1.9.
This value can be compared with the previous results obtained in the 1LOS channel
using 36.1 fb�1, µ = 1.7+1.9

�1.7 [20], and in the SSML channel using 139 fb�1, µ =
2.0+0.8

�0.6 [46], and it is found to be compatible with both within 1�. Moreover, the
sensitivity is similar to the previous 1LOS result, despite the absence of the benefits
from the combination with the dilepton opposite-sign channel. The sensitivity of
the analysis is confirmed also by the NN result. At the time of the submission of
this thesis no comparison can be done with the o�cial ATLAS result for the 1LOS
channel using 139 fb�1, since it is not public. The outcome of the thesis implies an
observed (expected) significance of the signal over the background-only hypothesis
of 1.8� (0.5�). The corresponding measured cross section for the tt̄tt̄ process is 42+23

�23

fb, compatible with the SM value within 1.3�. This small “excess” is compatible
with the SSML results. The employment of a fully optimised neural network, or
even better a deep machine learning method, would provide benefit to the result of
the analysis, as well as the combination with the dilepton opposite-sign channel.
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Appendix A

NNLO QCD + NLO EW
correction in tt̄-enriched regions

Both ATLAS [79] and CMS [80] experiments had observed that the tt̄ NLO predic-
tions tend to overestimate the data, in particular for the top quark pT distribution.
An improved agreement between data and prediction can be obtained using NNLO
calculations, and these improvements to the modelling are normally incorporated
by reweighting the tt̄ samples matching their top quark pT distribution to that pre-
dicted at NNLO accuracy in QCD. However, precise predictions in top quark physics
must take into account both the QCD and EW e↵ects in order to correctly identify
possible BSM e↵ects. The correction of the mismodelling of top (or anti-top) pT can
be important for an accurate tt̄+jets simulation, and therefore a correction in the
modelling of the top quark pT distribution (extended to all the currently available
tt̄ NLO generators) is described in the following.

The correction is based on the NNLO QCD + NLO EW tt̄ calculation for the dif-
ferential cross section at 13 TeV [81]. These theoretical calculations are performed
with the top mass value of mt = 173.3 GeV, using the central dynamical renor-
malisation and factorisation scales defined as 1

2 ⇥
p

m2
t + p2

T
for the distribution of

the top quark pT , and NNPDF3.0QED as PDF set. Instead, the ATLAS nominal
tt̄ Powheg + Pythia 8 sample makes use of mt = 172.5 GeV, NNPDF3.0NLO
PDF set, and

p
m2

t + p2
T
as factor for the scales. Therefore the e↵ects of the scale

and PDF variations are also investigated. The comparison is done for the follow-
ing tt̄ NLO generators: Powheg + Pythia 8 (the nominal one), Powheg +
Herwig 7, MadGraph5 aMC@NLO + Pythia 8, Powheg + Pythia 8 (with
hdamp = 3.0 · mtop) and Sherpa 2.2.1. The distributions are compared with the
inclusive tt̄ simulated sample (before any event selection) matching the normalised
di↵erential cross section predictions. The information of the top quarks is obtained
at generator level (taking the last top/anti-top replicas in the MC event record).

Figure A.1 shows the comparison between the NNLO QCD + NLO EW calcu-
lations and the nominal NLO tt̄ simulation sample for the top pT . The di↵erence
between the top quark pT predicted by the MC sample is clearly evident, confirm-
ing the behaviour observed in the various experimental measurements mentioned
earlier. At high transverse momenta (greater than 1 TeV) the discrepancy becomes
larger, reaching 50% above 2 TeV.

Figure A.2 shows the e↵ects of the PDF and scale variations on the NNLO
QCD + NLO EW calculation. The nominal MC prediction is compared to the two
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Figure A.1: Normalised tt̄ di↵erential cross section as a function of top quark pT
as predicted by the NNLO QCD + NLO EW calculations compared to the nominal
NLO tt̄ simulation sample (Powheg + Pythia 8).

di↵erent theoretical predictions available, one calculated with NNPDF3.0QED PDF
set and the other with PDF4LHC15LUXQED. The e↵ect of the di↵erent PDF sets
is very small and it is absorbed by the uncertainty due to the finite sample statistics.
The impact of varying the renormalisation and factorisation scales is investigated
using minimum and maximum scales variations for the theoretical calculations. Also
in this case the di↵erence is very small.

Not only the nominal Powheg + Pythia NLO tt̄ MC sample is expected to
deviate from the NNLO QCD + NLO EW calculation, but also the other predic-
tions available in ATLAS. Therefore, also for these the comparison is done, and it
is shown in Figure A.3. While for Powheg + Herwig and Powheg + Pythia
(with hdamp = 3.0 ·mtop) the trend is similar to that of the nominal tt̄ MC, Mad-
Graph5 aMC@NLO + Pythia and Sherpa show a closer agreement with the
theoretical calculation, but they su↵er of a more limited statistics, reflected in the
bigger statistical uncertainty and in the needed of merging the bins in the tail of the
distribution.

The correction is applied reweighting the tt̄ samples in order to match the top
quark pT distribution to that predicted by NNLO QCD + NLO EW calculation.
The correction is tested on partonic variables, like the rapidity of the top quark or
the rapidity of the tt̄ system (see Figure A.4). The e↵ect of the procedure is a clear
improvement in the agreement with the NNLO QCD + NLO EW prediction, in
particular in the tails of the distributions. In order to further testing the correction,
it is applied to the tt̄tt̄ analysis. Figure A.5 shows the e↵ect on the leading-jet pT in
the 5je2be region of the 1L channel. A small but non-negligible e↵ect is observed,
but, unfortunately, it is covered by the uncertainties. Since in the signal regions
the uncertainties are even bigger, this correction is not included in the current tt̄tt̄
analysis. However, it is successfully employed in other ATLAS analyses [82], and it is
in continuous development due to the new MC samples and theoretical calculations
that are developed.
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Figure A.2: Normalised tt̄ di↵erential cross section as a function of top quark pT in
case of PDF variations (on the left) and scale variations (on the right) of the NNLO
QCD + NLO EW prediction compared to the nominal NLO tt̄ simulation sample
(Powheg + Pythia 8).

Figure A.3: Normalised tt̄ di↵erential cross section as a function of top quark pT for
di↵erent NLO tt̄ simulation samples, compared to the nominal MC sample and the
NNLO QCD + NLO EW prediction.
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Figure A.4: Normalised tt̄ di↵erential cross section as a function of top quark ra-
pidity (on the left) and rapidity of the tt̄ system (on the right) before and after the
correction of top quark pT to the NNLO QCD + NLO EW prediction.

Figure A.5: Comparison between data and prediction of leading-jet pT before any
fit to data. The hashed area represents the combined statistical and systematic (on
tt̄ modelling) uncertainties of the prediction. Distributions are shown before (left)
and after (right) the correction procedure. The comparison is done in the 5je2be
region of the 1L channel of the tt̄tt̄ analysis.
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Appendix B

TRFtt̄ e�ciencies

In the following, the plots of the e�ciencies extracted for the TRFtt̄ method are
reported. Figures B.1 and B.2 show the e�ciencies as a function of jet pT for 3b and
� 4b regions, respectively. Figures B.3 and B.4 show, instead, the e�ciencies as a
function of �Rmin

jj
⇥ Nj for 3b and � 4b. All the e�ciencies are extracted in the

single lepton channel, in 5j region, and using the 77% WP for all the b-jets. They
are calculated separately for the di↵erent campaigns and for the di↵erent flavour
sub-processes.
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Figure B.1: E�ciencies for TRFtt̄ method for 3b regions as a function of jet pT .
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Figure B.2: E�ciencies for TRFtt̄ method for � 4b regions as a function of jet pT .
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Figure B.3: E�ciencies for TRFtt̄ method for 3b regions as a function of �Rmin

jj
⇥Nj.
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Figure B.4: E�ciencies for TRFtt̄ method for � 4b regions as a function of �Rmin

jj
⇥

Nj.
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Appendix C

MVA ranking plots and
overtraining tests

In the following, the plots already showed in Section 5.3 for the 10ji4bi region are
reported for the other regions in which the training of the BDT is done. For each
region, the ranking of the variables used in terms of separation and the overtraining
test are displayed. For the regions with exactly nine jets, the jet multiplicity variable
is automatically ignored during the training, since it is not able to provide any
separation.
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Figure C.1: Ranking of input variables in terms of separation in the 9je3be region
for the training done on even events according to TMVA.
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Figure C.2: Training response for the BDT in the 9je3be region for the training
done on even events.
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Figure C.3: Ranking of input variables in terms of separation in the 9je3be region
for the training done on odd events according to TMVA.
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Figure C.4: Training response for the BDT in the 9je3be region for the training
done on odd events.

111



Figure C.5: Ranking of input variables in terms of separation in the 9je4bi region
for the training done on even events according to TMVA.
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Figure C.6: Training response for the BDT in the 9je4bi region for the training done
on even events.
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Figure C.7: Ranking of input variables in terms of separation in the 9je4bi region
for the training done on odd events according to TMVA.
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Figure C.8: Training response for the BDT in the 9je4bi region for the training done
on odd events.
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Figure C.9: Ranking of input variables in terms of separation in the 10ji3be region
for the training done on even events according to TMVA.
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Figure C.10: Training response for the BDT in the 10ji3be region for the training
done on even events.
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Figure C.11: Ranking of input variables in terms of separation in the 10ji3be region
for the training done on odd events according to TMVA.
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Figure C.12: Training response for the BDT in the 10ji3be region for the training
done on odd events.
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Figure C.13: Ranking of input variables in terms of separation in the 10ji4bi region
for the training done on odd events according to TMVA.
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Figure C.14: Training response for the BDT in the 10ji4bi region for the training
done on odd events.
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Appendix D

Neural network test

D.1 Neural network with TMVA

For comparison purposes, a neural network is trained with TMVA. As for the BDT,
the signal sample is provided by the MC simulation of the SM tt̄tt̄ process at NLO
in QCD (MadGraph aMC@NLO+Pythia), while the background is the TRFtt̄

prediction without the MC correction factor. The events with negative weights are
not ignored, but fully exploited in the training. The events provided for the training
are split randomly in two halves with the same amount of events: one is used for
the training, and one for testing the overtraining. The input variables are the same
of the BDT training. In this case the training is done only in the most signal-like
region, 10ji4bi. The neural network consists of three layers. The first layer is made
of 16 neurons which accept the input variables. The second (hidden) layer is made
of 300 neurons which are activated by the following function:

f(x) =

(
x, if x � 0

0, if x otherwise
. (D.1)

The last layer classifies the events as signal or background. The neurons are activated
by the softmax function:

�(xj) =
exj

P
i
exi

. (D.2)

The number of training cycles is 10. The integral of the ROC curve is 0.775, com-
parable with the BDT result. The overtraining test is displayed in Figure D.1: the
signal sample shows a small overtraining between 0.6 and 0.8, while the background
evidences the same e↵ect between 0.1 and 0.3. This method does not perform better
than the BDT, because it is not fully optimised since it would have needed much
more input variables, instead of the only 16 variables used. But it is still useful to
have another method to compare the BDT results with.
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Figure D.1: Training response for the neural network in the 10ji4bi region.

D.2 Neural network results

For the comparison, the BDT distribution has been replaced by the neural network
output only in the 10ji4bi, while in the other signal regions the BDT output has
been employed. Then a fit to the Asimov data set was performed. Figure D.2
shows the distribution of the MVA outputs after the fit. The constraints on the
nuisance parameters from the fit are shown in Figure D.3. They look very similar
to those already presented in Figure 6.11: the detector and the jet-tagging NPs
do not present strong constraints, while some constraints are observed on the NPs
associated to the theoretical uncertainties on the tt̄+jet background estimation. In
particular, the tt̄+ � 1b and tt̄+light shape uncertainties on the choice of the parton
shower generator are constrained to 51% and 59%, respectively. The fitted signal
strength results to be µ = 1.00+2.19

�2.26. This result is a bit worse than the fit on the
full BDT output, in terms of sensitivity on µ, but it is not unexpected, given the
non-optimal configuration of the NN. In any case, it confirms the order of magnitude
of the expected sensitivity of the analysis and the importance of some theoretical
uncertainties with respect to others.

118



Figure D.2: Comparison between data and prediction of the BDT/NN distributions
in the signal regions after the fit to data. The tt̄+jet background is estimated
through the data-driven method, with the MC-correction applied. The hashed area
represents the combination of the statistical and systematic uncertainties on the
background prediction.
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Figure D.3: Fitted nuisance parameters on data under the signal-plus-background
hypothesis in the signal regions.
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