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Abstract
Avalanche Photodiodes (APDs) are electronic devices that transduce a photon
flux into an electrical current and provide internal amplification of this current
exploiting the impact ionization mechanism. APDs are used as receivers in
optical fiber communication links as well as detectors in physics experiments
and medical imaging. According to the needs of the target application, they
can either be operated below (Linear mode) or above (Geiger mode) their
breakdown voltage.

For X-ray detection, APDs fabricated in III-V compound semiconductors,
such as GaAs, offer an interesting alternative to SiAPDs, thanks to the short
attenuation length at high energies offered by these materials. However, to
improve the poor noise performance of APDs fabricated in III-V compounds
given by similar electron’s and hole’s impact ionization coefficients, structures
alternative to p-i-n APDs have to be employed. A possible solution is the use
of staircase APDs, where heterojunctions between III-V compound semicon-
ductors and their alloys with metals are exploited to enhance the electron to
hole impact ionization probability by creating an artificial superlattice.

This thesis aims at proposing models to compute the figures of merit of
APDs fabricated in III-V compound semiconductors and operating in Linear
mode for the detection of X-rays. Since accurate modeling of impact ionization
is key to obtain reliable data from simulations, we present the development of
a suite of simulations tools that includes the finite difference and the Random
Path Length algorithm implementation of a newly derived nonlocal history
dependent impact ionization model and a Full Band Monte Carlo transport
simulator. All these models have been validated against experimental results
and are thus powerful tools in support of the interpretation of single photon
APDs electrical measurements and for the optimization of their performance.
These simulation tools have been used to compute the gain, the excess noise
factor, the response time, the bandwidth and the jitter of different APD struc-
tures, including staircase APDs.

In addition, the Full Band Monte Carlo transport simulator has been em-
ployed to assess the basic assumptions, identify the limitations and improve
the calibration of nonlocal history dependent impact ionization models. We
have found that, even though nonlocal history dependent models give results
that are in a satisfactory agreement with experiments, they neglect that af-
ter an impact ionization event secondary carriers are generated with non null
kinetic energy and that carrier-phonon scattering may lead to electrons and
holes that travel for few free flights with velocities that are opposite to the
direction of the electric fields. These aspects may become relevant and yield
misleading results, in particular for short devices.
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Chapter 1

Introduction

Studying the interaction of an electromagnetic wave (or, in other words, due
to the discrete nature of light, of photons) with other objects is of extreme
importance in our daily life. In astronomy, radio waves are used to discover
new planets, stars and galaxies. In telecommunications, infrared (IR) and
ultraviolet (UV) light are exploited for data transmission in optical fiber links.
In medicine, X- and γ-rays are used for the diagnosis of fractures, tumors and
other diseases. In addition, in physics and material science experiments, new
properties can be analyzed by observing the behavior of a material when it is
irradiated by a photon flux.

The energy of a photon (Eph) is linked to the frequency (ν) and wavelength
(λ) of the electromagnetic wave by the relation

Eph = hν =
hc

λ
, (1.1)

where h is the Planck’s constant and c is the speed of light.
The realization of new generations light sources able to work on the short

wavelength side of the spectrum (see Fig. 1.1), such as advancements in syn-
chrotrons and Free Electron Lasers, requires the development of detectors able
to resolve high energy photons, so that new phenomena, down to the atomic
scale, can be observed. For instance, energies in the order of 1 keV corresponds
to λ � 1.2 nm.

108 1012 1014 10181016 10201015104

Radio Waves Microwaves IR UV X-rays
(Hz)

(m)
104 10-1 10-3 10-8 10-1210-10

Human Bodies Insects AtomsProteinsBacteriaSize of
7÷4x10-7

Figure 1.1: Electromagnetic spectrum.

In this thesis, we will focus on the modeling of solid state detectors for
high energy photons and in particular of a specific type of detector used for
the analysis of X-ray photons (100 eV ≤ Eph ≤ 200 keV), the Avalanche Pho-
todiode (APD). In this Chapter, we review the working principles of APDs to
understand the trade-offs at the basis of their design, while different modeling
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methodologies will be discussed and applied in the following ones. A detailed
description of the structure of this thesis is provided in Section 1.9.

1.1 Radiative Generation and Impact Ioniza-

tion

Avalanche Photodiodes are electronic devices that transduce a photon flux into
an electric current and that provide intrinsic amplification of this current. To
do so, two generation/recombination mechanisms of semiconductor materials
are exploited: radiative generation and impact ionization.

When a photon hits a semiconductor, its energy Eph is transferred to an
electron that populates the valence band of the material. If the photon’s en-
ergy is larger than the bandgap of the semiconductor (Eg), then the electron
in the valence band may be promoted to the conduction band, leaving a hole
in the valence band: a new electron-hole pair is, thus, created (see Fig. 1.2a).
This mechanism is called radiative generation. If an electric field E(x) is now
applied to the semiconductor, then carriers will move, with their respective ve-
locities (ve for electrons and vh for holes) according to the direction of the field
(Fig. 1.2b), inducing a current at the contacts (the so-called photogenerated
current, Iph).
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x

a) b)
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vh

Figure 1.2: a) Radiative generation of an electron-hole pair due to a photon
with energy Eph = hν > Eg. b) Motion of the photogenerated carriers when
an electric field is applied.
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Figure 1.3: Representation of impact ionization triggered by electrons (a sim-
ilar process can be triggered by holes). a) An electron moves inside the con-
duction band and its kinetic energy grows from 0 at t = t0 to Ek > Eg at
t = t1. b) A scattering event transfers the energy Ek to an electron in the
valence band, promoting it to the conduction band.
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Figure 1.3a shows that, when a strong electric field is applied, a primary
electron moving in the conduction band can acquire a kinetic energy Ek > Eg.
A scattering event, denoted as impact ionization, may now transfer Ek to an
electron in the valence band, creating a new secondary electron-hole pair (see
Fig. 1.3b). The primary electron loses its kinetic energy and falls at the bottom
of the conduction band. This mechanism is responsible for the amplification of
Iph, since, as shown in Fig. 1.3, starting from a single electron in the conduction
band we end up with two electrons in the conduction band and a hole in the
valence band. Indeed a sequence of generation events will generate a bunch
of secondary carriers, thus increasing appreciably the current from its original
value. This process is also called avalanche multiplication and, like impact
ionization, it occurs also for holes moving inside the valence band. Avalanche
multiplication is quantified by the so-called multiplication factor, Me, defined
as the ratio of the total (electron) current density to the injected starting
electron current.

Finally we remind that impact ionization is a stochastic process and, thus,
it is a source of noise. This is an important aspect in view of APD detectors
development, usually quantified in terms of the r.m.s. of the multiplication cur-
rent. Impact ionization depends on the device geometry, the bias configuration
and the semiconductor material at the microscopic level. Impact ionization is
quantified through the impact ionization coefficients, α for electrons and β for
holes, that are the reciprocal of the average distances between two consecutive
ionizing events. As it will be clear in the following, it is also useful to define
k = β/α [1].

1.2 p-i-n APDs

The simplest structure of an APD is a reverse biased p-i-n junction (Fig. 1.4a).
The electric field inside the depletion region is responsible for both the sepa-
ration of the photogenerated electron-hole pairs and the amplification of Iph.
The width of the depletion region is given by

W =

√︄
2ε

q

(︃
1

NA

+
1

ND

)︃
(Ψ0 − V ) + d2 ≃ d, (1.2)

where ε is the permittivity of the material, q is the electron’s charge, NA and
ND are the acceptor and donor dopants concentrations, Ψ0 is the junction’s
built-in potential, V is the applied voltage and d is the thickness of the intrinsic
layer. This means that, since W depends mainly on the geometric parameter
d, the maximum electric field inside the device,

Emax =
Ψ0 − V

W
≃ Ψ0 − V

d
, (1.3)

is a function of the geometry of the structure and of the applied voltage. As
qualitatively shown in Fig. 1.4b, the electric field profile is uniform along the
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whole depletion region as long as NA and ND are constant and the hole’s and
electron’s densities, p and n, are therein negligible.

p+ n+i
d ≃ W

x

a) V < 0

x

b)

0 W

Emax

E

Figure 1.4: a) Sketch of a reverse biased p-i-n diode, d is the thickness of
the intrinsic layer and W is the width of the depletion region. b) Qualitative
representation of the electric field profile inside the device of panel a).

The region of the APD where impact ionization occurs (i. e. the intrinsic
layer in the case of a p-i-n APD) is called multiplication region.

Two different modes of operation can be implemented with this device (see
Fig. 1.5):

� Geiger Mode: the applied voltage is larger, in modulus, than the break-
down voltage (|V | > |Vbr|). A photon that hits the device generates
electron-hole pairs that trigger the avalanche multiplication with multi-
plication factors exceeding 105. An external quenching circuit interrupts
the avalanche only when the output current reaches a defined thresh-
old. A short current pulse is thus generated upon arrival of the photon.
An APD operating in Geiger mode is, thus, a binary device, since the
amount of charge at the output of the device is independent of both Eph

and the number of incident photons. The very high charge amplification
(∼ 106 [2]) makes these devices suited for the detection of single pho-
tons. Geiger mode APDs are typically used for timing measurements,
such as in time-of-flight experiments, like PET scanners [2, 3] and lidars
[4]. Photon counting is possible at low fluxes or using pixellated detec-
tors [5]. Silicon PhotoMultipliers (SiPMs) represent the state of the art
for APDs operating in Geiger mode [2].

� Linear Mode: the applied voltage is smaller, in modulus, than the break-
down voltage (|V | < |Vbr|). A photon that hits the device generates
electron-hole pairs that trigger the avalanche multiplication but the ap-
plied voltage is not high enough to sustain the positive feedback, so that,
after the occurrence of few impact ionization events, the multiplication
ends autonomously. The amplitude of the current at the output of the
APD is proportional to Eph, since the number of generated electron-hole
pairs is a function of the photon’s energy (via the so-called quantum
yield), and on the number of incident photons. For this reason, APDs
in linear mode are used for experiments where it is important to de-
termine the energy of incident photons (such as spectroscopy) [6, 7, 8].
APDs in linear mode are also widely used as receivers in optical fiber
communication links [9, 10].
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0

Figure 1.5: Modes of operation of an APD: Linear mode (|V | < |Vbr|) and
Geiger mode (|V | > |Vbr|).

In this thesis we will always consider APDs working in the Linear regime,
but, for completeness, some details about APDs operating in Geiger mode are
also provided.

1.3 Figures of Merit of APDs

To evaluate the performance of APDs and to understand the main trade-
offs that are at the basis of the design and fabrication of these devices, it is
important to know which are the figures of merit to look at. Here, a brief list
for APDs operating either in Geiger or in Linear mode is reported:

� Dark current (Idark). It is the current measured, at a given operating
voltage, at the contacts of the APD with no photon flux impinging.
It originates from thermal generation of carriers and/or band-to-band
tunneling. Beside being a source of noise, it sets a limit for the minimum
Iph that can be detected.

� Photogenerated current (Iph). It is the current that flows into the device
when it is exposed to the photon flux that has to be resolved. Iph should
be significantly larger than Idark.

� Gain. It is the ratio between the current measured at the contacts and
the photogenerated current (M = I/(Iph+ Idark) ≃ I/Iph if Iph ≫ Idark).
Essentially M coincides with the multiplication factor of the depletion
region.

� 3dB bandwidth (BW ). It is the frequency at which the Fourier transform
of the output current is attenuated by 3dB. A large BW indicates a fast
response time of the APD. An example is reported in Fig. 1.6, obtained
with a model that will be explained later in this thesis.

� Detector’s capacitance (CD). It depends on the device area, on the per-
mittivity of the materials used for its fabrication and on the thickness of
the depletion region. As it will be shown in Section 1.7, the value of CD

affects the energy resolution of the APD.

� Collection efficiency. Ratio between the number of photogenerated car-
riers that contribute to the output signal and the total number of pho-
togenerated carriers (i.e. that includes carriers that are photogenerated
but recombine and do not contribute to the current).
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Figure 1.6: Computation of the 3dB bandwidth (BW ) of an APD with gain
M = 8 ≃ 18 dB. The y-axis plots the Fourier transform of the current re-
sponse to the optical generation of a single electron-hole pair. The lobes above
100 GHz are given by the fact that the current response is similar to a rect
function in the time domain, which becomes a sinc in the frequency domain.

1.3.1 Geiger Mode

In this Section, some useful figures of merit of APDs operating in Geiger Mode
are listed [11]:

� Jitter (tj). It is defined as the statistical fluctuation of the time inter-
val between the photon arrival and the output pulse leading edge. It
can be measured as the variance, or equivalently, as the full-width half-
maximum of the temporal variation in the avalanche breakdown pulses
resulting from an incident photon beam.

� Dead Time. Time, due to accumulation of charge in the active region of
the device, during which the APD is not responsive. It depends on the
time needed to quench avalanche multiplication and to reset the device.

� Dark Count Rate. Rate, per second, at which avalanche multiplication
is triggered by the dark current (i. e. internal generation of electron-hole
pairs) and not by a photogenerated carrier.

� Afterpulsing. False detection, caused by secondary peak pulses that orig-
inate from carriers released by traps in the semiconductor that were filled
by the primary current peak.

1.3.2 Linear Mode

In this Section, the figure of merit that quantifies the noise in APDs operating
in Linear mode is introduced.

If the contribution of the dark current to the noise is neglected, two noise
sources can be identified. The first one, given by Iph, relates to the discrete
nature of the photon arrival and of the electric charges: the photogenerated
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current Iph will give a “shot noise” contribution to the total current noise power
spectrum. This can be modeled with a Poisson statistics [1], hence

Sii,shot = 2qIph. (1.4)

The second noise source, instead, relates to the gain, that is, to avalanche
multiplication. In fact, as reported in Section 1.1, carrier amplification occurs
via impact ionization, that is a stochastic process and comes with an associated
multiplication noise. Hence, the gain, M , can be represented by the random
variable m, so that:

M =
I

Iph
= ⟨m⟩, (1.5)

where the angular brackets indicate the ensemble average.
The figure of merit that measures the contribution of the multiplication

noise to the total noise power spectrum is:

� Excess Noise Factor (F ≥ 1). It indicates how much the power spectrum
of the noise of the device differs from the power spectrum of pure shot
noise. By definition [6],

F ≡ ⟨m2⟩/M2. (1.6)

The noise power level measured when we connect an APD to a spectrum
analyzer (Fig. 1.7) is then obtained combining Eq. 1.4 with Eqs. 1.5 and 1.6,
that is:

S = 2qIphM
2FBRL, (1.7)

where B and RL are, respectively, the instrument bandwidth and impedance.

Spectrum
Analyzer

hυ

TIA

+-V
APD

S = 2qIphM
2BRL

Figure 1.7: Sketch of an APD connected to a spectrum analyzer through a
transimpedance amplifier (TIA).

It has been demonstrated that a low F and a high gain-bandwidth product
can be achieved only if the impact ionization probability of one type of carriers
is way greater than the one of the carrier with opposite charge, that means
that the ratio between the impact ionization coefficients k = β/α has to be far
from unity [1, 12].

In Silicon α ≃ 20β [13] at electric fields |E⃗| ≪ 300 kV/cm [6] (see Fig. 1.8a
and, therefore, this material is suitable for the realization of APDs operating
in the Linear mode (SiAPDs) with good performance. However, the following
considerations have to be made:

7



� Silicon has a small bandgap (Eg = 1.12 eV). Since the intrinsic concen-
tration and, thus, the dark current, go as exp(−Eg/2kbT ), cooling of
SiAPDs at T = −20 ◦C or even at T = −90 ◦C [6] is fundamental to
achieve a low Idark, in order to limit its contribution to the total noise
and obtain a good energy resolution (see Section 1.7).

� According to the Beer-Lambert’s law, the intensity of a photon flux that
is transmitted through a material is an exponential decaying function of
the distance (x) and of the attenuation length (L) [8], namely

Φ = Φ0exp
(︂
−x

L

)︂
. (1.8)

L is a function of the photon energy Eph and is a property of the material
where the photon is transmitted. The small atomic number of Silicon
(ZSi = 14) is responsible for large attenuation lengths at high photon
energies [14]. For instance, the attenuation length is about 5÷ 6 nm for
UV photons with Eph ≃ 7.29 eV (i. e. λ = 170 nm) [15], while for X-ray
photons with Eph = 6 keV, L ≃ 30 µm [15]. At Eph = 15 keV, instead,
L ≃ 442 µm (see Fig. 1.8b). A large attenuation length requires p-i-n
structures with large W and this translates into a low bandwidth.
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Figure 1.8: a) Ratio between the hole and electron impact ionization coeffi-
cients for Si [16] (black solid) and GaAs [17] (red dashed) at room temperature.
b) Attenuation length in Si (black solid) and in GaAs (red dashed) for photon
energies in the range 30 ≤ Eph ≤ 15000 eV [14].

For these reasons, SiAPDs are not recommended for applications at room
temperature and in harsh environments (e. g. space applications) and for the
detection of photons at high energies, such as X-rays, since this would require
the fabrication of very thick and, consequently, very slow devices [7, 18].

III-V compound semiconductors represent a valid alternative for the fab-
rication of X-ray detectors. In fact, materials such as GaAs have a higher
atomic number (ZGa = 31, ZAs = 33) and a larger bandgap (Eg = 1.42 eV)
with respect to Silicon. This corresponds to remarkably smaller attenuation
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lengths for a given photon’s energy (at, e. g., Eph = 15 keV, L ≃ 20 µm in
GaAs, see Fig. 1.8b) and opens also the possibility to work at higher operating
temperatures (i. e. room temperature). However, the main drawback of III-V
compound semiconductors is that, for most of them, k = β/α ≃ 1 [13] (see
Fig. 1.8a for GaAs), thus, in principle, APD fabricated in III-V compounds
show a higher F and a smaller gain-bandwidth product than SiAPDs.

1.4 Staircase APDs

One of the main advantages of III-V compound semiconductors is the possibil-
ity to perform bandgap engineering. In fact, the energy gap of a III-V material
can be modulated by creating alloys between the semiconductor and a metal
(e. g. Aluminum). Figure 1.9 shows the value of Eg of AlxGa1−xAs as a
function of the Aluminum concentration [19]; it is worth noting the transition
from direct to indirect bandgap taking place at x = 45%.
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Figure 1.9: Dependence of the bandgap of AlxGa1−xAs on the Aluminum mole
fraction (x). At x = 45%, a transition from direct to indirect bandgap occurs.

Consequently, heterojunctions between a III-V-metal alloy and a III-V com-
pound semiconductor with a matched lattice constant, as in the case of Al-
GaAs/GaAs, can be exploited to artificially enhance the electron’s impact
ionization probability with respect to the one of holes. In fact, as schemat-
ically reported in Fig. 1.10, when an electron moves from AlGaAs to GaAs,
it crosses a conduction band discontinuity ∆EC that adds its energy to the
kinetic energy Ek. On the other hand, when a hole moves from GaAs to Al-
GaAs, it encounters a valence band discontinuity ∆EV that is opposite to its
direction of motion, hence ∆EV is subtracted from the kinetic energy of the
hole.

9
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AlGaAs

EC

EV

ΔEC

-

ΔEV +

Figure 1.10: Representation of an electron moving from AlGaAs to GaAs.
∆EC and ∆EV are the conduction and valence band discontinuities, respec-
tively.

For this reason, [13] proposed the fabrication of APDs with the multipli-
cation region constituted by the periodic repetition, for Nstep times, of abrupt
AlGaAs/GaAs heterojunctions; linear grading of the Al mole fraction is used
to pass from the material with a smaller bandgap (GaAs) to the one with a
larger gap (AlGaAs). Owing to the configuration of its band diagram, [13]
called this device staircase APD (see Fig. 1.11).

p+

n+

1

2

Nstep

EC

EV

Figure 1.11: Sketch of the band diagram of a staircase APD.

In [13], it is also demonstrated that if hole impact ionization is completely
suppressed and electron impact ionization occurs only when the carrier crosses
a conduction band discontinuity, then the gain and the excess noise factor in
a staircase APD can be computed, respectively, as

⟨M⟩ = (1 + Pe)
Nstep (1.9)

F (Nstep, Pe) = 1 +
(1− Pe)

[︁
1− (1 + Pe)

−Nstep
]︁

1 + Pe

, (1.10)

where Pe is the electron impact ionization probability at each heterojunction.
Figure 1.12 shows the excess noise factor of a staircase APD as a function

of Nsteps, computed using Eq. 1.10. It is worth noting that, under the assump-
tions reported above, in staircase APDs it is possible to achieve a noiseless
multiplication (F = 1) only when Pe = 1, that means that electrons undergo
an impact ionization scattering event every time they cross a conduction band
discontinuity. In fact, in this case carrier multiplication is no longer a random
process.
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Figure 1.12: Excess noise factor for a staircase APD withNstep = 1, 2, 5 and 12.
The computation has been performed using Eq. 1.10 [13].

Staircase APDs are nowadays used both in optical fiber communication
links [10], where also III-V compunds with small bandgaps and an intrinsic
low k = β/α can be exploited (like InAs alloys [20]) and for X-ray detection
[7, 21, 22].

1.5 APDs with Separate Absorption and Mul-

tiplication Regions

As discussed in Section 1.3.2, the depth at which a photon can be absorbed
has an exponential dependence (Eq. 1.8) on the attenuation length L (see
Fig. 1.8b).

1

2

3

1

2

3

X-ray photon

Multiplication
Region

a) b)

UV photon

Figure 1.13: a) A UV photon hits an APD: electron-hole pairs are generated
only inside region 1, before the multiplication region. b) A X-ray photon hits
an APD and, if it is absorbed, it can generate an electron-hole pair in region
1, 2 or 3.
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The location where photons are absorbed has a huge influence on the gain
and on the excess noise factor of the APD [8, 23]. This can be easily understood
by looking at Fig. 1.13. In fact, in a Silicon device, a UV photon will be
absorbed in the first few nm of region 1, generating all the electron-hole pairs
before the multiplication region so that all undergo the same multiplication
process (Fig. 1.13a). On the other hand, in the same device, an X-ray photon
can be absorbed in region 1, 2 or even region 3, generating electron-hole pairs
that can be fully, partially or not amplified (Fig. 1.13b). As it will be discussed
in Section 1.7, this non-uniformity of the gain gives a relevant contribution (σ2

U)
in worsening the energy resolution of the device.

A possible solution to reduce the gain non-uniformity is the fabrication of
Separate Absorption and Multiplication (SAM) APDs (see Fig. 1.14).

The aim of the absorption region, whose thickness is designed according
to the energy of the radiation that has to be detected, is to absorb most of
the impinging photons, so that electron-hole pairs are generated before the
multiplication region and get amplified by it in the same manner. The electric
field in the absorption region in very low (to avoid unwanted multiplication
and band-to-band generation), so that carriers move mostly by diffusion. The
applied bias voltage falls, instead, almost entirely on the multiplication region,
that is responsible for the carrier amplification. Electric separation between
the absorption and the multiplication regions is obtained by means of a thin
p−-doped charge sheet layer (also called δp-layer [7]).

EC

EV

p+

n+

h -
+ Absorption

Region

Multiplication
Region

p-layer

Figure 1.14: Band diagram of a Separate Absorption and Multiplication APD.

Another advantage of SAM-APDs is that almost pure unipolar injection
of only one carrier type (electrons) can be achieved, that means that only one
type of carrier is injected in the multiplication region. This is beneficial for
the excess noise factor [7, 8, 23].

SAM-APDs are nowadays used for both optical fiber links [10, 24] and
X-ray detection [7, 8, 21, 22, 25].

1.6 Pulse Shaping

In many applications that involve X-ray detection, such as X-ray spectroscopy,
the aim of the experiment is the accurate measure of the charge available at

12



the detector output, that is proportional to Eph [26] (see Fig. 1.15a). The
processing of the signal that comes out from a detector is called pulse shaping
and consists of an integrator followed by an appropriate filter, called shaper,
as shown in Fig. 1.15b.

Of course, pulse shaping comes with an associated electronic noise, whose
relevance depends on the detector capacitance and on the time available for
the measurement of a single event [26], that affects the accuracy of the charge
measurement. In the following, we will demonstrate that an optimum shaping
filter exists, in the sense that it exists a design that minimizes the noise power
at the output of the shaper.

|I|

Q Eph

t

-

+

V

i(t) ADCPULSE
SHAPER

Cint

a) b)

0

Figure 1.15: a) Time response of an APD to a single photon with energy Eph

that hits the device at t = 0. b) Setup of a charge measurement circuit.

If we denote as Q the charge at the output of APD, CD the detector ca-
pacitance, Ci the preamplifier input capacitance, Gee(ω) and Gii(ω) the power
spectra of the equivalent voltage and current noise generators, respectively,
H(jω) the transfer function of the shaping filter and as X(jω) = Q the Fourier
trasform of the input signal x(t) = Qδ(t) (i.e. the time response of the APD is
much faster than the readout time constant), then the equivalent noise circuit
can be represented as in Fig. 1.16 [26].

PULSE
SHAPER
H(j )

+ -

Q (t) Gii( )

Gee( )

CD Ci
H(j )X(j )

INTEGR.
+

Figure 1.16: Equivalent noise circuit of the charge measurement system of
Fig. 1.15b.

As described in [26], for the applications of our interest the two generators
Gee(ω) and Gii(ω) can be considered uncorrelated. We write them as:

Gee(ω) = a1 + a2/|ω|; a1 is a white noise term and accounts for thermal
noise in the channel of the field-effect devices of the preamplifier, while
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the term a2/|ω| is the contribution of the 1/f noise. For the sake of sim-
plicity, we can neglect the effect of a2 and, thus, consider Gee independent
of ω [26].

� Gii(ω) = b1(ω) + b2(ω); b1(ω) accounts for the leakage current in the
transistors of the preamplifier, while b2(ω) is the contribution due to
the shot noise associated to the dark current of the APD. b1 and b2 are
independent of ω and, thus, also Gii does not depend on the frequency.

Several shaping circuits can be found in the literature [26]. Here, we will
focus on the CR-RC scheme reported in Fig. 1.15b, that is commonly used in
X-ray spectroscopy [25].

-

+
1

V

C

CR

R

A
Vo

i(t)

Cint

Figure 1.17: Schematic representation of a CR-RC shaping circuit.

The transfer function of the filter in Fig. 1.17, in the frequency and time
domains, can be written as

H(jω) =
A

Cint

τs

(︃
1

1 + jωτs

)︃2

⇒ h(t) =
A

Cint

t

τs
exp

(︃
− t

τs

)︃
Θ(t), (1.11)

where A is a suitable gain, τs = RC is the filter’s time constant and Θ(t) is
the Heaviside step function.

The noise resulting from the dark current of the APD and from the read-
out electronics can be derived as in [27]. Firstly, the expression for power of
the current noise is extracted from the Norton equivalent circuit of the noise
generators at the input of the readout (Fig. 1.16):

Pnoise =

∫︂ +∞

0

Gii(ω)|H(jω)|2df +

∫︂ +∞

0

Gee(ω)ω
2C2

tot|H(jω)|2df, (1.12)

where Ctot = CD + Ci. The expression for |H(jω)| in Eq. 1.11 can be now
substituted in Eq. 1.12 and, since, as previously discussed, Gii(ω) and Gee(ω)
can be considered independent of ω, the solution of Eq. 1.12 yields

Pnoise =
A2

8C2
int

(︃
Giiτs +Gee

C2
tot

τs

)︃
. (1.13)

The value of τs (τs,opt) that minimizes Pnoise and the corresponding Pnoise,opt

can be found by minimization of Eq. 1.13, namely

∂Pnoise

∂τs
= 0 ⇒ τs,opt = Ctot

√︃
Gee

Gii

⇒ Pnoise,opt =
A2

4C2
int

Ctot

√︁
GeeGii. (1.14)
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For X-ray spectroscopy, τs,opt is in the order of few µs [25].
On the other hand, the signal at the output of the filter (w(t)) is given

by the convolution between the input signal Qδ(t) and the filter’s impulse
response function h(t). Hence

w(t) = h(t) ∗Qδ(t) =
QA

Cint

t

τs
exp

(︃
− t

τs

)︃
Θ(t) (1.15)

The maximum value of the output signal wmax, can be found by differentiation
of Eq. 1.15

∂w(t)

∂t
= 0 ⇒ wmax =

QA

eCint

=
qEphMA

eEehpCint

, (1.16)

where e is the Euler’s constant. In Eq. 1.16 it has been made explicit that
Q = qMEph/Eehp, where q is the electron charge, Eph is the photon energy, M
is the APD gain, Eehp is the average energy required for the creation of a single
electron-hole pair in the material used for the fabrication of the detector.

The noise, expressed in eV2, resulting from the dark current of the APD
and from the electronic readout can be finally computed as:

σ2
N = E2

ph

Pnoise

w2
max

=
1

8

(︃
eEehp

qM

)︃2(︃
Giiτs +Gee

C2
tot

τs

)︃
(1.17)

The multiplication by Eph in Eq. 1.17 is necessary to translate in energy the
output, expressed in V, of the readout of Fig. 1.17.

1.7 Energy Resolution of an APD

To compute the energy resolution of an APD, several sources of uncertainty
have to be taken into account [15]:

� σ2
S: the statistical fluctuations of the number of electron-hole pairs gen-

erated per incident photon and of the gain of the APD.

� σ2
U : the non-uniformity of the gain (see Section 1.5).

� σ2
N : noise resulting from the dark current of the APD and from the

readout electronics (see Section 1.6).

These noise sources are all independent, hence the total variance is the sum
of the single contributions:

σ2 = σ2
S + σ2

U + σ2
N . (1.18)

Following [6], the statistical fluctuation of the APD gain can be computed as

σ2
APD = ⟨m2⟩ −M2 = M2 ⟨m2⟩ −M2

M2
= M2 (F − 1) . (1.19)

15



The effects of the stochastic natures of carrier generation and avalanche mul-
tiplication can be combined exploiting the fact that these two processes are
independent, thus the final variance scaled by M2, in eV2, is

σ2
S = E2

ehp

M2σ2
ehp +Nσ2

APD

M2
= E2

ehp

[︁
σ2
ehp +N(F − 1)

]︁
, (1.20)

where N is the average number of electron-hole pairs generated by a photon
with energy Eph.

When we consider X-ray detection, the variance associated to the process
of carriers generation is [6, 15]

σ2
ehp = Nf, (1.21)

where f is the Fano factor. Consequently, σ2
S becomes

σ2
S = N(f + F − 1)E2

ehp (1.22)

The energy resolution is usually expressed as the full width at half maxi-
mum (FWHM), which is related to the variance by the relation FWHM =
2
√︁
2ln(2)σ ≃ 2.35σ. The intrinsic energy resolution of an APD expressed in

eV is, thus,

FWHMint ≃ 2.35

√︃
σ2
S +

(︂σU

M

)︂2
≃ 2.35Eehp

√︄
Eph(f + F − 1)

Eehp

+
(︂σU

M

)︂2
,

(1.23)
where it has been made explicit that N = Eph/Eehp. As mentioned in Sec-
tion 1.5, the non-uniformity of the gain is an important aspect to consider in
the case of X-ray detection. For this reason, σ2

U is included in Eq. 1.23.
Exploiting the analysis performed in Section 1.6, it is now possible to com-

pute the energy resolution (FWHM) accounting also for the contribution of
σ2
N . In fact, the current at the output of the APD is given by

I = MIdark,p + Idark,n +MIph. (1.24)

where Idark,p is the dark current that originates in the region before the mul-
tiplication region (i. e. region 1 of the devices in Fig. 1.13) and, thus, gets
multiplied, while Idark,n is the dark current that originates after the multipli-
cation region (i. e. region 3 in Fig. 1.13) and does not suffer the avalanche
multiplication [15]. For this reason, the power spectrum of the equivalent noise
generator Gii can be written as

Gii = 2q(Idark,n + Idark,pM
2F ). (1.25)

On the other hand, the power spectrum of the voltage noise current source can
be modeled with an equivalent resistance Req [15], hence

Gee = 4kBTReq, (1.26)

where kB is the Boltzmann constant and T is the temperature.
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By substituting Eqs. 1.25 and 1.26 in Eq. 1.17 we get

σ2
N =

(
eEehp

qM

)2 [
kBTReqC

2
tot

2τs
+

qτs
4

(
Idark,n + Idark,pM

2F
)]

. (1.27)

Finally, the total energy resolution is given by

FWHM2 �FWHM2
int

+

(
2.35

eEehp

qMEph

)2 [
kBTReqC

2
tot

2τs
+

qτs
4

(
Idark,n + Idark,pM

2F
)]

,

(1.28)

where FWHMint is given by Eq. 1.23. From Eq. 1.28, we can notice that it
exists an optimum gain Mopt that allows to obtain the best energy resolution.
Mopt can be found by setting ∂FWHM2/∂M = 0. In Section 1.8, we will see
how the choice of M affects the energy resolution by looking at two practical
examples from the literature [7, 25].

1.8 APDs in III-V Compound Semiconductors

for X-Ray Detection

Many different architectures have been proposed for the fabrication of avalanche
photodiodes in III-V compound semiconductors for the detection of X-rays:
from simple p-i-n diodes [18, 28, 29, 30] to SAM-APDs featuring a uniform
[8, 25] or a staircase [7, 21, 22] multiplication region.

For the reasons reported in Section 1.3.2, AlxGa1−xAs, with different con-
centration of Al, is the most used for the realization of such devices. The p-i-n
APDs in [18, 28, 29, 30], for instance, exploit the large bandgap of Al0.8Ga0.2As
(Eg = 2.09 eV) and feature a 100-nm thick multiplication region. The best
energy resolution achieved is FWHM = 1.47 keV for the detection of 55Fe
photons (Eph = 5.9 keV), at room temperature.
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Figure 1.18: a) SAM-APD with a uniform Al0.8Ga0.2As multiplication region
for the detection of X-rays at Eph = 5.9 keV [8, 25]. b) SAM-APD with a
staircase Al0.45Ga0.55As/GaAs multiplication region for the detection of X-rays
at Eph = 13.96 keV [7, 21, 22].
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To improve the energy resolution of Al0.8Ga0.2As devices, [8, 25] realized
a SAM-APD that consists of a 400-nm GaAs intrinsic absorption region,
separated from the 100-nm intrinsic Al0.8Ga0.2As multiplication region by a
130-nm p-doped GaAs/Al0.8Ga0.2As charge sheet layer. The 300-nm n-doped
Al0.8Ga0.2As/GaAs layer between the multiplication region and the n+ GaAs
substrate avoids the depletion of the substrate when a bias voltage is applied.
A schematic representation of the structure is shown in Fig. 1.18a. The best
energy resolution for the detection of X-ray photons at Eph = 5.9 keV achieved
with this device is FWHM = 1.08 keV, at room temperature and with a gain
M = 3.6 [8, 25] (see Fig. 1.19a).

A staircase SAM-APD, based on Al0.45Ga0.55As/GaAs heterojunctions, was
instead proposed in [7, 21, 22] for the detection of X-rays at Eph = 13.96 keV.
The architecture of the APD, sketched in Fig. 1.18b, consists of a 4.5-µm
i-GaAs absorption region, separated from the multiplication region by a δ-p
doping with dose σ = 2.5×1012 cm−2. The multiplication region is the periodic
repetition of a structure composed by a 20-nm linearly graded i-AlxGa1−xAs
(x from 0 to 0.45), a 25-nm i-Al0.45Ga0.55As and a 35-nm i-GaAs layers. The
total length of the this region is ≃ 1 µm. Finally, a 200-nm n-GaAs layer is
placed between the n+-GaAs substrate. The best energy resolution that was
obtained at room temperature is FWHM = 0.9 keV for a gain M = 4.1 [7]
(see Fig. 1.19b).
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Figure 1.19: Energy resolution as a function of the gain for the devices of
a) Fig. 1.18a [8, 25] and b) Fig. 1.18b [7, 21] at Eph = 5.9 keV and Eph =
13.96 keV, respectively.

1.9 Aims and Structure of the Thesis

The aim of this work is the development of a set of simulation tools for the
study of the figures of merit (gain, excess noise factor, response time, band-
width and jitter) of Avalanche Photodiodes fabricated in III-V compound
semiconductors used for X-ray detection and operating in Linear mode, with
particular focus on the GaAs/AlGaAs staircase SAM-APD of Fig. 1.18b.

An overview of the existing models for impact ionization is provided in
Chapter 2, from the simple Local model to more complex approaches such as
Analytical and Full Band Monte Carlo transport simulators.
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The derivation and the implementation with a Finite Different scheme of
a new nonlocal history dependent impact ionization model are described in
Chapter 3. The model is then used to compute the gain and the excess noise
factor of p-i-n and staircase APDs fabricated with different III-V compound
semiconductors and to optimize the design of staircase APDs in terms of num-
ber of conduction band steps.

The Random Path Length implementation of the nonlocal history depen-
dent model described in Chapter 3 is presented in Chapter 4. The algorithm
describes carriers’ drift and diffusion as well as multiplication and is used to
compute the response time, the bandwidth and the jitter of APDs with differ-
ent structures.

The development, the implementation and the calibration for GaAs of a
Full Band Monte Carlo transport simulator (FBMC) are presented in Chap-
ter 5. The FBMC is used to compute the gain and the excess noise factor of
thin GaAs APDs, to analyze some major limitations of nonlocal history de-
pendent impact ionization models and to improve the calibration of the model
described in Chapter 3. The FBMC is also employed to compute M and F in
GaAs APDs with conduction band discontinuities.

Experimental characterization and DC, AC and time dependent TCAD
analyses of GaAs/AlGaAs staircase APDs are performed in Chapter 6. TCAD
simulations calibrated on experiments are used to predict the dark current and
the collection efficiency of the device fabricated by CNR-IOM (Trieste) in the
framework of a PRIN project coordinated by the University of Udine.

Finally, conclusions are drawn in Chapter 7.
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Chapter 2

Overview of Models for Charge
Multiplication in APDs

Accurate modeling of impact ionization is fundamental to extract reliable in-
formation from simulations of Avalanche Photodiodes and to understand how
changes in the device structure affect the figures of merit. In this Chapter,
we review the main models for charge multiplication that have been developed
and employed in the past by other authors, from the analytical Local Model to
more complex numerical models based on Full Band Monte Carlo transport
simulators.

2.1 The Local Model

The main assumption of the local impact ionization model is that the im-
pact ionization generation rate and, thus, the electron and hole ionization
coefficients (α(x) and β(x)), depend on variables at the same location x. In
particular α(x) and β(x) are functions of the electric field E(x) following the
Chynoweth’s law [31]:

α(x) = Aeexp

[︃
−
(︃

Ece

E(x)

)︃γe]︃
(2.1)

β(x) = Ahexp

[︃
−
(︃

Ech

E(x)

)︃γh
]︃
. (2.2)

The coefficients Ae,h, Ece,h and γe,h are chosen in order to reproduce experi-
mental measurements of multiplication currents in p-i-n diodes.

The device structure assumed in the following is the one shown in Fig. 2.1.
The p-i-n diode depletion region extends from x = 0 to x = W ; electrons
are swept by the electric field from left to right and move at constant average
velocity ve, while holes move from right to left with uniform average velocity vh.
If an electron-hole pair is injected at x = 0, pure electron injection is achieved
(as opposed to pure hole injection, that takes place when the injection occurs
at x = W ).
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Figure 2.1: Electric field profile and motion of carriers inside a p-i-n junction.

Under these circumstances, the electron and hole continuity equations can
be written as:

1

ve

∂Je(x, t)

∂t
= α(x)Je(x, t) + β(x)Jh(x, t) + qGopt(x, t) +

∂Je(x, t)

∂x
(2.3)

1

vh

∂Jh(x, t)

∂t
= α(x)Je(x, t) + β(x)Jh(x, t) + qGopt(x, t)−

∂Jh(x, t)

∂x
, (2.4)

where Je(x, t) and Jh(x, t) are, respectively, the electron and hole conduction
current densities and Gopt(x, t) is the optical generation rate, induced by pho-
tons absorbed at location x and time t in the APD.

2.1.1 Gain and Excess Noise Factor

The expressions for the gain, M(x), and the excess noise factor, F (x), in
the framework of the local model can be derived directly from the transport
equations (Eqs. 2.3, 2.4) but, for the sake of simplicity, instead of the current
densities Je(x, t) and Jh(x, t), we will use as unknowns the corresponding fluxes
ϕe(x, t) = −Je(x, t)/q and ϕh(x, t) = Jh(x, t)/q.

In steady-state conditions, current conservation implies

ϕ = ϕe(x) + ϕh(x) = const. (2.5)

dϕ

dx
= 0 ⇒ dϕe(x)

dx
= −dϕh(x)

dx
= α(x)ϕe(x) + β(x)ϕh(x) +Gopt(x) (2.6)

Equation 2.5 can be rewritten as ϕh(x) = ϕ− ϕe(x), thus

dϕe(x)

dx
= [α(x)− β(x)]ϕe(x) + β(x)ϕ+Gopt(x). (2.7)

The solution of 2.7 yields

ϕe(x) =

∫︂ x

0

[β(x′)ϕ+Gopt(x
′)] exp

(︄
−
∫︂ x′

0

[α(x′′)− β(x′′)] dx′′

)︄
dx′

· exp
(︃∫︂ x

0

[α(x′)− β(x′)] dx′
)︃
.

(2.8)
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Hence, the total flux ϕ = ϕe(W ) (ϕh(W ) = 0, since we are injecting an electron-
hole pair at x) can be expressed as

ϕ =

∫︁W

0
Gopt(x)exp

(︂∫︁W

x
[α(x′)− β(x′)] dx′

)︂
dx

1−
∫︁W

0
β(x′)exp

(︂∫︁W

x′ [α(x′′)− β(x′′)] dx′′
)︂
dx′

=

∫︂ W

0

Gopt(x)M(x)dx,

(2.9)
where

M(x) =
exp

(︂∫︁W

x
[α(x′)− β(x′)] dx′

)︂
1−

∫︁W

0
β(x′)exp

(︂∫︁W

x′ [α(x′′)− β(x′′)] dx′′
)︂
dx′

. (2.10)

The gain in the case of pure electron (M(0)) or hole (M(W )) injection can
be easily derived from Eq. 2.10.

M(0) =
1

1−
∫︁W

0
α(x′)exp

(︂
−
∫︁ x′

0
[α(x′′)− β(x′′)] dx′′

)︂
dx′

(2.11)

M(W ) =
1

1−
∫︁W

0
β(x′)exp

(︂∫︁W

x′ [α(x′′)− β(x′′)] dx′′
)︂
dx′

. (2.12)

It is also worth noting that M(x) can be expressed as a function of M(W )
using the following relation

M(x) = M(W )exp

(︃∫︂ W

x

[α(x′)− β(x′)] dx′
)︃
. (2.13)

Each generation term in Eqs. 2.3, 2.4 (αϕe, βϕh, Gopt) acts as a source of
shot noise. Knowing that M is transfer function of the system under consid-
eration, we can write the current noise spectral density as

Si =

∫︂ W

0

2q2 [α(x)ϕe(x) + β(x)ϕh(x) +Gopt(x)]M
2(x)dx (2.14)

and, by substituting Eq. 2.6 into Eq. 2.14, we obtain

Si = 2q2
∫︂ W

0

dϕe(x)

dx
M2(x)dx. (2.15)

Equation 2.15 can be solved integrating by parts (see Appendix A), which
leads to

Si = 2q2

{︄∫︂ W

0

Gopt(x)M
2(x)

[︄
2 +

2
∫︁W

0
β(x′)M2(x′)dx′

M(x)
− M2(W )

M(x)

]︄
dx

}︄

= 2q2
∫︂ W

0

Gopt(x)M
2(x)F (x)dx,

(2.16)
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where

F (x) = 2 +
M(W )

[︂
2
∫︁W

0
β(x′)exp

(︂
2
∫︁W

x′ [α(x′′)− β(x′′)] dx′′
)︂
dx′ − 1

]︂
exp

(︂∫︁W

0
[α(x′)− β(x′)] dx′

)︂ .

(2.17)
Finally, under the assumption of constant electric field, that implies α(x) =

α and β(x) = β, it is useful to express the gain and the excess noise factor as
a function of k = β/α [1, 32]. In case of pure electron injection we can write

M(0) = M =
(α− β) exp [(α− β)W ]

α− βexp [(α− β)W ]
=

1− k

exp [α (k − 1)W ]− k
(2.18)

F (0) = F = kM + (1− k)

(︃
2− 1

M

)︃
(2.19)

Figure 2.2 shows the excess noise factor as a function of the gain for different
values of k. Low values of F can be obtained only if k ≪ 1 [1]. It is also worth
nothing that, in the limit k → 0, F = 2− 1/M , which sets a lower limit F = 2
for the excess noise factor at high gains.
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Figure 2.2: Excess noise factor as a function of the gain, in the case of pure
electron injection, for k = 0.01, 0.25, 0.5, 0.75, 1.

Considering that the noise in staircase APDs is largerly influenced by hole
impact ionization in the constant electric field regions between consecutive
steps, the local model can be used to derive analytic expressions for the gain
and the excess noise factor in staircase APDs including hole impact ionization.
For example, in case of pure electron injection [32] proposes:

M(Pe, Ph, Nstep) =
(1 + Pe)

Nstep(1− kp)

(1 + kpPe)Nstep+1 − kp(1 + Pe)Nstep+1
(2.20)

F (Pe, Ph, Nstep) =1 +
(1− 1/M)(1− kp)

2 + Pe(1 + kp)

×
{︃
−Pe + 2

1− kpP
2
e

1 + kpPe

[︃
Mkp

1 + Pe

1− kp
+

1

1 + Pe

]︃}︃
,

(2.21)
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where Pe is the electron impact ionization probability at each step (see Sec-
tion 1.4), Nstep is the number of steps,

Ph =

∫︂ L

0

β(x)dx− 1 (2.22)

is the hole impact ionization probability in the layer of length L between two
steps and kp = Ph/Pe. As demonstrated in [32], in the limit kp → 0, Eqs. 2.20,
2.21 coincide with Eqs. 1.9, 1.10 in Section 1.4 [13].

2.1.2 Frequency Response

The frequency response of a p-i-n APD will be derived as a particular case
of the analysis performed in [33]. Assuming a uniform electric field in the
depletion region (α(x) = α, β(x) = β), in the Laplace domain the transport
equations (Eqs. 2.3 2.4) can be written in matrix form as

∂

∂x
I(x, s) = A(s)I(x, s) +Gopt(s)Q, (2.23)

where

I(x, s) =

[︃
Ie(x, s)
Ih(x, s)

]︃
(2.24)

A(s) =

[︃
(s/ve − α) −β

α (β − s/vh)

]︃
=

[︃
a11 a12
a21 a22

]︃
(2.25)

Q =

[︃
−q
q

]︃
(2.26)

and s = jω = j2πν (ν is the electronic signal frequency).
We will consider the case of pure electron injection, corresponding to a

current having the shape of a Dirac’s delta injected at x = 0, thus, with
reference to the scheme proposed in Fig. 2.1, the boundary conditions that
have to be applied to the differential equation in Eq. 2.23 are

Ie(0, s) = q (2.27)

Ih(W, s) = 0 (2.28)

The solution of Eq. 2.23 is

I(x, s) = exp [A(x, s)] I(0, s) +G(x, s), (2.29)

where

exp [A(x, s)] =

[︃
A11(x, s) A12(x, s)
A21(x, s) A22(x, s)

]︃
(2.30)

G(x, s) = Gopt(s)

∫︂ x

0

exp [A(x− x′, s)]Qdx′ =

[︃
G1(x, s)
G2(x, s)

]︃
(2.31)
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A11(x, s) =
λ2e

λ1x − λ1e
λ2x + a11

(︁
eλ2x − eλ1x

)︁
λ2 − λ1

(2.32)

A12(x, s) =
a12
(︁
eλ2x − eλ1x

)︁
λ2 − λ1

(2.33)

A21(x, s) =
a21
(︁
eλ2x − eλ1x

)︁
λ2 − λ1

(2.34)

A22(x, s) =
λ2e

λ1x − λ1e
λ2x + a22

(︁
eλ2x − eλ1x

)︁
λ2 − λ1

(2.35)

G1(x, s) =
qGopt(s)

λ2 − λ1

[︃
(a11 − a12 − λ2)

eλ1x − 1

λ1

+ (−a11 + a12 + λ1)
eλ2x − 1

λ2

]︃
(2.36)

G2(x, s) =
qGopt(s)

λ2 − λ1

[︃
(a21 − a22 + λ2)

eλ1x − 1

λ1

+ (−a21 + a22 − λ1)
eλ2x − 1

λ2

]︃
(2.37)

and λ1,2 are the eigenvalues of the matrix A(s) (Eq. 2.25)

λ1,2 =
(a11 + a22)±

√︁
(a11 + a22)2 − 4(a11a22 − a12a21)

2
. (2.38)

Since Ie(0, s) and Ih(W, s) are given by the boundary conditions (Eqs. 2.27,
2.28), Ih(0, s) can be derived from Eq. 2.29 as

Ih(0, s) =
Ih(W, s)− A21(W, s)Ie(0, s)−G2(W, s)

A22(W, s)
. (2.39)

Finally the impulse response in the Laplace domain is given by the Ramo’s
theorem [34]

I(s) =
1

W

∫︂ W

0

[Ie(x, s) + Ih(x, s)] dx

= [A11(s) + A21(s)] Ie(0, s) + [A21(s) + A22(s)] Ih(0, s) +G1(s) +G2(s),

(2.40)

where A11(s), A12(s), A21(s), A22(s), G1(s) and G2(s) are, respectively, the in-
tegrals over x of A11(x, s), A12(x, s), A21(x, s), A22(x, s), G1(x, s) and G2(x, s).

The study of Eq. 2.29 at different values of α and k = β/α allows us to
extract the 3dB bandwidth of the APD as a function of the gain (see Sec-
tion 1.3). By assuming ve = vh = v, [12] demonstrated that, if we denote
M = M(ω = 0) and M > 1/k, we can write

M(ω) ≃ M√︂
1 + ω2M2T 2

tr,eff

, (2.41)

where Ttr,eff = NkTtr is the effective transit time, Ttr = W/v is the actual
transit time across the multiplication region and N is a number that varies
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slowly between 1/3 and 2 as k goes from 1 to 10−8 [12]. Figure 2.3 shows the
3dB bandwidth as a function of the gain for different values of k, we notice
that the constant gain-bandwidth product implied by Eq. 2.41 decreases as k
approaches unity.

ω

Figure 2.3: Normalized 3dB bandwidth as a function of the gain, in the case
of pure electron injection, for k = 0.01, 0.05, 0.2, 0.5, 1. Data taken from [12].

Interestingly, as detailed in [33], the local model can be used also to study
the frequency response of staircase APDs by considering Nstep layers where
uniform conditions can be assumed, so that, given the boundary conditions in
Eqs. 2.27, 2.28, Eq. 2.23 can be solved for each stage of the device by exploiting
recursion.

2.2 Nonlocal Models

In principle, the position where a carrier is generated, optically or by impact
ionization, plays a significant role in determining its ionization probability.
In fact, a carrier that starts its path with almost zero kinetic energy has to
travel a certain distance, often referred to as dead space (de,h for electron and
holes respectively [35]), before gaining an energy that is sufficient for impact
ionization.

As stated in Section 2.1, the local model assumes that, at position x, the
electron and hole impact ionization coefficients depend only on the value of the
local electric field at the same location (E(x)). It is clear that this hypothesis
is valid only if the width of the multiplication region and the distances over
which the electric field varies are much longer than the dead space.

Modern technologies for the device fabrication, such as Molecular Beam
Epitaxy (MBE), allow to control the thickness of the different layers that form
an APD almost at a nanometric scale. This translated into the fabrication
of p-i-n APDs with very thin intrinsic region [36, 37, 38], of APDs where
heterojunctions are exploited to induce steep variations of the electric field
profile [24] and of staircase APDs with steps that have lengths of few tens of
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nm [7, 21, 22]. To study the behavior of these devices, models that include
in the computation of the impact ionization probability the information of
both the point where the carrier is generated and the point where impact
ionization occurs have been developed. These models are called nonlocal or
history dependent models.

The importance of including the nonlocality principle in the computation of
the the ionization probability for the study, for instance, of short p-i-n diodes is
visible in Fig. 2.4. In fact, while the local model, using the parameters of [17],
predicts an increase of the excess noise factor for a given gain as the thickness
of the diode shortens, experimental results (for GaAs in this case) show the
opposite behavior [23].
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Figure 2.4: Comparison between the measured excess noise factor versus gain
curves for GaAs p-i-n diodes [23] and the predictions of the local model using
the parameters of [17].

The situation that we will consider for the derivation of the expressions for
the gain and the excess noise factor is similar to the one sketched in Fig. 2.1,
but now we will denote as x the position where a carrier is generated and as
x′ the position at which it ionizes.

p i n

x0 W

-
+

ve

vh

'x

Figure 2.5: Motion of carriers inside a p-i-n junction in the framework of a
nonlocal model: x is the position where a carrier is generated (optically or by
impact ionization), while x′ is the point where impact ionization occurs.

Two main nonlocal models can be found in the literature, namely the Dead
Space model [35] and the model based on Effective Fields by [39]. They differ
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in the way they compute the impact ionization coefficients α(x|x′) and β(x|x′),
but they share the same set of equations for the derivation of the gain and the
excess noise. Hereafter, the equations proposed in [35] will be presented with
the notation used in [39].

2.2.1 Gain and Excess Noise Factor

The position dependent impact ionization coefficients (α(x|x′) for electrons
and β(x|x′) for holes) are defined as the probability for a carrier generated
at x to suffers an impact ionization event at x′, within the incremental dis-
tance dx′, assuming that it travels from x to x′ without having other ionizing
collisions. Consequently, the electron and hole position dependent impact ion-
ization probabilities are:

pe(x|x′)dx′ = α(x|x′)exp

(︃
−
∫︂ x′

x

α(x|x′′)dx′′
)︃
dx′ = α(x|x′)Pse(x|x′)dx′

(2.42)

ph(x|x′)dx′ = β(x|x′)exp

(︃
−
∫︂ x

x′
β(x|x′′)dx′′

)︃
dx′ = β(x|x′)Psh(x|x′)dx′,

(2.43)

where Pse(x|x′) and Psh(x|x′) are the electron and hole survival probabilities,
thus, the probability for a carrier to travel from x to x′ without ionizing during
its path.

We consider now an electron generated, optically or by impact ionization,
at position x that ionizes at position x′. This primary electron will give birth
to a secondary electron-hole pair, so that, at the end of the process, we find
two electrons and a hole in x′ (see Fig. 2.6a). Secondary carriers may, subse-
quently, suffer impact ionization scattering events and generate more electron-
hole pairs. The total number of carriers generated by the ionization in x′ of
an electron generated in x is

ne(x|x′) = ne1(x
′) + ne2(x

′) + nh(x
′), (2.44)

where ne1(x
′), ne2(x

′) and nh(x
′) are the number of carriers generated by the

ionization of the primary electron, the secondary electron and the secondary
hole, respectively. A similar reasoning can be applied for the ionization in x′

of a hole that was generated in x. This results in two holes and an electron in
x′ (Fig. 2.6b) and, thus, we can write

nh(x|x′) = nh1(x
′) + nh2(x

′) + ne(x
′). (2.45)
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Figure 2.6: a) An electron generated in x ionizes in x′. In x′ we find the
primary electron and a secondary electron-hole pair. b) A hole generated in
x ionizes in x′. In x′ we find the primary hole and a secondary electron-hole
pair.

If we denote the ensemble averages as

Ne(x|x′) = ⟨ne(x|x′)⟩ (2.46)

Nh(x|x′) = ⟨nh(x|x′)⟩ (2.47)

Ne(x
′) = ⟨ne(x

′)⟩ (2.48)

Nh(x
′) = ⟨nh(x

′)⟩, (2.49)

then Eqs. 2.44, 2.45 become

Ne(x|x′) = 2Ne(x
′) +Nh(x

′) (2.50)

Nh(x|x′) = 2Nh(x
′) +Ne(x

′) (2.51)

The total number of carriers, in x, resulting from the ionization of the
primary electron or hole (Ne(x) and Nh(x), respectively) can be found by
integrating over x′ Eqs. 2.50, 2.51, namely

Ne(x) = Pse(x|W ) +

∫︂ W

x

[2Ne(x
′) +Nx(x

′)] pe(x|x′)dx′ (2.52)

Nh(x) = Psh(x|0) +
∫︂ x

0

[2Nh(x
′) +Ne(x

′)] ph(x|x′)dx′. (2.53)

In Eqs. 2.52, 2.53, the first term is the probability that the primary carrier
reaches the boundary of the multiplication region without suffering impact
ionization scattering; on the other hand, the second term is the average num-
ber of ionizations that result from a first ionization that occurred anywhere
between x and W , for electrons, or between 0 and x, for holes [39].

The gain is

M(x) =
Ne(x) +Nh(x)

2
(2.54)

The expression for the excess noise factor can by found by substituting
Eq. 2.54 into Eq. 1.6, which yields

F (x) =
⟨m(x)2⟩
M(x)2

=
⟨(ne(x) + nh(x))

2⟩
4M(x)2

=
⟨ne(x)

2⟩+ ⟨nh(x)
2⟩+ 2Ne(x)Nh(x)

4M(x)2
.

(2.55)
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⟨ne(x)
2⟩ and ⟨nh(x)

2⟩ can be derived from Eqs. 2.45-2.53 as follows

⟨ne(x)
2⟩ = Pse(x|W ) +

∫︂ W

x

⟨(ne1(x) + ne2(x) + nh(x))
2⟩pe(x|x′)dx′

= Pse(x|W ) +

∫︂ W

x

[2⟨ne(x
′)2⟩+ ⟨nh(x

′)2⟩+ 2Ne(x
′)2 + 4Ne(x

′)Nh(x
′)]

× pe(x|x′)dx′

(2.56)

⟨nh(x)
2⟩ = Psh(x|0) +

∫︂ x

0

⟨(nh1(x) + nh2(x) + ne(x))
2⟩ph(x|x′)dx′ =

= Psh(x|0) +
∫︂ x

0

[2⟨nh(x
′)2⟩+ ⟨ne(x

′)2⟩+ 2Nh(x
′)2 + 4Ne(x

′)Nh(x
′)]

× ph(x|x′)dx′.

(2.57)

Usually, Eqs 2.52, 2.53, 2.56, 2.57 are solved by successive iterations once
that the boundary conditions Ne(W ) = Nh(0) = 1 are given [35, 39].

2.2.2 Dead Space Model

As stated at the beginning of Section 2.2, a carrier needs to travel across a finite
distance, the dead space length (de,h for electrons and holes, respectively), in
order to acquire an energy that is sufficient for its ionization. The Dead Space
model, proposed by [35], translates this concept into a threshold behavior for
the electron and hole impact ionization probabilities:

pe(x|x′) =

{︄
0, x′ < x+ de(x)

α(x′)exp(−
∫︁ x′

x+de(x)
α(x′′)dx′′), x+ de(x) ≤ x′ ≤ W

(2.58)

ph(x|x′) =

{︄
0, x− dh(x) < x′

β(x′)exp(−
∫︁ x−dh(x)

x′ β(x′′)dx′′), 0 ≤ x′ ≤ x− dh(x)
(2.59)

In fact, in Eqs. 2.58, 2.59, we notice that the ionization probability is set to
zero if a carrier still has to travel over a distance equal to its dead space length,
while it is an exponential decaying function otherwise.

The impact ionization coefficients are computed using Eqs. 2.1, 2.2, while
the dead space lengths depend on the reciprocal of the electric field through
the following relations:

de(x) =
Eth,e

qE(x)
(2.60)

dh(x) =
Eth,h

qE(x)
, (2.61)

where Eth,e and Eth,h are the threshold energies required to trigger impact
ionization in the considered material. The parameters for the computation
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of the impact ionization coefficients and the threshold energies are chosen in
order to reproduce experimental results for the excess noise factor as a function
of the gain in p-i-n APDs [38] (see Tab. 2.1 and Fig. 2.7).

GaAs Al0.2Ga0.8As InP In0.52Al0.48As
Ae [106/cm] 6.01 5.39 3.01 4.17
Ece [106V/cm] 2.39 2.71 2.45 2.09
γe - 0.90 0.94 1.08 1.20
Eth,e eV 1.90 2.04 2.20 2.00
Ah [106/cm] 3.59 1.28 4.29 2.65
Ech [106V/cm] 2.26 2.06 2.08 2.79
γh - 0.92 0.95 1.12 1.07
Eth,h eV 1.55 2.15 2.20 2.00

Table 2.1: Parameters for the computation of the impact ionization coefficients
and of the dead space lenghts using the Dead Space model [38].
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Figure 2.7: Comparison between the excess noise factor versus gain curves
measured for GaAs p-i-n diodes of different thicknesses (symbols) and the
ones obtained with the Dead Space model using the parameters of Tab. 2.1.
Data taken from [38].

In Fig. 2.7 we notice that the Dead Space model correctly predicts the
reduction of the excess noise factor for a given gain that is experimentally
measured in p-i-n APDs as the diode thickness shortens.

Figure 2.8 compares the electron and holes impact ionization coefficients
measured for GaAs and the corresponding α and β computed using the pa-
rameters in Tab. 2.1 for the same material [38]. The difference between the
experiments and the coefficients used in the model can be explained by looking
at the fact that the model coefficients are valid once that a carrier has already
traveled over its dead space length. On the other hand, the information on
the dead space lengths is somewhat included in the measurements [40].
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Figure 2.8: Comparison between the experimental impact ionization coeffi-
cients for a) electrons and b) holes [17] in GaAs and the ones used in the Dead
Space model [38].

In [40], a relation between the experimental impact ionization coefficients
(αm and βm) and the ones that have to be used in the Dead Space model is
proposed, given that the electron and hole ionization threshold energies (Eth,e

and Eth,h) are known with accuracy. The probability that an electron travels
from x to x′ without ionizing can be derived from Eq. 2.58, namely

Pse(x|x′) =

{︄
1, x′ < x+ de(x)

exp [−α(x′ − x− de)] , x+ de(x) ≤ x′ ≤ W.
(2.62)

If we assume that the electron has been generated by the previous ionization of
its parent electron, then we now have two electrons in x that start their motion
and the probabilities that they reach x′ without suffering an impact ionization
scattering event are, respectively Pse,1(x|x′) and Pse,2(x|x′). The probability
that they both reach x′ without ionizing is Pse,j(x|x′) = Pse,1Pse,2, thus

Pse,j(x|x′) =

{︄
1, x′ < x+ de(x)

exp [−2α(x′ − x− de)] , x+ de(x) ≤ x′ ≤ W.
(2.63)

The joint impact ionization probability ∂(1− Pse,j)/∂x
′ is

pe,j(x|x′) =

{︄
0, x′ < x+ de(x)

2αexp [−2α(x′ − x− de)] , x+ de(x) ≤ x′ ≤ W.
(2.64)

From Eq. 2.64 it is possible to extract the mean distance between two
consecutive impact ionization events

xii,e =

∫︂ ∞

0

x′pe,j(0|x′)dx′ =
1

2α
+ de, (2.65)

where de is computed using Eq. 2.60 once that Eth,e is known.
From the experimental measurements, instead, the impact ionization coeffi-

cient is related to the mean distance between two consecutive impact ionization
events by the relation

αm =
1

2xii,e

. (2.66)
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The expression in Eq. 2.66 can be found by using Eq. 2.65, substituting α with
αm and setting de = 0 in Eq. 2.64.

Finally, by equating Eq. 2.65 and Eq. 2.66 we can derive the relation be-
tween αm and α.

αm =
1

1
α
+ 2de

. (2.67)

A similar relation holds also between βm and β [40].
Interestingly, [41] demonstrated that, in the framework of the Dead Space

model, an expression for the position dependent gain M(x) similar to Eq. 2.10
can be obtained from a first order expansion of the recursive Eqs. 2.52 and
2.53 if α and β in Eq. 2.10 are replaced by suitable effective impact ionization
coefficients that include the effects of dead space.

2.2.3 Model Based on Effective Fields

The history dependent model proposed by [39] starts from the same assump-
tions of the Dead Space model of [35] described in Section 2.2.2, but the hard
threshold expressions of the impact ionization probabilities typical of the Dead
Space model are substituted by a soft threshold behavior that tries to better
reproduce the physics of impact ionization [39]. This is achieved by defin-
ing suitable effective fields for electrons and holes by convolution of the local
electric field with Gaussian functions with characteristic lengths λe and λh,
respectively. Hence,

Eeff,e(x|x′) =

∫︂ x

x′
E(x′′)

2√
πλe(x′′)

exp

(︃
−(x′ − x′′)2

λ2
e(x

′′)

)︃
dx′′ (2.68)

Eeff,h(x|x′) =

∫︂ x′

x

E(x′′)
2√

πλh(x′′)
exp

(︃
−(x′′ − x′)2

λ2
h(x

′′)

)︃
dx′′, (2.69)

where

λe(x) =
Vde

E(x)
(2.70)

λh(x) =
Vdh

E(x)
. (2.71)

Vde and Vdh represent the voltage drop across the electron and hole dead space
lengths [39].

Finally, the nonlocal impact ionization coefficients are computed using the
following expressions:

α(x|x′) = Aeexp

[︃
−
(︃

Ece

Eeff,e(x|x′)

)︃γe]︃
(2.72)

β(x|x′) = Ahexp

[︃
−
(︃

Ech

Eeff,h(x|x′)

)︃γh
]︃
, (2.73)

that are essentially Eqs. 2.1 and 2.2 with the effective fields instead of the
local electric field. The model parameters for different materials, Ae,h, Ece,h,
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γe,h and Vde,h, are chosen in order to fit experimental results for the gain as a
function of the applied bias voltage and for the excess noise factor versus the
gain [36] (see Tab. 2.2 and Fig. 2.9).

GaAs Al0.2Ga0.8As InP In0.52Al0.48As
Ae [106/cm] 3.30 88.3 2.91 19.9
Ece [106V/cm] 1.75 3.74 2.80 3.62
γe - 1.00 1.00 1.00 1.00
Vde V 2.00 2.20 1.90 2.00
Ah [106/cm] 0.69 6.47 12.4 3.21
Ech [106V/cm] 1.38 2.72 3.05 3.23
γh - 1.00 1.00 1.00 1.00
Vdh V 2.25 2.48 2.14 2.25

Table 2.2: Parameters for the computation of the impact ionization coefficients
in the nonlocal model base on effective fields [36].
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Figure 2.9: Comparison between the a) gain versus applied voltage and b) ex-
cess noise factor versus gain curves measured for GaAs p-i-n diodes of different
thicknesses (symbols) and the ones obtained with the nonlocal model based
on effective fields using the parameters of Tab. 2.2. Data taken from [36].
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Figure. 2.9 shows that the nonlocal model based on effective fields well fits
the experimental results of thin GaAs p-i-n diodes. In particular, the decrease
in the excess noise factor for a given gain as the diode shortens is correctly
reproduced.

In Fig. 2.10 we can notice that, for the same reasons explained in Sec-
tion 2.2.2, the impact ionization coefficients for GaAs computed using the pa-
rameters of Tab. 2.2 [36] slightly differ from the ones experimentally measured
in [17].

2.2.4 Time and Frequency Response: the Random Path
Length Algorithm

Analytic expressions for the derivation of the time and frequency response in
the framework of nonlocal models have been proposed in the literature. In [42],
for instance, a set of equations to be solved by successive iterations, similar to
the one of Section 2.2.1, was developed to compute the evolution in time of
number of carriers using the Dead Space model. On the other hand, in [39] the
transport equations (Eq. 2.3, 2.4) have been solved in the time domain and
rewritten as a function of the nonlocal impact ionization probabilities pe(x|x′)
and ph(x|x′).

Interestingly, the problem at hand has been also tackled in [43, 44] using
a Monte Carlo approach combined with the view of the Dead Space model,
to mimic the motion of the carriers inside the multiplication region of a p-i-n
APD. Due to its easy implementation and to its usefullness in the rest of this
thesis, in this Section we will review this latter algorithm, called Random Path
Length (RPL) as originally proposed in [43, 44].

Firstly, from Eq. 2.62, the distance that an electron travels before its ion-
ization can be computed by equating its survival probability Pse(x|x′) to a
random number r, generated with uniform distribution in the [0, 1] interval,
namely

r = Pse(x|x+ le) ⇒ le = de −
ln(r)

α
. (2.74)

A similar expression holds also for lh, the random distance that a hole travels
before its ionization.

The RPL algorithm simulatesNev independent trials; each trial corresponds
to the absorption of a photon in the APD. For each trial, an electron-hole pair
is injected at position x ∈ [0,W ], then, for each carrier:

1. le,h is computed.

2. If x′ = x+ le /∈ [0,W ] (x′ = x− lh, for holes), the carrier is collected by
the contact, otherwise the gain of the trial (mi) is increased by one and
a new electron hole pair is generated in x′.

3. The simulation of a single trial ends when all the carriers have been
collected by the contacts.
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The mean gain and excess noise factor can be finally computed as

M =
1

Nev

Nev∑
i=1

mi (2.75)

F =
1

NevM2

Nev∑
i=1

m2
i (2.76)

Assuming constant velocities for electrons and holes [44], ve and vh respec-
tively, it is easy to compute the time required for a carrier to travel from x to
x′ and to keep track, for each trial, also of the number of electrons and holes
at time t, nei(t) and nhi(t). Then, the mean current as a function of the time
can be computed using Ramo’s Theorem [34]

i(t) =
q

W
[veNe(t) + vhNh(t)] , (2.77)

where

Ne,h(t) =
1

Nev

Nev∑
i=1

ne,hi(t). (2.78)

The procedure detailed in this Section is valid only for p-i-n APDs, the use
of the RPL algorithm in combination with a generic nonlocal model for the
study of staircase APDs will be detailed in Chapter 4.

Figure 2.11 shows the current waveforms as a function of the time, in
the case of pure electron injection at x = 0, computed with the RPL algo-
rithm and the parameters of [43] for GaAs p-i-n APDs with thickness d =
100, 500, 1000 nm and at two different gains, M = 5 and M = 10. We no-
tice that, at a given gain, the duration of the current waveform increases as
the thickness of the APD increases. However, the increased duration is com-
pensated by a reduction of the amplitude of the peak, so that, for all the
thicknesses,

∫ +∞
0

i(t)dt = Mq.

μ

Figure 2.11: Current waveforms as a function of time for GaAs p-i-n APDs at
gains M = 5 (black solid line) and M = 10 (red dotted line). The thickness of
the device is a) d = 100 nm, b) d = 500 nm and c) d = 1 μm. The computation
has been performed with the RPL algorithm, using the parameters of [43].
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The 3dB bandwidth can be easily calculated from the Fourier transforms
of the current waveforms computed with the RPL algorithm by using the
procedure described in Section 1.3.

2.3 Monte Carlo Models

The Monte Carlo method for the solution of the Boltzmann Transport Equa-
tion in semiconductor devices consists of the simulation of the carriers’ motion
inside the semiconductor crystal taking into account the action of the applied
electric field and of scattering mechanisms [45]. The carrier’s motion is repro-
duced by means of successions of free flights interrupted by scattering events.
The scattering mechanism responsible for the interruption of the free flight is
randomly chosen according to the probability of occurrence of each scattering
mechanism [45].

A detailed description of the Monte Carlo method is provided in [45, 46],
in this Section, instead, we will review some applications of Monte Carlo sim-
ulations for the study of the performance of APDs. In fact, the mean gain,
the excess noise factor and the time response of APDs can be computed with
Monte Carlo simulations by using Eqs. 2.75, 2.76 and 2.77 introduced in Sec-
tion 2.2.4 for the RPL algorithm [47]. Moreover, differently to the local and
nonlocal models described in Sections 2.1 and 2.2, Monte Carlo models give a
full description of the particles’ dynamics up to and above the energies required
to trigger avalanche multiplication in the considered material [48].

In the following, results of analytical and full band Monte Carlo simulations
will be presented separately.

2.3.1 Analytical Monte Carlo Simulations

In this Section we will review some interesting results concerning analytical
Monte Carlo simulations of GaAs and AlxGa1−xAs APDs. In analytical Monte
Carlo simulations, the transport is described by means of an effective dispersion
relation in the form

Ek(1 + αεEk) =
ℏ2k2

2m∗ (2.79)

where Ek is the kinetic energy, k is the wavevector, αε is the nonparabolicity
correction factor, m∗ is the carrier’s effective mass at the valley minima and
ℏ is the reduced Planck’s constant [49]. αε and m∗ are usually adjusted to
reproduce the shape of the band diagram around a minimum.

Acoustic and optical carrier-phonon scattering rates are described by effec-
tive coupling constants that are chosen in order to fit experimental results for
the drift velocity as a function of the applied electric field [49, 48]. Figure 2.12
compares the results of the analyticl Monte Carlo simulations of [48] with the
experimental results of [50] or with the results of other MC simulations [51],
showing a good mutual agreement.
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Figure 2.12: a) Electron and b) hole drift velocity as a function of the applied
electric field in GaAs at T = 300 K. Results obtained with analytical Monte
Carlo simulations by [48] (red circles) are compared with the experimental
results in [50] or with other MC simulations [51]. Data are taken from [48]
(black lines).
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The impact ionization scattering rate as a function of the carrier’s kinetic
energy Ek is computed using the Keldysh expression [52, 53]

SRII = CII

[︃
Ek − Eth

Eth

]︃n
, (2.80)

where CII , Eth and n are fitting parameters chosen to reproduce through Monte
Carlo simulations the experimental impact ionization coefficients [47] or exper-
imental measurements of gain and excess noise factor in homojunction APDs
[54]. Momentum conservation is neglected and the difference between the
energy of the primary ionizing carrier and the bandgap is usually equally di-
vided between the three secondary particles [48, 47]. Figure 2.13 compares the
electron’s and hole’s impact ionization coefficients extracted by [47] by using
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analytical Monte Carlo simulations with the ones experimentally determined
bi [17]. At electric fields below E = 5 × 105 V/cm, where a comparison is
possible, the agreement is good.

Analytical band Monte Carlo simulations have been exploited by [49] to
analyze the dependence on the position of the impact ionization coefficients
in GaAs and AlxGa1−xAs APDs of different thickness. To compute α(x), [49]
used the expression

α(x) =
1

Je(x)

{︃[︃
dJe(x)

dx

]︃
electron II

}︃
, (2.81)

where Je(x) is the electron current flux and dJe(x)/dx is the change in Je(x)
in the [x, x + dx] interval caused by electron’s impact ionization. A similar
expression holds also for β(x). Figure 2.14 shows the position dependent im-
pact ionization coefficients computed by [49] for two GaAs p-i-n diodes with
thickness d = 0.1 µm and d = 1.0 µm in the case of electron injection at x = 0.
We can notice that both α(x) and β(x) saturate to a constant value after few
tens of nm.
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Figure 2.14: Position dependent impact ionization coefficients in GaAs p-i-n
diodes of thickness a) d = 0.1 µm and b) d = 1.0 µm computed by using
analytical Monte Carlo simulations. Data are taken from [49].

An interesting application of analytical Monte Carlo simulations is the one
proposed in [54]. Using a model similar to the one of [49] and after hav-
ing calibrated it to reproduce experimental results for the gain and excess
noise factor in GaAs, Al0.2Ga0.8As and Al0.6Ga0.4As p-i-n APDs, [54] used
Monte Carlo simulations to analyze how the performance of a heterojunction
Al0.6Ga0.4As/GaAs/Al0.6Ga0.4As APD are affected by the carrier’s initial in-
jection energy and by the thickness of the GaAs layer.

Figure 2.15 points out that when III-V compounds and their alloys with a
metal are stacked to form devices such as the heterojunction APD in [54], it
exists an optimum thickness for the layer of the quantum well that minimizes
the excess noise factor at a given gain. Increasing the thickness of the quantum
well from 60 nm to 100 nm translates into an increase of the excess noise factor,
since dead space effects become less relevant, while decreasing the thickness of
the GaAs layer from 60 nm to 20 nm translates into an increase of the excess
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noise factor because the device tends to act as a homojunction alloy APD,
that shows a higher noise [54].
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factor versus gain curves of an Al0.6Ga0.4As/GaAs/Al0.6Ga0.4As APD on the
thickness of the GaAs layer. Data are taken from [54].

Finally, analytical Monte Carlo simulations have also been used to compute
the time response and the bandwidth of APDs in GaAs [55, 56] and other III-V
compound semiconductors [57].

2.3.2 Full Band Monte Carlo Simulations

A detailed description of a Full Band Monte Carlo transport simulator will be
given in Chapter 5. In this Section, instead, only the main results concerning
the simulation of APDs in III-V compound semiconductors obtained by other
authors will be presented.

In Full Band Monte Carlo simulations the band structure and the scat-
tering rates are computed as a function of the wave vector k⃗ and stored in
look-up tables. Since the computation of these quantities in the entire First
Brillouin Zone can be very computationally demanding, usually calculations
are performed by exploiting the symmetry of the crystal (e. g. diamond and
zinc-blende crystals, such as Si and GaAs, have a 48-fold symmetry). A com-
mon method for the computation of the band structure in Full Band Monte
Carlo simulations is the Empirical Pseudopotential Method (EPM) described
in its local and nonlocal implementations in [58] and [59] respectively, while
the scattering rates are computed by using the Fermi Golden Rule, that im-
plies momentum and energy conservation. Usually, the expressions reported
in [60], for the calculations of the scattering rates, that use effective coupling
constants chosen to reproduce the experimental drift velocities as a function of
the applied electric field, are employed. Figure 2.16 shows the carrier-phonon
and impact ionization scattering rates for electrons and holes used in the Full
Band Monte Carlo simulations of [61] and [62]. Since [61] does not report the
holes’ scattering rates, a comparison is possible only for electrons. We can
notice that, even if the results between the two authors for both the electron-
phonon and the impact ionization scattering rates are slightly different, the
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drift velocities versus applied field curves are in good mutual agreement and
correctly reproduce the experimental results of [50] (see Fig. 2.17a). The simu-
lations of [61] and [62] are also able to fit the experimental results for the drift
velocity of holes (Fig. 2.17b). It is worth noting that the complete Full Band
calculation of the impact ionization scattering rate is so demanding in terms
of computational time that often several approximation are adopted even in
Full Band Monte Carlo simulators. In [61], for instance, the impact ionization
scattering rate is computed only as a function of the carrier energy using, for
each band, the expression

SRII,j = CII,j [Ek − Eth,j]
nj , (2.82)

where Ek is the carrier’s energy and j is the band index; [62], instead, used a
Full Band approach but neglected the momentum conservation, using the so
called random-k approximation proposed by [63].
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Figure 2.16: Comparison between the a) electron and b) hole scattering rates
as a function of the carrier’s energy used for GaAs in the Full Band Monte
Carlo simulators of [61] (red) and [62] (blue). The solid lines represent the
carrier-phonon scattering rates, while the dotted lines are the impact ionization
scattering rates.
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field. The results of the Full Band Monte Carlo simulations of [61] (red circles)
and [62] (blue squares) are compared with the experimental results of [50] and
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The electron and hole impact ionization coefficients extracted in [47] and
in [62] are compared in Fig. 2.18 with the experimental results of [17] and both
the simulators fairly reproduce the measured data.
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Figure 2.18: a) Electron and b) hole impact ionization coefficients as a func-
tion of the reciprocal of the electric field. The results obtained by the Full
Band Monte Carlo simulations of [61] (red circles) and [62] (blue squares) are
compared with the experimental results of [17] (black solid lines).

Full band Monte Carlo simulations are exploited in [61] to extract the gain
and excess noise factor (with Eqs. 2.75 and 2.76) (see Fig. 2.19, the probability
of impact ionization as a function of the position inside the multiplication
region and also the temporal behavior of GaAs p-i-n APDs in Linear mode
[65].
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Figure 2.19: a) Gain versus applied bias voltage and b) excess noise factor
versus gain curves for GaAs p-i-n diodes with thickness d = 100 nm (black)
and d = 200 nm (red). The experimental results of [66] (filled symbols) and
[67] (empty symbols) are compared with the results of the Full Band Monte
Carlo simulations of [61] (solid lines).

On the other hand, [62, 68] used Full Band Monte Carlo simulations to
study the breakdown probability and the mean time to breakdown as a function
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of the applied bias in single photon APDs in GaAs and other III-V compound
semiconductors operating in Geiger mode.
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Chapter 3

The Energy Balance History
Dependent Model

In this Chapter, a new nonlocal model for the computation of the gain and
the excess noise factor in p-i-n and staircase APDs, in the following referred
to as the Energy Balance History Dependent Model, will be introduced. Our
aim is to use the developed model to study, in DC, the figures of merit of
complex structures, such as staircase APDs, and to understand how changes
in the design of these devices affects their gain and the excess noise factor.
The results that will be presented in the following are an extension of the ones
published by the author of this thesis in [69, 70, 71, 72].

3.1 Derivation of the Model’s Equations

The application of the nonlocal models described in Section 2.2 to staircase
APDs (or to APDs that exploit variations in the doping concentration to mod-
ulate the electric field in the multiplication region [24]) is not straightforward.
For instance, to mimic what happens in the presence of a heterojunction,
Ref. [73] used the Dead Space model taking into account the fact that, at a
given electric field, the dead space of a hot carrier is reduced w. r. t. the
one of a cold carrier, while [24] introduced the concept of scattering aware
ionization coefficients, assuming that a carrier becomes cold if it travels for
a suitably-defined distance across a region with an electric field below a spe-
cific threshold. On the other hand, the nonlocal model based on electric fields
proposed by [39], is not applicable to staircase APDs because it relates the
parameters λe and λh to the reciprocal of the electric field, that is singular at
conduction or valence band discontinuities (see Eqs. 2.70 and 2.71).

Inspired by [74, 75], to overcome the limitations of the nonlocal models
described in Section 2.2, we present an improved nonlocal model applicable
to interpret the electrical measures of staircase APDs. The starting point of
the derivation of the model’s equations is the approximate solution (with the
method of moments) of the Boltzmann Transport Equation (BTE) as done in
[75]. The derivation of the model’s equation will be detailed here for electrons,
but the same calculations can be adapted to holes.
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The zero-th and second order moments of the BTE, that correspond to
charge continuity and energy conservation, are

∂ne

∂t
+∇ · (nev⃗e) = Ce (3.1)

ne
∂new

∂t
+∇ · Q⃗+ w∇ · (nev⃗e) + nev⃗e · ∇w +∇ · (nekBT̂ v⃗e) + qnev⃗e · E⃗ = CW .

(3.2)

By substituting Eq. 3.1 into Eq. 3.2 we get

ne
∂w

∂t
+∇ · Q⃗+ nev⃗e · ∇w +∇ · (nekBT̂ v⃗e) + qnev⃗e · E⃗ = CW − Cew, (3.3)

where w is the average carrier energy, ve⃗ is the average velocity, E⃗ is the
electric field, Q⃗ =

∫︁
1
2
mc2c⃗fd3u is the heat flux, f(ux, uy, uz) is the distribution

function, c⃗ = u⃗ − v⃗e is the random component of the carrier velocity, T̂ is a
tensor defined as: nkBTij =

∫︁
mcicjfd

3u, Ce and CW are the collision terms.
We can then write

w =

∫︁
1
2
mu2fd3u∫︁
fd3u

=
1

2
mv2e +

1

2
kB(T11 + T22 + T33). (3.4)

We will now use the following approximations:

� Instead of the tensor T̂ , we use the scalar quantity Te.

� CW −Cew = −ne
w−w0

τw
(relaxation time approximation), w0 =

3
2
kBT0, T0

is the lattice temperature.

� Q⃗ = −ke∇Te, ke is the thermal conductivity.

Assuming steady-state conditions, knowing that J⃗e = −qnev⃗e and taking into
account continuity equations, it is possible to rewrite Eq. 3.3 as

−∇ ·

[︄
ke∇Te +

J⃗e

q
(w + kBTe)

]︄
= E⃗ · J⃗e − ne

w − w0

τW
− Uew, (3.5)

where Ue = R − G is the recombination-generation function. We now make
three additional simplifications:

� Q⃗ is neglected.

� The kinetic term 1
2
mv2e inside w is neglected.

� Ue = 0.

Along the x direction, Eq. 3.5 can be rewritten as

− d

dx

(︃
Je(x)

q

5

3
w

)︃
= JeE(x)− ne

w − w0

τW
. (3.6)
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From the continuity equations, in steady-state conditions Un = 0 implies
dJe(x)/dx = 0, hence Eq. 3.6 becomes

d

dx

(︃
5

3
w

)︃
= −qE(x)− w − w0

τWve
. (3.7)

If the energy relaxation length for electrons is defined as λe =
5
3
veτw [75], then

Eq. 3.7 is equivalent to

dT

dx
+

T − T0

λe

+
2

5

q

kB
E(x) = 0. (3.8)

The integration of Eq. 3.8 yields the following expression for the carrier’s tem-
perature

T (x) = T0 +
2

5

q

kB

∫︂ x

0

E(x′′)exp

(︃
x′′ − x

λe

)︃
dx′′. (3.9)

When we reach the situation dT/dx = 0, Eq. 3.8 becomes

λeE(x) =
5

2

kB
q

[T (x)− T0] . (3.10)

Equation 3.10 can be now exploited for the definition of an the effective field
(that keeps into account the history of a carrier from its generation point x to
its ionization point x′) by equating it to Eq. 3.9, namely

Eeff,e(x|x′) =
1

λe

∫︂ x′

x

dEC(x
′′)

dx′′ exp

(︃
x′′ − x′

λe

)︃
dx′′. (3.11)

A similar expression holds also for the hole’s effective field:

Eeff,h(x|x′) =
1

λh

∫︂ x

x′

dEV (x
′′)

dx′′ exp

(︃
x′ − x′′

λh

)︃
dx′′. (3.12)

It is worth noting that in Eqs. 3.11 and 3.12, the electric field E(x) that
appears inside the integral in Eq. 3.9 has been substituted by the conduction
and valence band gradients, respectively. This is fundamental for the analysis
of staircase APDs, since, as explained in Section 1.4, owing to the configuration
of the band diagram of such devices electrons and hole are subjected to different
driving forces.

Since Eqs. 3.11 and 3.12 are derived from an energy balance equation
(Eq. 3.7), we denoted the developed model Energy Balance History Depen-
dent Model (EBHDM).

In the EBHDM, the parameters λe for electrons and λh for holes are con-
stant (i. e. they neither depend on position nor on the bias) and represent
a sort of mean free path: the ionization probability tends to that of the local
model after traveling a distance larger than λ from the generation point. Con-
sider for example a region of almost uniform electric field: regardless of the
initial conditions at the generation point, the carrier distribution a few mean
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free paths from the generation point tends to a unique function of energy well
defined by the value of the electric field.

As in the nonlocal model based on effective field of [39], the electron and
hole impact ionization coefficients are computed by using Eqs. 2.72 and 2.73,
while the gain and the excess noise factor are computed by using Eqs. 2.54,
2.55 and the related equations detailed in Section 2.2.1.

3.2 Numerical Solution

The conduction and valence band profiles EC(x) and EV (x) are extracted from
TCAD simulations [76] of the devices of interest at the desired bias voltages,
assuming that the charge generated by photons or by impact ionization does
not affect the polarization of the device. Then, after that the effective fields
and the impact ionization coefficients are computed using Eqs. 3.11, 3.12, 2.72
and 2.73, instead of using the iterative procedure proposed in [35, 39], we
devised a method to calculate the matrix form for Eqs 2.52, 2.53, 2.56, 2.57.
In the following, we will refer to the solution of Eqs. 2.53 and 2.53, but the
same method has been used also for Eqs. 2.56 and 2.57.

After discretization on a spatial mesh (see Fig. 3.1), Eqs. 2.52 and 2.53 can
be written as products between vectors and matrices:

Ne = A+B1Ne +B2Nh (3.13)

Nh = C+D2Nh +D1Ne (3.14)

where Ne, Nh are column vectors which represent the values of Ne and Nh on
the simulation mesh; A, C are column vectors that do not contain neither Ne

nor Nh, while Bi and Di, with i ∈ {1, 2}, are the constant matrices which will
multiply the unknown variables. We can further re-arrange the expressions
obtaining the following matrix equation:(︃

Ne

Nh

)︃
= −

(︄
B1 − I B2

D1 D2 − I

)︄−1

·
(︃
A
C

)︃
(3.15)

It has to be observed (see again Fig. 3.1) that Ne, Nh include only the un-
known samples of Ne and Nh. The values imposed by the boundary conditions
[Nh(0) = 1, Ne(W ) = 1] are not part of these vectors (highlighted in red in
Fig. 3.1).

Ne(1) Ne(2) Ne(i) Ne(i+1) Ne(N-1) Ne= 1

Nh = 1 Nh(1) Nh(i-1) Nh(i) Nh(N-2) Nh(N-1)

Δ(1) Δ(i) Δ(N-1)… …

Figure 3.1: Spatial discretization of the variables Ne and Nh and indication of
the boundary conditions (in red).
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3.3 Model Calibration

As in the Dead Space model [35] and in the nonlocal model based on effective
fields of [39], the adjustable model parameters are eight; namely the mean free
paths λe and λh for electrons and holes in Eqs. 3.11 and 3.12, respectively, and
Ae, Ah, Ece, Ech, γe, γh which relate the effective fields with the ionization
coefficients (see Eqs. 2.72 and 2.73). As stated in Section 3.2, the model
calibration firstly requires a reliable estimate of the conduction and valence
band profiles. To this end, we have reproduced with TCAD [76] the same
doping concentrations and geometrical structure for the p-i-n diodes reported
in [23, 36, 77, 78, 79, 20], simulated them at different bias voltages and then
applied the EBHDM in post-processing, taking as input the band profiles from
drift-diffusion TCAD simulations. The good agreement at high gains validates
the post-processing approach, indicating that the generated charge has little
impact on the applied electric field.

Figures 3.2-3.6 compare the model results with the measured gain as a
function of bias and excess noise as a function of gain. In both cases, good
agreement between simulations and experiments is found over a wide range
of intrinsic layer thicknesses with a unique set of material dependent model
parameters summarized in Tab. 3.1.

Figures 3.2-3.4 show that in GaAs, Al0.2Ga0.8As, Al0.6Ga0.4As the excess
noise factor increases proportionally to the gain (plots b) and that it is smaller
for thinner intrinsic layers. As pointed out in [23], this behavior is in con-
trast with the predictions of the local model [1], but it is consistent with the
measurements. In fact, when the extension of the intrinsic region becomes
comparable to λe and λh, the ionization probability of the secondary carriers
decreases, making the ionization process somewhat more deterministic.
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Figure 3.2: a) Gain versus applied bias voltage and b) excess noise factor versus
gain curves for GaAs p-i-n diodes with different thickness. The experimental
measurements reported in [23] (symbols) are compared with the results of the
EBHDM using the parameters of Tab. 3.1 (dotted lines).
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Figure 3.3: Same as Fig. 3.2 but for Al0.2Ga0.8As p-i-n diodes. Experimental
data are taken from [36].
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Figure 3.4: Same as Fig. 3.2 but for Al0.6Ga0.4As p-i-n diodes. Experimental
data are taken from [77].

The F versus M curves for Al0.8Ga0.2As (Fig. 3.5) put in evidence a more
complex non-monotonic trend as a function of the thickness of the intrinsic
layer (d); in fact: when d decreases from 1024 nm to 312 nm, F increases for
given M , owing to the fact that at high electric field (as in the short diodes) β
approaches α [1]. However, as d shortens, nonlocal effects come into play and
reduce F as in the other considered materials.

Figure 3.6 shows that the measured excess noise factor for InAs p-i-n diodes
is slowly increasing as the gain increases and, for all the considered values ofM ,
F < 2. This suggests that InAs is a semiconductor where, for the considered
range of applied electric fields, electron’s impact ionization is dominant w. r.
t. hole’s impact ionization. For this reason, consistently with the assumptions
of [20], we assumed β(x|x′) = 0 ∀x, x′ in the EBHDM.
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Figure 3.5: Same as Fig. 3.2 but for Al0.8Ga0.2As p-i-n diodes. Experimental
data are taken from [78, 79].
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Figure 3.6: Same as Fig. 3.2 but for InAs p-i-n diodes. Experimental data are
taken from [20].

GaAs Al0.2Ga0.8As Al0.6Ga0.4As Al0.8Ga0.2As InAs
Ae [106/cm] 3.30 88.3 88.8 14.8 0.046
Ece [106V/cm] 1.75 3.74 4.13 3.53 0.14
γe - 1.00 1.00 1.00 1.00 0.38
λe [nm] 18.0 17.0 18.0 20.0 73.7
Ah [106/cm] 0.73 10.8 260 0.14 -
Ech [106V/cm] 1.42 2.99 4.99 0.67 -
γh - 1.00 1.00 1.00 5.12 -
λh [nm] 24.0 21.5 16.0 35.0 -

Table 3.1: Model parameters for GaAs, Al0.2Ga0.8As, Al0.6Ga0.4As,
Al0.8Ga0.2As and InAs used in the EBHDM to fit experimental results for
the gain versus applied bias and excess noise factor versus gain measurements.
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3.4 Gain and Excess Noise Factor of APDs

featuring Heterojunctions

In the following, we apply the EBHDM to the two realistic structures al-
ready detailed in Section 1.8: the Separate Absorption and Multiplication
(SAM) GaAs/Al0.8Ga0.2As APD described in [8, 25] (Fig. 1.18a) and the
GaAs/AlxGa1−xAs staircase SAM-APD presented in [7] (Fig.1.18b).

3.4.1 GaAs/Al0.8Ga0.2As SAM-APD

The nominal structure of the device reported in [8, 25] (Fig.1.18a) is repro-
duced with TCAD [76] and the comparison between the simulated and the
experimental [8] C-V curves is shown in Fig.3.7. The agreement between mea-
surements and simulations is good, meaning that the TCAD provides a reliable
estimate of the electric field profile. Note that the Thermionic Emission Cur-
rent model for transport at the heterointerfaces has been used [76]. This may
be incorrect in indirect-to-direct band gap heterojunctions, as in this case [80].
However, this is expected to have a negligible impact on the device electrostat-
ics. It may however result in a different value of the effective ∆EC to use in
our post-processing model, but this can be assessed only via accurate Monte
Carlo simulations.
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Figure 3.7: Comparison between simulated (dashed line) and experimental
(circles) C-V characteristics at ν = 1 MHz of the SAM-APD in [8] (Fig. 1.18a).

The EBHDM is then applied using as inputs the EC and EV profiles ob-
tained from TCAD to compute M(x) and F (x). The employed model pa-
rameters are the ones listed in Tab. 3.1 for GaAs and Al0.8Ga0.2As. The gain
and the excess noise factor are shown in Fig. 3.8. The breakdown voltage is
slightly underestimated by the model, while the noise from the model is hardly
comparable with the experiments in [25]. In such reference only the FWHM
value is reported. Assuming that the only noise contribution comes from the
multiplication noise of the APD, one extracts a F ≃ 7 almost constant over
a range of gains up to 5 (no data available for higher gains). This suggests
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that experiments (at such low gains) are mostly dominated by the noise of the
read-out.
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Figure 3.8: a) Simulated (dotted line) and measured (circles) gain versus volt-
age and b) excess noise factor versus gain for the SAM-APD reported in [8, 25].

3.4.2 GaAs/AlxGa1−xAs Staircase SAM-APD

The structure of the GaAs/AlxGa1−xAs staircase SAM-APD fabricated and
measured in [7] is reported in Fig. 1.18b. We recall that the multiplication
region of this device consists of twelve identical steps made of a 20 nm-
thick graded AlxGa1−xAs layer (x from 0 to 0.45), a 25 nm-thick graded
Al0.45Ga0.55As layer and a 35 nm-thick GaAs layer. In principle, the conduc-
tion band discontinuities at the Al0.45Ga0.55As/GaAs heterojunctions should
enhance the impact ionization probability of electrons w. r. t. the impact
ionization probability of holes, improving the noise performance of the APD,
as described in Section 1.4.

In the TCAD simulations [76], we reproduced the nominal structure, as-
suming abrupt doping profiles. A sample band structure profile is shown in
Fig. 3.9a: we observe the conduction band steps, while the ones in the valence
band are very small. Since the energy barriers seen by the electrons are quite
thick (45 nm) and include a graded region, tunneling is not accounted for in
our model.

Simulated C-V curves (from TCAD), obtained by using default values pro-
vided by the simulator [76] for the dielectric constant and the affinity of each
material, are reported in Fig. 3.9b. The discrepancy between TCAD simula-
tions and experiments in Fig. 3.9 suggests a possible out-diffusion of dopants
from the substrate to the multiplication region [69].
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Figure 3.9: a) Band diagram at equilibrium of the multiplication region of the
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(circles) C-V characteristics of the staircase SAM-APD in [7] (Fig. 1.18b).
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Figure 3.10: Simulated (dotted line) and measured (circles) a) gain versus
voltage and b) excess noise factor versus gain for the staircase APD reported
in [7]. Experimental results for plot b are taken from [21]. The structure
in [21] slightly differs from the one in [7], but the EBHDM, with the model
parameters of Tab. 3.1, gives the same F (M) curve for both of these devices.

The EBHDM is applied using as inputs the EC and EV profiles obtained
from drift-diffusion TCAD simulations activating the Thermionic Emission
Current model for the transport at heterojunctions. The model parameters
for an arbitrary mole fraction of Al in AlxGa1−xAs have been linearly interpo-
lated from the ones reported in Tab. 3.1. The gain versus voltage and excess
noise versus gain curve are shown in Fig.3.10a and b. The agreement between
simulated and measured gain versus voltage is not perfect, while the trend of
the excess noise versus gain is reproduced quite well.
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The strong dependence of the gain on the applied voltage points out that
at the electric fields necessary to trigger impact ionization, both carriers ionize
also in the regions between consecutive steps and give an important contri-
bution to the multiplication process, more than the energy steps alone, which
are only 0.5 eV high [76]. The substantial role of hole’s impact ionization on
the results is demonstrated in Fig. 3.10b by the comparison of the measured
and EBHDM results with the curves obtained with the EBHDM imposing
β(x|x′) = 0 ∀x, x′. When we turn off hole’s impact ionization in the model,
we have F < 2 also at high gains. These results confirm that low noise per-
formance requires that the energy amplitude of the conduction band discon-
tinuities must be larger than, or at least comparable to, the bandgap of the
material where multiplication takes place [10].

3.5 Optimization of the Noise Performance of

Single Carrier Avalanche Photodiodes

The detector performance in near infrared optical fiber communication links
can be improved by fabricating device in InAs alloys, where α is inherently
much larger than β [20] (see Fig. 3.6). A notable example of such a device is
the Separate Absorption and Multiplication (SAM) single step staircase APD
fabricated and measured in [10].

As reported in Section 1.4, the simple analytical formula in Eq. 1.10 de-
rived in [13] can be used for the computation of the total excess noise factor
in a staircase APD with Nstep identical steps, under the assumption that mul-
tiplication is dominated by electron impact ionization (so that hole impact
ionization can be neglected). A model accounting for hole’s impact ionization
due to the electric field between the steps has been proposed in [32] based on
the theory in [81] and assuming that all the steps have the same amplitude
in energy. A large electric field between the steps is needed in AlGaAs/GaAs
systems where the conduction band discontinuity is in the order of 0.5 eV and
the energy gap is larger than 1 eV [69]. On the other hand, in InAsSb struc-
tures [10], steps as large as 0.6 eV can be fabricated, that are more than twice
the corresponding energy gap (≈0.25 eV).

Here, we extend previous analyses by deriving a generalization of Eq. 1.10
(namely: Eq. 3.21) valid for single carrier multiplication staircase APDs with
arbitrary step gains (Mi) and step excess noise (Fi). The expression is suited
to compute the overall MTOT and FTOT and to optimize arbitrary ladders of
non uniform layers. Using this generalized formula and accurate numerical
models, it is found that for given gain, structures with non uniform energy
steps can reduce the overall excess noise factor FTOT if the steps with a large
amplitude of the conduction band discontinuity lie ahead along the direction
of carrier flow.

The new formula is derived in Section 3.5.1, while the numerical valida-
tion of the formula and results obtained with the EBHDM and the analytical
expression are reported in Section 3.5.2.

55



3.5.1 Derivation of the Equation for the Excess Noise
Factor

Let us consider, for the sake of simplicity, a two-steps staircase APD with
total gain MTOT . By definition the total excess noise factor is given by
FTOT = ⟨m2

TOT ⟩/⟨mTOT ⟩2, where mTOT is the random process that represents
the multiplication and ⟨mTOT ⟩ = MTOT is the ensemble average of mTOT . The
random process m1 describes the multiplication of the first step while the ran-
dom process mk

2 (k = A,B, ... identifies electrons entering the second step) is
associated to each electron coming from the first step and multiplying in the
second step. We assume that the processes mk

2 are independent and identi-
cally distributed ∀k. If we use the notation Pi,j to express the probability that
mi = j we can write:

mTOT = P1,1m
A
2 + P1,2(m

A
2 +mB

2 ) + P1,3(m
A
2 +mB

2 +mC
2 ) + ... (3.16)

It is important to notice that we are considering also P1,j for j > 2 to take
into account the fact the the first step can be a staircase structure itself and
can multiply for more than a factor of 2.

From Eq. 3.16, since ⟨mA
2 ⟩ = ⟨mB

2 ⟩ = ... = M2, one can derive:

⟨mTOT ⟩ = ⟨m2⟩
∞∑︂
j=1

jP1,j = ⟨m1⟩⟨m2⟩ = M1M2 (3.17)

It is now possible to compute ⟨m2
TOT ⟩:

⟨m2
TOT ⟩ = P1,1⟨m2

2⟩+ P1,2(2⟨m2
2⟩+ 2M2

2 ) + P1,3(3⟨m2
2⟩+ 6M2

2 ) + ...

=
∞∑︂
j=1

P1,j[j⟨m2
2⟩+ (j2 − j)M2

2 ]

= ⟨m2
2⟩

∞∑︂
j=1

jP1,j +M2
2

∞∑︂
j=1

(j2 − j)P1,j

= ⟨m2⟩M1 +M2
2 (⟨m2

1⟩ −M1)

= ⟨m2
2⟩M1 +M2

2 ⟨m2
1⟩ −M2

2M1

(3.18)

Interestingly, Eq. 3.18 can be rewritten as:

⟨(mTOT −MTOT )
2⟩ =⟨(m2 −M2)

2⟩M1

+ ⟨(m1 −M1)
2⟩M2

2

(3.19)

which is consistent with Eq. 2.3 in [82] and with Eq. 38 in [32] for photomul-
tiplier tubes. Equation 3.18 allows then to write the total excess noise factor
as:

FTOT = F1 +
F2 − 1

M1

(3.20)

The extension of Eq. 3.20 to the case of a Nstep-steps staircase structure (see
Fig. 3.11) is straightforward:

FTOT = F1 +

Nstep∑︂
i=2

Fi − 1∏︁i−1
k=1Mk

(3.21)
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Figure 3.11: Conduction band profile of a staircase structure with Nstep steps.
Mi and Fi are the gain and excess noise factor of each step.

It is easy to show that Eq. 3.21 gives the same result of Eq. 1.10 when
all the steps have gain Mi = 1 + Pe and excess noise factor Fi = 1 + (1 −
Pe) [1− (1 + Pe)

−1] 1 + Pe as per Eq. 1.10, where Pe is the electron’s impact
ionization probability at each step. However, differently from Eq. 1.10, Eq. 3.21
is valid also in structures with an arbitrary sequence of decreasing steps and
thus useful to optimize arbitrary staircase APDs.

Similarly to the well known Friis formula for the noise figure of cascaded
amplifiers [83], Eq. 3.21 tells us that the gain of the first step has a critical
role in achieving low noise. The first step must have high gain and low excess
noise, two conditions that can be achieved only with large band offsets, as it
will be seen in Section 3.5.2.

It is worth noting that Eq. 3.21 keeps its validity also in the more general
case where M1 and F1 represent the e-h pair generation due to an incoming
high-energy photon (e. g. a X-ray) provided that we interpret M1 as the
average number of e-h pairs per photon and F1 = 1 + f/M1 where f is the so
called Fano factor [6]. Under these circumstances, Eq. 3.21 is equivalent to the
expression σ2

S/E
2
ehp in Eq. 1.22 (derived in [6]) for the excess noise of APDs

used for X-ray detection.

Compared to existing numerical expressions, Eq. 3.21 can be used as an
effective tool to combine simulations of single steps and eventually find the
optimum sequence of steps for maximum gain and low noise, as we will see in
Section 3.5.2.

3.5.2 Numerical Validation with the EBHDM

Eq. 3.21 must be coupled to an impact ionization model for each step in the
ladder suited to compute the gains Mi accurately. To this end we use the
nonlocal history dependent model of [69].

Our target is to calibrate the EBHDM on the experiments in [10] for a
single step AlInAsSb/InAsSb APD where multiplication takes place in the
InAs0.91Sb0.09 layer. To this end we start with InAs impact ionization pa-
rameters and then adjust them for the small Sb fraction of the multiplication
layer.

Having calibrated the model on InAs (Fig. 3.6 in Section 3.3), we can move
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to the device of [10], that is a SAMAPDmade of a 500-nm i-Al0.7In0.3As0.31Sb0.69

absorption region followed by a single step multiplication region. The step
of the staircase is composed by a 37-nm graded i-AlxIn1−xAsySb1−y, a 6-nm
i-InAs0.91Sb0.09 and a 61-nm graded i-AlxIn1−xAsySb1−y layers. The diode
structure and the band-diagram are reported in Fig. 3.12.

Since multiplication takes place in the InAs0.91Sb0.09 film, whose energy
gap is 0.25 eV in contrast to the 0.35 eV of InAs [60], the parameter Ece was
scaled accordingly by a factor of 0.35/0.25 = 1.4, following the simple picture
that the impact ionization rate depends exponentially on the energy gap of
the material. The parameter Ae, instead, has been adjusted to match the
measured gain and excess noise at low applied voltage in [10], see Fig. 3.13.
Compared to InAs, Ae has been increased by a factor of 6.5.
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Figure 3.12: a) Sketch and b) band diagram at equilibrium extracted from
TCAD simulations [76] of the staircase SAM-APD reported in [10], along the
vertical direction.
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Figure 3.13: a) Gain versus applied voltage and b) excess noise factor versus
applied voltage for the staircase SAM-APD reported in [10]. Experimental
results from [10] (circles) are compared with the EBHDM (dotted line).
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The deviation of the simulation results from experiments visible in Fig. 3.13
for reverse bias higher than 3.0 V is, in fact, due to considering only electron
impact ionization in the InAs0.91Sb0.09 multiplication layer.

We now use the EBHDM calibrated on InAs0.91Sb0.09 to verify the validity
of Eq. 3.21. We begin our analysis by simulating single steps with conduc-
tion band discontinuities of different amplitude (∆EC). In all simulations, we
assume that the applied bias is the one that induces the electric field that per-
fectly compensates the quasi-field due to material grading between the steps,
so that the conduction band energy is piecewise constant. As it can be seen
in Fig. 3.14, owing to the small gap of the multiplication region, ∆EC values
below 1 eV provide gains that tend to 2. We also see that the relation be-
tween the simulated gain and excess noise factor closely matches Eq.1.10 (for
Nstep = 1 since we consider only one step here). Note that the local impact
ionization model with electron ionization only would provide F = 2 − 1/M
(Eq. 2.19 for k → 0), that tends to 2 for large gains instead of the bell shape
shown in Fig. 3.14 using the EBHDM. When we have steps with an elec-
tric field in between, the F (M) curve obtained using the EBHDM [69], lies
between the results obtained using Eq. 1.10 and the ones obtained using the
Local Model in Fig. 3.14. This indicates that, regardless of the conduction
band profile (strongly nonlocal as in a staircase or as uniform as possible as
assumed by local models), if hole impact ionization is negligible, the room for
optimization is limited in the F = 1 to F = 2 range. In Fig. 3.14, the same
experimental data from [10], is reported too. We observe that measured values
lie very close to the predictions of Eq. 1.10 except for high biases when hole
impact ionization comes into play.
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Figure 3.14: Comparison between the excess noise factor versus gain curves
predicted by Eq. 1.10 for Nstep = 1 (solid line), by the EBHDM (squares) and
by the Local Model (blue dashed line) for single step staircase structures with
different amplitude of the conduction band discontinuity. Experimental data
from [10] are also reported (circles).

We have then considered staircase structures with different sequences of
steps and compared the EBHDM with Eq. 3.21. The results, reported in
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Tab. 3.2, demonstrate a very good agreement with Eq. 3.21, with errors well
below 1%.

We also see that for a given gain, it is advantageous to locate first the steps
with the largest ∆EC . In fact, consistently with Eq. 3.21, the noise added by
each step is divided by the gain of the preceding steps. Since the order of the
steps has no effect on the gain, the sequence can be optimized to minimize
F . However, due to the small range of F values covered by individual abrupt
steps (Fig. 3.14), the reduction of F offered by optimized ordering of the steps
is limited, unless the number of steps and the difference among them is large
(last two rows of Tab. 3.2).

Nstep ∆EC [eV] M F F (Eq.3.21) % error
5 0.6 (uniform) 13.20 1.179 1.178 0.085

2 0.17, 0.6 2.25 1.180 1.183 0.254
2 0.6, 0.17 2.25 1.150 1.153 0.261

5 0.2, 0.3, 0.4, 0.5, 0.6 8.85 1.293 1.295 0.155
5 0.6, 0.5, 0.4, 0.3, 0.2 8.85 1.211 1.212 0.083
5 0.2, 0.2, 0.2, 0.2, 0.6 6.14 1.342 1.344 0.149
5 0.2, 0.2, 0.6, 0.2, 0.2 6.14 1.317 1.319 0.152
5 0.6, 0.2, 0.2, 0.2, 0.2 6.14 1.268 1.270 0.157

10 5× 0.17 and 5× 0.6 57.23 1.415 1.420 0.353
10 5× 0.6 and 5× 0.17 57.23 1.207 1.209 0.166

Table 3.2: Comparison between the excess noise factor obtained with the
EBHDM and the one calculated using Eq. 3.21 for staircase structures with
different number of steps and conduction band discontinuities with different
amplitudes.
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Figure 3.15: Gain (a) and excess noise factor (b) as a function of the normalized
position x/∆x (∆x being the step’s length) at which an electron is generated
for two staircase structures with ten steps. Solid red line: five steps with
∆EC = 0.17 eV are followed by five steps with ∆EC = 0.6 eV. Dashed blue line:
five steps with ∆EC = 0.6 eV are followed by five steps with ∆EC = 0.17 eV.

To visualize how the excess noise and gain build up along the structure, we
plot M(x) and F (x) in Fig. 3.15 as a function of the position where the initial
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carrier is generated. We consider the two cases with identical gain M = 57.23
in the last two rows of Tab. 3.2. As expected, the gain decreases moving inside
the staircase, i. e. when electrons are generated inside the structures, since
one loses the gain associated to the previous steps. As for the excess noise,
the spatial distribution changes remarkably with the ordering of the steps. If
the steps with larger ∆EC come first, the excess noise increases while moving
inside the multiplication region, since the high noise of the last stages gets
divided by a gain which gets lower and lower; thus we do not take advantage
of the high gain provided by the initial steps.

3.6 Optimization of the Noise Performance of

GaAs/AlxGa1−xAs Staircase APDs for X-

Ray Detection

In this Section we report on the optimization of the excess noise factor of
GaAs/AlxGa1−xAs Staircase APDs for X-Ray Detection. The results that we
present are obtained with the EBHDM described in Section 3.1. Results for
staircase structures are compared with experimental data for p-i-n and Multi-
Quantum-Well (MQW) APDs. Note that MQW APDs have always abrupt
heterojunctions between a low (EG1) and a high (EG2) bandgap material [84,
85], while in staircase APDs each stage is linearly graded from EG1 to EG2 and
the abrupt discontinuity is only between EG2 and EG1 [13].

As shown in Section 3.3, the EBHDM reproduces a variety of experimental
data for APDs with different material and architectures. As a relevant exam-
ple, Fig. 3.16 reports with filled circles the F (M) curve for a GaAs p-i-n diode
[23]: we see that F ≈ 0.75M , which results in high noise at large M values.
This, as stated in Section 1.3, is a consequence of similar electron and hole
impact ionization coefficients (α ≃ β) in GaAs (as well as in many other III-V
compounds).

For the staircase APDs in the GaAs/AlxGa1−xAs system in [22], the mea-
sured F (M) curves for the devices with mesa diameters of 200 µm and 600 µm
are reported in Fig. 3.16. The F (M) curve for the APD with diameter 200 µm
is in agreement with the experimental results for the GaAs/AlGaAs MQW
APD with 25 steps in [84]: the noise is much lower than for the p-i-n diode
and its behavior is predicted also by the EBHDM (that is calibrated on p-i-n
diodes without additional model parameter changes when considering staircase
structures). The F (M) curve for the device with diameter 600 µm, instead,
lies very close to the results reported in [85] for a GaAs/AlxGa1−xAs MWQ
APD with 15 steps and to the experimental results for the GaAs p-i-n diode
[23]. Concerning the difference between the results for the devices in [22], we
think that the architecture with a bigger mesa area may show additional noise
sources other than multiplication noise. However, the experimental F (M)
curve for the GaAs/AlxGa1−xAs staircase APD of [21], that is similar to the
one of [22], indicates that the use of staircase APDs is beneficial in terms of
excess noise factor at a given gain w.r.t. p-i-n diodes. In other words, our

61



nonlocal model (calibrated on GaAs p-i-n diodes, see Fig. 3.2 and Tab. 3.1)
seems to support the experiments in [84] as well as the noise measured in [22]
for the device with a smaller diameter.

It is important to note that the use of Eq. 1.10 (blue line), using Pe =
M1/Nstep − 1, predicts an even lower noise. This can be explained considering
that in the GaAs/AlxGa1−xAs system the conduction band energy step is small
compared to the bandgap of the material where impact ionization takes place
(see the band diagram in Fig. 3.10a). This requires large applied biases to
increase the gain, but, due to the large induced electric field, significant electron
and hole multiplication takes place between the steps. We thus believe that
hole impact ionization between consecutive steps is responsible for the large
difference between the experiments (and the EBHDM) and the predictions of
Eq. 1.10 which neglects hole impact ionization.

Before continuing, it is worth mentioning that in the EBHDM the sole
effect of the heterojunction is to add energy steps equal to the difference in
affinity between the materials. Phenomena related to momentum conservation
or to disorder at the interface are not included. In practice, in the model the
heterojunction provides energy to the carriers over a short distance, making
impact ionization more localized and thus with a reduced associated excess
noise.
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Figure 3.16: Excess noise factor as a function of the gain for different GaAs/Al-
GaAs APDs: experimental data for a thick (d = 1.6 µm) GaAs p-i-n diode
from [23] (•), staircase APDs fabricated by our group [22] (■, ⋇ for the 200
µm and the 600 µm mesa diameters, respectively), a MQW APD with 25 steps
[84] (♦), a MQW APD with 15 steps [85] (x) and for the staircase APD of [21]
(▲). The dotted lines represent the results obtained with the EBHDM model
(same calibration for both devices), while the solid line is Eq. 1.10 [13] (for
Nstep = 12 steps).

Experimental and modeling results in Fig. 3.16 point out that staircase
structures in GaAs/AlxGa1−xAs perform much better than GaAs p-i-n diodes
in terms of noise at given gain. However the excess noise factor is far from what
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is expected from Eq. 1.10, the reason being hole impact ionization between
the steps due to the large applied electric field, which in turn is necessary to
increase the gain because the amplitude of the conduction band discontinuity is
small if compared to the bandgap of GaAs. In this section we analyze whether
increasing the number of steps lowers the excess noise factor at a given gain.

3.6.1 EBHDM results for different number of steps

We have considered the device structure in Fig. 1.18b, for different values
of the number of steps in the multiplication region. Figure 3.17 shows that
the excess noise factor for given gain is reduced when the number of steps is
increased. Furthermore, by increasing the number of steps we achieve high
gain over a larger voltage interval, which in turn makes the external biasing of
the device much simpler than in the case with few steps, where high gain can
be attained only by biasing the device close to breakdown that is, at the edge
of the intended linear regime of operation. Of course, with large number of
steps high bias voltages are necessary to obtain high gains, but those voltages
do not require a very precise setting as with a small number of steps.

The trend in Fig. 3.17 can be explained by considering that the large num-
ber of steps enhances the intrinsic gain that can be achieved without applying
an additional electric field. So, for given gain, a structure with more steps
entails a lower electric field, as can be seen in Fig. 3.18.
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Figure 3.17: a) Simulated (EBHDM) gain as a function of the applied bias and
b) excess noise factor as a function of gain for a staircase APD like the one in
Fig. 1.18b with Nstep = 6, 12, 24, 48 multiplication steps.

A quantitative interpretation of the results in Fig. 3.17, requires models
that go beyond Eq. 1.10 and include hole impact ionization, as described in
the next subsection.
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μ
Figure 3.18: Conduction band profile of a 0.55 eV single multiplication step
(as for the Al0.45Ga0.55As/GaAs [76]) at fixed total gain (M = 10) for staircase
APDs with 12 (solid line) and 48 steps (dashed line).

3.6.2 Interpretation based on the Electron and Hole
Ionization Probabilities per Step

Analytic expressions to compute the overall gain and excess noise factor in
staircase APDs when both electrons and holes ionize have been proposed in [32]
and have been already discussed in Section 2.1.1 (Eqs. 2.20 and 2.21). Here, we
recall that Pe and Ph are the electron’s and hole’s ionization probabilities per
step, respectively, and kp = Ph/Pe. Equations 2.20 and 2.21 are valid in the
low gain limit of the linear regime, when electron and hole impact ionization
events at a single step can be treated separately, as if the two mechanisms were
independent. Although this may be correct if impact ionization is localized
at the steps, the accuracy is limited when impact ionization events are spread
out between the steps.

We have extracted Pe and Ph by simulating electron and hole impact ion-
ization in single or double step structures that include the region with electric
field between the steps. In particular, Pe is computed from the gain M ob-
tained simulating a single step structure that includes the step and the electric
field region just after the step (up to the next step), by activating only electron
impact ionization and writing Pe = M − 1 (Fig. 3.19a). Figure 3.19b shows
that, when a staircase structure with Nstep = 2 is considered, α(0|x′) is the
same if we consider an ionization point x′ in the first step or the corresponding
x′ in the second step. To calculate Ph two steps (and not only one) should
necessarily be included in the simulation domain, because the distance that
holes have to travel in order for the impact ionization coefficient to be in equi-
librium with the electric field is larger than the thickness of a single step (see
Fig. 3.19c). This interpretation is supported by Fig. 3.19d, in fact we notice
that, when we simulate a staircase structure with three steps and we assume
the injection of a hole at x = W , β(W |x′) for a point x′ belonging to the
second step is the same as the one for the corresponding x′ in the third step,
while it is lower for a point x′ in the first step. We then compute Ph using an
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expression similar to Eq. 2.22, namely

Ph = exp

(︃∫︂ x0

x0−L

β(x0|x′)dx′
)︃

(3.22)

where L = d/Nstep is the length of one multiplication step and only hole impact
ionization is active in the simulation.
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Figure 3.19: a), b) Electron’s impact ionization coefficient α(0|x′) and c), d)
hole’s impact ionization coefficient β(d|x′) as a function of the ionization point
x′ in one (a), two (b)(c) or three (d) steps of a GaAs/AlxGa1−xAs staircase
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Figure 3.20a reports the Pe and Ph obtained with this procedure. Pe and
Ph are plotted as a function of Nstep for different gains, which means that
for each Nstep the electric field between the steps is set to achieve the desired
gain in the complete Nstep-step structure. If we increase the number of steps,
the same gain is achieved with a lower electric field between the steps. Thus,
both Pe and Ph in Fig. 3.20a decrease when increasing Nstep. The effect of the
reduction of the applied field is much larger on Ph than on Pe (at M = 10,
from Nstep = 6 to Nstep = 48, Ph is reduced by 98.5%, while Pe is reduced
by 80%), since electrons also feel multiplication by the conduction band steps,
whereas valence band discontinuities are negligible. As a result kp = Ph/Pe

tends to zero for increasing Nstep (Fig. 3.20b), leading to a structure essentially
dominated by electron impact ionization.
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Figure 3.21 compares the EBHDM results of Fig. 3.17 with the results of
Eqs. 2.20 and 2.21 using the Pe and Ph values in Fig. 3.20. The mutual agree-
ment is quite good for Nstep=24 and Nstep=48, while Eq. 2.21 loses accuracy
for a smaller number of steps. In fact, at given gain Pe and Ph are large when
Nstep is small; thus the assumption behind Eqs. 2.20, 2.21 that electron and
hole ionization can be treated as independent events becomes less justified. In
conclusion, the comparison of the EBHDM and Eqs. 2.20 and 2.21 confirms
that the main advantage of using a large number of steps is to reduce the elec-
tric field necessary to obtain a given gain, thus reducing hole impact ionization
between the steps.
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3.7 Summary

We have proposed a nonlocal history dependent model (EBHDM) for impact
ionization suitable for (but not limited to) APDs with staircase structure in
Sections 3.1-3.4. The ionization coefficients for electrons and holes are related
to effective field profiles obtained from a first order energy balance equation
rather than resorting to the definition of a dead space. This renders the model
robust in the presence of abrupt heterojunctions. For a given material, eight
parameters are needed. The model has been calibrated against literature ex-
perimental data for gain and noise in p-i-n diodes and then applied to more
complex APDs based on heterojunctions between III-V compounds. It is found
that hole impact ionization still plays a substantial role in these devices and
degrades the noise performance.

In Section 3.5 we have derived a simple formula (Eq. 3.21) for the excess
noise in staircase APDs with single carrier multiplication that extends the
original model in [13] to the case of steps with different amplitude. The results
allow technologists to optimize staircase APDs for best F at given M , without
need for more computationally demanding numerical models, such as Monte
Carlo or history dependent models.

The formula suggests that, for minimum excess noise, larger conduction
band steps should come before the small ones along the carrier path, this is
consistent with the analysis for photomultiplier tubes reported in [32]. The
formula for the excess noise has been validated by numerical simulations using
the nonlocal history dependent model for impact ionization of Sections 3.1-3.4.
Although we considered here only cases where the effect of the electric field
between the steps is negligible, the proposed formula could in principle be used
also when this field is not null: essentially the region between two steps has
its own gain and excess noise that can be combined with the gain and noise of
the steps with Eq. 1.10.

The main limitation of the proposed formula is that it is valid only when
hole impact ionization is negligible. However, we would like to point out that
the effects of hole impact ionization become relevant when the conduction band
discontinuities do not provide electrons with sufficient energy to ionize, as for
example in the AlGaAs/GaAs system [69]. When this happens, multiplication
in the regions between the steps tends to have similar impact as the one at the
steps. In these conditions, the use of different sequences of steps with different
amplitudes would likely have less effect on the overall gain and excess noise.
Hence, one should either use the Eq. 2.21 to fit experimental data (as in [24]),
or should resort to fully numerical models.

in Section 3.6 we have used the EBHDM to study how the gain and the
excess noise factor of the staircase SAM-APD of Fig. 1.18b are affected by
the number of steps of the multiplication region. The model points out that
increasing the number of conduction band steps in these staircase structures
reduces the noise at fixed gain, because a lower electric field between the steps
(and thus lower hole impact ionization) is required for a given gain. Increasing
the value of Nstep comes at the expense of a longer response time but, as it
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will be discussed in Section 4.4.1, for X-ray detection the time constant of the
CR-RC shaping circuit (see Section 1.6) is order of magnitudes larger than the
duration of the current waveform at the output of the APD, so that changing
the value of Nstep does not affect the duration of the current waveform at the
output of the shaping filter.
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Chapter 4

The Improved Random Path
Length Algorithm

In this Chapter, an improved Random Path Length algorithm (see Section 2.2.4)
for the computation of the gain, the excess noise factor and the time response
of Avalanche Photodiodes will be presented. Differently from the one pre-
sented in [43, 79], the proposed algorithm takes into account both the drift
and the diffusion of carriers inside the device and it can be coupled to any
nonlocal history dependent impact ionization model. It is thus particularly
suited for the simulation of staircase Separate Absorption and Multiplication
APDs. The results that will be shown in the following are an extension of the
ones published by the author of this thesis in [86, 87].

4.1 Time Response, Bandwidth and Jitter

The usefulness of the Random Path Length algorithm (RPL) for the determi-
nation of the gain, the excess noise factor and the time response of Avalanche
Photodiodes biased in the Linear regime has already been discussed in Sec-
tion 2.2.4. In particular, by simulating Nev independent photon-induced gen-
eration events (also called trials) and mimicking the motion of carriers, at
constant velocity, inside the multiplication region of APDs, we can compute
M and F by using Eqs. 2.75 and 2.76, but also, thanks to Ramo’s theorem
[34], the current waveforms associated to carriers’ multiplication (i(t), Eq. 2.77)
From the Fourier transform of i(t) it is also possible to compute the bandwidth
of the APD, by employing the procedure described in Fig. 1.6.

In time of flight applications used for X-ray detection, however, it is im-
portant not only to evaluate the average response time, but also the jitter,
that is defined as the statistical fluctuation of the time interval between the
arrival of a photon and the output pulse leading edge [88] (see Section 1.3.1).
The jitter results from the stochasticity of carrier multiplication (i. e. at a
given bias voltage different carriers can experience different gains [1]) and ran-
domness of processes such as carrier photogeneration and diffusion. Although
both analytical [89] and numerical [90] models of jitter have been extensively
proposed in the past for Silicon single photon avalanche diodes working in
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Geiger mode (Silicon photomultipliers), similar models for APDs working in
the linear regime have not been developed to our knowledge.

4.2 Target Application: Staircase SAM-APD

for X-ray Detection

In the following we will focus on the dynamic performance (in terms of response
time, bandwidth and jitter) of APDs fabricated in high atomic number III-V
compound semiconductors and working in the Linear regime. In fact, as stated
in Section 1.3, using semiconductors with large atomic number allows to detect
photons at energies higher than the ones detectable with Silicon devices, while
the self-quenched avalanche of the linear regime provides amplification without
an excessively long response time [21].

This simulation study particularly aims at the state of the art GaAs/Al-
GaAs avalanche photodiodes with separate absorption and multiplication re-
gions (SAM-APD) of Fig. 1.18b, intended for X-ray spectroscopy. The pro-
posed model, however, is quite general and applicable to any SAM-APD, not
necessarily fabricated with III-V compound semiconductors. The electric field
is confined inside the intrinsic multiplication region where impact ionization
occurs (that can be fabricated either with a single material or with a staircase
structure) and is separated from the absorption region by a p-doped δ-layer
(see Fig. 4.1). The doping profile of the device under study, that features a
staircase multiplication region with twelve GaAs/AlxGa1−xAs steps [7, 21, 22],
is reported in Fig. 4.1.

-5 -4 -3 -2 -1 0 1 2
x [µm]

10
6

10
9

10
12

10
15

10
18

10
21

D
op

in
g 

C
on

ce
nt

ra
tio

n 
[c

m
-3

]

d
abs

= 4.5 µm

Absorption Region

p
-
-GaAs

δp-doping
dose = 2.5e-12 cm

-2

d
mult

= 1 µm

Multiplication Region

i-GaAs/
AlGaAs

p
+
-GaAs

n
+
-GaAs

(mostly diffusive transport)

-
+

xg

Figure 4.1: Doping profile of the SAM-APD of Fig. 1.18b. The absorption
region (thickness d = dabs) is separated from the multiplication region (d =
dmult) by a p-doped δ-layer. The staircase multiplication region of this device
features twelve AlGaAs/GaAs steps. In simulations, electron-hole pairs are
generated at various xg points inside the device.

In a SAM-APD like the one in Figs. 1.18b, 4.1, several sources contribute to
the jitter: the randomness of the spatial position where electron-hole pairs are
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generated (xg), the number of generated electron-hole pairs per photon, the
diffusive transport inside the absorption region and the stochastic nature of
electron-hole pairs generation by impact ionization events in the multiplication
region.

Since the RPL algorithm mimics the motion of each carrier inside the APD
depletion region and, differently from the other model implementations that
provide static average quantites, it straightforwardly yields the APD time re-
sponse to a single photon arrival [79, 86], it allows to study the time response
fluctuations and, thus, to extract also the timing jitter. An extension of the
original RPL algorithm [43, 79] is necessary, however, to study complex struc-
tures: carriers’ drift and diffusion in quasi-neutral regions such as the absorp-
tion region of SAM-APDs have to be taken into account and, in the case of
staircase APDs, the Energy Balance History Dependent Model described in
Chapter 3 has to be used to describe impact ionization, instead of the Dead
Space model employed in Section 2.2.4.

4.3 Model

The RPL algorithm translates the motion of the carriers into an electric cur-
rent waveform induced at the terminals. As such, it takes into account the
stochastic nature of the diffusive motion in the absorption region and the im-
pact ionization in the multiplication region.

We have assumed a large area device so that edge effects are negligible, and
a one-dimensional analysis is sufficient to represent accurately the physical sys-
tem. We have also assumed that, due to their low number, the photogenerated
carriers have a negligible impact on the device electrostatics, so that a fully
self-consistent solution of the generation and transport processes is not neces-
sary. Accordingly, the (frozen) electric field is computed with enough accuracy
by a drift diffusion or hydrodynamic TCAD model in the absence of photon
generation [76]. The ingredients of the model, namely drift and diffusion in
the absorption region, drift and impact ionization in the multiplication region
and current induced at the terminals are described in details in the following
sections.

4.3.1 Carrier Transport in the Absorption Region

The carrier motion in the absorption region have been described by means of
a single particle parabolic bands Monte Carlo procedure1. A photon generates
N electron-hole pairs (where N is an input of our model) with zero velocity
and kinetic energy at the location where it is absorbed. These pairs move in
a sequence of free flights and scattering events. The free flights have velocity

1A multi-valley Monte Carlo procedure that includes non-parabolicity corrections would
me more accurate for III-V compound semiconductors. Here, instead, we used a simplified
model that allows us to reproduce the mobility extracted with the TCAD simulator.
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v(x) and acceleration

a(x) =
dv

dt
(x) = ∓qE(x)

meff

, (4.1)

where E(x) is the electric field at position x and meff is the effective mass of
the carrier. They are randomly interrupted by scattering events. The average
time that separates two consecutive scattering events is chosen according to
the mobility μ(x), namely

τs(x) =
μ(x)meff

q
(4.2)

The duration of a free flight starting at position x is then generated according
to the standard Monte Carlo method as tf (x) = −τs(x)log(r) [45], where r
is a random number uniformly distributed in the [0, 1] interval. To avoid the
repeated lengthy and time consuming exact calculation of the after-scattering
state, after a scattering event the carrier velocity is randomized (in magnitude
and direction) according to a normal distribution with zero mean and standard
deviation equal to a thermal velocity vth =

√
kbT/meff , consistently with

diffusive transport and the assumption of parabolic bands. Moreover, the
duration of each free flight is chosen such that carriers do not travel over
distances where steep variations of the electric field occur in the absorption
region2. If that happens, the free flight is interrupted at a location that satisfies
this requirement, a new tf is computed, but no scattering event occurs, so that
the carrier starts the new free flight with the final velocity of the previous one.

μ

Figure 4.2: Electron’s drift velocity in GaAs as a function of the applied electric
field for different values of the effective mass me, extracted from the RPL
algorithm by using the description of carriers’ motion reported in Section 4.3.1.
The mobility (the slope of the v(E) curve) is insensitive to the choice of me,
thus μe = 8450 cm2/Vs in all cases, that is the value inserted in Eq. 4.2 to find
τs when producing the points in this figure.

2In our simulations, the maximum variation of electric field that a carrier can experience
has been empirically chosen as the 0.1% of the difference between the maximum and the
minimum electric field in the absorption region of the APD.
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The mobility and the electric field profiles, µ(x) and E(x) have been ex-
tracted from DC analyses with a TCAD software [76], therefore µ(x) accounts
for all scattering mechanisms that were included in the TCAD simulations.
The effective masses for electron and hole transport in GaAs are me = 0.063m0

and mh = 0.51m0, respectively [91], where m0 is the electron rest mass. We
have verified that the carriers’ mobility and velocity are insensitive to the
choice of me and mh (see Fig. 4.2). As a sanity check of the implementation,
we have also verified that under uniform electric field, the carriers move ac-
cording to the mobility µ obtained from TCAD (i.e. the average velocity of
the charge ensemble is v = µE, see Fig. 4.3) and with a diffusion coefficient
D = µkbT/q (as verified by simulating the evolution of a Gaussian charge
packet, see Fig. 4.4).
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Figure 4.4: a) Evolution in time of the PDF of the electron’s position (after
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diff = 2tµekbT/q (red line), as
given by the solution of the diffusion equation [92].
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4.3.2 Carrier Transport in the Multiplication Region

The simulation of carrier transport in the multiplication region makes use of
an improved version of the RPL algorithm originally proposed in [43, 79]. The
new algorithm can, in fact, be coupled to every nonlocal history-dependent
model and not only to the Dead Space model of [35]. In the following, the
coupling of the RPL algorithm with the Energy Balance History Dependent
Model of Chapter 3 will be discussed.

The History Dependent impact ionization coefficients α(x|x′) and β(x|x′)
(i. e. the probabilities per unit length for an electron and a hole generated at
position x to ionize at x′ [69]) have been computed by using Eqs. 2.72, 2.73
and are functions of suitable effective fields derived from the conduction and
the valence band profiles (Eqs. 3.11 and 3.11). According to the definition of
the electron’s survival probability Pse(x|x′) in Eq. 2.42, the distance that an
electron at position x travels before generating an additional electron-hole pair
(x′ − x) can be computed by finding the value of x′ that satisfies the relation

r = Pse(x|x′) = exp

(︄
−
∫︂ x′

x

α(x|x′′)dx′′

)︄
, (4.3)

where r is a random number uniformly distributed in the [0, 1] interval. Equa-
tion 4.3 have been solved by storing in a look-up table its right hand side for
each value of x and x′. The x and x′ spacings are small enough to produce
discretization-independent results. Then for a given x and r, a binary search
has been performed in the table to find the value of x′ that satisfies the rela-
tion. A similar methodology has been used to describe the motion of holes.
As described in [86], each time a carrier ionizes, the algorithm recursively sim-
ulates the motion of the electron and hole originated from the parent carrier,
until they are collected by the contacts, then it goes back to the simulation of
the parent carrier. The time needed to move a carrier from x to x′ is estimated,
assuming a constant drift velocity ve,h, and computing (x′ − x)/ve,h.

The parameters of the effective field and of the impact ionization coefficient
calculations are reported in Tab. 3.1.

Since the mean gain (M) and the excess noise factor (F ) depend only on
the transport and impact ionization in the multiplication region, they can
be extracted with the RPL algorithm by simulating Nev independent trials
(each trial corresponds to a photon-induced generation event) considering the
carriers’ motion only in the multiplication region of the device. M and F are
then computed using Eqs. 2.75 and 2.76, respectively.

4.3.3 Current Induced at the Terminals

A new formulation of Ramo’s theorem [34] to compute the current induced
at the terminals by carriers moving in a partially depleted device has been
proposed in [93]. The contribution of each carrier to the current at time t is
given by

i(t) = ±q

∫︂ t

0

w[x(t′), t− t′]v[x(t′), t′]dt′, (4.4)
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where w(x, t) is a weight function and v(x, t) is the carrier’s velocity and t = 0
is the photon’s arrival time. Compact formulas for w(x, t) are reported in
[93], that assumes two distinct regions in the device: the absorption region
with uniform finite conductivity σ = q(µnn + µpp), and the multiplication
region where σ is approximately zero, since this region is depleted and there
are essentially no free carriers (see Fig. 4.1). According to this assumption, the
weight functions in the absorption and in the multiplication region are given
by

wabs(t) =
1

dabs + dmult

(︃
δ(t)− 1

τ
e−t/τ

)︃
(4.5)

wmult(t) =
1

dabs + dmult

(︃
δ(t) +

1

τ

dabs
dmult

e−t/τ

)︃
(4.6)

where

τ =
ε

σ

dabs + dmult

dmult

, (4.7)

δ(t) is the Dirac delta function and ε is the static3 permittivity of the material
[93].

In realistic cases, it is not trivial to make an abrupt distinction, since the
values of dabs and dmult do not always correspond to the thickness of the un-
depleted and depleted regions, respectively. For instance, at high reverse bias
voltages the electric field in the device in Fig. 4.1 depletes part of the absorp-
tion region and the profile of σ(x) becomes highly nonuniform (see Fig. 4.5).
For this reason, we have discretized the absorption region in Nd intervals, with
nonuniform spacing ∆xi, permettivity ε, conductivity σi and weight function
wi(t). We assume σ = 0 in the multiplication region, that is consistent with
the profiles extracted from TCAD (see Fig. 4.5). The wi(t) have been numer-
ically computed by antitransformation of the corresponding Laplace domain
expression. In fact, knowing that in the Laplace domain [93] Wi(s) (Laplace
transform of wi(t)) obey to

Nd∑︂
i=1

Wi(s)∆xi = 1 (4.8)

Wi+1(s)
(︂
ε+

σi+1

s

)︂
= Wi(s)

(︂
ε+

σi

s

)︂
(4.9)

one can derive that

Wi(s) =

Nd∑︂
i=1

sε+ σ1

sε+ σi

W1(s), (4.10)

where

W1(s) =
1∑︁Nd

i=1
sε+σ1

sε+σi
∆xi

, (4.11)

3Note that Eq. 4.7 has been derived in [93] for Silicon. In III-V compound semiconductors,
due to their polar nature, the model should include the dependence of ε on the frequency,
which would not bring to close-form expressions as Eq. 4.7. In this work we use the static
permittivity, since the transverse and longitudinal polar optical frequencies for GaAs are
much higher than the frequencies of interest for the computation of the weight functions.
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where the index “1” denotes an arbitrary point of the grid, taken as reference.
Inverse Fourier transform of the Wi(s) projection on the imaginary axis (s =
jω) yields the desired wi(t). The integration scheme proposed in [94] was used
to this end (the pseudo-code is reported below).

nn = [ 0 : 2 *NFFT−1] ; % NFFT = no . o f po in t s f o r FFT comp .
f max = 1/2/ dt ; % dt i s the time r e s o l u t i o n

w i ( t ) = real ( i f f t (W i ( s ) ( 1 :NFFT−1) , 2*NFFT) + . . .
i f f t (W i ( s ) ( 2 :NFFT) , 2*NFFT) * . . .
exp( j *2*pi*nn/2/NFFT))/ dt ;
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Figure 4.5: Conductivity as a function of the position inside the device of
Fig. 4.1 (in linear (a) and logarithmic scales (b)) extracted from TCAD simula-
tions [76]. Two bias voltages lower than the breakdown voltage are considered:
V = −28 V (black solid line) and V = −32 V (blue dashed line).

Figure 4.6 compares, for the same bias voltages of Fig. 4.5, the wabs(t) and
wmult(t) computed by using Eqs. 4.5, 4.6 (assuming a constant value of σ(x) in
the absorption region) and the wi(x, t) at x = −2.35 µm (close to the middle
of the absorption region, and at x = 0 (where the multiplication region begins)
computed numerically by using Eqs. 4.10, 4.11. As expected, the agreement
between the two methods is very good only when the electric field is confined
inside the multiplication region at (i. e. for V = −28 V), but when part of the
absorption region is depleted, we get substantially different results, especially
at x points close to the multiplication region. However, we also note that
the wi(t) computed by using Eqs. 4.10, 4.11 reported in Fig. 4.6b are similar
to those computed by using Eqs. 4.5, 4.6 when, instead of using the nominal
values of dabs and dmult, an effective dabs is defined as the distance at which the
electric field reaches about 1% of its maximum value inside the multiplication
region and an effective value of dmult is also defined consistently.

The contribution of each free flight to the total current waveform is then
given by the convolution of wi(t) with a trapezoidal velocity profile where
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the initial velocity is v(x) and increases with constant acceleration a(x) from
Eq. 4.1 in the absorption region, while it is equal to ve (or vh) in the multipli-
cation region.
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Figure 4.6: a) Sketch of the SAM-APD of Figures 1.18b and 4.1. Electron-hole
pairs are generated at position xg. b), c) Comparison between the weighting
functions wi(t) extracted by using Eqs. 4.5, 4.6 and nominal dabs and dmult

values (symbols) and Eqs. 4.10, 4.11 (lines) at two different positions inside
the device (x = −2.35 μm in red, that corresponds to a point close to the
middle of the absorption region, and x = 0 in blue, that corresponds to the
coordinate where the multiplication region begins) and at b) V = −28 V and
c) V = −32 V. In plot c), the dotted lines represent the wi(t) computed using
Eqs. 4.5, 4.6, but employing effective values of dabs and dmult. When Eqs. 4.5,
4.6 are used, a constant conductivity inside the absorption region, equal to the
value of σ at x = −dabs/2 in the TCAD simulation, has been assumed.

4.4 Model Verification

The validity of the proposed model has been verified by simulating with the
improved Random Path Length algorithm the staircase SAM-APD for X-ray
detection of Figures 1.18b and 4.1.

As far as gain and excess noise factor are concerned, the RPL algorithm
should give exactly the same results as the Finite Difference (FD) implemen-
tation described in Section 3.2, since the same parameter values are adopted
(Tab. 3.1). This is demonstrated in Fig. 4.7 for p-i-n GaAs APDs and in
Fig. 4.8 for the staircase SAM-APD of Fig. 1.18b
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for GaAs p-i-n APDs of different thicknesses. The results obtained with the
improved RPL algorithm (lines) are compared with the results of the Finite
Difference implementation (open symbols, see Section 3.2) and with the ex-
perimental data from [23] (filled symbols).
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Figure 4.8: Same as Fig. 4.7, but for the staircase SAM-APD of Fig. 1.18b.
Experimental data are taken from [7, 21].

To verify the correctness of the current waveforms extracted with our im-
proved RPL algorithm, instead, we have performed DC analyses of the device
in Fig. 4.1 at different bias voltages. We haved used the TCAD software [76] to
extract the electric field E(x), the field-dependent mobilities µe(x) and µh(x),
the concentrations n(x) and p(x), the band profiles, and then we have com-
puted the conductivity σ(x) (see Fig. 4.5), the accelerations ae(x) and ah(x)
(Eq 4.1) and the average times between consecutive scattering events τs,e(x)
and τs,h(x) (Eq. 4.2). Then, the weight functions wi(t) have been calculated
for each point of the absorption region (Eq. 4.10).
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Figure 4.9 compares transient simulations with the TCAD software and the
calculations with our algorithm after optical generation at different locations
in the device. In this case, impact ionization is turned off since the TCAD tool
does not include nonlocal models for impact ionization with associated noise
comparable to the RPL algorithm [86] in terms of physical content.
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Figure 4.9: Comparison between the current waveforms computed with TCAD
[76] (dashed lines) and with our algorithm averaging over 105 photon-induced
generation events (solid lines). The generation of a single electron-hole pair
occurs at xg = −2.35 µm a), c) or at xg = −0.25 µm, b), d) and two different
bias voltages have been applied: V = −28 V a), b) and V = −32 V c), d). In
these simulations, impact ionization is turned off. Here and in the next figures,
the spatial coordinates are the same as in Fig. 4.1.

The TCAD software is based on the Drift Diffusion equations, works on
deterministic ensemble averages and thus provides only a sort of average cur-
rent waveform, obtained by using the doping profile of Fig. 4.1 and solving
the Poisson’s and continuity equations in the time domain, while our algo-
rithm simulates the random motion of many particles. Hence, the comparison
between our approach and TCAD is possible only if the RPL simulations are
averaged over many photon-induced generation events (105 in this case), start-
ing with randomly chosen generation seeds. As demonstrated in Fig. 4.9, the
agreement between the current waveforms computed with TCAD and the RPL,
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when we impose that a single electron-hole pair is generated at xg = −2.35 µm
or at xg = −0.25 µm, is excellent at both bias points. The average current
waveforms extracted with the RPL algorithm in Fig. 4.4 are slightly noisy
because we have simulated a finite number of realizations of the stochastic
process (trials) of diffusive transport. This noise can be further reduced by
simulating (and then averaging) more trials.

4.4.1 Performance Analysis of the Multiplication Re-
gion of a Staircase SAM-APD for X-Ray Detec-
tion

In this Section, the RPL algorithm will be used to analyze the performance,
in terms of gain, excess noise factor, response time and bandwidth, of the
multiplication region of the staircase SAM-APD of Fig. 1.18b. The motion of
carriers in the absorption region has been neglected on purpose, so that our
analysis can highlight how the design of the multiplication region affects the
static and dynamic behavior of this device.
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Figure 4.10: a) Gain vs. voltage and b) excess noise factor vs. gain character-
istics obtained with the improved RPL algorithm for a 1 µm thick GaAs p-i-n
APD and for the staircase SAM-APD reported in Fig.1.18b. In the staircase
SAM-APD we have an extended voltage range where a gain significantly larger
than one that is achieved by the p-i-n diode.

To better visualize the advantages of a staircase structure compared to
a p-i-n diode in terms of a gain/noise perspective, Fig. 4.10 compares the
simulated M vs. voltage and F vs. M curves of the device of Fig. 1.18b with
a 1 µm thick GaAs p-i-n diode, i.e. same length of the multiplication region
for both devices: the staircase structure shows significant gain also below the
breakdown voltage and has a much lower associated noise.

Current waveforms after the generation of a single electron-hole pair in-
jected at the left boundary of the multiplication region (i. e. pure electron
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injection) are provided in Fig. 4.11. Plots a) and b) consider the staircase
structure excluding or including hole impact ionization, respectively; we ob-
serve that hole impact ionization induces a long-lasting decaying tail in the
current waveform, which becomes longer as the gain increases, whereas the
current waveforms obtained when only electrons ionize have the same dura-
tion regardless of the gain.

By Fourier transform of the waveforms we determine the 3dB bandwidth
(see Fig. 1.6).

β

Figure 4.11: Current waveforms at different gains for the multiplication region
of the staircase SAM-APD of Fig. 1.18b obtained with the improved RPL
algorithm a) without or b) with hole impact ionization. Carriers move at a
constant velocity ve = vh = 107 cm/s so that the transit time across the 1-μm
multiplication region is TR = 10 ps.

The gain-bandwidth product (GBP, see Fig. 4.12) is almost constant [12]
and improves for p-i-n APDs with thin intrinsic region. We can notice that
p-i-n and staircase diodes with the same width of the multiplication region
have similar GBP. Note that the staircase structure of Fig. 1.18b requires
a significant electric field between the steps in order to obtain a significant
gain. This results in large hole impact ionization which is detrimental for the
bandwidth (see the long tail in Fig. 4.11b, that implies an earlier decay in the
frequency domain. This problem does not occur in other material systems (as
for example in InAsSb systems [10]), where conduction band discontinuities are
large compared to the energy gap of the material in which impact ionization
takes place.
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Figure 4.12: a) Simulated Gain-bandwidth product of a 500 nm and a 1 µm-
thick GaAs p-i-n diodes and of the multiplication region of the staircase SAM-
APD of Fig. 1.18b obtained with the improved RPL agorithm (open symbols).
Filled symbols: experimental data for a planar [95] and a thin layer [96] sep-
arate, absorption, charge and multiplication (SACM), a Multi Quantum Well
(MQW) [97], a quantum dot (QD) SACM [98] and a resonant cavity (RC)
APDs [99] based on III-V compound semiconductors. b) Same as plot a) in
the range 1 ≤ BW ≤ 20 GHz.

The RPL algorithm can now also used to evaluate how changing the number
of steps in the multiplication region of the staircase SAM-APD of Fig. 1.18b
affects the response time of the device, similarly to what has been done for the
gain and the excess noise factor in Section 3.6.
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Figure 4.13: Simulated current waveforms for a staircase APD like the one in
Fig. 1.18b with Nstep = 6, 12, 24, 48 multiplication steps at fixed gain M = 10.

Of course increasing the number of steps results in a longer multiplication
region and thus longer time response to single photon absorption. Figure 4.13
reports the resulting current pulses for Nstep=6, 12, 24 and 48, showing a
retarded peak when increasing Nstep. On the other hand, the smaller hole
impact ionization entailed by large Nstep values reduces the amplitude of the
slow current tails w.r.t. the height of the main peak.
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However, when considering X-ray spectroscopy as a relevant application
for III-V based APDs, one should take into account that the diode current is
processed by a leaky integrator followed by an CR-RC shaper, as discussed
in Section 1.6. This corresponds to the convolution of the current pulses in
Fig. 4.13 with the function in Eq. 1.11. Since the τs = RC time constant
is usually in the μs range [25], all the current pulses in Fig. 4.13 result in
essentially the same waveform at the output of the shaper (see Fig. 4.14). As
a result we can say that, for X-ray spectroscopy, increasing the number of steps
is beneficial since it reduces the noise (i.e. improves the energy resolution of
the system), as seen in Section 3.6.2, without penalties to the speed of the
system.

μ

τ μ

Figure 4.14: Simulated current waveforms, after the convolution with the im-
pulse response function of a CR-RC shaper with time constant τ = 1 μs,
for a staircase SAM-APD as the one in Fig. 1.18b with Nstep = 6, 12, 24, 48
multiplication steps at fixed gain M = 10.

4.5 Jitter of the Time Response

The random motion of carriers in the absorption region and the stochastic
nature of impact ionization events result in random changes of the current
waveforms whenever a photon creates electron-hole pairs, thus generating jit-
ter in the APD response. We now want to evaluate this jitter by assuming a
realistic architecture of the readout electronics used in time of flight experi-
ments.

In these systems, there is the need for a trigger that generates a logic pulse
signalling the occurrence of a photon arrival. To this end, different methods can
be used, e. g. simple threshold techniques (Leading Edge Triggering) or more
elaborate Amplitude and Rise Time Compensated (ARC) Timing [100]. In the
following, we take as reference case the simple Crossover Timing (CT) scheme
illustrated in the inset of Fig. 4.15a, because: 1) it can be easily implemented
as post processing step in the algorithm presented in Section 4.3; 2) it is less
affected than leading edge timing by the fact that two pulses with the same
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rise time, but different amplitude, reach the same threshold at different times
(the so-called “amplitude walk” [100]); 3) it is at the base of other timing
methods, such as the Constant Fraction Discrimination and ARC Timing.
[100]. Following the CT scheme, the (simulated) current waveform generated
by the arrival of one photon is subtracted by a delayed version of itself to obtain
a bipolar pulse. A trigger signal is generated at the zero-crossing point t∗ (see
Fig. 4.15). By simulating many photon-induced generation events we can then
construct the distribution of t∗ (in the following referred to as PDF (t∗)) for
a given tD. We call response time jitter (tj) the standard deviation of this
distribution; the conceptual scheme in Fig. 4.15 thus gives us an indication of
the jitter in a realistic readout for time of flight measurements.
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Figure 4.15: Representation of the Crossover Timing method to compute t∗,
which is representative of a readout scheme used in time of flight measurements.
The original current waveform (a) is subtracted to itself delayed by tD (b) to
obtain a bipolar pulse (c). A trigger is generated at the zero-crossing point
t∗. In the inset of panel (a), the procedure is reported in the form of a block
diagram.

We have always assumed that the time interval between consecutive pho-
ton’s arrivals is longer than the time response of the device. Moreover, when
simulating the diffusion of the carriers in the absorption region (see Fig. 4.6a),
differently from what is explained in Section 4.3, we have set wi(x, t) = 0 for
x < 0 when the electric field is null in the absorption region, that yields a
null current waveform from t = 0 to t = tdiff , where tdiff is the random time
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needed for the electron generated in the absorption region to diffuse towards
the multiplication region (see Fig. 4.16a). In other words, the model considers
only the effect of diffusion on the duration of the current waveform, and ne-
glects the contribution of diffusion noise in terms of induced current, since this
would result in thermal noise components at high frequency filtered out by any
readout circuit. This approximation is supported by Fig. 4.16b that shows the
current power spectral densities (PSDs), averaged over Nev = 103 photon in-
duced generation events, obtained including or not the contribution of carrier
diffusion to the induced current. Figure 4.16b has been constructed by assum-
ing random time intervals, generated according to a Poisson distribution with
mean frequency ν = 0.5 GHz between consecutive photon arrivals and then
performing the Fourier transform of the sequence of current waveforms. The
pseudo-code for the computation of the PSD is here reported:

T = 0 ;
PSD = 0 ;
nu = 0 .5 e9 ;

for n = 1 :Nev
i t = cur rent computed with RPL algor i thm ;
T rnd = −1/nu* log (rand (1 , 1 ) ) ;
T += T rnd ;

% NFFT = no . o f po in t s f o r FFT computation

I f f t = f f t ( i t , NFFT) ;
I f f t 2 = abs ( I f f t ( 1 : f loor (NFFT/2)+1)ˆ2;
I f f t 2 ( 2 : end−1) *= 2 ;
PSD += I f f t 2 *dt ˆ2 ;

end

PSD /= T;

We notice that, in the low frequency limit, there is a good agreement between
the PSDs computed in the two cases (with or without the contribution of
carriers’ diffusion to the induced current). The small discrepancy is due to
the fact that when the complete model is used, the high frequency white noise
associated with carriers’ diffusion adds to the shot noise component of the
photogenerated current Iph = qν. So, setting wi(x, t) = 0 for x < 0 gives the
advantage of getting output waveforms free of additional noise contributions
of limited relevance for the considered problem. In addition, to suppress the
effect of the residual noise, a zero-crossing point is considered valid only if it
occurs when the integration of the original current waveform is larger than
0.1 the electron’s elementary charge q. A possibility to further reduce the
noise components not relevant to jitter analysis, would be to filter the current
waveforms, mimicking the effects of the finite bandwidth of a real readout.
When, instead, the absorption region is partially depleted, we compute wi(x, t)
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also for x < 0 when the carriers move in a region where the electric field is, at
least, the 1% of its peak value in the multiplication region.
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Figure 4.16: a) Sample current waveform for a single generation event and
b) the corresponding current power spectral density averaged over Nev = 103

generation events computed with our algorithm using the complete model de-
scribed in Section 4.3 (black solid line) or imposing wi(x, t) = 0 for x < 0 (red
dotted line) for V = −28 V and xg = −2.35 µm. A single electron-hole pair is
generated per absorbed photon.

Concerning the delay time tD, this has been set larger than the rise time
from 10% to 90% of the peak current of the original waveform and chosen so
that the falling edge of the original current pulse crosses the rising edge of
the delayed one in a region where small changes of tD do not affect the jitter.
The limitations of this approach are discussed in the following Section 4.5.2.
Indeed we have verified that, when all the current waveforms generated by
different photons have a similar shape (that is the case when impact ionization
is turned off, so that the only difference between the waveforms is tdiff , see
Fig. 4.16a), then an interval of values exists where the precise tD does not
affect the extracted jitter value (Fig. 4.17).
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Figure 4.17: Probability Density Functions of t∗ for a) V = −28 V and b)
V = −32 V for different tD. The generation point is xg = -2.35 µm. PDF (t∗)
is the same regardless of the tD value.

To assist our forthcoming interpretation of the distribution of t∗, we re-
call that, based on the solution of the diffusion equation [101], for Brownian
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motion in a region of constant drift velocity v and diffusion coefficient D, the
probability density function of the arrival time t∗ necessary to move from a
generic photo-generation point xg in the absorption region to the point where
the multiplication region starts (x = 0, see Fig. 4.6a), is an inverse Gaussian
distribution:

f(t∗) =
|xg|√
4πDt∗3

exp

(︃
−(−xg − vt∗)2

4Dt∗

)︃
. (4.12)

The standard deviation of the distribution of Eq. 4.12 is a good representation
of the jitter of an APD when the multiplication region has a deterministic
behavior, i. e. carrier multiplication is negligible and the absorption region
is under uniform conditions, so that constant v and D can be assumed along
the x direction. In order to examine the validity of these assumptions and
their impact on the jitter, different cases will be analyzed in the following
subsections.

4.5.1 Case 1: Influence of the Bias Voltage and of the
Generation Point

To evaluate how the applied voltage and the location of the generation point
affect the distribution of t∗, we have considered two bias points: V = −28 V
and V = −32 V, corresponding to two different configurations for the electric
field profile inside the device. In fact, while in the first case the field is entirely
confined inside the multiplication region, at V = −32 V part of the absorption
region is depleted, as also visible from the σ(x) profiles in Fig. 4.5. We have
considered the deterministic generation of a single electron-hole pair occurring
either near the middle of the absorption region (xg = −2.35 µm) or next to the
edge of the multiplication region (xg = −0.25 µm). At this stage, we focus on
the effect of transport in the absorption region. Therefore, impact ionization
is deliberately turned off in the multiplication region, where electrons travel
with constant average velocity ve.

Figure 4.18 shows the PDF (t∗), obtained by simulating Nev = 105 photon
induced generation events for the cases described above. A tentative fit with
an inverse Gaussian distribution (Eq. 4.12), where v and D are effective (space
independent) fitting parameters, is also reported. We notice that at V = −28 V
(Fig. 4.18a), when only the multiplication region is depleted and the electron-
hole pairs are generated far from the multiplication region, the distribution
of t∗ is very similar to the inverse Gaussian distribution of Eq. 4.12 (as when
transport occurs by drift and diffusion under uniform electric field). However,
in the SAM-APD of Fig. 4.1, the assumption of a uniform electric field is not
valid at positions close to the p+-contact and at the boundary between the
absorption and the multiplication region. For this reason, Eq. 4.12 holds only
if effective values of v and D are used instead of the ones that can be extracted
from the TCAD analysis; in the case of Fig. 4.18a, for instance, the effective
values v = 7.796 × 105 cm/s and D = 1.15 × 102 cm2/s have to be used in
Eq. 4.12 instead of v = 680 cm/s and D = 221 cm2/s, that are the values
extracted from TCAD. The resulting jitter, defined as the standard deviation
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of the PDF (t∗) computed by the RPL algorithm, is tj = 284 ps. On the other
hand, when photons are absorbed close to the multiplication region (Fig. 4.18b)
or the reverse bias voltage is increased to V = −32 V (Fig. 4.18c and d) and
part of the absorption region is depleted, the effect of diffusion is less relevant.
Thus, the distribution of t∗ is more peaked with respect to the one derived
using Eq. 4.12. The jitter is now much smaller: tj = 19.2 ps, 68 ps and 1.8 ps
for Fig. 4.18b, c and d, respectively. In particular, in the cases of Fig. 4.18b
and c, electron-hole pairs are generated in regions where the conductivity is
not constant (see Fig. 4.5a and b) and we are very far from the assumptions of
uniform v and D required for the validity of Eq. 4.12. Finally, in Fig. 4.18d,
electron-hole pairs are generated in a depletion region with null conductivity,
as a result carriers move only by drift and, thus, the extracted PDF (t∗) is
essentially a Dirac’s delta.
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Figure 4.18: Probability Density Functions of t∗ at V = −28 V a), b) and at
V = −32 V c), d) when an electron-hole pair is generated at xg = −2.35 µm
a), c) or at xg = −0.25 µm b), d). The PDFs extracted with the RPL algo-
rithm (red solid lines) are compared with a fitted inverse Gaussian distribution
(Eq. 4.12, black dashed lines). The delay of the readout of Fig. 4.15 is chosen so
that the falling edge of the original current waveform crosses the rising edge of
the delayed one, thus: tD = 0.5 ·dmult/ve = 7 ps a), b) or tD = dmult/ve = 14 ps
c), d). Note the different scales of the x-axis and the Dirac’s delta like shape
of the PDF (t∗) in graph d). Impact ionization is turned off.
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4.5.2 Case 2: Effect of impact ionization

In avalanche photodiodes, impact ionization plays a fundamental role in ampli-
fying the photogenerated current. The shape of the output current waveforms
changes dramatically and this has a significant effect on the PDF (t∗). More-
over, since impact ionization is a stochastic process, at a fixed bias voltage,
each carrier triggers multiplication processes with different gain m, and this is
an additional source of jitter.
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Figure 4.19: a), c), e), g): Sample current waveforms associated to the arrival
of a photon that generates one electron-hole pair at xg = 0 when impact
ionization is turned on. The applied voltage is V = −28 V. Since impact
ionization is a stochastic process, the gain m is not the same for all events:
m = 1 in a) and b), m = 2 in c) and d), m = 6 in e) and f) and m = 83 in g)
and h). Plots b), d), f), h) report the difference between the current waveform
and its delayed version when the delay is tD = dmult/ve = 14 ps. The first
zero-crossing point is highlighted with a red dot.

Figure 4.19 shows four sample waveforms (plots a, c, e and g) when V =
−28 V and a single electron-hole pair is generated at xg = 0 (thus excluding
the contribution of random diffusive transport in the absorption region). At
this bias voltage, the mean gain is M = ⟨m⟩ = 14. Fig. 4.19b, d, f and
h, instead, show the bipolar pulses obtained by adding the current waveform
with its inverted version delayed by tD = dmult/ve = 14 ps. We notice that in
Fig. 4.19a and b, when the gain is m = 1, the zero-crossing point occurs at
t∗ = tD, since the delay is longer than the duration of the main lobe of the
pulse. In Fig. 4.19c and d instead, the gain is m = 2 and the zero-crossing
point is at t∗ ≃ 25 ps. The same happens if the gain is m = 6, as shown in
Fig. 4.19e and f, although now multiple zero-crossing points are present due
to the complex shape of the waveform. Finally, when the gain is m = 83
(Fig. 4.19g and h), the first zero-crossing point occurs at t∗ = 30 ps, that is a
time interval smaller than the rise time of the pulse shown in Fig. 4.19g.

Figure 4.20 shows the PDF (t∗) obtained when impact ionization is active.

89



The jitter (standard deviation of the total PDF (t∗)) is tj = 5.8 ps. We notice
that the PDF shape is different from those reported in Fig. 4.18. The peak
at t∗ = 14 ps (that is t∗ = tD) is due to all those waveforms where the zero-
crossing point occurs during or after the falling edge of the current waveform
(see Fig. 4.19a and b).
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Figure 4.20: Probability Density Function of t∗ after the arrival of Nev =
105 photons, when the bias voltage is V = −28 V. Single electron-hole pairs
are generated at the beginning of the multiplication region (x = 0). tD =
dmult/ve = 14 ps.

The spread in the PDF (t∗) is then caused by the Crossover Timing scheme
itself, since the waveforms generated by the arrival of different photons all have
different shapes and the duration of the pulses changes dramatically depending
on the gain m [100]. The main issue is to calibrate the optimum tD to be used:
if the choice of tD is based on the duration of the average time response at a
given bias voltage, then when m is low the zero crossing might occur during
or after the falling edge of the current waveform, while, when m is large the
crossing is at the beginning of the rising edge. For this reason, the scheme
in Fig. 4.15 is well suited for APDs only if multiple electron-hole pairs are
generated by a photon. This happens, for instance, in the detection of X-rays,
which is one of the main applications of III-V compound semiconductor APDs.
The generation of a single electron-hole pair per photon instead is not repre-
sentative of our use cases. The discussion of alternative timing methodologies
goes beyond the aim of this thesis and, in general, APDs operated in the linear
regime may not be the best choice in this case.

4.5.3 Case 3: Generation of Multiple Electron-Hole Pairs

As mentioned above, when avalanche photodiodes are used for the detection
of high energy photons (e. g. X-rays), more than one electron-hole pair is
generated per absorbed photon. Calibrated generation models predict that
the number of generated electron-hole pairs has a Normal distribution with

average N = Eph/Eehp and standard deviation equal to
√︁

Nf , where Eph
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is the photon energy, Eehp is the average electron-hole pair creation energy
and f is the Fano factor [6]. Eehp and f depend on the material and, for
GaAs, their values are Eehp = 4.21 eV and f = 0.12 [25]. An example of
distribution of generated carriers is shown in Fig. 4.21a). Note that, since the
number of electron-hole pairs generated for each absorbed photon is a discrete
quantity, a Poisson distribution would be more appropriate. However, for
the absorption of X-ray photons in GaAs, N is as high as 100 and for these
numbers the Central Limit Theorem ensures that the Normal distribution is a
good approximation of the Poisson’s one.
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Figure 4.21: a) Distribution of the number of generated electron-hole pairs in
GaAs for a photon with energy Eph = 500 eV according to [25]. b) Probability
Density Functions of t∗ considering 103 times the process of the arrival of a
photon and the random generation of electron-hole pairs, at xg = 0 in the
device of Fig. 4.1. Eph = 125, 500 or 2000 eV (black solid line, red dashed line
and blue dotted line respectively). Impact ionization is turned on, the applied
voltage is V = −28 V. tD = dmult/ve = 14 ps.

To evaluate how multiple electron-hole pairs generation affects the jitter of
the response time, we have simulated the absorption at xg = 0 of 1000 photons
with fixed energy Eph = 125, 500 or 2000 eV. This choice is well motivated by
the will to highlight only the relative impact of the electron-hole pair genera-
tion process on the jitter. As discussed above, each photon generates a random
number of electron-hole pairs (N) according to the Normal distribution related
to its energy [6, 25]. t∗ is then computed with the procedure of Fig. 4.15 on
the current waveform generated by the N pairs (i.e. each electron-hole pair
is simulated separately, then the waveforms are summed up). The results are
shown in Fig. 4.21b. We notice that, as the photon energy increases from 125
to 2000 eV, the distribution of t∗ becomes narrower. This happens because the
number of electron-hole pairs contributing (statistically) to the current wave-
forms increases and the curves associated to the arrival of different photons are
similar to each other, resulting in a reduced variability with respect to what
is shown in Fig. 4.19.

The generation of multiple electron-hole pairs per photon makes the use of
the Crossover Timing technique less critical even in the presence of a high gain,
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since the current waveform associated to the arrival of a single high energy
photon is the sum of all the current waveforms created by each generated
electron-hole pair.

4.5.4 Case 4: Distributed Electron-Hole Pair Genera-
tion

When the photon flux impinges on the APD, electron-hole pairs generation
is not localized but distributed along the x direction according to the Beer-
Lambert’s law (Eq. 1.8).
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Figure 4.22: Comparison between the Probability Density Functions of t∗,
extracted with the extended RPL after the arrival of Nev = 103 photons, when
multiple electron-hole pairs are generated at xg = −4.25 µm (black solid line),
xg = −2.35 µm (red dashed line), xg = 0 (green dashed-dotted line) or when
the generation follows the profile given by Eq. 1.8 (blue dotted line). The
applied bias voltage is V = −28 V and impact ionization is turned on. The
delay of the readout circuit of Fig. 4.15 is tD = dmult/ve = 14 ps.

In our simulations, we have considered photons with energy Eph = 5.89 keV,
typical of 55Fe and we assume a device entirely fabricated in GaAs. The
attenuation length is then L = 11.95 µm [14]. By using the GaAs parameters
reported in Section 4.5.3 [25], each photon generates an average number of
1399 electron-hole pairs.

Fig. 4.22 compares the distribution of t∗ when generation of multiple electron-
hole pairs is localized at xg = −4.25 µm, xg = −2.35 µm and xg = 0 µm to
the case when generation is distributed. We notice that the jitter decreases
from tj = 31.2 ps to tj = 1.2 ps as we move the generation point closer to the
multiplication region, because carriers have to travel according to the stochas-
tic laws of the diffusive transport over a path of the absorption region that
becomes shorter. When the generation is distributed, instead, the jitter is
higher than in all previous cases (tj = 56.9 ps), since electron-hole pairs are
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generated at random positions inside the device, depending on the point where
the photon is absorbed (all the pairs generated by a given photon are, instead,
created at the same position, as stated in Section 4.3.1).

4.6 Summary

A new implementation of the Random Path Length algorithm allows us to
investigate the stochastic response time of Separate Absorption and Multipli-
cation avalanche photodiodes (SAM-APDs). The model includes an extended
version of the Ramo’s theorem in order to properly take into account the finite
conductivity of the absorption region. The transport model includes both dif-
fusion and drift of carriers as well as impact ionization. Moreover, differently
from the RPL algorithm of [43, 79], in our algorithm any nonlocal history de-
pendent model can be used to describe impact ionization, allowing the study
of carrier multiplication in complex structures, such as staircase APDs.

It is shown that, as expected, staircase APDs are advantageous over p-i-n in
terms of excess noise factor, whereas the advantages in terms of gain-bandwidth
product are limited unless hole impact ionization is significantly suppressed.

The model also points out that the when the staircase SAM-APD of Fig-
ure 1.18b is used for X-ray spectroscopy, the increase in the number of steps
of the multiplication region does not imply any practical drawback in terms
of dynamic response of the system, because the shaper usually has a time
constant (set to be as close as possible to the optimum case where the com-
bined noise of the input-referred voltage and current sources of the read-out
are minimized [26, 15]) much longer than the time delay of the APD.

We validated the model predictions of average current waveforms against
TCAD software, and then used them to extract the response time jitter. It has
been pointed out that, in cases where impact ionization is vanishingly small
(that corresponds to low bias voltages in real scenarios), when electron-hole
pairs are generated at the same location in the absorption region, the jitter is
higher if the absorption region is quasi neutral (i.e. low electric field as given
by a high doping in the δ-p layer). The jitter decreases as the generation of
electron-hole pairs occurs closer to the multiplication region.

When impact ionization is relevant, the simple Crossover Timing technique
for the estimation of the jitter has limitations, because the line delay tD has to
be fixed but the shapes of the current waveforms created by distinct photons
are very different from each other, even at the same bias. However, the situa-
tion improves if we consider generation of many electron-hole pairs per photon
as for X-ray detection, since several current waveforms are summed together.
Consistently, the jitter reduces as the energy of the photon increases (more
electron-hole pairs are involved).

Finally, it is important to consider a distributed generation profile due to
impinging photons with high energy, since the jitter is higher than in those
cases where the generation is localized, due to the random generation position
that translates into a different time needed for each electron to diffuse across
the absorption layer.
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Chapter 5

Full Band Monte Carlo
Simulations of GaAs APDs

In this Chapter, the development of a Full Band Monte Carlo simulator and its
application to GaAs Avalanche Photodiodes will be presented. The main focus
is on using this very accurate modeling approach to assess the limitations of
the approaches based on the nonlocal history dependent framework presented
in the previous chapters and to improve the calibration of these models by
using the results of Full Band Monte Carlo simulations as starting point.

In fact, as discussed in Chapters 2-4, nonlocal history dependent (NL-HD)
impact ionization models based either on the Dead Space approximation [35]
or on effective fields [39, 23, 69] are often used to estimate the gain (M) and the
excess noise factor (F ) in APDs. The strength of NL-HD models lies in their
low computational burden, when compared with Monte Carlo simulations, that
allows to systematically analyze the trade-offs at the basis of APDs design.
However, the high computational speed comes at the expense of accuracy. In
fact, in NL-HD models impact ionization is described at a macroscopic level:
the model parameters have to be empirically chosen to fit experimental gain
and excess noise factor as done in Sections 2.2.2, 2.2.3 and 3.3; furthermore,
secondary carriers are always generated with zero kinetic energy and can move
only in the direction of the applied electric field [35, 39, 23, 69].

The results presented in this Chapter are an extension of the ones published
by the author of this thesis in [102].

5.1 Band Structure

GaAs, like many other III-V compound semiconductors, is a crystal with a
Zinclblende structure. In the reciprocal space (k⃗), this corresponds to a Face-
Centered Cubic (FCC) lattice, whose First Brillouin Zone (FBZ) can be iden-

tified by the k⃗-points that satisfy the relation

k⃗ ∈ FBZ if

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|kx| ≤ 1

|ky| ≤ 1

|kz| ≤ 1

|kx|+ |ky|+ |kz| ≤ 1.5,

(5.1)
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where |kx|, |ky| and |kz| are normalized to 2π/a0 and a0 is the lattice constant
(Fig. 5.1a).

A FCC lattice has a 48-fold symmetry, that means that the energy disper-
sion relation can be computed on the 1/48th part of the FBZ, the so-called
Irreducible Wedge (IW, see Fig. 5.1b), and then derived for the rest of the

FBZ by exploiting the symmetry. k⃗ is part of the IW if

k⃗ ∈ IW if

{︄
1 ≥ |kx| ≥ |ky| ≥ |kz| ≥ 0

|kx|+ |ky|+ |kz| ≤ 1.5,
(5.2)

where, again, k⃗ is normalized to 2π/a0.
The symmetry points of the a FCC lattice are highlighted in Fig. 5.1b and

are located at (in units of 2π/a0):

Γ = (0, 0, 0)

X = (0, 1, 0)

L = (0.5, 0.5, 0.5)

W = (0.5, 1, 0)

U = (0.25, 1, 0.25)

K = (0.75, 0.75, 0).

(5.3)
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Figure 5.1: a) First Brillouin Zone and b) Irreducible Wedge of the Face-
Centered Cubic reciprocal lattice. The symmetry points are indicated in plot
b).

Since the electron’s effective mass in GaAs is very low (0.063m0 [91]), two
cubic meshes have been used to discretize the IW. The parameter used for
building the meshes is the number of divisions along the Γ − X direction: a
fine mesh with ndiv = 300 has been built around the Γ valley, from k⃗ = (0,

0, 0) to k⃗ = (0.1, 0.1, 0.1). The total number of points in the mesh is 6545; a

coarse mesh with ndiv = 40, for a total of 6281 k⃗-points, has been employed
to discretize the remaining part of the IW.

Each k⃗-point inside the IW has an associated weight, that corresponds to
the number of identical k⃗-points in the FBZ: for instance the weight of Γ =
(0, 0, 0) is 1, while the weight of L = (0.5, 0.5, 0.5) is 8. The pseudo-code for
the computation of the weights is here reported.
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foreach k⃗ in IW
A = [ kx ky kz ] ;
B = [−kx ky kz ] ;
C = [ kx −ky kz ] ;
D = [ kx ky −kz ] ;
E = [−kx −ky kz ] ;
F = [−kx ky −kz ] ;
G = [ kx −ky −kz ] ;
H = [−kx −ky −kz ] ;

% perms () computes a l l the permutat ions o f a vec t o r

W = [ perms (A) ; perms (B) ; perms (C) ; perms (D) ; . . .
perms (E) ; perms (F ) ; perms (G) ; perms (H) ] ;

Remove dup l i c a t e rows from matrix W

weight = number o f rows o f matrix W
end

It is worth noting that a similar code is used also to reconstruct the dispersion
energy of the entire FBZ starting from the one of the IW. Moreover, the above
algorithm only provides the weight of each k⃗-point in the IW, but not the
weight of the k⃗-points at the edges of the FBZ. In principle, this could be a
problem when evaluating the transport in a valley located at the edge of the
FBZ, such as the L-valley. However, not considering the weight of the k⃗-points
at the edges of the FBZ has been compensated by the fine discretization that
we have employed.

The band structure of GaAs (four conduction bands and four valence bands
for a total of sixteen bands, since each band is computed for spin up and spin
down) has been calculated for k⃗-points in the IW by using the Local Empirical
Pseudopotentials Method (EPM) described by [58]. The EPM Hamiltonian
is reported in Eq. 5.4 and its local term is expanded in Eqs. 5.5. In our
calculations VNL(r⃗, E) = 0.

HEPM = − ℏ2

2m0

∇2 + VL(r⃗) + VNL(r⃗, E), (5.4)

VL(r⃗) =
∑︂
G⃗

[︂
VS(|G⃗|) cos(G⃗ · τ⃗) + jVA(|G⃗|) sin(G⃗ · τ⃗)

]︂
e−jG⃗·r⃗, (5.5)

where G⃗ are the vectors of the reciprocal space and τ⃗ = a0
8
(1, 1, 1) [58]. The

summation over G⃗ in Eq. 5.5 is usually truncated to the first neighbors of the
unit cell of the reciprocal lattice, that means that VS(|G⃗|) and VA(|G⃗|) have to
be evaluated only on |G⃗| =

√
3,
√
4,
√
8,
√
11.

Spin Orbit Interaction has been included in our calculations by using the
method proposed by [103]. The Spin Orbit Hamiltonian, that is summed to
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the spatial part (Eq. 5.4), is given by

Hss′

SO(K⃗,K ′⃗ ) = (K⃗ ×K ′⃗ ) · σss′⃗

(︃
a20
2π

)︃{︂
−jλS(K⃗,K ′⃗ ) cos

[︂
(K⃗ −K ′⃗ ) · τ

]︂
+λA(K⃗,K ′⃗ ) sin

[︂
(K⃗ −K ′⃗ ) · τ

]︂}︂
,

(5.6)

where

λS,A =
λ1 ± λ2

2
, (5.7)

λ1(K⃗,K ′⃗ ) = µB(K⃗)B(K ′⃗ ), (5.8)

λ2(K⃗,K ′⃗ ) = αµB(K⃗)B(K ′⃗ ), (5.9)

B(K⃗) = K⃗
5− k2

ζ

5
[︁
1 + k2

ζ

]︁4 , (5.10)

kζ =
aB
ζ
. (5.11)

In Eqs. 5.6-5.11, K⃗ = k⃗ + G⃗, K ′⃗ = k⃗ + G′⃗ , s and s′ are the spin states, σ⃗ are
the Pauli matrices and aB ≃ 5.29× 10−11 m is the Bohr radius [103].

The code used for the implementation of EPM has been developed by [104]
and the parameters that we adopted are listed in Tables 5.1 and 5.2, where
the energies of the Form Factors are expressed in Rydberg [Ry] (1 Ry ≃ 13.6
eV).

VS(
√
3) [Ry] VS(

√
4) [Ry] VS(

√
8) [Ry] VS(

√
11) [Ry]

-0.23 0 0.01 0.055

VA(
√
3) [Ry] VA(

√
4) [Ry] VA(

√
8) [Ry] VA(

√
11) [Ry]

0.07 0.05 0 0.01

a0 [m] Eg [eV]
0.564×10−9 1.424

Table 5.1: Empirical Pseudopotential parameters for GaAs used in the code
of [104].

ζ µ [Ry] α
5.34 0.0008 1.37

Table 5.2: Spin Orbit Interaction parameters for GaAs used in the code of
[104].

It is worth noting that, in principle, Spin Orbit Interaction should be in-
cluded in the calculations together with the nonlocal corrections for the pseu-
dopotentials, as described in [59, 103]. Since in our calculations we have set
VNL(r⃗, E) = 0 in Eq. 5.5, we treat the bandgap (Eg) as a free parameter: a
rigid shift in energy of the eigenvalues has been imposed so that the difference
between the minimum of the first conduction band and the maximum of the
last valence band is equal to the desired Eg (see Tab. 5.1).
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The band structure of GaAs is stored into two bi-dimensional matrices (one
for the fine mesh and one for the coarse mesh), where the row number is the

band index and the column number is the index of the k⃗-point in the mesh.
Figure 5.2 compares the band diagram computed by using our algorithm

with the one calculated by [105], showing an excellent mutual agreement.
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Figure 5.2: Comparison between the Band Structure of GaAs computed by
employing the Empirical Pseudopotential Method, including Spin Orbit Inter-
action, by using the code of [104] with the parameters of Tabs. 5.1 and 5.2
(red lines), and the one calculated by [105] (black circles).

Finally, once that the band structure is computed in the IW, the dispersion
relation is reconstructed for the entire FBZ and a centered finite difference
scheme is employed to compute the first and second derivative of the energy
with respect to k⃗. The results, for each direction, are stored in a bi-dimensional
matrix with the same convention used to store the energies.

Some useful band structure parameters for bulk GaAs, namely the elec-
tron’s effective mass (me,Γ) and the nonparabolicity coefficient (αΓ in the Γ
valley and the energy distances Γ − L and Γ − X, have been extracted from
our calculations and are compared in Tab. 5.3 with the results obtained by
other authors [106, 107, 108], reporting a good mutual agreement, in partic-
ular with [106]. This result is expected, since in this work we have used the
same parameters of [106] for the EPM (see Tab. 5.1).

Ref. Method me,Γ [m0] αΓ [eV−1] Γ− L [eV] Γ−X [eV]
This Work EPM 0.060 0.84 0.329 0.444

[106] EPM 0.063 0.834 0.323 0.457
[107] DFT 0.083 0.75 0.12 0.52
[107] TB 0.067 0.73 0.288 0.49
[107] k · p 0.067 0.65 - -
[108] - 0.067 - 0.28 0.48

Table 5.3: Band structure parameters for bulk GaAs.
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Figure 5.3 compares the dispersion relation of the Γ valley of GaAs com-
puted in this work with the analytical dispersion relation of Eq. 2.79.
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Figure 5.3: Comparison between the Γ valley of GaAs, along the [1, 0, 0] direc-
tion, computed in this work by using the EPM with the parameters of Tabs. 5.1
and 5.2 and the analytical dispersion relation of Eq. 2.79 with the parameters
of Tab. 5.3.

5.1.1 Density of States

From the band structure, the Density of States (DoS) as a function of energy
can be computed by

DoS(E) =
∑︂

k⃗∈FBZ

∑︂
n

δ(E − E(n, k⃗)), (5.12)

where n denotes the band index. Note that, since we have included Spin Orbit
Interaction in our calculations, the multiplication factor 2, usually employed
in the expressions for the DoS, is not present in Eq. 5.12.
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Figure 5.4: Comparison between the GaAs Density of States computed by
using our code (red line) and the ones calculated by [60] (black circles), [105]
(blue squares) and [62] (magenta triangle-downs).
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Figure 5.4 compares the DoS of GaAs computed in this thesis with results
from other authors [60, 105, 62] highlighting the mutual agreement.

While computing the DoS, it is useful also to create, for each band, a list of
states at a given energy (or better, inside an energy bin centered around a given
energy). As it will be shown in Section 5.4, these lists are needed to compute
the initial state of the injected particles and final state after a scattering event.
The pseudo-code for the creation of the lists is reported below.

foreach i e in Energy

foreach k⃗ in FBZ
foreach n

i f ( | Energy ( i e ) − E(n, k⃗)| ≤ ∆E/2)

l i s t n ( i e ) = [ l i s t n ( i e ) ; (n, k⃗) ] ;
end

end
end

end

In our code, the Dirac’s delta function has been approximated by a BOX
function of width ∆E; we have set ∆E = 1 meV and each state (n, k⃗) is
encoded in the list with a single number by using the following convention

(n, k⃗) = k ×OFFSET + n, (5.13)

where k is the index of the wavevector k⃗ in the mesh and OFFSET = 10 if
less than 10 bands are computed, while OFFSET = 100 otherwise.

5.2 Carrier-Phonon Scattering Rates

The approach followed to compute the carrier-phonon scattering rates is the
one proposed in [60]. Note that, in all the following expressions, the upper
signs corresponds to phonon emission, while the lower sign stands for phonon
absorption.

5.2.1 Acoustic and Nonpolar Optical Phonons

The carrier-phonon scattering rate, SRη(k1⃗, n1), between a carrier with wavevec-

tor k1⃗ in the n1-th band and acoustic or nonpolar optical phonons with po-
larization η (LA = Longitudinal Acoustic, TA = Transverse Acoustic, TO =
Transverse Optical) with different wavevector q⃗ has been computed by using
the Fermi golden rule, namely

SRη(k1⃗, n1) =
∑︂
q⃗

π

ρωη,q⃗

∆η,n2(q⃗)
2|I(n1, n2; k1⃗, k2⃗)|2·

·δ(E(n1, k1⃗)− E(n2, k2⃗)∓ ℏωη,q⃗)

(︃
nη,q⃗ +

1

2
± 1

2

)︃ (5.14)
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where (n2, k2⃗) is final state, ρ is the density of the semiconductor, ωη,q⃗ is
the angular frequency of the phonon with polarization η and wavevector q⃗,
I(n1, n2; k1⃗, k2⃗) is the overlap integral between the wavefunctions of the initial
and final states [45], φn1,k1⃗

(r⃗) and φn2,k2⃗
(r⃗), respectively

I(n1, n2; k1⃗, k2⃗) =

∫︂
cell

φ∗
n2,k2⃗

(r⃗)φn1,k1⃗
(r⃗)ejG⃗·r⃗dr⃗ (5.15)

and nη,q⃗ is the phonon occupation number, which can be computed through
the Bose-Einstein relation

nη,q⃗ =

[︃
exp

(︃
ℏωη,q⃗

kbT

)︃
− 1

]︃−1

. (5.16)

Momentum conservation implies:

q⃗ = k1⃗ ∓ k2⃗ + G⃗0, (5.17)

where G⃗0 is a reciprocal lattice vector which translates, when necessary, q⃗ to
the first Brillouin zone (umklapp processes [45]).

Consistently with [60], for acoustic phonons the coupling constant has been
approximated as ∆η,n2(q⃗) = ∆ac|q⃗| and the following dispersion relation was
used:

ℏωη,q⃗(q⃗) =

⎧⎨⎩ℏωη,max

[︂
1− cos

(︂
|q⃗|a0
4

)︂]︂ 1
2
, if |q⃗| ≤ 2π/a0

ℏωη,max, if |q⃗| > 2π/a0

(5.18)

where ωη,max = 4cη/a0 (cη is the sound velocity of a phonon with polarization
η).

For optical phonons the coupling constant has been approximated as ∆η,n2(q⃗) =
∆Kop and the dispersion relation has been ignored by setting ℏωη,q⃗(q⃗) = ℏωop

regardless of q⃗.
The sum over q⃗ of Eq. 5.14 has been then translated into an integral over

k2⃗, namely

SRη(k1⃗, n1) =
1

(2π)3

∫︂
k2⃗∈1BZ

∑︂
n2

π

ρωη,q⃗

∆η,n2(q⃗)
2|I(n1, n2; k1⃗, k2⃗)|2·

·δ(E(k1⃗, n1)− E(k2⃗, n2)∓ ℏωη,q⃗)

(︃
nη,q⃗ +

1

2
± 1

2

)︃
,

(5.19)

where q⃗ is determined by the momentum conservation (Eq. 5.17).
It is worth noting that, following [46], for acoustic phonons in the |q⃗| → 0

limit, the elastic and energy equipartition approximation has been used and
Eq. 5.19 becomes

SRLA,TA(k1⃗, n1) =
1

(2π)3
2πkbT∆

2
ac

ρℏcη

∫︂
k2⃗∈1BZ

∑︂
n2

|I(n1, n2; k1⃗, k2⃗)|2·

· δ(E(n1, k1⃗)− E(n2, k2⃗, n2))

(5.20)

The pseudo-code for the computation of SRη(k⃗1, n1) for all k⃗1 ∈ IW (Eqs. 5.19
and 5.20) in the case of phonon emission is here reported.
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foreach k1⃗ in IW
foreach n1

foreach k2⃗ in FBZ
foreach n2

q⃗ = k1⃗ − k2⃗ ;

i f ( q⃗ i s not in the FBZ)

Compute G0
⃗ so that

q⃗ = q⃗ +G0
⃗ ∈ FBZ

end

i f (η == LA | | TA)
Compute phonon angular f requency ωη,q⃗ and
energy E(q⃗) from d i s p e r s i o n r e l a t i o n ;

else
E(q⃗) = ℏωop ;

end

i f ( |E(n1, k1⃗)− E(n2, k2⃗)− E(q⃗)| ≤ ∆E/2)
i f (η = LA | | TA)

i f ( |q⃗| != 0)

SRem,LA,TA(k1⃗, n1)+ = C1 ∗ |q⃗|2/ω(q⃗) ∗ (nη,q⃗ + 1) ∗ |I|2 ;
else
% Use e l a s t i c and energy
% e q u i p a r t i t i o n approximation

SRem,LA,TA(k1⃗, n1)+ = C2 ∗ |I|2 ;
end

else

SRem,TO(k1⃗, n1)+ = C3 ∗ (nη,q⃗ + 1) ∗ |I|2 ;
end

end
end

end
end

end

C1 is the constant for LA and TA phonons and it is equal to:

C1 =
1

(2π)3
1

q∆E

(︃
2π

a0ndiv

)︃3
π

ρ

(︃
2π

a0

)︃2

(q∆ac)
2 (5.21)

C2 is the constant for LA and TA phonons in the |q⃗| → 0 limit and it is equal
to:

C2 =
1

(2π)3
1

q∆E

(︃
2π

a0ndiv

)︃3
2π

ℏ
kbT

ρcη
(q∆ac)

2 (5.22)
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C3 is a constant for nonpolar and TO phonons and it is equal to:

C3 =
1

(2π)3
1

q∆E

(︃
2π

a0ndiv

)︃3
π

ρ
(q∆Kop)

2 1

ℏωop

(5.23)

In Eqs. 5.21-5.23, all the energies are expressed in eV and, since the IW is
dicretized by using two cubic meshes with different ndiv, we point out that the
value of ndiv to use in these equations is the one of the mesh where the final
state (n2, k⃗2) lies. The constants C1, C2 and C3 derive from the transformation

of the integral over k2⃗ in Eq. 5.19 into a sum over the k2⃗-points in the mesh
that we have built.

Carrier-phonon scattering rates with acoustic or nonpolar optical phonons
are stored in four bi-dimensional matrices (acoustic phonon emission, acous-
tic phonon absorption, nonpolar optical phonon absorption, nonpolar optical
phonon emission), where the row index corresponds to the index of the k⃗-point
in the IW and the column index is associated to the band index. During the
computation, for each initial state (n1, k⃗1) and for each of the four categories
used to store the scattering rates, the maximum value of the argument of the
summation over n2 in Eq. 5.19 is stored. This values will be used for the se-
lection of the final state after the scattering event, as it will be described in
Section 5.4.2.

5.2.2 Polar Optical Phonons

In GaAs and other III-V compound semiconductors, the carrier-phonon scat-
tering with Longitudinal Optical (LO) phonons has to be take into account
the polar nature of these crystals. Therefore, following [60], the scattering

rate, SRpo(k1⃗, n1), for a carrier with wavevector k1⃗ in the band n1 and a polar
optical phonon is computed as

SRpo(k1⃗, n1) =
2π

ℏ
∑︂
q⃗

q2F 2
po

|q⃗|2
∆η,n2(q⃗)

2|I(n1, n2; k1⃗, k2⃗)|2·

·δ(E(n1, k1⃗)− E(n2, k2⃗)∓ ℏωop)

(︃
nop +

1

2
± 1

2

)︃
.

(5.24)

Fpo is the polar coupling constant which is given by

F 2
po =

ℏωop

4

(︃
1

ϵ∞
− 1

ϵ0

)︃
, (5.25)

where ϵ∞ and ϵ0 are the optical and static dielectric functions, respectively.

Similarly to what we have done for Eq. 5.14 in Section 5.2.1, the imple-
mentation of Eq. 5.24 is based on the transformation of the sum over q⃗ in an
integral over the wavevector of the final state k2⃗ and then to a sum over the
discretized states. The pseudo-code for the case of phonon emission is reported
below.
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foreach k1⃗ in IW
foreach n1

foreach k2⃗ in FBZ
foreach n2

E(q⃗) = ℏωop ;

q⃗ = k1⃗ − k2⃗ ;

i f ( q⃗ i s not in the FBZ)

Compute G0
⃗ so that

q⃗ = q⃗ +G0
⃗ ∈ FBZ

end

i f ( |E(n1, k1⃗)− E(n2, k2⃗)− E(q⃗)|) ≤ ∆E/2)

SRem,po(k1⃗, n1)+ = C4/|q⃗|2/ωop ∗ (nη,q⃗ + 1) ∗ |I|2 ;
end

end
end

end
end

where

C4 =
1

(2π)3
1

q∆E

(︃
2π

a0ndiv

)︃3
2π

ℏ
q2F 2

op

(︃
2π

a0

)︃−2

. (5.26)

The value of ndiv to use in Eq. 5.26 is the one of the mesh of the final state.
It is worth noting that, even if in this work we have computed the scat-

tering rate with polar optical phonons for all the (n, k⃗) states in the IW, this
scattering mechanism usually affects the transport only at low energy states
[106].

Carrier-phonon scattering rates with polar optical phonons are saved in two
bi-dimensional matrices (for phonon emission and absorption, respectively),

where the row index corresponds to the index of the k⃗-point in the IW and
the column index is associated to the band index. During the computation,
for each initial state (n1, k⃗1) and for both phonon emission and absorption,
the maximum value of the scattering rate between the initial state and every
possible final state is saved. This values will be used for the selection of the
state after scattering, as it will be described in Section 5.4.2.

5.2.3 Results

The total carrier-phonon scattering rate for each initial state n1, k⃗1) can be
computes as

SRphonon(k⃗1, n1) =
∑︂

η=LA,TA,TO

SRη(k⃗1, n1) + SRpo(k⃗1, n1). (5.27)
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The carrier-phonon scattering rate as a function of energy can then be found
by integrating over all the possible initial states

SRphonon(E) =
1

DoS(E)

∫︂
k1⃗∈FBZ

∑︂
n1

SRphonon(k1⃗, n1)δ(E − E(n1, k1⃗)dk1⃗).

(5.28)

For the computation of the overlap integrals in Eqs. 5.19 and 5.24 we
have employed the Rigid Ion approximation [60] for both electrons and holes
(Eq. 5.29).

I(n1, n2; k⃗1, k⃗2) = I(|q⃗|) = 3

(Rs|q⃗|)3
[sin(Rs|q⃗|)−Rs|q⃗| cos(Rs|q⃗|)] , (5.29)

where Rs = 2π 3
√︁
3/16π. Moreover, scattering events conserve the spin and,

for holes, we have imposed that the final state of a carrier-phonon scattering
event is in the same band of the initial state [109] (see Appendix B). Figure 5.5
compares the carrier-phonon scattering rates as functions of energy computed
by us by using the parameters in Tab. 5.4 and ∆E = 4 meV with the calcula-
tions of other authors [60, 105, 61, 62]. Results are not always coincident but,
as it will be shown in Section 5.4.3, these scattering rates all yield similar drift
velocities as a function of the applied electric field.
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Figure 5.5: Carrier-phonon scattering rates for a) holes and b) electrons as
functions of energy. Our results (red lines), obtained by using the parameters
in Tab. 5.4 and ∆E = 4 meV, are compared with the calculations of [60]
(black circles), [105] (blue squares), [61] (green triangle-ups) and [62] (magenta
triangle-downs).

ρ [kg/m3] cl [m/s] ct [m/s] ϵ0 ϵ∞
5360 5240 3340 12.9 10.92

Dac,h [eV] ∆Kop,h [eV/m] Dac,e [eV] ∆Kop,e [eV/m]

4.5 8×1010 5
√
2 2.1×1010

Table 5.4: Deformation potentials and other parameters used for the compu-
tation of the carrier-phonon scattering rates in GaAs.
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5.3 Impact Ionization

The impact ionization mechanisms (see Fig. 5.6) consists of a Coulomb inter-
action between two electrons: one in the conduction band (1) and one in the
valence band (4). The energy exchange promotes the electron in the valence
band to the conduction band (3), thus generating one electron-hole pair, while
the primary electron falls to a less energetic state (2).

EV

EC

1

2

4

3

Figure 5.6: Schematic representation of the impact ionization mechanism for
a hot electron in a direct bandgap semiconductor. The primary electron (1) in
the conduction band interacts with an electron in the valence band (4). The
process ends with two secondary electrons in the conduction band (2, 3) and
a secondary hole in the valence band (4).

During these transitions, both energy and momentum have to be conserved,
that implies

k⃗1 + k⃗4 + G⃗0 = k⃗2 + k⃗3, (5.30)

where G⃗0 is a reciprocal lattice vector that translates a k⃗-point into the corre-
sponding point inside the FBZ.

The impact ionization scattering rate for a carrier in the state (n1, k⃗1) can
be found by using the Fermi golden rule [110]

SRii(k⃗1, n1) =2
2π

ℏ
Ω2

(2π)6

∫︂ ∫︂ ∑︂
n2,n3,n4

Tii(n1, k⃗1, n2, k⃗2, n3, k⃗3, n4, k⃗4)·

· δ(E1 + E4 − E2 − E3)dk⃗2dk⃗3,

(5.31)

where Ω is the crystal volume, E1 = E(n1, k⃗1), E2 = E(n2, k⃗2), E3 = E(n3, k⃗3),

E4 = E(n4, k⃗4) and Tii(n1, k⃗1, n2, k⃗2, n3, k⃗3, n4, k⃗4) is the so-called matrix ele-

ment. The integral over k⃗4 in Eq. 5.31 is eliminated by the momentum, con-
servation, namely

k⃗4 = k⃗2 + k⃗3 − k⃗1 − G⃗0. (5.32)

In principle, Tii depends on the wavefunctions of the initial and final states
and on the screened Coulomb potential between states 1-4 and 2-3 [110, 111].
In this work, we have decided to exploit the isotropic nature of GaAs and
to embrace the Constant Matrix Element approximation [112]. Therefore, the
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matrix element Tii(n1, k⃗1, n2, k⃗2, n3, k⃗3, n4, k⃗4) has been substituted by the con-
stants Tii,h and Tii,e for the computation of the hole’s and electron’s impact
ionization scattering rates, respectively.

The pseudo-code for the computation of the impact ionization scattering
rate for an electron in the state (n1, k⃗1) is

foreach k1⃗ in IW
foreach n1 in CB

foreach k2⃗ in FBZ
foreach n2 in CB

foreach k3⃗ in FBZ
foreach n3 in CB

k4⃗ = k2⃗ + k3⃗ − k1⃗ ;

i f (k4⃗ i s not in the FBZ)

Compute G0
⃗ so that

k4⃗ = k4⃗ −G0
⃗ ∈ FBZ

end

foreach n4 in VB
i f ( |E1 + E4 − E2 − E3)| ≤ ∆E/2)

SRii(k1⃗, n1)+ = Cii ∗ Tii,e ;
end

end

end
end

end
end

end
end

It is worth noting that the quantity that we denote as Tii in the above
algorithm are not simply the matrix elements, but they also include all the
constants of Eq. 5.31 that do not scale with the mesh parameters nor with the
∆E that is chosen for the BOX function that approximates the Dirac’s delta
function. On the other hand. the constant Cii depends on ∆E and on ndiv,
namely

Cii =
1

ndiv6
1

q∆E
. (5.33)

To reduce the time needed for the computation of the impact ionization
scattering rates, we have discretized the FBZ with a third mesh with ndiv = 20
and calculated SRii only for the k⃗-points that belong to this mesh. Then, we
associated to the k⃗-points of the fine and coarse meshes described in Section 5.1
the impact ionization scattering rate of the closest k⃗-point in the mesh with
ndiv = 20.
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The impact ionization scattering rates as functions of the energy of the
primary carrier (Ei) can be found by integrating over all the possible initial
states

SRii(Ei) =

∑︁
n1

∫︁
SR(k⃗1, n1)δ(Ei − E(k⃗1, n1))dk⃗1∑︁
n1

∫︁
δ(Ei − E(k⃗1, n1))dk⃗1

. (5.34)

Figure 5.7 compares SRii,e(Ei) and SRii,h(Ei) obtained by using our code
(∆E = 4 meV) with the results of other authors [105, 113, 114], confirming
the validity of the proposed algorithm.
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Figure 5.7: a) Electron and b) hole impact ionization scattering rates in GaAs
as a function of energy. Our results (red lines), obtained by using the Constant
Matrix Element approximation [112], are compared with the scattering rates
computed by other authors [105, 113, 114].

The matrix elements that we have employed for the calculation of the hole’s
and electron’s impact ionization scattering rates, to reproduce the results of
other authors [105, 113, 114], are reported in Tab. 5.5.

Tii,h [J/s] Tii,e [J/s]
4.5×10−6 8.0×10−7

Table 5.5: Constant Matrix Elements used for the computation of the hole’s
and electron’s impact ionization scattering rates in GaAs.

Together with the scattering rates, we have computed also the energy dis-
tribution of the secondary electrons Ee2(Ei, Ef ) and holes (Eh4(Ei, Ef )), that
are needed to assign to the generated particles the appropriate energy (Ef ) by
using the expressions

Ee2(Ei, Ef ) =
∑︁

n1,n2,n3,n4

∫︁ ∫︁ ∫︁
Tii,eδ(Ei−E1)δ(E1+E4−E2−E3)δ(Ef−E2)dk⃗1dk⃗2dk⃗3∑︁

n1,n2,n3,n4

∫︁ ∫︁ ∫︁
Tii,eδ(Ei−E1)δ(E1+E4−E2−E3)dk⃗1dk⃗2dk⃗3

,

(5.35)

Eh4(Ei, Ef ) =
∑︁

n1,n2,n3,n4

∫︁ ∫︁ ∫︁
Tii,eδ(Ei−E1)δ(E1+E4−E2−E3)δ(Ef−E4)dk⃗1dk⃗2dk⃗3∑︁

n1,n2,n3,n4

∫︁ ∫︁ ∫︁
Tii,eδ(Ei−E1)δ(E1+E4−E2−E3)dk⃗1dk⃗2dk⃗3

.

(5.36)
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Sample results for an ionizing primary electron with kinetic energy 4 eV and
6 eV are shown in Fig 5.8. Similar expressions hold also for the computation
of the energy distribution of secondary carriers, Eh2(Ei, Ef ) and Ee4(Ei, Ef )
in the case of hole-initiated impact ionization (Fig. 5.9).

Ee2, Eh4, Eh2 and Ee4 are stored in bi-dimensional matrices where the row
number corresponds to the index of the initial energy, while the column number
is the index of the final energy.
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Figure 5.8: Secondary carriers’ energy distributions for a ionizing electron
with kinetic energy (a) 4 eV or (b) 6 eV. Positive energy refers to electrons
and negative energies to holes. The computation has been performed by using
Eqs. 5.35 and 5.36 with the constant matrix elements of Tab. 5.4. ∆E = 4 meV
and ndiv = 20.
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Figure 5.9: Same as Fig. 5.8 but for hole-initiated impact ionization.

5.4 The Full Band Monte Carlo Simulator

In this Section, the single particle Full Band Monte Carlo (FBMC) simulator
for carriers’ transport under uniform electric fields will be described. In the
following Sections, no discretization is applied to the real space in order to
extract the features of bulk GaAs.
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5.4.1 Carriers’ Injection and Motion

Each simulation begins by specifying the initial energy of carrier. For con-
vention, negative energies are associated to holes, while positive energies to
electrons.

The program then looks for all the states in the FBZ at that energy inside
the lists created while computing the DoS (see Section 5.1.1) and one of these
states is chosen randomly.

The equation of motion

dr⃗

dt
=

1

ℏ
∇k⃗E(n, k⃗) (5.37)

dk⃗

dt
= − q

ℏ
E⃗(r⃗) (5.38)

are solved by means of a self-scattering algorithm [45] where free flights alter-
nate with scattering events. The duration of each free flight (tff ) is determined
according to the expression

tff = − 1

Γff

ln(r), (5.39)

where r is a random number uniformly distributed in the [0, 1] interval and

Γff = max
{︂
SRphonon(k⃗, n) + SRii(k⃗, n)

}︂
. (5.40)

After each free flight, the updated k⃗-vector is brought back to the FBZ,
if necessary, and the eight points (k⃗λ, λ = 1, ..., 8) of the mesh that form the

cube that contains the k⃗-vector are identified. The energy of the state after the
free flight is then computed by using the expressions reported in [106], namely

Eλ(n, k⃗) = E(n, k⃗λ) +
∑︁

i=x,y,z
∂E(n,k⃗λ)

∂ki
(ki − ki,λ) +

∑︁
i,j=x,y,z

1
2
∂2E(n,k⃗λ)
∂ki∂kj

(ki − ki,λ)(kj − kj,λ)

(5.41)

E(n, k⃗) =
8∑︂

λ=1

PλEλ(n, k⃗) (5.42)

Pλ =

[︃
1− kx − kx,λ

l

]︃ [︃
1− ky − ky,λ

l

]︃ [︃
1− kz − kz,λ

l

]︃
, (5.43)

where l is the length of the side element of the cube. A similar procedure is
done also to compute the velocity in the k⃗-point after the free flight, but a
linear interpolation around each corner of the cubic mesh is performed instead
of the quadratic expansion of Eq. 5.41.

Finally, during carriers’ motion, the possibility of band crossing has been
taken into account by checking, at the end of each free flight, energy of the
states that are in the bands n− 1 and n+ 1. When |E(n, k⃗)−E(n± 1, k⃗)| <
0.25 eV, the band index after the free flight is the one of the state that mini-
mizes the difference between the velocity of the initial state and the one of the
final state.
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5.4.2 Selection of the Scattering Mechanism and State
After Scattering

At the end of each free flight, a scattering event occurs. The scattering mecha-
nism (carrier-phonon, impact ionization or self-scattering) is randomly chosen
according to the relative impact of a given scattering mechanisms to the total
scattering rate for the initial state (n, k⃗). The program does not interpolate

the scattering rates, but it associates to the state (n, k⃗) the scattering rates of
the closest mesh point.

Once that the scattering mechanism is fixed, the selection of the state after
scattering is performed according to the chosen scattering mechanism:

� Acoustic Phonons.
Storing all the possible final states in the FBZ for all the initial states in
the IW would be very demanding in terms of memory occupation, hence
we have decided to apply a rejection method for the determination of the
final state in the case of scattering with acoustic phonons. A candidate
final state (nf , kf⃗ ) is randomly selected, by searching in the lists created

in Section 5.1.1, within the energy range [E(n, k⃗) − Eη,max] for phonon

emission or within the range [E(n, k⃗) + Eη,max] for phonon absorption,
where Eη,max is the maximum energy of a phonon with polarization η,
according to Eq. 5.18.
The scattering rate SR(n, k⃗, nf , kf⃗ ) between (n, k⃗) and (nf , kf⃗ ) is com-
puted (Eq. 5.19).

The final state is accepted if r · SRη,max ≤ SR(n, k⃗, nf , kf⃗ ), where r
is a random number with uniform distribution in [0, 1] and SRη,max is
the maximum scattering rate between the initial state and all the pos-
sible final states in the case of acoustic phonon emission or absorption
(see Section 5.2.1 and the sketch in Fig. 5.10). If the final state is not

accepted, a new candidate final state (n′
f , k

′
f
⃗ ) is randomly chosen and

evaluated and the procedure is repeated.

� Nonpolar and Polar Optical Phonons.
For the same reasoning done for acoustic phonons regarding the memory
occupation of a look-up table where all the possible final states in the
FBZ are stored for all the initial states in the IW, a rejection method
similar to the one discussed above is adopted also for the determination
of the final state in the case of scattering with optical phonons. A can-
didate final state (nf , kf⃗ ) is randomly selected, by searching in the lists

created in Section 5.1.1, at energy E(n, k⃗)−ℏωop for phonon emission or

E(n, k⃗) + ℏωop for phonon absorption, since optical phonons have fixed

energy. The scattering rate SR(n, k⃗, nf , kf⃗ ) between (n, k⃗) and (nf , kf⃗ )
is computed by using Eq. 5.19 for nonpolar or Eq. 5.24 for polar optical
phonons.
The final state is accepted if r · SRmax ≤ SR(n, k⃗, nf , kf⃗ ), where SRmax

is the maximum scattering rate between two states in the case of non-
polar (Section 5.2.1) or polar optical phonon (Section 5.2.2) emission or
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absorption (see the sketch in Fig. 5.10). If the final state is not accepted,

a new candidate final state (n′
f , k

′
f
⃗ ) is randomly chosen and evaluated

and the procedure is repeated.

� Impact ionization. Given the energy Ei of the initial state (n, k⃗), the
new state is chosen randomly according to the energy distributions of
secondary carrier computed in Section 5.3. For instance, in the case of
electron’s impact ionization, the probability for a primary carrier with
energy Ei to generate a secondary electron with energy Ef is

p(Ei, Ef ) =
Ee2(Ei, Ef )∑︁
Ef

Ee2(Ei, Ef )
. (5.44)

Cumulative probabilities are computed for all the possible final energies
and the generation of a random number r ∈ [0, 1] is used to determine
Ef . A final state at energy Ef is randomly selected by searching in the
lists created in Section 5.1.1. No rejection mechanism is employed and
momentum conservation is neglected in the selection of the final state.

� Self-scattering. The final state is the initial state.

Final State (nf, kf)

S
R

(n
, k

, n
f, 

k f
)

SR(n, k)MAX

Rejected

Accepted

r SR(n, k)MAX

Final State

Final State

Figure 5.10: Schematic representation of the selection of the state after scat-
tering with the rejection algorithm.

5.4.3 Results

In this Section, we present the results of Full Band Monte Carlo simulations
under uniform electric field conditions for bulk GaAs. All the carriers have
been injected with energy 3/2kbT and the statistics (drift velocities, average
energies, occupation functions and impact ionization coefficients) have been
collected over 106 ÷ 107 scattering events.
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Figure 5.11: a) Electron velocity ve and b) hole velocity vh versus electric field
(E) curves in GaAs at T = 300 K. FBMC results (red crosses) are compared
with experimental data [50, 64, 115, 116] (solid lines).
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Figure 5.12: Electron’s and hole’s average energies as functions of the applied
electric field. Results of our FBMC simulations (red crosses and (blue plus
signs) are compared with the results of [60] (black filled and open squares).

Figure 5.11 compares the drift velocities of electron and holes as functions
of the applied electric field extracted with our FBMC simulations with the
experimental results of [50, 64, 115, 116], confirming the validity of the imple-
mentation described in Sections 5.4.1 and 5.4.2 and the choice of parameters
for the computation of the band structure (Tabs. 5.1, 5.2) and of the scattering
rates (Tabs. 5.4, 5.5).

Figure 5.12 compares the average energies for electrons and holes as func-
tions of the applied electric field extracted with our FBMC simulations with
the results of FBMC simulations by [60]. The agreement between the two
models is satisfactory.

The impact ionization coefficients corresponding to the scattering rates
in Fig. 5.7 are extracted from FBMC simulations with two different methods:
namely, either as the reciprocal of the average distance ⟨l⟩ between consecutive
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impact ionization events

α =
1

⟨le⟩
, (5.45)

or by using the expression (valid for electrons)

α =

∫︁ +∞
0

SRII,e(E)Focc(E)dE

ve
∫︁ +∞
0

Focc(E)dE
, (5.46)

where SRII,e(E) and Focc(E) are, respectively, the electron’s impact ionization
scattering rate and the occupation function as a function of the energy W ,
while ve is the drift velocity. Similar equations are used also for the hole impact
ionization coefficient β. The two methods are compared in Fig. 5.13 and give
similar results that are in an overall good agreement with experimental data
[17], and with the impact ionization coefficients used in the EBHDM described
in Chapter 3 [69].
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Figure 5.13: a) α and b) β versus the reciprocal of the electric field in GaAs
at T = 300 K. FBMC (Eq. 5.45 (red crosses) or Eq. 5.46 (blue solid line)) is
compared with experiments [17] (black solid) and with α and β used in [69]
(black dotted line).

Figure 5.14 shows the histograms of the distance between consecutive elec-
tron’s ionizations (le). Similarly to what has been done in [61], the his-
tograms have been normalized to extract the probability density functions
of le (PDF (le)). The PDF (le) has been computed at different electric fields
with the same FBMC simulations used for the extraction of α in bulk GaAs
(Fig. 5.13).

In the framework of the local model [1], the analytical expression for
PDF (le) is

PDF (le) = α · exp (−αle) , (5.47)

since exp (−αle) is the probability for an electron to travel across a distance
equal to le without ionizing, while αdle is the impact ionization probability in
the incremental distance dle that is after le.

115



0 0.2 0.4 0.6 0.8 1 1.2

l
e

[10
-4

cm]

0

1.0

2.0

3.0

4.0

5.0

6.0

P
D

F
(l

e
) 

[1
0

4
/c

m
]

0 0.25 0.5 0.75 1 1.25 1.5

l
e

[10
-4

cm]

0

1.0

2.0

3.0

4.0

P
D

F
(l

e
) 

[1
0

4
/c

m
]

0 1 2 3 4 5

l
e

[10
-4

cm]

0

0.3

0.5

0.8

1.0

1.3

1.5

P
D

F
(l

e
) 

[1
0

4
/c

m
]

0 0.5 1 1.5 2 2.5 3

l
e

[10
-4

cm]

0

0.5

1.0

1.5

2.0

P
D

F
(l

e
) 

[1
0

4
/c

m
]

d
e

= 2.69/qE
Eq. 5.48

V/cm

d)

5
V/cm= 4.5x10 E = 5.0x10

b)

E = 4.0x10
5

V/cm

c)

E

a)

E = 3.5x10
5

V/cm

FBMC

5

Figure 5.14: PDF (le) at different electric fields. The red solid lines represent
Eq. 5.48. The magenta dashed line is the electron’s dead space (de) computed
by using Eq. 2.60 with Eth,e = 2.69 eV (see Fig. 5.22b).
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Figure 5.15: Same as Fig. 5.14, but secondary electrons are generated with
null kinetic energy in FBMC simulations.
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In Fig. 5.14 we immediately notice that Eq. 5.47 is not suited to reproduce
the PDF (le) computed with FBMC simulations. In fact, the first bin of the
histograms is always partially filled, indicating the presence of a dead space
(de). The effects of de on the PDF (le) are even more evident in Fig. 5.15, that
shows the PDF (le) extracted for the same electric field values of Fig. 5.14
when, after an impact ionization event, the initial energy of secondary carriers
has been set to zero instead of being computed by using the selection rules
described in Section 5.4.2.

We have then compared, in Figs. 5.14 and 5.15, the PDF (le) computed
with the FBMC with the PDF (le) predicted by the Dead Space model [35].
In the case of a uniform electric field, we can write

PDF (le) =

{︄
0, le < de

α∗exp [−α∗(le − de)] , le ≥ de
, (5.48)

where de has been computed by using Eq. 2.60 with Eth,e = 2.69 eV (the choice
of this value will be discussed in Section 5.6, see Fig. 5.22b). The value of α∗

differs from the α obtained in Fig. 5.13 by using Eqs. 5.45 and 5.46. In fact, as
explained in [40], α∗ is the impact ionization coefficient for an electron which
has already traveled over its dead space de. By combining Eqs. 5.45 and 5.48,
we can write

1

α
= ⟨le⟩ =

∫︂ ∞

de

leα
∗exp [−α∗(le − de)] dle ⇒

1

α
= de +

1

α∗ . (5.49)

The agreement between Eq. 5.48 and FBMC results in Figs. 5.14 and 5.15
is good, in particular in the case of Fig. 5.14. This result is expected, since,
as it will be discussed in Section 5.6, the value of Eth,e used in Eq. 2.60 has
been extracted from FBMC simulations where the energy of secondary carriers
are chosen with the selection rules described in Section 5.4.2, once that its
distribution is known (see Eq. 5.35).

Similarly to what done for electrons, we have also extracted the probability
density functions of the distance between consecutive hole’s impact ionization
events at different electric fields (PDF (lh)). Figure 5.16 shows the PDF (lh)
when secondary holes are generated with the selection rules described in Sec-
tion 5.4.2, while Fig. 5.17 shows the PDF (lh) when, after an impact ionization
event, secondary holes are generated with null kinetic energy. The values of
dh extracted by using Eq. 2.61 with Eth,h = 3.12 eV (see Fig. 5.24b later in
Section 5.6) are compared with the histograms that we have computed with
FBMC simulations. We notice that, both in Figs. 5.16 and 5.17, the first filled
bin in the histograms is always the one after dh, indicating that, in GaAs
and for these electric fields, hole’s impact ionization is less sensitive than elec-
tron’s impact ionization to the initial energy of the carrier. The PDF (lh) in
Figs. 5.16 and 5.17 are also compared with the analytical PDF (lh) predicted
by the Dead Space model of [35] (Eq. 5.48 substituting α∗ with β∗ and de with
dh) and a good mutual agreement has been obtained.
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Figure 5.16: PDF (lh) at different electric fields. The red solid lines represent
Eq. 5.48. The magenta dashed line is the hole’s dead space (dh) computed by
using Eq. 2.61 with Eth,h = 3.12 eV (see Fig. 5.24b).
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Figure 5.17: Same as Fig. 5.16, but secondary holes are generated with null
kinetic energy in FBMC simulations.
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5.5 Gain and Excess Noise Factor of Thin GaAs

p-i-n APDs

To validate the FBMC transport model described in Sec. 5.4, we have com-
puted the gain and the excess noise factor are computed of thin GaAs p-i-n
diodes. We have assumed that:

1. The intrinsic region of the p-i-n APD is fully depleted.

2. The electric field is entirely confined inside the intrinsic region.

3. The electric field is uniform in the intrinsic region.

4. The built-in voltage is the same for all the devices that we have simulated
and it is equal to Ψ0 = 1.2 V [117].

Therefore, the simulation domain coincides with the intrinsic region of the
APD and it extends from x = 0 to x = d (see Fig. 5.18).

p+ n+i

x0 d

Simulation Domain

Figure 5.18: Sketch of the simulation domain employed in this work to compute
the gain and the excess noise factor in thin GaAs APDs.

The algorithm that we have employed is similar to the one described in
Sec. 2.2.4 for the RPL: we have simulated many trials starting from a single
electron injected at x = 0. Carriers move following the rules presented in
Sec. 5.4 and when impact ionization occurs at position x′, an electron-hole
pairs is generated in x′ and recursion is used to handle the increasing number
of carriers in the simulation. A trial ends when all the carriers exit from the
simulation domain and the simulation ends when all the trials are completed.
Since the trials are independent, we have exploited parallel execution of the
code to reduce the CPU time needed to simulate a single bias point. The gain
(M) and the excess noise factor (F ) have been computed by using Eqs. 2.75
and 2.76, respectively.

Figure 5.19 compares the experimental M(Vrev) and F (M) curves for GaAs
p-i-n diodes of different thicknesses [23] with the results of FBMC. The agree-
ment between experiments and simulations is good with no further parameter
adjustments with respect to the calibration of the carrier-phonon deforma-
tion potentials and of the matrix elements for the computation of the impact
ionization scattering rates discussed in Sections 5.2.3 and 5.3.
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Figure 5.19: a) M versus Vrev and b) F versus M curves for GaAs p-i-n APDs.
FBMC (solid lines) is compared with experiments [23] (symbols). A built-in
voltage Ψ0 = 1.2 V has been assumed [117].

5.6 Extraction of the History Dependent Im-

pact Ionization Coefficients with Full Band

Monte Carlo Simulations

In nonlocal history dependent (NL-HD) models α and β are functions of the
generation (x) and the ionization (x′) points (see Fig. 5.20) and they have a
nonlocal dependence on the complete electric field profile between x and x′.
In other words α and β are not given solely by the local electric field, hence it
is also necessary an alternative procedure to extract α and β from Full Band
Monte Carlo (FBMC) simulations, thus going beyond Eqs. 5.45 and 5.46 used
for Fig. 5.13.

generation
point

ionization
point

x x'Δx

ve

Figure 5.20: Discretization of the intrinsic region of a p-i-n diode with a mesh
with uniform spacing ∆x. x is the point where a carrier is generated, optically
or by impact ionization, and x′ is the point where it ionizes. Electrons move
from left to right with average velocity ve (while holes move from right to left
with average velocity vh and x and x′ are inverted).

To this purpose, we have derived Eq. 5.53 to extract α(x|x′) (and β(x|x′))
from FBMC simulations. In fact, following [39, 69], the electron’s impact
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ionization probability is

p(x|x′)∆x =
No. of electrons generated in x that ionize in x’ ±∆x/2

No. of electrons generated in x

= α(x|x′)exp

(︄
−
∫︂ x′

x

α(x|x′′′)dx′′′

)︄
∆x.

(5.50)

With a similar reasoning, we can also find the probability for an electron to
ionize before reaching x′, namely:

p(x|x′′ < x′) =
No. of electrons generated in x that ionize before x’

No. of electrons generated in x

=

∫︂ x′

x

α(x|x′′)exp

(︄
−
∫︂ x′′

x

α(x|x′′′)dx′′′

)︄
dx′′

= 1− exp

(︄
−
∫︂ x′

x

α(x|x′′)dx′′

)︄
.

(5.51)

Combining Eqs. 5.50 and 5.51, the expression for α(x|x′) is found by writing

α(x|x′) =
p(x|x′)

[1− p(x|x′′ < x′)]
, (5.52)

which is equivalent to

α(x|x′) = No. of electrons generated in x (by II or a photon) that ionize in x′ ±∆x/2
∆x·(No. of electrons generated in x − No. of electrons generated in x that ionize in [0, x′ −∆x/2))

(5.53)
It is worth noting that at the denominator of Eq. 5.53 we look for all the
electrons generated in x that ionize in [0, x′−∆x/2), instead of [x, x′−∆x/2),
to account for those electrons that, due to a scattering event, travel with
negative velocity and ionize at points lying before (along the field direction)
the location where the carrier was generated.

Sample results are shown in Fig. 5.21 for an electron generated at x = 0 or
at x = 50 nm in a 100 nm thick device. As it can be seen, α(x|x′) saturates
to a constant value (denoted as α∗, consistently with Eq. 5.48) after few tens
of nm.

Figure 5.22a compares α(1/E) from Eq. 5.45 and α∗(1/E) from Eq. 5.53
when x′ ≫ x and shows that they can be related by using Eq. 5.49 with
de = Eth,e/qE (Eq. 2.60), where Eth,e is the threshold energy for electron’s
ionization (see Fig. 5.22b). We have extracted Eth,e = 2.69 eV, which is
consistent with the value computed by [40] (3.0 eV). In Fig. 5.21b, we notice
that at high reverse bias voltages (namely at high gains) α(x|x′) > 0 also
for x′ < x. In fact, in FBMC secondary carriers are generated with nonzero
kinetic energy and in some cases with a velocity going leftward, which is a case
neglected by NL-HD models. Such left going electrons can undergo impact
ionization events even for x′ < x.
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Figure 5.21: α(x|x′) extracted from FBMC simulations by using Eq. 5.53 in
a 100 nm-thick GaAs p-i-n APD with electron injection from the left side at
Vrev = 5.5 V (black) and Vrev = 6.6 V (red). a) x = 0, b) x = 50 nm. A
built-in voltage Ψ0 = 1.2 V has been assumed [117].
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Figure 5.22: a) α (empty symbols) and α∗ (filled symbols) versus 1/E extracted
from FBMC simulations of GaAs p-i-n diodes by using Eq. 5.45 and Eq. 5.53
(plateau for x′ ≫ x), respectively. b) Electron’s dead space de versus 1/E
extracted, point by point, with Eq. 5.49 from the α and α∗ of Fig. 5.22a with
Eq. 5.49. The blue dotted line in plot b is the least squares linear fit of the
de values, giving a slope Eth,e/q = 2.69 V. The same parameter inserted in
Eq. 5.49 gives the blue dotted line in plot a.

Figure 5.23 shows β(x|x′) for holes extracted from FBMC: also β(x|x′)
saturates to a constant value β∗ after few tens of nm. Differently from the
case of electrons, the saturation of β(x|x′) for secondary holes (plot b) takes
place after an overshoot that is not present in the NL-HD models. After that
overshoot, β(x|x′) stabilizes to a value independent of x′, as long as x′ ≪ x.

Similarly to what has been done for electrons in Fig. 5.22, Fig. 5.24a com-
pares β(1/E) from Eq. 5.45 with β∗(1/E) from Eq. 5.53 when x′ ≪ x. From
Fig. 5.24b, we extract a value for the threshold energy for hole’s impact ion-
ization in GaAs equal to Eth,h = 3.12 eV, which is consistent with the value
computed by [40] (3.3 eV).
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Figure 5.23: β(x|x′) extracted from FBMC simulations by using Eq. 5.53 in
a 100 nm-thick GaAs p-i-n APD with hole injection from the right side at
Vrev = 5.5 V (black) and Vrev = 6.6 V (red). a) x = 100 nm, b) x = 90 nm. A
built-in voltage Ψ0 = 1.2 V has been assumed [117].
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Figure 5.24: Same as Fig. 5.22, but for the hole’s impact ionoization coefficient
β. The the least squares linear fit of the dh values in plot b) (blue dotted line)
has slope Eth,h/q = 3.12 V.

5.6.1 Using α(x|x′) and β(x|x′) from FBMC in the NL-
HD Model’s Equations

Figure 5.25 compares the M(Vrev) and F (Vrev) curves for GaAs p-i-n diodes
extracted with FBMC simulations and those obtained with the numerical im-
plementation of NL-HD model’s equations described in Section 3.2 by using
as input the impact ionization coefficients extracted from the FBMC with
Eq. 5.53. The agreement between the two algorithms for M(Vrev) is good at
low gains and for long diodes. The larger discrepancies at high gains in short
devices are due to the fact that the NL-HD model’s equations neglects electron
impact ionization for x′ < x and hole impact ionization for x′ > x; in fact,
such contributions become more relevant as the reverse bias in short devices
increases. We also observe that the NL-HD model’s equations underestimates
F (Vrev) for short diodes and overestimates F (Vrev) for long ones.
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Figure 5.25: Comparison between the a) M and b) F versus Vrev curves for
GaAs p-i-n diodes obtained with the FBMC (circles) or by using the NL-HD
model’s equations described in Section 3.2 with α(x|x′) and β(x|x′) extracted
from FBMC simulations as inputs (crosses). A built-in voltage Ψ0 = 1.2 V has
been assumed [117].
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Figure 5.26: Same as Fig. 5.25 but, after an impact ionization event, secondary
electrons and holes are generated with null kinetic energy.

To understand how the gain and the excess noise factor of p-i-n GaAs APDs
are affected by the initial energy of secondary carriers, we have computed M
and F after having imposed in FBMC simulations that, after each impact
ionization event, secondary electrons and holes are generated with null kinetic
energy. The results are reported in Fig. 5.26, that also compares the results
of the FBMC with the NL-HD model’s equations when α(x|x′) and β(x|x′)
extracted from FBMC simulations are taken as input. We notice that, given
the device’s thickness, higher applied bias voltages are necessary to obtain
the same gain achieved in Fig. 5.25. Moreover, the agreement between the
FBMC and the NL-HD model’s equations is improved, in particular for the
d = 500 nm device, where F is no longer overestimated. The underestimation
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of the M and the M at a given bias voltage obtained with the NL-HD model’s
equations is due to those hot carriers that, due to a backscattering event, ionize
at position x′ < x.

Finally, Fig. 5.27 compares the F (M) curves computed with the FBMC
with the ones obtained with the NL-HD model’s equations for the cases of
FIgs. 5.25 and 5.26. We notice that, when secondary carriers are generated
according to the selection rules of Section 5.4.2, the F (M) curve obtained
with the NL-HD model’s equations (again with α(x|x′) and β(x|x′) profiles
computed with the FBMC) reproduces the one of the FBMC for the shorter
devices, but it is overestimated for the d = 500 nm APD. On the other hand,
when secondary carriers are generated with null kinetic energy, the NL-HD
model’s equations always agree with FBMC simulations, even though the
extracted F (M) curves are dramatically different from the ones reported in
Fig. 5.19 that match the experimental results of [23].
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Figure 5.27: Comparison of the excess noise factor as a function of the gain
computed with FBMC simulations (solid lines) or by using the NL-HD model’s
equations described in Section 3.2 with α(x|x′) and β(x|x′) extracted from
FBMC simulations as input (symbols) for GaAs p-i-n APDs of different thick-
ness. a) Secondary carriers are generated with an inital energy determed with
the selectrion rules described in Section 5.4.2. b) Secondary carriers are gen-
erated with null kinetic energy. The values of M and F in plots a) and b)
are the same reported in Figs. 5.25 and 5.26, respectively. A built-in voltage
Ψ0 = 1.2 V has been assumed [117].

5.7 Calibration of the EBHDM based on the

Results of FBMC Transport Simulations

In this Section, we show how the results for the electron’s and hole’s impact
ionization coefficients, α(x|x′) and β(x|x′), obtained with FBMC simulations
have been used to improve the calibration for GaAs of the nonlocal history
dependent impact ionization model described in Chapter 3 (the EBHDM).
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Our final goal is to model the impact ionization coefficients in the presence
of a conduction band discontinuity in biasing configurations that involve low
applied electric fields, to evaluate the performance of a single step of GaAs-
based staircase APDs.

We have started the calibration by finding the values of the parameters
Ae, Ah, Ece, Ech, γe and γh to insert into Eqs. 2.72 and 2.73 to fit the curves
of α∗ and β∗ as a function of the reciprocal of the electric field reported in
Figs. 5.22a and 5.24a (see Fig. 5.28). The new values are reported in Tab. 5.6.
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Figure 5.28: Fitting of the values of a) α∗ and b) β∗ as a function of the
reciprocal of the electric field extracted from FBMC simulations (and reported
in Figs. 5.22a and 5.24a) by using Eqs. 2.72 and 2.73, respectively, with the
parameters of Tab. 5.6.

Ae [10
6/cm] Ece [10

6V/cm] γe
7.856 1.957 1.0

Ah [106/cm] Ech [106V/cm] γh
1.080 1.308 1.0

Table 5.6: EBHDM model parameters for GaAs calibrated on the results of
FBMC simulations.

The EBHDM described in Chapter 3 is based on an energy balance equa-
tion with a constant energy relaxation lengths λe and λh. To improve the
agreement between the impact ionization coefficients calculated with FBMC
simulations and the one used in the EBHDM model, we have proposed the
following relation between λe,h and the energy (i.e. the effective field)

λe,h(x|x′) =
Aλe,h

Bλe,h + Eeff,e,h(x|x′)
, (5.54)

where the expressions for the computation of the effective field in Eqs. 3.11
and 3.12 have been modified as follows

Eeff,e(x|x′) =

∫︂ x′

x

1

λe(x|x′′)

dEC

dx′′ exp

(︃
x′′ − x′

λe(x|x′′)

)︃
dx′′, (5.55)

Eeff,h(x|x′) =

∫︂ x

x′

1

λh(x|x′)

dEV (x
′′)

dx′′ exp

(︃
x′ − x′′

λh(x|x′)

)︃
dx′′.. (5.56)
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The parameters Aλe,h and Bλe,h to insert into Eq. 5.54 are reported in
Tab. 5.7 and have been chosen so that, for each bias point, the α(0|x′) and
β(d|x′) computed with the EBHDM and λe,h(x|x′) from Eq. 5.54 could repro-
duce fairly well the α(0|x′) and β(d|x′) extracted from FBMC simulations (see
Figs. 5.29 and 5.30).

Aλe [V] Bλe [10
5 V/cm]

1.4142 1.3188

Aλh [V] Bλh [105 V/cm]
0.6149 0.1465

Table 5.7: Values of the parameters Aλ and Bλ to insert into Eq. 5.54 to
compute the electron’s energy dependent relaxation length λe(x|x′).
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Figure 5.29: Comparison of the electron’s impact ionization coefficient α(0|x′)
extracted from FBMC simulations (black solid line) with the one computed
using the EBHDM (Eq. 2.72) with an energy dependent relaxation length
λe(x|x′) (Eq. 5.54, blue dashed line) for devices with different thickness and at
different bias voltages: a) d = 100 nm, Vrev = 6 V; b) d = 200 nm, Vrev = 9 V;
c) d = 500 nm, Vrev = 17 V. The built-in voltage is Ψ0 = 1.2 V [117].
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Figure 5.30: Same as Fig. 5.29, but for the hole’s history dependent impact
ionization coefficient β(d|x′).
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Figure 5.31: α(0|x′) for a 100 nm-thick GaAs p-i-n diode when hole impact
ionization is turned off. FBMC (black solid line) is compared with the EBHDM
described in Chapter 3 either with λe = 18 nm (red dotted line) or λe from
Eq. 5.54 (blue dashed line) and with the Dead Space model (DS) [35], when
de is taken from Fig. 5.22b (green dashed-dotted line). A built-in voltage
Ψ0 = 1.2 V has been assumed [117].
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Figure 5.32: Same as Fig. 5.31, but for β(d|x′). Electron’s impact ionization
is turned off.

Figures 5.31 and 5.32 compare α(0|x′) and β(d|x′), respectively, for a 100
nm thick GaAs p-i-n diode from FBMC, with the NL-HD impact ionization
coefficients corresponding to different approximations. The NL-HD results are
shown for the Dead Space model [35] (de is taken from Fig. 5.22b and dh from
Fig. 5.24b) and for the EBHDM using the effective fields from Eqs. 5.55, 5.56
with λe = 18 nm and λh = 24 nm (Tab. 3.1) or with λe,h(x|x′) from Eq. 5.54
and the parameters in Tab. 5.7. Good agreement is obtained between FBMC
results and the impact ionization coefficients of the EBHDM when an energy
dependent λe(x|x′) and λh(x|x′) have been used (Eq. 5.54). The Dead Space
model and the EBHDM model with constant λe and λh are instead found to
be less accurate. It is worth nothing that, when constant λe and λh are used,
the parameters Ae, Ah, Ece, Ech, γe and γh to insert into Eqs. 2.72 and 2.73
are the ones of Tab. 5.6 and not the ones extracted from the calibration of
the EBHDM on GaAs p-i-n diodes (see Chapter 3) and reported in Tab. 3.1,
since our goal in this Section is to match the saturation value, α∗ or β∗, of
FBMC simulations. Finally, the validity of the parameters in Tabs. 5.6 and
5.7 is limited to the range of electric field over which they have been tested
(from 324 kV/cm to 1.12 MV/cm).

5.8 Simulation of Conduction Band Steps in

GaAs APDs

Finally, the Full Band Monte Carlo simulator has been used to study the be-
havior of a single conduction band step of amplitude ΔEC in a GaAs APD,
mimicking the effects of a AlGaAs/GaAs heterojunction in a staircase APD.
In principle, an accurate description of carrier transport across the heterojunc-
tion, involving energy and momentum conservation, should be employed but,
to capture the essential features of the process, in this work we have described
the conduction band step as a contribution to the initial energy of the electron
that is injected at x = 0 to start the simulation (i. e. the initial energy of the
injected electron is ΔEC , see Fig. 5.33).
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We have simulated devices with two different thicknesses, d = 50 nm and
d = 100 nm, for three different values of ∆EC , namely ∆EC = 0, 0.3 eV,
0.5 eV. Moreover, we have always applied an electric field along the x direction,
to ensure that all the carriers exit from the simulation domain. Therefore,
the gain and the excess noise factor of the aforementioned devices have been
computed for E = 400, 500 and 600 kV/cm.

E
ne
rg
y

0 d

E

-ΔEC

x

Figure 5.33: Schematic representation of how conduction band steps have been
simulated in this thesis. The initial electron is injected with energy ∆EC in
the simulation domain, that extends from x = 0 to x = d. An electric field
is applied along the x direction, to ensure that all the carriers exit from the
simulation domain.

Figures 5.34 and 5.35 compare the gain and the excess noise factor as func-
tions of the applied electric field obtained with FBMC simulations with the
results of the numerical implementation of the NL-HD model’s equations de-
scribed in Section 3.2 when the α(x|x′) and β(x|x′) extracted from the FBMC
are taken as input, for the 50 nm thick and the 100 thick devices, respec-
tively. For each applied electric field, M and F are evaluated for the three
different values of ∆EC . For the 50 nm thick device we notice that both the
gain and the excess noise factor increase as either the applied field or ∆EC

increase (Fig. 5.34) However, in all cases, M ≃ F ≃ 1, that indicates that, for
a device with this thickness, these values of the applied electric field are not
high enough to trigger impact ionization events and also that an increase in
the conduction band step amplitude alone is not sufficient to achieve a signif-
icant gain. For the 100 nm thick device (Fig. 5.35), instead, we notice that
the gain increases with the value of ∆EC , but the major contribution to M
is given by the applied electric field. On the other hand, at E = 600 kV/cm
we notice that F (∆EC = 0.5 eV) < F (∆EC = 0) < F (∆EC = 0.3 eV). This
non-monotonic behavior of the excess noise factor seems to be consistent with
what predicted by Eq. 1.10 by [13], where an increase in the electron’s impact
ionization probability due to a conduction band step is associated with a re-
duction of the excess noise factor. For both the device thicknesses, we notice
that the FBMC simulator and the NL-HD model’s equations that we have
developed give similar results when the α(x|x′) and β(x|x′) extracted from the
FBMC are taken as input; this indicates that, differently from what discussed
in Section 5.6, at this biasing configurations, secondary carriers are generated
at low energies, so that impact ionization of electrons at x′ < x is negligible,
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so that the assumptions at the base of nonlocal impact ionization models are
verified and these models could, in principle, be used to compute M and F in
these operating scenarios.
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Figure 5.34: a) Gain and b) excess noise factor as functions of the applied
electric field in a 50 nm thick device when an electron with initial ∆EC = 0 eV
(black), 0.3 eV (red) or 0.5 eV (blue) is injected at x = 0. The results obtained
with FBMC simulations (circles) are compared with the results of the NL-HD
model’s equations described in Section 3.2 when α(x|x′) and β(x|x′) extracted
from FBMC simulations are taken as input.
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Figure 5.35: Same as Fig. 5.34, but for a 100 nm thick device.

Figure 5.36 shows, for a given electric field, the variation of the gain ∆M =
M(∆EC)−M(∆EC = 0) as a function of ∆EC for the 50 nm and the 100 nm
GaAs APDs. We notice that ∆M increases with the field and with ∆Ec and it
is higher in the thicker device, since in this device, w. r. t. to the thinner one,
electrons can travel over longer distances, and thus acquire sufficient energy
for ionization, without exiting from the simulation domain. However, we also
notice that the values of ∆M are low, this indicates that in GaAs-based APDs
conduction band discontinuities up to 0.5 eV are not enough to achieve a
significant improvement of the gain (and thus a reduction of the excess noise
factor), since these values of ∆EC are small if compared to the threshold energy
to trigger impact ionization in this material (we have extracted Eth,e = 2.69 eV
from FBMC simulations in Section 5.6).
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Figure 5.36: Gain variation (∆M) as a function to the electron’s injection
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thick device.
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Figure 5.37: Comparison between the excess noise factor as a function of the
gain per step calculated by using Eq. 1.10 with Nstep = 1 (black solid line),
F = 2− 1/M (black dashed line), which is Eq. 2.19 in the k = β/α → 0 limit,
and the results of FBMC simulations of 100 nm thick GaAs conduction band
steps at different applied electric fields (symbols). For a given electric field, the
increase of the gain is achieved by increasing the electron’s injection energy.

Figure 5.37 compares the excess noise factor as a function of the gain com-
puted at different electric fields with the FBMC for the 100 nm thick device
with the predictions of Eq. 1.10 by [13] for F in a single step staricase APD
when only electrons ionize and F = 2− 1/M , which is Eq. 2.19 for the excess
noise factor computed with the local model in the k = β/α → 0 limit (i. e.
hole’s impact ionization is neglected). We notice that when E = 400 V/cm
FBMC results are in agreement with Eq. 1.10, then, as the electric field in-
creases, the excess noise compute with the FBMC deviates from the theory
proposed by [13], indicating that the electric field is the major responsible for
the increase of the gain in the GaAs device that we have analyzed). On the
other hand, the excess noise factor is always lower than the predictions of the
local model, that means that nonlocal effects (i. e. the fact that a carrier as
to travel over a certain distance to acquire sufficient energy for its ionization)
still play a significant role.
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Figure 5.38: α(0|x′) for a 100 nm-thick GaAs conduction band steps of different amplitude and at different values of the applied
electric field. FBMC (black solid line) is compared with the EBHDM either with λe = 18 nm (red dotted line) or λe from Eq. 5.54
(blue dashed line).
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Figure 5.38 compares the profiles of α(0|x′) obtained with the FBMC sim-
ulator for the 100 nm thick device with the ones used in the EBHDM when λe

is constant (18 nm, Tab. 3.1) or depends on Eeff,e through Eq. 5.54. We notice
that in all the analyzed cases, the peak value of the electron’s impact ioniza-
tion coefficient increases as either ∆EC or the electric field. From Fig. 5.38
it is also clear that the largest variations of α(0|x′) are achieved by increas-
ing the applied electric field. Moreover the use of the EBHDM with constant
λe always overestimates the α(0|x′) extracted from FBMC simulations, that
are, however, in good agreement with the EBHDM when an energy dependent
relaxation length is used.
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Figure 5.39: Comparison between a) the gain and b) the excess noise factor as
a function of the applied electric field and for different values of ∆EC computed
with the FBMC simulator (circles and solid lines) and with the EBHDM by
using constant λe and λh (crosses and dotted lines) or λe(x|x′) and λh(x|x′)
from Eq. 5.54 (plus signs and dashed lines).

As a sanity check of the improved calibration of the electron’s and hole’s
impact ionization coefficients in the EBHDM discussed in Section 5.7, we have
computed the gain and the excess noise factor as a function of the applied
electric field, for different values of ∆EC , by using the FBMC and the EBHDM
either with λe = 18 nm and λh = 24 nm or with λe(x|x′) and λh(x|x′) from
Eq. 5.54 (as stated in Section 5.7, the parameters Ae, Ah, Ece, Ech, γe and
γh to insert into Eqs. 2.72 and 2.73 are the ones of Tab. 5.6). The results are
compared in Fig. 5.39. We notice that, with respect to FBMC simulations, the
EBHDM overestimates both the gain and the excess noise factor when constant
λe and λh are used, while the results of the EBHDM with energy dependent
relaxation lengths are almost coincident with the ones of the FBMC, in the
entire range of electric field values that we have simulated. This indicates
that the improved calibration of the EBHDM, based on the results of FBMC
simulation, that we have proposed in Section 5.7 can be safely used to study
the performance, in terms of gain and excess noise factor, of GaAs-based APDs
featuring conduction band discontinuities.
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5.9 Summary

We have developed a Full Band Monte Carlo simulator (FBMC) to study
carrier transport and impact ionization at high energies. We have calibrated
the FBMC to match the experimental results for the drift velocities and the
impact ionization coefficients of electrons and holes.

We have proposed a new expression to compute the position dependent
impact ionization coefficients from FBMC simulations (Eq. 5.53) and we have
used it to identify some major limitations of nonlocal history dependent models
(NL-HD), that mainly stem from the assumption that secondary carriers are
generated with zero kinetic energy and can move only in the direction of the
electric field, resulting in impact ionization events only at x′ > x for electrons
(x′ < x for holes). The FBMC simulations point out the role of backscattering
that may lead to impact ionization at positions preceding the generation point
along the field direction, in particular at high gains in short devices.

The FBMC has been used to compute the probability density functions of
the distance between consecutive electron’s or hole’s impact ionization events
and to extract the threshold energies for impact ionization in GaAs: Eth,e =
2.69 eV for electrons and Eth,h = 3.12 eV. These values are consistent with the
ones determined in [40].

Starting from FBMC results, we have proposed an improved calibration of
the electron’s and hole’s impact ionization coefficients for the EBHDM, based
on energy dependent relaxation lengths λe and λh. The α(0|x′) and β(d|x′)
computed by using the improved calibration is in better agreement with FBMC
results, if compared to the Dead Space model or the EBHDM with constant
λe and λh.

Finally, the FBMC has been used to study impact ionization in GaAs-
based APDs that feature conduction band discontinuities. Even though we
have neglected energy and momentum conservation at the heterojunction, we
have found that conduction band discontinuities up to ∆EC = 0.5 eV in GaAs
are not sufficient to considerably improve the performance of the APD, in
terms of gain and excess noise factor, and that high gains can be achieved only
if impact ionization is triggered also by the applied electric field. However, the
improved calibration of the EBHDM reproduces with a satisfactory agreement
the gain and the excess noise factor as a function of the electric field, and for
different values of ∆EC , computed with the FBMC.
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Chapter 6

TCAD Simulations and
Comparison with Experiments

In the previous chapters we have focused on the description of impact ion-
ization, on multiplication phenomena in APDs and on the photogenerated
current noise. In this framework, comparison between our models and exper-
iments has been already shown in Figs. 3.2-3.6, 3.8, 3.10, 3.13, 3.14, 3.16, 4.7
and 4.8. However, M and F are not the only relevant parameters to describe
an APD. In this Chapter, we show how experimental characterization and
TCAD simulation analysis [76] have been used to study the dark current and
the differential capacitance as functions of the applied reverse bias voltage of
the staircase SAM-APD for X-ray detection of Fig. 1.18b.

As mentioned in Sections 1.3 and 1.7, the dark current (Idark) is a major
concern in APDs, since it limits the energy resolution of the device. Idark orig-
inates from generation/recombination processes that also reduce the number
of photo-generated carriers able to reach the multiplication region, thus fur-
ther reducing the signal-to-noise ratio. In the following, the dark current of
GaAs/AlGaAs based APDs will be characterized over temperature (T ), aim-
ing to investigate its origin and to extract relevant parameters related to the
carrier generation/recombination process. Comparison with TCAD simula-
tions allowed us to extract the carrier lifetimes and to predict the collection
efficiency of the photogenerated carriers.

The results shown in the following extend the ones published by the author
of this thesis in [118, 119, 120].

6.1 Dark Current

Staircase SAM-APDs with the structure sketched in Fig. 1.18b have been fab-
ricated at the IOM-CNR (Trieste, Italy) by using Molecular Beam Epitaxy
and experimentally characterized to study the dependence of the dark current
on temperature. TCAD simulations have been run to extract the the carriers’
lifetimes and to evaluate the collection efficiency of these devices.
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6.1.1 Experimental Characterization

The static characteristics of several APDs have been measured as a function
of the applied reverse bias voltage (Vrev). Figure 6.1 reports the current-
voltage (IV) curves of a subset of the measured APDs that can be considered
as representative of the fabrication process. It is worth mentioning that the
currents scale with the device area (not shown), which proves that edge effects
give a small contribution to the measured current. A one dimensional model
is thus adequate for the analysis.

Figure 6.1: Dark current as a function of the applied reverse bias voltage Vrev

for a subset of APDs. The breakdown voltage of the devices (Vbr) is around
38 V. The APD active area is circular, with diameter 400 μm.

Then the IV curves of the APDs have measured at different temperatures,
as shown in Fig. 6.2. We can notice that the dark current is largely modulated
by temperature. The breakdown voltage (Vbr) for different values of T is
reported in Fig. 6.3). Vbr increases as the temperature increases and this is
a signature of the avalanche multiplication process at the base of the APD
operation [121].

μ

Figure 6.2: Experimental IV curves of a representative APD for different op-
erating temperatures T .
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Figure 6.3: Breakdown voltage as a function of temperature. The positive
temperature coefficient is a signature of the avalanche multiplication process.

Figure 6.4 reports the Arrhenius plots of the current for different values of
Vrev. All curves essentially follow the exponential Arrhenius law

I = A exp

(
− EA

kbT

)
, (6.1)

where A is a constant and EA is the activation energy. The data in Fig. 6.4
have been used to extract the activation energy EA (see Fig. 6.5), which turned
out to be quite independent of Vrev, with a value of about 0.55 eV. This sug-
gests that the dark current is related to traps in the bandgap of the III-V alloy,
and that the midgap trap assisted Shockley Read Hall (SRH) generation/re-
combination process is mainly responsible for the dark current. Furthermore,
since EA does not depend on the bias (i.e. on the applied electric field), the
presence of recombination processes that strongly depend on the applied field,
like the band-to-band tunneling (BTBT), are ruled out.

μ

Figure 6.4: Arrhenius plots of the dark current for several Vrev values. Curves
show the expected exponential behavior down to low temperatures where they
start to deviate from Eq. 6.1 likely because a temperature independent dark
current component enters into play.
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Figure 6.5: Activation energy as a function of the appiled reverse bias voltage,
Vrev, extracted from the Arrhenius plots in Fig. 6.4. EA is rather independent
of the Vrev value and close to Eg/2.

It is worth noting that, if the carrier lifetimes were independent of temper-
ature, a trap energy with a ∆E energy offset with respect to Eg

2
, would result

in an activation energy (extracted from the Arrhenius plots as in Fig. 6.5) that
is the smallest value between Eg

2
+∆E and Eg

2
−∆E.

6.1.2 TCAD Simulations

TCAD simulations [76] have been used to reproduce the dependence of the
APD current-voltage characteristics on temperature and reverse bias voltage.
The SRH generation/recombination rate (USRH) is modeled through the fol-
lowing set of equations:

USRH = R−G =
np− n2

i

τp(n+ n1) + τn(p+ p1)
, (6.2)

n1 = ni exp

(︃
ET − Ei

kbT

)︃
, (6.3)

p1 = ni exp

(︃
−ET − Ei

kbT

)︃
, (6.4)

where τn, τp and Ei are the electron’s and hole’s lifetimes and the Fermi level,
respectively. The electron’s density of the intrinsic semiconductor, ni, is given
by

ni =
√︁
NC(T )NV (T )exp

(︃
−Eg(T )

2kbT

)︃
, (6.5)

where the bandgap Eg and the effective conduction and valence band density
of states (NC and NV , respectively) as a function of temperature are

Eg = Eg(0)−
αbgT

2

T + βbg

, (6.6)

NC,V = NC,V (300K)

(︃
T

300K

)︃ 3
2

. (6.7)
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In the following, concerning the parameters Eg(0), αbg, βbg and NC,V (300K),
the default set of values provided in [76] for GaAs has been used.

μ

τ τ

Figure 6.6: Arrhenius plots simulated for Vrev = 20 V assuming constant τn
and τp and variable trap energy depth ET .

Figure 6.6 reports the simulation analysis we performed on the current
versus temperature data at Vrev = 20 V. We can reproduce the experiments
at T = 300 K (i.e. 1000/T = 3.33 K−1) by setting τn = 0 and τp = 0.45 ns
and by assuming ET = Ei (red dashed line). As it can be seen, we extract
EA = 0.83 eV (red curve) that is larger than in the experiments (black circles).

With τn = 0, the slope of the Arrhenius plot can be modulated by changing
ET with respect to Ei (see Eqs. 6.2-6.4). Indeed, for (ET − Ei) > 0, the slope
of the simulated curve actually changes (Fig. 6.6, blue line), but EA increases.
Instead, for (ET −Ei) < 0, EA does not change (green line). This is because, in
the generation/recombination function (Eq. 6.2), n1 becomes negligible with
respect to the electron density n (see Eq. 6.3). A similar behavior is observed
with τn �= 0 and τp = 0 or τn = τp: the USRH value required to reproduce the
experiments always leads to EA ≥ 0.83 eV, hence to EA values much larger
than experimentally observed.

In summary, Fig. 6.6 indicates that the experiments can be reproduced only
by assuming temperature dependent carrier lifetimes. Therefore, we assume
ET = Ei and equal τn and τp values with a power–law dependence on T as in
[76, 122, 123]:

τn = τp = τ300K ·
(

T

300

)α

, (6.8)

where τ300K is the carrier lifetime at T = 300 K.
Now, by using τ300K = 0.39 ns and α = 6.06 in Eq. 6.8, the simulations

in Fig. 6.7 reproduce well the experimental Arrhenius plots at different Vrev,
for EA values close to those in Fig. 6.5. Even though a positive value of α is
reported also in [122], the fact that carrier lifetimes increase with temperature
is hard to support and may indicate that other physical mechanisms, whose
description is missing, are playing a role. However, to continue our analysis
with the purpose of validating our methodology for the extraction of the col-
lection efficiency (see Sec. 6.1.3), we kept α = 6.06 in the following. Notice
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that, in the simulations, the absorption region is always at equilibrium, thus we
are only able to extract the lifetimes for the GaAs layers in the multiplication
region, where the SRH generation/recombination mostly occurs (see Fig. 6.8).

μ

Figure 6.7: Arrhenius plots simulated with τn = τp as in Eq. 6.8, and with
ET = Ei. Simulations now reproduce the experiments for different Vrev. A
power-law temperature dependence is assumed to model the lifetimes (Eq. 6.8,
τ300K = 0.39 ns, α = 6.06). At low T , the experiments deviate from the
linear behavior most likely because of a temperature-independent component
not included in simulations.

μ

δ

Figure 6.8: SRH generation/recombination function along the device depth.
x = 0 corresponds to the p-doped δ-layer position that separates the absorption
and multiplication regions. Note that carrier generation (USRH < 0) occurs
in the small bandgap GaAs layers of the multiplication region. Vrev = 20 V.
τn = τp = τ300K = 0.39 ns, α = 6.06.

This parameter set allows us to fit the IV curves at different temperature
(Fig. 6.9). The agreement between experiments and simulations is good down
to T = −15 ◦C. At lower temperatures, a temperature-independent component
of the current may arise in the measurements. Furthermore, the limited agree-
ment for very small Vrev is most likely due to the fact that in the simulations
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we consider the idealized APD structure, which neglects the presence of defects
and on uniform trap density (i.e. uniform lifetimes along the multiplication
region) in spite of the superlattice compositional changes over distance. In the
simulations reported in Fig. 6.9, the dependence of τn and τp on the electric
field is included by activating the Schenk model[76], that improves the match
of the exponential increase of the IV curves for Vrev > 20 V observed in the
experiments.

μ

Figure 6.9: Simulated IV curves with τn = τp as in Eq. 6.8. Simulations well
reproduce the experiments, except at low T , when a temperature independent
leakage component most likely arises in the measurements.

Figure 6.10: Typical experimental capacitance–voltage curves (symbols) of the
measured APDs. The TCAD simulation for nominal parameter values (line)
is reported for comparison.

Concerning the first point, Fig. 6.10 reports the experimental capacitance–
voltage (CV) curves of a fabricated APD (symbols) and the CV calculated
considering nominal dimensions and nominal parameters for the materials.
The mismatch between simulated and measured CV curves suggests that bet-
ter agreement between the model and the experiments in both Figs. 6.9 and
6.10 may be obtained by tuning the simulated APD geometry/composition.
Moreover, a large trap density near the δ-layer (whose high doping may also
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be source of defects) can induce an extra leakage current component also when
the multiplication region is not fully depleted, thus resulting in a larger dark
current at low Vrev. Finally, the simulation predicts that the depletion of the
absorption region occurs for Vrev > 35 V, thus suggesting an interpretation for
the capacitance drop above this voltage value (see Section 6.2).

6.1.3 Simulation of the Collection Efficiency

We also run TCAD simulations [76] of the APD’s response to the photo–
generation of an electron–hole pair in a position corresponding to the middle
of the absorption layer. In this simulation, we applied Vrev = 28 V, a voltage
large enough to ensure carrier multiplication in the APD, but not sufficient
to make the electric field penetrate into the absorption region [118]. This is
confirmed by the CV curves in Fig. 6.10, showing that up to Vrev = 35 V,
the δ-p layer confines the voltage drop into the multiplication region and no
capacitance drop is seen [118]. Indeed, only for Vrev > 35 V the simulation
predicts that the electric field penetrates also into the absorption region causing
the capacitance to drop (Fig. 6.10, dashed line).

In this respect, Fig. 6.11 shows how, after the generation of the electron-
hole pair in the middle of the absorption layer, the charge diffuses all over the
region because of the negligible electric field in the layer, leading to a rather
flat electron density (n) after some time (t). Then, without considering the
SRH generation recombination (Fig. 6.11(a)), electrons can exit the device only
through the multiplication layer that is located at the right of the absorption
layer (x > 4.5 µm).

0 1 2 3 4
x [µm]

1011

1012

n 
[c

m
-3

]

0 1 2 3 4
x [µm]

t = 0
t = 10 ps
t = 100 ps
t = 500 ps

w/ SRHw/o SRH
(a) (b)

Figure 6.11: Electron density n calculated in absorption layer at different
instants (t) after the generation of an electron-hole pair (in the middle). After
the generation, carrier diffuse all over the absorption layer, due to the negligible
electric field in the region. Then, without the SRH process (a), electrons
can exit the region only through the multiplication layer on the right. With
SRH (b), instead, electrons partly recombine before reaching the multiplication
layer. Area of the device is 1 µm2.
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Figure 6.11(b) shows, instead, that when including the SRH process, elec-
trons may recombine inside the absorption layer before reaching the multi-
plication region (compare circle and triangles), thus reducing the number of
carriers that are finally collected at the n-type contact of the device and, hence,
lowering the sensitivity of the APD to the electron-hole pair generation event.

To better illustrate this point, Fig. 6.12 reports the simulated current wave-
form at the n-type contact after the electron–hole pair generation: without the
SRH recombination all the charge exits the device (black line), and the cur-
rent integral over time gives exactly the photo-generated charge. Instead, when
SRH is active inside the device, only the 55% of the charge reaches the contact
(red line); therefore the SRH recombination causes the loss of about the 45%
of photo–generated charge. Note that, for this calculations, we assumed the
same carrier lifetimes in the GaAs absorption region and in the GaAs layers
of the multiplication region.
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Vrev = 28 V
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q

Figure 6.12: Simulated current collected at the n-type contact as a function of
time after the generation of an electron-hole pair in the middle of the absorp-
tion layer. The current is simulated including (red) or not (black) the SRH
generation/recombination. At Vrev = 28 V, the SRH process causes the loss of
45% of the photo–generated charge.

Of course, the probability to recombine for a photo–generated electron
depends also on the distance to reach the APD contact; hence on the posi-
tion at which it is generated inside the absorption region. To verify this, in
Fig. 6.13, we report the calculated collection efficiency as a function of the
photo–generation position. As expected, the closer to the multiplication re-
gion the photo–generation is, the larger the collection efficiency of the APD
is, because of the reduction of the recombination probability. The collection
efficiency is 42% when electrons are generated near the p–contact (left), while
it is 92% for a generation close to the δ-layer (right).
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μ
Figure 6.13: Collection efficiency as a function of the position inside the ab-
sorption layer where the photo–generation takes place. If the electron–hole pair
is generated closer to the multiplication region (x > 4.5 μm), the collection
efficiency is larger.

6.2 Simulation of the CV Characteristics

We have performed AC TCAD simulations [76] of the staircase SAM-APD
of Fig. 1.18b to compute the CV characteristics of the device when the dose
of the p-doped δ-layer that separates the absorption and the multiplication
region varies from its nominal value (2.5×1012 cm−2). CV measurements are a
useful mean to inspect the extension of the depletion region inside the device.
This analysis thus allowed us to investigate how, depending on the value of the
dose, the applied voltage falls across the multiplication region alone or also on
a portion of the absorption region. As stated in Sections 1.3 and 1.7, being
able to determine the detector’s capacitance at a given operating voltage is
important also to compute the energy resolution of the APD at that specific
bias point (Eq. 1.28).

The p-doped δ-layer has been reproduced with TCAD by assuming a Gaus-
sian doping profile. According to this assumption, the dose is the area under
the Gaussian bell and it is given by

Dose =
Peak · FWHM · √2π

2
√
2ln(2)

, (6.9)

where Peak is the peak value of the Gaussian and FWHM is the full width
at the half of the maximum (see Fig. 6.14).
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Figure 6.14: Dose of the p-doped δ-layer that separates the absorption and
the multiplication region of the staircase SAM-APD of Fig. 1.18b. The dose
is computed with Eq. 6.9 since a Gaussian doping profile has been assumed in
the TCAD simulations [76].

Figure 6.15 reports the simulated capacitance as a function of the applied
reverse bias voltage for the staircase SAM-APD of Fig. 1.18b with Dose =
2.5×1012 cm−2 for different values of FWHM . It is worth noting that the
simulated CV characteristic is insensitive to the value of FWHM that we set,
thus, in the following, we have always assumed FWHM = 20 nm, which is a
realistic value based on processing conditions.

μ

Figure 6.15: Capacitance as a function of the reverse bias voltage obtained
with TCAD simulations [76] for different FWHM values of the dose of the
p-doped δ-layer (see Fig. 6.14).

From Fig. 6.15 we also notice that, for the simulated dose, the CV char-
acteristic is constant for Vrev up to 33 V, then it rapidly decreases to a lower
value. In fact, at first the applied bias voltage falls on the multiplication region
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and the electric field is confined therein. When Vrev increases, the p-doped δ-
layer is no more able to contain the electric field in the multiplication region
and part of the absorption region is also depleted. Then, the differential ca-
pacitance of the absorption region is in series to the one of the multiplication
region, as sketched in Fig. 6.16, and the total capacitance is given by

C =

(︃
1

Cabs

+
1

Cmult

)︃−1

, (6.10)

where Cabs and Cmult are the differential capacitances of the absorption and
the multiplication regions, respectively, and are computed by using the parallel
plate capacitor approximation, consistently with our assumption that edge
effects should be negligible in our samples.

Cabs Cmult

Vrev
Figure 6.16: Schematic representation of the absorption and multiplication
regions’ contributions to the total capacitance of the staircase SAM-APD of
Fig. 1.18b.

Figure 6.17 compares the experimental and simulated CV characteristics
of the staircase SAM-APD of Fig. 1.18b for different values of the dose of
the p-doped δ-layer. The agreement between simulations and measurements is
excellent and we notice that, as the dose decreases, the reverse bias voltage that
can be applied without depleting part of the absorption region also decreases.
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Figure 6.17: Experimental (symbols) and simulated (red lines) capacitance ver-
sus applied reverse bias voltage curves of the staircase SAM-APD of Fig. 1.18b
for different doses of the p-doped δ-layer. The dose is a) 1.3×1012 cm−2, b)
1.6×1012 cm−2 and c) 2.5×1012 cm−2.

The behavior of the CV characteristics of Fig. 6.17 is reflected by the con-
duction band profiles reported in Fig. 6.18 for different bias voltages. In fact,

148



a higher dose translates into a higher energy barrier for electrons between the
absorption and the multiplication region. A high barrier ensures that impact
ionization occurs only in the multiplication region of the device, lowering the
excess noise factor, but it also limits the velocity of the carrier in the absorption
region (see the flat conduction band profile for the higher dose in Fig. 6.18).
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Figure 6.18: Conduction band profiles near the end of the absorption region
extracted from TCAD simulations [76] of the staircase SAM-APD of Fig. 6.18
at differnt bias voltages: a) Vrev = 10 V, b) Vrev = 20 V, c) Vrev = 25 V. The
dose of the p-doped δ-layer is 1.3×1012 cm−2 (blue), 1.6×1012 cm−2 (red) or
2.5×1012 cm−2. Notice that in plot c) the blue curve is not visible beacuse it
is out of scale.

6.3 Summary

Experiments and TCAD simulations allowed us to extract the SRH carrier
lifetimes in GaAs/AlGaAs APDs and to evaluate the CV characteristics of
these devices for different values of the dose of the p-doped δ-layer.

The extracted lifetimes were used for calibrated simulations of the collection
efficiency of the photo–generated current under realistic operating conditions.

The results show that the collection efficiency goes from a minimum of 42%,
for a photo–generation near the top contact of the device, to a maximum value
of 92% when the electron–hole pair is generated at the end of the absorption
layer, hence near the multiplication layer.

These collection efficiency is in general quite high, thus reassuring on the
sensitivity of the studied APDs. However, the large collection efficiency depen-
dence on the position inside the absorption layer of the photo–generation rises
questions concerning the potential energy resolution of these photo–detectors.
It is of course a fact that, to collect high energy particles, absorption lay-
ers with not very small thickness are required and, thus, the distribution of
the photo–generation events along the device may become a concern for these
APDs.

Concerning the CV characteristics, we have noticed that the nominal dose
for the p-doped δ-layer (2.5×1012 cm−2 [7, 118, 22]) ensures that carrier multi-
plication occurs only in the multiplication region and this is beneficial in terms
of noise. However, as stated also in Section 4.5.1, having part of the absorption
region depleted increases the speed of the device and reduces the jitter. This
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trade-off between the excess noise factor and the carrier’s velocity inside the
absorption region has to be taken into account during the design of the APD.
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Chapter 7

Conclusions and Future Work

We have developed a suite of simulation tools to accurately describe impact
ionization and study the figures of merit of Avalanche Photodiodes (APDs)
and, in particular, GaAs/AlGaAs staircase Separate Absorption and Multipli-
cation (SAM) APDs. These tools include:

1. A nonlocal history dependent model, the EBHDM, implemented with a
Finite Difference (FD) scheme, to compute the gain (M) and the excess
noise factor (F ) of APDs. Compared to state of the art, our approach
includes a different definition of the effective field based on the energy
balance equation and provides an improved trade-off between accuracy
and efficiency.

2. A Random Path Length (RPL) implementation of the EBHDM, that, in
addition to M and F , provides also the time response, the bandwidth
and the jitter of APDs. Compared to other RPL approaches, the one
presented in this thesis is based on the effective field definition given by
the EBHDM and, beside impact ionization, the model also describes car-
riers’ drift and diffusion in the absorption region. To our knowledge, the
RPL algorithm that we have developed is the only one in the literature
that is based on generic nonlocal history dependent impact ionization
models, not only on the Dead Space model, and it is the first one to
include an accurate description of carriers’ motion in regions where the
electric field is not sufficient to trigger impact ionization events, not only
in the multiplication region.

3. A Full Band Monte Carlo simulator (FBMC), to describe carrier trans-
port and the scattering mechanisms, including impact ionization, at a
microscopic level. Compared with other FBMCs employed in the liter-
ature for the study of p-i-n APDs, we use a k⃗-dependent description of
impact ionization based on the Constant Matrix Element approximation,
instead of an energy-dependent Keldysh expression, which improves the
accuracy of our results.

Each model has been validated by comparison with experimental data for
the gain and the excess noise factor of different APD structures or with the
results of TCAD simulations.
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The FBMC is the most accurate tool, but, as sketched in Fig. 7.1, this
accuracy comes with an associated computational burden that limits the use of
the FBMC to the study of short devices and for short time scales. On the other
hand, the RPL and FD implementations of the EBHDM are faster and allow
handling larger detector structures, but they rely on several approximations
(the kinetic energy of secondary carriers after an impact ionization event is
always null and carriers can move only in the direction of the electric field),
that may not always be valid. To give a reference, considering a server with 48
cores and 252 GB of RAM, the computation of the gain, the excess noise factor
and the history dependent impact ionization coefficients for a given bias point
with the FBMC takes, on average, from 8 hours for a 100 nm thick p-i-n APD
to 2 weeks for a 800 nm thick device, while it takes from 15 to 30 and from
30 to 60 minutes with the FD and the RPL implementations of the EBHDM,
respectively. On the other hand, the computation of the jitter with the RPL
algorithm for a SAM-APD with a 4.5 μm and a 1 μm thick absorption and
multiplication regions takes from 2 to 10 hours, according to the bias point
(longer simulation times are required for bias voltages close to the breakdown)
and to the number of waveforms that have to be computed, which depends
on the photon’s energy. This kind of analysis can be performed only with the
RPL so we cannot compare this computation time with that of the FBMC.
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Figure 7.1: Schematic representation of the simulation tools developed in this
thesis. Each model is suited to analyze different feature sizes and times scales.

We have found that, in a GaAs/AlGaAs staircase APD used for X-Ray
detection:

Hole’s impact ionization plays a substantial role and degrades the noise
performance. However, increasing the number of conduction band steps
reduces the noise at fixed gain but comes at the expense of a longer
response time.

The increase in the number of steps of the multiplication region does
not imply any practical drawback in terms of dynamic response of the
system, because the following shaper circuit usually has an optimized
time constant much longer than the time delay of the APD.
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� The jitter is higher if the absorption region is quasi-neutral. Therefore,
the δ-p layer that separates the absorption and the multiplication regions
should be designed so that, at the desired operating voltages, the electric
field in the absorption region is not null. This field has to be small enough
to prevent triggering of unwanted impact ionization events.

� Conduction band discontinuities up to ∆EC = 0.5 eV in GaAs/AlGaAs
are not sufficient to considerably improve the performance of the APD,
in terms of gain and excess noise factor, and the required high gains
can be achieved only if impact ionization is triggered also by the applied
electric field.

In addition, we have also performed experimental characterization and DC,
AC and time-dependent analyses with a TCAD simulator of GaAs/AlGaAs
staircase APDs that allowed us to extract the SRH carrier lifetimes and to
estimate the dark current and the collection efficiency of these devices.

7.1 Future Work

The variety of applications where Avalanche Photodiodes are used and the
flexibility of the simulation tools that we have developed pave the way to many
exploitation paths and open the possibility of several different improvements
to our work.

On the modeling side and with reference to the EBHDM, a further im-
provement could by achieved by developing model’s equation that include the
possibility of impact ionization events at positions that are before, along the
field direction, the carrier’s generation position, namely x′ < x for electrons
and x′ > x for holes.

As for the Full Band Monte Carlo transport simulator, its calibration for
InAs-based materials would allow to understand at a microscopic level the
working principle of APDs used for optical fiber communication links and
working in the infrared wavelength range. More in general, the calibration
for other materials of all the developed simulation tools could be exploited
to improve the design and the performance of APDs. Regarding, staircase
APDs for instance, optimized sequences of steps could be created by placing
the largest conduction band discontinuity (the one with largest associated gain
and lowest excess noise factor) as the first step.

Finally, another interesting option is to extend the model’s equations of the
EBHDM for studying the figures of merit of APDs operating in Geiger mode.
Interestingly, also the FBMC could be used to this aim.
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Appendix A

Solution of the Integral in
Eq. 2.15

In this Appendix, the detailed solution of the integral in Eq. 2.15 (Section 2.1.1)
is provided.

We start by rewriting Eq. 2.15

Si = 2q2
∫︂ W

0

dϕe(x)

dx
M2(x)dx.

We notice that the argument of the integral is the product between the first
derivative of ϕe and M2(x): the integral can be thus solved by parts

Si = 2q2
{︃[︁

ϕe(x)M
2(x)

]︁W
0

−
∫︂ W

0

ϕe(x)
d2M(x)

dx2
dx

}︃
= 2q2

{︃
ϕM2(W )− 2

∫︂ W

0

ϕe(x)M(x)
dM(x)

dx
dx

}︃
,

(A.1)

where we considered that due to total flux conservation (Eq. 2.5), ϕe(W ) = ϕ
and ϕe(0) = 0.

The expression of the first derivative of M(x) can be easily found from
Eq. 2.13, namely

dM(x)

dx
= − [α(x)− β(x)]M(x). (A.2)

By substituting Eq. A.2 in Eq. A.1, we get

Si = 2q2
{︃
ϕM2(W ) + 2

∫︂ W

0

[α(x)− β(x)]ϕe(x)M
2(x)dx

}︃
. (A.3)

From Eq. 2.7, we derive

[α(x)− β(x)]ϕe(x) =
dϕe(x)

dx
− β(x)ϕ−Gopt(x). (A.4)

Substitution of Eq. A.4 in Eq. A.5 yields

Si = 2q2
{︃
ϕM2(W ) + 2

∫︂ W

0

dϕe(x)

dx
M2(x)dx− 2

∫︂ W

0

β(x)ϕM2(x)dx

−2

∫︂ W

0

Gopt(x)M
2(x)dx

}︃
.

(A.5)
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By comparing Eqs. 2.15 and A.5, we get∫︂ W

0

dϕe(x)

dx
dx = 2ϕ

∫︂ W

0

β(x)M2(x)dx+ 2

∫︂ W

0

Gopt(x)M
2(x)dx− ϕM2(W ).

(A.6)
Eq. A.6 is then substituted into Eq. 2.15 and, rewriting the total flux ϕ

with the expression reported in Eq. 2.9, we obtain

Si = 2q2
{︃
2

∫︂ W

0

GoptM
2(x)dx+ 2

∫︂ W

0

Gopt(x)M(x)dx

∫︂ W

0

β(x)M2(x)dx

− M2(W )

∫︂ W

0

Gopt(x)M(x)dx

}︃
,

(A.7)

which is equivalent to the solution reported in Eq. 2.16, namely

Si = 2q2

{︄∫︂ W

0

Gopt(x)M
2(x)

[︄
2 +

2
∫︁W

0
β(x′)M2(x′)dx′

M(x)
− M2(W )

M(x)

]︄
dx

}︄

= 2q2
∫︂ W

0

Gopt(x)M
2(x)F (x)dx.
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Appendix B

Hole’s Overlap Integrals

As stated in Section 5.2.3, in our FBMC, since storing the wavefunctions for all
the states in the Irreducible Wedge and using Eq. 5.15 would be very demand-
ing in terms of memory usage, in the case of hole-phonon scattering event, the
overlap integral between the initial state (n1, k1⃗) and the final state (n2, k2⃗) has
been substituted by the q⃗-dependent Rigid Ion expression (Eq. 5.29), where

q⃗ = k2⃗ − k1⃗ is the exchanged momentum, and we have imposed that the final
state can be identified only in the same band of the initial one, thus suppress-
ing interband scattering: namely n1 = n2 for all the hole-phonon scattering
events.

In this Appendix, we will discuss the choice that we have made by com-
paring it to the results that we have obtained by using the expressions for the
hole’s overlap integrals reported in [124]. In fact, following [124], the squared
modulus of the hole’s overlap integral (|I|2) is approximately equal to 1/2 for
all interband processes and for intraband collisions within the two topmost
bands and to unity for intraband transitions within the split-off band.
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Figure B.1: Hole-phonon scattering rate as a function of the carrier energy.
The deformation potentials of Tab. B.1 have been used and the hole’s overlap
integrals have been computed as in [124]. Our results (red solid line) have
been compared with the results of [114] (black circles).

175



Figure B.1 shows the hole-phonon scattering computed by using the expres-
sions reported in [124] and compares it to the results of [114]. The acoustic
and nonpolar optical phonon deformation potentials of Tab. B.1 have been
used: the choice of these values has been made to make the FBMC simula-
tions match the experimental results for the drift velocity as a function of the
applied electric field [64, 115, 116] (see Fig. B.2).
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Figure B.2: Hole’s drift velocity as a function of the applied electric field in
bulk GaAs at T = 300 K when the hole-phonon scattering rate is the one of
Fig. B.1. FBMC results have been compared with the experimental results of
[64, 115, 116] (black, blue and brown solid lines, respectively).

Dac,h [eV] ∆Kop,h [eV/m]
4.0 4.8×1010

Table B.1: Deformation potentials used for the computation of the hole-phonon
scattering rates in GaAs when the hole’s overlap integrals have been computed
as in [124].

Figure B.3a compares the hole’s impact ionization scattering rate used to
match the experiments in [17] for the impact ionization coefficient as a function
of the reciprocal of the electric field (Fig. B.3b) with the results of [113, 114].
The matrix element Tii,h has been set three times bigger with respect to the
one in Tab. 5.5 to reproduce the same set of experimental data. It is also worth
noting that the value of the deformation potential for acoustic phonons used to
match the experimental v(E) curves and reported in Tab. B.1 is similar to the
one reported in Tab. 5.4 (4.5 eV), while the value of ∆Kop,h is quite different
(8.0×1010 eV/m). These differences of the matrix element and of the phonon
deformation potentials with respect to the values discussed in Chapter 5 points
out the role of interband scattering for holes. In fact, the presence of interband
scattering increases the hole-phonon scattering rate for a given initial state
(n1, k1⃗) and, thus reduces the velocity and the impact ionization probability
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at a given field. Thus, when interband scattering is allowed, the FBMC gives
the same results presented in Chapter 5 only if the deformation potentials for
hole phonon scattering are reduced and if Tii,h is increased.
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Figure B.3: Hole’s impact ionization a) scattering rate as a function of the
carrier energy and b) impact ionization coefficient as a function of the recip-
rocal of the electric field. The results have been obtained by multiplying by
3 the matrix element Tii,h of Tab. 5.5. In plot a) our results (red solid line)
have been compared with the computations of [113, 114] (black circles and
triangles, respectively), while in plot b) FBMC results (red crosses) have been
compared with experiments (black solid line)[17].
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Figure B.4: a) M versus Vrev and b) F versus M curves for GaAs p-i-n APDs
when the hole’s overlap integrals have been compued as in [124] and the matrix
element Tii,h of Tab. 5.5 has been multiplied by 3. FBMC (solid lines) is
compared with experiments [23] (symbols). A built-in voltage Ψ0 = 1.2 V has
been assumed [117].

Figure B.4 compares the gain as a function of the applied bias voltage and
the excess noise factor as a function of the gain computed with the FBMC, by
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using the hole-phonon and impact ionization scattering rates of Figs. B.1 and
B.3a, with the experimental results of [23] for a 100 nm and a 200 nm thick
GaAs p-i-n APDs. We notice that theM(Vrev) curves are in mutual agreement,
while the excess noise factor for the 200 nm thick diode is underestimated.

To solve the problem, we have increased the matrix element for the compu-
tation of the hole’s impact ionization scattering rate Tii,h until FBMC simula-
tions were able to reproduce the experimental data of [23] (Fig. B.5). In fact,
we have noticed that, differently from the gain at a given voltage, the excess
noise factor at a given gain strongly depends on the value of Tii,h.
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Figure B.5: Same as Fig. B.4, but the matrix element Tii,h of Tab. 5.5 has
been multiplied by 50.

We have found that, in order to match the experiments of [23], a value
of Tii,h fifty times larger than the one used in Tab. 5.5 to obtain the results
presented in Chapter 5 have to be used. The results for the hole’s impact
ionization scattering rate and impact ionization coefficient are shown in Fig B.6
and compared with the one of Fig. B.3.
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Figure B.6: Same as Fig. B.3, but the results for when the matrix element Tii,h

of Tab. 5.5 is multiplied by 50 are also reported (blue solid line).
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Since the results for the hole’s impact ionization scattering rate obtained
with the new value of Tii,h are largely different from the ones reported by
[113, 114] and the impact ionization coefficient differs from the experiments
of [17], in the case of hole-phonon intraband scattering events we have de-

cided to compute the overlap integral between the initial state (n1, k1⃗) and the

final state (n2, k2⃗) by using the Rigid Ion approximation of Eq. 5.29, while,
consistently with [109], interband scattering has been ignored.
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Figure B.7: Squared modulus of the hole’s overlap integrals I(n1, n2; k1⃗, k2⃗) by
using Eq. 5.15, with the wavefunctions given as output of the solution of the
EPM Hamiltonian (Eq. 5.4). For each plot, the wavevector of the initial state

is fixed (k1⃗ = Γ), while the band index n1 goes from the highest valence band

(V B4) in plot a) to the lowest one (V B1) in plot d). The final state (n2, k2⃗)
is chosen along the [1, 0, 0] direction and the overlap integral is computed only

if |E(n2, k2⃗)− E(n1, k1⃗)| ≤ 33 meV, which is the maximum phonon energy in
GaAs (Eq. 5.18 with the parameters in Tab. 5.4). The dotted magenta line is
the result of the Rigid Ion approximation (Eq. 5.29).

Finally, Figure B.7 shows the squared modulus overlap integrals, computed
by using Eq. 5.15 and the wavefunctions obtained by the solution of the EPM
hamiltonian (Eq. 5.4), between the state (n1 = V B4 ÷ V B1, k1⃗ = Γ), where
V B1 and V B4 are, respectively, the lowest and the highest valence band, and
final states (n2, k2⃗) along the [1, 0, 0]. The overlap integrals are computed only

if |E(n2, k2⃗) − E(n1, k1⃗)| ≤ 33 meV, which is the maximum phonon energy
in GaAs (Eq. 5.18 with the parameters in Tab. 5.4). The results are also
compared with the Rigid Ion expression (Eq. 5.29). We notice that, in all the
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plots, the squared modulus of the overlap integral for interband transitions
is negligible, if compared to the one for intraband scattering events. On the
other hand, the Rigid Ion expression does not match the values obtained by
using Eq. 5.15, but this difference can be compensated by the choice of the
deformation potentials for acoustic and nonpolar optical phonons.

In conclusion, as shown in Chapter 5, the use of the Rigid Ion approxi-
mation for the computation of the hole’s overlap integral, associated with an
adequate choice of the deformation potentials for the scattering with acoustic
and nonpolar optical phonons, allows to obtain results for the hole’s impact
ionization scattering rate, the impact ionization coefficient and for the M(Vrev)
and F (M) curves that are consistent with experiments and/or with the results
obtained by other authors. However, we think that, in the future, further
investigation on the hole’s overlap integrals is necessary to achieve a closer
approximation of the ones computed with Eq. 5.15 and the wavefunctions ob-
tained by solving the EPM hamiltonian.
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