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The homogeneous
Hénon-Lane-Emden system

Andrea Carioli and Roberta Musina

Abstract. We use variational methods to study the existence of a prin-
cipal eigenvalue for the homogeneous Hénon-Lane-Emden system on a
bounded domain. Then we provide a detailed insight into the problem
in the linear case.
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1. Introduction

The Hénon-Lane-Emden system










−∆u = |x|a|v|q−2v in Ω

−∆v = |x|b|u|p−2u in Ω

u = 0 = v on ∂Ω

(1.1)

includes the second and fourth order Lane-Emden equations and the Hénon
equation in astrophysics. Here Ω is a domain in R

n containing the origin,
p, q ∈ (1,∞), and the weights are locally integrable, that is, a, b > −n.

Since the celebrated papers [15] by P.L. Lions and [17] by Mitidieri,
where a = b = 0 and Ω = R

n are assumed, large efforts have been made in
investigating (1.1) and related problems. It is difficult to give a complete list
of references on this topic. We limit ourselves to cite [2, 3, 4, 5, 8, 11, 12, 13,
18, 22, 25, 27, 28, 29, 30] and the references therein.

Most of the above mentioned papers require n ≥ 3, deal with the so-
called anticoercive case (p − 1)(q − 1) > 1, and underline the role of the
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2 A. Carioli and R. Musina

“critical hyperbola”
a+ n

q
+
b+ n

p
= n− 2

in existence and nonexistence phenomena, as it separates the ”subcritical
case”

a+ n

q
+
b+ n

p
> n− 2 , (1.2)

from the supercritical one.

Formally letting q ց p′ = p
p−1 in (1.1), and taking the homogeneities involved

into account, one gets in the limit the eigenvalue problem










−∆u = λ1|x|
a|v|p

′−2v in Ω

−∆v = λ2|x|
b|u|p−2u in Ω

u = 0 = v on ∂Ω ,

(P)

and (1.2) reduces to
a

p′
+
b

p
+ 2 > 0 . (1.3)

In the present paper we focus our attention on Problem (P). We emphasize
the fact that we include the lower dimensional cases n = 1, 2, that actually
present some remarkable peculiarities.

Nonexistence results have been obtained in [1], see also the recent papers
[8, 10] for the case Ω = R

n. Montenegro [20] used degree theory to face
Problem (P) in a more general setting that includes non-self-adjoint elliptic
operators. We adopt a variational approach that allows us to weaken the
integrability assumptions on the coefficients from Montenegro’s Ln(Ω) to
L1(Ω).

We look for finite energy solutions and for a principal eigenvalue to (P),
according to the next definitions.

Definition 1.1. The pair (u, v) is a finite-energy solution to (P) if:

• u, v ∈W 2,1(Ω) ∩W 1,1
0 (Ω);

• u ∈ Lp(Ω, |x|bdx), v ∈ Lp′

(Ω, |x|adx), that is,
∫

Ω

|x|
b
|u|

p
dx <∞ ,

∫

Ω

|x|
a
|v|

p′

dx <∞ ; (1.4)

• u, v are weak solutions to the elliptic equations in (P). That is,
∫

Ω

∇u · ∇ϕ dx = λ1

∫

Ω

|x|a|v|p
′−2vϕ dx,

∫

Ω

∇v · ∇ϕ dx = λ2

∫

Ω

|x|a|u|p−2uϕdx

for any test function ϕ ∈ C∞
c (Ω).

Definition 1.2. A real number µ is a principal eigenvalue for (P) if for any
pair of real numbers (λ1, λ2) satisfying

|λ1|
p−1

λ1 |λ2|
p′−1

λ2 = µp′

, (1.5)

Problem (P) has a finite-energy solution (u, v) such that u, v > 0 in Ω.
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In Section 3 we prove the following result.

Theorem 1.3. Let a, b > −n and let Ω ∋ 0 be a bounded and smooth domain

in R
n. If (1.3) holds, then Problem (P) has a positive principal eigenvalue.

Notice that (1.3) is automatically satisfied if n = 1, 2 and a, b > −n. If n ≥ 3
then assumption (1.3) can not be improved, see [7].

Our approach is based on the formal equivalence, already noticed for
instance by Wang [31] and Calanchi-Ruf [6] in the anticoercive case, between
(P) and the fourth order eigenvalue problem

{

∆
(

|x|
−a(p−1)

|∆u|
p−2

∆u
)

= µ |x|
b
|u|

p−2
u in Ω

u = ∆u = 0 on ∂Ω,
(1.6)

where µ, λ1 and λ2 satisfy (1.5). We will look for nontrivial solutions to (1.6)
as constrained critical points for the energy

E(u) =

∫

Ω

|x|
−a(p−1)

|∆u|pdx on the constraint M =

{
∫

Ω

|x|b|u|p dx = 1

}

,

in a suitably defined spaceW 2,p
N (Ω, |x|−a(p−1) dx) of functions such that u = 0

on ∂Ω.
In spite of the apparent plainness of this program, its rigorous imple-

mentation needs a good understanding of some non trivial facts.
First of all one has to prove appropriate integral inequalities for smooth

functions vanishing at the boundary of Ω. This will be done in Lemma 2.4. If
n ≥ 3 we take advantage of the weighted Rellich-type inequality in [19] and
[21, Lemma 2.14]. The lower dimensional cases n = 1, 2 require an ad hoc

argument and a preliminary result, that can be found in the appendix.
Secondly, one needs to detect the “right” function space. The weighted

space W 2,p
N (Ω, |x|

−a(p−1)
dx) has to be “small enough” to be compactly em-

bedded in Lp(Ω; |x|bdx). But the equivalence between weak solutions to (1.6)

and finite-energy solutions to (P) only holds if W 2,p
N (Ω, |x|

−a(p−1)
dx) is

“large enough”.

The convenient definition ofW 2,p
N (Ω, |x|

−a(p−1)
dx) and details are given

in Section 2. The above mentioned equivalence and Theorem 1.3 are proved
in Section 3.

The last part of the paper is focused on the linear case p = 2, so that (1.3)
becomes

a+ b+ 4 > 0 . (1.7)

In Section 4 we prove that the linear system










−∆u = λ1|x|
av in Ω

−∆v = λ2|x|
bu in Ω

u = 0 = v on ∂Ω

(1.8)

has a unique and simple principal eigenvalue µ1 > 0, and a discrete spectrum
{µk}k∈N. More precisely, the following facts hold.
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Theorem 1.4. Let a, b > −n and let Ω be a bounded and smooth domain in

R
n. If n ≥ 3 assume also that (1.7) holds.

(a) There exists an increasing, unbounded sequence of eigenvalues {µk}k∈N

such that Problem (1.8) has a nontrivial and finite-energy solution (u, v)
if and only if λ1λ2 = µk for some integer k ≥ 1.

(b) The first eigenvalue µ1 is the unique principal eigenvalue. In addition

µ1 is simple, that is, if (u, v) and (ũ, ṽ) solve (1.8) and λ1λ2 = µ1, then

ũ = αu and ṽ = βv for some α, β ∈ R.

2. The functional setting

In this section we introduce and study certain second order weighted Sobolev
spaces with Navier boundary conditions that are suitable for studying (1.6)
via variational methods.

To simplify notation we set s = a(p− 1). Thus, from now on we assume
that s, b are given exponents such that

s > n− np , b > −n

even if not explicitly stated. In addition, Ω ⊂ R
n will always denote a bounded

and smooth domain. We denote by c any universal positive constant.
We introduce the function space

C2
N (Ω) := {u ∈ C2(Ω) | u = 0 on ∂Ω}.

LetW 2,p
N (Ω, |x|

−s
dx) be the reflexive Banach space defined as the completion

of the set

D0 := {u ∈ C2
N (Ω) | ∆u ≡ 0 on a neighborhood of the origin} ,

with respect to the uniformly convex norm

‖u‖s ≡ ‖u‖p,s :=

(
∫

Ω

|x|
−s

|∆u|
p
dx

)
1

p

.

We begin to study the spacesW 2,p
N (Ω, |x|

−s
dx) by pointing out some embed-

ding results. Firstly, notice that the boundedness of the domain Ω implies

W 2,p
N (Ω, |x|

−s
dx) →֒ W 2,p

N (Ω, |x|
−s0 dx) if s0 ≤ s. (2.1)

Lemma 2.1. Assume s > n− np. Then

W 2,p
N (Ω, |x|

−s
dx) →֒W 2,τ (Ω) ∩W 1,τ

0 (Ω),

where τ < np
n−s < p if s < 0, or τ = p otherwise.

Proof. If s ≥ 0 the conclusion is immediate. Assume s < 0. For any u ∈ D0

and τ ∈ [1, np/(n − s)) we use elliptic regularity estimates, see for instance
[14, Lemma 9.17], to get

‖u‖τW 2,τ(Ω) ≤ c

∫

Ω

|∆u|
τ
dx ≤ c

(
∫

Ω

|x|
−s

|∆u|
p
dx

)
τ
p
(
∫

Ω

|x|
sτ

p−τ dx

)

p−τ

p

.

The last integral is finite as s > n− np, and the lemma is proved. �
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The next lemma will be used in Section 3 to rigorously prove the equivalence
between the second order system (P) and the fourth order equation (1.6).

Lemma 2.2. If s > n− np, then u ∈ W 2,p
N (Ω, |x|

−s
dx) if and only if

u ∈W 2,1 ∩W 1,1
0 (Ω) and −∆u ∈ Lp(Ω, |x|−sdx). (2.2)

Proof. Clearly, any u ∈W 2,p
N (Ω, |x|

−s
dx) satisfies (2.2) by Lemma 2.1.

Conversely, fix u satisfying (2.2). Assume in addition that −∆u = 0
almost everywhere on a ball Br about 0, so that −∆u ∈ Lp(Ω). Hence,

u ∈ W 2,p(Ω)∩W 1,p
0 (Ω) by elliptic regularity theory. Extend u to a function u

inW 2,p(Rn) with compact support and take a sequence of mollifiers {ρk}k∈N.
Since, for k large enough, −∆(ρk ∗u) ≡ 0 on Br/2 and ρk ∗u→ u inW 2,p(Ω),

then −∆(ρk ∗ u) → −∆u in Lp(Ω, |x|−sdx). Let uk be the solution to
{

−∆uk = −∆(ρk ∗ u) in Ω

uk = 0 on ∂Ω.

It turns out that uk ∈ D0 ∩W
2,p
N (Ω), as uk is smooth up to the boundary

of Ω by regularity theory, and −∆uk ≡ 0 in Br/2. In addition, uk → u in

W 2,p(Ω) and −∆uk → −∆u in Lp(Ω, |x|−sdx), that is sufficient to conclude

that u ∈ W 2,p
N (Ω, |x|

−s
dx).

For a general u satisfying (2.2) let uk be the unique solution to
{

−∆uk = χΩk
(−∆u) in Ω

uk = 0 on ∂Ω,

where Ωk := Ω \ Bεk and εk → 0. Then uk ∈ W 2,p ∩ W 1,p
0 (Ω) and uk ∈

W 2,p
N (Ω, |x|

−s
dx) by the first part of the proof. Clearly, the sequence {uk}k∈N

is bounded in W 2,p
N (Ω, |x|−s dx), and we can assume that uk → ū weakly

in W 2,p
N (Ω, |x|

−s
dx). On the other hand, the sequence −∆uk converges to

−∆u in Lp(Ω, |x|−s dx) by Lebesgue’s theorem. Thus ū = u, that is, u ∈

W 2,p
N (Ω, |x|

−s
dx). �

The next corollary is an immediate consequence of Lemma 2.2.

Corollary 2.3. Assume s > n − np. For any f ∈ Lp(Ω, |x|−sdx), the unique

solution u to
{

−∆u = f in Ω

u = 0 on ∂Ω

belongs to W 2,p
N (Ω, |x|

−s
dx).

Next we deal with embeddings in weighted Lp spaces.

Lemma 2.4. If s+ b+ 2p ≥ 0, then

Λ(s, b) := inf
u∈W 2,p

N
(Ω,|x|−sdx)
u6=0

∫

Ω

|x|
−s

|∆u|
p
dx

∫

Ω

|x|b |u|p dx
> 0.
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Proof. First of all, notice that Lp(Ω, |x|
b0 dx) →֒ Lp(Ω, |x|

b
dx) if b0 ≤ b,

that together with (2.1) implies

Λ(s, b) ≥ cΛ(s0, b0) if s0 ≤ s and b0 ≤ b. (2.3)

We start with the lowest dimensions n = 1, 2. Fix an exponent s0 ≤ s, such
that n − np < s0 ≤ b(p − 1). Then Λ(s, b) ≥ cΛ

(

s0,
s0
p−1

)

> 0 by (2.3) and

Lemma 4.2 in the Appendix.

Now assume n ≥ 3. In addition, assume first that s < n − 2p. By the
weighted Rellich inequality in [19] (see also [21, Lemma 2.14]) and using
[21, Lemma 2.9], one has that there exists a positive and explicitly known
constant c = c(n, p, s), such that

c

∫

Ω

|x|
−s−2p

|u|
p
dx ≤

∫

Ω

|x|
−s

|∆u|
p
dx for any u ∈ C 2

N (Ω), (2.4)

that in particular gives c = Λ(s,−s− 2p) > 0. Thus

Λ(s, b) ≥ cΛ(s,−s− 2p) > 0

by (2.3). Finally, if s ≥ n− 2p, we fix a parameter s0 such that

max{n− np,−2p− b} < s0 < n− 2p ≤ s,

that is possible as b > −n and n ≥ 3. Then (2.3) and (2.4) with s replaced
by s0 give Λ(s, b) ≥ cΛ(s0,−s0 − 2p) > 0, and the lemma is proved. �

Remark 2.5. If Ω contains the origin and s + b + 2p < 0, then Λ(s, b) = 0.
Indeed, fix a nontrivial ψ ∈ C∞

c (B1 \ {0}). For k large enough the function
ψk(x) = ψ(kx) belongs to D0. Thus

Λ(s, b) ≤

∫

Ω

|x|−s |∆ψk|
p dx

∫

Ω

|x|b |ψk|
p dx

= cks+2p+b = o(1) as k → ∞.

Remark 2.6. If n − np < s < n − 2p, then C 2
N (Ω) ⊂ W 2,p

N (Ω, |x|
−s
dx) and

the space

C 2
N (Ω \ {0}) := {u ∈ C 2

N (Ω) | u ≡ 0 on a neighborhood of the origin}

is dense in W 2,p
N (Ω, |x|

−s
dx), see Lemma 2.14 in [21].

Remark 2.7. By Lemma 2.2, the set D0 is dense in the standard Sobolev
space W 2,p

N (Ω) = W 2,p(Ω) ∩W 1,p
0 (Ω). The smaller set C2

N (Ω \ {0}) is dense

in W 2,p
N (Ω) if n > 2p, compare with Remark 2.6.

The next compactness result is a crucial point for studying the eigenvalue
problem (1.6).

Lemma 2.8. If s + b + 2p > 0 then W 2,p
N (Ω, |x|−s dx) is compactly embedded

into Lp(Ω, |x|
b
dx).
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Proof. It suffices to show that any sequence {uk}k∈N that converges weakly

to the null function in W 2,p
N (Ω, |x|−s dx) is compact in Lp(Ω, |x|b dx). Fix

such a sequence, and take ε > 0 small. Since clearly {uk}k∈N is bounded in
W 2,p(Ω\Bε), then |x|b|uk|

p → 0 in L1(Ω\Bε) by Rellich theorem. Therefore,
for any b0 ∈ (−n, b) we have that

∫

Ω

|x|b|uk|
p dx =

∫

Bε

|x|b|uk|
p dx+ o(1) ≤ εb−b0

∫

Ω

|x|b0 |uk|
p dx+ o(1) .

Now, if b0 is close enough to b, then s+ b0 + 2p > 0. Hence
∫

Ω

|x|b|uk|
p dx ≤ cεb−b0 + o(1)

by Lemma 2.4. The conclusion follows, as ε > 0 was arbitrarily chosen. �

3. Two equivalent problems

In this section we provide the rigorous proof of the equivalence between the
eigenvalue problems (P) and (1.6). We start with a preliminary result.

Lemma 3.1. Assume that a, b > −n and that (1.3) holds. For any f ∈

Lp(Ω, |x|
b
dx), the problem















−∆u = |x|
a
|v|

p′−2
v (3.1a)

−∆v = |x|
b
|f |

p−2
f (3.1b)

u ∈W 2,p
N (Ω, |x|−a(p−1) dx), v ∈ W 2,p′

N (Ω, |x|−b(p′−1) dx)

admits a unique solution.

Proof. First of all, notice that a(p − 1) > n − np, b(p′ − 1) > n − np′.

Thus the results in Section 2 apply to the spaces W 2,p
N (Ω, |x|

−a(p−1)
dx) and

W 2,p′

N (Ω, |x|
−b(p′−1)

dx).

Since |x|
b
|f |

p−2
f ∈ Lp′

(Ω, |x|
−b(p′−1)

dx), then Corollary 2.3 guaran-

tees (3.1b) has a unique solution v ∈W 2,p′

N (Ω, |x|
−b(p′−1)

dx). The embedding

Lemma 2.4 gives that |x|a |v|p
′−2 v ∈ Lp(Ω, |x|−a(p−1) dx). Thus there exists

a unique solution u ∈ W 2,p
N (Ω, |x|

−a(p−1)
dx) to (3.1a), thanks again to Corol-

lary 2.3. �

We are ready to prove the equivalence result we need.

Lemma 3.2. Assume that a, b > −n and that (1.3) holds. Let µ, λ1, λ2 ∈ R

satisfying (1.5). Then the following statements are equivalent.

(a) u ∈ W 2,p
N (Ω, |x|−a(p−1) dx) is a weak solution to (1.6).

(b) The pair u, v := −|x|−a(p−1)|∆u|p−2∆u solves the system














−∆u = |x|
a
|v|

p′−2
v (3.2a)

−∆v = µ |x|
b
|u|

p−2
u, (3.2b)

u ∈ W 2,p
N (Ω, |x|

−a(p−1)
dx) , v ∈W 2,p′

N (Ω, |x|
−b(p′−1)

dx).
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(c) The pair u, v := −|x|−a(p−1)|∆u|p−2∆u is a finite-energy solution to

(P), in the sense of Definition 1.1.

Proof. If u ∈ W 2,p
N (Ω, |x|

−a(p−1)
dx), then u ∈ Lp(Ω, |x|bdx) by Lemma 2.4.

Thus we can apply Lemma 3.1 to find a unique pair u0, v0 such that










−∆u0 = |x|
a
|v0|

p′−2
v0

−∆v0 = µ |x|
b
|u|

p−2
u,

u0 ∈W 2,p
N (Ω, |x|

−a(p−1)
dx), v0 ∈ W 2,p′

(Ω, |x|
−b(p′−1)

dx).

Notice that v0 = |x|−a(p−1)|∆u0|
p−2(−∆u0) almost everywhere in Ω. There-

fore, if u solves (1.6), then for any ϕ ∈ D0 it holds that
∫

Ω

|x|−a(p−1) |∆u|p−2 ∆u∆ϕdx = µ

∫

Ω

|x|b |u|p−2 uϕdx

=

∫

Ω

(−∆v0)ϕ dx =

∫

Ω

v0(−∆ϕ) dx

=

∫

Ω

|x|
−a(p−1)

|∆u0|
p−2

∆u0∆ϕdx,

that readily gives that u = u0, since u, u0 ∈ W 2,p
N (Ω, |x|

−a(p−1)
dx) and D0 is

dense in W 2,p
N (Ω, |x|

−a(p−1)
dx). Hence also v = v0, the pair u, v solves (3.2),

and the first implication is proved.
The equivalence between (b) and (c) is immediate, thanks to Lemma

2.1 and Corollary 2.3. It remains to be shown that (b) implies (a). If (u, v)
solves (3.2), then for every ϕ ∈ D0 it holds that

µ

∫

Ω

|x|
b
|u|

p−2
uϕdx =

∫

Ω

v(−∆ϕ) dx

=

∫

Ω

|x|
−a(p−1)

|∆u|
p−2

∆u∆ϕdx,

that is, u solves (1.6). �

Lemma 3.2 shows that finite energy solutions to (P) are the stationary points
of the functional

u 7→

∫

Ω

|x|
−a(p−1)

|∆u|p dx

on the constraint

M =

{

u ∈W 2,p
N (Ω, |x|

−a(p−1)
dx)

∣

∣

∣

∣

∫

Ω

|x|b|u|p dx = 1

}

.

If a, b > −n and (1.3) holds, then M is weakly compact by Lemma 2.8. Thus
the infimum

µ := Λ(a(p− 1), b) = inf
u∈M
u6=0

∫

Ω

|x|−a(p−1) |∆u|p dx (3.3)

is positive and attained.
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Remark 3.3. Let (u, v) be a finite energy solution to (P). Clearly, if n = 1
then u, v are continuous on Ω. If n ≥ 2 a standard bootstrap argument can
be used to check that u, v ∈ W 2,q

loc (Ω \ {0}) for any q ∈ [1,∞]. In particular,
u, v are continuous on Ω \ {0}.

The next lemma deals with minimizers for µ.

Lemma 3.4. Assume that a, b > −n and that (1.3) holds.

If u ∈ W 2,p
N (Ω, |x|

−a(p−1)
dx) achieves µ, then, up to a change of sign, u is

superharmonic and positive on Ω.

Proof. Let v = |x|−a(p−1)|∆u|p−2(−∆u), so that the pair (u, v) solves (3.2).
Use Corollary 2.3 to introduce u0 via

{

−∆u0 = |x|a |v|p
′−1

u0 ∈W 2,p
N (Ω, |x|

−a(p−1)
dx).

In particular, u0 is superharmonic and positive on Ω. Next, put

g = |x|
a
|v|

p′−2
v.

Thus u and u0 solve, for some τ ∈ [1, p),
{

−∆u = g

u ∈ W 2,τ ∩W 1,τ
0 (Ω),

{

−∆u0 = |g|

u0 ∈W 2,τ ∩W 1,τ
0 (Ω).

Since −∆(u0±u) ≥ 0 and u0±u = 0 on the boundary of Ω, then u0±u ≥ 0,
that is, u0 ≥ |u|. On the other hand, |∆u0| = |g| = |∆u|. Therefore

µ ≤

∫

Ω

|x|
−a(p−1)

|∆u0|
p
dx

∫

Ω

|x|
b
|u0|

p
dx

≤

∫

Ω

|x|
−a(p−1)

|∆u|
p
dx

∫

Ω

|x|
b
|u|

p
dx

= µ,

that is, u0 attains µ and u0 = |u|. Since u0 is positive in Ω, then u and −∆u
have constant sign (use Remark 3.3), as desired. �

Proof of Theorem 1.3. Assume that (1.3) holds. The existence of a principal
eigenvalue is immediate, thanks to Lemmata 2.8 and 3.4 and the equivalence
given by Lemma 3.2. �

Remark 3.5. Assume that a, b > −n and

a

p′
+
b

p
+ 2 < 0 ,

so that, in particular, n ≥ 3. Then Problem (P) has no positive principal
eigenvalue. This is a consequence of [1, Theorem 2.2].

We conclude the section pointing out a symmetry result about the infimum
in (3.3). It is convenient to use the notation µ(a, b, p) to emphasize the de-
pendence of µ on the exponents a, b and p.

Proposition 3.6. If a, b > −n and (1.3) holds, then µ(b, a, p′)p = µ(a, b, p)p
′

.
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Proof. Let u be an extremal for µ(a, b, p). By Lemma 3.2, the pair u, v, where

v := −|x|−a(p−1)|∆u|p−2∆u ,

solves (3.2) with respect to the eigenvalue µ = µ(a, b, p). Hence
∫

Ω

|x|
−b(p′−1)

|∆v|
p′

dx = µ(a, b, p)p
′

∫

Ω

|x|
b
|u|

p
dx

= µ(a, b, p)p
′−1

∫

Ω

|x|
−a(p−1)

|∆u|
p
dx = µ(a, b, p)p

′−1

∫

Ω

|x|
a
|v|

p′

dx.

Thus µ(b, a, p′) ≤ µ(a, b, p)p
′−1, or equivalently µ(b, a, p′)p ≤ µ(a, b, p)p

′

. The
opposite inequality follows by exchanging the roles of u and v. �

4. The linear problem

In this section we prove Theorem 1.4. First of all we notice that if p = 2,
then equation (1.6) reduces to

∆
(

|x|
−a

∆u
)

= µ |x|
b
u. (4.1)

We denote by Xa the Hilbert space W 2,2
N (Ω, |x|

−a
dx), endowed with norm

‖·‖a and scalar product ( · | · )a.

Proof of Theorem 1.4 (a). We formally introduce the “solution operator” to
(4.1) under Navier boundary conditions. More precisely, we define the linear
operator

T : L2(Ω, |x|
b
dx) → Xa , (Tf |w)a =

∫

Ω

|x|
b
fw dx for w ∈ Xa.

Then T is continuous, positive and self-adjoint. Let j : Xa → L2(Ω, |x|
b
dx)

be the embedding in Lemma 2.4. Then the operator

T ≡ j ◦ T , T : L2(Ω, |x|
b
dx) → L2(Ω, |x|

b
dx)

is compact. Thus the point spectrum σp(T ) of T is a non-increasing sequence
{νk}k∈N of positive numbers converging to 0, and

1

νk
= min















∫

Ω

|x|
−a

|∆u|
2
dx

∫

Ω

|x|
b
u2 dx

∣

∣

∣
u ∈ Λ⊥

i , 1 ≤ i ≤ k − 1















,

where Λi is the eigenspace relative to the eigenvalue νi. Thus (a) readily
follows by Lemma 3.2. �

Proof of Theorem 1.4 (b). We will use the theory of abstract positive opera-
tors on Banach lattices, for which we refer to the monograph [26]. Recall that

L2(Ω, |x|
b
dx) has a natural Banach lattice structure induced by the cone P+

of nonnegative functions. We will show that T is positive and irreducible.
Then, the conclusion will follow thanks to an adaptation of Theorem V.5.2
in [26], that guarantees that the following facts hold:
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• the spectral radius r(T ) ∈ R+ is an eigenvalue;
• the eigenspace Λ(r(T )) has dimension one, and is spanned by a (unique,

normalized) quasi-interior point of P+;
• r(T ) is the unique eigenvalue of T with a positive eigenvector.

To check that T is irreducible we first recall that that the only closed ideals

in L2(Ω, |x|
b
dx) are the ones of the form

IA =
{

f ∈ L2(Ω, |x|
b
dx)

∣

∣

∣
f = 0 on A

}

,

where A is a measurable set, see for instance [26, p. 157]. Therefore, we have
to show that if A satisfies

0 <

∫

Ω

|x|
b
χA dx <

∫

Ω

|x|
b
dx,

then IA is not fixed by T .

Let f ∈ IA be a nonnegative fixed function. Then the problem
{

−∆v = |x|b f

v ∈ Xb

admits a solution by Corollary 2.3, and v ∈ W 2,τ ∩W 1,τ
0 (Ω) for τ > 1 small

enough. The minimum principle implies that v is strictly positive in Ω. For
the same reason, the problem

{

−∆u = |x|
a
v

u ∈ Xa,

defines a function u that is strictly positive in Ω. Hence u ≡ Tf /∈ IA, and
this proves the irreducibility property. The same argument proves also the
positivity property. �

Remark 4.1. There are of course a number of possible generalizations of the
above results. For instance, the weights |x|a, |x|b may be replaced by more
general measurable weights α(x), β(x), suitably pinched between power-type
functions. More general differential operators might be considered as well.
One could wonder what happens if −∆ is replaced by an m-order (possibly,
fractional) differential operator.

Finally, one may wonder if a Faber-Krahn type inequality can hold, in
particular in the non-linear case p 6= 2.

Appendix. An inequality in lower dimensions

We sketch here the proof of a second order integral inequality in low dimen-
sions by using, in essence, the Rellich-type identity in [19].
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Lemma 4.2. Let n ∈ {1, 2} and let Ω be a a bounded domain in R
n. If n = 2,

assume that Ω is of class C2. For any s > n − np, there exists a constant

c > 0 such that

c

∫

Ω

|x|
s

p−1 |u|
p
dx ≤

∫

Ω

|x|
−s

|∆u|
p
dx

for any u ∈ C2
N (Ω) such that ∆u = 0 in a neighborhood of 0.

Proof. We can assume that Ω is contained in the unit ball about the origin.
Put

a =
s

p− 1
,

and notice that a > −n. We argue in a heuristic way. A more rigorous proof
requires a suitable approximation of the weight |x|a+2 by smooth functions.
We omit details.

Fix u ∈ C2
N (Ω) such that ∆u = 0 in a neighborhood of 0. For p ≥ 2 one

clearly has

(p− 1)

∫

Ω

|∇u|2 |u|p−2 dx =

∫

Ω

(−∆u)|u|p−2udx.

For general p > 1, one can check that |∇u|
2
|u|

p−2
∈ L1(Ω) and

(p− 1)

∫

Ω

|∇u|
2
|u|

p−2
dx ≤

∫

Ω

|∆u| |u|
p−1

dx . (4.2)

Next, we are allowed to use integration by parts again and Hölder’s inequality
to estimate

(a+ 2)(a+ n)

∫

Ω

|x|a|u|p dx = −

∫

Ω

(∆|x|a+2) |u|
p
dx

=p

∫

Ω

(∇|x|a+2 · ∇u) |u|
p−2

u dx ≤p(a+ 2)

∫

Ω

|x|a+1|∇u||u|p−1 dx

≤p(a+ 2)

(
∫

Ω

|∇u|
2
|u|

p−2
dx

)
1

2

(
∫

Ω

|x|2a+2 |u|
p
dx

)
1

2

.

Therefore, from a+ 2 ≥ a+ n > 0 we infer
(

a+ n

p

)2 ∫

Ω

|x|a |u|
p
dx ≤

∫

Ω

|∇u|
2
|u|

p−2
dx ≤

1

p− 1

∫

Ω

|u|
p−1

|∆u| dx

by (4.2). Then we use again Hölder’s inequality to estimate

c

∫

Ω

|x|a |u|
p
dx ≤

(
∫

Ω

|x|a |u|
p
dx

)
1

p′
(
∫

Ω

|x|−a(p−1) |∆u|
p
dx

)
1

p

where c = c(a, n, p) > 0. Thus

c

∫

Ω

|x|a |u|
p
dx ≤

∫

Ω

|x|−a(p−1) |∆u|
p
dx,

as desired. �
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