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Abstract
We study the surface of Gauss double points associated to a very general quartic
surface and the natural morphisms associated to it.
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1 Introduction
1.1 The result

We work over C, the complex number field. In this paper X C P? is a very general
quartic surface. In particular there are no lines inside it. We explicitly describe a
singular surface 4o, naturally associated to X. This surface is classically known as
the “developable touching the surface along UK”, see [4, Chapter XVII, 607, 608].
For a general surface of degree d inside P? the corresponding developable surface is
studied in [2], where the reader can also find a modern study of Salmon’s treatise. In
this paper the point of view is different, because we want to relate the geometry of
Ydou to the geometry of the surface of bitangent lines to X and for this we need a
careful study of Xgoy.

In order to introduce and to study 240, We revise some aspects of the geometry of
quartic surfaces. We ground our exposition on [7]. The book [7] contains both a well
written modern account about the projective Gauss map and a very nice description
of the geometry of a general quartic surface.
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P. Corvaja, F. Zucconi

Given the surface X, it is well known that its bitangents describe a smooth algebraic
surface S inside the Gassmannian G (2, 4) of lines of P3. If Qy is the restriction to S of
the universal bundle Q over G(2, 4), itis also well known that inside its Grothendieck’s
projectivisation P(Qg) we can define the surface Y C P(Q) of contact points associated
to S. Namely, a point y € Y is a couple y = ([/], p) where [ is a bitangent line of X
and p € [ N X. The geometry of Y is quite well known, see Proposition 4.4 and [1,7].
Together with S and Y there is a third surface which naturally comes with the geometry
of X. To describe it, we consider a point p € X and denote by 7, X the projective
tangent space of X at p. It is known that the closure of the loci of the points p € X
for which the hyperplane section X, := T}, X N X has geometrical genus strictly less
than 2 is a 1-dimensional subscheme Cg,, inside X, see Theorem 3.13. Cayley called
Cdou the node-couple curve, see [4, Chapter XVII, 607], where it is denoted by UK.

We will see that for a general point p € Cqo, there exists another unique singular
point p’ € X, such that 7,X = T,/ X. Clearly, both p, p’ € Cqou and since p # p’
there exists a unique line 7, ,»:= (p, p’) C P3 passing through p, p’. Clearly, [1,, ,/] €
S C G. The new singular surface we mentioned above is the locus X oy C P3 obtained
by the closure of the surface swept by the lines /,, ,» where p € Cgoy 18 a general point.
We give a description of the geometry of ¥go,. In the case of a quartic surface, we
think right to call X4, the almost ruled surface of Gauss double points because it
matches perfectly with the modern classification of points on a general quartic surface
that we adopted, see Proposition 3.3.

The projective bundle P(Qy) is easily seen to coincide with the following incidence
variety: {([{], p) € SxP?|p € [}. One of the most basic morphisms associated to
the geometry of X is the forgetful one:

f:PQs) — P% ([11, p) — p.

Nevertheless it has not been deeply studied yet. We denote by B(f) < P? its branch
locus and by R(f) < P(Qy) its ramification one. We prove that there exists a curve
C C S which parameterises the bitangent lines associated to the couples p, p’ € Cqou
where T, X = T,y X. Geometrically C C § is birational to the quotient of Cgou C X
by the natural involution p — p’ where [/, /] € S.

In particular, we can construct the ruled surface m¢: ¥ — C obtained by the
pull-back of the natural morphism 7rg: P(Qg) — S via the natural inclusion C < S.

Main Theorem [f X is a very general quartic surface then S and Y are smooth sur-
faces and Cqoy, C c\l/ou are singular curves whose singularities are fully classified. The
morphism f: P(Qg) — P3 is finite of degree 12. The almost ruled surface of Gauss
double points 4oy has degree 160 and osculates the quartic X along Cqoy. It holds:
(1) B(f) = X U Xgou,
(i) R(f)=YUZX.
Moreover, the natural morphism f: P(Qs) — P3 induces by restriction two mor-
phisms p: Y — X and pgou: X — Xdou 0f degree respectively 6 and 1.

For the proof of Main Theorem, see Sect. 4.6. Actually we need a detailed description
of the geometry associated to the curves Cqou, C CYou. This geometry is described in

Proposition 2.5. The proof of Proposition 2.5 is postponed to Sect. 4.5.
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The surface of Gauss double points

Finally we would like to mention that this work was originally motivated by Dio-
phantine problems: smooth quartic surfaces are particularly interesting in Diophantine
geometry, since they lie at the frontier between rational surfaces, for which the distri-
bution of rational points is well understood, and surfaces of general type, for which it
is conjectured that their rational points are never Zariski-dense. For quartic surfaces
defined over a number field, it is widely believed that their rational points become
Zariski-dense after a suitable finite extension of their field of definition, but this is
proved only in very particular cases, and no example with Picard number 1 is known
where this density can be proved.

Quartic surfaces are limiting cases also for the problem of integral points on open
subsets of P?: the complement of a surface of degree < 3 in P? is known to have
potential density of integral points; for complements of smooth surfaces of degree 5 or
more, Vojta’s conjecture predicts degeneracy (but no case is known for the complement
of a smooth surface). The complement of quartic surface should have a potentially
dense set of integral points, but again this is still a widely open problem. Again by
Vojta’s conjecture, we expect that removing the union of a quartic surface and any other
surface from P3 produces an affine variety with degenerate sets of integral points. As a
by product of this work and our previous work [1], we could, for instance, deduce the
finiteness of the set of integral points, over every ring of S-integers, on the complement
of the union of a quartic surface X and its associated surface ¥, to be described in
the present work. We intend to devote a future paper to the arithmetic applications of
these geometrical investigations.

2 The morphism of bitangents

We agree that a general point on a variety M satisfies a property P if there exists an
open dense subset of M satisfying the property P, and that a very general point on M
satisfies a property P if there exists a countable union Z of closed proper subsets of
X such that all the points outside Z satisfy the property P.

In this section we introduce some of the geometrical objects which appear in the
statement of Main Theorem. Let V be a complex vector space of dimension 4 and let
VY its C-dual. We set P3 :=P(V"Y).Let F € Sym* V and let X := (F =0) C P> be
the associated quartic surface. In this paper, unless otherwise stated, we assume that
X is a very general quartic. We shall use the Yau—Zaslow formula, see [3, Formula
13.4.2]. The surface X comes naturally with three other surfaces that we are going to
describe.

@ Springer
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2.1 The surface of bitangents

Let G := G(2, V) be the Grassmann variety which parameterises the lines of P>,

Definition 2.1 A line | C P3 is a bitangent line to X if the subscheme X < [ is
non-reduced over each supporting point.

Definition 2.2 We call S := {[/] € G| X}; is a bitangent to X} the variety of bitan-
gents to X.

2.2 The surface of contact points

We have the standard exact sequence of vector bundles on G:
0—- Q9= V'®Og — § — 0.

A point @ € QY is a couple ([I], p) where [[] € G, p € ] C P3, We denote by P(Q)
the variety Proj(Sym(Q)). By definition P(Q) coincides with the universal family of
lines over G:

P(Q) = {([1], p) e GX P | p €1}.

We denote by g : P(Q) — G the natural projection and following the mainstream
we call the sequence

0-8—>VRO0g—-9—0
the universal exact sequence. By the inclusion js: S < G we can define Qg := Q.
It remains to define the variety of contact points.

Definition2.3 We call Y := {([/], p) € SxX|p < X} the variety of contact
points.

Obviously, there is an embedding jy: ¥ < P(Qg) and the natural morphism
ws: P(Qg) — § restricts to a morphism 7: ¥ — § which we call the forgetful
morphism.

2.3 The double cover subscheme

We need to introduce the subscheme of X given by the points p for which the restriction
of X to the tangent plane of X at p is a curve X, of geometrical genus less than 2. It
is a 1-dimensional subscheme Cgyoy inside X. Following the literature:

Definition 2.4 We call Cyou := {p € X | g(X,) < 1} the double cover subscheme of
X.

We will see in Propositions 3.12 and 3.14 that if X is general then Cg,, is an irreducible
singular curve.
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2.3.1 The double cover subscheme and Gauss map

On X it is defined the Gauss map ¢Gauss: X — (P?)" which is a morphism. We set
Cgl/ou = @Gauss (Cdou)-

L Vv % cat .
Let vgou : Cdou = Cdou and vy, = Cyo, = Cg4., be the normalisation morphisms. The

following proposition is of interest in itself, for the proof see Sect. 4.5.

Proposition 2.5 There exist embeddings

Jdou: Cdou — Y and jc;/ou: Cc\l/ou — S

such that the following diagram is commutative:

Vdou ~5— Jdou
Ciou =— Cgou —>7Y

QDGauss[ Ttdou T (2 1)
vdvou - J dvou
Vv . \4 R
Cdou Cdou S

—_~—

where 4ou: Cdou — Cc\l/ou is a 2-to-1 branched covering induced by the restriction of

n:Y—>StoE';(;.

2.4 The almost ruled surface of Gauss double points

We will need to consider also a third surface naturally associated to X. We found no
reference on it. We will see that for a general point p € Cyo, there exists another
unique singular point p’ € X, such that 7,X = T,y X. Clearly, both p, p’ € Cqou
and since p % p’ there exists a unique line [, ,y := (p, p’) C P3 passing through

p, p". We will show that [, /] € jdvouzf\v/ C S C G. On the other hand, the natural

dou

morphism pp3 : P(Q) — P3 restricted to P(Qg) gives a morphism f: P(Qg) — P3,

We will show that the image Yqou := f (g ! ( jdvOu C (\l/ou)) is a surface inside P3 which

is the closure of the surface swept by the lines /,, , as p € Cyou 1 a general point.

Definition 2.6 We call the subscheme 4o, < P> given by the closure of the surface
swept by the lines [, ,» where p € Cyou is a general point the almost ruled surface of
Gauss double points.

2.5 The basic morphism
Note that geometrically P(Qy) is easily seen as

P(Qs) = {([I1, p) € Sx P3| p el}.
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We introduced above a basic object of this geometry: the morphism f : P(Qg) — P31t
is obtained by projecting to the second factor and is called the morphism of bitangents.
We want to understand its branch locus subscheme B(f) < P3 and its ramification
one R(f) — P(Qg).

3 Special curves on a quartic surface
3.1 Singularities of a plane quartic

We recall a basic fact on irreducible plane quartics. Its proof is easy.

Lemma 3.1 Ler C C P? be an irreducible plane quartic. Then C has at most three
singularities. If g(C) = 1 then the following cases occur:

(1) a point of multiplicity 3, or
(i1) a tacnode, or
(ii1) two nodes, or
(iv) a node and a cusp, or
(v) two cusps.

If g(C) = 2 then C has exactly one node or one cusp.

3.2 Classification of points of a general quartic surface

Let F € Clxo, x1, x2, x3] be as above a general homogeneous polynomial of degree
4 and let X := V(F) C P? be the corresponding quartic surface. Since X is smooth,
we can define the Gauss map which maps a point X > p to its tangent space seen as
a point of the dual projective space

YGauss: X 2 p > TpX € (P3)v.

Clearly, pGauss: X — (IP’3)V is a morphism since X is smooth. In the rest of this
section we strongly rely on [7]. Actually, by the stability property of the Gauss map,
cf. [7, Section 2.1], we know the analytic behaviour of the Gauss map in an analytic
neighborhood of any point p € X. It follows that for any point p € X it holds that
dYGauss,p # 0, see [7, Proposition 2.15].

Proposition 3.2 Let X be a general quartic surface. Then:

(1) All tangent curves are irreducible.
(11) Tangent curves have only singularities of multiplicity 2 (and the second funda-
mental form is non-zero for any p € X).
(i11) All rational tangent curves are nodal.
(iv) There are no elliptic cuspidal tangent curves on X.

Proof (i) follows since Pic(X) = Z. For (ii), see [7, Lemma 2.1.4]. For (iii), see [7,
Fact 1.4.8, p.21]. For (iv), see [7, Lemma 2.1.6]. O
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It is interesting to stress here that Proposition 3.2 (iv) means that if X is a general
quartic then there are no elliptic hyperplane sections with two cusps. This should be
read together with Lemma 3.1 (v). This leads to a full classification of the possible
hyperplane sections

X,=XNT,X, peX.

Proposition 3.3 ([7, Proposition 2.1.7]) Let X be a very general quartic X C P> Let
p € Xand X, = T,X N X. The couple (X, p) is one of the following types:

(a) General case: g(X ) = 2 and X, has only one node.

A

(b) Simple parabolic point: g(X ;) = 2 and X, has only one cusp.

N

(¢) Simple Gauss double point: g(X,) = 1 and X, has only two nodes.

PN

(d) Parabolic Gauss double point: g(X,) = 1 and X, has a cusp on p and a node
on another point p’ # p.

A

(e) Dual to parabolic Gauss double point: g(X ,) = 1 and X, has a cusp on p’ # p
and a node on p.

)N
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(f) Gauss swallowtail: g(X ;) = 1 and X, has one tacnode.

/

(g) Gauss triple point: g(X ) = 0 and X, has three distinct nodes.

:

By Proposition 3.3 and by calculation of the Milnor numbers of nodes, cusps, and
tacnodes we get the full classification of the singular points of the image SV :=

©Gauss ().

Proposition 3.4 ([7, Proposition 2.19]) Let p := ¢Gauss(p). Then mult v SV =2if
p is a simple parabolic point or a simple Gauss double point and mult,vS" = 3 if
p is a parabolic Gauss double point, dual to parabolic Gauss double point, a Gauss
swallowtail, or a Gauss triple point.

3.3 The parabolic curve of a general quartic surface

There are three curves on X which contain important information on X. The first one
is the following.

Definition 3.5 We define the parabolic curve Cp;r C X to be the ramification locus of
the Gauss map ¢: X — X™* A point p € X is called parabolic if p € Cpy.

3.3.1 The asymptotic directions

We recall that locally we can consider a neighbourhood of the point p = (0, 0, 0)
with coordinates (x, y, z) € C> such that locally T,S is given by (z = 0). Hence the
germ of § at p is given by z + g(x, y) € Cl[x, y]. In particular, the local analytic
expression of the Hessian of F' is

Hess(s, p) == afq 22 (p).
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Then each principal direction, that is those giving the tangents to the branches of X,
at p, is obtainable by the vector v € T}, S such that for the induced quadratic form it
holds Hesss, ) (v, v) = 0. Following a notation coming from differential geometry
these two directions are called asymptotic directions at p. In particular, if X, has a
cusp on p then there exists a unique direction v such that Hess(s ,)(v,...) = 0 and
the line (v) C T),S is the direction of ramification of @Gauss that is d), PGauss (v) = 0.

3.3.2 Classification of the parabolic points

By a local analysis it follows that

Proposition 3.6 Let X be a general quartic. A point p € X is parabolic iff p is a cusp
or a tacnode of X . The parabolic curve Cpy is the zero locus of the determinant of
the Hessian of X. Moreover, Cpar is a smooth element of the linear system |8h|. In
particular, Cpa has genus 129.

Proof We noted above that Cp,, is the locus where the Gauss morphism is not a smooth
one. Hence by the local analytic description of the Gauss map the claim follows. See
[7, Proposition 2.2.4]. O

3.4 The flecnodal curve

The second curve inside X which is useful for understanding the geometry of X is the
one containing all the hyperflexes.

Definition 3.7 A line [ C P3 is called a hyperflex line if the subscheme X | lis
supported over a unique point p € X N /. In this case the line / is called a hyperflex
line of X at p.

Definition 3.8 A point p € X is called a hyperflex if there exists a hyperflex line
through it. We define the hyperflex curve Cpy C X to be the reduced scheme of
hyperflexes.

We sum up the results on Cp¢ we need.

Proposition 3.9 ([7, Subsection 2.3.3 and Corollary 2.4.6]) Let X be a general quartic.
Then:

(1) Chwf is irreducible.
(1) If p € Cyr is a general point then X has exactly one hyperflex in p.
(111) Cyt has geometric genus 201.
(iv) If p € Cyr has two distinct hyperflexes then p is a singular point of Chg.
(v) Chr € |20A].

3.4.1 Swallowtail points, parabolic curve and the flecnodal curve

On the parabolic curve Cp,; there is unicity of asymptotic directions. This enables us
to construct the subbundle £ C 7 Xc,,, of asymptotic directions. By Proposition 3.6
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we can build the standard tangent sequence

VCpar
0— Tcpar—> TX|Cpar — Ncpar|X — 0.

It is well known that the scheme where v¢, ¢ vanishes is the one given by Gauss
swallowtails, see [7, Remark 2.2.7].

Proposition 3.10 ([7, Section 2.4, p.39]) Every swallowtail is a simple zero of ve,,, | -
A point p € Cpyr is a Gauss swallowtail iff p € Cyy, that is set theoretically

Swallowtail (X) = Cpar N Cht.
Moreover, every p € Cpar N Chf is a smooth point both of Cys and Cpyr and

Corollary 3.11 ([7, Proposition 2.4.5]) There are 320 Gauss swallowtails.

3.5 The double cover curve

By the classification of points of a general quartic surface it is natural to consider
the closure of the locus of simple Gauss double points. This gives the third curve
on X whose importance in understanding the geometry of X has been recognised by
many authors, see [7] and the bibliography of [7]. We introduced in Definition 2.4 the
double cover curve Cyoy C X as the subset of points x € X such that g(X,) < 1. By
Theorem 3.3, as a set Cgoy consists exactly of simple Gauss points, parabolic Gauss
double points, dual to parabolic Gauss double points, Gauss swallowtails, and Gauss
triple points.

Proposition 3.12 ([7, Proposition 2.5.6]) The subset Cqou C X is a closed irreducible
subscheme of pure dimension 1.

Note that there exists a rational involution

Jdou: Cdou ——* Caou

which sends the node p € X, N Cyou to the other node p’ € X, N Cyou if p is a general
point of Cgoy. The computation of the degree of Cgyoy requires a certain amount of
work on its image Cy, through the Gauss morphism. Using the apolarity theory we
can easily see that letting Pol ,(X) stand for the polar cubic surface to X with respect

to the point p, we can define the curve
D,:={qeX|peTX}
By construction D, = gaa;uss( ptNXY). In other words we can interpret geomet-

rically the Gauss morphism as induced by the morphism P?> — (P3)V given by the
sublinear system of the polar cubics. This gives
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Theorem 3.13 ([7, Proposition 2.5.20, Corollary 2.5.21]) The curve Caoy belongs to
|80h| while C]  has degree 480.

dou

The curve Cqoy 1s singular. We sketch the local analysis necessary to understand the
local geometry of Cgyoyu, but we stress that it requires the deep Yau—Zaslow formula
which says that there are exactly 3200 nodal rational curves inside the linear system
|Ox (1)]if X is general. By Proposition 3.3 (vii) we know that each one of these rational
nodal curves is a tangent section with three nodes. Each node determines the tangent
section and since there are only nodes, there are exactly three nodes. By our previous
notation this means that these 3200 nodal rational curves are exactly the hyperplane
sections with Gauss triple points. This implies that there are exactly 9600 Gauss triple
points. By the local analysis which uses the local stability of the Gauss morphism we
have that Cqoy and Cpye intersect only at the 320 Gauss swallowtails, see Corollary
3.11, with multiplicity two and with multiplicity one at the parabolic Gauss double
point, see [7, Proposition 2.5.15]. Hence we obtain that there are 1920 parabolic Gauss
double points and so there are also 1920 dual to a parabolic Gauss double point. The
above analysis leads to the following

Proposition 3.14 The double cover curve Cqoy C X is irreducible and it has only
ordinary singularities. More precisely,

(1) Cgou has a node at each point of any Gauss triple.

(11) Cqou has a cusp at each dual to a parabolic Gauss double point.
(iii)) Gauss swallowtails are smooth points of Cqoy C X.
(1v) Cgqou is smooth at any parabolic Gauss double point.

Finally there are precisely 9600 Gauss triple points and 1920 parabolic Gauss double
points. In particular, the genus of Cqoy is 1281.

Proof It follows by the detailed analysis on the geometry of Cgoy done in [7, Section
2.5]. O

Proposition 3.15 ([7, Section 2.7]) The dual curve Cgou has a three-branched node
in correspondence to the triplet of Gauss triple points and a cusp at each one of the

points corresponding to parabolic Gauss double points. Hence it has genus 561.

4 The almost ruled surface
4.1 Numerical invariants associated to the surfaces of bitangents

We need to recall briefly some results mainly taken from [6,7]. We stress that we set
P3=P(V"Y) and that X  P3=P(V") is a very general quartic surface. In particular,
there are no lines contained inside X. The next proposition is well known, possibly
since very long time ago, but we include a proof of it because in the sequel we need
analogue techniques and notation to write the ramification divisor R( f).

Proposition 4.1 The scheme S C G which parameterises bitangents to a smooth
quartic surface X C P with no lines is a smooth surface.
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Proof We fix a line [ C IP*> which is bitangent to X. W.1.o.g. we can assume that / :=
(x2 =x3 =0) and that the two pointsin X N/ are P = (1:0:0:0), P, = (1:12:0:0)
where we do not assume A # 0. Then

F(xg:x1:x2:x3) = xlz(xl — )uco)2 +x2G(xp:x1:x2:x3) + x3H (x0:x1 1 x2:x3)

where G, H € C|xg, x1, x2, x3] are homogeneous forms of degree 3. We recall that
by generality [ ¢ X.

We consider an open neighbourhood U’ C G of [/] and let (uq, uy, us, u3) be a
regular parameterisation of U’ of [/] inside G; this means that for points [r] close to
[/] inside U’ we can write

ri= {(XO DX1iXouo +xquy i xou +x1u3) | (xo:x1) € IP’I} c P3

We look for conditions on the tangent vector v := (ug, u1, u2, u3) € T;1G to be
inside the Zariski tangent space (mg ] /m% [l])v of S at [/]. This means that if in

Clxo, X1, o, U1, U2, u3, €], where €2 = 0, we write
f(xo:x1;u0, uy, uz, uz, €) = F(xo:xy:e(xoup+xiuy):e(xouz +x1u3))

then there exists a polynomial ¢ € Clxg, x1, ug, u, uz, u3, €] of degree at most 2
in the variables xq, x1 with f = qz. Since f(xq:x1;ug, uy, Uz, U3, €) = xlz(xl —
Ax0)? + €((xouo + x1u1) g(x0 : x1) + (xouz + x1u3) h(xo : x1)), where g(xo:x1) :=
G(xp:x1:0:0)and A(xp:x1) := H(xg:x1:0:0), this is possible iff x1 (x; — Axp) is
a factor of (xoug + x1u1) g(xo:x1) + (xouz + x1u3)h(xp:x1). We distinguish now
two cases: A = 0 or A # 0. If A # 0 then we obtain that v € (mg,[l]/m%’[l])v iff

upg(1:0) +uh(1:0) =0,
(uog +Aup)g(l: 1) + (u2 + Auz)h(1: 1) =0.

The above linear system has rank < 1 iff P or P, is a singular point of X. If A = 0
the condition is equivalent to

uog(1:0) + ush(1:0) =0,
uoaixlg(l:O)—Fulg(l:O) —|—u23371h(1 :0) + u3h(1:0) =0

and again the rank is less or equal to 1 iff P is a singular point. O

4.1.1 Basic diagrams
We need a description of S C G and of its invariants. Denote by Hg the hyperplane

section of the Pliicker embedding G <> P(/A\%> VV). We have the universal exact
sequence, its restriction over S and we stress that Og (Hg) = det Q = det 8.
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Now we consider the standard conormal sequence of X inside P3:

0= Ox(—4) = Qs = QU = 0. (4.1)

We partially maintain the notation of [6] to help the reader to check some of our
assertions. Following [6] we can build the following diagram:

Jx: PQY (1) —— P(Qp (1) < P(Qs)

x lp, \ 4.2)

X CcP(VY) S

where the inclusion Jy : ]P’(Q%(l)) — IP’(Q]%ﬁ'X(l)) is given by sequence (4.1) and

the morphism P(Qg) — ]P)(Q[lps | X( 1)) is the restriction over S of the standard diagram

P(Qp; (1)) = P(Q)
l K
0
P(VV) G
and p’: ]P’(Qﬁﬁlx(l)) — P(V"Y) is the obvious restriction.

4.1.2 Geometrical interpretation

By construction the P!-bundle g : P(Q) — G is the universal family of G, and the
P2-bundle p: IP’(SZ]%,3 (1)) — P3 is the projective bundle of the tangent directions on

P3; that is p~'(p) = P(Tps3 ,) where Tps , is the vector space given by the tangent
space to P3 at the point p. The isomorphism IP’(SZ]%D3 (1)) = P(Q) is well known.
We denote by N the divisor on ]P’(Q[lp,3 (1)) and by R the divisor on P(Q) such that

1
p*o[p(géﬁ(l))(N) = Q]p3(1), 1G+(OG(R)) = Q.
Since no confusion can arise we denote by R also the restriction to P(Qg) of R, hence
75xOp(ag) (R) = Qs. We also denote by T the divisor on P(Q} (1)) = P(Q}) such
that
px»(Opg1 (1)) = Qy.
Lemma 4.2 For the 3-fold P(QL (1)) it holds
PQy (D) = {(p,[1]) € XxG |l € P(T, X)}.

Proof Trivial since X is smooth. m|
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4.1.3 Useful divisor classes

We can relate classes which are easily seen by the geometry of py : IP(Q%((I)) — X to

ones which can be better seen via the morphism go Jx : P(€2 %(1)) — §. We think it

does not create any confusion to write R for the class J§ (R PQ!, )) € Pic(P(Q2 %(1))
P3|x

which comes from the divisor R on P(Qg) via the inclusion P(Qg) — IP(Q]%B' X(l)).
Finally we set Pic(P(Q%(l)) 5> Hyx = (mgoJx)*(Hg|s) and h := Hps x € Pic(X).

One can easily check:

Lemma 4.3 It holds on Pic(P(Q4(1))):

@) R~ pyh.
(iii) Hx ~ T +2p%h.

4.1.4 The surface of contact points as a double cover

Inside S there is the subscheme Bps < S which parameterises the hyperflex lines. In
Proposition 3.9 we recalled a description of the corresponding curve Cps C X. Using
the surface of contact points Y, see Definition 2.3, and Bps we have an important
information on S.

Proposition 4.4 ([7,Proposition 3.11], see also [1]) There exists a non-trivial 2-torsion
element o € Div(S) such that the surface of contact points Y can be realised as
a subscheme of P(Os® Os(o + Hgs)). The restriction of the natural projection
P(Os@®Os(oc + His)) — S induces a 2-to-1 cover m: Y — S branched over
Bnt € |2Hgsl|. In particular Y is a smooth surface. Moreover, as a class inside
P(Qg) we have that Y € |2R + mwg(o)|.

By diagram (4.2) and by a slight abuse of notation we obtain the following basic

diagram:
/ \

X c P3 S cG.

The fact that Y is a divisor both in IP’(Q}((I)) and in P(Qg) makes possible to link the
geometry of X to the geometry of S via the one of Y. In particular, it is noteworthy
that we can try to obtain special curves on § via special curves on X and viceversa.
First we recall that since X is general Pic(X) = [h]Z, where we recall that h := HIP>|3X'

Hence

Pic(P(Q} (1)) = [T1Z&[R]Z.
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Proposition 4.5 ([6, Proposition 2.3]) As a class inside Pic (P(2 ;(1))) it holds that

Y € |6T +8R|.

4.1.5 The class of S in the Chow ring of G

Itis quite natural to introduce the following classes inside the Chow ring EB?:l CH!(G)
associated to the fundamental ladder, point, line, plane, p € [ C h C P3: CHI(G) >
o :={[ml € G|mNI # 2}, CH*G) > 0, :={[l1 € G| p €1}, CH*(G) > 0}, :=
{[l1 € G|l C h}. Itis well known that

2
o =op+0p

and that the divisorial class of o7 is the class H.

Lemma 4.6 ([7, Lemma 3.30]) The following identity holds in the Chow ring of G:
CH(G) > [S] = 4007 + 280), + 120,

In particular deg(S) = HZ-[S] = 40.

4,1.6 Numerical invariants

Theorem 4.7 ([7, Cohomological study, pp.41-45]) For the surfaces S, Y we have the
following formulae:

(i) Ks=3Hg|s +0,q(S) =0, py(S) =45, h' (Sx, §) = 100, c2(S) = 192,
(ii) Ky = 7*(4Hgs), q(Y) = 0, py(¥) = 171.

4.2 The dual geometry

We consider the following open set of Cqoy:
cl ., = {p € Caou | p is a simple Gauss double point } \ (Cht N Cgou).

We set (C9,)Y = ¢Gauss (Cy,)-

0

Lemma 4.8 The restriction of the Gauss morphism to Cy,,

: . 0 0 \V
covering T: Cy, — (Cgyn) "

induces a 2-degree étale

Proof If p is a simple Gauss double point, it comes together with a unique other
point p € T, X where X, has the other node exactly on p and T;X = T,X; that
iS @Gauss (P) = @Gauss (P). By definition of the double cover curve there are no other
points of Cgou over ¢YGauss(P)- O
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We define 9 < P3 the open surface swept by the lines / pp i =(p.P)C P3 where

dou

p € Cgou. We notice that: 1) [/, 5] € S and 2) if p; # pthenl, 5 NI, 5= @. This

implies that we can define an injective morphism ( jé)ou)v - (CY )V 2/ S defined by

dou
( jc?ou)v ! 9Gauss(P) —> [1,, 5]. By the normalisation morphism v, : Cy . — Cy.

dou dou W€
obtain a global morphism generically of degree 1:

'\/ ) /'T//
Jdou - Cdou — S.

We set

C = ](}i)u(CC\{OU)
In Definition 2.6 we called g0y <> P> the almost ruled surface of Gauss double
points.

Lemma 4.9 If Egou C IP3 is the projective closure of Egou then it holds that Y40y =

Egou C P3 Moreover, Cgou = Zdou.

Proof By Proposition 3.14, Cq,, is irreducible, then the first claim follows by the
universal property of G. By construction it holds that Cgou < Ydouthen Cyou = Zdou
since Cgoy is the closure inside P3 of Cgou. O

Let m¢: ¥ — C be the ruled surface obtained by the pull-back of 7g5: P(Qg) — S
via the natural inclusion C < §.

Lemma 4.10 The curve C is irreducible and the surface ¥ is irreducible.

Proof By Proposition 3.14 and by its construction the curve C is irreducible. Since
ws: P(Qg) — S is a fiber bundle, the claim follows. O

Consider again the surface 4o, < P3 of Gauss double points. Note that the pull-back
»0 (Cgou)v of mc: ¥ — C via the inclusion (jgou)v: (Cgou)v < § is a smooth
open ruled surface. Now we obviously have

dou = f(X).

Corollary 4.11 There exists a rational map (: Egou --» C dvou which induces the nat-
ural structure of smooth ruled surface on £° — (Cgou)v.

Proof The pull-back 7': £ — CY

dou Of ms: P(Qs) — S via the morphism

Jaou: Ciou — S is a smooth surface which is mapped birationally onto X4, in a
way compatible with the morphism ¢Gauss|Cyoy : Cdou —> Cgou. O

Lemma 4.12 The almost ruled surface of Gauss double points is irreducible and it
osculates X along Cqou; that is the restriction Xqoux i a subscheme of X which
contains 2C gou.
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Proof By construction we saw that 4o, = f(X). Then the first claim follows by
Lemma 4.10. We show that the open ruled surface £° osculates X along C? Jou- This
follows by definition since any fiber [ of £ — (Cdou)v osculates X along the corre-
sponding two simple Gauss points p, p such that X;=2p + 2p € Div(/).

O

4.3 The geometry of the morphism of bitangents

Now we start the study of the morphism f: P(Qg) — P>,
Lemma 4.13 The morphism f: P(Qs) — P3 is finite of degree 12.

Proof Let p € P3 be such that the f-fiber is of positive dimension. This means that
there are infinite bitangent lines through p. Then the polar cubic Pol , (X) has at least a
component swept by lines through p. The restriction of Pol, (X) to X is non-reduced.
This implies that this restriction is a divisor of type 2D + A. Since we are assuming
that Pic(X) = [HPFX]Z’ X does not contain curves of degree < 3. Then the only

possibility is that D is a hyperplane section. This implies that S contains the rational
curve which parameterises the pencil of lines contained in a plane and passing through
p- This is a contradiction. Indeed there exists an unramified covering Sy — S where
Sx is an irregular surface; the details of the proof are in [6, Propositions 2.4 and 3.1].
Another self-contained proof is in [7, Lemma 1.1]. See also [1, Section 3]. Finally by
[7, Corollary A.3, p. 53] it is known that the Albanese morphism alb: Sx — Alb(Sy)
1s a closed immersion. In particular there are no rational curves on S. O

4.3.1 The ramification divisor

Lemma 4.14 The surface of contact points is a subdivisor of R(f) of multiplicity
1. Moreover the induced morphism p: Y — X is of degree 6 and f*Op3(X) =

Op(ay) (2Y).

Proof By definition f~!(X) = Y. Since any bitangent line through a point p € X
is contained in 7, X, any bitangent line through p gives a ramification point for the
morphism X — ]P’1 given by the pencil of lines inside 7, X with focal point p.
This and Lemma 4.13 imply that the induced morphism p: ¥ — X is finite of
degree 6. Since f~!(X) = Y then the Chow groups projection formula implies that
12[X] = fo f*[X] = fealY] = af,[Y] = 6a[X]. Thus a = 2. ]

Lemma 4.15 The surface ¥ belongs to R(f).

Proof This follows easily by a local count. We use notation of Proposition 4.1. We
consider a line I C P which is bitangent to X. W.l.o.g. we can assume that [ :=
(x2 =x3=0) and that the two points where / is tangent to X are P = (1:0:0:0),
P, (1:1:0:0). For a while assume A # 0. The general point p € [ is then given by a
parameter € Cand p = (1:1:0:0). We easily can write the tangent space to P(Qg)
at the point ([/], p). Indeed let wy = x1/x9 — t, w2 = x2/x0, w3 = x3/x0 be such
that (w, wo, w3) is a system of local coordinates around the point p € P and let
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(up, u1, uz, uz) be a local system of coordinates at the point [/] € G, that is a line r
near to / is parameterised by

upxo + uiwy + Uit = wa,
Uy + uzwi + uszt = ws.

Then (locally) inside P3 x G, where we take coordinates (wp, wy, w3, ug, Ui, U2, U3),
the tangent space 7((;), p)P(Qs) is (locally) given by

uo+uit —wy =0,

uy + uszt —wsz =0,

upg(1:0) +uzh(1:0) =0,

(o +Aup)g(l: 1)+ (w2 + ruz)h(1:1) =0,

by the proof of Proposition 4.1. The morphism f : P(Qg) — P is given by the restric-
tion to P(Qg) of the natural projection p: P(Q) = P(Qéﬁ) — P3, which is, locally,
(w1, wa2, w3, ug, uy, uz, u3) — (wy, wa, wz). Now suppose for a while we are in the
general case where h(1:0) = H(1:0:0:0) #0and A(1: 1) = H(1:1:0:0) # 0.
We take (w1, ug, u1) as local coordinates for the threefold P(Qg) around the point
(7], p) . The matrix of the differential d((;), ) f is then given by

1 0 0

1 t

g(1:0) tg(1:1) tg(1:1)
0 —(4— t)kh(I:O) T A(A) T h(Tn)

]

Hence its determinant is zero iff 0 = (¢t — A) -det(ggigg; 28%), we immediately

see that (0 = 7(r — X)) is the local equation of ¥ C P(Qg). The condition 0 =
det ( gg% 28% ) is independent of 7. This last condition means that when it is satisfied
this occurs for all the points which belong to the bitangent line /. Finally it is a trivial

verification on the equation
. . . 2 2 e yen . . .
F(xo:x1:x2:x3) = x7(x1 — Ax0)” + x2G(x0:x1 :x2:x3) +x3H (X0 : X1 : x2: x3)

of X to see that generically the condition 0 = det ( zg% 28% )oceursiff TpX = Tp, X
and X p = Tp XN X is aquartic with two nodes respectively on P and on Pj. Analogue
computations hold if we are in more special cases where (1 : 1) = 0and ~(1:0) # 0
orh(l1:A) #0and h(1:0) =0or g(1:A) =0and g(1:0) #0Oor g(1:1) # 0 and
g(1:0) = 0 or where A = 0. All these verifications are analogue to the one shown
above. The condition above means that the open surface g := ¢ ! (( jgou)v (c gou)v))

is inside R( f). This implies the claim. O

Lemma4.16 The divisor R(f) is linearly equivalent to Y + w3 (4Hgs).
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Proof By Theorem 4.7, Ks = 3Hg|s + o. Since the first Chern class of Qg is Hgs,
by the standard formula of the canonical class divisor we conclude that Kpgg) ~
—2R + m(4Hgs + o). By Proposition 4.13 we know that Kpog) ~ f*(Kps) +
R(f) ~ f*(—X) + R(f) since X € |4Hps|. Then since o ~ —o, it holds that

R(f) ~ [7(X) — QR + 75(0)) + m5(4Hgs). (4.3)

By Proposition 4.14 we know that sheaf theoretically f*Op3(X) = Op(g,)(2Y) and
by Proposition 4.4 we know that Y € |2R +5(o)|. This implies that f*(X) — (2R +
ms(0)) ~ Y. Hence by substitution inside equation (4.3) we have

R(f) ~Y +mg(4Hgs). O

4.3.2 The branch divisor

We now study the branch divisor of f: P(Qg) — P3. The claim follows by a delicate
computation on Chow groups. Since there is no possibility of misunderstanding we
will indicate the Chow class [A] of the cycle A simply by A. We recall here that a line

[ inside P3 is given as | = Hps - Hps = HH%3.

Proposition 4.17 B(f) = X 4+ Xgou. In particular, for the almost ruled surface of
Gauss double points has degree 160.

Proof By projection formula
[ fR(f) = HE - fuR(f) = [*(H2) - R(f).
By Lemma 4.16
R(f) ~Y + m5(4Hgs),
hence
FX(HE)-R(f) = f*(Hgs)-Y + f*(Hg)-m§(4Hgys).
Since o is a torsion element and R = f*(Hp3) it follows that

FHHR)-Y = f*(HE) - 2f*(Hs3) = 2(f* (Hys) = 24,
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It remains to compute the natural number: f *(H]P%3) -5 (4Hgs). We can find it by
divisors restriction on Y. Inside Pic(P(Qg) the class Y is numerically equivalent to
2 f*(Hp3). Then in the Chow algebra of P(Qy) it holds that

f*(Hgs) - 75 (4Hg)s) = [*(Hps) - f*(Hps) - w5 (4Hgs)
=2 f*(Hp) Y -7§(Hgs).

We point out that the number f*(Hps)-Y -75(Hg)s) coincides with the intersection
number of the following two divisors on Y: (f*(Hps))|y and (7 {(Hg|s))|y.- Now we

carry on this computation on Y seen as a divisor inside P(€2 %(1))), where we can use
the conversion rules recalled in Lemma 4.3. By Proposition 4.5 we know that as a
class inside Pic(P(Q% (1)), Y € |6T + 8p% (h)|. Then

(f*(Hps))y - (w5 (Hgis) )y = (6T + 8ok () - pX (h) - (T + 2p¥ (h))

and since on Pic(P(Q%(1))) it holds that (p%(h))> = 0, T-(p%(h))*> = 4 and
T2. (0% (h)) = 0 it follows that

(6T + 8p% (h) - pk(h) - (T + 2p% (h)) = 6T2 - p%(h) + 20T - p% (h)* = 80.

We showed that /- f, R(f) = 24 + 160. On the other hand by Lemma 4.15 we know
that X0y 1S a subdivisor of B(f) since f(X) = Xgou. By Lemma 4.12 we know
that ¥go, restricts on X at least to 2Cqoy. By Theorem 3.13, Cyou € |80h|. Then
Ydou € |bHps| where b > 160. Moreover by Lemma 4.14 we certainly have that
6X + Xgou 1s at least a subdivisor of f, R(f), but

24+ 160 > (6X + Sqou) -1 = 6X -1+ bHyps -1 = 24 + b.

This implies that b = 160 and that X + X4, 1s exactly the divisor B(f). O

Remark 4.18 We stress that the degree of 240y is computed also in [2, (4.21), p.24].

4.4 Geometrical consequences on the geometry of Gauss curves

By Proposition 4.17 and by its proof we can complete the geometrical picture behind
Proposition 2.5.

Lemma4.19 R(f) =Y + X. In particular, ¥ € | 5(4Hg)s)|.

Proof Consider the two morphisms f: P(Qg) — P3and g : P(Qg) — S.Thedivisor
Y + X is a subdivisor of R(f) and by Lemma 4.16, R(f) ~ Y + n5(4Hg|s). By
construction ¥ € |7g(C)|. Hence C is a subdivisor of a divisor D € |4Hgs| but
looking to the f-direction, by the same technique used in the proof of Lemma 4.17
we have that
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fH(HE) - w§(4Hgs) = f*(Hg:) - 2
hence C € |[4Hg,s|, and the claim follows. O
4.5 The proof of Proposition 2.5

By the proof of Lemma 4.19, C € |[4Hgs| and by Lemma 4.10, C is irreducible.
Hence by Lemma 4.6 and by Theorem 4.7 (i) it holds that C is an irreducible curve of

arithmetical genus p,(C) = 561. By Proposition 3.15 we know that Cy has genus

e~

561. Then the morphism j : Cq  — C C S is an embedding.

By Proposition 4.4 we know that 7w : ¥ — S is branched on the curve of hyperflexes

which is in |2Hgs|. Then an analogue argument shows that jjou: Cdou < Y to0 is
an embedding. By construction we have that diagram (2.1) is commutative.

4.6 The proof of Main Theorem

We showed in Proposition 4.1 that S is smooth. By Proposition 4.4 we know that Y
is smooth. By Proposition 3.14 we have a full classification of the singularities of the
double cover curve Cgyoy C X. By Proposition 3.15 we have a full classification of the
singularities of the dual curve C . By Lemma 4.13 the morphism f: P(Qg) — P3
is finite of degree 12. By the proof of Proposition 4.17 we know that ¥4, is a surface
of degree 160. By Lemma 4.12 and by the proof of Proposition 4.17 we know that
Ydou)x 1s exactly 2Cqqy. Finally, by Proposition 4.17, B(f) = X + Xgou, by Lemma
4.19, R(f) = Y + X, by Lemma 4.14 the morphism fjy = p: ¥ — X is of degree 6,
and by the proof of Lemma 4.19 and by construction the morphism fjx: ¥ — Xgou
1s birational.

Acknowledgements The authors thank Piercarlo Craighero for useful discussions, Jakub Witaszek for
useful comments and for giving us the permission to use his pictures, and finally Thomas Dedieu who
informed us that the surface of Gauss double points was classically studied, e.g. in [4].

OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Corvaja, P., Zucconi, F.: Bitangents to the quartic surface and infinitesimal deformations (2019).
arXiv:1910.01365

@ Springer



P. Corvaja, F. Zucconi

2. Dedieu, T.: Some classical formulae for curves and surfaces. In: Notes of the Seminar on Degenerations
and Enumeration of Curves on Surfaces, held in Rome Tor Vergata (2015-2017). https://hal.archives-
ouvertes.fr/hal-02914653/document

3. Huybrechts, D.: Lectures on K3 Surfaces. Cambridge Studies in Advanced Mathematics, vol. 158.
Cambridge University Press, Cambridge (2016)

4. Salmon, G.: A Treatise on the Analytic Geometry of Three Dimensions, 4th edn. Hodges, Figgis, Dublin
(1882)

5. Tikhomirov, A.S.: The geometry of the Fano surface of the double cover of IP3 branched in a quartic.
Math. USSR-Izv. 16(2), 373-397 (1981)

6. Welters, G.E.: Abel-Jacobi isogenies for certain types of Fano threefolds Mathematical Centre Tracts,
vol. 141. Mathematical Centrum, Amsterdam (1981)

7. Witaszek, J.: The Geometry of Smooth Quartics. MSc Thesis, Bonn University Bonn (2014). http://
wwwf.imperial.ac.uk/~jw2214/masterthesis.pdf

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer



