
25 April 2024

Università degli studi di Udine

Original

Solving the train marshalling problem by inclusion-exclusion

Publisher:

Published
DOI:10.1016/j.dam.2016.09.044

Terms of use:

Publisher copyright

(Article begins on next page)

The institutional repository of the University of Udine (http://air.uniud.it) is provided by ARIC services. The
aim is to enable open access to all the world.

Availability:
This version is available http://hdl.handle.net/11390/1100014 since 2021-03-22T18:15:19Z

Solving the train marshalling problem by
inclusion–exclusion

Franca Rinaldi and Romeo Rizzi

Abstract

In the Train Marshalling Problem (TMP) the cars of a train having different
destinations have to be reordered in such a way that all the cars with the same
destination appear consecutively. To this aim the cars are first shunted on
k auxiliary rails, then the sequences of cars present on the different rails are
reconnected one after each other to form a new train. The TMP is the problem
of minimizing the number k of auxiliary rails needed to obtain a train with
the required property. The TMP is an NP-hard problem. Here we present an
exact dynamic programming algorithm for the TMP based on the inclusion–
exclusion principle. The algorithm has polynomial space complexity and time
complexity that is polynomial in the number of cars, exponential in the number
of destinations. This shows that the TMP is fixed parameter tractable with
the number of destinations as parameter.

Keywords: train marshalling, fixed parameter tractability, inclusion-exclusion
principle, dynamic programming.

1

1 Introduction

In the Train Marshalling Problem (TMP) a train T = (a1, a2, . . . , an) with n
cars having t different destinations is given. The order of the cars of the train can
be modified by means of k auxiliary rails (or tracks) as follows. First the n cars
a1, a2, . . . , an are considered one by one in their initial order and each car is moved
to one of the k auxiliary rails and placed behind the cars already on the rail. This
process creates k sequences of cars, one for each rail. Then a new train is created by
reconnecting these sequences in a single one by sequencing the cars on the first rail
in their actual order followed by the cars on the second rail and so on, ending with
the cars on the kth rail. The TMP is the problem of finding the minimum number k
of auxiliary rails needed to rearrange the train in such a way that all the cars with
the same destination appear consecutively. An order of the cars that satisfies this
condition will be called a TM-order. The decision version of the problem (DTMP) is
the problem of deciding if, given a natural number k, a TM-order of a train T can be
obtained by using at most k auxiliary rails.

The TMP was originally proposed in [15] by Zhu and Zhu who studied some
polynomial classes of the problem. In [7] Dalhaus et al. showed that the DTMP is
NP-complete and, as a consequence, the TMP is an NP-hard problem. They also
proved that the optimal value of the TMP is upperbounded by the value

L(n, t) = min{t, dn/4 + 1/2e}. (1)

A 2-approximation algorithm for the TMP based on an interval graph coloring ap-
proach has been proposed by Dahlhaus et al. in [8]. The question if the TMP is a
fixed parameter tractable problem has been addressed by Brueggemann et al. in [6].
In this paper the authors describe a dynamic programming procedure for the DTMP
that requires time O(2O(k)poly(n)) and space O(n2k28k), thus polynomial for each
fixed value of the parameter k. However, the proof of correctness of the algorithm
contains a bug which, to the authors’ knowledge, has not been fixed yet [9].

In this paper we present an exact algorithm that solves a graph theoretical model
of the DTMP. The algorithm is a dynamic programming procedure based on the
principle of inclusion-exclusion and has time complexity O(nkt22t) and polynomial
space complexity O(nkt). This procedure can be easily adopted to solve the TMP by
binary search in O(nt22tL log2 L) where L = L(n, t) is the upperbound given in (1).
In particular, this shows that the TMP is fixed parameter tractable with respect the
number t of different destinations. Because of the exponential factor 2t in the time
complexity, the procedure can be reasonably used to solve instances with a number
of destinations t up to 30. It remains an open problem if the DTMP shows the
stronger property to be fixed parameter tractable even with respect to the number k
of auxiliary rails.

1

The TMP belongs to a wide class of combinatorial problems which arise in the
optimization of the train classification processes. These problems usually require to
rearrange the cars of a train (or of a set of trains) to sequence them in an assigned
order. So, differently from the TMP, the final order of the cars is usually an input
of the problem. The goal is reached by partitioning the cars of the train on a given
set of auxiliary tracks and then performing a sequence of so called roll-in operations,
where each roll-in operation takes the cars on a track and suitably routes them on the
other tracks. The main objective is either the minimization of the number of roll-in
operations or the number of cars globally involved in these operations. Furthermore,
scheduling aspects can also affect the problem. For a detailed description of the train
classification problems see for instance [10, 11] and the references therein.

We remind that the inclusion-exclusion principle has been successfully applied
in combinatorial optimization to solve classical NP-problems, in particular graph
theory problems. Initially, Karp [12] used this approach to solve the hamiltonian path
problem, the bin packing problem and some sequencing problems. Later on, other
combinatorial problems have been addressed by the inclusion-exclusion approach in [1,
2, 3, 4]. In particular, Björklund et al. [5] have proposed a general way to solve a
class of set partitioning problems including chromatic number, domating number,
maximum k-cut and list coloring.

The remainder of the paper is organized as follows. In Section 2 we formally
define the TMP. In Section 3 we introduce a graph theoretical model for the DTMP
suitable to be solved by the inclusion-exclusion principle. In Section 4 we present two
dynamic programming procedures that solve the DTMP and the TMP, respectively.
Some conclusions are drawn in Section 5.

Notation We will use the following notation. For each n ∈ N, Nn = {1, . . . , n}
denotes the set of integers in between 1 and n and for i, j ∈ N, i < j, we denote by
[i, j] the set of integers r with i ≤ r ≤ j. Given a sequence α of length n and a subset
S ⊂ Nn we denote by α[S] the sequence obtained from α by removing the elements in
positions in Nn \ S. If S = {i}, we also write α[S] = α[i] = αi. Given two sequences
α and β of length m and n, respectively, we denote by α · β the concatenation of α
and β, that is the sequence (α1, . . . , αm, β1, . . . , βn). Finally, any (total) order of a
set Nn is represented by the sequence τ of length n where τ [i], i = 1, . . . , n, denotes
the i-th element in the order.

2

2 Problem formulation

An instance of the TMP consists in a triple (n, t,D) where n is the number of cars of
the train, t is the number of destinations and D is a partition of Nn in subsets D(j),
j ∈ Nt. Each set D(j) contains the indices of the cars having destination j. For the
sake of simplicity, in the following we identify the cars of the train with their index.
In this way the original order of the cars corresponds to the sequence (1, 2, . . . , n).

Definition 1. An order τ of Nn is said a TM-order for the instance (n, t,D) if the
elements of each set D(j), j ∈ Nt, appear consecutively in τ , i.e., τ [r], τ [s] ∈ D(j)
for some 1 ≤ r < s ≤ n implies τ [i] ∈ D(j) for every r ≤ i ≤ s.

To formally define the TMP we observe that the train α = (1, 2, . . . , n) can be
reordered by means of k auxiliary tracks to obtain a TM-train if and only if there
exists a map φ : Nn → Nk such that, setting φ−1(r) = {i ∈ Nn : φ(i) = r} for each
r ∈ Nk, the sequence

τφ = α[φ−1(1)] · α[φ−1(2)] · · · · α[φ−1(k)]

is a TM-order of Nn. In this case the map φ is said a k-TM-solution, or briefly a
k-solution, of the TMP instance. Each set φ−1(r) denotes the cars that are moved
on the r-th track. According to α[φ−1(r)], these cars are sequenced on track r for
increasing indices. Let us denote by πφ the order of Nt in which the t destinations
appear in τφ, i.e., such that for each j ∈ Nt the cars in D(πφ(j)) appear in τφ just
after the cars in D(πφ(j − 1)).

The TMP and its decision version DTMP can be formulated as follows.

Train Marshalling Problem: Given a TMP instance (n, t,D) find the minimum
k ∈ N such that there exists a k-solution.

Decision Train Marshalling Problem (DTMP) Given a TMP instance (n, t,D)
and k ∈ N, determine if there exists a k-solution.

Example 1. Consider the TMP instance defined by n = 10, t = 5 and

D1 = {1, 8}, D2 = {2, 9}, D3 = {3, 7}, D4 = {4, 6}, D5 = {5, 10}.

The map φ : N10 → N3 defined by φ(1) = φ(8) = φ(9) = 1, φ(2) = φ(4) =
φ(6) = φ(7) = 2, φ(3) = φ(5) = φ(10) = 3 is a 3-solution since the order τφ =
(1, 8, 9, 2, 4, 6, 7, 3, 5, 10) is a TM-order. The order πφ induced on the destination-set
N5 is πφ = (1, 2, 4, 3, 5).

3

The TMP has been alternatively formulated by Donald Knuth [13] as follows.
Given a TMP instance (n, t,D) and k ∈ N, denote by σ(n, k) the sequence

σ(n, k) = (1, 2, . . . , n,︸ ︷︷ ︸
1

1, 2, . . . , n,︸ ︷︷ ︸
2

. . . , 1, 2, . . . , n︸ ︷︷ ︸
k

) (2)

obtained by replicating k times the sequence (1, 2, . . . , n).

Definition 2. We say that the sequence σ(n, k) covers the partition D if there exists
a subset R ⊆ Nnk, |R| = n, with the property that σ(n, k)[R] is a TM-order of Nn. In
this case we say that σ(n, k) covers D according to R.

It is easy to verify that the sequence σ = σ(n, k) covers D if and only if the TMP
instance admits a k-solution. Assume first that σ covers D according to R ⊆ Nnk and
write the TM-order σ[R] as

σ[R] = σ[R∩ [1, . . . , n]] · · σ[R∩ [n(r− 1) + 1, . . . , nr]] · · σ[R∩ [n(k− 1) + 1, . . . , nk]].

Let φ be the application that maps into r, r ∈ Nk, all the elements that appear in
σ[R ∩ [n(r − 1) + 1, . . . , nr]]. Then φ induces the order τφ = σ[R] and thus it is a
k-solution of the TMP. Conversely, given a k-solution φ, the sequence σ(n, k) covers
D according to the subset R = ∪kr=1{i ∈ [n(r − 1) + 1, nr] : φ(i) = r}.

Example 1 (continue). Consider again Example 1. The sequence σ(10, 3)
covers D according to the set R = {1, 8, 9, 12, 14, 16, 17, 23, 25, 30} which leads to the
TM-permutation

σ(10, 3)[R] = (1, 8, 9, 2, 4, 6, 7, 3, 5, 10) = τφ.

3 A graph model for the DTMP

Given a TMP instance (n, t,D) and k ∈ N, define a directed graph G(n, t,D, k) =
(V,E) as follows. The node-set V = {1, 2, . . . , nk} ∪ {0, nk + 1} contains a node for
each position in the sequence σ = σ(n, k) and two auxiliary nodes 0 and nk + 1. In
order to define the arc-set E, consider the function ψ

ψ : {0, 1, . . . , nk} × {1, . . . , t} → {1, . . . , nk}

defined by

ψ(i, j) = min
{

min{l > i : D(j) ⊆ [i+ 1, l] }, nk + 1
}
. (3)

4

Algorithm 1 GRAPH(): constructs the graph G(n, t,D, k) associated to a DTMP
instance.

Input: a DTMP instance (n, t,D, k);
Output: the graph G(n, t,D, k);

Initialization: V = Nnk+1; E = ∅;

for i = 0 to nk − 1 do
for j = 1 to t do
sj := 0;

end for
for h = i+ 1 to min{i+ n, nk} do

let σ(n, k)[h] ∈ D(j);
sj := sj + 1;
if sj = |D(j)| then
E := E ∪ (i, h); C[(i, h)] := j;

end if
end for

end for
for i = 1 to nk do
E := E ∪ (i, nk + 1); C[(i, nk + 1)] := t+ 1;

end for
return G := (V,E);

For each pair i, j of indices the function ψ returns the minimum index l such that
all the elements of D(j) appear in σ from position i+ 1 to position l if such position
exists, it returns nk + 1 otherwise. Clearly, whenever ψ(i, j) < nk + 1, it holds
σ[ψ(i, j)] ∈ D(j).

The graph G(n, t,D, k) has arc-set E = Ê ∪ Enk+1 where

Ê = {(i, ψ(i, j)) | i ∈ {0, 1, . . . , nk}, j ∈ Nt, ψ(i, j) 6= nk + 1} (4)

and
Enk+1 = {(i, nk + 1) | i ∈ V \ {nk + 1}}.

We now color the arcs of the graph G(n, t,D, k) with t+1 different colors, by assigning
color j to every arc (i, h) ∈ Ê such that σ[h] ∈ D(j) and by assigning color t + 1 to
each arc of Enk+1. In the following we denote by C[e] the color of the arc e ∈ E and
we call j-arc any arc of color j.

Definition 3. Let J ⊆ Nt. A J-rainbow path in the graph G(n, t,D, k) is a directed
path P with |J | arcs that contains (exactly) one arc of color j for each j ∈ J .

5

The next result links the yes/no answer for the DTMP to the existence of Nt+1-
rainbow paths in the graph G = (n, t,D, k).

Theorem 1. A TMP instance (n, t,D) admits a k-solution if and only if the directed
graph G(n, t,D, k) contains an Nt+1-rainbow path from node 0 to node nk + 1.

Proof Assume that σ = σ(n, k) covers D according to the set R ⊆ Nnk and let
π be the order of Nt in which the destinations appear in the sequence σ[R]. Define
h(0) = 0 and, according to (3), h(j) = ψ(h(j − 1), π(j)) for each j ∈ Nt, so that h(j)
is either the minimum index in Nnk such that the sequence σ[h(j − 1) + 1, . . . , h(j)]
contains all the elements of the destination-set D(π(j)) or nk+1. Since it clearly holds
h(j) ≤ max{i ∈ R : σ[i] ∈ D(π(j))} we get h(j) ≤ nk for each j. Then each pair
(h(j− 1), h(j)) is an arc of Ê of color π(j) and the path P that visits in sequence the
nodes 0, h(1), . . . , h(t) and nk+1 is an Nt+1-rainbow path from 0 to nk+1 in the graph
G = (n, t,D, k). Conversely, let (0 = h(0), h(1), . . . , h(t), h(t + 1) = nk + 1) be the
sequence of nodes visited by an Nt+1-rainbow path P in the graph G(n, t,D, k). Define
an order π of Nt by setting π(j) = C[(h(j−1), h(j))], i.e., the color of the j-th arc of P .
Then h(j) = ψ(h(j−1), π(j)) > h(j−1) and D(π(j)) ⊆ {σ[r] : r ∈ [h(j−1)+1, h(j)]}
for each j ∈ Nt. So if we define R(j) = {r ∈ [h(j − 1) + 1, h(j)] : σ[r] ∈ D(π(j))},
j ∈ Nt, and R = ∪tj=1 R(j) we obtain that the sequence σ[R] is a TM-order of Nn.

Example 2. Consider the DTMP instance defined by n = 4, t = 3, D(1) = {1, 3},
D(2) = {2}, D(3) = {4} and k = 2. The associated graph G(4, 3,D, 2) is shown in
Figure 1 where dotted, plain, dashed and gray arcs correspond to arcs of color 1, 2, 3
and t+1 = 4, respectively. Since the graph contains the N4-rainbow path visiting the
sequence of nodes (0, 2, 5, 8, 9) the instance admits a 2-solution. The corresponding
order of N3 is π = (2, 1, 3) and the sequence σ(n, 2) covers D according to the set
R = R(1) ∪ R(2) ∪ R(3) = {2} ∪ {3, 5} ∪ {8}. The final TM -order τ = (2, 3, 1, 4) is
obtained by mapping cars 2 and 3 on the first track and cars 1 and 4 on the second
track.

Algorithm 1 reports the procedure GRAPH() that, given a TMP instance (n, t,D)
and k ∈ N, constructs the graph G(n, t,D, k). For each position i = 1, . . . , nk − 1
the procedure scans the elements of σ(n, k) from position i + 1 to position i + n by
keeping track of their membership to the sets D(j). When the |D(j)|-th occurrence of
an element in D(j) is encountered in position h, then an arc (i, h) of color j is added
to the arc-set. Finally, the procedure adds all the arcs (i, nk + 1), i ∈ V \ {nk + 1},
of color t+ 1. The procedure requires time O(n2k). Moreover, since each node of the
graph G(n, t,D, k) has at most t+ 1 exiting arcs, the space needed to store the graph
G(n, t,D, k) is O(nkt).

6

Figure 1: The graph G(n, t,D, k) representing the instance in Example 2. The graph
is as explicitly constructed by Algorithm 1. As for the ”colors” of the arcs: dotted,
plain, dashed arcs correspond to destinations 1, 2 and 3, respectively, while the gray
arcs are the additional arcs of the set Enk+1.

7

4 Exact algorithms for the DTMP and the TMP

Let G(n, t,D, k) be the graph corresponding to the DMPT instance (n, t,D, k). The
existence of an Nt+1-rainbow path in the graph G(n, t,D, k) can be established by
means of an inclusion-exclusion argument. The inclusion-exclusion principle can be
stated as follows ([14]).

Theorem 2. Let U be a finite set and P1, . . . , Pt subsets of U . Then

|P1 ∩ · · · ∩ Pt| =
∑
T⊆Nt

(−1)|T || ∩j∈T P̄j| (5)

where P̄j = U \ Pj and, by convention, ∩j∈∅P̄j = U .

In the case of the DTMP, let us define U as the set of all the paths in G(n, t,D, k)
from node 0 to node nk + 1 with t+ 1 arcs and Pj, j = 1, . . . , t, as the subset of the
paths of U that contain at least one arc of color j. Then the intersection P1∩ · · · ∩Pt
is just the set of all the Nt+1-rainbow paths from 0 to nk+ 1. Applying the inclusion
exclusion formula (5) we obtain that the number X of the Nt+1-rainbow paths from
0 to nk + 1 in G(n, t,D, k) is given by

X =
∑
T⊆Nt

(−1)|T |N(T) (6)

where, for each subset T ⊆ Nt, N(T) denotes the number of paths in U that do not
contain arcs with color in T .

Now, for each subset T ⊆ Nt, the value N(T) can be computed by dynamic
programming as follows. For each length l = 1, . . . , t+ 1 and each node i = 0, . . . , nk
of V define NT (i, l) as the number of paths of length l from node i to node nk + 1
whose arcs have color in Nt \T , so that N(T) = NT (0, t+ 1). The values NT (i, l) can
be computed by means of the recursion

NT (i, l) =
∑

(i,h)∈E:C[(i,h)]/∈T

NT (h, l − 1)

and the base conditions NT (i, 1) = 1 for each i ∈ Nnk. The procedure DYN PROG()
just described is reported in Algorithm 2. It can be implemented by using two ar-
rays of length nk + 1 to store the values NT (i, l) and NT (i, l − 1), thus it requires
O(nk) space. Since there are at most t+ 1 arcs exiting from each node of the graph
G(n, t,D, k), its time complexity is O(nkt2).

Algorithm 3 reports the scheme of the algorithm DTMP() that solves the DTMP.
The algorithm first calls for the procedure GRAPH() to construct the graphG(n, t,D, k)

8

Algorithm 2 DYN PROG(): given G(n, t,D, k) and a set T ⊆ Nt computes the
number of paths from node 0 to node nk + 1 with t+ 1 arcs of color in Nt \ T .

Input: G = G(n, t,D, k), T ⊆ Nt;
Output: N(T);

for i = 0 to nk do
NT (i, 1) = 1;

end for
for l = 2 to t+ 1 do

for i = 0 to nk do
NT (i, l) := 0;
for all e = (i, h) ∈ Ê, C[(i, h)] /∈ T do
NT (i, l) := NT (i, l) +NT (h, l − 1);

end for
end for

end for
return NT (0, t+ 1);

corresponding to the DTMP instance. Then it computes the number X of Nt+1-
rainbow paths in the graph according to (6) by summing up the values (−1)|T |N(T)
where, for each T ⊆ Nt, N(T) is obtained by calling procedure DYN PROG(). The al-
gorithm has an overall time complexity O(nkt22t) which is exponential in the number
t of destinations. The space complexity O(nkt) is determined by the space required
to store the graph G(n, t,D, k).

The algorithm for the DMPT described above can be used to solve by binary
search the optimization problem TMP. In order to limit the range of the search, one
can use the fact that, as shown in [7], the optimal value of every TMP instance with
n cars is at most

L(n, t) = min{t, dn/4 + 1/2e}.
This bound can be further reduced for instances in which the train has consecutive
cars with the same destination. Indeed, as it easy to show, the following result holds.

Lemma 1. Let (n, t,D) be a TMP instance with two consecutive cars i and i + 1
having the same destination. Then the instance (n − 1, t,D′) obtained by removing
car i has the same optimal value.

We call contracted instance C(n, t,D) of (n, t,D) the instance obtained by recur-
sively removing a car from the initial train if the following one has its same destination.

The following theorem summarizes the previous results.

9

Algorithm 3 DTMP() : finds the number of t + 1-rainbow paths in the graph
G(n, t,D, k) associated to a DTMP instance

Input: a DTMP instance (n, t,D, k);
Output the number X defined in (6);

G:= GRAPH(n, t,D, k);
X := 0;
for all T ⊆ Nt do
N(T) := DYN PROG(G, T);
X := X + (−1)|T |N(T);

end for
return X;

Theorem 3. Every TMP instance (n, t,D) can be solved by a procedure requiring
O(n̄Lt) space and O(n̄t22tL log2 L) time where L = min{t, d n̄

4
+ 1

2
e} and n̄ is the

number of cars in the contracted instance C(n, t,D).

5 Conclusions

The paper presents an exact algorithm for the Train Marshalling Problem having
polynomial space complexity and time complexity which is polynomial in the number
n of cars of the train and exponential (according to a 2t factor) in the number t
of destinations. This proves that the Train Marshalling Problem is fixed parameter
tractable with the number t of destinations as parameter.

References

[1] E. T. Bax, Inclusion and exclusion algorithm for the Hamiltonian Path Problem,
Information Processing Letters 47 (1993), 203-207.

[2] E. T. Bax, Algorithms to count paths and cycles, Informormation Processing
Letters 52 (1994), 249-252.

[3] E. T. Bax, J. Franklin, A finite-difference sieve to count paths and cycles by
length, Informormation Processing Letters 60 (1996), 171-176.

[4] A. Björklund, T. Husfeldt, Exact algorithms for exact satisfiability and number
of perfect matchings, Algorithmica 52 (2008), 226-249.

10

[5] A. Björklund, T. Husfeldt, M. Koivisto, Set Partitioning via Inclusion-Exclusion,
SIAM Journal on Computing 39 (2009), 546-563.

[6] L. Brueggeman, M. Fellows, R. Fleischer, C. Komusiewicz, Y. Koutis, F. Rosa-
mond, Train Marshalling is fixed Parameter Tractable, in: E. Kranakis, D.
Krizanc and F. Luccio (Eds.), FUN 2012, LNCS 7288, Springer, Berlin, 2012,
51-56.

[7] E. Dahlhaus, P. Horak, M. Miller, J. F. Ryan, The train marshalling problem,
Discrete Applied Mathematics 103 (2000), 41-54.

[8] E. Dahlhaus, F. Manne, M. Miller, J. F. Ryan, Algorithms for Combinatorial
Problems Related to Train Marshalling, in: Proceedings of AWOCA 2000, Hunter
Valley, 2000, 7-16.

[9] Mike Fellows and Rudolf Fleischer, private communication.

[10] M. Gatto, J. Maue, M. Mihalák, P. Widmayer, Shunting for dummies: An in-
troductory algorithmic survey in: Robust and Online Large-Scale Optimization,
LNCS 5868, Springer, Berlin, 2009, 310-337.

[11] R. Jacob, P. Márton, J. Maue, M. Nunkesser, Multistage methods for freight
train classification, Networks 57 (2011), 87-105.

[12] R. M. Karp, Dynamic Programming meets the Principle of Inclusion and Exclu-
sion, Operations Research Letters 1 (1982), 49-51.

[13] D. Knuth, personal letter.

[14] H.J. Ryser, Combinatorial Mathematics, The Mathematical Association of
America, John Wiley, New York, 1963.

[15] Y.Zhu, R.Zhu, Sequence reconstruction under some order-type constraints, Sci-
entia Sinica Series A 26 (1983), 702-713.

11

