
10 April 2024

Università degli studi di Udine

Original

Querying Visible and Invisible Information

Publisher:

Published
DOI:10.1145/2933575.2935306

Terms of use:

Publisher copyright

(Article begins on next page)

The institutional repository of the University of Udine (http://air.uniud.it) is provided by ARIC services. The
aim is to enable open access to all the world.

Availability:

Institute of Electrical and Electronics Engineers Inc.

This version is available http://hdl.handle.net/11390/1174096 since 2021-03-19T15:50:51Z

Querying Visible and Invisible Information

Michael Benedikt Pierre Bourhis Balder ten Cate Gabriele Puppis

Abstract
We provide a wide-ranging study of the scenario where a subset
of the relations in the schema are visible — that is, their complete
contents are known — while the remaining relations are invisible.
We also have integrity constraints (invariants given by logical sen-
tences) which may relate the visible relations to the invisible ones.
We want to determine which information about a query (a positive
existential sentence) can be inferred from the visible instance and
the constraints. We consider both positive and negative query infor-
mation, that is, whether the query or its negation holds. We consider
the instance-level version of the problem, where both the query and
the visible instance are given, as well as the schema-level version,
where we want to know whether truth or falsity of the query can be
inferred in some instance of the schema.

1. Introduction
There are many applications scenarios where there is a collection
of relations representing information of interest to a set of users,
but a given user or class of users has access to only a subset of
these relations. For example a data owner may restrict access to a
subset of the stored relations for privacy reasons. Another example
comes from information integration where the schema exposed to
users contains both stored relations and “virtual relations”. The vir-
tual relations can be referenced in user queries, but are defined by
logical constraints relating them to stored relations. Both of these
scenarios can be subsumed by considering a schema consisting of
a set of relations that must satisfy a set of integrity constraints (in-
variants specified by sentences in some logic) with only a subset of
the relations visible. A basic computational problem is what ques-
tions can be answered by means of reasoning with the constraints
and access to the visible relations. Can someone use the content of
the visible relations along with constraints to answer a given ques-
tion about the invisible relations?

We study exactly this scenario, where a set of semantically-
related relations are hidden while for another set the complete con-
tents are visible. We will consider semantic relationships specified
in a variety of logical languages that are rich enough to capture
complex relationships between relations, including relationships
that arise in information integration, as well as common integrity
constraints within a single source. The basic analysis problem will
be the following: given a schema and a query Q (also given as a
logical formula; for simplicity we focus on sentences), can we in-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
LICS ’16, July 05-08, 2016, New York, NY, USA.
Copyright c© 2016 ACM 978-1-4503-4391-6/16/07. . . $15.00.
http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/2933575.2935306

fer using the visible data and schema information that the result of
Q is true or that the result is false.

Example 1. Consider a medical datasource with relation
Appointment(p, a, . . .) containing patient names p, appointment
ids a, and other information about the appointment, such as the
name of the doctor. A dataowner makes available one projection of
Appointment by creating a relation Patient(p) with the constraints:

∀ p Patient(p) → ∃ a d ȳ Appointment(p, a, d, ȳ)
∀ p a d ȳ Appointment(p, a, d, ȳ) → Patient(p) .

The query Q = ∃ a ȳ Appointment(“Smith”, a,“Jones”, ȳ) asking
whether patient Smith made an appointment with Dr. Jones will
be secure under this schema in one sense: an external user with
access to Patient will never be sure that the query is true, in any
instance. We say that there can be no Positive Query Implication for
this query and schema, on any instance. But suppose we consider
whether a user can infer the query to be false? On many instances,
such an inference is not possible. But on an instance where the
visible relation Patient is empty, an external user will know that the
query is false. We say that there is a Negative Query Implication on
the visible instance where Patient is empty.

Our results. We will consider the instance-based problems: given
a query and instance, can a user determine that the query is true
(Positive Query Implication) or that the query is false (Negative
Query Implication)? We also look at the corresponding schema-
level problem: given a query and a schema, is there some instance
where a query implication of one of the above types occurs?

We start by observing that the instance-level problems, both
positive and negative, are decidable for a broad class of constraints.
However, when we analyze the complexity of the decision prob-
lem as the size of the instance increases, we see surprisingly differ-
ent behavior between the positive and negative case. For very sim-
ple constraints the negative query implication problems are well-
behaved as the instance changes, namely, in polynomial time and
definable within a well-behaved query language. For the same class
of constraints, the corresponding positive query implication ques-
tions are hard even when the schema and query are fixed.

When we turn to the schema-level problems, even decidability
is not obvious. We prove a set of “critical instance” results, showing
that whenever there is an instance where information about the
query can be implied, the “obvious instance” witnesses this. Thus,
schema-level problems reduce to special cases of the instance-level
problems. Although we use this technique to obtain decidability
and complexity results both for positive and for negative query
implication, the classes of constraints to which they apply are
different. We give undecidability results that show that when the
classes are even slightly enlarged, decidability of the existence of a
schema with a query implication is lost.
Our techniques. We introduce a number of tools for reasoning on
mixtures of complete and incomplete information.
• Embeddings in rich decidable logics. Our first technique in-

volves showing that a large class of instance-level problems
can be solved by translating them into satisfiability problems
for a rich fragment of first-order logic, the guarded nega-

tion fragment. This exploits powerful prior decidability results
“off-the-shelf”. However, to get tight complexity bounds, we
also need a new analysis of the complexity of this logic.

• Decidability via canonical counterexamples. The schema-
level analysis asks if there is some instance on which informa-
tion about the query can be derived. As mentioned above, we
show that whenever there is some instance, this can be taken to
be the “simplest possible instance”. While this idea has been
used before to simplify analysis of undecidability (e.g. [16]),
we give a broad result that allows the use of it for decidability.

• Tractability via greatest fixed-point. We show that some
of our instance-level implication problems can be reduced
to evaluating a certain query of greatest fixedpoint Data-
log (GFP-Datalog) on the given visible instance. Since GFP-
Datalog queries can be evaluated in polynomial time, this
shows tractability in the instance size. The reduction to GFP-
Datalog requires a new analysis of when these inference prob-
lems are “active-domain controllable” (it suffices to see that
the query value is invariant over all hidden databases that lie
within the active domain of the visible instance).

• Relationships between problems. We prove reductions re-
lating the positive and negative implication problems, the
schema- and instance-level problems, and the widely-studied
“certain answer problem”. We use these reductions to derive
tight complexity bounds.

• Coding techniques for lower bounds. We introduce methods
for coding computation in query implication problems, yield-
ing both undecidability and complexity lower bounds.

Related work. Two different communities have studied the prob-
lem of determining the information that can be inferred from ac-
cessing data in a subset of the relations of a schema using con-
straints that relate the subset to the full vocabulary.

In the database community, the focus has been on views. The
schema is divided into base tables and view tables, with the latter
being defined by queries (typically conjunctive queries, abbreviated
CQs) in terms of the former. Given a query over the schema, the
basic computational problem is determining which answers can be
inferred using only the values of the views. Abiteboul and Duschka
[1] isolate the complexity of this problem in the case where views
are defined by CQs; in their terminology, it is querying under the
Closed World Assumption, emphasizing the fact that the possible
worlds revealed by the views are those where the view tables have
exactly their visible content. In our terminology, this corresponds
exactly to the Positive Query Implication (PQI) problem in the
case where the constraints consist entirely of CQ view definitions.
Another subcase of PQI that has received considerable attention
is the case where the constraints consist only of completeness
assertions between the invisible and visible portions of the schema
(e.g. [14]).

The PQI problem is also related to works on instance-based
determinacy (see in particular the results of Howe et al. in [19]),
while the Negative Query Implication (NQI) problem is studied in
the view context by Mendelzon and Zhang [24], under the name
of conditional emptiness. In both cases, the emphasis has been on
view definitions rather than more general constraints which may
restrict both the visible and invisible instance. In contrast, our
work deals with constraint classes that can restrict the visible and
invisible data in ways incomparable to view definitions. However,
our techniques do extend to solve the corresponding problems for
view definitions; this extension is discussed in the full version.

The PQI problem also relates to works in description logics
(e.g. [15, 21]) focusing on hybrid closed and open world query
answering (DBoxes), where the schema is divided into closed-
world and open-world relations. The problem in this setting is
to find out if a Boolean CQ holds in all instances that can add

facts to the open-world relations but do not change the closed-
world relations. Thus, closed and open worlds match our notions
of visible and invisible relations, and the hybrid closed and open
world query answering problem matches our notion of Positive
Query Implication, except that in our setting we restrict to the case
where the open-world/invisible relations are empty. It is easy to
see that this restriction is actually without loss of generality: one
can reduce the general case to the case we study with a simple
linear time reduction, making a closed-world copy R′ of each open-
world relation R, and adding an inclusion dependency from R′ to
R. The main distinction between our study of the PQI problem
and the prior work in the description logic community concerns
the classes of constraints considered. Lutz et al. [20, 21] study the
complexity of this problem for the constraint languages EL and
DL-LITE. [21] gives a criteria identifying constraints for which all
queries are first-order rewritable, while [20] carries out an analysis
at the level of constraints and queries. Franconi et al. [15] show
co-NP-completeness for a disjunction-free description logic. Our
results on the data complexity of PQI consider the same problem,
but for decidable constraint languages that are more expressive and,
in particular, can handle relations of arbitrary arity, rather than arity
at most 2 as in [15, 20, 21].

In summary, the database and description logic communities
considered the Positive Query Implication problems addressed
here, but for different classes of constraints. The Negative Query
Implication problems are not well-studied in the prior literature,
and we do not know any work dealing with the schema-level ques-
tions (existence of an instance with a query implication). Despite
this, we show (Subsection 4.2) that there is a close relation between
the schema-level questions and the work of Lutz et al. [22] concern-
ing conservativity and modularity of constraints.

For space reasons, some proofs and further applications of the
techniques we develop are deferred to the full version; they can also
be found in the technical report [8].

2. Definitions
We consider schemas S = Sh] Sv, where the partition elements
Sh and Sv are finite sets of relation names (or simply, relations),
each with an associated arity. These are the hidden and visible
relations, respectively. An instance of a schema maps each relation
to a set of tuples of the associated arity. The active domain of any
instance I, denoted adom(I), is the set of values occurring within
the interpretations of the relations of I. As a suggestive notation,
we will use F for instances over S and V for instances over Sv.
Given an instance F for S, its restriction to the Sv relations will be
referred to as its visible part, denoted Visible(F).

Instances will be used as inputs to the computational problems
considered in this work – when used as inputs, the instances must
be finite. We will also consider problems that quantify over in-
stances – in this case the quantification can be either over finite
instances or over all (finite or infinite) instances. We will deal with
both possibilities, but when we do not specify otherwise, instances
are assumed to be unrestricted.

We will consider formalisms based on first-order logic for ex-
pressing constraints and queries. Note that, in general, the evalua-
tion of a first-order formula may depend on the underlying domain
(not just on the instance and its active domain). We will always
assume the formulas used in queries and constraints are domain-
independent, which will allow us to evaluate queries and constraints
over instances; this can be enforced, for example, by using rela-
tional algebra syntax.

We will mainly look at integrity constraints defined by tuple-
generating dependencies (TGDs), which are first-order sentences
of the form ∀x̄ φ(x̄) → ∃ȳ ρ(x̄, ȳ), where φ and ρ are conjunctions
of atoms containing variables and constants, and where all the

universally quantified variables x̄ appear in φ(x̄). We will often
omit the universal quantifiers, writing just φ(x̄) → ∃ȳ ρ(x̄, ȳ).
Moreover, for all the problems considered in this work, one can
take w.l.o.g. the right-hand side ρ to consist of a single atom, and we
will assume this henceforth. We will consider the following classes
of TGDs:
• Linear TGDs: those where φ consists of a single atom.
• Inclusion dependencies (IDs): where each of φ and ρ is a

single atom having no constants and no repeated variables. In
Example 1, both the constraints were IDs.

• Frontier-guarded TGDs (FGTGDs) [3]: these are TGDs where
one of the conjuncts of φ is an atom that includes all the
universally quantified variables occurring in ρ.

• Connected TGDs: TGDs such that the co-occurrence graph
of φ is connected. The nodes of this graph are the universally
quantified variables x̄, and they are connected by an edge if
they co-occur in an atom of φ.

Note that every ID is a linear TGD, and every linear TGD is
frontier-guarded. Many of our results apply to even richer con-
straints, which allow disjunction and (in the second case below)
negation.
• Disjunctive FGTGDs: these are sentences of the form

∀x̄ φ(x̄) → ∃ȳ
∨

i ρi(x̄, ȳ), where, for each i, ρi is a conjunc-
tion of atoms and there is an atom in φ that includes all the
variables x j occurring in ρi.

• The Guarded negation fragment (GNFO): this is the fragment
of first-order logic in which every negation is conjoined with
an atom that contains all the free variables of the negated
formula. Formally, GNFO sentences are built up according to
the following grammar:

φ ::= R(t̄) | ∃x φ | φ ∨ φ | φ ∧ φ | R(t̄, ȳ) ∧ ¬φ(ȳ)
where R is either a relation symbol or the equality relation
x = y, and the ti’s are either variables or constants.

The reader only needs to know a few facts about GNFO. It is very
expressive, so results about GNFO constraints immediately apply
to many classes of constraints mentioned above. GNFO contains
all positive existential formulas, is closed under Boolean combi-
nations of sentences, and subsumes Disjunctive FGTGDs (up to
equivalence), and hence also subsumes FGTGDs and IDs. More-
over, GNFO is “tame”:

Theorem 1 ([7]). Satisfiability of GNFO sentences can be tested
effectively, and is 2Exp-complete. Furthermore, every satisfiable
sentence has a finite satisfying model.

Finally, we will also consider equality-generating dependencies
(EGDs), of the form ∀x̄ φ(x̄) → xi = x j, where φ is a conjunc-
tion of atoms and xi, x j are variables or constants. EGDs generalize
well-known relational database constraints, such as functional de-
pendencies and key constraints.

To express queries we use conjunctive queries (CQs), i.e. first-
order formulas built up from relational atoms via conjunction and
existential quantification (equivalently, relational algebra queries
built via selection, projection, join, and rename operations), as well
as disjunctions of CQs, abbreviated UCQs. Boolean UCQs (abbre-
viated BUCQs) are UCQs without free variables and Boolean CQs
(BCQs) are CQs without free variables. Although for brevity we fo-
cus on Boolean queries in this work, the techniques extend to the
non-Boolean case, as explained in [8]. Every CQ Q is associated
with a canonical database CanonDB(Q), whose domain consists
of variables and constants of Q and whose facts are the atoms of Q.

We remark that in our constraint and query languages above,
with the exception of IDs, constants are allowed by default. We will
mention explicitly when we want to restrict to formulas without
constants. We will further assume that we have associated with each
value a corresponding constant, and we will identify constants with

their values. Thus distinct constants will always be forced to denote
distinct domain elements – this is often called the “unique name
assumption” [2]. There are several problems that we study where
the presence of such constants adds significant complications. In
contrast, it is easy to show that the presence of constants without
the unique name assumption will never make any difference in any
of our results. None of our lower bounds rely on the presence of
constants, except when explicitly stated otherwise.

We now define the crucial problems of Positive Query Implica-
tion (PQI) and Negative Query Implication (NQI):

Definition 2. Let Q be a BUCQ over schema S, C a set of con-
straints over S, andV an instance over a visible schema Sv ⊆ S.
• PQI(Q,C,S,V) = true if for every instance F satisfying C, if

V = Visible(F) then Q(F) = true.
• NQI(Q,C,S,V) = true if for every instance F satisfying C,

ifV = Visible(F) then Q(F) = false.

We say that an Sv-instance V is realizable w.r.t. C if there is
an S-instance F satisfying C such that V = Visible(F). If
V is not realizable w.r.t. C, then, trivially, PQI(Q,C,S,V) =
NQI(Q,C,S,V) = true. In practice, realizable instances are the
onlySv-instances we should ever encounter. For simplicity we state
our instance-level results for the PQI and NQI problems that take
as input an arbitrary instance of Sv. But since our lower bound ar-
guments will only involve realizable instances, an alternative def-
inition that assumes realizable inputs yields the same complexity
bounds.

We also observe that the above problems quantify over all in-
stances, finite and infinite in line with our default assumption. One
can also consider versions of these problems where the quantifica-
tion is over finite infinite instances. We will show that taking the
quantification over finite instances will not impact our results. That
is, we will show that the finite and unrestricted versions of PQI and
NQI coincide for a large class of arguments Q,C,S,V. We express
this by saying that PQI(Q,C,S,V) is finitely controllable, and sim-
ilarly for NQI. Finite controllability will also allow us to make use
of infinite instances freely in our proofs.

We will also be interested in studying the behavior of the above
problems when Q,S, C are fixed, i.e. analysing how the computa-
tion time varies in the size of V only. We refer to this as the data
complexity of the PQI and NQI problems.

The PQI problem contrasts with the usual Open-World
Query Answering or Certain Answer problem, denoted here
OWQ(Q,C,F), which is studied extensively in databases and de-
scription logics. The latter problem takes as input a Boolean query
Q, a finite instance F , and a set of constraints C, and returns true
iff the query holds in any finite instance F ′ containing all facts of
F . The difference of this problem from PQI (and NQI) is that in
PQI we further constrain the instance to be fixed on the visible part
while requiring the invisible part of the input instance to be empty.
This is the mix of “Closed World” and “Open World”, and we will
see that this Closed World restriction can make the complexity sig-
nificantly higher.

Example 2. Consider a schema with inclusion dependencies
V1(x) → ∃y H(x, y) and H(x, y) → V2(y), where V1,V2 are visi-
ble and H is not. Let Q be the CQ ∃x H(x, x) and V the instance
consisting only of facts V1(a),V2(a). Here we have a Positive Query
Implication: the visible fact V1(a) and the first constraint imply the
existence of a fact H(a, c), for some value c, but the second con-
straint and the content of V2 imply c = a, whence ∃x H(x, x). In
contrast, one can see that Q is not certain in the usual sense, where
V1 and V2 can be freely extended with additional facts.

Our schema-level problems concern determining if there is a
realizable instance that admits a query implication:

Definition 3. For Q a BCQ over schema S, and C a set of con-
straints over S, we let:
• ∃PQI(Q,C,S) = true if there exists a realizable Sv-instance

V such that PQI(Q,C,S,V) = true;
• ∃NQI(Q,C,S) = true if there exists a realizable Sv-instance

V such that NQI(Q,C,S,V) = true.

In Example 1, ∃PQI(Q,C,S) = false, because the user could never
infer that the query was true. But ∃NQI(Q,C,S) = true, due to the
empty instance. Note that the schema-level problems quantify over
instances twice. As before, we say the schema-level problems are
finitely controllable if both quantifications over instances can be
simultaneously replaced with quantifications over finite instances.

3. Positive Query Implication
3.1 Instance-level problem
We begin by showing that the instance-level problem PQI is decid-
able for constraints in the rich logic GNFO. The key observation is
that PQI can be expressed as a GNFO unsatisfiability problem.

Theorem 4. PQI(Q,C,S,V) is in 2Exp, as Q ranges over BUCQs
and C over GNFO constraints. Furthermore, for such constraints
the problem is finitely controllable.

Proof. PQI(Q,C,S,V)= true translates to unsatisfiability of

¬Q ∧ C ∧
∧

R∈Sv

(∧
R(ā) ∈V R(ā) ∧ ∀x̄

(
R(x̄)→

∨
R(ā) ∈V x̄ = ā

))
.

If the constraints are in GNFO, then the formula above is also
in GNFO. Finite controllability and the 2Exp bound on GNFO
satifiability (Theorem 1) imply the conclusion.

Above we are using decidability of satisfiability of GNFO as a
black-box. The decision procedure for GNFO works by translat-
ing a formula into a tree automaton, which is then tested for non-
emptiness. In the full version, we do a finer analysis of the trans-
lation, using a method developed in [9]. The analysis shows that
for each fixed formula and schema, we can generate a two-way al-
ternating tree automaton of size polynomial in the instance. From
this and standard results in automata theory, it follows that the data
complexity of PQI is only singly-exponential.

Theorem 5. Given a BUCQ Q and set C of GNFO constraints over
schema S, the data complexity of PQI(Q,C,S,V), as V varies
over instances, is in Exp.

The above data complexity bound is tight even for inclusion
dependencies:

Theorem 6. There is a BCQ Q and a set C of IDs over a schema
S for which the problem PQI(Q,C,S,V) is Exp-hard in data com-
plexity.

Note that this contrasts sharply with the case of OWQ for GNFO
constraints which has data complexity in co-NP [6]. The proof
(given in the full version, as most of our lower bounds are) proceeds
by showing that a universal machine for alternating PSpace can
be constructed by fixing appropriate Q,C,S in a PQI problem.
The input of the machine is represented in the visible instance V,
and an encoding of the computation is induced in some hidden
relations by the constraints. Encodings of rejecting computations
and badly-formed encodings are also allowed, but these particular
cases can be detected by the query. In particular, we have that
PQI(Q,C,S,V) = false iff there exists an encoding of a successful
computation of the alternating PSpace Turing machine. We also
remark that the proof requires a schema with arity above 2. In fact,
if we move up from IDs to linear TGDs, we can show Exp-hardness
even for arity 2.

We conclude the analysis of the instance-level PQI problem by
establishing that the 2Exp combined complexity upper bound is
tight even for IDs.

Theorem 7. PQI(Q,C,S,V) is 2Exp-hard for combined complex-
ity, as Q ranges over BCQs and C over sets of IDs.

The proof of this lower bound is similar to that of Theorem 6;
we reduce the acceptance problem for an alternating ExpSpace Tur-
ing machine M to the negation of PQI(Q,C,S,V). The technical
difficulty here is to encode a tape of exponential size, which can-
not be done succinctly using a visible instance. We overcome this
problem by representing the positions of the tape as leaves of a full
binary tree of linear height (of course this makes the schema and
the constraints depend on the input of the machine).

3.2 Schema-level problem
We now turn to the schema-level problem ∃PQI. Let V{a} be the
instance for the visible part of a schema S whose active domain
contains the single value a and whose visible relations are single-
ton relations of the form {(a, . . . , a)}. We will show that, for certain
constraint languages, whenever ∃PQI(Q,C,S) = true, then the wit-
nessing instance can be taken to be V{a}. This can be viewed as
an extension of the “critical instance” method which has been ap-
plied previously in undecidability results. E.g., Gogacz and Marcin-
cowski [16] refer to this instance as a “well of positivity”. The fol-
lowing result shows that for ∃PQI, this technique works with TGDs
and EGDs without constants.

Theorem 8. For every BUCQ Q without constants and every set
C of TGDs and EGDs without constants, ∃PQI(Q,C,S) = true iff
PQI(Q,C,S,V{a}) = true. In particular, ∃PQI(Q,C,S) = true iff
there is a finite realizable instance V such that PQI(Q,C,S,V) =
true.

We will prove the theorem first for constraints consisting only of
TGDs without constants; then we will show how to generalize it in
the presence of EGDs without constants.

First of all, we note that, by introducing additional invisible re-
lations, we can assume w.l.o.g. that all TGDs have exactly one atom
in the right-hand side. Next, we introduce a variant of the “classi-
cal” chase procedure [2] that returns a collection of instances (not
necessarily finite); the extension is along the lines of the “Disjunc-
tive Chase” of [13]. As in the classical chase, the procedure receives
as input a relational schema S, some constraints C, and an initial
instance F0 for the schema S, which does not need to satisfy the
constraints in C. The procedure chases the constraints starting from
the instance F0, guaranteeing at the same time that the visible re-
lations of the constructed instances agree with F0. This variant of
the chase will be used to prove Theorem 8, as well as other results
related to the ∃NQI problem.

Formally, the procedure builds a tree-shaped collection of
instances starting from the singleton consisting of the input
S-instance F0. It extends the collection by repeatedly applying the
following process. It chooses an instance K at some leaf of the cur-
rent tree, a TGD R1(x̄1) ∧ . . . ∧ Rm(x̄m) → ∃ȳ S (z̄) in C, where
z̄ is a sequence of (possibly repeated) variables chosen among
x̄1, . . . , x̄m, ȳ, and a homomorphism f that maps R1(x̄1), . . . , Rm(x̄m)
to some facts in K. The procedure constructs a new instance from K
by adding the fact S (f ′(z̄)), where f ′ is an extension of f that injec-
tively maps the existentially quantified variables in ȳ to some fresh
null values. When the relation S is visible, the procedure replaces
the instance K′ = K ∪

{
S (f ′(z̄))

}
with copies of itself of the form

g(K′) such that Visible(g(K′)) = Visible(F0), for all possible ho-
momorphisms g from the variables z̄ to values in the active domain
of Visible(F0); in particular, if the active domain is {a1, . . . , an}, the
latter step can be seen as chasing a disjunctive EGD of the form

S (z̄)→ z̄(i) = a1 ∨ . . .∨ z̄(i) = an. The resulting instances g(K′) are
then appended as new children of K. In the special case where there
are no homomorphisms g such that Visible(g(K′)) = Visible(F0),
we append a dummy instance ⊥ as a child of K: this denotes the
fact that the chase step from K led to an inconsistency (the dummy
node will never be extended during the subsequent chase steps). If
S is not visible, then the instance K′ is simply appended as a new
child of K.

In the limit, the process generates a possibly infinite tree-shaped
collection of instances, a chase tree. We assume that the chase
strategy is “fair”: whenever a dependency was applicable in a
node on a maximal path of the chase tree, then it was fired at
some descendant of that node along the same maximal path (unless
the path ends with ⊥). It now remains to complete the collection
with “limits” in order to guarantee that all constraints are satisfied.
Consider any infinite path π = K0,K1, . . . in the chase tree. By
construction, the instances along π form a chain of homomorphic
embeddings K0

h0
−−−→ K1

h1
−−−→ Such chains of homomorphic

embeddings admit a natural notion of limit, which we denote by
limn∈N Kn. We refer to [12] for further details about the construction
of this limit. Here we only remark that limn∈N Kn satisfies the
constraints C. We denote by Chasesvis(C,S,F0) the collection of
all non-dummy instances that occur as leaves of the chase tree and
all the limits of the infinite paths in it. This is well-defined only
once the ordering of steps is chosen, but for the results below which
order is chosen will not matter, so we abuse notation by referring
to Chasesvis(C,S,F0) as a single object.

It is clear that every instance in Chasesvis(C,S,F0) satisfies
the constraints in C and agrees with F0 on the visible part of the
schema. One can also show that Chasesvis(C,S,F0) satisfies the
following universal property:

Lemma 9. Let F0,F be two instances of the same schema S
such that F0 ⊆ F , Visible(F0) = Visible(F), and F satisfies
a set C of TGDs without constants. There exist an instance K ∈
Chasesvis(C,S,F0) and a homomorphism from K to F .

An interesting use of the chase procedure is to characterize the
instance-level PQI problem:

Proposition 10. Let Q be a BUCQ without constants, C a set of
TGDs without constants, V a visible instance. PQI(Q,C,S,V) =
true iff Q holds on all instances of Chasesvis(C,S,V).

Proof. Suppose that PQI(Q,C,S,V) = true and recall that every
instance in Chasesvis(C,S,V) satisfies the constraints in C and
agrees withV on the visible part. This means that Q holds on every
instance of Chasesvis(C,S,V).

Conversely, if PQI(Q,C,S,V) = false, there is an S-instance
F that has V as visible part, satisfies the constraints in C, but not
the query Q. By Lemma 9, letting F0 = V, we get an instance
K ∈ Chasesvis(C,S,V) and a homomorphism from K to F . Since
Q is preserved under homomorphisms, K does not satisfy Q.

Next, we recall that the visible instance V{a} is constructed
over a singleton active domain and that the constraints C have
no constants. This implies that there are no disjunctive choices to
perform while chasing the constraints starting fromV{a}. Moreover,
it is easy to see that this chase always succeeds, that is, returns a
collection Chasesvis(C,S,V{a}) with exactly one instance — this
also shows that V{a} is a realizable instance. By a slight abuse of
notation, we denote by chasevis(C,S,V{a}) the unique instance in
the collection Chasesvis(C,S,V{a}).

The last ingredient is given by the following lemma:

Lemma 11. If C is a set of TGDs without constants over a
schema S and V is an instance of the visible part of S, then ev-

ery instance K ∈ Chasesvis(C,S,V) maps homomorphically to
chasevis(S,C,V{a}).

Now that we established the key lemmas, we can reduce the
schema-level problem to an instance-level problem:

Proof of Theorem 8. Recall that for the moment we assume that
the constraints consist only of TGDs. Clearly, PQI(Q,C,S,V{a}) =
true implies ∃PQI(Q,C,S) = true. For the converse, suppose that
∃PQI(Q,C,S) = true. This implies the existence of a realizable in-
stanceV such that PQI(Q,C,S,V) = true. By Proposition 10, ev-
ery instance in Chasesvis(S,C,V) satisfies the query Q. Moreover,
by Lemma 11, every instance in Chasesvis(S,C,V) maps homo-
morphically to chasevis(S,C,V{a}). Hence chasevis(S,C,V{a}) also
satisfies Q. By applying Proposition 10 again, we conclude that
PQI(Q,C,S,V{a}) = true.

Now, we explain how to generalize the above proof to deal
with both TGDs and EGDs (still without constants). For this we
modify the procedure for Chasesvis(S,C,V) to take into account
the additional EGDs that can be triggered on instances of the
chase tree. Formally, chasing an EGD of the form R1(x̄1) ∧ . . . ∧
Rm(x̄m) → x = x′ amounts to applying a suitable homomor-
phism that identifies the two values h(x) and h(x′) whenever the
facts R1(h(x̄1)), . . . ,Rm(h(x̄m)) belong to the instance under consid-
eration. Note that this operation leads to a failure (i.e. a dummy
instance) when h(x) and h(x′) are distinct values from the ac-
tive domain of the visible part V. With the new definition of
Chasesvis(S,C,V) at hand, the proofs of Lemmas 9 and 11 do not
pose particular problems, as we just need to handle the standard
case of an EGD, and Proposition 10 and Theorem 8 carry over
without modifications.

By pairing Theorem 8 with Theorem 4 we obtain:

Corollary 12. ∃PQI(Q,C,S) is in 2Exp and finitely controllable,
where Q ranges over BUCQs without constants and C over sets of
FGTGDs without constants.

The uniqueness of the instance chasevis(C,S,V{a}) played a key
role in the argument above. We show that adding disjunction to
the constraints, thus causing this uniqueness to fail, leads to unde-
cidability. Intuitively, this shows that the interaction of disjunctive
linear TGDs and linear EGDs (implicit in the visibility assumption)
breaks the critical instance approach.

Theorem 13. The problem ∃PQI(Q,C,S) is undecidable as Q
ranges over BUCQs and C over sets of disjunctive linear TGDs.

The proof uses a technique that will be exploited for many of our
undecidability arguments. We will reduce the existence of a tiling
to ∃PQI. The tiling itself will correspond to the visible instance that
has a PQI. The invisible relations will store “challenges” to the cor-
rectness of the tiling. There will be challenges to the labelling of
adjacent cells, to the initial tile, and to the shape of the adjacency
relationship – that is, challenges that the tiling is really grid-like.
A correct tiling corresponds to every challenge being passed, and
the UCQ Q will have disjuncts that hold exactly when the chal-
lenges are passed. Thus, a correct tiling corresponds to a visible
instance where every extension satisfies Q. The undecidability ar-
gument also applies to the variant of ∃PQI that quantifies over finite
instances.

Perhaps even more surprisingly, we show that disjunction can be
simulated using constants (under UNA), and thus even the addition
of constants causes the critical instance technique to break. The
proof adapts the technique of “coding Boolean operations and truth
values in the schema”, which has been used to eliminate the need
for disjunction in several past works (e.g. [17]).

Proposition 14. There is a polynomial-time reduction from
∃PQI(Q,C,S), as Q ranges over BUCQs and C over sets of
disjunctive linear TGDs, to ∃PQI(Q′,C′,S′), as Q′ ranges over
BUCQs and C′ over sets of linear TGDs (with constants).

From the previous two results we immediately see that the
addition of (distinct) constants leads to undecidability:

Corollary 15. ∃PQI(Q,C,S) is undecidable as Q ranges over
BUCQs and C over sets of linear TGDs (with constants).

We now turn to analysing how the complexity scales with less
powerful constraints, e.g. linear TGDs without constants. We use
the reduction of the schema-level problem ∃PQI(Q,C,S) to the
instance-level problem PQI(Q,C,S,V{a}) given in Proposition 8,
and use some ideas from Johnson and Klug’s [18] to show that for
linear TGDs the latter problem is in polynomial space:

Theorem 16. PQI(Q,C,S,V{a}) is in PSpace, as Q ranges over
BUCQs without constants and C over sets of linear TGDs without
constants. Thus by Proposition 8 the same holds for ∃PQI(Q,C,S).

Proof. By Proposition 10, PQI(Q,C,S,V{a}) = true is equivalent
to asking the existence of a CQ Qi in Q and a homomorphism h
from CanonDB(Qi) to chasevis(C,S,V{a}). We can easily guess the
CQ Qi, the homomorphism h, and its image I = h(CanonDB(Qi)).
Thus, it remains to show that I ⊆ chasevis(C,S,V{a}) can be tested
in PSpace.

Recall that chasevis(C,S,V{a}) is obtained as the limit of a
series of operations that consist of alternatively adding new facts,
according to the TGDs in C, and identifying with the constant a
those values that appear in some visible relation. Note that the
second type of operation may also affect tuples that belong to
hidden relations and that were inferred during previous steps of
the chase. We show that, at the exact moment when a new fact
R(b1, . . . , bk) is inferred by chasing a linear TGD, one can also
detect whether a value bi will be eventually identified with the
constant a – in this case we can safely replace the fact R(b1, . . . , bk)
with R(b1, . . . , bi−1, a, bi+1, . . . , bk). To detect this we test whether
C entails a dependency of the form R(x̄) → ∃ȳ S (z̄), where x̄
is a sequence of (possibly repeated) variables that has the same
equality type as b̄ (i.e. x̄(j) = x̄(j′) iff b̄(j) = b̄(j′)), S is a visible
relation, z̄ is a sequence of variables among x̄, ȳ, and x̄(i) = z̄(j)
for some 1 ≤ j ≤ |z̄|. The above entailment can be seen as a
containment between two CQs under a given set of linear TGDs C,
and we know from [18] that the latter problem is in PSpace. We have
just described an alternative construction of chasevis(C,S,V{a}) that
avoids substitutions of values with constants, and in which every
step can be performed using a PSpace sub-procedure.

Below, we explain how to adapt the techniques from [18] to
this alternative variant of the chase in order to decide whether an
instance I is contained in chasevis(C,S,V{a}). For this, it is con-
venient to think of chasevis(C,S,V{a}) as a directed graph, whose
nodes denote the facts in chasevis(C,S,V{a}) and the edges denote
the inference steps deriving new facts from existing ones – because
the constraints are linear TGDs, each inference step depends on at
most one fact. By the previous arguments, one can check in PSpace
whether an edge exists between two given nodes. We focus on the
minimal set of edges that connects all the facts of I to the facts of
V{a} (the roots of the graph). The graph restricted to this set of edges
is a forest. Its height is at most exponential in |I|, and each level
in it contains at most |I| nodes. Thus, the restricted graph can be
explored by a non-deterministic polynomial-space algorithm that
guesses the nodes at a level on the basis of the nodes at the previ-
ous level and the linear TGDs in C. The algorithm succeeds once
it has visited all the facts in I, witnessing I ⊆ chasevis(C,S,V{a}).
Otherwise, the computation is rejected after seeing exponentially
many levels.

Recall that Open-World Query Answering (OWQ) is the “clas-
sical” variant of the query implication problem: all relations can be
freely extended, and all relations are allowed to be non-empty. It is
easy to show that OWQ reduces to PQI; i.e. PQI is at least as hard
as OWQ (and as our results have shown, it is sometimes harder).
We can also reduce OWQ to ∃PQI, which will allow us to show
that the upper bound for linear TGD in Theorem 16 is tight.

Proposition 17. For any class of constraints containing linear
TGDs, OWQ reduces to ∃PQI.

Proof. Let Q be a query, C a set of constraints over a schema S,
and F an instance of the schema S. We show how to reduce the
Open-World Query Answering problem for Q, C, S, and F to
a problem ∃PQI(Q′,C′,S′). The idea is to create a copy of the
instance F in the hidden part of the schema, which can be then
extended arbitrarily.

Formally, we let the transformed schema S′ consist of all the
relations in S, which are assumed to be hidden, plus an additional
visible relation Good of arity 0. We then introduce a variable yb for
each value in the active domain of F , and we let C′ contain all the
constraints from C, plus a constraint of the form Good → ∃ȳ QF ,
where ȳ contains one variable yb for each value b in the active
domain of F and QF is the conjunction of the atoms of the form
A(yb1 , . . . , ybk), for all facts A(b1, . . . , bk) in F . The visible instance
V′ that contains the atom Good is realizable, since it can be
completed (using the chase) to an S′-instance F ′ that satisfies the
constraints C′. Moreover, every S′-instance F ′ that contains the
atom Good and satisfies the constraints C′, contains an isomorphic
copy of F . Thus, if we finally let Q′ = Q ∧ Good, we have that
∃PQI(Q′,C′,S′) = true iff every S-instance F ′ that contains the
fact Good and satisfies the constraints C′, also satisfies the query
Q. This reduces the Open-World Query Answering problem for Q,
C, and S to the problem ∃PQI(Q′,C′,S′).

We recall that [11] showed that the implication problem for IDs
(does one ID follow from a set of IDs) is PSpace-hard. There is also
a simple reduction from the latter implication problem to OWQ:
given the problem of deciding whether a set of IDs Σ implies an
ID λ → ρ, one can produce the OWQ problem with constraints Σ,
instance given by the canonical database of λ, and query formed
from ρ by changing the free variables to constants. Thus OWQ
is PSpace-hard for IDs as well, and the PSpace-hardness of ∃PQI
follows using the result above. Thus, applying the reduction of
Proposition 17, we see that the prior upper bound from Theorem
16 is tight:

Corollary 18. ∃PQI(Q,C,S) is PSpace-hard, as Q ranges over
BCQs and C over sets of linear TGDs.

Similarly applying existing lower bounds on OWQ for FGTGDs
[10] we see that the prior upper bound from Corollary 12 is tight:

Corollary 19. ∃PQI(Q,C,S) is 2Exp-hard, as Q ranges over
BCQs and C over sets of FGTGDs without constants.

The table below highlights the main results on PQI and ∃PQI.

PQI Data PQI Combined ∃PQI

NoConst Exp-complete 2Exp-complete PSpace-complete
Linear TGD Thm 5/Thm 6 Thm 4/Thm 7 Thm 16/Cor 18

NoConst Exp-complete 2Exp-complete 2Exp-complete
FGTGD Thm 5/Thm 6 Thm 4/Thm 7 Cor 12/Cor 19

NoConst Disj. Exp-complete 2Exp-complete undecidable
Linear TGD Thm 5/Thm 6 Thm 4/Thm 7 Thm 13

Linear TGD Exp-complete 2Exp-complete undecidable
& FGTGD Thm 5/Thm 6 Thm 4/Thm 7 Cor 15
& GNFO

4. Negative Query Implication
4.1 Instance-level problem
We now consider the problem NQI(Q,C,S,V). As in the positive
case, for GNFO constraints we get decidability via reduction to
satisfiability.

Theorem 20. NQI(Q,C,S,V), as Q ranges over BUCQs and C
over GNFO constraints, is 2Exp in combined complexity, Exp in
data complexity, and finitely controllable.

Proof. As in the positive case, we reduce NQI(Q,C,S,V) to un-
satisfiability of the GNFO formula

Q ∧ C ∧
∧

R∈Sv

(∧
R(ā) ∈V R(ā) ∧ ∀x̄

(
R(x̄)→

∨
R(ā) ∈V x̄ = ā

))
.

The data complexity analysis is as in Theorem 5, since the formulas
agree on the part that varies with the instance.

The fact that the above bounds are tight follows from the lower
bounds for combined and data complexity of PQI given in Theo-
rems 6 and 7, since PQI reduces to NQI for rich enough constraints:

Theorem 21. For any class of constraints that includes con-
nected FGTGDs, PQI(Q,C,S,V) reduces in polynomial time to
NQI(Q′,C′,S′,V′). Further, Q′,C′,S′ depend only on Q,C,S,
and thus the reduction preserves data complexity.

Proof. We first provide a reduction that works with any class of
constraints allowing arbitrary conjunctions in the left-hand sides
(e.g. frontier-guarded TGDs). Subsequently, we show how to mod-
ify the constructions in order to preserve connectedness.

The schema S′ is obtained by copying both the visible and the
hidden relations from S and by adding the following relations: a
visible relation Error of arity 0 and a hidden relation Good of arity
0. The constraints C′ will contain the same constraints from C, plus
one frontier-guarded TGD of the form

Qi(ȳ) ∧ Good → Error

for each CQ of Q of the form ∃ȳ Qi(ȳ). Finally, the query and the
visible instance are defined as follows: Q′ = Good andV′ = V.

We now verify that PQI(Q,C,S,V) = false iff
NQI(Q′,C′,S′,V′) = false. Suppose that PQI(Q,C,S,V) = false,
namely, that there is an S-instance F such that F 2 Q, F � C,
and Visible(F) = V. Let F ′ be the S′-instance obtained from F
by adding the single hidden fact Good. Clearly, F ′ satisfies the
query Q′ and also the constraints in C′; in particular, it satisfies
every constraint Qi(ȳ) ∧ Good → Error because F violates every
disjunct ∃ȳ Qi of Q. Hence, we have NQI(Q′,C′,S′,V′) = false.
Conversely, suppose that NQI(Q′,C′,S′,V′) = false, namely,
that there is an S′-instance F ′ such that F ′ � Q′, F ′ � C′, and
Visible(F ′) = V′. By copying the content of F ′ for those relations
belong to the schema S, we obtain an S-instance F that satisfies
the constraints C. Moreover, because F ′ contains the fact Good
but not the fact Error, F ′ violates every conjunct ∃ȳ Qi(ȳ) of Q,
and so F does. This shows that PQI(Q,C,S,V) = false.

We observe that the constraints in the above reduction use left-
hand sides that are not connected. In order to preserve connected-
ness, it is sufficient to modify the above constructions by adding
a dummy variable that is shared by all atoms. More precisely, we
expand the relations of the schema S and the relation Good with
a new position, and we introduce a new visible relation Check of
arity 1. The dummy variable will be used to enforce connectedness
in the left-hand sides, and the relation Check will gather all the
values associated with the “dummy” position. Using the visible in-
stance, we can guarantee that the relation Check contains exactly
one value. The constraints are thus modified as follows. Every con-
straint R1(x̄1) ∧ . . . ∧ Rm(x̄m) → ∃ȳ S (z̄) in C′ is transformed into

R1(x̄1,w)∧. . .∧Rm(x̄m,w)→ ∃ȳ S (z̄,w). In particular, the constraint
Qi(ȳ) ∧ Good → Error becomes Qi(ȳ,w) ∧ Good(w) → Error(w),
which is now a connected frontier-guarded TGD. Furthermore, for
every relation R(x̄) in S, we add the constraint

R(x̄,w) → Check(w)

and we do the same for the relation Good:

Good(w) → Check(w) .

Finally, the query is transformed into Q′ = ∃w Good(w) and the
visible instanceV′ is expanded with a fresh dummy value a on the
additional position and with the visible fact Check(a).

From the above reduction and from Theorems 6 and 7, we get
the following hardness results for instance-based NSB.

Corollary 22. There are a BUCQ Q and a set C of connected
FGTGDs over a schema S for which the problem NQI(Q,C,S,V)
is Exp-hard in data complexity (that is, asV varies over instances).

Corollary 23. The problem NQI(Q,C,S,V), as C ranges over sets
of connected FGTGDs, S over schemas, Q over BCQs andV over
instances, is 2Exp-hard.

Thus far, the complexity of NQI has been similar to that of
PQI. We will now show a strong contrast in the case of linear
TGDs. Recall from Theorem 6 that PQI was highly intractable even
for fixed schema with linear TGDs and fixed query. We begin by
showing that NQI(Q,C,S,V) can be solved easily by looking only
at full instances that agree with V on the visible part and whose
active domains are the same as that ofV:

Definition 24. NQI(Q,C,S,V) is active domain controllable if
it is equivalent to asking that for all instances F over the active
domain adom(V) ofV, if F satisfies C and Visible(F) = V, then
Q(F) = false.

It is clear that the the problem NQI(Q,C,S,V) is simpler when it
is active domain controllable, as in this case we could guess a full
instance F over the active domain ofV and reduce the problem to
checking whether Q holds on F .

We give a simple argument that NQI under IDs is active do-
main controllable. Let C be a set of IDs, Q a BUCQ, and V a vis-
ible instance such that NQI(Q,C,S,V) = false. This means that
there is a full instance F such that F � C, Visible(F) = V, and
F � Q. Take any value a ∈ adom(V) and let h be the homomor-
phism that is the identity over adom(V) and maps any other value
from adom(F)\adom(V) to a. Since, C consists of IDs (in particu-
lar, since the left-hand side atoms do not have constants or repeated
occurrences of the same variable), we know that h(F) � C. Simi-
larly, we have h(F) � Q. Hence, h(F) is an instance over the active
domain ofV that equally witnesses NQI(Q,C,S,V) = false.

The following example shows that linear TGDs are not always
active domain controllable.

Example 3. Let S be the schema with a hidden relation H of
arity 2 and two visible relations V1,V2 of arities 1, 0, respectively.
Consider the linear TGDs

H(x, y) → V1(x) H(x, x) → V2

the CQ Q = ∃x y H(x, y), and the visible instanceV that consists of
the single fact V1(a). Clearly, every full instance F over the active
domain {a} ofV that satisfies the above constraints and CQ Q must
also contain the facts H(a, a) and V2, and so it cannot agree with
V on the visible part. On the other hand, the full instance that
contains the facts V1(a) and H(a, b), for a fresh value b, satisfies
the constraints and the CQ Q, and furthermore agrees withV. This
shows that NQI(Q,C,S,V) is not active domain controllable.

Despite the above example, we show that we can still transform
any schema with linear TGDs (which may include constants) and
any query for an NQI problem so as to enforce active domain
controllability. Moreover, we can do so while preserving the visible
instance of the problem:

Theorem 25. Given a schema S, a set C of linear TGDs (pos-
sibly including constants), and a BUCQ Q, one can construct in
exponential time a new schema S′, a set C′ of linear TGDs (with
constants), and a BUCQ Q′ such thatSv = S′v and, for all instances
V over Sv:
1. NQI(Q,C,S,V) = NQI(Q′,C′,S′,V),
2. NQI(Q′,C′,S′,V) is active domain controllable.

The idea for proving the above result is to project away from the
tuples of the hidden relations of S those positions that store values
outside the active domain of V. In doing so, one needs to recall
the equality relationships between pairs of removed positions and
between those positions and the constants used in the constraints
– this is important because different linear TGDs may be triggered
on the basis of these equalities. For example, consider a hidden
ternary relation R =

{
(a, a, c), (a, c, d), (b, c, c), (c, d, e), (c, d, c)

}
for

the original schema S, where a, b are the only values of the visible
active domain. In the modified schema, the relation R is represented
by copies of it of the form RI,ϕ, one for each set I of removed
positions and for each equality type ϕ. Precisely, the copies of
R in the modified instance will be: R∅,> = ∅, R{z},> =

{
(a, a)

}
,

R{y,z},> =
{
(a), (b)

}
, R{y,z},y=z =

{
(b)

}
, R{x,y,z},> =

{
()
}
, R{x,y,z},x=z =

{
()
}
,

R{x,y,z},x=y = R∅,y=z = R∅,x=y=z = ∅. With the new schema S′ defined,
we introduce copies of the original constrains on the basis of the
intended semantics of the relations RI,ϕ. The goal is to simulate
the behaviour of the original tuples using only their projection on
the visible active domain and the information about the equalities
between the removed positions and the constants. For example, if

R(x, y, z) → ∃w S (w,w)

is a linear TGD in C, then we add to C′ linear TGDs of the form

R∅,>(x, y, z) → ∃w S∅,>(w,w)
R∅,>(x, y, z) → ∃w S{w,w′},>()
R∅,>(x, y, z) → ∃w S{w,w′},w=w′ ()
. . .

Finally, we process the UCQ Q in a similar way. A fully detailed
construction of S′, C′, and Q′, with the proof that they satisfy the
desired properties, is given in the full version.

Now we show how to exploit active domain controllability to
prove that NQI can be solved not only efficiently, but “definably”,
using well-behaved query languages. For this, we introduce a vari-
ant of Datalog programs, called GFP-Datalog programs, whose se-
mantics is given by greatest fixpoints. GFP-Datalog programs are
defined syntactically in the same way as Datalog programs [2] –
i.e. as finite sets of rules of the form R(x̄) ← Q(x̄) where the x̄i
are implicitly universally quantified and Q is a CQ whose free vari-
ables are exactly x̄. As for Datalog programs, we distinguish be-
tween extensional (i.e. input) predicates and intensional (i.e. out-
put) predicates. In the above rules we restrict the left-hand sides to
contain only intensional predicates. Given a GFP-Datalog program
P, the immediate consequence operator for P is the function that,
given an instance F consisting of both extensional and intensional
relations, returns the instance F ′ where the extensional relations
are as in F and the tuples of each intensional relation R are those
satisfying Q(R), where Q is any query appearing on the right of
a rule with R. The immediate consequence operator is monotone,
and the semantics of the GFP-Datalog program on an extensional
database instance F is defined as the greatest fixpoint of this oper-
ator starting at the database instance F0 that extends F by setting

each intensional relation “maximally” – that is, to the tuples of val-
ues from the active domain of F plus the constants appearing in the
GFP-Datalog program. A program may also include a distinguished
intensional predicate, the goal predicate G – in this case the result
is taken to be the projection onto G of the greatest fixpoint.

Theorem 26. If Q is a BUCQ, C a set of linear TGDs (with con-
stants), and NQI(Q,C,S,V) is active domain controllable, then
¬NQI(Q,C,S,V), viewed as a query over the visible part V, is
definable by a GFP-Datalog program that can be constructed in
polynomial time from Q, C, and S.

Proof. We need to describe by means of a GFP-Datalog program
the function ¬NQI(Q,C,S,V) that maps an instance V to true
or false depending on whether or not Q holds over some instance
F that satisfies the constraints C and such that Visible(F) = V.
Thanks to active domain controllability, it suffices to consider full
instances constructed over the active domain of V, and define a
witness F as a greatest fixpoint.

The extensional relations are those in the visible part V. The
intensional relations are those in the hidden part of the schema
S, plus an extra intensional relation A that derives the values in
the active domain of V. For each extensional relation R and each
position 1 ≤ i ≤ arity(R), we have the rule A(xi) ← R(x̄), which
collects the values from the active domain into A. In addition, for
each intensional relation R, we have the rule

R(x̄) ←
∧

i A(xi) ∧
∧

R(x̄)→∃ȳ S (z̄)
linear TGD in C

S (z̄) .

Let F be the instance consisting of the visible partV and the inten-
sional relations R computed by the above Datalog program under
the greatest fixpoint semantics. It is easy to see that F satisfies the
constraints, that is: if R(x̄) → ∃ȳ S (z̄) is a linear TGD in C and F
contains a fact of the form R(h(x̄)), for some homomorphism h, then
F contains also a fact S (h′(x̄)), for some homomorphism h′ that ex-
tends h. Finally, to compute ¬NQI(Q,C,S,V), we add to the above
program the goal predicate G and a rule G ← S 1(z̄1)∧ . . .∧ S n(z̄n)
for each CQ ∃ ȳ S 1(z̄1) ∧ . . . ∧ S n(z̄n) of Q.

We remark that the naı̈ve fixpoint algorithm for a GFP-Datalog
program takes exponential time in the maximum arity of the inten-
sional relations, but only polynomial time in the size of the exten-
sional relations and the number of rules. Note also that the transfor-
mation of Theorem 25 does not change the visible relations, which
determine the maximum arity of the intensional relations of the
GFP-Datalog program. Thus the constructions of Theorems 25 and
26 give us:

Corollary 27. When C ranges over sets of linear TGDs and Q over
BUCQs NQI(Q,C,S,V) has data complexity in P and combined
complexity in Exp.

Example 4. Returning to the medical example from the introduc-
tion, Example 1, we see that the GFP-Datalog program is quite
intuitive: since Patient is empty in the instance and we have a ref-
erential constraint from Appointment into Patient, Appointment
is removed as well, leaving the empty instance. The program then
simply evaluates the query on the resulting instance, which returns
false, indicating that an NQI does hold on the original instance.

Note that this result is in contrast to the situation with the
OWQ problem for linear TGDs, where the instances for which
an implication holds are definable in ordinary Datalog [4]. We
do not know whether the use of GFP-Datalog can be replaced by
other logics, e.g. Datalog. However we can prove that to define
¬NQI(Q,C,S,V) from a given visible instance V, it is necessary
to go beyond first-order logic:

Proposition 28. NQI(Q,C,S,V) cannot be described by a first-
order query overV. More generally, there are BCQs Q and sets of
IDs C such that NQI(Q,C,S,V) is P-hard in data complexity.

As for the combined complexity of NQI with linear TGDs, we
can prove a tight Exp lower bound:

Theorem 29. NQI(Q,C,S,V) is Exp-hard for combined complex-
ity, as C ranges over IDs and Q over BUCQs.

The proof is based on a reduction from the acceptance prob-
lem for an alternating PSpace Turing machine to NQI(Q,C,S,V).
Compared to the proof of Theorem 6, the techniques are similar.
The only difference is that now, thanks to the dependency of the
constraints from the machine and its input, we can directly avoid
badly-formed encodings of computations. So, the query will only
detect rejecting computations and, dually, it will be violated on the
encodings of successful computations. In particular, we have that
NQI(Q,C,S,V) = true iff all instances satisfying C encode a suc-
cessful computation of the alternating PSpace Turing machine.

4.2 Schema-level problem
Here we consider the schema-level question, i.e. ∃NQI. We first
show that when the constraints are preserved under disjoint unions
(this holds, e.g., for connected FGTGDs), the existence of an NQI
can be checked by considering a single “negative critical instance”,
namely the empty visible instance. For TGD constraints, this in-
stance is easily seen to be realizable: the chase procedure that we
introduced in Section 3.2 terminates immediately when initialized
with the empty instance F0 = ∅ and returns the singleton collection
Chasesvis(C,S, ∅) consisting of the empty S-instance satisfying C.

Theorem 30. If the constraints C consist of TGDs preserved un-
der disjoint unions of instances, then ∃NQI(Q,C,S) = true iff
NQI(Q,C,S, ∅) = true.

Proof. Clearly, NQI(Q,C,S, ∅) = true implies ∃NQI(Q,C,S) =
true. As for the converse, suppose that NQI(Q,C,S, ∅) = false
and let F be an S-instance satisfying C and Q and such that
Visible(F) = ∅. We aim at proving that NQI(Q,C,S,V) = false
for all realizable visible instancesV. LetV be a realizable instance
and F ′ an S-instance that satisfies C and such that Visible(F ′) =
V. We define the new instance F ′′ as a disjoint union of F and F ′.
Since the constraints C are preserved under disjoint unions, F ′′
satisfies C. Moreover, by monotonicity, F ′′ satisfies the UCQ Q.
SinceV = Visible(F ′) = Visible(F ′′), we have NQI(Q,C,S,V) =
false, whence ∃NQI(Q,C,S) = false.

By the above result and Theorem 20, we get that ∃NQI(Q,C,S)
is decidable in 2Exp for GNFO constraints that are closed under
disjoint unions, and in particular the problem is decidable for con-
nected FGTGDs. Combining with Corollary 27 we also get an Exp
bound for linear TGDs. In fact, we can improve the latter bound
by observing that NQI over the empty visible instance reduces to
Open-World Query Answering:

Proposition 31. For any BCQ Q, constraints C, and schema S,
NQI(Q,C,S, ∅) = true iff OWQ(Q′,C,CanonDB(Q)) = true,
where Q′ =

∨
R ∈Sv ∃x̄ R(x̄) and CanonDB(Q) is the canonical

database of the CQ Q (defined in Section 2).

We know from previous results [5] that OWQ for CQs and
linear TGDs is in PSpace. Thus the above reduction implies that
NQI(Q,C,S, ∅) (and hence ∃NQI(Q,C,S), by Theorem 30) is in
PSpace when C is a set of linear TGDs:

Corollary 32. ∃NQI(Q,C,S) is in PSpace, as Q ranges over
BUCQs and C over sets of linear TGDs.

There are matching lower bounds for ∃NQI. Recall that The-
orem 30 and Theorem 20 implied a 2Exp bound for connected
FGTGDs. To show a matching lower bound the key tool is the fol-
lowing reduction.

Proposition 33. There is a polynomial time reduction from OWQ
over a set of connected FGTGDs without constants and a connected
BCQ to an ∃NQI problem over a set of connected FGTGDs without
constants and a BCQ.

The existence of such a reduction is surprising, since OWQ deals
with deriving positive information while ∃NQI concerns negative
information.

Towards proving this reduction, we first state a characteri-
zation of NQI(Q,C,S, ∅). Recall that the latter problem is re-
lated to ∃NQI: indeed, Theorem 30 reduces ∃NQI(Q,C,S) to
NQI(Q,C,S, ∅) when the constraints C are preserved under dis-
joint unions. The proof of the characterization of NQI(Q,C,S, ∅),
given in the full version, exploits the universality of our variant of
the chase (Lemma 9).

Proposition 34. If Q is a BCQ and C is a set of TGDs
without constants, then NQI(Q,C,S, ∅) = true iff either Q
contains a visible atom, or it does not and in this case
Chasesvis(C,S,CanonDB(Q)) = ∅.

Using this we can prove the reduction from OWQ to ∃NQI:

Proof of Proposition 33. Consider the Open-World Query answer-
ing problem over a schema S, a set C of constraints without con-
stants and closed under disjoint union, a BCQ Q, and a S-instance
F . We reduce this problem to an ∃NQI problem over a new schema
S′, a new set of constraints C′, and a new BCQ Q′. The schema S′
is obtained from S by adding a relation Good of arity 0, which is
assumed to be the only visible relation in S′. The set of constraints
C′ is equal to C unioned with the constraint

S 1(x̄1) ∧ . . . ∧ S m(x̄m) → Good

where S 1(x̄1), . . . , S m(x̄m) are the atoms in the CQ Q. The query
Q′ is defined as the canonical query of the instance F , obtained
by replacing each value v with a variable yv and by quantifying
existentially over all these variables. Note that CanonDB(Q′) is
isomorphic to the input instance F .

Now, assume that the original constraints in C were connected
FGTGDs and the CQ Q was also connected. By construction,
the constraints in C′ turn out to be also connected FGTGDs. In
particular, the satisfiability of these constraints is preserved under
disjoint unions, and hence from Theorem 30, ∃NQI(Q′,C′,S′) =
true iff NQI(Q′,C′,S′, ∅) = true. Thus, it remains to show that
NQI(Q′,C′,S′, ∅) = true iff OWQ(Q,C,F) = true.

By contraposition, suppose that OWQ(Q,C,F) = false. This
means that there is a S-instance F ′ that contains F , satisfies the
constraints in C, and violates the query Q. In particular, F ′, seen
as an instance of the new schema S′, without the visible fact
Good, satisfies the query Q′ and the constraints in C′ (including the
constraint that derives Good from the satisfiability of Q). The S′-
instance F ′ thus witnesses the fact that NQI(Q′,C′,S′, ∅) = false.

Conversely, suppose that NQI(Q′,C′,S′, ∅) = false. Recall
that the constraints in C′ do not use constants and Q′ contains
no visible facts. We can thus apply Proposition 34 and derive
Chasesvis(C′,S′,CanonDB(Q′)) , ∅. Note that CanonDB(Q′) is
clearly isomorphic to the original instance F . In particular, there
is an instance K in Chasesvis(C′,S′,CanonDB(Q′)) that contains
the original instance F , satisfies the constraints in C′, and does not
contain the visible fact Good. From the latter property, we derive
that K violates the query Q. Thus K, seen as an instance of the
schema S, witnesses the fact that OWQ(Q,C,F) = false.

We note that there are two variants of OWQ, corresponding to
finite and infinite instances. However, by finite-controllability of
FGTGDs, inherited from the finite model property of GNFO (see
Theorem 1) these two variants agree. Hence we do not distinguish
them. Similar remarks hold for other uses of OWQ within proofs in
the paper.

From Proposition 33 and a prior 2Exp-hardness result [10], we
get the following lower bound:

Theorem 35. ∃NQI(Q,C,S) is 2Exp-hard as Q ranges over BCQs
and C over sets of connected FGTGDs.

Using a reduction from the implication problem for IDs, shown
PSpace-hard in [11], we get tightness of the bounds for linear TGDs:

Theorem 36. ∃NQI(Q,C,S) is PSpace-hard as Q ranges over
BCQs and C over sets of linear TGDs.

Finally, recall that our decidability result for ∃NQI applied
only to connected FGTGDs. We can show that the connectedness
property is critical for decidability.

Theorem 37. ∃NQI(Q,C,S) is undecidable, as Q ranges over
BCQs and C over sets of FGTGDs.

Proof. We give a reduction from the model conservativity prob-
lem for EL TBoxes, shown undecidable in [22]. Intuitively, EL
is a logic that defines FGTGDs over relations of arity 2, called
“TBoxes”. Given TBoxes φ1 and φ2 over two schemas S1 and S2,
respectively, with S1 ⊆ S2, we say that φ2 is a model conserva-
tive extension of φ1 if every S1-instance V that satisfies φ1 can be
extended to an S2-instance that satisfies φ2 without changing the
interpretation of the predicates in S1, that is, by only adding an in-
terpretation for the relations that are in S2 but not in S1. The model
conservativity problem consists of deciding whether φ2 is a model
conservative extension of φ1. In [22] this problem is proved to be
undecidable for both finite instances and arbitrary instances.

We reduce the above problem to the complement of
∃NQI(Q,C,S), for suitable Q, C, and S, as follows. Given TBoxes
φ1, φ2 over schemas S1 ⊆ S2, let S be the schema obtained from S2
by adding a new predicate Good of arity 0 and by letting the visi-
ble part be S1 (in particular, the relation Good is hidden). Further
let C = {φ1,Good → φ2}, where Good → φ2 is shorthand for the
collection of FGTGDs obtained by adding Good as a conjunct to
the left-hand side of each constraint of φ2 (note that this makes the
constraints unconnected). Finally, consider the query Q = Good.
We have that ∃NQI(Q,C,S) = true iff there is an S1-instance V
satisfying φ1, none of whose S2-expansions satisfies φ2.

A summary of results on negative implication is below. We
notice that the decidable cases are orthogonal to those for positive
implications: the dividing line for the positive case concerned the
presence of disjunction, while for the negative case it concerns
connectedness. Note also that unlike in the positive cases, we have
tractable cases for data complexity.

NQI Data NQI Combined ∃NQI

Linear P-complete Exp-complete PSpace-complete
TGD Cor 27/Prop 28 Cor 27/Thm 29 Cor. 32/Thm 36

Conn. Disj. Exp-complete 2Exp-complete 2Exp-complete
FGTGD Thm 20/Thm 21 Thm 20/Thm 21 Thm 30/Thm 35

FGTGD Exp-complete 2Exp-complete undecidable
& GNFO Thm 20/Thm 21 Thm 20/Thm 21 Thm 37

5. Conclusions
This work gives a detailed examination of implication of query re-
sults from schemas with hidden relations in the presence of con-
straints in expressive integrity constraint languages. In future work

we will look at whether a query is implied over “typical models”,
in the spirit of Miklau and Suciu’s [23].
Acknowledgements. Benedikt’s work was sponsored by the En-
gineering and Physical Sciences Research Council of the United
Kingdom, grants EP/M005852/1 and EP/L012138/1. Bourhis was
supported by CPER Nord-Pas de Calais/FEDER DATA Advanced
data science and technologies 2015-2020 and ANR Aggreg project
ANR-14-CE25-0017.

References
[1] S. Abiteboul and O. Duschka. Complexity of answering queries using

materialized views. In PODS, 1998.
[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases.

Addison-Wesley, 1995.
[3] J.-F. Baget, M. Leclère, M.-L. Mugnier, and E. Salvat. Extending

decidable cases for rules with existential variables. In IJCAI, 2009.
[4] J.-F. Baget, M.-L. Mugnier, S. Rudolph, and M. Thomazo. Walking

the complexity lines for generalized guarded existential rules. In
IJCAI, 2011.

[5] V. Bárány, G. Gottlob, and M. Otto. Querying the guarded fragment.
In LICS, 2010.

[6] V. Bárány, B. ten Cate, and M. Otto. Queries with guarded negation.
In VLDB, 2012.

[7] V. Bárány, B. ten Cate, and L. Segoufin. Guarded negation. In ICALP,
2011.

[8] M. Benedikt, P. Bourhis, B. ten Cate, and G. Puppis. Query visible
and invisible tables in the presence of constraints, 2015. arxiv.org.

[9] M. Benedikt, T. Colcombet, B. ten Cate, and M. V. Boom. The
complexity of boundedness for guarded logics, 2015.

[10] A. Calı̀, G. Gottlob, and M. Kifer. Taming the infinite chase: Query
answering under expressive relational constraints. JAIR, 48:115–174,
2013.

[11] M. Casanova, R. Fagin, and C. Papadimitriou. Inclusion dependencies
and their interaction with functional dependencies. JCSS, 28(1):29–
59, 1984.

[12] C. C. Chang and H. J. Keisler. Model Theory. North-Holland, 1990.
[13] A. Deutsch, A. Nash, and J. Remmel. The chase revisited. In PODS,

2008.
[14] W. Fan and F. Geerts. Relative information completeness. ACM TODS,

35(4):27, 2010.
[15] E. Franconi, Y. Ibáñez-Garcı́a, and I. Seylan. Query answering with

DBoxes is hard. ENTCS, 278:71–84, 2011.
[16] T. Gogacz and J. Marcinkowski. All-instances termination of chase is

undecidable. In ICALP, 2014.
[17] G. Gottlob and C. Papadimitriou. On the complexity of single-rule

datalog queries. Inf. Comp., 183, 2003.
[18] D. S. Johnson and A. C. Klug. Testing Containment of Conjunc-

tive Queries under Functional and Inclusion Dependencies. JCSS,
28(1):167–189, 1984.

[19] P. Koutris, P. Upadhyaya, M. Balazinska, B. Howe, and D. Suciu.
Query-based data pricing. In PODS, 2012.

[20] C. Lutz, I. Seylan, and F. Wolter. Ontology-based data access with
closed predicates is inherently intractable(sometimes). In IJCAI, 2013.

[21] C. Lutz, I. Seylan, and F. Wolter. Ontology-mediated queries with
closed predicates. In IJCAI, 2015.

[22] C. Lutz and F. Wolter. Conservative extensions in the lightweight
description logic EL. In CADE, 2007.

[23] G. Miklau and D. Suciu. A formal analysis of information disclosure
in data exchange. JCSS, 73(3):507–534, 2007.

[24] Z. Zhang and A. O. Mendelzon. Authorization views and conditional
query containment. In ICDT, 2005.

	Introduction
	Definitions
	Positive Query Implication
	Instance-level problem
	Schema-level problem

	Negative Query Implication
	Instance-level problem
	Schema-level problem

	Conclusions

