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Explicit Fixed-Point Computation of

Nonlinear Delay-Free Loop Filter Networks

Federico Fontana, Senior Member, IEEE, and Enrico Bozzo

Abstract

An iterative method is proposed for the explicit computation of discrete-time nonlinear filter net-

works containing delay-free loops. The method relies on a fixed-point search of the signal values

at every temporal step. The formal as well as numerical properties of fixed-point solvers delimit its

applicability: on the one hand the method allows for a reliable prediction of the frequency rates where

the simulation is stable; on the other hand its straightforward applicability is counterbalanced by low

speed of convergence. Especially in presence of specific nonlinear characteristics, the use of a fixed-point

search is limited if the real-time constraint holds. For this reason the method becomes useful especially

during the digital model prototyping stage, as exemplified while revisiting a previous discrete-time

realization of the voltage-controlled filter aboard the EMS VCS3 analogue synthesizer. Further tests

conducted on a digital ring modulator model support the above considerations.

Index Terms

Digital delay-free loop, nonlinear filter network, fixed-point method, voltage-controlled filter, ring

modulator.

I. INTRODUCTION

The Delay-free loop (DFL from now on) problem appears when a digital filter network models

one or more loopbacks containing no delay units along their path. Fig. 1(a) illustrates the problem

through a simple example: in that network, c(·) is a discrete-time transfer characteristic in which

no digital delay units can be factored out. Since the output v[n] from the filter block propagates
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Fig. 1. Delay-free loop (a). Network-equivalent transfer function, linear case (b). Explicit computation of the delay-free loop,

linear case (c).

instantaneously to the input of the same block after summation with u[n], there is no explicit

procedure allowing for the computation of the network.

If the block is linear then the output y[n] from the network can be computed by convolution

with an equivalent recursive filter which is linear in its turn, and incorporates the DFL as in

Fig. 1(b) [1]: y[n] = u[n] + (c ∗ y)[n] = (h ∗ u)[n]. However, when modeling sound processing

systems in the digital domain two situations can make this solution respectively unfeasible or

undesirable. The first situation concerns cases in which c(·) is nonlinear. Secondly, even if the

transfer characteristic is linear nevertheless it may vary in time depending on parameters which,

once mapped onto the coefficients of the equivalent filter, can cause inaccuracy or instability

during the computation. This second situation in particular affects digital realizations of analog

processors, whose control parameters are often heavily tweaked by musicians through manual

operation or use of specific driving signals.

Härmä first proposed an explicit solution of the linear DFL problem [2]. By expressing v[n]

as a linear superposition of a term q[n] depending on past input values and another term b0y[n]

depending on the current input value to the filter block, he was able to reduce the DFL to a

minimal loop structure computing only the instantaneous effects of the feedback in the network,

as illustrated in Fig. 1(c). That loop acts as a simple multiplier by (1− b0)−1. This solution has

permitted the realization of recursive [3] including “warped” [4] filter realizations, magnitude-
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complementary parametric equalizers [5], and an accurate linear model of the Moog voltage-

controlled filter (VCF from here on) [6]. All such realizations proved to be robust and precisely

responsive to online parametric control; in the meantime they preserved the structural aspects

of the original filter model, particularly the direct access to the control parameters. A multi-

dimensional solution of the DFL problem, applicable to any network of linear filters, allowed

for the realization of “warped” finite-difference time-domain schemes characterized by having

low wave dispersion [7].

The proposed solution, however, gives a partial answer to situations in which the DFL is

nonlinear. Using the same decomposition proposed by Härma, Zavalishin came to an explicit

solution of the linear DFL problem furthermore scalable to an implicit method for DFL structures

containing a saturating nonlinearity [8], he later used to model analog structures including

transistor and diode ladders that are core modules of the VCF [9]. Berners and Abel discretized

arbitrary DFL networks of linear filters, exemplifying also with a parametric system and including

memoryless nonlinearities in the loops [10]. More in general, an extension to nonlinear filter

networks of the aforementioned decomposition again expresses the output as a superposition

between a term depending on past input values and another term depending on the input at step

n. Yet, the computation of the latter requires to solve an equation containing a multidimensional

function f of the nonlinear transfer characteristics appearing in the network [11]:

vN [n] = f
(
vN [n] + WNuN [n] + W LvL[n],p

)
, (1)

in which the unknown array vN [n] collects the outputs from the nonlinear blocks, WN weighs the

external signal contributions uN [n] to the same blocks, W L weighs simultaneous contributions

vL[n] from the linear blocks belonging to the network, and finally p accounts for the dependency

of f on past values if there are nonlinear transfer characteristics with memory in the network.

Although quite general, such an approach proved successful in simulating the Chua-Felderhoff

RLC circuit, a distributed model of circadian oscillations [11], and a digital simulation of the

Dolby B system [12]. A similar approach was proposed by Yeh et al., who simulated guitar

distortion and vacuum tube amplifiers also optimizing the access to pre-computed solutions of

the nonlinear equation (1) through the use of netlists and multidimensional linear interpolation

[13], [14]. Both approaches rely on the K-method [15] that put a firm basis for the computation

of nonlinear DFLs with application to impact sound synthesis [16], particularly for the simulation

of hammer-string interactions in piano instrument models [17].
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The search for efficient discrete-time methods for the simulation of nonlinear analog circuits

has led to a broad family of numerical techniques with various degrees of generality, some of

which avoid the definition of a filter network and rather model the system under inspection as

a wave-based, state-space, or other structure.

The wave-based approach includes Block Compiler, an early automatized procedure for the

computation of nonlinear circuits such as vacuum tubes based on Wave Digital Filters [18]; the

WT method, organizing nonlinear Wave-Digital structures in a “wave tableau” with application to

RLC circuits, damped oscillators, and in general Wave Digital Networks containing one nonlinear

element [19]; recent Wave Digital Filter adaptors applicable to arbitrary topologies, which have

notably expanded the range of linear circuits admitting a Wave Digital Network model [20].

The state-space approach has been enriched with recent methods too, adding versatility [21],

efficiency [22] and modularity [23] to previous state-space representation frameworks [13], [11].

Other approaches include the Functional Transformation Method [24], applied to nonlinear fret-

string interactions and to room acoustic simulation; a Port-Hamiltonian approach preserving the

energy properties of the original analog audio circuit, that successfully simulated a diode clipper,

a common-emitter bipolar-junction transistor amplifier, and a wah pedal [25]; a linearization

method reproducing the system response around a static operating point through IIR filters,

which modeled the Moog VCF efficiently [26]; a method for modeling nonlinear wave digital

elements using the Lambert function [27]. In parallel to them, a number of successful solutions

have been proposed having different levels of generality (see for instance [28], [29], [30], [31],

[32]).

A. Scope and structure of the paper

This paper investigates whether a set of difference equations resulting from the discretization of

an ordinary differential equation system can be computed directly, once the difference equations

are expressed in the form of a nonlinear DFL network. The idea to compute a filter network as

it is makes the development of a musical circuit model almost immediate. On the other hand

it restricts the choice of numerical methods to solvers which must not transform the network,

with consequently expected lack of efficiency of the solution.

An early intuition behind this idea can be appreciated by looking back to Fig. 1. Instead of

calculating the output as y[n] = (u[n] + q[n])/(1 − b0) if b0 6= 1, hence realizing the network

in Fig. 1(c), y[n] can be iterated across the loop in Fig. 1(a) until either goes to infinity, or it
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converges to a fixed point. The iterative solution does not require the linearity of the characteristic

c(·). On the other hand it is more restrictive than the analytic, as y[n] converges only if |b0| < 1

and, in the limit, when b0 = 1 if u[n] + q[n] = 0. More in general, fixed point solvers rely on a

contractive property of the network. This property, if holding, provides sufficient conditions for

their convergence. In Wave Digital Networks the limit of having no more than one nonlinearity

has been overcome by relaxing the port adaptation constraint, and then finding a fixed-point

solution of the DFLs arising in the network thanks to their contractive behavior, descending

from passivity of the network elements [33], [34]. The contractive hypothesis has also allowed

for computing large Wave Digital Networks efficiently, using a relaxation method [35].

This intuition will be developed in the rest of the paper. In particular, it will be shown that if

the network satisfies a contractive property, then its internal signals can be computed at every

temporal step by means of a fixed-point search. The development will be regularly instantiated

to the VCF aboard the EMS VCS3 synthesizer, a case study for which an ad-hoc fixed-point

solution has already been computed [37]. Here, the filter model will be generalized in the length

of the diode ladder shown in Fig. 2, similarly to what has been done for the Moog VCF [36].

The paper has the following structure: Sec. II provides a scalar algebraic form for charac-

terizing linear DFL networks after their reformulation in terms of directed weighted graphs;

Sec. III elaborates on such networks solution, particularly on its computation through fixed-

point iteration; Sec. IV investigates the existence of a fixed-point solution and its relationship

with the response of a “causal equivalent” of the DFL network; Sec. V extends the previous

investigation to the nonlinear case, showing that a global fixed point exists if the DFL network

satisfies a contractive property; Sec. VI discusses merits and limits of the proposed method,

also in the light of research in circuit models where contraction is not needed; Sec. VII shows

its application to a discrete-time model of the ring modulator. Finally, Sec. VIII concludes the

paper.

II. SCALAR DFL NETWORKS: ALGEBRAIC FORM

Without loss of generality, we restrict the formalization to DFL filter networks containing

branches neither in parallel nor in series with each other inside one loop: the parallel can be

replaced by a single branch summing the transfer characteristics; the series can be replaced by

a single branch applying the transfer characteristics one after the other.
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Fig. 2. EMS VCS3 voltage-controlled filter: particular of the small-signals circuit. One diode ladder element is surrounded by

the rectangle in dashed line.

It will be convenient to start from the linear case. In this case we can put every DFL in the

same form as in Fig. 1(c), and aggregate the contribution q[n] depending on past input samples

directly into the input x[n] = u[n] + q[n] of a simpler DFL. After aggregation, the problem is

reduced to solving a scalar DFL network [7].

We represent this network by means of a directed weighted graph, whose nodes correspond to

the summation symbols appearing in the network. These nodes sum up the incoming signals at

each temporal step similar to what happens in the network, for this reason we denote them with

the same symbol. Bifurcations are conversely not represented in the graph, hence each node can
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have several outgoing branches all carrying out the sum of the incoming signals.

Fig. 3 (right) represents the graph of the VCS3 VCF, whose DFL network [37] is reported in

Fig. 3 (left) for convenience. This network results by performing a small-signals analysis of the

EMS VCS3 circuitry, which finally leads to the following system of equations [37], [26], [32]:

v̇C1 =
I0
2C

(
tanh

u− vOUT

2VT
+ tanh

vC2 − vC1

2σ

)
v̇C2 =

I0
2C

(
tanh

vC3 − vC2

2σ
− tanh

vC2 − vC1

2σ

)
v̇C3 =

I0
2C

(
tanh

vC4 − vC3

2σ
− tanh

vC3 − vC2

2σ

)
v̇C4 =

I0
2C

(
− tanh

vC4

6σ
− tanh

vC4 − vC3

2σ

)
vOUT =

2R2 +R1

2R1

vC4 =
(
K + 1/2

)
vC4

. (2)

Such equations in their turn generate the DFL network. All parameters are present in the circuit

in Fig. 2, except for σ and VT that depend on the diode characteristic. Accessible controls in that

circuit include the current I0, driving the filter resonance frequency, and the factor K = R2/R1

responsible for the feedback and consequent resonance level. The reader is forwarded to [37]

for a detailed development leading to the system (2).

In the linear case the blocks in Fig. 3 are approximated as s(x) = sx, t(x) = tx and r(x) = rx,

so that every branch simply rescales the signal coming from a node while sending it to another;

in particular, the application in series of s(·) and t(·) linking node 8 to node 1 reduces to

weighing the signal by the product of the respective coefficients. The same result is implied by

the loopback on node 8, involving the application in series of s(·) and r(·).

A graph having N nodes can be expressed by means of a matrix A sized N ×N , such that

Ai,j = α if there is a branch with weight α linking node j to node i. Note that A is the transpose

of the adjacency matrix of the graph [38]. In our example, labeling the N = 8 nodes as in Fig. 3,

and after substitution of the nonlinear characteristics r(·), s(·) and t(·) with corresponding scalar
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weights r, s and t, then

AVCF =



0 0 0 0 0 0 0 −ts

r 0 r 0 0 0 0 0

0 −s 0 s 0 0 0 0

0 0 −r 0 r 0 0 0

0 0 0 −s 0 s 0 0

0 0 0 0 −r 0 r 0

0 0 0 0 0 −s 0 s

0 0 0 0 0 0 −r −rs



.

The elements of AVCF are distributed around the diagonal, apart from one in top right position.

In fact, the nodes in Fig. 3 have been enumerated in a way that every branch connects a node

only with itself and its adjacent nodes. In general, if node i is linked only with nodes i − 1,

i and i + 1 through its outgoing branches then A is tridiagonal. If adjacency is also circular,

meaning that nodes N and 1 can be joined as well, then two further nonzero elements appear

in the rightmost top and leftmost bottom corners of A. Due to the presence of the feedback

amplifier, the VCF model leads to a graph exposing one circular adjacency from node 8 to node

1.

Let v be a column vector, whose ith element contains the signal value at node i. The ith

entry of the product Av gives the signal value at the same node in terms of the signals at the

nodes linked to it. In fact,
∑

j Ai,jvj sums the contributions to node i coming from all nodes

in the graph, each with its own respective weight. In particular, the contribution of the jth node

is weighed by Ai,j .

Through this matrix representation we can completely describe the behavior of a scalar DFL

network at step n. We in fact consider a column vector x, whose ith element contains the input

at node i coming from outside the network. Then, the signal v inside the corresponding graph

obeys the equation

v[n] = Av[n] + x[n]. (3)

III. NETWORK SOLUTION

Eq. (3) defines a linear system at every temporal step. We will get rid of the discrete-time

variable n throughout the whole section, aiming at adding focus to the analysis of this system:

(I −A)v = x. (4)
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If I−A is nonsingular then v = (I−A)−1x, meaning that the signal circulating in the network

at step n depends entirely on external contributions at the same step—remember that x = u+q,

i.e., x accounts also for the filters’ memory when the DFL network is linear.

We denote ρ(A) to be the spectral radius of A, that is, the magnitude of its largest eigenvalue.

Now,

• if ρ(A) < 1 then an iteration of the form

v[k+1] = Av[k] + x (5)

converges to v for an arbitrary choice of v[0], the initial set of signal values at the nodes at

step n. In this case Eq. (4) can be solved numerically through the fixed-point search (5),

by iterating until k is such that |v[k+1] − v[k]| fits below a desired precision threshold [39];

• if ρ(A) ≥ 1 then the iteration is not guaranteed to converge, even if I −A is not singular.

As an example, let A =

[
2 0

0 0

]
, so that ρ(A) = 2 > 1. Clearly I − A =

[
−1 0

0 1

]
is not

singular. If x =
[
1 0

]T
then the vector v =

[
−1 0

]T
solves (4). However, if v0 =

[
a b

]T
with a 6= −1 then the iteration (5) diverges.

The VCF network can be generalized [36], by cascading the element inside the rectangle in

dashed line in Fig. 3 (left). This generalization follows by varying the extension of the diode

ladder in Fig. 2. Fig. 4 illustrates effects of this variation if I0 sets the VCF center frequency to

400 Hz, and K is set to 4 thus providing moderate resonance level around the same frequency

in the canonical four-element ladder circuit. Increasing the number of elements causes the filter

to become progressively more resonant, until entraining the circuit into self-oscillation. Note,

however, that this oscillation saturates the filter with no explosion of the output. Similarly,

progressively larger voltages as the magnitude-increasing impulses producing each output in

Fig. 4 eventually saturate the filter, with no explosion of the output signal.

The consequent generalized graph of N nodes gives account of a cascade of N/2 such

elements, producing an equally long motif inside the rectangle in dashed line in Fig. 3 (right).

For this network, det(AVCF) = (ts)r(rs)N/2−1 = (rs)N/2t.

Since the determinant of a matrix is equal to the product of its N eigenvalues λ1, . . . , λN ,

i.e., det(A) =
∏N

i=1 λi, then we can already conclude that if | det(A)| > 1 then ρ(A) > 1. In

this case it makes no sense to start an iterative fixed-point search. In our example this condition

reduces to check whether

|rs|N/2|t| > 1 or |rs| > |t|−N/2 . (6)
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A critical parametric setting of the VCS3 VCF discrete-time model scales the signals by about

r = 1, s = 1500/Fs and t = 10, where Fs is the sampling rate of the simulation [37]. This setting

reproduces a situation in which the voltage driving the resonance frequency and the feedback

gain are both set to maximum. Using these parameters with N = 8 leads to |rs|N/2|t| ≈ 10−5

if the model runs at Fs = 44.1 kHz. In the light of inequality (6), this result suggests possible

and perhaps fast convergence of the fixed-point iteration especially for increasing values of N .

IV. EXISTENCE OF THE NUMERICAL SOLUTION

The eigenvalues of A are the roots of its characteristic polynomial PA(λ) = det(λI −A).

One further look to Eq. (5) shows that a fixed point is computed by repeatedly updating the

signals at each node. Hence, the iterative procedure is implemented by constantly feeding the

DFL network with the input value at step n until a fixed point is found out with sufficient

precision. This procedure is equivalent to computing the response to dc (i.e., a constant signal)

of a discrete-time filter network having the same topology, whose branches contain a delay unit

in series with each coefficient. We call this derivation causal equivalent of the original DFL

network.

It is straightforward to demonstrate that the causal equivalent is bounded-input bounded-output,

shortly BIBO stable if and only if ρ(A) < 1. In fact, by Z-transforming (5) on the iteration

index k we get

zV (z) = AV (z) + X(z), (7)

in which X(z) is the Z-transform of a constant extension of x along the iteration index. Moving

AV (z) to the left, and then multiplying both sides of the equation by (zI −A)−1 yields the

transfer matrix of the causal equivalent:

V (z) = (zI −A)−1X(z) =
adj(zI −A)

det(zI −A)
X(z), (8)

in which the operator adj gives the adjoint matrix. Since det(zI −A) = PA(z) is the charac-

teristic polynomial of A in z, the N poles z1, . . . , zN of the transfer matrix correspond to the

eigenvalues of A. Stability of the causal equivalent occurs if and only if |zi| < 1, i = 1, . . . , N ,

and this corresponds to have ρ(A) < 1.

Computing the roots of PA(λ) is often problematic, and other analysis tools can be used

instead to figure out their positions in the complex plane. The Gershgorin theorem shows that



DRAFT VERSION 11

the N eigenvalues of A are contained inside the disks δi = δ(ηi, ρi), i = 1, . . . , N , each defined

to have center in ηi = Ai,i and radius

ρi =
N∑
j=1
j 6=i

|Ai,j| (9)

in the complex plane [40]. In our example, if the disks contain the eigenvalues of AVCF then they

must contain also the (identical) eigenvalues of the similar matrix ÃVCF = D(α)AVCFD
−1(α),

with

D(α) =



1 0 0 0 0 0 0 0

0 α 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 α 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 α 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 α



.

This endomorphism maps the coefficients r, s, and t respectively in r̃ = αr, s̃ = α−1s, and

t̃ = t in ÃVCF. If applied to the similar matrix, the Gershgorin theorem provides N disks that

reduce to four after pruning those having identical center and radius:

δ1 = δ(0, |tα−1s|), δ2 = δ(0, 2|αr|)

δ3 = δ(0, 2|α−1s|), δ4 = δ(−rs, |αr|)
. (10)

Convergence to a fixed-point is guaranteed if their union is in the disk δγ = δ(0, γ), with γ < 1.

Disk δ2 satisfies inclusion in δγ if |α| < γ(2|r|)−1. Importing this inequality while minimizing

|s| between radii ρ1 and ρ3 offers:

|s| ≤ min
{
γ
|α|
2
, γ
|α|
|t|

}
≤ min

{ γ2

4|r|
,
γ2

2|rt|

}
. (11)

This condition, along with the previous constraint on |α|, guarantees that δ4 is in δγ as well:

|rs|+ |αr| ≤ γ2

4
+
γ

2
<

3

4
γ . (12)

As opposed to the necessary condition (6) that we checked on the spectral radius by computing

det(AVCF), the Gershgorin’s disks establish no dependency on N/2, the length of the VCF

ladder. Furthermore, the VCF model always satisfies |r| ≤ 1. Since |rt| ≈ 10 when the filter

feedback gain is set to maximum, condition (11) requires |s| / 0.05, a magnitude we have seen
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this scaling parameter meets as soon as the sampling rate in the digital model is set to about 30

kHz or greater.

Condition (11) not only puts a sufficient constraint on the spectral radius. It also establishes

an identical inequality for the following matrix norm:

‖A‖D(α),∞ = ‖D(α)AD−1(α)‖∞

= max
i

N∑
j=1

∣∣(D(α)AD−1(α)
)
i,j

∣∣ . (13)

This norm [41] is induced by the vector norm ‖x‖D(α),∞ = ‖D(α)x‖∞ = maxi
∣∣(D(α)x

)
i

∣∣.
Specifically in our example, condition (11) implies

‖AVCF‖D(α),∞ < γ. (14)

We will make use of this inequality in the next section, while dealing with the nonlinear case.

V. EXISTENCE OF THE NONLINEAR SOLUTION

We deal with nonlinear DFL networks by generalizing the coefficients in A into functions

fi,j : R → R of the corresponding scalar input vj . Hence, at every step the output from the

nodes results by applying a function f : RN → RN whose components f1, . . . , fN are such that

fi(v) =
N∑
j=1

fi,j(vj), i = 1, . . . , N. (15)

If the functions fi,j are derivable each with continuous derivative, then

fi(u)− fi(v) =
N∑
j=1

fi,j(uj)− fi,j(vj)

=
N∑
j=1

f ′i,j(ξi,j)(uj − vj),

(16)

with uj ≤ ξi,j ≤ vj . If we denote with Ξ the matrix whose entries are the values ξi,j with

i, j ∈ 1, . . . , N , then

f(u)− f(v) = Jf (Ξ)(u− v), (17)

in which Jf (Ξ) is the matrix whose entries are the values f ′i,j(ξi,j).

For every vector norm and its induced matrix norm the following inequality holds [41]:

‖f(u)− f(v)‖ ≤ ‖Jf (Ξ)‖‖(u− v)‖. (18)
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If ‖Jf (Ξ)‖ ≤ γ < 1 ∀Ξ ∈ RN×N , then f is a contraction over RN . This condition is strong

enough to guarantee that the equation v = f(v)+x has a unique fixed point that can be searched

through the iteration v[k+1] = f(v[k]) + x [42]. Such two formulas respectively generalize (3)

and (5) to the nonlinear case.

In the case of the VCF, Jf is obtained starting from AVCF by assuming r(x) = tanh(x/χ),

s(x) = sx, and t(x) = tx. Later in this section χ will be properly set among three possible values:

2VT , 2σ and 6σ, all appearing as arguments of the tanh functions in (2). The consequent matrix,

we call it JVCF, hence is equal to (19) with r′(ξi,j) = (1/χ){1 − tanh2(ξi,j/χ)}, s′(ξi,j) = s

and t′(ξi,j) = t.

Let ‖f‖∞ = supx∈R |f(x)|. Similarly to what we figured out in Sec. IV when applying the

Gershgorin theorem to AVCF, if ‖r′‖∞ is limited then we can rewrite (11):

‖r′‖∞ ≤ min
{ γ2

4‖s′‖∞
,

γ2

2‖s′‖∞‖t′‖∞

}
=

γ2

2|st|
, (20)

where the last term follows when t is set to be critical. Holding this condition then ‖JVCF(Ξ)‖D(α),∞ <

γ and this, if γ < 1 in its turn, guarantees the convergence of the iteration v[k+1] = f(v[k]) + x

with a speed that eventually will be inversely proportional to γ. In fact, the smaller the radius

γ, the faster the convergence is [39].

Condition (20) predicts the behavior of the VCF model simulations better than the linear

estimate (11). Holding

‖r′‖∞ =
1

χ

∥∥∥1− tanh2(
x

χ
)
∥∥∥
∞

=
1

χ
≤ 1

0.052
, (21)

where we have selected the smallest (i.e., worst-case) voltage parameter χ = 2VT = 0.052 in the

model [37], (20) suggests that small values of |s| and |t| afford faster convergence to the fixed

point thanks to the possibility for γ to be small, too. Conversely, an increase of |s|—consequence

of shifting upward the resonance frequency of the filter by rising the characteristic point of the

diodes forming the ladder—rapidly slows down the convergence, because γ is pushed toward the

unit boundary by a quadratic law. If we recall the worst-case parameterization given in Sec. III,

(20) and (21) immediately yield

1

0.052
≤ min

{ γ2Fs
6 · 103

,
γ2Fs

3 · 104

}
, thus γ '

√
577 · 103

Fs
,

meaning in practice that convergence of the fixed-point iteration is guaranteed for every choice

of the filter parameters if the model is sampled at a rate of 577 kHz, or greater.
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This conclusion matches well with previous simulations of the VCS3 VCF digital model,

whose real-time implementation at 48 kHz was particularly efficient unless the resonance fre-

quency was turned up above few thousand Hertz in presence of moderate or strong feedback

gain: with this choice of the parameters, the number of fixed-point iterations hit the upper bound

protecting the system from excessive computational load [37].

VI. DISCUSSION

The proposed method can be applied to a discrete-time filter network model containing one

or more DFL. Holding contractive property (18), at every temporal step it refines the solution by

finding out—with increasing precision with the number of iterates—values that accommodate

the instantaneous dependencies existing among the blocks in the network. The method operates

irrespective of the discretization technique, hence it is applicable in general whenever a DFL

appears in the digital network resulting after discretization.

In its current state the method cannot handle nonlinear combinations of the variables, including

simple geometric nonlinearities of the type fk(v) = vivj with i 6= j for some k. This limitation

corresponds to having network graphs containing only summation nodes. It descends from (15),

defining fi(v) as a superposition of (either linear or not) scalar terms fi,1(v1), . . . , fi,N(vN).

Such a definition implies in particular that the method cannot deal with most situations in which

an internal signal is used for instantaneous dynamic control. An intractable DFL of this type

would arise in the VCF model, if the output from the filter was short-circuited back to the system

through the resonance frequency control input. An extension of the method to network blocks

accepting multiple signal variables requires a generalization of Eqs. (15)–(18), a possible object

of future research.

Conversely, dynamic changes of the VCS3 VCF parameters s and t driven by external voltage

signals—for instance sinusoids, often adopted by musicians to control the resonance point and,

less frequently, the feedback gain—result in constant derivatives. There is in fact no dependency

on v in such voltage functions. In other words, at every temporal step s′ and t′ simply “freeze” to

the respective value s and t they are equal to in that moment: at this point they are subjected to

condition (20), hence required to stay in the parametric ranges we have already seen in Sec. III.

Fixed-point solvers are known for their low speed of convergence. Recent results in musical

circuit modeling successfully investigated alternative solutions, leading to nonlinear Wave Digital

Networks whose DFL blocks have been computed using Newton’s methods [43] or the K-method
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[15], solving a nonlinear Wave Digital DFL through table lookup [44]. In both cases the contrac-

tive property became unnecessary. Particularly in the case of the VCS3 VCF, whose discrete-time

model was obtained by bilinear transformation of the analog blocks, the computational issues we

mentioned at the end of Sec. V were eventually overcome through a polynomial rearrangement of

the nonlinear equations, exploiting the self-similarity of the derivative of the hyperbolic tangent.

This rearrangement resulted in a digital realization converging in six iterations or less at 176

kHz, irrespectively of the parametric settings [45].

The possibility to include more efficient solvers in our method, and the structural changes this

inclusion would determine in the original network structure are left to future research. For the

moment, the proposed method can be used as a prototyping tool that furthermore unveils critical

ranges of the driving parameters.

Sometimes, virtual analogue system designers have guaranteed explicit computability of their

filter network realizations by inserting at least one fictitious unit delay. Perhaps counterintuitively,

the stability of such a network does not imply convergence of the fixed-point solution in the

original DFL realization under identical input and parameter values. In principle the network

including fictitious delays is merely a modified version of the DFL network, whose causal

equivalent might be unstable under certain conditions as opposed to its reformulation containing

additional delays. This situation happens in systems whose norm ‖Jf (Ξ)‖ dramatically increases

at certain temporal steps in consequence of the abrupt change in the values of some scalar

derivatives fi,j , abolishing the contractive property of f . The VCS3 VCF model is exempt from

the risk of unexpected instability, since (20) depends only on external parameters. An example

where conversely this situation can happen is reported in the next section.

VII. EXAMPLE: RING MODULATOR

As an application example we have chosen the ring modulator circuit shown in Fig. 5 (above).

Thanks to the closed-loop connection of four diodes, the circuit generates an output voltage

vOUT(t) by multiplying (in an analogue sense) two inputs m(t) and c(t), respectively a modulator

and a carrier signal. Its model description in Fig. 5 (below) was obtained by loading the output

point with a resistance Ra, and then by putting the carrier source resistance Ri in parallel with

a regularizing capacitance Cp [46]. This analogue model leads to a system of two current and

seven voltage ordinary differential equations establishing the filter network in Fig. 6, in which

the voltages v1, v2 at the transformers and v3 in series with the carrier signal are fed back to
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the blocks computing the currents i1, i2 at the transformers and the voltages v4, v5, v6, v7 at the

diodes. In this network, C = Cp = 10−9 F, L = 0.8 H, Ra = 600 Ω, Ri = 50 Ω, Rm = 80 Ω,

and g(v) = 0.17v4 approximates the 1N270 germanium diode voltage-to-current characteristic

at low positive voltages, with g(v) = 0 if v < 0 [46]. Finally, v2 is also the output voltage.

Each differential block in Fig. 6 can be discretized with explicit or implicit methods. The

former compute the output using past values of the input. The latter compute the output at

step n once the input at the same step is known, in general being more accurate and stable

meanwhile giving rise to the DFL problem if used everywhere in the network. Real-time digital

audio effects often trade off between efficiency and accuracy, by realizing a discrete-time model

avoiding the DFL problem meanwhile computing the differential blocks with implicit methods

wherever possible. If Euler methods are used, then backward (v[n] = v[n−1]+x[n]/Fs, implicit)

differs from forward (v[n] = v[n−1]+x[n−1]/Fs, explicit) Euler by the presence of an equivalent

unit, delaying the input by 1/Fs s.

In the case of the ring modulator such a trade-off can be realized by discretizing the feed-

forward blocks with forward Euler, and the feedback blocks with backward Euler. We will refer

to this realization as “explicit solver” [46]. On the other hand, the fixed-point iteration can be

used for comparing DFL network realizations based on different discretization methods. In our

application example the explicit solver will be compared against two implicit realizations of

the network, respectively computing each block with backward Euler or with trapezoidal rule,

i.e. v[n] = v[n−1] + (x[n] + x[n−1])/(2Fs).

Both realizations are described by the difference equation system (22) depending on how the
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parameter µ is set: µ = 1 for backward Euler, or µ = 1/2 for trapezoidal rule.

v1 =
µRm

µ+ CFsRm

( m
Rm

+ i1−

− g(v4)

2
+
g(v5)

2
− g(v6)

2
+
g(v7)

2

)
+ pastv1

v2 =
µRa

µ+ CFsRa

(
i2+

+
g(v4)

2
− g(v5)

2
− g(v6)

2
+
g(v7)

2

)
+ pastv2

v3 =
µRi

µ+ CpFsRi

(
g(v4) + g(v5)− g(v6)− g(v7)

)
+ pastv3

v4 =
v1
2
− v2

2
− v3 − c

v5 =− v1
2

+
v2
2
− v3 − c

v6 =
v1
2

+
v2
2

+ v3 + c

v7 =− v1
2
− v2

2
+ v3 + c

i1 =− µ

LFs
v1 + pasti1

i2 =− µ

LFs
v2 + pasti2 .

(22)

In the above system the terms in n − 1 have been conglomerated within the term past. Such

terms are unimportant for the study of convergence and can be straightforwardly figured out, by

respectively applying backward Euler or the trapezoidal rule to the differential equation system

described by the filter network in Fig. 6.

The delay-free network is described by the graph in Fig. 7. The matrix JRM (23) of the

derivatives obtained from (22) follows accordingly, in which

ρm =
µRm

µ+ CFsRm

, ρa =
µRa

µ+ CFsRa

, ρi =
µRi

µ+ CpFsRi

.

This time we set up an endomorphism by making use of a matrix D(α, β) which is defined as
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follows:

D(α, β) =



α 0 0 0 0 0 0 0 0

0 α 0 0 0 0 0 0 0

0 0 α 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 β 0

0 0 0 0 0 0 0 0 β



.

An inequality equivalent to (20) can be found by choosing α = 2/γ. This choice guarantees

that the constant entries appearing in the six lower rows of D(α, β)JRMD
−1(α, β) sum up

in magnitude exactly to γ. Now, the last two rows determine a Gershgorin disk providing the

condition βα−1µ/(LFs) ≤ γ, that gives β ≤ 2LFs/µ = 1.6Fs/µ. In parallel the first row gives

the inequality ρmβ−1α + 2‖g′‖∞ρmα < γ, equivalent to

‖g′‖∞ ≤
γ2

4ρm
− 1

2β
=
γ2

4

( 1

Rm

+
CFs
µ

)
− 1

2β
. (24)

Analogously, the second row gives

‖g′‖∞ ≤
γ2

4ρa
− 1

2β
=
γ2

4

( 1

Ra

+
CFs
µ

)
− 1

2β
, (25)

and since Ra > Rm, inequality (25) is stronger than (24). Finally, the third row gives

‖g′‖∞ ≤
γ2

8ρi
=
γ2

8

( 1

Ri

+
CpFs
µ

)
. (26)

A formal stability analysis is probably of no primary interest while prototyping different

implicit solvers of the network in Fig. 6 using the fixed-point method, however it suggests

interesting conclusions once the circuit parameters are looked again. Inequalities (24) and (25)

are initially bound by the negative term −1/(2β) ≤ −µ/(3.2Fs), meaning that no convergence

to the fixed point is possible unless Fs is turned up until the positive term γ2/(4Ra) = γ2/2400

counterbalances −1/(2β). Choosing for instance to solve with backward Euler, i.e. µ = 1, in

the limit 1/(2β) = µ/(3.2Fs) and γ = 1 this happens if

1

3.2Fs
≤ 1

2400
, thus Fs ≥ 750 Hz. (27)
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From this sampling frequency value, all inequalities remain essentially unchanged until the term

CFs/µ = CpFs/µ starts to dominate over 1/Ri proportionally with Fs. This, however, happens

when the sampling frequency is turned up until some hundred kHz.

As opposed to the VCS3 VCF, whose fixed-point convergence is signal-independent, larger

voltage amplitudes in the ring modulator circuit rapidly increase the derivative g′ of the currents

flowing through the diodes, pushing the fixed-point search toward instability unless Fs is further

increased. It must be also noticed that at high sampling rates the bound (26) depends on the

product γ2CpFs. This means that faster convergence afforded by smaller γ values results in

smaller ranges of convergence as a side effect. In practice we expect that higher sampling rates

may accelerate the convergence, however with no proportional benefit in terms of stability. This

conclusion suggests a problematic fixed-point solution of the digital ring modulator model, as

we should ultimately expect in front of four 4th-order polynomial nonlinearities operating in the

circuit.

A. Simulations

The explicit solver has been compared against the DFL realizations obtained through backward

Euler and trapezoidal rule in three conditions, each considering two input sine waves having a

common amplitude but different frequencies respectively for the modulator and carrier signal:

150 mV, 500 Hz and 100 Hz for simulation 1; 150 mV, 5 kHz and 500 Hz for simulation 2; 500

mV, 5 kHz and 500 Hz for simulation 3. In all such conditions the carrier was first constantly

set to 100 mV for 3 ms—see Fig. 8 (above). The fixed-point solution was approximated by

stopping the search when |v2,[k+1] − v2,[k]| < 10−4, i.e., when the magnitude error affecting the

output signal was less than 0.1 mV. In all simulations a reference sampling rate Fs = 44.1 kHz

was oversampled by a factor l, which was empirically set to be the smallest factor guaranteeing

stability of the simulation running on a Linux Octave software environment. Fig. 8 (below) shows

the output of simulation 2 during the first 10 ms using backward Euler, while Fig. 9 shows the

corresponding spectrum up to the Nyquist frequency, limited to when the carrier was sinusoidal

along 200 ms.

Table I summarizes the results, all referring to simulations lasting 0.5 s. For each simulation,

the table shows the computations a solver on average made to produce an output sample. Figures

of computation result by multiplying l times the average number of iterations the solver made

along the simulation—see Fig. 10. The explicit solver obviously did not need to iterate.
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TABLE I

AVERAGE NUMBER OF COMPUTATIONS FOR DIFFERENT SIMULATION METHODS AT EVERY TEMPORAL STEP

Solver Simulation 1 Simulation 2 Simulation 3

explicit 28 27 65

backwd E. 23 · 1.9 = 43.7 22 · 2.8 = 61.6 99 · 3.6 = 356.4

trapezoidal 29 · 1.1 = 31.9 29 · 2.1 = 60.9 71 · 4.9 = 347.9

All methods show low sensitivity to the frequency of the modulator and carrier sine waves.

Conversely, if their amplitude is increased to 500 mV, a value which pushes the diodes to an

almost identical operating voltage, then the oversampling factor must be increased. Especially

backward Euler needs this factor to be substantially turned up. However, once in the stability

range this solver does not computationally cost much more than the trapezoidal rule, as the

fixed-point solution requires proportionally less iterations on average.

The explicit solver is more efficient than the implicit procedures, particularly during simulation

3. Relaxing the stop condition shifts backward Euler toward the performance of the explicit

solver, i.e., less iterations at the cost of proportionally higher oversampling factors. In parallel

the trapezoidal rule is less flexible, although it still benefits in term of computations from a

relaxation of the stop condition.

The higher cost of the implicit procedures is probably rewarded in terms of accuracy of the

output. This conclusion is supported by comparing, during simulation 2, the explicit solution

obtained using forward Euler against the implicit solution obtained using backward Euler. Even

if stability holds for both solvers, Fig. 11 shows that an appreciable difference exists between

the two solutions. In particular, this difference becomes temporarily comparable to the output

signal magnitudes immediately after the carrier signal has switched from constant to sinusoidal.

Since, by observing Fig. 10, this transient comes together with slower convergence—remember

the fixed-point solver checks an absolute threshold value at every iteration—we conclude that

the implicit solution during this transient defines a trajectory which is closer to the output of the

analog model.

The simulations of the ring modulator reinforce the idea that the fixed-point solution of a

DFL network brings benefit especially during the prototyping stage, when the behavior and

accuracy of different block discretizations should be checked in relatively little time. Based on
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such prototypes, more advanced solvers can be evaluated and eventually realized. To this regard,

nonlinear Wave Digital Networks such as those mentioned in Secs. I and VI offer an attractive

alternative also because recently they have modeled systems that are not strictly passive. In this

case, non-contraction has been efficiently worked around using Newton’s solvers [43]. These

networks, hence, now may handle characteristics such as the polynomial diode approximation

g(·) proposed for our ring modulator model. In fact, literature published when this manuscript was

under revision has solved the same ring modulator circuit efficiently by means of a hybrid Wave

Digital model, whose diode function was set to admit little reverse current to favor stability [47].

The nonlinear DFLs arising in that wave-based hybrid model were computed using a Newton

method.

VIII. CONCLUSION

A method for the explicit computation of nonlinear filter networks containing DFLs has been

presented. In presence of a contractive property, such networks allow for a fixed-point search

of the signals flowing along the loops. In spite of its flexibility and immediacy of application,

inherent numerical issues affecting fixed-point schemes limit the power and effectiveness of the

proposed method. On the other hand a fixed-point search can become useful during the digital

model prototyping stage, provided also the possibility to figure out the range of frequency rates

in which fixed-point convergence is guaranteed once a numerical solver has been selected for the

filter blocks. Such features have been tested on a ring modulator model, whose realization in the

discrete-time is complicated by the the closed-loop connection of four polynomial nonlinearities.

Although in the Kirchhoff domain, our method currently faces technical obstacles similar to

those that have been recently dealt with by Wave Digital Networks, whose multiple nonlinearities

require efficient methods to compute the DFLs [43], [44], [48]. Future research will aim at

understanding if the substitution of the fixed-point with Newton iteration can still preserve the

original network structure, as well as if the latter can allow for a convergence analysis similar

to what the fixed-point solver made possible to do.

ACKNOWLEDGMENT

The authors thank the reviewers for their careful reading of the manuscript, and acknowledge

the support of the PRID project ENCASE funded by the University of Udine.



DRAFT VERSION 22

REFERENCES

[1] J. Szczupak and S. K. Mitra, “Detection, location, and removal of delay-free loops in digital filter configurations,” IEEE

Trans. on Acoustics, Speech and Signal Processing, vol. 23, no. 6, pp. 558–562, 1975.
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Fig. 3. VCS3 VCF network model (left) and its graph (right). One ladder element in the network and its counterpart in the

graph are surrounded by a rectangle in dashed line.
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of three voltage impulses respectively measuring 10 mV, 100 mV and 1 V. In all filters I0 sets the VCF center frequency to

400 Hz and K is set to 4.

JVCF(Ξ) =



0 0 0 0 0 0 0 −s′(ξ1,8)t′(s(ξ1,8))

r′(ξ2,1) 0 r′(ξ2,3) 0 0 0 0 0

0 −s′(ξ3,2) 0 s′(ξ3,4) 0 0 0 0

0 0 −r′(ξ4,3) 0 r′(ξ4,5) 0 0 0

0 0 0 −s′(ξ5,4) 0 s′(ξ5,6) 0 0

0 0 0 0 −r′(ξ6,5) 0 r′(ξ6,7) 0

0 0 0 0 0 −s′(ξ7,6) 0 s′(ξ7,8)

0 0 0 0 0 0 −r′(ξ8,7) −s′(ξ8,8)r′(s(ξ8,8))


(19)
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JRM(Ξ) =
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Fig. 8. Ring modulator. Above: modulator (thin gray line) and carrier (thick black line) input signals, first 10 ms. Below: output

signal with backward Euler discretization, first 10 ms.
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DRAFT VERSION 33

time [s]

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

it
e

ra
ti
o

n
s

0

1

2

3

4

5

6

7

8

9

10

Fig. 10. Ring modulator. Number of iterations at each temporal step during the fixed-point search leading to Fig. 8.



DRAFT VERSION 34

time [s]

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

m
a
g
n
it
u
d
e
 d

if
fe

re
n
c
e
 [
V

]

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Fig. 11. Ring modulator. Difference between the explicit and fixed-point solution leading to Fig. 8, first 10 ms.


