Universita degli studi di Udine

Fostering Program Comprehension in Novice Programmers - Learning
Activities and Learning Trajectories

Original

Availability:
This version is available http://hdl.handle.net/11390/1173752 since 2021-03-23T17:18:27Z

Publisher:
Association for Computing Machinery

Published
DOI:10.1145/3344429.3372501

Terms of use:

The institutional repository of the University of Udine (http://air.uniud.it) is provided by ARIC services. The
aim is to enable open access to all the world.

Publisher copyright

(Article begins on next page)

23 July 2025

Fostering Program Comprehension in Novice Programmers -
Learning Activities and Learning Trajectories

Cruz Izu”
The University of Adelaide
Adelaide, Australia
cruz.izu@adelaide.edu.au

Quintin Cutts
University of Glasgow
Glasgow, UK
quintin.cutts@glasgow.ac.uk

Birte Heinemann

Paderborn University

Paderborn, Germany
birte.heinemann@uni-paderborn.de

Claudio Mirolo
University of Udine
Udine, Italy
claudio.mirolo@uniud.it

ABSTRACT

This working group asserts that Program Comprehension (Prog-
Comp) plays a critical part in the process of writing programs. For
example, this paper is written from a basic draft that was edited
and revised until it clearly presented our idea. Similarly, a program
is written in an incremental manner, with each step tested, de-
bugged and extended until the program achieves its goal. Novice
programmers should develop program comprehension skills as they
learn to code so that they are able both to read and reason about
code created by others, and to reflect on their own code when writ-
ing, debugging or extending it. To foster such competencies our
group identified two main goals: (g1) to collect and define learning
activities that explicitly address key components of program com-
prehension and (g2) to define possible learning trajectories that will
guide teachers as they select and sequence those learning activities
in their CS0/CS1/CS2 or K-12 courses.

Both goals were achieved as described in this report: after a
thorough literature review, a detailed description of the Block Model
is provided, as this model has been used with a dual purpose (p1)
to classify and present a comprehensive list of ProgComp tasks
and (p2) to define a possible learning trajectory for a complex task,
covering different cells of the Block Model matrix. The latter will
help instructors to decompose complex tasks and identify which
aspects of ProgComp are being fostered.

*Leads

Pre-print of the paper (accepted manuscript) for the institutional repository and not
for redistribution. See terms of the ACM Copyright Transfer Agreement.

ITiCSE 19, July 15-17, 2019, Aberdeen , UK — Published article:
https://doi.org/10.1145/3344429.3372501

Carsten Schulte”
Paderborn University
Paderborn, Germany

carsten.schulte@uni-paderborn.de

Rodrigo Duran

Aalto University

Helsinki, Finland
rodrigo.duran@aalto.fi

Eileen Kraemer
Clemson University
Clemson, SC, USA
etkraem@clemson.edu

Ashish Aggarwal
University of Florida
Florida, USA
ashishjuit@ufl.edu

Mirela Gutica
British Columbia Institute of
Technology
Burnaby, Canada
mirela_gutica@bcit.ca

Violetta Lonati
University of Milan
Milan, Italy
lonati@di.unimi.it

Renske Weeda
Radboud University
Nijmegen, Netherlands
renske.smetsers@science.ru.nl

KEYWORDS

program comprehension; learning trajectories; CS1; novice pro-
grammers; K-12 computing

ACM Reference Format:

Cruz Izu, Carsten Schulte, Ashish Aggarwal, Quintin Cutts, Rodrigo Duran,
Mirela Gutica, Birte Heinemann, Eileen Kraemer, Violetta Lonati, Claudio
Mirolo, and Renske Weeda. 2019. Fostering Program Comprehension in
Novice Programmers - Learning Activities and Learning Trajectories . In
ITiCSE ’19: The 24th ACM Annual Conference on Innovation and Technology
in Computing Science Education, July 15-17, 2019, Aberdeen , UK. ACM, New
York, NY, USA, 24 pages. https://doi.org/10.1145/3344429.3372501

1 INTRODUCTION

“... The aim of life is not to change the world but to
understand it

Youth with Split Apple, Kenny Hunter, 2005!

The quote above highlights the split between changing/creating
and understanding. This same split is also seen in debates about
teaching and learning programming, e.g. [27, 81]. Learning to pro-
gram is not only about mastering the syntax and semantics of each
construct of a programming language. From the outset, Soloway
identified two key issues on learning to program [97]: the ability to
identify a plan, a stereotypical solution to a programming problem,
and an understanding of how “the computer turns a static program
written on a piece of paper into a dynamic entity that exists over
time”, in which the causal relationships between statements are im-
portant for understanding and describing how the program works.
The behavior of the machine is often too complex for students to

nscription on a sculpture in front of the Working Group building in Aberdeen.

https://doi.org/10.1145/3344429.3372501
https://doi.org/10.1145/3344429.3372501

comprehend, beginners in particular. Instead, instructors present a
pedagogically designed simplification of the machine behavior to
students, a model described as the Notional Machine [27].

Multiple models have been proposed to analyze program com-
prehension in terms of types of information implied [73], mental
representations [115], cognitive demand [30], or as a hypothesis-
driven process [109]. The 2010 ITiCSE Working Group report [91]
compared and contrasted how those models conceptualize program
comprehension. Although this comparison was the main focus of
the report, it also provided some insights into learning concepts
and obstacles, effective learning tasks and teaching methods. Thus,
this Working Group continues to explore and support the teach-
ing insights given in [91] by collecting and categorizing suitable
learning tasks for Program Comprehension (ProgComp for short).

The focus on how different tasks develop the thinking process
of learners and how tasks should be ordered to support effective
learning progressions is what distinguishes our Working Group
(WG) from other approaches that have collected useful examples
and tasks, e.g. [12, 58, 87]. In other words, we have focused not on
how to assess program comprehension, but on how to foster it.

In order to achieve these goals, we followed a five step plan:

Step 1 — Review the current state of research and development
by analyzing literature on proposed activities addressing
ProgComp.

Step 2 — Concurrently, interview instructors at various institutions
on their classroom activities to foster ProgComp.

Step 3 — Use the outputs from the literature review and instructors’
interviews to define and conceptualize what is meant by
ProgComp in the context of novice programmers.

Step 4 — Catalog learning activities with regard to their prerequi-
sites, intended learning outcomes and additional special
characteristics.

Step 5 — Develop a map of learning activities and thereby also
models of probable learning trajectories.

Regarding step 2, we wanted to learn from educators which el-
ements and kinds of mental representation they seek to convey
when teaching introductory programming classes. We also asked
them to report any abstract or concrete (e.g., code) examples/ac-
tivities/exercises they use for teaching these representations and
what challenges students usually encounter when comprehending
programs. Therefore, we are building on what Lobato and Walters
have named the hypothetical learning trajectory, the trajectory as
seen through the eyes of the instructor [55, p. 84]:

The starting point in teacher planning is the creation
of conjectures regarding what students understand
initially and what they may be able to learn next. In-
structional tasks are selected, not only on the basis of
generic task features, such as high cognitive demand
or student interest, but also because of an inferred
quality of being able to engender the next level of
sophistication of student thinking.

As we implemented the plan, it became clear that a framework
for classification was needed in step 4. The WG found out such a
framework was also useful to analyze an individual task concerning
its prerequisites and thereby allowing to design learning trajectories
that can be customised to adapt to learners’ prior knowledge.

The rest of the report is organised as follows. In the first part
of this paper, sections 2 and 3, we revisit previous works related
to ProgComp and its theoretical foundations. Section 2 provides a
definition of comprehension that ties concrete activities fostering
ProgComp to the goals we expect students to achieve. It also situates
comprehension as part of programming knowledge, and describes
how program comprehension is assessed and taught. Section 3
presents the Block Model [90], which is our chosen framework to
reason about ProgComp. We also describe tasks to foster ProgComp
found in prior work, using the Block Model to analyse and classify
those sample tasks.

The second part of this paper has 3 sections, each investigating
and reporting work done by the WG covering different aspects
of ProgComp. In section 4 we present perspectives on program
comprehension from our practitioners’ points of view. In section 5
we provide an extensive list of ProgComp tasks, classified according
to the dimensions of the Block Model. In section 6 we discuss how
the Block Model can be used to support the design of a learning
trajectory of instructional materials that promote ProgComp. For
each investigation taken, the methodology is described at the start
of its section. Finally, in section 7 we present our conclusions and
discuss opportunities for future work.

2 BACKGROUND AND RELATED WORK

This section provides our definition of program comprehension
inspired by the findings of the literature review. We have grouped
them into four broad categories: the characterization of program-
ming knowledge, the identification of some useful coding abstrac-
tions, the assessment of novices’ understanding of programs, and
the learning of code reading skills.

2.1 Program Comprehension Overview

Up to now, as a matter of fact, teaching to program has mostly been
approached as a “code writing” activity, the main goal being to
develop programs. By contrast, “code reading” is sparingly taught
explicitly, although instructors need to provide guidelines for inter-
preting code when presenting new language constructs or problem
solutions to their students. Program comprehension’s focus is pre-
cisely on this latter type of approach. Let’s start by providing our
WG definition of two terms:

Program Comprehension (ProgComp) — it is usually con-
ceptualized as a process in which an individual constructs
his or her own mental model of a program.

ProgComp task - in such task the learner encounters an arti-
fact that represents the program. The task asks the learner
to engage with the artifact in some way. Through this inter-
action with the artifact, the learner is stimulated to elaborate
on and refine their mental model.

The artifact is typically source code, but might also be another
form of specification such as the nodes in a Parsons problems [72]
or a collection of blocks in a blocks-based programming language
such as Scratch [59].

The model is expected to include features such as the elements
and structure of the program (starting from the basic coding con-
structs), the execution behavior, and the purpose of the program
and its blocks, both from the programmer’s perspective and in the

domain context. In the process, the learner is required to also re-
trieve and put into action their prior knowledge about programming
and/or the problem domain, and possibly consider other sources of
knowledge, e.g. the programming language documentation or a ver-
bal explanation of the program’s purpose. As the learner interacts
with the program, she may choose to create external representa-
tions such as notes, traces, sketches or diagrams to help overcome
the limitations of working memory [20, 117] and further support
the development of the mental model and the accomplishment of
the program comprehension task.

Although what pertains to ProgComp is the ability to read, in-
terpret and explain code, we can identify a range of code editing
activities that combine reading and writing, such as debugging,
refactoring, or extending the functionality of existing code. All of
these are concrete programming tasks with a clear code compre-
hension phase that informs the changes of code written. Without
comprehension, it is nearly impossible to debug or extend code by
trial and error. An advantage of this type of tasks is that, by their
applied nature, they are more motivating to students and can help
them realize how important is comprehension for the customary
writing and editing processes. Thus, we will consider ProgComp
tasks in this wider context, with focus on the comprehension facet
— be it the final goal or an explicit subgoal of the task at hand.

Typical ProgComp tasks exist along a continuum of engagement
from explaining tasks to annotation tasks to modification tasks, all
forms of active learning [36]. In explaining or articulating tasks
the learner reads the code and then explains to themselves or a
partner what they think the code (or parts of the code) is doing.
In annotation tasks, students might be asked to add comments or
highlights or to create secondary external representations such
as trace tables or sketches. Modification tasks, on the other hand,
are about adjusting or reworking the original code to, for example,
correct a bug, make the program more readable or add a feature.

2.2 Characterisation of Programming
Knowledge

A number of seminal theoretical works have attempted to categorise
the programming knowledge implied in ProgComp, in particular:

e Linn’s chain of cognitive accomplishments to learn program-
ming [50]; besides code writing and problem solving skills,
it covers the precursor stages that concern the learning of
language features and the development of a repertoire of
templates, i.e. “stereotypic patterns of code using more than
a single language feature [...] employed as an entity in pro-
grams to perform commonly encountered tasks”.

o Rogalski & Samurcay’s general framework for knowledge
representation in the programming field [82], where the dif-
ficulties faced by novices are subdivided into four areas: con-
ceptual representations about the computer device, control
structures that disrupt the linearity of program text, vari-
ables, data structures and data representation, and program-
ming methods, i.e. aids for identifying suitable strategies to
solve problems of a given class.

e McGill & Volet’s conceptual framework for analyzing stu-
dents’ knowledge of programming [63], which “integrates
three distinct types of programming knowledge identified

in the Computing Education literature (syntactic, concep-
tual, and strategic) with three distinct forms of knowledge
proposed in the cognitive psychology literature (declarative,
procedural, and conditional)”. The resulting knowledge cate-
gories are: (i) declarative-syntactic, representing knowledge
of syntactic facts for a specific programming language; (ii)
declarative-conceptual, relative to the understanding of the
notional machine; (iii) procedural-syntactic, referring to the
ability to produce syntactically correct code; (iv) procedural-
conceptual, concerning the ability to write programs. (v)
strategic/conditional (“conditional” stands for knowing when,
in which conditions to use a given strategy), addressing the
ability to design, code, and test a program that solves a novel
problem.

More recently, following a similar line of research, Xie et al. [116]
drew on prior work to address distinct programming skills that,
according to the authors, “prior theories do not translate to con-
crete instruction that supports” their development in novices. Their
theoretical framework distinguishes among four subsequent learn-
ing steps focused on: (i) knowledge of the operational semantics,
demonstrated by being able to trace code; (ii) knowledge of the
syntactic structures demonstrated via translation of accurate de-
scription in a natural language into syntax that “compile and exe-
cute as expected”; (iii) learning of reusable abstractions, or program
“templates”, demonstrated by the ability to identify the components
of such abstractions as well as their purpose in a given program;
(iv) problem-solving skills, demonstrated by being able to apply
and/or combine program templates to solve the problem at hand.

2.3 Use of Abstraction in Program
Comprehension

When expert programmers read code, they use abstraction or chunk-
ing to identify key components. In this section we will summarise a
range of studies covering two significant abstractions in this respect:
plans and variable roles.

Soloway uses the term plan to describe ‘chunks’ of knowledge
incorporated in a ‘canned’-solution [97]. He related the role of plans
in reading computer programs to what cognitive psychologists refer
to as schemata as units of mental organization. Robins et al. [81]
explicitly link “structured chunk of related knowledge” to schema
and plan. Rist [80] describes a plan as “the basic cognitive chunk
used in program design and understanding”. Brook’s work [6, 7]
showed that students who are able to recognize ‘beacons’ which
identify plans, can reason about programs at a higher level.

De Raadt describes a set of elementary plans (programming
strategies) that can be combined into a programming solution [22].
Examples of elementary plans are Initialization (variables), Aver-
age, Triangular Swap, Counter-Controlled Loop, Sum, and Count
plans. He explains that the identification, selection, and application
of plans can be seen as a representation for strategy (similarly de-
scribed in [101], also known as patterns [110]) and should be taught
and assessed explicitly [116]. Plans can be abutted (or concatenated),
nested and merged — thereby their mastery is a high-level learning
outcome. Similarly, plans can be decomposed into smaller units, or
sub-plans, and used to distinguish pre-requisites.

Just as algorithmic thinking skills are needed to link plans to-
gether to create an adequate solution, programmers need to be
able to identify and analyze plans and their parts to comprehend
programs as a whole. Experts are good at recognizing, using and
adapting plans, and as a result are faster, more accurate and employ
effective strategies [81].

Spohrer and Soloway [100] analyzed difficulties related to plan-
composition problems, and argue that these have a larger impact on
programming success than language construct knowledge. Soloway’s
work [97] identified the need to teach plans as abstractions. Rist
[79] explored this approach and found that when students know
an appropriate high-level schema for solving a problem, they can
reason adequately from plan to code.

More recent work by De Raadt et al. [23] has shown that explicitly
teaching plans improves the learning outcomes. However, Rist also
emphasizes that novice programmers are often unable to translate
high-level plans into concrete program statements.

Even when students master those plans independently, construct-
ing a working program where those plans need to be composed is
not a trivial task. Fisler et al. [35] uses the Rainfall Problem as a
benchmark to show that certain paradigms (e.g. functional), lan-
guages or methods of instruction could make this composition
process more efficient. For readers not familiar with plans, refer to
appendix A which presents an example of plan composition.

Although much work, especially on the ability to combine plans,
focuses on program construction, we can think of it as providing
lenses to make sense of a program’s structure, in accordance with
our ProgComp perspective. Learning about (combining) plans could
be facilitated by focusing on program comprehension rather than
composition. As such, novices could be required to recognise how
these strategies are applied to create solutions to solve more com-
plex tasks. In fact, Merriénboer [64] explored such an approach in
a high school context with promising results.

Variables and the operations on them can be seen as beacons to
identify a particular design pattern (see also [1, 31, 68]), or being
used directly as having significant roles [11, 47] that help to abstract
from the code to its goal. Only ten roles are needed to cover 99% of
all variables at novice level. For example, a Sum plan can be seen
as a program with a stepper variable (the control variable of the for
loop) and a gatherer variable to accumulate the sum.

Sajaniemi et al [84] compared the impact emphasizing variable
roles while teaching has on ProgComp relative to a group taught
the traditional way. Both groups showed similar performance on a
program prediction task and a program construction task, but the
students that were regularly exposed to variable roles outperformed
the others in the program comprehension task that asked them to
describe the purpose of the program and how it worked.

In summary, recognizing beacons or variable roles, identifying
plans, and understanding how they are used and combined are all
an important part of program comprehension.

2.4 Assessment of Program Comprehension
Starting from pioneering studies by Mayer, Soloway, Spohrer, du
Boulay and others [27, 60, 97, 98, 101] since the early 80s, much
research work has been focused on the assessment of different
aspects of novices’ program comprehension.

Since then, several educators appear to agree about novices’ dif-
ficulties to thinking at a “relational” level [54, 95]. In this respect,
the ability to summarise the purpose of a program in a sentence
(to “explain in plain English”) has been investigated by Lister et al.
[54], and later linked to the ability to write code [69]. Furthermore,
the structure and goal of a program may have a significant impact
on how students understand it. Duran et al. [30], in particular, in-
vestigated how different program structures and plan-composition
strategies could lead to students’ distinct perceptions of difficulty.
Comprehending what makes a program complex and how it could
be transformed or broken into smaller pieces to reduce complexity
is an important ability that instructional designers should put into
practice.

In general, novices’ understanding of programs has been ex-
plored from a variety of perspectives, such as: to investigate the
extent to which tracing, reading and writing skills correlate with
each other [56]; to interpret students’ ways of classifying code
fragments based on perceived similarities and differences [105]; to
categorise novices’ mental models of the notional machine under-
lying imperative [5] and recursive [86] computations; to compare
students’ mastery of recursion vs. iteration [66]; to assess the un-
derstanding of conditionals, loops and nested loops [13, 42]; to
analyse the relations between students’ performance and their an-
notations in the exam papers [61]; to compare block versus textual
representations of programs [111].

2.5 Fostering Program Comprehension

Most of the contributions cited above suggest interesting tasks in
which students may engage. However, such tasks are usually meant
as tools the instructor could use to evaluate students’ achievements,
whereas hardly any insight is provided as to how to attain learning
progress in case of poor performance.

Early work by Deimel [25] provided relevant (but rarely cited)
guidelines on teaching program reading as follows:

Students should be encouraged to view programs at
different levels of abstraction and in different frames
of reference. We can show how a statement or group
of statements may be understood in terms of the ef-
fect on particular variables, in terms of a change in a
data structure, in terms of effecting part of an algo-
rithm, or in terms of the problem which the program
is supposed to solve. (To reinforce these ideas, we
should assign exercises in which the students must
interpret code at different levels ...) We must explain
that programs may be read top-down or bottom-up,
depending on one’s reading objective, the program
structure, and the nature of the comments.

However, only in the last ten years has there been a rising aware-
ness and focus on program comprehension as part of learning to
program. Researchers have proposed assessments that include or
target aspects of program comprehension such as reading [10], trac-
ing [70], explaining [69], or reversing changes to program state
[41, 103]. Recurrent practice with similar ProgComp tasks should
help with improved retention and transferability of the students’
newly elaborated mental models to future program comprehension
tasks [43].

More to the point, Sudol et al. [102] vindicated using code com-
prehension questions as learning events rather than as assessment
items. In a similar vein, Shargabi et al. [94] selected 14 program
comprehension tasks and surveyed practitioners to rank the tasks
in terms of perceived effectiveness in developing novices’ program
comprehension.

In addition, recent pedagogical approaches propose to design
courses addressing comprehension first:

e PRIMM (Predict-Run-Investigate-Modify-Make) [93], whose
aim is helping teachers to organise programming lessons
in which pairs of students are guided through reading and
adjusting code prior to writing own code. In fact, PRIMM
approach follows pattern not dissimilar to the one proposed
by Deimel [25], which has 4 phases: run and investigate, read
and trace, modify and extend, and finally write or make.

e PLTutor [70] models language execution and makes visible
the causal relationship between syntax and machine behav-
ior. Through observation of different aspect of program ex-
ecution students learned about the semantic of language
constructs and the notional machine prior to writing code.

e CS POGIL (Process Oriented Guided Inquiry Learning) [49],
where groups of students construct their understanding
about code through critical thinking questions that include
reading, analyzing, adjusting code, and finally reflecting on
what has been learned.

Note all three approaches are inquiry based, and exhibit many
similarities to POE (Predict, Observe, Explain) [114], a well-known
pedagogical approach to explore science topics at high school level.

Finally, it is worth observing that the tasks listed in later sections
could be used in a variety of courses, as formative assessment
in traditional courses, in active learning activities either using a
comprehension-first approach or combining/replacing writing tasks
with reading and editing tasks [64].

3 THE BLOCK MODEL

We complete the first part of the WG report by introducing the
Block Model and explaining with the use of examples its role in
analysing and classifying programming tasks.

The Block Model (BM) [90] is an educational framework that
supports the analysis of core aspects of program comprehension.
The merits of the Block Model have been attested by its application
in different studies. In particular, it has been used in [87] with
the aim of classifying tasks; moreover, in [112] the Block Model
categorization was compared to Bloom’s and SOLO taxonomy with
the result that it leads to a more accurate categorization.

Block Model looks at a program from two perspectives:

(1) One lenslooks at a program by considering different levels of
zooming in and out: from single expressions or instructions
to blocks, relations between blocks, and finally the whole
program.

(2) Another lens, taking an orthogonal standpoint reminiscent
of the SBF model [108], looks at a program as having three
dimensions as follows:

Text surface: the program code, a static entity;
Program execution: the program in execution, a dy-
namic entity;

Function/purpose: the program as an artefact with an
extrinsic purpose.

These different perspectives are organised into a 4 X 3 matrix,
where the rows represent a hierarchy of increasingly complex pro-
gramming structures, whereas the three columns correspond to
different dimensions of ProgComp — see Figure 1. Basically, stepping
within the matrix upwards, from simple to complex, and rightwards,
from surface to function, corresponds to achieving higher levels of
abstraction.

At the bottom row, we have atoms or basic elements of the
program, such as expressions or simple command lines. Next, we
have blocks, such as a sequence of related assignments, like when
swapping two variables, or a loop. Its upper level concerns the
relations between blocks, which are implied, for instance, when a
method is called with some arguments. Finally, the topmost macro-
structure level takes into consideration the overall program.

Note the concept of an atom is relative to the instruction received:
at the start every small element, an expression or a condition, is an
atom; as code fluency increases, a full statement or a simple pattern
(e.g. a swap) becomes an atom. This is why we need to situate the
task in the learning process to match it at the appropriate level of
comprehension. This will be done by indicating pre-requisites — so
that those pre-requisites characterise the atom level.

The levels of increasing structural complexity can be seen as
focusing on the sequence of steps in the comprehension process,
which is conceptualized as flexible, context bound, bottom-up, and
cyclic [90, 91]: textual information is perceived on a word-by-word
basis and immediately incorporated in the mental representation.
At the end of a block the capacity of the short-term-memory is
reached, information needs to be transferred and integrated in
working-memory so that short-term-memory is freed for the next
cycle. In this integration process only some information (not all)
of the former cycle is transferred, the mental representation is
step-wise abstracted from the perceived material. This process is
conceptualized as a hierarchic succession of mental representa-
tions, each hierarchy level being more abstract and independent
from the details of the perceived information. During the process,
the extracted information is connected or integrated with prior
knowledge to build a coherent whole.

The columns reflect the different dimensions of a program: the
leftmost column watches at the text surface of the program; the
middle considers the program when executed; the rightmost is about
the purpose or the intention of the program (and in some sense
of the programmer who wrote it). In the following we discuss
the programs’ features pertaining to these different dimensions,
and discuss them also in relation with programming knowledge
categories from the literature review.

3.1 Knowledge Dualities in the Block Model

In this section we will explore in some detail two dualities related
to programming knowledge and the Block Model.

Denotation versus Connotation. To begin with, we recall an impor-
tant distinction, known from natural language, between denota-
tion and connotation.

From the Block Model perspective, the text surface is the visible
representation of the program text. This includes detecting the

Macrostructure T (5

Relationships

Blocks (Chunks) or semantically build a unit.

Atoms Language elements.

Text Surface

Duality

Understanding the overall structure of the ~ Understanding the algorithm underlying a
program.

Relations & references between blocks (e.g. Sequence of method calls, object sequence
method calls, object creation, data access...). diagrams.

Regions of Interest (ROI) that syntactically ~ Operations of a block, a method, or a ROI
(chunk from a set of statements). subgoal.

Operation of a statement.

Program Execution

Architecture/Structure Dimensions

Understanding the goal/purpose of the program
(in the context at hand).

Understanding how subgoals are related to goals,
how function is achieved by subfunctions.

Understanding the function of a block, seen as a

Function of a statement: its purpose can only be
understood in a context.

Function/Purpose

Relevance/Intention Dimension

Figure 1: The Block Model Matrix.

beginning and the end of a given atom, and to discern the differences
to other possible atoms, as well as to identify what kind of atom it
is. For example, when reading the following code line:
i=1+1

the reader discerns that “i” is one element (used twice), “+” is an
operator, and “1” a literal. The attribution of “i is a variable” can be
seen as first understanding. It can be called denotation, in contrast
to connotation: denotation refers to the meaning of the element in
a context-free sense, like the meaning of a word as described in a
dictionary.

Connotation, in contrast, refers to discerning the meaning in the
concrete context of the use. With regard to the variable i this can
be to understand its role, e.g. as a “stepper” (see [85] for a list of
roles). Identifying roles of variables is precisely not an example of
task pertaining to the text surface dimension — in this dimension or
column, understanding (if one would choose the term) is restricted
to denotation.

ProgComp tasks in the Text dimension focus on the discernible
features of the representational formats. In order to understand the
text surface, some lexical and syntactical knowledge is required,
e.g. where to put semicolons, where and how to declare a variable,
and so on. Then, starting from identifying basic code elements at
the atom level (AT), learners can be guided to discern structural
information like the textual span of a block (BT), to recognise
meaningful features that link atoms and/or blocks to each other
(relational level — RT), and eventually to make sense of the macro-
structure (MT) of the whole program.

Moving to the second dimension, understanding Program exe-
cution (or simply line execution) is based on the notional machine
that introduces connotation as well. That is, execution usually de-
pends on the context set up by additional elements. Let’s refer to
the example code shown before: understanding its execution would
include working out the concrete value of variable i before and
after the increment.

This dimension also exposes a crucial difference between natural
and programming languages: while a natural language often leaves
free room for subjective interpretation, the semantics of a program
is univocal and is either correctly understood or not.?

2 A program text can possibly be “interpreted”, in some sense, to infer its operational
meaning, for example by looking for beacons as clues of plans, as described in section 2.3.
This is, however, a tentative interpretation, subject to verification.

The third dimension, Function (F), on the other hand, presup-
poses interpretation on a context extrinsic to the program itself.

Then, the related tasks require to link the program to some
external purpose. For example, if the value of the variable t is
interpreted as a temperature measure, the following expression:

1.8 x t + 32

can be meant as a conversion from Celsius to Fahrenheit degrees.

Programming versus Domain Knowledge. While the Block Model is
organised around three different types of knowledge involved in
ProgComp, another popular distinction is between program knowl-
edge versus domain knowledge [91]. Program knowledge is required
when extracting the appropriate information from the text surface
and inferring the related operational semantics. Domain knowledge
is used to make sense of the context, and thereby to understand the
goals of a program. In short, the purpose (function dimension) is
not an intrinsic property of a program but comes from an external
source. A similar trait is referred to in a variety of formulations
throughout different fields, as shown in Table 1.

Table 1: Different formulations of the structure vs. function
duality.

Structure/Architecture Function Reference
Text Prog. exec. | Purpose Schulte [90]
Structure | Behavior Function SFB-Theories [108]
Mechanism Explanation Soloway [97]
Tracing Reading Lister [56] etc.
Plans Goals Soloway [101]
Program Model Domain Model Pennington [73]
Text base Situation model | Kintsch [44]
Structure Function Kroes [46]
Proximate Ultimate Tinbergen [107]¢

“?Originally used in Biology, now adapted for machine behavior [75]

From an educational viewpoint, it is interesting to observe that
the three dimensions of the block model also correlate with cat-
egories characterising qualitatively different perceptions of the
programming activity [106] and of the learning of programming
[32], as attested by the outcome of empirical investigations of vari-
ation in novices’ perception of programming within the framework

of phenomenographic research. The two cited studies, in particular,
set forth a hierarchy of five categories in connection with (1) the
textual representation of a program, (2) the action of a program, (3)
the application addressed and (4) the problem solved by a program,
(5) the contexts in which programming can be a valuable resource.
From this perspective, the text, program and function dimensions
can be seen as describing a hierarchy of knowledge and skills, where
each subsequent stage presumes mastery of the concepts implied
by the previous ones.

As a further related example, Bruce et al. [8] had also identi-
fied five categories, from which text, program and purpose emerge
as distinct traits. More specifically, at the lowest level, students’
“primary intent is to keep up with set assighments” to get enough
marks. At the next level, learning to program is mostly seen as
learning the syntax of the programming language (Text dimension).
In the third category, the focus is on “the structure and logic of
the language — in essence, how the language works” (Program
dimension). Then, the programming language is not seen as an end
in itself, but as a means to solve problems and achieve tasks (Func-
tion dimension). Finally, in the last category, programming is also
experienced as a “culture”, as “participating” in the programmers’
community.

3.2 Using the Block Model to analyse
programming tasks

The Block Model was designed to help educators in reasoning about
the cognitive implications of program reading and comprehension,
as well as in planning how to teach ProgComp. The Block Model’s
perspective seems apt to support what emerges from the experience
of practitioners, i.e. the fact that program comprehension requires
a variety of pieces of knowledge and skills to be mastered.

Indeed, in order to actually come to a full understanding of the
program under consideration, one needs to understand all its differ-
ent dimensions, at all different levels of complexity, as articulated by
the Block Model. Consequently, several different kinds of activities
are needed to foster ProgComp, each focusing on a different facet
or endeavour.

Typical ProgComp activities ask the learner to explain what a
piece of code does, annotate or comment the code, represent its
execution with sketches or trace tables. Other tasks, such as Par-
sons problems [72] or debugging problems, are more connected to
writing programs but still rely heavily on program comprehension.

Depending on the size and features of the piece of code under
analysis, a certain kind of activity may help in achieving different
learning goals, since it may activate and/or require different cogni-
tive processes. For example, when asking to explain on one’s own
word what a piece of code does, one might aim at different kinds of
answer. Often the task pertains to the comprehension of the code
purpose or goal (Function dimension), as in the approach of Lister
et al. [51]. However, the same type of task may focus instead on
the mechanics of a counting loop (Program execution dimension),
or even on the syntax of an assignment statement (Text surface
dimension).

Analysing ProgComp activities within the the Block Model frame-
work supports the identification of the learning goals and the pre-
requisites associated with the task, and may help teachers in under-
standing when and how to propose such different tasks in learning
and assessment.

In the remaining of this section we will describe some represen-
tative ProgComp activities, namely tracing tasks, “explain in your
own word” tasks, and Parsons problems, and analyse them by using
the Block Model. We used the same method to analyse a number
of ProgComp tasks we collected, which resulted in a classification
that will be presented in Section 5. Furthermore, in section 6 we
will show how ProgComp learning trajectories can be designed, by
devising different learning activities that target particular cells in
the block model such as AP or BF.

3.2.1 Tracing Tasks. Tracing is defined as following the execution
of a program, atom by atom and line by line, in a sequential manner.
Each tracing task is aimed at covering or assessing one particular
aspect of the notional machine. While tracing, we follow the state
of the variables after each line is executed, possibly using a tracing
table. Hazzan’s Guide to teaching Computer Science [38] describes
the following variations for tracing:

“A tracing question can ask to follow (a) a complete program; (b)
a single method; (c) a recursive method; (d) object creation. In
addition, the following instructions can be used in each of the
above variations: (1) follow the code execution according to a given
input; (2) follow the code execution when learners choose the input;
(3) follow the code execution according to several different specified
inputs which are selected in a way that guides the learners to find
what the given code performs; (4) find different sets of inputs so that
each set represents a different flow by which the code is executed,;
(5) find a set of inputs that yields a specific output.”

Figure 2 shows a range of tasks proposed in the literature as
‘tracing tasks’. The first example focuses on assignment, while the
other two tasks address loop iteration. Notice that, in fact, these
exercises do not explicitly ask to trace code, but to write either the
values of variables at the end of execution (first example) or the
computed output (final value of count in the second example, or
full trace of loop control variables “i” and “j” in the third example).
Tracing is indeed the assumed strategy to obtain such values or
output.

Also note that the second tracing task [87] is not given a starting
value of N, instead the premise to the question says “assume that
N is a positive integer”, while providing 5 possible choices (N, N/2,
N/2+1, (N+1)/2, or 9). In line with Hazzan’s guide, we could ask
other tracing questions at different levels, such as

Q1 - If N has value 15, what is the output of the program?

Q2 - What would be the value of count when N value is 10? And
when is 13?

Q3 - For which values of N will the program print 0?

In terms of the Block Model, the core of tracing activity is to
follow the execution of atoms; therefore tracing focuses on cell
AP. Understanding the execution of the current atom then includes
understanding which atom is the next one to be executed. That is,
there is no need to abstract from this perspective to some more
general understanding of the relations of parts of the program —

ables .
vl = 10;
v2 = 15;
v3 = vl;
vl = v2;
v2 = Vv3;

T1: What do the variables v1, v2 and v3 hold after the following
Python code is executed? Assume that they are all integer type vari-

T2: What is the output of the
following code segment?

int count=0;
for (int i=0; i<N; i++) {
if (1% 2==20){
count++;

3

System.out.println(count);

T3: What is the output of the
following code segment?

int i, j;
for (i = 1; i<=5; i++) {
for (j =1; j<=5; j++) {
printf("%3d", i*xj);
1}
printf("\n");

Figure 2: Three tracing tasks from the literature: T1 - trace
swap [19], T2 - Count evens in range [87] and T3 - trace nested
loops [13]

one atom simply denotes which atom is the next in the program
flow. In summary, tracing can work at atom level only.

When the code to trace involves methods or functions calls,
however, it is necessary to establish connections between states
relative to both the caller code and the called procedural unit. Thus,
in this case, tracing occurs at the Relational level (RP).

In a learning trajectory tracing seems to be a basic skill. Even
when tracing is at the Atom level, the comprehension process need
not be restricted to that level; the Block Model asserts then while
tracing, the comprehension process will not stop, but some chunk-
ing or abstraction (going up the levels) will occur. So a higher
understanding than at the atom level may also occur.

As Deimel explained [25] “students should not be discouraged
from tracing code in order to understand it, but they should be
made to realize that doing so is a means to an end, a source of data
for the real task of interpretation”

Teague et al. [104] describe the development of ‘abstract tracing’
as reading the code without relying on concrete values — instead
the reader can think about a set or a class of values and how those
lead to specific traces (as in Example T2 above). This kind of abstract
tracing doesn’t have to be complete to allow inferences. Lister and
Teague refer to inferring the ‘purpose’ of the code — but probably
it is more inferring the algorithmic idea, hence MP (or perhaps BP)
in the block model notation.

In summary, in later learning stages a student may not trace the
code but, based on plan knowledge, get a quicker understanding
of the code (probably at BP level). Likewise, students could take
shortcuts in tracing, discussed as ‘beacon’ in [7]: by detecting some
familiar elements a student might be tempted to infer from that
beacon the overall plan of the lines of code to be traced, so that,
instead of tracing, the value of the elements are inferred based on
this intuitive understanding of the assumed goals or plans of the
program. For example, a reader may anticipate that the first task in
Figure 2 includes a swap, or that the second task is counting the

public void method1@B(int iNum)

{
for(int iX = @; iX < iNum; iX++)
{
for(int iY = @; iY < iNum; iY++)
{
System.out.print("x");
3
System.out.println();
3
}

Figure 3: Example of "Explaining in your own words" task
[56]

even numbers in the range. However, when the individual atoms
are perceived as an integrated whole — e.g. task T2 as a “counter
control” loop-plan [22] — it is possible that some of the details of the
atom level get lost. For instance, the reader may not check whether
the loop begins with @ or 1.

From a different perspective, tracing may also help to develop
— besides construct knowledge (AT and AP) — also more general
type of knowledge that is later needed to build a more abstract
understanding of the program execution; that is knowledge about
the notional machine. An example of this is reported by Nelson
et al. [70] using a self-contained online course. Similarly, according
to a study by Hertz and Jump [40], program memory tracing seems
to be working in this proposed way.

In conclusion, the core learning effect of tracing is to address
knowledge and skills pertaining to the AT and AP cells of the
Block Model, even though this kind of activity can set the ground
for knowledge at level of higher abstraction. As far as possible,
novices tend however to avoid carrying out an accurate step-wise
tracing process, and rather try — more or less successfully — to get
a somehow abstract grasp of algorithmic patterns to comprehend
BP, RP and eventually MP. Being able to develop viable and sound
abstractions of program execution is of course required in order
for the learner to progress in ProgComp. So, teachers and learners
must be aware of the role, scope and aims of concrete tracing tasks.

3.2.2 “Explain in Your Own Words” Tasks. This type of task requires
to explain in natural language the execution (Program dimension)
and/or the function/purpose (Function dimension) of a program.
Typical examples mostly focus on commenting on the Block level
and the Macro level, because comments stick to the block they are
commenting on, or to the program as a whole.

Lister and colleagues refers to questions at the MF level as read-
ing questions: Describe the purpose of the program text in your
own words , [54]. Figure 3 shows one of the code fragments used
in [56]. They are also called “Explain in Plain English” questions
[18, 69], although we prefer to called them “Explain in your own
words” so that it applies to non-english speakers as well.

One interesting observation is that students often have difficul-
ties to explain the purpose (MF), and although asked to describe the
code goal, they explain the execution of the program (P dimension)
instead, and this often step by step (AP).

While authors differ whether the ability to explain the behavior
(tracing) necessarily precedes the ability to explain the purpose

Parsons Problem Target code
if(1[i1>b){ int[] 1={20,24,23,35,30,35};
int b=1[0]; int b=1[0];
} for(int i=1;i<l.length;i++){
b=1[i1; if(1Lil>b){
int[] 1=(20,24,23,35,30,35}; b=1[1i];
for(int i=1;i<l.length;i++){ }
} }

Figure 4: Example (left) of a Parsons Problem code given for
the goal “this program finds the largest value in the array”,
and (right) its expected solution.

[18, 54, 56], these empirical studies support the rationale of the
BM dimensions, or Pennington’s idea of program models (program
model vs. domain model), that program execution is qualitatively
different from its function or purpose.

From the BM perspective difficulties in discerning MF for stu-
dents focusing on AP is not surprising - there are many compre-
hension steps in between.

To make it easier one can structure the task and provide scaffolds.
E.g. so that first students explain the function of blocks (BF) —
helping them to derive MF. It should also be helpful to provide
explaining tasks at the RF level: Requiring learners to figure out the
goal based on given subgoals. We are not sure if there are specific
examples of “explain in your own words” tasks relative to RF, or if
this has been overlooked in practical examples.

Two more observations on these types of task. First, from an ex-
perience point of view, it is sometimes hard to distinguish between
explaining/describing the operation (program execution dimen-
sion) and explaining/ describing the function (function/intention
dimension), unless the two features differ greatly. Maybe here is
the crucial task to watch out for when using this learning activity
in the classroom. Second, complexity of the task can vary greatly
based on the cognitive complexity of the program, defined by the
number of blocks and the relations between them.

3.2.3 Parsons Problems. In a Parsons problem, the correct code to
solve a particular problem is provided, but the code is broken into
code blocks (in general lines of code) and mixed up. The task is
to rearrange the blocks into the correct order for the code to run
successfully thus achieving a given goal. An example of a Parsons
problem (also called a Parsons Puzzle) is shown in figure 4.
Parsons problems allow to work on complex code, such as the
loop control in figure 4, with a lower cognitive load. For instance
the solver can neglect the syntactic aspects and focus only on
reconstructing the order of code fragments so that the resulting
program implements the plan required to achieve the given goal.
The standard version can be extended by either (1) including
distractors where irrelevant lines are added to and mixed with all
useful lines of code, or (2) providing choice using paired options
where a selection between two highlighted lines of code needs to be
made, or (3) removing the indentation obtaining two-dimensional
Parsons puzzles (in the standard version, lines appear with the in-
dentation that they should have when in place in the final solution).

Such variations can be used to focus assessment specifically on
misconceptions or areas that learners typically struggle with.

Ericson at al. [34] found that solving two-dimensional Parsons
problems with distractors took significantly less time than fixing
code with errors or than writing the equivalent code, whilst being
just as effective. Another clear advantage is that marking is fast
and objective. Denny et al [26] noted a direct correlation between
Parsons-problem and code writing scores. Overall, Parsons Prob-
lems are somewhere between reading and writing tasks [26, 34].

In terms of the BM, in Parsons problems the Function (or purpose,
or goal) of the target code is given in the task description. The text
surface, at least in the standard version, is complete, in that all
elements (lines of code) are there. However, they are in a shuffled
order, so that it is not possible to infer by the features of the text
structure which elements form a block and how these are related to
enable the desired program execution. Reading and thinking about
these elements require to discern atoms (AT) and, from hints in the
text surface — e.g. code comments, meaningful names of methods
and variables — or in the task description, to get an understanding
of their role in the program (MF understanding). This can be done
by proceeding top-down (from MF downwards), bottom-up (from
AF upwards), or with a mixed approach.

Non-standard Parsons problems’ difficulty is easily adapted [34]
hence, from the Block Model perspective, they have a very high
variation in complexity, and focus.

4 TEACHERS’ VIEWS OF PROGRAM
COMPREHENSION

4.1 Methodology

Study Design. As we intended to capture the current practices
and perceptions of ProgComp, we employed first an exploratory
stage in which we conducted structured interviews on the topic
with teachers involved in secondary and/or post-secondary/tertiary
education. During the second stage of our study we (a) collected
and organized program comprehension tasks and classified them
using the BM and (b) defined possible learning trajectories that can
guide teachers as they select and sequence those learning activities
in their CS0/CS1/CS2 or K-12 courses. Our approach is in-line
with the didactic transposition theory of transforming academic
knowledge with the purpose of contextualization in an educational
context: didactic transposition refers to the transformations an
object or a body of knowledge undergoes from the moment it is
produced, put into use, selected, and designed to be taught until
it is actually taught in a given educational institution. And these
transformation “presuppose the decontextualisation of academic
knowledge from the conditions within which it was created and its
recontextualisation according to the terms and restrictions imposed
by the educational context”, Chevallard and Bosch [14].

The instrument. In order to collect comparable data, before car-
rying out the interviews the working group members debated the
questions to ask and the format: survey or interviews. Our goal was
to elicit aspects of the instructors’ pedagogical content knowledge
(PCK) about program comprehension. Shulman’s PCK [96] is meant
to integrate teacher’s knowledge of the subject being taught as well
as of how to teach it in concrete situations. It is then grounded in

the beliefs and practices of the teacher and covers conceptual and
procedural knowledge, of a repertoire of activities, techniques and
resources, of how to evaluate the learning outcomes.

Teachers’ PCK is usually characterized precisely through inter-
views and, in this respect, the CoRes provide a suitable model to ask
about important ideas/concepts (“Big Ideas”) [57]. Examples of ap-
plication of the CoRe protocol to characterise teachers’ PCK about
introductory programming topics can be found, e.g., in [3, 9, 83].

However, due to time constrains and ethic approvals we post-
poned using in-depth interviews and eventually agreed on a proto-
col for a short structured interview (see appendix B) which could
be collected prior to our conference’s meeting.

Data collection. We interviewed 31 instructors (22 M/9 F) from
institutions in 10 countries (Canada, Finland, Germany, Italy, Peru,
Spain, The Netherlands, Turkey, UK and USA). The interviewees
are secondary school (8) or university teachers (19), some having
taught at different instruction levels (4), including primary school. 8
interviewees have been teaching for 20 years or more, 12 between 10
and 19 years, 7 at least for 5 years. Most of them have a background
in CS; the others either in Mathematics or in Engineering fields. A
large part of their students are learning CS or computing-related
subjects. The interviews were conducted in person or by e-mail by
the authors of this paper and consisted of four main questions and
several sub-questions (see appendix B).

Interview coding and analysis. We used a team-coding method
with several researchers participating in interview coding and anal-
ysis. The interview data is very rich; however, we focused on this
study on three main themes: (1) definition of ProgComp, (2) what
concepts and skills are the most important for students’ learn-
ing, and (3) which teaching aspects described by our participants
matched cells of the BM as presented in Figure 1.

Our approach to coding the first two main themes was induc-
tive: based on the interview data, one of the authors of this paper
proceeded with an initial coding and proposed the codes presented
in Table 2 and Table 3. In the analysis of the activities reported by
teachers we tried to understand the activities in the context of the
Block Model theory, therefore our approach was deductive as we
were using the Block Model categories and definitions.

Five authors participated in a second stage of coding. Each in-
terview was coded by two researchers: one initial coder coded an
interview and the second coder read the coding done by the first one
and indicated in a rubric all aspects of agreement and disagreement.
After that, the two coders discussed and exchanged messages until
they agreed on the final coding. We assured the coding validity
as all coders were familiar with this research, followed the same
coding protocol and understood the meaning of codes in the same
way.

Next, we will present out results.

4.2 Teachers’ views of Program Comprehension

It is interesting to capture and explore the views and motivations of
practitioners in regards to ProgComp. In this section we will provide
a summary of the answers to the interview question “Explain in a
few words what the term ‘program comprehension’ means to you”.

Table 2: Practitioner’s views of Program Comprehension

ProgComp description Frequency
ProgComp as code reading ability 23
ProgComp as mental model of the NM
ProgCom as writing code

ProgComp as knowledge of prog. constructs
Other views of ProgComp

N o o

With the exception of one interviewee (‘T don’t think I explicitly
teach program comprehension, but rather writing code”), most teach-
ers are aware of one or multiple aspects of ProgComp as shown in
Table 2. The range of coverage varied: 19 teachers (60%) provided
only one view, while 4 (13%) of them gave very comprehensive
definitions that included three categories. Next, we will provide
detailed examples on each category, except the last one which is a
mixed bag: two teachers were very generic and hard to be classified,
e.g., “Be able to have a whole view of the program”, while another
pair talked about the goal of writing code to solve problems.

ProgComp as code reading ability. Most teachers think of Prog-
Comp as being able to read and explain (possibly to themselves
or to others) code. Here are a few examples that elaborate on this
theme:

ProgComp is a skill that allows a student to read a mean-
ingful segment of code and find out what is designed to
do.
or:
ProgComp means to grasp a program’s purpose and to
be able to explain the underlying algorithm accurately.
This reading skill implies the ability to predict the outcome of
executing the code:
Understanding code written by others; being able to
predict the outcome of such code.
but one teacher points out that such understanding is deeper than
simply being able to trace code:

It is different from tracing: tracing focuses only on the
operational aspects (how the notional machine works).

ProgComp as mental model of the notional machine. From
another perspective, ProgComp is meant as developing a mental
model of the notional machine, of “what is happening beneath the
hood™

ProgComp is how the students understand programs by
developing mental models of how computers work.

or more precisely:
Developing a precise mental representation of the inter-
nal state of the program (variables, activation records
and stack...) and how this state evolves.

ProgComp as writing/developing code. Some teachers express
the need to understand code in order to either write or modify code,
eg.:

ProgComp means being able to read and understand a

program well enough that I can make subtle changes to

the code and students will be able to describe the effects.

Some teachers discuss the pragmatics of code developing such
as editing, compiling, debugging, working in team and so on:
For me, ProgComp refers to the methods that developers
use to maintain existing source code.

ProgComp as understanding basic constructs. Finally, four
interviewees provide definitions involving the understanding of
the basic imperative constructs:

At the introductory level, I think it means understanding
the basic programming constructs (such as loops and
conditional statements, etc.) as well as understanding
the logic required for a given program.

possibly including language syntax features:

Being able to understand the (concrete) syntax of a lan-
guage as well as its semantics.

In addition, one of the teachers also feels the need to distinguish
between different levels of understanding in connection with “the
progression of constructs”.

4.3 Learning objectives linked to ProgComp

In this section we will explore the answers to the interview question
“What concepts and skills do you want your students to learn in
connection with program comprehension?”.

Table 3 provides a summary of this analysis. Most teachers in-
dicated either one (38%) or two (48%) learning objectives (LO),
whereas 3 teachers indicate three LOs.

Developing a mental model of the notional machine. Nearly
half of the interviewed teachers have as a LO the development of a
mental model of the notional machine either explicitly (sometimes
including the mechanics of procedure call and return back to the
caller), or indirectly by referring to tracing tasks. Here are a few
sample excerpts from the teacher interviews:

I want them to be able to trace through code and work
to figure out how to fix their code by understanding
rather than hacking their way through it. I would also
like them to understand what is happening in memory
and how it is modified as the program executes.

For simple programs, being able to work out the output
and contents of variables. Full tracing: the pathways
through a program, what happens at branch points.
Understanding what paths could be taken (static CF)
and what paths are taken (dynamic CF).

One teacher pointed out the role of visualisation as an important
aid to build mental models of program structures. Two teachers
cited advanced topics such as activation records, pointers and multi-
file programs, while other describe simple tracing with pen and
paper or being able to explain individual constructs.

Being able to chunk and explain programs. Another common
theme was the ability to chunk code when reading. A detailed
example of this LO is given below:

I want students to learn to think at different levels of
abstraction. I would like them to think about the pro-
gramming plans/micro-patterns that they know and
to recognize them in the code they are reading and to

think about how those plans are composed together to
solve a domain problem.

Table 3: Learning objectives linked to ProgComp

Learning Objective Frequency
Develop a model of the notional machine 14
Being able to chunk and explain code 14
High level thinking and abstraction 12
Being able to write/modify/debug code 11

More often, however, their statements simply mention the ability
to explain programs, e.g.:
To read and understand code so I have them read and
explain many code examples.
Ability to be accurate about in/out specifications, to
explain program behaviour using a formal language.

High level thinking and abstraction. Several teachers also ex-
plicitly addressed the role of high level thinking and abstraction
both when reading and when writing code, as follows:

So I think [students] need a lot of practice [tracing etc.]
to be able to abstract things.

Students need to abstract the problem [...] and think
about ways to bring the core elements which are needed
to solve the problems together. There’s a lot of "imagin-
ing" what the program should look like and the students
need to be sure what they will be doing before writ-
ing the program. Abstraction, structuring would be the
terms which come to my mind.

Students must be able to explain programs, to provide
arguments, to compare and assess....

Being able to write/modify/debug code. As to the ProgComp
learning objectives, a number of teachers mostly refer to code
writing, modifying and debugging abilities, maybe also implying
problem solving skills. The underlying idea is that ProgComp can be
developed by practicing programming, by writing code, somehow
as a by-product outcome of this practice. This is well expressed by
the following excerpt from a teacher:

ProgComp is not an explicit topic, part of what they do
anyway but no lecture time explicitly devoted to Prog-
Comp in a focused manner... Mostly just teach them
how to program but hope/assume that through osmosis
they can look at other code. We are primarily concerned
about design and authoring with the implicit assump-
tion that if you can design and author you can look at
some other code and figure out what it’s doing.
Or, said a little differently, but eliciting some of the tasks in which
students are expected to engage:

In some way, code comprehension is embedded in code
writing. Debugging is also a ProgComp activity, since
students need to form a model of the program to be
able to fix it. Extend code from someone else or code
that students wrote a long time ago requires strong
ProgComp.

=

Function

Figure 5: Venn diagram showing coverage of BM dimensions
by teachers.

Other interviewees mention good coding practices such as pro-
gram modularity, “parsimony of code”, problem decomposition, or
recognition and adaptation of (recurring) program patterns.

4.4 Teachers views mapped into the BM

Finally, we will present the results of mapping interviews’ content
into cells of the BM matrix. Interestingly, although in the partic-
ipants’ perceptions of ProgComp “reading ability” was discussed
more frequently than “the notional machine”, the Programming
execution (P) domain was the most frequent theme overall (74), fol-
lowed by Function (F) as shown in Table 4. Even if the F dimension
occupies the second place (61), it is important to note that AF is
sparingly mentioned (coded for only 6 participants) and therefore
the other three categories are very strongly represented (55).

Table 4: Block Model mapping numbers

level
Dimension A B R M | Total
Surface Text 7 4 3 5 19
Program Execution 20 17 19 18 74
Function 6 14 17 24 61

The Surface dimension has the lowest numbers at most levels.
We interpret this result by considering many practitioners associate
program comprehension with connotation instead of denotation.
That is, recognizing/discerning elements in the text surface is not
considered as understanding. An alternative interpretation is that
teachers would cite more frequently those areas that students strug-
gle with, as they require more scaffolding. Thus, it makes sense
that the Surface dimension, which is considered to be easy, is cited
less frequently.

The hardest areas, conceptual knowledge at the atom level (AP)
strategic knowledge of relating goals to plans (RP and RF, MP and
MF), are strongly represented.

We consider the final goals of achieving ProgComp are related to
the cells found on the upper right corner of the Block Model. This
view is shared by the teachers as the MF category (understanding
the goal/purpose of the program) is the most frequently cited.

Interestingly, all interviewees have at least one reference to
Program execution (P) as shown in Figure 5, most commonly in
combination with Function (F) (51%). Note that one third of them
talk about ProgComp in terms that matched all 3 dimensions (T/P/F),
while none referred only to text surface (T).

As mentioned above, this is probably due to practitioners’ experi-
ences on the difficulty and hence importance of different aspects in
teaching. In the following section we will present different learning
activities, obtained — in part — in the interviews, and then in section
6.3 present some qualitative results of the interviews with regard
to difficulties and hints for possible learning trajectories.

5 COLLECTION AND CLASSIFICATION OF
PROGCOMP TASKS

Based on literature analysis, discussions within the working group,
and examples of activities provided by our interview participants,
we collected and categorised several types of activities that are
intended to help students develop ProgComp.

The tasks listed in this section also include some common type
of tasks analyzed in Section 3: tracing tasks (AP, RP), a Parsons
problem (BP), “explain in your own words” tasks (BF, RF, MF).

5.1 Methodology

We categorized ProgComp tasks by using the Block Model frame-
work. In other terms, we analysed each of the available tasks con-
sidering both at what level of complexity it focuses (atoms, blocks,
relational, macro) and what dimension of the program it looks at
(text surface, i.e. syntax; program execution, i.e. notional machine;
function, i.e. purpose or intention of the code).

This approach allowed us to enrich the list of available ProgComp
tasks. Indeed, during the analysis, we found that some parts of the
block model matrix were not covered by any task, and this led us
to devise new types of task with the potential to fill those gaps.

We will go through the block model column by column, pre-
senting first task types that pertain to the Text surface, then the
Program when executed and finally the Function of the program.
For each column we will group the task types starting from the
atom level upwards. These types of task then need to be further
specified in relation with a particular code fragment. An example
of this can be found in Figure 6.

5.2 Text Surface Tasks

The text dimension of the Block Model is based on the perceivable
representation of a program. In terms of the comprehension process,
reading and comprehending starts by perceiving, which implies
identifying and discriminating between atomic elements in the text,
then recognising their organisation into language structures of
growing complexity, up to the overall program structure.

The types of tasks in this category are then focused on statically
detectable properties, i.e. syntax as well as static typing. Even though
we restrict our attention to program notational features, the inher-
ent complexities of language constructs and dependencies may be
overwhelming to students, as demonstrated by Luxton-Reilly et al.
in their in-depth analysis [58]. Luxton-Reilly and colleagues also

provide valuable suggestions as to how to decompose a complex
task (in a novice’s perspective) into more focused components.

Other types of tasks considered in the literature to assess or
develop novices’ understanding of the static properties of programs
include, in particular:

o Tasks requiring to fix compile-time errors introduced within
the code in order to test students’ ability to identify the actual
sources of the problems [48].

o Fill-in-the-gap (e.g. choosing the right keyword) and high-
lighting (e.g. identifying the occurrences of a syntactic con-
cept) tasks to test students’ basic competencies on language
syntax [45].

e Parsons-like puzzles involving only the language notation
and tasks requiring to translate an accurate formal definition
into code [65].

To be more concrete, we list a few specific task examples, either
drawn from the literature or suggested by working group members
and participants to the interviews. The examples are classified
according to the rows of the Block Model:

Atom-Text (AT).

o Identify the keywords in a piece of code;

e Box all the assignment statements;

o List all integer variables;

e Box all arithmetic expressions (arithmetic expressions can
be recognised from purely syntactic items);

e Box the headers of all methods/procedures/functions;

e Transform between alternative syntactic forms of atomic
elements (e.g. from i++ to i=i+1).

Block-Text (BT).

e Draw a box around the code of each conditional construct;
Draw a box around the code of each loop;

Box the body of each method/procedure/function;

Check if the parentheses are placed correctly;

Draw nested boxes to represent the structure of a complex
expression.

Relational-Text (RT).

Link each occurrence of a variable with its declaration;
Identify the scope of a variable (assuming static binding);
Identify where a particular function is called;

Verify if all expressions are correctly typed;

Verify if every potential flow path of a function’s body ends
with a return statement;

e Draw a box around the initialization/termination/increment
expression of a for loop (relational for novices first learning
about loop control).

Macro Structure-Text (MT).

e Represent the overall program structure by drawing a “block-
nesting” tree;

e Restructure a program’s code so that library links are at
the top, followed by the definition of global variables and
functions/methods, followed by the main program;

o Describe the overall program block structure by drawing
nested boxes;

e Draw a diagram showing the overall program structure;
o Represent the overall program structure by drawing a tree of
function/procedure dependencies (relative to invocations);

5.3 Program Execution Tasks

In order to deal with the dynamical aspects of execution, the in-
formation provided by the program text is not sufficient, but must
be supplemented with a concept of machine state, establishing the
context(s) in which the program is in action. Thus, the program
dimension of the Block Model focuses on code execution, or, in
technical terms the operational semantics of a program.

At the heart of any characterisation of the program dimension
lies the construction of a viable mental model of the notional ma-
chine [27]. In this respect, Sorva [99] presents a comprehensive
review of research threads “that have contributed to our under-
standing of the challenges that novice programmers face when
learning about the runtime dynamics of programs and the role of
the computer in program execution”. When engaging with the task
of tracing the execution of some piece of code, “sketching” is a
common practice for students in order to overcome the working-
memory load which would be implied by following a long progres-
sion of actions and states in their mind [20, 21, 117].

Several types of tasks designed to investigate on novices’ mastery
of programming pertain to this category. Here is a list of those most
frequently encountered in the literature:

e Tasklets that focus on “atomic” aspects of the operational
semantics, by taking a “reductionist” approach to novices’
understanding and learning of programming [58].

e Tracing, predicting and “fill-in-the-gaps” (within code) tasks
designed to assess novices’ program comprehension [53, 66].

o Proglets, i.e. little programs aimed at reducing the learners’
cognitive load by exploring a single programming concept
[33], when used as the basis of tasks requiring to predict the
program outcome, to modify the code, or simply to experi-
ment freely with it.

e Parsons programming puzzles focusing on the understanding
of the notional machine [26, 39, 72].

o Tasks requiring to trace recursive computations, [37, 65, 86,
89].

o Tasks requiring either to verify reversibility or to write re-
versing code [41, 52, 67, 103].

At a finer-grained level, by considering also the suggestions
emerged within the working group and in the course of the inter-
views, we can classify a range of examples in terms of rows of the

Block Model:

Atom-Program (AP).

e Trace the program execution for some given input data,
where the program does not include procedural units (note
that this task can be accomplished at the atom level, as a
sequence of several atomic steps, each next step being deter-
mined by the previous one);

e Determine the program output (e.g. what is printed) for
given input data, again where the program does not include
procedural units;

e Determine the value of an expression for given values of the
involved variables;

e Trace a particular sequence of statements for given values
of the involved variables.

Block-Program (BP).

o Determine the number of iterations of a loop construct for a
given initial state (here recognising which repeated step is to
be counted implies reasoning at block level — the repeated
block; in particular, think of a nested conditional in a loop);

e Identify recurring instrumental blocks such as that for swap-
ping the values of two variables (the assumption is that the
identification is based on reasoning about the execution of
short sequences of statements);

o Identify the block(s) implementing some specific program
pattern, e.g. among those catalogued by [2] or [74];

e Solve a Parsons puzzle for a specific programming pattern.

e Change a forloop into a while loop.

Relational-Program (RP).

o Identify the variable(s) playing a specific role (in the example
of Listing 1: stepper, most recent holder, most wanted holder,
walker);

e Trace the program execution for a given input, where the
program includes calls to procedural units (this task requires
to establish connections between states relative to the caller’s
code and to the called procedural unit);

o Verify whether some branches of a switch/case statement
are redundant, i.e. can never be executed;

o Identify states, i.e. values of one or more variables, that could
result in an infinite loop;

o Identify the scope of a variable.

Macro Structure-Program (MP).

o Verify if a program statement or block is ever reachable
during program execution;

o Identify a comprehensive set of inputs to check all possible
computation flows of a program;

o Select from given options the program that is computation-
ally equivalent to a reference one, i.e. which gives rise to the
same sequence of variable states for every admissible input
data;

e Explain why two given programs are not computationally
equivalent;

o Estimate the computational costs of the program.

5.4 Function or Purpose Tasks

Relative to the function dimension of the Block Model, a new con-
text, introducing properties extrinsic to the program at hand, comes
into play.

Drawing a borderline between (abstraction on) code execution
features and purpose-driven features is not always straightforward,
and it is likely to depend to a large extent on the knowledge assumed
at a certain learning stage.

However, well-developed tasks exploring this dimension of pro-
gram comprehension are more difficult to envisage. As pointed

out by Begum and colleagues [4], “[v]ery little research has in-
vestigated the behavior of programmers from understanding the
problem specification to computer program”.

Among the tasks considered in the literature, in which novices
are required to understand the program in connection with an
extrinsic problem domain we can mention the following:

e Tasks asking to explain in words® [54, 66, 113] the purpose
of a program.

e “Fill-in-the-gaps” tasks designed to assess novices’ under-
standing of the relationships between a program and the
problem being solved [53].

e Parsons puzzles focused on the problem to solve [26, 39, 72].

o Tasks requiring to choose more meaningful names for pro-
gram functional units, or to chunk code segments and define
semantically meaningful functions [65].

In more detail, again by integrating suggestions coming from
the working group as well as the interview participants:

Atom-Function (AF).

o Identify the purpose of an expression or a simple statement,
in connection with the problem domain (e.g. of an expres-
sion/assignment for converting Fahrenheit to Celsius)

e Identify the purpose of a condition w.r.t. the problem domain
(e.g. divisibility for some positive integer);

e Rename a constant with an appropriate name from the prob-
lem.

Block-Function (BF).

e Choose an appropriate name for a simple procedural unit
(method, procedure or function, where the unit body consists
in a simple block);

e Summarise in a short sentence what the block goal is;

o Identify the program block(s) with a given function, de-
scribed in problem-domain terms;

e Write comments explaining the purpose of a block and of
the statements it is built from.

Relational-Function (RF).

o Choose an appropriate name for a variable (usually the func-
tion of a variable can be inferred by establishing relationships
between different occurrences of it);

e Summarise in a short sentence the purpose of a simple block
invoking one or more methods/procedures/functions;

e Solve a Parsons puzzle for a given code purpose by reordering
simple blocks (it requires to identify the sub-purpose of each
block and their relationships)

o Identify functionally equivalent blocks, i.e. blocks giving rise
to the same overall state transformation (selection from a
few predefined options).

Macro Structure-Function (MF).

e Choose an appropriate name for a program;

e Summarise in a short sentence what the program goal is;

o Select the sentence, from a few options, which most accu-
rately summarises the program’s purpose;

3called in the literature “Explain in plain English” but students may use their native
language instead

o Create meaningful test cases for the allowed inputs and ex-
pected outputs (test cases are usually based on the program’s
purpose).

5.5 Towards a repository of Learning Activities

Due to time constrains, we were not able to set up an online reposi-
tory for the collected task. However, it is a long-term goal to either
create of join an open-source “live” repository where practitioner-
s/teachers as well as researchers in the field of computer science
education can find and contribute ProgComp resources. With this
goal in mind, we have designed a template to be attached to each
submitted ProgComp activity, which provides context and supports
its use.

The template incorporates the following fields: the coding that
describes the activity as in the a block model; pre-requisites (CS
and ProgComp); materials provided by instructor; instructions for
students; the new things that students will learn from this activity;
how the activity can be designed as an individual or a team-based
activity; and the perceived engagement as in the ICAP model [15].

To validate the template, which is included in appendix C, a sub-
group filled a template form for four different types of activities :
(a) identifying the role/purpose of variables, (b) commenting select-
ed/key lines of code or code snippets, (c) tracing, and (d) debugging
(finding and fixing an error).

6 MOVING FROM SINGLE TASKS TO
LEARNING TRAJECTORIES

Learning trajectories (LT) have garnered the attention of math and
science educators [55] because of their ability to model how the
student’s thinking about a specific topic evolves, which supports
research-based curriculum development [88]. Such research-based
curriculum development has taken place, for example, in the math-
ematics education community [17].

However, empirical knowledge about LT is largely absent in com-
puter science education. One reason is that there is no established
methodology to systematize and define learners’ progression in CS
disciplines. Some recent studies attempted to extract data from the
literature to create learning trajectories for sequence, conditionals,
and repetition [78]; abstraction [76] and debugging [77]. These LT
provide a path for particular aspects for programming and com-
prehension, but to the best of our knowledge, there is no learning
trajectory for ProgComp as a whole skill.

In the following sections, we present our methodology to create
LT for ProgComp. This methodology could assist instructors in
two ways. First, it provides practical examples for instructors of
how to decompose a task that fosters ProgComp into sub-tasks that
reduce the complexity with respect to the overall task, making
it suitable for beginners, and later move to more advanced levels
of complexity aimed to advanced learners, working on different
aspects of ProgComp, as presented by the levels of the Block Model.
Second, it provides a guideline that could help instructors identify
where a specific task fits into the Block Model and what particular
aspects of program comprehension are being fostered.

6.1 Methodology

Using the work of Lister and colleagues as a starting point, the
“Leeds” ITiCSE working group Lister et al. [53] concluded that stu-
dents lacked basic skills pre-requisite for problem-solving, such
as comprehending program code. More recently, assessment tasks
were found to be more complex than academics expected [58]. For
example, tasks typically require both algorithmic thinking (for ex-
ample initializing a variable before updating it), as well as a more
advanced understanding of data representation (assigning a value
to a property) [92]. In their research, Luxton-Reilly et al. [58] state
that most asse