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Abstract

We propose and throughly investigate a temporalized version of the pop-
ular Massey’s technique for rating actors in sport competitions. The method
can be described as a dynamic temporal process in which team ratings are up-
dated at every match according to their performance during the match and the
strength of the opponent team. Using the Italian soccer dataset, we empirically
show that the method has a good foresight prediction accuracy.

1 Introduction
Rating and ranking in sport have a flourishing tradition. Each sport competition has
its own official rating, from which a ranking of players and teams can be compiled.
The challenge of many sports’ fans and bettors is to beat the official rating method:
to develop an alternative rating algorithm that is better than the official one in the
task of predicting future results. As a consequence, many sport rating methods have
been developed. Amy N. Langville and Carl D. Meyer even wrote a (compelling)
book about (general) rating and ranking methods entitled Who’s #1? (Langville and
Meyer, 2012).

In 1997, Kenneth Massey, then an undergraduate, created a method for rank-
ing college football teams. He wrote about this method, which uses the mathemati-
cal theory of least squares, as his honors thesis (Massey, 1997). Informally, at any
given time t, Massey’s method rates a team i according to the following two factors:
(a) the difference between points for and points against i, or point spread of i, up to
time t, and (b) the ratings of the teams that i matched up to time t. Hence, highly
rated teams have a large point differential and matched strong teams so far. Below
in the ranking are teams that did well but had an easy schedule as well as teams that
did not so well but had a tough schedule.

In this paper we propose a temporalized version of the original Massey’s
method. The idea is the following. For a given team i and time t, the original
Massey rates i according to the point spread of i up to time t and the ratings of the
teams that i matched up to time t. Notice, however, that the rating of a matched
team j is computed with respect to time t, and not, as we argue it should be more
reasonable, with respect to the (possibly previous) time when i and j matched.
Suppose, for instance, that i and j matched at time 7, when team j was strong
(high in the ranking), and now, at time 19, team j lost positions in the ranking
and is thus weaker. The original Massey’s method adds up to the rating of i the
current low rating of j computed at time 19, and not the past high rating of j
computed at time 7. For example, in college football, say Notre Dame is highly
touted early in the season, and Miami beats #1 ranked Notre Dame in September.



Then Notre Dame suffers some injurys (physical or psyhcological) and loses three
more games. Traditional methods will miss the fact that Miami beat Notre Dame
when they were at full strength and confident. The temporalized Massey’s method
we propose solves this issue. At any given time t of the season, the temporalized
Massey’s method rates a team i according to (a) the point spread of i up to time t,
and (b) the ratings of the teams that i matched up to time t computed with respect
to the time they matched.

Various authors addressed dynamic modelling of sports tournaments. A re-
cent account of can be found for example in Cattelan, Varin, and Firth (2013). In the
paper, only the outcomes (win-draw-loss) of the matches, and not point spreads, are
considered. The abilities of the home and visiting teams are assumed to evolve sep-
arately in time following an exponentially weighted moving average process ruled
by a constant coefficients linear recurrence. In our approach the two abilities are
twisted together and the evolution is described by a variable coefficients recurrence.

A good survey of dynamic models for teams strengths in NFL can be found
in Glickman and Stern (2017). Generally teams’ abilities are assumed to evolve
through a first order autoregressive process. For example in Harville (1980) this
strategy is used to model season to season changes of team’ abilities while in Glick-
man and Stern (1998) week to week changes. As we will see, our approach gives,
as season proceeds, a greater importance to the history of the results compared with
the one given by an autoregressive model.

Chartier, Kreutzer, Langville, and Pedings (2011) propose nonuniform weight-
ing for sports rankings. Their technique allows to weight differently late season
play but also, for example, home court advantage or high-pressure games. The
authors discuss and experiment various strategies for choosing the weights: in
the simplest one the weights linearly increase from the first day of the season to
the last day. They apply their strategy also to Colley’s method a close sibling of
Massey’s method. We remark that the temporalization technique that we develop
for Massey’s method can easily be extended to Colley’s method.

A popular time-varying rating system used is sport competitions is Elo’s
method (Elo, 1978, Langville and Meyer, 2012). There is an intriguing similarity
between Elo’s method and temporalized Massey’s method. Both methods update
the old rating of a team in terms of the same ingredients: the current performance of
the team and the rating of the opponent team. However, the two methods mix these
ingredients in different ways, and hence the resulting recipe differs. While Elo uses
a logistic (exponential) function to mix performance and opponent rating, Massey
linearly combines the two.

The paper is organized as follows. Section 2 reviews the original Massey’s
method. We propose the temporalized interpretation of the Massey’s method in
Section 3. In Section 3.1 we investigate the algebra of the proposed method while in



Section 3.2 we describe a bootstrap-based procedure for quantifying the uncertainty
of the rating estimates. We apply the Massey’s method to the Italian Serie A soccer
league (season 2015-2016) in Section 4. Finally, we conclude in Section 5.

2 The Massey’s method for sports ranking
In this section we offer a brief introduction to the original Massey’s method. A more
general introduction can be found in Glickman and Stern (2017). The main idea
of Massey’s method, as proposed in Massey (1997), is enclosed in the following
equation:

ri− r j = yk

where ri and r j are the ratings of teams i and j and yk is the margin of victory for
game k of team i. If there are n teams who played m games, we have a linear system:

Xr = y (1)

where X is a m×n matrix such the k-th row of X contains all 0s with the exception
of a 1 in location i and a −1 in location j, meaning that team i beat team j in match
k (if match k ends with a draw, either i or j location can be assigned 1, and the other
−1). Observe that, if e denotes the vector of all 1’s, then Xe = 0. Let M = XT X and
p = XT y. Notice that

Mi, j =

{
the negation of the # of matches between i and j if i 6= j,
# of games played by i if i = j.

and pi is the signed sum of point spreads of every game played by i. Clearly the
entries of p sum to 0, in fact eT p = eT XT y = (Xe)T y = 0. The Massey’s method is
then defined by the following linear system:

Mr = p (2)

which corresponds to the least squares solution of system (1).
We observe how the Massey’s team ratings are in fact interdependent. In-

deed, Massey’s matrix M can be decomposed as

M = D−A,

where D is a diagonal matrix with Di,i equal to the number of games played by
team i, and A is a matrix with Ai, j equal to the number of matches played by team i
against team j. Hence, linear system (2) is equivalent to



Dr−Ar = p, (3)

or, equivalently

r = D−1(Ar+ p) = D−1Ar+D−1 p.

That is, for any team i

ri =
1

Di,i
∑

j
Ai, jr j +

pi

Di,i
. (4)

This means, and the same observation can be found in Glickman and Stern (2017),
that the rating ri of team i is the sum r(1)i + r(2)i of two meaningful components:

1. the mean rating of teams that i has matched

r(1)i =
1

Di,i
∑

j
Ai, jr j;

2. the mean point spread of team i

r(2)i =
pi

Di,i
.

It is worth pointing out that the ratings computed by Massey’s method correspond
to averages. Hence, it could happen that a team that plays with good performances
a limited number of matches against strong teams obtains an extremely high and
not justified rating. Actually this effect has been clearly discussed in Chartier, Har-
ris, Hutson, Langville, Martin, and Wessel (2014). To overcome this problem the
authors propose to introduce a dummy team that defeats all the teams that played a
number of matches below a suitable cutoff.

In order to better understand the behaviour of the method, it is interesting
to analyse what happens to Massey’s system at the end of the season, assuming a
round-robin competition in which all n teams matched all other teams exactly once.
In this case, the opponents rating component

r(1)i =− ri

n−1
,

where we have used the fact that ∑i ri = 0, and the point spread component

r(2)i =
pi

n−1
,



hence
ri = r(1)i + r(2)i =− ri

n−1
+

pi

n−1
,

and thus
ri =

pi

n
.

Hence, the final rating of a team is simply the mean point spread of the team. It
is possible to be a bit more precise about this property of Massey’s method by
exploiting the properties of the set of eigenvalues, or spectrum, of the Laplacian
matrix M = D−A. The spectrum reflects various aspects of the structure of the
graph GA associated with A, in particular those related to connectedness. It is well
known that the Laplacian is singular and positive semidefinite (recall that M = XT X
and Xe = 0) so that its eigenvalues are nonnegative and can be ordered as follows:

λ1 = 0≤ λ2 ≤ λ3 ≤ . . .≤ λn.

It can be shown that λn ≤ n, see for example Brouwer and Haemers (2012). The
multiplicity of λ1 = 0 as an eigenvalue of the Laplacian can be shown to be equal
to the number of the connected components of the graph, see again Brouwer and
Haemers (2012). If the graph of the matches is connected or, equivalently, M is ir-
reducible, as we assume in the following, λ2 6= 0 is known as algebraic connectivity
of the graph and is an indicator of the effort to be employed in order to disconnect
the graph.

We can write the spectral decomposition of M as M = UDUT where U is
orthogonal and its first column is equal to e/

√
n, and D = diag(0, λ2, . . ., λn). From

Mr = p we obtain r =UD+UT p where D+ = diag(0, 1
λ2

, . . ., 1
λn
). Now

r− p
n
=UD+UT p− p

n
=U

[
D+− I

n

]
UT p,

where I is the identity matrix. Observe that the first component of the vector UT p
is equal to zero so that

r− p
n
=U

[
D+− I

n

]
UT p =U

[
D+− Ĩ

n

]
UT p,

where Ĩ = diag(0,1, . . . ,1). If we denote with ‖ · ‖ the Euclidean norm we obtain

‖r− p
n
‖= ‖U

[
D+− Ĩ

n

]
UT p‖ ≤ ‖p‖ max

k=2,...,n

∣∣∣ 1
λk
− 1

n

∣∣∣≤ ‖p‖n−λ2

nλ2
,

where we used the fact that the Euclidean norm of an orthogonal matrix is equal to
one. Hence, in the case of a round-robin competition, as the algebraic connectivity
λ2, as well as the other eigenvalues, approach n, that is, as more and more matches
are played, the vector r approaches p/n and the equality is reached when the graph
of the matches becomes complete.



3 Temporalized Massey’s method
We propose a temporalized variant of the original Massey’s method. The main idea
of the new proposal is to compute the rating of a matched team with respect to
the time when the match was played, and not with respect to the current time, as
Massey does.

We consider a temporal process of matches between pairs of teams that
occur at a given time. Each element of the process is a tern (i, j, t) where i and j
are the teams that matched and t is the time of the match. Time is discrete and is
represented with natural numbers 0,1, . . .. We assume that each team plays at most
one match at any given time. Matches (of different teams) that occur at the same
time are considered to happen simultaneously.

Let si(t) be the difference of the points for team i and the points against
team i in the match of time t, where we assume si(t) = 0 if i does not play at time
t. Let mi,t be the number of games that team i played until time t. Let j1, . . . , jmi,t

be the teams matched by i until time t and t1, . . . , tmi,t be the timestamps of these
matches. Then the rating of team i at time t is defined as follows. We set ri(0) = 0
for all teams i. Hence all teams are initially equally ranked. For any team i, if i did
not play so far, that is mi,t = 0, then its rating is still null. Otherwise, if mi,t > 0, we
have that, for every t ≥ 1:

ri(t) =
1

mi,t

mi,t

∑
k=1

(r jk(tk−1)+ si(tk)). (5)

This means that the rating ri(t) of team i at time t is the sum r(1)i (t)+ r(2)i (t) of two
meaningful components:

• the mean historical rating of teams that i has matched:

r(1)i (t) =
1

mi,t

mi,t

∑
k=1

r jk(tk−1);

• the mean point spread of team i at time t:

r(2)i (t) =
1

mi,t

mi,t

∑
k=1

si(tk).

Notice that we set ri(0)= 0 for all teams, meaning that at the start of the competition
all teams are considered equal. This might be not always realistic: we sometimes
know that some teams are potentially stronger than others. Hence, an alternative



solution is to set ri(0) = ρi, where ρi is the exogenous strength of i before the com-
petition starts. For instance, we can set the exogenous strength to be proportional
to the rating of the team at the end of the previous season.

We illustrate the proposed method with the following simple example (a
complete application is discussed in Section 4). The table below shows the results
of 6 matches (numbered from 1 to 6), divided in 3 days representing a different time
(numbered from 1 to 3), involving 4 fictitious teams (labelled A, B, C, D):

match day team 1 team 2 score 1 score 2
1 1 A C 2 1
2 1 B D 2 1
3 2 A D 3 0
4 2 B C 1 1
5 3 A B 1 0
6 3 C D 1 0

While there is no doubt that A is the leader of the ranking (it won all matches) and
D is the weakest team (it lost all matches), the challenge between B and C is more
controversial: each has won one match, lost another match and drew when they
matched together.

The following spread matrix contains the cumulative spread of each team
at each day. Initially B has a small advantage over C, which is maintained in the
second day, and lost in the last day, when they finish with the same spread. Notice
that the spread of the last day corresponds, up to a multiplicative constant, to the
original Massey rating (see Section 2). Hence, according to the spread or to orignal
Massey’s method, there is no difference between B and C at the end of the season.

1 2 3
A 1 4 5
B 1 1 0
C -1 -1 0
D -1 -4 -5

However, the temporalized Massey’s method tells us a different story. The follow-
ing matrix contains the temporalized Massey rating for each day and each team:



1 2 3
A 1 1.5 1.33
B 1 0 0.17
C -1 0 -0.17
D -1 -1.5 -1.33

The first day the rating is exactly the spread, hence B has an little advantage over
C. Interestingly, this advantage is lost at day 2, while the spread is still in favor
of B. The reason is that at day 2, teams B and C matched together and they drew.
However, before of the match (at day 1), B was stronger than C, hence C drew
against a stronger team with respect to B. Finally, at day 3, B is over C in the ranking
(while the spread is equal). In fact, at day 3, B lost, but against the strongest team
of the competition (A), and C won, but against the weakest team of the competition
(D). In summary, B and C drew the match together (but when B was stronger), and
then they both lost against A and won against D. But the subtle difference, which is
captured only by the temporalized version of Massey, is that B lost against A at day
3, when A was the strongest team, while C lost against A at day 1, when A was as
strong as all other teams. Similarly, B won against D at day 1, when D was as strong
as all other teams, while C won against D at day 3, when D was the weakest team.
This determines the difference in the final ranking of the temporalized Massey’s
method.

3.1 A closer look to temporalized Massey’s method

Let us consider more closely the temporalized Massey’s equation (5). Clearly, if
at time t team i does not play then ri(t) = ri(t− 1). On the contrary, suppose that
at time t team i matches with team j (in other words t = tk for some k). Then the
rating of i at time t can be defined in terms of the ratings at t−1 of teams i and j as
well as the point spread of team i at the current time t:

ri(t) =
mi,t−1

mi,t
ri(t−1)+

si(t)+ r j(t−1)
mi,t

. (6)

Similarly, the rating of j at time t is:

r j(t) =
m j,t−1

m j,t
r j(t−1)+

s j(t)+ ri(t−1)
m j,t

. (7)

Notice that losing against a strong team can still make the day for the loser, but
winning against a weak team can result is a drop of the rating of the winner. We
can rewrite Equation 6 as follows:



ri(t) = αi,t ri(t−1)+βi,t r j(t−1)+βi,tk si(t), (8)

where αi,t = (mi,t − 1)/mi,t and βi,t = 1/mi,t . Notice that αi,t + βi,t = 1. Hence,
the rating of team i at time t is a convex combination of the ratings at time t−1 of
teams i and of the matched team j plus a fraction of the spread of i at time t. Of
course, by expanding recurrence (8) one obtains back equation (5).

We would like to attract the attention of the reader to the fact that coefficients
αi,t and βi,t vary in time. More precisely, as the number of games mi,t of team i
grows, the component αi,t approaches 1 and βi,t vanishes to 0. This means that, if
i played few matches and hence mi,t is small, then the latest performance of i can
make a significant difference in the ranking position of team i. On the other hand,
as mi,t grows, new results can only slightly move the ranking position of the team.
This is coherent with the general idea that an established reputation is difficult to
shake.

Interestingly, if teams i and j played the same number of matches at time t,
that is mi,t = m j,t , it is easy to realize that, after a match between i and j, we have
that ri(t)+ r j(t) = ri(t−1)+ r j(t−1). This means that what one team gains is lost
by the other, and the cumulative rating of the system is the same before and after
the match. In particular, in a round-robin competition in which at each day in the
competition each team matches another team not matched before, it happens that,
if initially all teams have rating equal to 0, at any day the cumulative rating of all
teams in the competition is 0. It is worth noticing that this property holds also for
the original Massey’s method but is lost if teams play a different number of games.

From (6) it follows that every rating ri(t) is a linear combination of spreads
whose nonnegative coefficients can be placed in a matrix C(i,t) such that

ri(t) =
n

∑
k=1

t

∑
l=1

C(i,t)
k,l sk(l).

From (6) it is possible to obtain an equivalent relation for these matrices in the case
where i matches with j at time t

C(i,t) =
mi,t−1

mi,t
C(i,t−1)+

1
mi,t

E(i,t)+
1

mi,t
C( j,t−1), (9)

where E(i,t)
k,l = 1 if (i, t) = (k, l) and E(i,t)

k,l = 0 otherwise. Clearly only the first t
columns of C(i,t) contain entries different from zero.

As an example let us consider again the 4 fictitious teams A, B, C and D of
the previous example that now is convenient to denote with the integers from 1 to



4. In this simple example every team plays at each time hence mi,t = t. Therefore
Equation (9) becomes

C(i,t) =
t−1

t
C(i,t−1)+

1
t

E(i,t)+
1
t
C( j,t−1), t = 1,2,3 (10)

and this yields

C(1,1) =


1
0
0
0

 , C(1,2) =


1/2 1/2
0 0
0 0

1/2 0

 , C(1,3) =


1/3 1/3 1/3
1/6 1/6 0
1/6 0 0
1/3 0 0

 (11)

where only the nontrivial columns of the matrices are shown. Of course if the 4
teams are involved in a round robin competition then in the 4th day A and C match
together again and

C(1,4) =


7/24 1/4 1/4 1/4
5/24 1/8 0 0
5/24 1/12 1/12 0
7/24 1/24 0 0

 ,
where, as before, only the nontrivial columns of the matrix are shown. It is possible
to verify that C(i,t) for i = 2,3,4 are just row permutations of C(1,t).

Notice that the sum of the coefficients in the columns of the matrices C(i,t) in
our example has a quite regular behaviour. Let us denote with C(i,t)

:,l the l-th column
of C(i,t). By using (10), for l = t we obtain

eTC(i,t)
:,t =

1
t

eT E(i,t)
:,t =

1
t
,

that is true in particular for l = t = 1. Making use of induction we obtain for l≤ t−1

eTC(i,t)
:,l =

t−1
t

eTC(i,t−1)
:,l +

1
t

eTC( j,t−1)
:,l =

t−1
t

1
l
+

1
t

1
l
=

1
l
.

As a consequence, the sum of the entries of C(i,t) is equal to Ht = ∑
t
l=1

1
l for each

team i. The number Ht is known as the t-th harmonic number. It holds that

Ht min
1≤k≤n
1≤l≤t

sk(l)≤ ri(t)≤ Ht max
1≤k≤n
1≤l≤t

sk(l).

It is well known that limt→∞ Ht − ln t = γ where γ ≈ 0.577 is known as Euler-
Mascheroni constant. This implies that the range of the ratings of temporalized



Massey’s method increase very slowly in t. For example H38 ≈ 4.2. Moreover,
the above inequality tells us that ratings and spreads, which are added up in the
temporalized Massey’s equation, are of the same order of magnitude.

It is worth noticing that the temporalized Massey’s rating of team i at time
t is a linear combination of past spreads (performances) of all teams, not just of
team i, with multiplicative coefficients described by matrix C(i,t). This contrasts
with the original Massey’s rating for team i. Indeed, as shown in Section 2, as time
goes on, the original Massey’s rating for i approaches a linear combination of past
performances of i, without considering the performances of other teams.

It is interesting to observe that, if the teams have exogenous initial strengths,
then the linear combination of spreads has to be complemented with a linear com-
bination of them. For example, in order to compute r1(4), one has to add to the
combination of spreads whose coefficient appear in C(1,4), the value obtained from

7
24

r3(0)+
5

24
r4(0)+

5
24

r1(0)+
7

24
r2(0),

since the first match of A is against C and the first match of B is against D.
Finally, it is useful to compare recurrence (8) with its constant coefficient

equivalent, namely:

ri(t) = α ri(t−1)+β r j(t−1)+β si(t), (12)

where now α,β > 0 are constant with α +β = 1, and again t is the timestamp of
the match of i with j. By expanding this recurrence we obtain

ri(t) = α
mi,t ri(0)+β

mi,t

∑
k=1

α
mi,t−k

(
r jk(tk−1)+ si(tk)

)
, (13)

where mi,t is the number of games that team i played until time t, while j1, . . . , jmi,t

are the teams matched by i until time t, and t1, . . . , tmi,t are the timestamps of these
matches. Comparing Equations 5 and 13, we capture the difference between the
varying and constant coefficient recurrences. In Equations 5, past performances of
a team are treated homogeneously, while with Equations 13 the past is progressively
forgotten, giving more importance to recent performances, and this forgetfulness is
quicker if α is small (close to 0).

To obtain an alternative intuition of this difference we study the matrices
C(i,t) for our simple round robin example. It is not difficult to obtain

C(1,1) = β


1
0
0
0

 , C(1,2) = β


α 1
0 0
0 0
β 0

 , C(1,3) = β


α2 α 1
αβ β 0
β 2 0 0
αβ 0 0

 ,



where only the nontrivial columns of the matrices are shown. In addition

C(1,4) = β


α3 +β 3 α2 α 1

α2β +αβ 2 αβ 0 0
αβ 2 +α2β αβ β 0
α2β +αβ 2 β 2 0 0

 ,
where again only the nontrivial columns are shown. Notice that, not taking into
account the factor β , the entries of each column of these matrices sum up to a
power of the binomial α + β . Since we assumed α + β = 1, we have that, for
l = 1, . . . , t,

eTC(i,t)
:,l = β .

This result highlights the difference between the varying-coefficient and the constant-
coefficient techniques: the latter gives progressively more and more importance to
the recent matches with respect to the former.

Again, if exogenous initial strengths are present then the linear combination
of spreads has to be complemented with a combination of initial strengths. For
example in order to compute r1(4) to the combination of spreads one has to add

α
4r1(0)+(α3

β +β
4)r3(0)+(α2

β
2 +αβ

3)r4(0)

+(αβ
3 +α

2
β

2)r1(0)+(α2
β

2 +αβ
3)r2(0).

3.2 Uncertainty evaluation

The temporalized Massey’s method is a deterministic procedure which provides
point evaluation of the ratings, taking into account the actual time evolution of team
abilities. However, since these findings are based on sport competition data charac-
terized by sampling variability, the acknowledgement of the consequent sampling
variability of the evaluating procedure is a crucial, focal point. A proper quan-
tification of the uncertainty of these estimates provides an effective mean for as-
sessing whether the ratings of two teams are significantly different. Furthermore,
a time-dependent forecasting distribution could be readily specified for predicting
the match results of the forthcoming day.

In order to address this issue, we consider a simple statistical model for de-
scribing the match outcomes, following the approach proposed by Massey (1997)
for measuring team’s ability, and generalized in many subsequent research papers
aiming at improving sport rating methods (see, for example, Glickman and Stern,
2017, and references therein). More precisely, we define a basic linear regression
model, where the margin of victory for a particular game between two teams is



specified as a linear function of the difference in team strength, with an additional
random error term. In this framework, the evaluation of the uncertainty in the esti-
mated ratings can be performed through a parametric or a non-parametric bootstrap
analysis (see, for example, Davison and Hinkley, 1997).

We assume that yi j(t), namely the score difference in the match of time t
involving team i and team j, for every t ≥ 1 and i 6= j, is defined as

yi j(t) = ri(t−1)− r j(t−1)+ εi j(t), (14)

where εi j(t) is a sequence of uncorrelated random error terms with mean 0 and
variance σ2(t), for every i, j, which may vary according to the time t of the match.
Moreover, we set the initial rating ri(0) = 0 for all teams. Thus, in this basic model,
the score differences are interpreted as random variables with mean value given
by the differences in strength before the match, as estimated by the temporalized
Massey’s method, and a time dependent unknown variance parameter. It is common
to complete the model specification by assuming, if supported by a model diagnos-
tic procedure, that the random residuals εi j(t), and hence the differences in score
yi j(t), follow a normal distribution or another continuous real-valued distribution.
Although score differences are integer-valued, a suitable continuous distribution
(and in particular the normal distribution) may represent a convenient, easy-to-use
approximating model (Stern, 1991, Harville, 2003). Clearly, the values for the score
differences, thus obtained for simulation or prediction purposes, have to be rounded
to the nearest integer.

If the model (14), with a suitable assumption on the distribution of the er-
ror term, gives an adequate description for the score differences and, according to
the observed competition data, we get the estimates r̂i(t) and σ̂2(t) for the team
ratings ri(t) and the residual variance σ2(t), we may consider a simple bootstrap
parametric procedure for estimating the bias bi(t) = E{r̂i(t)}− ri(t) and the vari-
ance vi(t)=V{r̂i(t)} of the temporalized Massey’s ratings. Notice that we adopt the
same notation for the estimated ratings and for the associated sample statistics, since
the distinction will be easily inferred by the context. Then, if {yb

i j(t), t ≥ 1, i 6= j},
b = 1, . . . ,B, are parametric bootstrap samples simulated from the estimated model
(14) and r̂b

i (t), b = 1, . . . ,B, are the corresponding estimates for the team ratings,
the parametric bootstrap estimate for the bias and the variance are, respectively,

bboot
i (t) =

1
B

B

∑
b=1

r̂b
i (t)− r̂i(t) = r̄boot

i (t)− r̂i(t),

vboot
i (t) =

1
B

B−1

∑
b=1

{
r̂b

i (t)− r̄boot
i (t)

}2
.



Using these resampling estimates for the bias and the variance, it is immediate
to obtain an estimate for the standard error associated to r̂i(t) and to specify the
corresponding 1−2α equi-tailed confidence interval

[
r̂i(t)−bboot

i (t)− z1−α

√
vboot

i (t), r̂i(t)−bboot
i (t)+ z1−α

√
vboot

i (t)
]
, (15)

where z1−α is the 1−α-quantile of the standard normal distribution. This basic
confidence interval relies on the assumption that the sample statistic r̂i(t) follows,
at least approximatively, a normal distribution. This can be assessed by considering
a suitable diagnostic analysis on the simulated estimates r̂b

i (t), b = 1, . . . ,B. If the
normal approximation turns out to be poor, alternative bootstrap-based confidence
intervals can be defined (Davison and Hinkley, 1997, chapter 5).

Whenever there is no plausible statistical model for describing the random
error terms εi j(t), the bootstrap analysis can be carried out in a non-parametric fash-
ion. In this case, the bootstrap samples are obtained by repeated sampling from the
set of the observed residuals ε̂i j(t) = yi j(t)−{r̂i(t−1)− r̂ j(t−1)}, t ≥ 1, i 6= j. In
order to account for the potential modification of the probability distribution of the
residuals over time, we may consider repeated sampling from moving, overlapping
blocks of observed residuals within a fixed temporal width. If {εb

i j(t), t ≥ 1, i 6= j},
b = 1, . . . ,B, are the bootstrap samples for the residuals, the bootstrap data will be
defined as yb

i j(t) = r̂i(t− 1)− r̂ j(t− 1)+ εb
i j(t). The computation of the bootstrap

estimate for the bias and the variance of r̂i(t) and the specification of the associated
confidence intervals are the same as in the parametric case.

4 Application to Italian soccer league
In this section, we analyse the Italian Serie A soccer league of season 2015-2016,
which is a round-robin competition with 20 teams and 38 days (each pair of teams
matches twice).

In Figure 1 we depict the Kendall correlation between pairs of ranking meth-
ods among temporalized Massey (T-M), original Massey (M), and official ranking
(O). As days pass, we accrue more and more information about the real strength of
teams, and all correlations increase. In particular at day 38, end of the season, we
have complete information, and correlations coefficients are close to 1 (0.98 for T-
M vs M, 0.93 for M vs O, and 0.91 for T-M vs O), although there are differences in
the rankings, in particular when the official compilation is involved. Nevertheless,
during the season, when information is partial, the corresponding rankings diverge
significantly, and correlation coefficients are far from 1, in particular with respect



to the official ranking. For instance the coefficients at day 10 are: 0.80 for T-M vs
M, 0.73 for M vs O, and 0.62 for T-M vs O. Moreover, over all days, the associ-
ation between Massey and official rankings is higher than the association between
temporalized Massey and official rankings.
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Figure 1: The Kendall correlation coefficients among temporalized Massey (T-M),
original Massey (M), and the official ranking (O) as days go by from 3 to 38.

A rigorous test for a rating system is foresight prediction accuracy (Langville
and Meyer, 2012): how well the vector r(t) of ratings computed at day t can pre-
dict the winners at day t + 1? More precisely, the foresight prediction accuracy of
a method is the number of victories that the method corrected foresaw divided by
the total number of victories of that competition (we ruled out the ties). Hence,
accuracy of 0 means no predictions were correct, while accuracy of 1 means that
all predictions were correct. We also computed accuracy introducing a home-field
advantage, which was empirically determined for each method and added to the
rating of the team playing at home. A home-field advantage matters for foresight
prediction in time-varying methods: since initially all teams are rated equal, then
in the beginning, before there is enough competition to significantly distinguish the
teams’ ratings, home-field consideration is the only criterion that the method can
use to draw a distinction between two teams. We compared three time-varying rat-
ing methods with and without home-field advantage (see Table 1): official rating of
the Italian soccer league, temporalized Massey’s method, and Elo’s method. Tem-
poralized Massey is slightly more predictive than Elo and significantly better than



the official rating. Moreover, for all methods, introducing the home-field advantage
has a significant impact in the prediction accuracy. We also computed, for the tem-
poralized Massey’s method, the foresight prediction accuracies at each day of the
competition (with home-field advantage). The histogram of accuracies is depicted
in Figure 2. Only 2 predictions are below the threshold of 50% of accuracy corre-
sponding to randomness (notice that the 3 predictions in the 40%-50% histogram
bar are in fact equal to 50%). On the other hand, most of predictions (78%) are
above 60% of accuracy, with 12 predictions (32%) above 80% of accuracy and 3
predictions (8%) with 100% of accuracy.

Method Without HFA With HFA
Temporalized Massey 0.611 0.702
Elo 0.611 0.695
Official 0.589 0.674

Table 1: Foresight prediction accuracies with and without home-field advantage
(HFA).
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Figure 2: Histogram of foresight prediction accuracies at each day of the competi-
tion (with home-field advantage) for temporalized Massey’s method.

Related to prediction accuracy, consider the following story. Teams Inter
and Juventus had a peculiar season in 2015-2016. Inter immediately won the first
matches, but with low spread of points. On the other hand, the start of Juventus was



disastrous. This led Inter well above Juventus in the official ranking, with a maxi-
mum distance of 10 points at days 5 and 6. From day 10, however, Juventus started
an incredible row of wins, culminating at day 19 when the two teams were pair in
official standings. Finally, at day 38, Juventus powerfully won the championship
with 24 points above Inter. In Figure 3 we depict the temporal dynamics of the of-
ficial, original Massey, and temporalized Massey rankings during the first round of
the championship. The superiority of Juventus with respect to Inter is not witnessed
by the official ranking until the end of the round. On the other hand, Massey and in
particular its temporalized version predicted this supremacy well before the end of
the round.
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Figure 3: The temporal dynamics of the ratings of Juventus and Inter in the first
round (19 days).

Furthermore, with the simple bootstrap procedure outlined in Section 3.2, it
is possible to achieve a preliminary evaluation of the uncertainty of the estimated
ratings given by the temporalized Massey’s method. Then, it will be possible to
assess whether the difference in the temporal dynamics of the ratings of two teams,
such as Juventus and Inter as represented in Figure 3, can be considered as reason-
ably significant.

A preliminary graphical analysis on the observed residuals, reported in Fig-
ure 4, suggests that the normal distribution could be a satisfactory model for the
error term in (14) and that the associated variance σ2(t) changes considerably
throughout the season. Since the time evolution of the variability does not fol-
low a simple functional pattern, the estimates σ̂2(t) are obtained using a moving
variance procedure, which returns the sample variance of the observed residuals
over a sliding window of length w (an odd integer value) centred about t ∈ {(w+
1)/2, . . . ,38−(w−1)/2}. The values related to the first and the last (w−1)/2 days
are assumed to be equal to the first and the last computable estimates, respectively.
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Figure 4: Italian Serie A soccer league 2015-2016. Normal qq-plot (left) and tem-
poral evolution throughout the season (right) of the the observed residuals.

We find out that a window length w = 5 assures a reasonable amount of smoothing
in the estimated sequence.

Table 2 shows the teams of the Italian Serie A soccer league 2015-2016
ranked according to the ratings at the end of the season (day 38), as estimated by
the temporalized Massey’s method. Furthermore, we report the parametric boot-
strap estimates for the bias and the standard deviation of the associated ratings esti-
mators and the bootstrap confidence intervals, with confidence level 1−2α = 0.95,
specified according to equation (15). The use of the normal approximation for the
confidence limits is empirically validated by the normal qq-plot of the bootstrap
simulated estimates for the ratings. Moreover, almost the same conclusions can
be obtained using the non-parametric bootstrap procedure described at the end of
Section 3.2. This close similarity in the final results confirms the validity and the
robustness of the conclusions drawn from the parametric analysis.

Notice that, for some teams, the estimates for the bias are substantial and
also the sign is not always the same along the column. For this reason, the con-
fidence intervals are computed using equation (15), where the bias-corrected esti-
mates for the ratings are considered as interval midpoints. In our opinion, these
unexpected bias values may reveal that the basic model (14) does not provide a
complete explanation for the score differences. Improving the model, by introduc-
ing, for example, suitable additional explanatory variables, can possibly reduce the
value of the bias term.

We emphasize that the 95% confidence intervals have to be only interpreted



Rank Team Rating Bias St Dev 95CI
1 Juventus 1.422 -0.587 0.268 (1.483, 2.535)
2 Napoli 1.240 -0.178 0.263 (0.903, 1.933)
3 Roma 1.013 -0.261 0.265 (0.755, 1.793)
4 Fiorentina 0.498 0.312 0.256 (-0.315, 0.688)
5 Inter 0.261 0.125 0.259 (-0.372, 0.645))
6 Sassuolo 0.141 0.061 0.264 (-0.437, 0.598)
7 Milan 0.101 -0.138 0.265 (-0.280, 0.758)
8 Lazio 0.090 -0.197 0.262 (-0.226, 0.802)
9 Chievo -0.038 0.436 0.261 (-0.985, 0.037)
10 Torino -0.040 0.328 0.263 (-0.883, 0.148)
11 Genoa -0.079 -0.183 0.260 (-0.407, 0.614)
12 Atalanta -0.142 0.034 0.266 (-0.698, 0.344)
13 Empoli -0.267 -0.193 0.261 (-0.585, 0.439)
14 Bologna -0.306 -0.056 0.257 (-0.754, 0.253)
15 Sampdoria -0.380 0.457 0.260 (-1.346, -0.328)
16 Carpi -0.390 -0.366 0.262 (-0.538, 0.489)
17 Udinese -0.627 0.045 0.264 (-1.189, -0.154)
18 Verona -0.689 0.005 0.261 (-1.206, -0.181)
19 Palermo -0.705 0.288 0.262 (-1.506, -0.481)
20 Frosinone -1.106 0.066 0.260 (-1.682, -0.663)

Table 2: Italian Serie A soccer league 2015-2016. Teams ranked according to
ratings at the end of the season estimated by the temporalized Massey’s method,
boostrap-based estimates for the bias and the standard deviation, and 95% boot-
strap confidence intervals.

as interval estimates for the team ratings and they can not be considered for pairwise
comparison of the estimated team strengths. The non-overlap criterion, according
to which, if two intervals fail to overlap, the corresponding ratings are interpreted
as significantly different, is more conservative and less powerful than the standard
testing procedure at the 5% significance level based on the difference of the rat-
ings (Schenker and Gentleman, 2001). With equal standard errors, and under the
normality and the independence assumptions, the non-overlap criterion achieves
the required 5% significance level when we consider a normal quantile equal to
1.96
√

2/2 instead of 1.96. Thus, in order to justify this criterion for pairwise rat-
ings comparison with a 5% significance level, the confidence level of the intervals
has to be reduced to 1−2α = 0.834 (Goldstein and Healy, 1995).
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Figure 5: The 83.4% bootstrap confidence interval graph with highlighted commu-
nities of teams. Black edges connect nodes within the same group, red edges run
between nodes of different groups.

The graph in Figure 5 gives a relational view of the 83.4% bootstrap confi-
dence intervals of the teams. The graph is as follows. The nodes are the 20 teams
numbered according to the temporalized Massey ratings (the rank given in the first
column of Table 2). We used the Jaccard index to draw the edges between nodes.
Recall that the Jaccard index measures similarity between two finite sets, and is
defined as the size of the intersection divided by the size of the union of the two
sets. Initially, we traced an edge between two teams if the Jaccard index of the
corresponding confidence intervals is positive, that is, if the two intervals inter-
sect. Then, we removed all edges with a Jaccard index less than the median of the
edge Jaccard scores, which turns out to be 0.4. Finally, we ran an optimal commu-
nity detection procedure on the resulting graph (Newman, 2010). The procedure
outputs a partition of the nodes into the communities highlighted in Figure 5. Infor-
mally, the solution partition nodes into cohesive groups maximizing the number of
edges that connect nodes within the same group. A community hence corresponds
to a set of teams that might be considered equivalent with respect to the strength
as measured with the temporalized Massey procedure. Notice the placement of
teams 11 (Genoa), 13 (Empoli) and 16 (Carpi): the Massey ratings underestimate
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Figure 6: Italian Serie A soccer league 2015-2016. Temporal dynamics of the
83.4% bootstrap confidence intervals for the ratings of Juventus and Inter given by
the temporalized Massey’s method.

these teams, while the uncertainty analysis determines their inclusion into a higher-
ranked community. Indeed, these teams have the largest negative bias among those
of the second part of the ranking. On the other hand, teams 9 (Chievo), 10 (Torino)
and 15 (Sampdoria) are overestimated by their Massey ratings and are placed into a
lower-ranked community by the uncertainty analysis. Notice that these teams have
the largest positive bias among those of the second part of the ranking.

Finally, in Figure 6, we consider the temporal dynamics of the 83.4% boot-
strap confidence intervals for the ratings of Juventus and Inter, as estimated by the
temporalized Massey’s procedure. As emphasized before, this method points out
the superiority of Juventus with respect to Inter well before the end of the first
round, but this supremacy becomes evident, and statistically significant at the ap-
proximate 5% level for each single pairwise comparison, only at the beginning of
the second round, when the intervals turn out to be well-separated.

5 Conclusion
We introduced a temporalized version of the popular Massey’s method for rating
actors in sport competitions. The idea of the new method is quite simple: rate
matched teams with respect to the time when the match was played. We showed that



the resulting method can be described as a dynamic process in which the rating of
any team is modified when the team plays according to the performance of the team
during the game and the strength of the matched team before the game. We applied
the new method to the Italian soccer league showing a good foresight prediction
accuracy.

A future research line concerns the generalization of the basic statistical
model, considered in this paper for the specific aim of producing a preliminary
quantification of the uncertainty related to the rating estimates. As emphasized in
Section 4, these estimates present an unusual bias, which may indicate that model
(14) does not provide a fully satisfactory explanation for the score differences. The
introduction of suitable covariate information, such as the home field advantage,
and the specification of a more flexible temporal modelling for the ratings ri(t) and
the variance σ2(t) of the error term might improve both the descriptive and the
forecasting accuracy of the temporalized Massey’s procedure.
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