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Abstract

In this thesis we present a methodology for solving a finite inverse eigenvalue problem arising in the
determination of added distributed mass in nanobeams by using the first lower resonant frequencies
either of the axial or bending vibration under suitable sets of end conditions.

The nanobeams are modelled within a generalized continuum mechanics theory called modified
strain gradient theory, to take into account the size-dependent behavior.

The inverse method is based on an iterative procedure that produces an approximation of the
unknown mass variation as a generalized Fourier partial sum of order N . The Fourier coefficients
of the added mass are evaluated from the first N resonant frequencies belonging either to a sin-
gle spectrum or two different spectra, for a mass variation with support contained in half of the
nanobeam axis and for a general mass variation, respectively. The initial, unperturbed nanobeam is
supposed to be uniform and the mass variation is assumed small with respect to the total mass of
the nanoresonator. The reconstructive method takes advantage of a closed-form solution when the
mass change is small, and a proof of local convergence of the iteration algorithm is provided for a
family of finite dimensional mass coefficients.

An extended series of numerical simulations, also including cases with errors on the data, shows
that the method is efficient and allows for accurate reconstruction of continuous mass coefficients.
The accuracy deteriorates in presence of discontinuous mass coefficients. A constrained least-
squares optimization filtering shows to be very effective to reduce the spurious oscillations near the
discontinuity points of the rough coefficient. Surprisingly enough, in spite of its local character, the
identification method performs well even for not necessarily small mass changes.
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CHAPTER1
Introduction

In the last years, nanosensors based on nanoelectromechanical systems have gained interest in
different physical, chemical and biological applications [6, 55]. The reason is connected with the
promising features regarding a wide range of applications such as gas detection, early disease detec-
tion, gene mutation detection, DNA sequencing. In this respect, several reviews have been recently
published showing the different capabilities of the nanostructures [5, 30, 77].

The main principle of a nanosensor is to obtain data from atomic scales and transfer them to
the macroscopic world as analyzable data. The detection mechanism revolves identifying particu-
lar atoms or molecules accurately by measuring changes in volume, concentration, displacement,
frequency, velocity, electricity, magnetic forces and temperature. According to the type of vari-
ables to be detected by nanosensors, they are typically classified into six groups [47]: mechanical,
electrical, optical, magnetic, chemical and thermal.

In this thesis we are interested in mechanical nanoresonator sensors which, through their speed,
reduced instrumentation size, increased sensitivity and label-free sensoring, have allowed to expand
detection capabilities from the picogram (10−12 g, Escherichia coli mass), reached in 2001, to the
yoctogram (10−24 g, proton mass), achieved in 2012 with a carbon nanotube [56, 65, 73]. The
physical basis on which identification by means of mechanical nanoresonators is founded is that
the adhesion of the analyte modifies the mass of the reference system, and monitoring the variations
of the resonant frequencies provides cues for the determination of the unknown added mass [30,39,
42]. This is the so-called mass sensing principle and in this thesis we will study inverse problems
associated with it.

The identification problem of an attached mass by measurements of resonant frequency changes
has been studied by several authors in the last years, see Eltaher et al. [29], Murmu et al. [66], and
Li et al. [56]. Moreover, Bouchaala et al. [13] presented a method to determine the position and
intensity of a concentrated mass attached to the surface of an electrostatically actuated clamped-
clamped microbeam used as a mass sensor. Although these works are devoted to the study of
microsensors, the laws of classical elasticity were used to model the nanostructure. Conversely,
the experimental results of several authors [18, 21, 22, 53] pointed out that the consideration of
size effects in the nanoscale components could be relevant to predict their mechanical response.
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Chapter 1. Introduction

Therefore, since the classical continuum mechanics is a scale-free theory, other formulations based
on generalized continuum mechanics approaches taking into account this size-dependent behavior
must be explored.

Among the generalized continuum theories, we cite here three main groups: the microcontin-
uum theory by Eringen [33] including micropolar, microstretch and micromorphic (3M ) theories
(Cosserat micropolar elasticity [19] should be considered in this category, being the simplest formu-
lation among 3M theories); the strain gradient elasticity theory, including the couple stress theory
by Toupin and Mindlin [61,74,75], the first and second strain gradient theories of Mindlin [59,60],
the modified couple stress theory by Yang et al. [79], and the modified strain gradient theory by Lam
et al. [53]; the nonlocal continuum mechanics theories initiated by Kröner [50], Krumhansl [51]
and Kunin [52], simplified subsequently by Eringen and coworkers [31, 32, 34], and formulated
originally in integral form for linear homogeneous isotropic nonlocal elastic materials.

Although several scholars used the Eringen elasticity theory to asses the vibrational behavior
of nanobeams with attached masses [29, 56, 66, 80], and some attempts have been done to identify
the added mass [56, 66], the analyzed configurations are rather specific and a general formulation
of the identification problem is still not available. Moreover, the main drawback using the fully
nonlocal elasticity theory of Eringen has been pointed out by Romano et al. [68], who show that, in
the majorities of the cases, the fully nonlocal elasticity theory leads to severely ill-posed problems
that have no solution in general.

Other non-classical elasticity theories arise as attractive alternatives to overcome the difficulties
associated with the fully nonlocal elasticity framework, particularly the modified strain gradient
elasticity proposed by Lam et al. [53]. This approach needs new additional equilibrium equations
to govern the behavior of higher-order stresses, and the corresponding three-dimensional model
contains three non-classical constants in addition to the two classical ones for isotropic linear elastic
materials. As the theory by Lam et al. [53] turned out to be in good agreement with experimental
results, see, for example, the bending tests on micro-cantilevers performed in [45], in this thesis
we shall use it to take into account the size effects in nanostructures and to model both axial and
bending small vibrations in nanobeams. Chapter 2 presents a self-contained derivation of Lam’s
theory.

Starting from the paper by Kong et al. [49], who studied the static and dynamic bending behavior
of nanobeams, and the research developed by Wang et al. [76], dealing with the analogous prob-
lem for Timoshenko nanobeams, the study of one-dimensional nanostructures using the modified
strain gradient theory has led to numerous works. Akgoz and Civalek [2] derived analytical solu-
tions for the buckling problem of axially loaded nanobeams with both uniform and variable cross
section. The same authors used a non-classical sinusoidal shear deformation to study buckling of
a nanobeam [3] and bending of a nanobeam embedded in an elastic medium [4]. Mohammadi
and Mahzoon [62] investigated thermal effects on postbuckling of microbeams, considering Euler-
Bernoulli theory and a nonlinear (Von-Kármán) strain measure. Miandoab et al. [58] estimated the
Young’s modulus and the length-scale parameters of the modified strain gradient model from exper-
imental measurements of the voltages for static bending pull-in of different micro and nanobeams.
Besides the previous analytical works, Kahrobaiyan et al. [45] developed an Euler-Bernoulli beam
element, and Zhang et al. [81] developed a Timoshenko beam element for the study of static bend-
ing, free vibration and buckling behavior of microbeams.

The inverse problem of identifying added mass attached on nanobeams modelled within the
modified strain gradient theory has been addressed only recently. Morassi et al. [64] developed
a perturbation method for the identification of a single small mass attached to a nanobeam based
on the measurement of the shifts of the first two resonant frequencies of the axial vibration. An
extension of this result to nanobeams in bending vibration carrying a single small point mass was
presented in [25]. However, added distributed mass representing the adsorbed analyte seems to
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be more realistic in several applications. The inverse eigenvalue problem is clearly more difficult,
as the unknowns are no longer the position and intensity of the mass - as in the case of the point
mass - but rather a function of a real variable describing the distribution of added mass. In this
respect, much less effort to identify distributed mass on nanostructures has been given until now.
For example, Roukes and Hanay and co-workers studied in a series of papers [42], [69], [46] the
problem of identifying a distributed mass on transversely vibrating nanobeams under clamped end
conditions. By using the Euler-Bernoulli model of the classical linear elasticity, they proposed
an inertial imaging methodology which enables simultaneous identification of position and shape
of distributed masses through measurements of resonant frequency shifts of the vibrational modes
of the nanosensor. Bouchaala [12] analyzed the effect of a distributed added mass on the natu-
ral frequencies of an electrostatically actuated resonator modelled as a classical clamped-clamped
Euler-Bernoulli beam with geometrical nonlinearities. A complete analysis of the published liter-
ature shows that a general formulation of the identification problem for distributed mass attached
on nanostructures, described by generalized continuum mechanics theories and using resonant fre-
quency data as input, is not given yet. The present thesis is a contribution on this topic.

From a mathematical point of view, the problem of the identification of a distributed added mass
by using measurements of frequencies shifts falls into the class of inverse problems with finite data.
Despite their importance and dissemination in many engineering and technological applications,
general studies focused on these problems are relatively few. In this direction, the contribution
by Barnes in [8] is illuminating. He shows that, to deal with this class of inverse problems, it is
vital to determine the weakest topology in which the available set of eigenvalues are continuous
(with respect to the unknown coefficient) since, otherwise, one would attempting to extract more
information from the spectral data than it contains. The main difficulties of these problems are
due to the non-uniqueness of the solution and to the difficulty in obtaining error estimates on the
uniform approximation of the unknown coefficient. It can be shown that these estimates require the
knowledge of infinite eigenvalues or, at least, of an accurate asymptotic formula and of sufficient
spectral data to make good approximation to the infinite data, see, for example, [41]. In real cases,
neither of this is available.

Extending an idea developed in [63] for the identification of structural damage in classical full-
scale rods, the finite inverse problem is formulated in this thesis from a different point of view,
see also Borg [11], Hald [40] and Knobel and Lowe [48]. Under the assumption that the added
mass is a small perturbation of the reference mass distribution of a nanobeam, it is shown that
the resonant frequency shifts caused by the mass change are correlated with certain generalized
Fourier coefficients of the mass variation evaluated on a suitable family of functions. The method,
which we call Generalized Fourier Coefficient Method (GFCM), leads to an iterative procedure
of reconstruction of the unknown mass coefficient starting from the initial configuration of the
structure which is assumed to be known.

In the first part of the thesis (Chapter 3), we study the inverse problem of determining the added
mass from the knowledge of a finite number of lower natural frequencies of the axial vibration of a
(initially) uniform nanobeam. Two main inverse problems are addressed.

We first consider the case in which the mass coefficient is a priori known on half of the
nanobeam and the resonant frequency data belong to a single spectrum under clamped-clamped
ends. Mathematically, this problem falls into the class of mixed finite inverse problems for fourth-
order differential operators of Euler-Bernoulli’s type, since a finite number of eigenvalues belong-
ing to a single spectrum is known, and partial knowledge of the unknown coefficient is available. A
celebrated uniqueness results for this class of problems can be traced back to Hochstadt and Lieber-
man [44]. Hochstadt-Lieberman’s result holds for second-order differential operators of Sturm-
Liouville type governing the axial vibration of classical straight elastic rods, i.e., Lv = − 1

ρ(x)
v′′(x),

for a rod with unitary axial stiffness and linear mass density ρ(x). Here, v(x) expresses the longi-

3



Chapter 1. Introduction

tudinal displacement at x of the cross-section of the rod, x ∈ [0, L], where L is the rod length. It
is shown that if ρ(x) is prescribed over

[
L
2
, L
]
, then all the infinite eigenvalues under clamped end

conditions v(0) = 0 = v(L) suffice to determine uniquely ρ(x) on
[
0, L

2

]
. It should be remarked

that there is another noticeable case in which the linear mass density of the rod can be uniquely de-
termined from the single spectrum under clamped end conditions, namely when ρ(x) is symmetric
about the midpoint of the interval (0, L) [43]. In the case of fourth-order operators, such as the one
that governs the axial vibration of a nanorod, e.g., Lv = 1

ρ
(bvIV − av′′), with a, b constant positive

stiffness coefficients and ρ(x) unknown linear mass density function, the results of uniqueness for
ρ(x) are few and require the knowledge of an even larger infinite set of eigenvalues. For example,
a classic result by Barcilon [7] shows that the unique determination of the coefficients p(x), q(x) of
the Euler-Bernoulli operator Lv = vIV − (p(x)v′)′ + q(x)v requires knowledge of three complete
spectra associated with three different boundary conditions, see the book of Gladwell [38] for a
comprehensive analysis of this problem. We refer also to Schueller [70] for local uniqueness re-
sults related to an Euler-Bernoulli operator for a mixed-type inverse eigenvalue problem with two
even coefficients, and to Caudill et al. [17] for the first systematic study of isospectral coefficient
sets for Euler-Bernoulli operators.

In spite of the lack of general mathematical results on this class of inverse eigenvalue problems
with finite data, application of the GFCM to the mass identification in axially vibrating nanobeams
by finite number of lower resonant frequencies has led to encouraging results. The method has been
tested on an extended class of coefficients, including smooth (e.g., continuous) and discontinuous
mass variations, either with connected or disconnected support. Numerical simulations show good
accuracy in approximating smooth coefficients when the first 9–12 eigenfrequencies are used. The
reconstruction of discontinuous coefficients turns out to be less accurate, especially because of
no negligible oscillations of the reconstructed mass variation near the discontinuity points, and
typically requires the first 15–20 eigenfrequencies to obtain reasonable accuracy. In addition, we
have also provided a convergence theorem for the iteration scheme for a particular family of finite
dimensional mass coefficients. The result holds under the assumption that the eigenvalues of the
perturbed and unperturbed nanobeam are close enough, and the mass variation is sufficiently small.

In the second part of the Chapter 3, the assumption that the mass variation is supported in half
of the axis interval of the nanobeam is removed, and the GFCM is extended to the reconstruction
of a general mass distribution. In this case, the reconstruction is based on the knowledge of a finite
number of lower resonant frequencies belonging to two spectra corresponding to clamped-clamped
and clamped-free end conditions. The results of the reconstruction confirm those already obtained
by working with only one spectrum.

The second part of the thesis (Chapter 4) is devoted to analysis of the corresponding mass iden-
tification problems using resonant frequencies of the bending vibration. The nanobeam is modelled
as in [49], and the eigenvalue problem consists of a 6th order ordinary differential equation with six
end conditions. From the mathematical point of view, very few results are known for these opera-
tors and all of them concern uniqueness, not reconstruction. For example, Barcilon [7] announced
that the unique determination of the three coefficients {pi(x)}3

1=1 in the 6th order differential equa-
tion uV I− (p1u

′′)′′+(p2u
′)′−p3u = λu, requires four full spectra associated with four distinct sets

end conditions, see also [54] for more general analysis of inverse problems for ordinary differential
operators of higher order. In spite of these not very reassuring premises, the application of the
GFCM to the bending case proved unexpectedly encouraging. Adapting the procedure developed
for the axial problem, we have first identified a distributed mass added on half of the nanobeam by
using the first lower eigenfrequencies of the spectrum under supported end conditions. Next, we
have extended the analysis to cover the more general case in which the mass variation may affect
the entire length of the nanobeam. In this last case, resonant frequencies belonging to two spectra
corresponding to supported-supported and supported-sliding end conditions have been used. The
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results of the reconstruction show that the solution of our inverse eigenvalue problem is very accu-
rate at points which are far from the (possible) jump discontinuities of the mass coefficient, even
when few first lower eigenfrequencies are available. Conversely, as it was expected, large oscilla-
tions may occur near discontinuity point, and they may obstruct the possibility to extract accurate
pointwise information about the unknown added mass. In order to filter out these undesired os-
cillations, we have implemented an optimization filtering based on a least-squares minimization
of the Euclidean norm between experimental and analytical eigenvalues (Section 4.4). Numerical
results, both for a single spectrum and for two spectra, show that this constrained least squares
filter eliminates most of the oscillations, giving significantly better results for discontinuous mass
coefficients.
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CHAPTER2
One-dimensional nanoresonators: mechanical models

Main goal of this Chapter is the presentation of the classical strain gradient theory for three-
dimensional linear elasticity originally developed by Toupin [74] and Mindlin [59, 60], and later
modified by Fleck and Hutchinson [35] and Lam et al. [53]. In particular, the theory by Lam et al.
is applied in the second part of the Chapter to derive a strain gradient elastic theory for beams under
either axial or bending small vibration. These mechanical models will be used in next chapters of
the thesis to describe the dynamic behavior of one-dimensional nanosensors.

2.1 The Toupin-Mindlin strain gradient theory

Let us introduce a Cartesian reference frame {0, X1, X2, X3} of R3 with canonical basis {ei}3
i=1,

ei · ej = δij , δij being the Kronecker’s symbol. Let us denote by Aij, Bijk the (ij)th, (ijk)th
components of the second-order tensor A and the third-order tensor B, respectively, i, j, k = 1, 2, 3.
Unless otherwise stated, the usual summation convention applies to repeated indices.

Let Ω be a natural reference configuration of a solid, where Ω is an open, bounded continuum
and connected subset of R3 having smooth boundary ∂Ω. We denote by u = uiei a displacement
field imposed to Ω̄, which induces the (infinitesimal) symmetric strain tensor

εij =
1

2
(ui,j + uj,i) (2.1)

and the second gradient of displacement

ηijk =
∂2uk
∂xi∂xj

. (2.2)

The strain tensor is symmetric, εij = εji, whereas the second gradient (or second-order deformation
gradient) tensor is symmetric in the first two indices, ηijk = ηjik.

Toupin [74] and Mindlin [60] developed a general theory for linear isotropic hyper-elastic solid
material. Mindlin [60] developed a general higher-order stress theory, which includes higher-order
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Chapter 2. One-dimensional nanoresonators: mechanical models

strain gradients. Here, we shall consider his simplified version, where only the second-order defor-
mation gradients are included as additional deformation metrics.

The strain energy density, w, defined in Ω, is assumed to depend on the conventional strain εij
and on the second-order deformation gradient ηijk, that is

w = w (εij, ηijk) , (2.3)

where a specific dependence of w upon εij and ηijk was determined (see equation (2.38)). It should
be noted that εij and ηijk have different dimensions; therefore, besides the traditional constants
of the conventional elastic theory, additional constants including scale factors are expected to be
present in the final constitutive equations.
The conventional symmetric Cauchy stress σij is defined as the work conjugate to ε, namely

σij ≡
∂w

∂εij
, σij = σji. (2.4)

The double stress tensor τijk is defined as the work conjugate to ηijk as

τijk ≡
∂w

∂ηijk
, τijk = τjik. (2.5)

We now derive the formulation of the equilibrium problem of the body Ω. Following the treat-
ment of Toupin and Mindlin, we evaluate the first variation of the total strain energy stored in Ω,
that is

E (u) =

∫
Ω

w
(
εij(u), ηijk(u)

)
dΩ, (2.6)

where u = u(x) is a regular displacement field assigned on Ω. We start assuming that no geomet-
rical conditions are imposed on ∂Ω, and we evaluate the first variation of E at u. Let

u(ε) = u + εh,

with ε ∈ [−δ, δ], δ being positive and small enough, and h = h(x) is a smooth test function,
h : Ω̄→ R3. The function

Φ(ε) = E (u(ε)) , Φ : [−δ, δ]→ R, (2.7)

is a C1-function in [−δ, δ]. Therefore, the stationarity of E at u implies δE [h] ≡ Φ′(ε)|ε=0 = 0. A
direct calculation shows that

δE [h] =
d

dε

∫
Ω

w (εij(u + εh), ηijk(u + εh)) dΩ
∣∣
ε=0

=

=

∫
Ω

(
∂w

∂εij

dεij(u + εh)

dε
+

∂w

∂ηijk

dηijk(u + εh)

dε

) ∣∣∣
ε=0
dΩ =

=

∫
Ω

(σij(u + εh)εij(h) + τijk(u + εh)ηijk(h))
∣∣
ε=0

dΩ =

=

∫
Ω

(σijεij(h) + τijkηijk(h)) dΩ, (2.8)

where we have denoted σij = σij(u), τijk = τijk(u) to simplify the notation. By the symmetry of
σij , we have

δE [h] =

∫
Ω

(σijhi,j + τijkhk,ij) dΩ = 0 (2.9)

8
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for every smooth test function h.
We elaborate (2.9) by discharging the derivatives from h to σij and τijk via integration by parts.
The first integral of (2.9) becomes∫

Ω

σijhi,jdΩ =

∫
∂Ω

σijnjhida−
∫

Ω

σij,jhidΩ, (2.10)

where n = niei is the unit exterior normal to ∂Ω.
Let us elaborate the second integral in (2.9) by integrating by part twice:∫

Ω

τijkhk,ijdΩ =

∫
∂Ω

τijknihk,jda−
∫

Ω

τijk,ihk,jdΩ =

=

∫
∂Ω

τijknihk,jda−
∫
∂Ω

τijk,injhkda+

∫
Ω

τijk,ijhkdΩ. (2.11)

By (2.10), (2.11), we have

δE [h] = −
∫

Ω

(σkj,j − τijk,ij)hkdΩ +

∫
∂Ω

(σkj − τijk,i)njhkda+

∫
∂Ω

τijknihk,jda = 0, (2.12)

for every smooth test function h.
Next, we elaborate the third (surface) integral on the right hand side of (2.12). This integral involves
the full gradient of h, whereas only the function h and its normal derivative can be independently
assigned on ∂Ω.
Let f : Ω̄ → R be a smooth scalar function. Then, its gradient ∇f can be decomposed as the sum
of the normal part of the gradient ∇nf and the tangential part of the gradient ∇tf :

∇f ≡ ∇nf +∇tf, (2.13)

where

∇nf ≡ (∇f · n) n = (n⊗ n)∇f, (2.14)
∇tf ≡ ∇f −∇nf = (1− n⊗ n)∇f. (2.15)

and (a⊗ b)v = (b · v)a for every vectors a,b,v. In Cartesian components, we have

(∇nf)j = (f,`n`)nj (2.16)

(∇tf)j = f,j − (f,`n`)nj. (2.17)

We can generalize the above definitions to a vector-valued function h : Ω̄→ R3 as

hk,j︸︷︷︸
(∇h)kj

= (∇nhk)j︸ ︷︷ ︸
(∇nh)kj

+ (∇thk)j︸ ︷︷ ︸
(∇th)kj

, (2.18)

where

(∇nhk)j = hk,`n`nj, (2.19)

(∇thk)j = hk,j − hk,`n`nj. (2.20)

Let us notice that the tangential and normal part of the gradient of h are orthogonal. In fact

(∇nh) · (∇th) = (∇nh)kj (∇th)kj

= hk,mnmnj (hk,j − hk,`n`nj)
= hk,mhk,jnmnj − hk,mhk,`nmn`njnj = 0.
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Using absolute notation, we have

∇nh = ∇h (n⊗ n) , (2.21)
∇th = (1− n⊗ n)∇h, (2.22)

and we define the surface gradient operator

D = (1− n⊗ n)∇, (2.23)

with (∇)k = ∂k and

Dj = (δjk − njnk) ∂k. (2.24)

The Green’s theorem applied to a continuously differentiable function f over a smooth surface S
states (see [14], Chapter VI):∫

S

(
Div f − Div n (n · f)

)
dS =

∫
∂Ω

f · ν ds, (2.25)

where Div f is the surface divergence of f , −Div n is called the mean curvature of the surface, and
the vector ν is the unit normal to ∂S tangent to S and pointing outward.
Recalling that Div f = ∇t · f , Div n = ∇t · n, (2.25) takes the form∫

S

(1− n⊗ n) · (∇f − (n · f)∇n) dS =

∫
∂S

f · ν ds (2.26)

or, in cartesian coordinates,∫
S

(δjk − njnk) fj,kdS =

∫
S

(δjk − njnk)nj,kn`f`dS +

∫
∂S

fjνjds

∫
S

DjfjdS =

∫
S

(Djnj)n`f`dS +

∫
∂S

fjνjds. (2.27)

Collecting the above results, we are in position to elaborate the third integral in (2.12). Expressing
hk,j in terms of the normal and tangential part as in (2.18), using the definition (2.24) of Dj , and
applying (2.27) with fj = niτijkhk, we have (for a smooth boundary ∂Ω)∫
∂Ω

τijknihk,jda =

∫
∂Ω

τijkni (∇hk · n)njda+

∫
∂Ω

τijkni (∇thk)j da

=

∫
∂Ω

ninjτijk (∇hk · n) da+

∫
∂Ω

τijkni (hk,j − hk,`n`nj) da

=

∫
∂Ω

ninjτijk (∇hk · n) da+

∫
∂Ω

τijkniDjhkda

=

∫
∂Ω

ninjτijk (∇hk · n) da+

∫
∂Ω

Dj (τijknihk) da−
∫
∂Ω

hkDj (τijkni) da

=

∫
∂Ω

ninjτijk (∇hk · n) da+

∫
∂Ω

(Dpnp)ninjτijkhkda−
∫
∂Ω

hkDj (τijkni) da.

(2.28)
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Replacing (2.28) in (2.12), and reordering the summands, we have

δE [h] =−
∫

Ω

(σkj,j − τijk,ij)hkdΩ +

∫
∂Ω

ninjτijk (∇hk · n) da+

+

∫
∂Ω

(σkj − τijk,i)njhkda+

∫
∂Ω

ninjτijk (Dpnp)hkda−
∫
∂Ω

Dj (τijkni)hkda =

=−
∫

Ω

(σkj,j − τijk,ij)hkdΩ+

+

∫
∂Ω

{
[nj(σjk − τijk,i) + ninjτijk(Dpnp)−Dj(niτijk)]hk + ninjτijkDhk

}
da, (2.29)

with D such that
hk,`nl ≡ Dhk. (2.30)

We assume that the functional of external loads is

`(h) =

∫
Ω

f · h dΩ +

∫
∂Ω

(h · h + r ·Dh) da, (2.31)

where f is the body force per unit volume, t is the surface traction on the surface ∂Ω, and r is
the double- force traction on ∂Ω. Therefore, the final form of the stationarity of the total energy
(E (h)− `(h)) is∫

Ω

(σijhi,j + τijkhk,ij) dΩ =

∫
Ω

fkhkdΩ +

∫
∂Ω

(tkhk + rkDhk) da (2.32)

for every test function h.
The equilibrium equations are:

σik,i − τijk,ij + fk = 0 in Ω, (2.33)

on ∂Ω:
nj (σjk − τijk,i) + ninjτijk(Dpnp)−Di (njτijk) = t̂k (2.34)

or
uk = ûk (2.35)

and on ∂Ω
ninjτijk = r̂k (2.36)

or
Duk = D̂uk. (2.37)

For the special case where the surface ∂Ω has edges, an additional term must be added to the
right-hand side of (2.32) (see Mindlin [60], Fleck and Hutchinson [35]).

In order to complete the equilibrium problem, for linear elastic isotropic materials, Mindlin [60]
proposed the density of strain energy w as

w =
1

2
λεiiεjj + µεijεij + a1ηijjηikk + a2ηiikηkjj + a3ηiikηjjk + a4ηijkηijk + a5ηijkηkji, (2.38)

where λ and µ are the classical Lamé moduli, and an (n = 1, . . . , 5) are the five additional elastic
constants corresponding to the invariants of the second order deformation gradients. The energy
density in (2.38) contains coupled terms involving both stretch and rotation gradients. The pres-
ence of this coupling makes it complicated the application of the equilibrium equations. In the next
section we shall introduce a modified strain gradient elasticity theory that, under suitable assump-
tions, reduces the additional constants from five to three. This theory has been used to develop
one-dimensional models of vibrating nanobeams, that we will use in next sections to formulate the
inverse mass detection problem based on resonant frequency measurements.
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Chapter 2. One-dimensional nanoresonators: mechanical models

2.2 The modified strain gradient theory by Lam et al.

The principle of stationarity of the total energy can be rearranged into forms which separate out the
energy terms associated with the second-order deformation gradient ηijk. These decompositions
lead to more transparent reductions of the general framework to couple-stress theory when the con-
stitutive behavior only depends on the rotation gradients. Fleck and Hutchinson [35, 36] reformu-
lated Mindlin’s simplified theory renaming it the strain gradient theory. In this theory, the second-
order deformation gradient term is decomposed additively into two independent parts, namely, the
stretch gradient tensor and the rotation gradient tensor, see also Smyshlyaev and Fleck [71].

Lam et al. [53], starting from the above previous works, proposed a stratifying decomposition
scheme of the second-order deformation gradient terms to enable the application of new higher-
order equilibrium relation [79]. Because of the requirement of the higher-order equilibrium con-
ditions, it turns out that the anti-symmetric part of the rotation gradient does not contribute to
the deformation energy. As a consequence, the number of the material length scale parameters
is reduced from five (Mindlin’s simplified theory) to three. Goal of this section is to present the
so-called modified strain gradient theory by Lam et al. [53].

Following Fleck and Hotchinson [35], we define as the symmetric part of ηijk the term ηSijk

ηSijk ≡
1

3
(ηijk + ηjki + ηkij)

≡ 1

3
(uk,ij + ui,jk + uj,ki) . (2.39)

Let us notice that, by definition (see Toupin [74]), ηSijk is equal to the sum of all the possible
permutations of the indices i, j, k of ηijk – with plus sign – divided by 3! (and using the symmetry
on the first two indices). Therefore, ηSijk is symmetric with respect to every permutation of the
indices i, j, k.
The anti-symmetric part ηAijk of ηijk is

ηAijk ≡ ηijk − ηSijk. (2.40)

The symmetric part ηSijk represents the stretch gradient tensor, and has ten independent components.
The anti-symmetric part ηAijk, or rotation gradient tensor, has eight independent components and it
is a measure of the curvature. To check this property, let us introduce the curvature tensor χij as
the spatial gradient of the material rotationω = ωiei:

χij = ωi,j. (2.41)

Recalling that ω is the axial vector associated to the anti-symmetric part of the displacement gra-
dient, e.g. ω× a = Wa for every a ∈ R3, Wij = 1

2
(ui,j − uj,i), we have

ω` =
1

2
δ`kiWik, Wik = δijkωj, (2.42)

and, therefore,

ωi =
1

2
δijkuk,j. (2.43)

Using this expression in (2.41), we have

χij =
1

2
δipqηjpq (2.44)

12



2.2. The modified strain gradient theory by Lam et al.

and we can evaluate ηAijk as follows

ηAijk = ηijk − ηSijk

= uk,ij −
1

3
(uk,ij + ui,jk + uj,ki)

=
1

3
(uk,i − ui,k),j +

1

3
(uk,j − uj,k),i

=
2

3
Wki,j +

2

3
Wkj,i

=
2

3
(δik`χ`j + δjk`χ`i) . (2.45)

This identity shows that ηAijk is a curvature measure.
The components ηSijk and ηAijk are orthogonal, that is ηSijkη

A
ijk = 0. In fact, using (2.44) and

(2.45), we have

ηSijkη
A
ijk =

2

3
ηSijk (δik`χ`j + δjk`χ`i)

=
2

3
ηijk

1

2
(δik`δ`pqηjpq + δjk`δ`pqηipq)

=
1

3
ηSijk [(δipδkq − δiqδkp) ηjpq + (δjpδkq − δjqδkp) ηipq]

=
2

3
ηSijk

[
ηj[ik] + ηi[jk]

]
, (2.46)

where ηa[bc] = 1
2

(ηabc − ηacb). For every j, i, ηj[ik] and ηi[jk] are anti-symmetric tensors. Therefore,
since ηSijk is symmetric (in every pair of indices), both terms in expression (2.46) vanish, and the
orthogonality property follows.

Lam et al. [53] introduced a new, independent second-order strain metric by splitting the sym-
metric second-order deformation gradient ηSijk into a trace part, η(0)

ijk, and a traceless part, η(1)
ijk:

ηSijk = η
(0)
ijk + η

(1)
ijk. (2.47)

We recall that, by definition, the third order tensor Qijk is named traceless if the sum of its com-
ponents corresponding to a pair of indices is equal to zero, for every choice of the pair of indices,
thus:

Qijj = 0 for every i = 1, 2, 3,

Qiji = 0 for every j = 1, 2, 3, (2.48)
Qiik = 0 for every k = 1, 2, 3,

(repeated indices are summed). Therefore, we have

η
(0)
ijk =

1

5

[
δijη

S
mmk + δjkη

S
mmi + δkiη

S
mmj

]
. (2.49)

and
η

(1)
ijk ≡ ηSijk − η

(0)
ijk. (2.50)

A direct calculation shows that

η
(1)
ijk = − 1

15
[δij (εmm,k + 2εmk,m) + δjk (εmm,i + 2εmi,m) + δki (εmm,j + 2εmj,m)] +

+
1

3
(εjk,i + εki,j + εij,k) . (2.51)

13



Chapter 2. One-dimensional nanoresonators: mechanical models

Obviously, by definition, η(1)
ijk is a traceless tensor, as one can verify easily. Moreover, by Schwarz’s

theorem,

ηSmmk =
1

3
(ηmmk + 2ηkmm) . (2.52)

The number of independent parameters is three and seven for η(0)
ijk and for η(1)

ijk, respectively.
Let us split the curvature tensor χij into the symmetric and anti-symmetric part

χij = χSij + χAij, (2.53)

χSij =
1

2
(χij + χji) , χAij =

1

2
(χij − χji) . (2.54)

The trace part η(0)
ijk of ηSijk depends on the three quantities

ηSmmi, i = 1, 2, 3.

Let us evaluate ηSmmi in terms of the field displacement u; by (2.52), we have

ηSmmi =
1

3
(ui,mm + 2um,im)

= (um,m),i +
2

3
Wim,m. (2.55)

By (2.42) and (2.44), we have

ηSmmi = ε,i +
2

3
δimnχmn = ε,i +

2

3
δimnχ

A
mn, (2.56)

where ε = um,m is the dilatation strain and ε,i is the ith component of the dilatation gradient.
To summarize, we have decomposed an arbitrary strain gradient term ηijk into three components

ηijk = η
(0)
ijk + η

(1)
ijk + ηAijk. (2.57)

These three components are mutually orthogonal. In fact, by (2.46) we already known that(
η

(0)
ijk + η

(1)
ijk

)
ηAijk = 0. (2.58)

Therefore, it is enough to verify that

η
(0)
ijkη

(1)
ijk = 0, (2.59)

η
(0)
ijkη

A
ijk = 0. (2.60)
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2.2. The modified strain gradient theory by Lam et al.

Let us prove (2.59) first. By (2.49) and (2.50), we have

η
(0)
ijkη

(1)
ijk =

(
δijη

S
mmk + δjkη

S
mmi + δkiη

S
mmj

) [
ηSijk −

1

5

(
δijη

S
mmk + δjkη

S
mmi + δkiη

S
mmj

)]
=

=

[
δijη

S
mmkη

S
ijk −

1

5

(
δijδijη

S
mmkη

S
mmk + δijδjkη

S
mmkη

S
mmi + δijδkiη

S
mmkη

S
mmj

)]
+

+

[
δjkη

S
mmiη

S
ijk −

1

5

(
δjkδijη

S
mmiη

S
mmk + δjkδjkη

S
mmiη

S
mmi + δjkδkiη

S
mmiη

S
mmj

)]
+

+

[
δkiη

S
mmjη

S
ijk −

1

5

(
δkiδijη

S
mmjη

S
mmk + δkiδjkη

S
mmjη

S
mmi + δkiδkiη

S
mmjη

S
mmj

)]
=

= ηSmmkη
S
iik −

1

5

(
3ηSmmkη

S
mmk + ηSmmkη

S
mmk + ηSmmkη

S
mmk

)
+

+ ηSmmiη
S
ijj −

1

5

(
ηSmmiη

S
mmi + 3ηSmmiη

S
mmi + ηSmmiη

S
mmi

)
+

+ ηSmmjη
S
iji −

1

5

(
ηSmmjη

S
mmj + ηSmmjη

S
mmj + 3ηSmmjη

S
mmj

)
=

=
[(
ηSmmk

)2 −
(
ηSmmk

)2
]

+
[(
ηSmmi

)2 −
(
ηSmmi

)2
]

+
[(
ηSmmj

)2 −
(
ηSmmj

)2
]

= 0. (2.61)

We now prove (2.60). By (2.50) and (2.45), we have:

η
(0)
ijkη

A
ijk =

(
δijη

S
mmk + δjkη

S
mmi + δkiη

S
mmj

)
(δik`χ`j + δjk`χ`i) =

= δijδik`η
S
mmkχ`j + δijδjk`η

S
mmkχ`i + δjkδik`η

S
mmiχ`j

+ δjkδjk`η
S
mmiχ`i + δkiδik`η

S
mmjχ`j + δkiδjk`η

S
mmjχ`i =

= δjk`η
S
mmkχ`j + δik`η

S
mmkχ`i + δik`η

S
mmiχ`k + δji`η

S
mmjχ`i =

= ηSmmk (δjk`χ`j + δik`χ`i) + ηSmmi (δik`χ`k + δik`χ`k) =

= ηSmmk (δjk`χ`j + δjk`χ`j) + ηSmmk (δkp`χ`p + δkp`χ`p) =

= 2ηSmmk (δjk`χ`j + δkp`χ`p) =

= 2ηSmmk (δk`jχ`j + δkp`χ`p) =

= 2ηSmmk (δk`jχ`j + δkj`χ`j) =

= 2ηSmmk (δk`jχ`j − δk`jχ`j) = 0. (2.62)

Following the analysis developed in Section 2.1 for the Toupin-Mindlin theory (and under the same
assumptions), the second order term appearing on the first order variation of the total energy is∫

Ω

τijkhk,ijdΩ (2.63)

for every smooth test function h. Let us decompose the double stress term τijk as we did for ηijk,
namely:

τijk = τ
(0)
ijk + τ

(1)
ijk + τAijk, (2.64)

where
τ

(0)
ijk ≡

1

5

(
δijτ

S
mmk + δjkτ

S
mmi + δkiτ

S
mmj

)
, (2.65)

τ
(1)
ijk ≡ τSijk − τ

(0)
ijk , (2.66)

τSijk is the symmetric part of τijk, and τAijk ≡ τijk − τSijk is the anti-symmetric part of τijk. Note
that the above three components of τijk are mutually orthogonal. Moreover, the following property
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Chapter 2. One-dimensional nanoresonators: mechanical models

holds.
Let δηijk ≡ hk,ij . Then

τ
(0)
ijk is orthogonal to δη(1)

ijk and δηAijk;

τ
(1)
ijk is orthogonal to δη(0)

ijk and δηAijk; (2.67)

τAijk is orthogonal to δη(0)
ijk and δη(1)

ijk.

Let us prove, for instance, that τ (1)
ijkη

(0)
ijk = 0. We have (to simplify the notation, we write ηijk instead

of δηijk):

τ
(1)
ijkη

(0)
ijk =

[
τSijk −

1

5

(
δijτ

S
mmk + δjkτ

S
mmi + δkiτ

S
mmj

)] 1

5

(
δijη

S
mmk + δjkη

S
mmi + δkiη

S
mmj

)
=

=
1

5

[
δijτ

S
ijkη

S
mmk + δjkτ

S
ijkη

S
mmi + δkiτ

S
ijkη

S
mmj −

1

5

(
δijδijτ

S
mmkη

S
mmk + δijδjkτ

S
mmkη

S
mmi

)]
+

+
1

5

[
−1

5

(
δijδkiτ

S
mmkη

S
mmj + δjkδijτ

S
mmiη

S
mmk + δjkδjkτ

S
mmiη

S
mmi + δikδkiτ

S
mmiη

S
mmj

)]
+

+
1

5

[
−1

5

(
δkiδijτ

S
mmjη

S
mmk + δkiδijτ

S
mmjη

S
mmk + δkiδkiτ

S
mmjη

S
mmj

)]
=

=
1

5

[
τSiikη

S
mmk + τSijjη

S
mmi + τSkjkη

S
mmj −

1

5

(
3τSmmkη

S
mmk + δikτ

S
mmkη

S
mmi + δjkτ

S
mmkη

S
mmj

)]
+

+
1

5

[
−1

5

(
δkiτ

S
mmiη

S
mmk + 3τSmmiη

S
mmi + δjiτ

S
mmiη

S
mmj + δkjτ

S
mmjη

S
mmk + δkjτ

S
mmjη

S
mmk

)]
+

+
1

5

[
−1

5

(
3τSmmjη

S
mmj

)]
=

1

5

[
3τSiikη

S
mmk −

3

5

(
5τSmmkη

S
mmk

)]
= 0 (2.68)

By the above properties, the term in (2.63) takes the form (with hk,ij ≡ δηijk)

∫
Ω

τijkhk,ijdΩ =

∫
Ω

τijkδηijkdΩ =

∫
Ω

(
τ

(0)
ijkδη

(0)
ijk + τ

(1)
ijkδη

(1)
ijk + τAijkδη

A
ijk

)
dΩ (2.69)

and the set of stress metrics τ (0)
ijk , τ (1)

ijk , τAijk is work-conjugate to the strain of metrics η(0)
ijk, η

(1)
ijk, η

A
ijk.

The expression (2.69) was already present in the works by Fleck and Hutchinson [35]. In Lam el
al. [53], the expression (2.69) is rearranged in terms of the new second-order strain metrics ε,i, η

(1)
ijk,

χij .

Let us recall that, by (2.39), (2.49) and (2.53), η(0)
ijk depends on the quantities ε,i and χmm only

(see (2.45)). Therefore, we rewrite the second-order term of the stress energy density in (2.69) by
separating the contribution associated to ε,i to that due to χij , and by leaving unchanged the term
associated to τ (1)

ijk . More precisely (writing ηijk instead of δηijk, for simplicity), we elaborate the
first term on the right hand side of

δw = τ
(0)
ijkη

(0)
ijk + τ

(1)
ijkη

(1)
ijk + τAijkη

A
ijk. (2.70)
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We have

τ
(0)
ijkη

(0)
ijk =

1

5

(
δijτ

S
mmk + δjkτ

S
mmi + δkiτ

S
mmj

) 1

5

(
δijη

S
mmk + δjkη

S
mmi + δkiη

S
mmj

)
=

=
1

25

[
τSmmk

(
3ηSmmk + δkiη

S
mmi + δkjη

S
mmj

)
+ τSmmi

(
δikη

S
mmk + 3ηSmmi + δjiη

S
mmj

)]
+

+
1

25
τSmmj

(
δkjη

S
mmk + δjiη

S
mmi + 3ηSmmj

)
=

=
1

25

(
5τSmmkη

S
mmk + 5τSmmiη

S
mmi + 5τSmmjη

S
mmj

)
= (2.71)

=
3

5
τSmmkη

S
mmk =

=
3

5
τSmmk

(
ε,k +

2

3
δkmnχmn

)
=

=
3

5
τSmmkε,k +

2

5
δkmnτ

S
mmkχmn. (2.72)

Using (2.71) in (2.70), we obtain

δw = piε,i + τ
(1)
ijkη

(1)
ijk +

(
τAijkη

A
ijk +

2

5
δkmnτ

S
mmkχmn

)
, (2.73)

with
pi =

3

5
τSmmi. (2.74)

Let us elaborate the term in brackets in (2.73). By (2.45), we have

τAijkη
A
ijk +

2

5
δkmnτ

S
mmkχmn = τAijk

2

3
(δik`χ`j + δjk`χ`i) +

2

5
δkmnτ

S
mmkχmn =

=
2

3
τAinkδikmχmn +

2

3
τAnjkδjkmχmn +

2

5
δkmnτ

S
mmkχmn =

=

(
2

3
τAinkδikm +

2

3
τAnikδikm +

2

5
δmnkτ

S
mnk

)
χmn =

=

(
4

3
τAnikδikm +

2

5
δmnkτ

S
mmk

)
χmn ≡ mmnχmn, (2.75)

where
mmn =

4

3
τAnikδmik +

2

5
δmnkτ

S
mmk. (2.76)

Therefore, (2.73) becomes (returning to variations)

δw = piδε,i + τ
(1)
ijkδη

(1)
ijk +mijδχij, (2.77)

where pi, τ
(1)
ijk , mij are work-conjugates quantities to ε,i, η

(1)
ijk, χij , respectively.

Next, we can repeat the analysis developed in Section 2.1 to derive the new formulation of the
equilibrium problem in Ω, namely (see Lam et al. [53])

σik,i −
1

2
δj`kmij,i` − pi,ik − τ (1)

ijk,ij + fk = 0 in Ω, (2.78)

with boundary conditions on (smooth) ∂Ω as

nj

(
σjk −

1

2
δjk`mi`,i − δjkpi,i − τ (1)

ijk,ink

)
+ (D`n`)

(
npppnk + ninjτ

(1)
ijk + npnqnrτ

(1)
pqrnk

)
+

− 1

2
δijkD` (npnqmpqnj)−Dk (ppnp)−Dj

(
niτ

(1)
ijk

)
−D`

(
ninjτ

(1)
ij` nk

)
= t̂k (2.79)
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or
uk = ûk, (2.80)

and
nimij − (npmpqnq)nj + 2δijkn`npnqτ

(1)
pqk = q̂j, (2.81)

or
(δij − ninj)ωi = ω̂j, (2.82)

and
nipi + ninjnkτ

(1)
ijk = r̂k, (2.83)

or
εn ≡ ninjεij = ε̂n. (2.84)

Starting from the above stratifying decomposition scheme of the second-order deformation gra-
dient terms, Lam et al. [53] proposed the adoption of a new higher-order equilibrium condition to
show that the anti-symmetric part of the rotation gradient does not contribute to the deformation
energy. As a consequence, the number of material length scale parameters is reduced from five (of
Mindlin’s theory) to three.

We follow the analysis in Yang et al. [79]. Let Ω′, Ω′ ⊂⊂ Ω, be a subset of Ω with smooth
boundary ∂Ω′. We denote t(x,n), µ(x,n) respectively the force and couple per unit area trans-
mitted through the surface ∂Ω′ in a point x ∈ ∂Ω′, with unit external normal n to the surface. Let
f and ` be the boundary force and the body couple per unit volume, respectively. If the body is in
statical equilibrium, then the Euler-Cauchy equations are satisfied:∫

∂Ω′
tda+

∫
Ω′

fdΩ′ = 0 (2.85)∫
∂Ω′

(x× t + µ) da+

∫
Ω′

(x× f + `) dΩ′ = 0, (2.86)

where x is the position vector of a material particle of continuum. The classical Cauchy’s Lemma
can be generalized to prove that, under suitable assumption, the dependence of t and µ on the
normal n is linear, that is

t(x,n) = T(x)n, µ(x,n) = M(x)n, (2.87)

where T = (tij) is the stress tensor and M = (mij) is the couple-stress tensor.
Using the divergence theorem to transform the surface integrals in (2.85), (2.86) to volume inte-
grals, we obtain ∫

Ω′
(divT + f) dΩ′ = 0, (2.88)∫

Ω′
(x× (divT + f) + divM + `+ aT) dΩ′ = 0, (2.89)

where aA is the linear operator which associates to a second-order tensor A twice the axial vector
of the anti-symmetric part of A, e.g.,

(aA)k = δkjiA
A
ij, k = 1, 2, 3. (2.90)

By the arbitrariness of Ω′, and under regularity assumptions on the integrands, from (2.89)–(2.90)
we obtain the following differential equations of equilibrium:{

divT + f = 0 in Ω, (2.91)
divM + `+ aT = 0 in Ω. (2.92)
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The second equilibrium equation (2.92) indicates that the stress tensor T generates an equivalent
body couple field aT which, acting together with `, maintains the equilibrium of the continuum.
In Yang et al. [79], it is proposed to introduce the following additional equilibrium equation to
(2.88)–(2.89): ∫

∂Ω′
x× µda+

∫
Ω′

x× (`+ aT) dΩ′ = 0. (2.93)

This equation imposes the equilibrium of moments of couples. Using the divergence theorem, (2.93)
can be rewritten as ∫

Ω′
(x× (divM + `+ aT) + aM) dΩ′ = 0, (2.94)

which implies, by (2.92) and using a standard localization procedure,

aM = 0, (2.95)

that is the couple stress tensor M is symmetric:

mij = mji. (2.96)

As a result, the anti-symmetric part of the rotating gradient tensor does not contribute to the defor-
mation energy (see(2.77)) and

mA
ij =

∂ω
(
εij, ε,i, η

(1)
ijk, χ

S
ij, χ

A
ij

)
∂χAij

= 0. (2.97)

In conclusion, we have
w = w

(
εij, ε,i, η

(1)
ijk, χ

S
ij

)
(2.98)

and for linear elastic center-symmetric isotropic materials, the energy is a quadratic function of the
invariant stress metrics:

w =
1

2
kεiiεjj + µεDev

ij ε
Dev
ij + a′0εmm,iεnn,i + a′1η

(1)
ij`η

(1)
ij` + a′2χ

S
ijχ

S
ij, (2.99)

where εDev = ε − 1
3

(tr ε) 1, k and µ are the classical Lamé moduli, a′i, i = 0, 1, 2, are three
additional material parameters. Following Lam et al. [53], we rewrite the additional constants as

a′0 = µ`2
0, a′1 = µ`2

1 a′2 = µ`2
2,

where `n (n = 0, 1, 2) are three material length scale parameters. Finally, we have

σij = kδijεmm + 2GεDev
ij ,

pi = 2G`2
0εmm,i (2.100)

τ
(1)
ij` = 2G`2

1η
(1)
ij` ,

mS
ij = 2G`2

2χ
S
ij,

where G = µ > 0 is the shear modulus and k > 0 is the bulk modulus of the material. In
applications, we introduce the technical constants E and ν, where E is the Young’s modulus and ν
the Poisson’s coefficient, k = E/(3(1− 2ν)), G = E/(2(1 + ν)), ν > 0.

2.3 One-dimensional models of vibrating nanobeams

In this section free vibration of microbars has been investigated using modified strain gradient the-
ory. The higher-order governing equation, initial and corresponding non-classical boundary condi-
tions with classical boundary conditions for vibrating bar are obtained using Hamilton’s principle.
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Chapter 2. One-dimensional nanoresonators: mechanical models

2.3.1 Axial vibration

Following [3], let us consider the free longitudinal undamped vibrations of a slender straight uni-
form nanorod of length L, see Fig. 2.1. The components of displacement vector in (x, y, z) direc-
tions are, respectively:

u1 = u(x, t), u2 = u3 = 0. (2.101)

The non zero component of dilatation gradient vector and of the deviatoric stretch gradient tensor
are, respectively:

ε,i =
∂2u

∂x2
, (2.102)

η
(1)
ijk =

2

5

∂2u

∂x2
, if (i, j, k = x) (2.103)

η
(1)
ijk = −1

5

∂2u

∂x2
, in the other cases. (2.104)

All components of rotation vector, and therefore symmetric rotation gradient tensor, are equal
to zero as

ωi = 0, (i = x, y, z) (2.105)

χSij = 0. (i, j = x, y, z). (2.106)

The non-zero stress σij , the non-zero higher-order stresses pi and τ (1)
ijk can be expressed as

px = 2Gl20
∂2u

∂x2
, (2.107)

τ
(1)
ijk =

4

5
Gl21

∂2u

∂x2
, if (i = j = k = x) (2.108)

τ
(1)
ijk = −2

5
Gl21

∂2u

∂x2
, in the other cases. (2.109)

Finally, the equation of strain energy E (t) can be rewritten as:

E (t) =
1

2

∫ L

0

(
a(u′)2 + b(u′′)2

)
dx, (2.110)

Figure 2.1: Coordinate system
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2.3. One-dimensional models of vibrating nanobeams

where u′ = u′(x, t) indicates the first partial derivative of the function u with respect to x, x ∈
(0, L). The coefficient a > 0 is the axial stiffness of the nanorod and it can be expressed as

a = EA, (2.111)

with A a geometrical parameter that may be set to correspond with the cross-sectional area of the
nanorod. The coefficient b takes the expression

b = GA
(

2`2
0 +

4

5
`2

1

)
. (2.112)

The kinetic energy T (t) of the nanorod is equal to

T (t) =
1

2

∫ L

0

ρ(u̇)2dx, (2.113)

where u̇ = u̇(x, t) denotes the first partial derivative of the function u with respect to t, t > 0, and
ρ > 0 is the mass coefficient per unit length.

In accordance with Hamilton’s principle [37], the equations of free and undamped motion and
their corresponding boundary conditions are obtained by imposing the stationarity of the action
functional

I (u) =

∫ t2

t1

(
T (t)− E (t)

)
dt (2.114)

on the following set of admissible configurations

H =
{
h | h(·, t) ∈ C2(0, L), h(x, ·) ∈ C2(t1, t2),

h(x, t) ≡ 0 in (0, L) for t = t1 and for t = t2
}
,

(2.115)

where C2(Ω) is the space of the functions defined on Ω, being continuous and having partial con-
tinuous derivatives up to the 2nd order. We also assume that the displacement u in the action
functional (2.114) is as regular as is needed so that all the operations in which it is involved are
meaningful, that is u ∈ C4(0, L).

Let u(ε) = u + εh, with ε > 0 a small number and h ∈ H a test function. The stationarity
condition on the action functional I at u implies the vanishing of its first variation

Φ′(ε)
∣∣
ε=0

=
dI
(
u(ε)

)
dε

∣∣∣
ε=0

= 0. (2.116)

We elaborate (2.116) by discharging the derivatives from h to u via integration by parts.

Φ′(ε)
∣∣
ε=0

=
1

2

d

dε

∫ t2

t1

∫ L

0

(
ρ(u̇+ εḣ)2 − a(u′ + εh′)2 − b(u′′ + εh′′)2

)
dx dt

∣∣∣
ε=0

=

=

∫ t2

t1

∫ L

0

(
ρu̇ḣ− au′h′ − bu′′h′′

)
dx dt =

=

∫ t2

t1

∫ L

0

(
− ρü+ au′′ − bu′′′′

)
h dx dt+

∫ L

0

ρu̇h
∣∣t=t2
t=t1

dx+

+

∫ t2

t1

(
− au′ + bu′′′

)
h
∣∣x=L

x=0
dt−

∫ t2

t1

bu′′h′
∣∣x=L

x=0
dt = 0.

(2.117)

With suitable choices of the test function h, the free vibrations of the uniform nanorod are governed
by the following equation of motion

au′′ − bu′′′′ = ρü, (2.118)

21



Chapter 2. One-dimensional nanoresonators: mechanical models

with boundary conditions
u(0, t) = 0 or − au′(0, t) + bu′′′(0, t) = 0

u′(0, t) = 0 or u′′(0, t) = 0

u(L, t) = 0 or − au′(L, t) + bu′′′(L, t) = 0

u′(L, t) = 0 or u′′(L, t) = 0

for t > 0. (2.119)

Using the classical separation of variables method, the axial displacement u(x, t) can be expressed
as

u(x, t) = v(x)eiωt, (2.120)
where v = v(x) is the amplitude of the normal mode (eigenfunction) associated to the natural
(radian) frequency ω and i =

√
−1 is the imaginary unit. Substituting Eq.(2.120) into Eq.(2.118),

the following ordinary differential equation is obtained:

− av′′ + bv′′′′ = λρv, x ∈ (0, L), (2.121)

where λ = ω2 is the eigenvalue.

2.3.2 Bending vibration

Consider the straight nanobeam shown in Fig. 2.1, which cross-section is parallel to the yz plane.
According to the Euler-Bernoulli hypothesis, the displacement field of a beam in bending can be
written as

u1 = −z∂u(x, t)

∂x
, u2 = 0, u3 = u(x, t), (2.122)

where u1, u2, u3, are the x-, y-, and z-components of the displacement vector, respectively.
By substituting (2.122) in the expression of the strain tensor ε (2.1), then the non-zero compo-

nent is

εxx = −z∂
2u

∂x2
, (2.123)

so
ε′xx =

2

3
εxx ε′yy = ε′zz = −1

3
εxx. (2.124)

and the components of dilatation gradient vector are

ε,x = −z∂
3u

∂x3
, ε,y = 0, ε,z = −∂

2u

∂x2
. (2.125)

The non-zero components of the symmetric rotation gradient tensor χsij and of the deviatoric stretch
gradient tensor η(1)

ijk are, respectively:

χsxy = χsyx = −1

2

∂2u

∂x2
, (2.126)

η(1)
xxx = −2

5
z
∂3u

∂x3
, (2.127)

η(1)
xxz = η(1)

zxx = η(1)
xzx = − 4

15

∂2u

∂x2
, (2.128)

η(1)
xyy = η(1)

xzz = η(1)
yyx = η(1)

yxy = η(1)
zxz = η(1)

zzx =
1

5
z
∂3u

∂x3
, (2.129)

η(1)
yyz = η(1)

yzy = η(1)
zyy =

2

15

∂2u

∂x2
, (2.130)

η(1)
zzz =

1

5

∂2u

∂x2
. (2.131)
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2.3. One-dimensional models of vibrating nanobeams

Similarly, the non-zero higher-order stresses τ (1)
ijk are

τ (1)
xxx = −4

5
G`2

1z
∂3u

∂x3
, (2.132)

τ (1)
xxz = τ (1)

zxx = τ (1)
xzx = − 8

15
G`2

1

∂2u

∂x2
, (2.133)

τ (1)
xyy = τ (1)

xzz = τ (1)
yxy = τ (1)

yyx = τ (1)
zxz = τ (1)

zzx =
2

5
G`2

1z
∂3u

∂x3
, (2.134)

τ (1)
yyz = τ (1)

yzy = τ (1)
zyy =

2

15
G`2

1

∂2u

∂x2
, (2.135)

τ (1)
zzz =

2

5
G`2

1

∂2u

∂x2
. (2.136)

For a slender beam with a large aspect ratio, the Poisson effect is secondary and may be neglected.
By setting ν = 0, as was done in classical beam theories, the non-zero stresses σij are

σij = Eεxx = −Ez∂
2u

∂x2
. (2.137)

Finally, the non-zero higher-order stresses pi and ms
ij are, respectively

px = −2G`2
0z
∂3u

∂x3
, py = 0, pz = −2G`2

0z
∂2u

∂x2
, (2.138)

ms
xy = ms

yx = 2G`2
2

(
−1

2

∂2u

∂x2

)
= −G`2

2

∂2u

∂x2
. (2.139)

Substituting the above relations in the expression of the strain energy E (t), we find

E (t) =
1

2

∫ L

0

[
S (u′′)

2
+K (u′′′)

2
]
dx, (2.140)

S and K are constant coefficients ( [1, 49])

K = I

(
2G`2

0 +
4

5
G`2

1

)
, S = EI + 2GA`2

0 +
8

15
GA`2

1 +GA`2
2, (2.141)

where I is the second moment of area about the axis through the centroid of the cross-section, at
right angles to the plane of vibration.

If we neglect the contribution associated with the rotation of the transversal sections, the kinetic
energy T (t) of the nanobeam is equal to

T (t) =
1

2

∫ L

0

ρ(u̇)2dx. (2.142)

The governing equation of the beam in bending as well as initial conditions and all boundary
conditions can be determined with the aid of Hamilton’s principle [37]

I (u) =

∫ t2

t1

(
T (t)− E (t)

)
dt (2.143)

on the following set of admissible configurations

H =
{
h | h(·, t) ∈ C3(0, L), h(x, ·) ∈ C2(t1, t2),

h(x, t) ≡ 0 in (0, L) for t = t1 and for t = t2
}
,

(2.144)
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Chapter 2. One-dimensional nanoresonators: mechanical models

where Cm(Ω) is the space of the functions defined on Ω, being continuous and having partial
continuous derivatives up to the mth order, m = 2, 3. We also assume that the displacement u
in the action functional (2.143) is as regular as is needed so that all the operations in which it is
involved are meaningful, that is u ∈ C6(0, L).

Let u(ε) = u + εh, with ε > 0 a small number and h ∈ H a test function. The stationarity
condition on the action functional I at u implies the vanishing of its first variation

Φ′(ε)
∣∣
ε=0

=
1

2

d

dε

∫ t2

t1

∫ L

0

(
ρ(u̇+ εḣ)2 − S(u′′ + εh′′)2 −K(u′′′ + εh′′′)2

)
dx dt

∣∣∣
ε=0

=

=

∫ t2

t1

∫ L

0

(
ρu̇ḣ− Su′′h′′ −Ku′′′h′′′

)
dx dt =

=

∫ t2

t1

∫ L

0

(
− ρü− SuIV +KuV I

)
h dx dt+

∫ L

0

ρu̇h
∣∣t=t2
t=t1

dx+

∫ t2

t1

Ku′′′h′′
∣∣x=L

x=0
dt

+

∫ t2

t1

(
− Su′′ +KuIV

)
h′
∣∣x=L

x=0
dt+

∫ t2

t1

(
Su′′′ −KuV

)
h
∣∣x=L

x=0
dt = 0.

(2.145)

With suitable choices of the test function h, the free vibrations of the uniform nanorod are governed
by the following equation of motion

− SuIV +KuV I = ρü, (2.146)

with boundary conditions

u(0, t) = 0 or Su′′′(0, t)−KuV (0, t) = 0

u′(0, t) = 0 or − Su′′(0, t) +KuIV (0, t) = 0

u′′(0, t) = 0 or u′′′(0, t) = 0

u(L, t) = 0 or Su′′′(L, t)−KuV (L, t) = 0

u′(L, t) = 0 or − Su′′(L, t) +KuIV (L, t) = 0

u′′(L, t) = 0 or u′′′(L, t) = 0

for t > 0. (2.147)

Using the classical separation of variables method, the transversal displacement u(x, t) can be
expressed as

u(x, t) = v(x)eiωt, (2.148)

where v = v(x) is the amplitude of the normal mode (eigenfunction) associated to the natural
(radian) frequency ω and i =

√
−1 is the imaginary unit. Substituting Eq.(2.148) into Eq.(2.146),

the following ordinary differential equation is obtained:

SvIV −KvV I = λρv, x ∈ (0, L), (2.149)

where λ = ω2 is the eigenvalue.
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CHAPTER3
Mass identification in axially vibrating nanobeams

3.1 Introduction

In this chapter a distributed mass reconstruction method for initially uniform nanorods based on
measurements of the first lower resonant frequencies of the free axial vibration is presented. Two
main inverse problems are addressed. In the first part (Sections 3.3–3.6), the mass variation is
determined by using the first lower eigenfrequencies of a clamped-clamped nanorod, under the a
priori assumption that the mass variation has support contained in half of the axis interval. The
method is based on an iterative procedure that produces an approximation of the unknown mass
density as a generalized Fourier partial sum of order N , whose coefficients are calculated from the
first N eigenvalues.

The assumption that the mass variation has support contained in half of the axis interval is
needed to avoid trivial non-uniqueness due to the symmetry of the initial configuration of the
nanorod. In the second part of the chapter, (Section 3.7), we remove this a priori assumption on the
mass support, and we show how to extend the method to reconstruct a general mass distribution
by adding to the input data the first N lower eigenvalues of the nanorod under clamped-free end
conditions.

The nanorod is modelled using the modified strain gradient theory to account for the microstruc-
ture and size effects. Moreover, the mass variation is supposed to be small with respect to the total
mass of the initial nanorod.

An extended series of numerical examples shows that the method is efficient and gives excel-
lent results in case of continuous mass variations. The determination of discontinuous coefficients
exhibits no negligible oscillations near the discontinuity points, and requires more spectral data to
obtain good reconstruction. A proof of local convergence of the iteration algorithm is provided for
a family of finite dimensional mass coefficients. Surprisingly enough, in spite of its local character,
the identification method performs well even for not necessarily small mass changes.

The results presented in this chapter have been obtained in collaboration with José Fernández-
Sáez and Ramón Zaera (University Carlos III de Madrid, Spain) and Michele Dilena and Antonino
Morassi (University of Udine, Italy), and have been published in [26], [24].
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Chapter 3. Mass identification in axially vibrating nanobeams

3.2 Inertial imaging in nanoresonators: an overview

As we stated in the Introduction, mass sensing with nanosystems has advanced significantly in the
last decade. In this section we shall illustrate the methodology recently proposed by the research
groups coordinated by M.L. Roukes (California Institute of Technology, Pasadena, USA) and M.
Selim Hanay (Bilkent University, Ankara, Turkey) in a series of papers [42], [69], [46].

In spite of the fact that applications are for nanostructures, and particularly for nanobeams, the
authors test their methodology on the classical Euler-Bernoulli model for transversely vibrating
slender beams under clamped end conditions.

The infinitesimal free bending vibration at radian frequency
√
λn of the unperturbed uniform

nanobeam is governed by the following eigenvalue problem
auIVn = λnρ0un, x ∈ (0, L), (3.1)
un(0) = 0, u′n(0) = 0, (3.2)
un(L) = 0, u′n(L) = 0, (3.3)

where λn is the eigenvalue and un = un(x) the associated eigenfunction, n ≥ 1. The unperturbed
mass density per unit length is ρ0 =constant > 0; the bending stiffness is denoted by a, a =
constant > 0.

Let us assume that the mass density changes, and denote by

ρ(x) = ρ0(x) + r(x) (3.4)

the mass density for the perturbed beam, where r = r(x) is the unknown mass change. We denote
by (λn(ρ), un(x, ρ)) the nth eigenpair of the perturbed beam.
Under the assumption of "small" r(x), Hanay et al. [42] argued that the first order change of the
nth eigenvalue is given by

δλn ≡ 1− λn(ρ)

λn
=

∫ l

0

r(x)u2
n(x)dx, (3.5)

where the unperturbed eigenfunction is normalized as
∫ l

0
ρ0u

2
n(x)dx = 1.

The main idea of the method is to determine the first N moments of the unknown mass variation
r(x) in terms of the measured shifts in the first N eigenpair {δλn}Nn=1.

Let us recall the classical form of the moment problem in a finite interval [0, 1]. Given a sequence
of real numbers {µk}∞k=0, to find a real-valued function f(x), f : [0, 1]→ R, such that∫ 1

0

xkf(x)dx = µk, k ≥ 0. (3.6)

This is called Hausdorff Moment Problem (HMP). The scalar products coupling 1, x, x2, . . . , xk, . . .

with the function f(x), e.g.,
∫ 1

0
xkf(x)dx, are called the moments of f(x).

Several theoretical results on the HMP are well established, see, for example, Talenti [72] for a
complete account. In brief, solutions to HMP that belong to L2(0, 1) are unique, and a neces-
sary and sufficient condition for {µk}∞k=0 to be the moments of a function f(x) ∈ L2(0, 1) was
established by Hausdorff. A crucial remark is that the HMP is an ill-posed problem in the sense
of Hadamard. Talenti [72] proposed a theory and an algorithm for recovering a function from its
moments for the case of a finite numbers of date contaminated by noise.

Returning to the mass determination problem, the unknowns are the real numbers
{
α

(k)
n

}N
n=1

,

where k is the order of the moment of r(x) we want to determine, k = 0, 1, . . . , N . Let k be fixed,
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3.2. Inertial imaging in nanoresonators: an overview

k = 0, 1, . . . , N . We multiply (3.5) by α(k)
n and sum over n:

N∑
n=1

α(k)
n δλn =

N∑
n=1

α(k)
n

∫ L

0

ru2
ndx, (3.7)

that is
N∑
n=1

α(k)
n δλn =

∫ L

0

rg(k)dx, (3.8)

where

g(k)(x) =
N∑
n=1

α(k)
n u2

n(x). (3.9)

Now, if
g(k)(x) = xk in [0, 1], (3.10)

then the right hand side of (3.8) is the kth moment of the mass variation r, say µ(k). Simple
examples show that condition (3.10) cannot be satisfied point-wise, e.g., in case of a clamped-
clamped beam un = 0 at the boundary of the interval [0, L], then g(k)

n (0) = g
(k)
n (L) = 0. This

aspect is briefly discussed in Hanay el al. (see [42], p. 4–5 of the Supplementary Information).

Actually, the coefficients
{
α

(k)
n

}N
n=1

are determinated via the following least-squares approach.

For given k, k = 0, 1, . . . , N , to determine
{
α

(k)
n

}N
n=1

such that

minJ
(
α

(k)
1 , . . . , α

(k)
N

)
, J =

∫ L

0

(
g(k)(x)− xk

)2
dx. (3.11)

The stationarity condition on J requires ∂J

∂α
(k)
i

= 0, i = 1, . . . , N , that is

N∑
n=1

Ainα
(k)
n = b

(k)
i , i = 1, . . . , N, (3.12)

with

Ain =

∫ L

0

u2
iu

2
ndx, b

(k)
i =

∫ L

0

xku2
i dx, i, n = 1, . . . , N. (3.13)

A direct calculation shows that the matrix Ain is not singular, and the coefficients
{
α

(k)
n

}N
n=1

can
be uniquely determinated (see [42], p. 9 of the Supplementary Information). Consequence of the
approximation of xk by means of gk(x) on the inverse problem solution are not discussed by the
authors.

Finally, assuming that the numbers
{
α

(k)
n

}N
n=1

are known, one can determine the moments

µ(k) =
∫ L

0
rxkdx in terms of the measured frequency shifts δλn. The knowledge of the first three

moments µ(1), µ(2), µ(3), and of the zeroth moment µ(0), allows the authors to estimate the center of
mass of the added distribution r(x), the size

∫ L
0
r(x)dx, and the asymmetry index (skewness).

The approach was validated through detailed experimental data on a series of adsorbates and also
by numerical simulation. We refer to the paper [42] for more details, and to subsequent papers [69]
and [46] for generalization of the methodology and additional applications.
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Chapter 3. Mass identification in axially vibrating nanobeams

3.3 Formulation of the mass identification problem

We consider a straight uniform nanobeam in longitudinal vibration and under clamped end condi-
tions. Using separation of variables, the axial displacement u(x, t) can be expressed as (see section
2.3.1)

u(x, t) = v(x)eiωt. (3.14)

Then, the spatial variation of the infinitesimal free longitudinal vibration of the unperturbed or
referential nanorod of length L is governed by the following eigenvalue problem

bvIV − av′′ = λρ0v, x ∈ (0, L), (3.15)
v(0) = 0, v′′(0) = 0, (3.16)
v(L) = 0, v′′(L) = 0, (3.17)

where λ = ω2 is the eigenvalue, ω is the (radian) frequency, and v = v(x) is the corresponding
eigenfunction. Moreover, ρ0 = const, ρ0 > 0, is the unperturbed mass density per unit length,
whereas the stiffness coefficients a and b are defined in ((2.111))–(2.112), with a , b positive con-
stants.

The eigenpairs {λn, vn(x)}∞n=1 of (3.15)–(3.17) are

λn =
(nπ
L

)2
[

1

ρ0

(
a+ b

(nπ
L

)2
)]

, (3.18)

vn(x) =

√
2

ρ0L
sin
(nπx
L

)
, (3.19)

where the following mass-normalization condition has been used∫ L

0

ρ0v
2
n(x) = 1, n ≥ 1. (3.20)

Note that the sequence {λn}∞n=1 of the unperturbed nanorod is uniformly discrete, that is, there
exists a separation constant σ > 0, only depending on the parameters of the system, such that

|λn − λm| ≥ σ, (3.21)

for every m,n ∈ N, with m 6= n. In particular, a direct calculation shows that

σ =
1

ρ0

(π
L

)2
[
a+ 2b

(π
L

)2
]
. (3.22)

This property will be useful in proving the continuity of the eigenfunctions of the nanorod with
respect to perturbations of the linear mass density.

Let us assume that the mass per unit length of the nanorod changes, and let us denote by

ρ(x) = ρ0 + rε(x), x ∈ [0, L], (3.23)

the mass density per unit length of the perturbed nanorod. We shall assume the following hypothe-
ses on the perturbation rε:

i) (L2-perturbation and smallness)(
1

L

∫ L

0

(rε(x))2dx

) 1
2

= ερ0, (3.24)
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3.4. An iterative first-order reconstruction procedure

where the perturbation parameter ε is a real number such that 0 < ε ≤ ε̂, with ε̂ < 1 a small number
to be chosen later on.

ii) (Regularity)
rε(x) ∈ L∞([0, L]), (3.25)

whereL∞([0, L]) is the space of (Lebesgue measurable) functions f : [0, L]→ R such that ‖f‖∞ =
ess supx∈[0,L]|f(x)| <∞ almost everywhere in [0, L].

iii) (Uniform lower and upper bound)

0 < ρ− ≤ ρ(x) ≤ ρ+, x ∈ [0, L], (3.26)

with ρ−, ρ+, ρ+ ≥ ρ0 + ‖rε‖∞, given constants independent of ε.

Remark 3.3.1. The smallness of the mass variation rε(x) expressed in (3.24) allows to consider
either perturbations of small amplitude given on large portions of the interval [0, L] (e.g., diffuse
mass change) or perturbation having large value concentrated in small parts of [0, L]. Moreover, it
should be noticed that the mass identification problem in nanorods involves positive variations of
the mass density ρ0, that is

rε(x) ≥ 0, x ∈ [0, L]. (3.27)

However, it is difficult to include this constraint in our analysis, and condition (3.27) will be used
in Section 3.6.3.4 to post-filtering the results of the proposed identification method.

Let us denote by {λn(ρ), vn(x; ρ)}∞n=1 the eigenpairs of (3.15)–(3.17) when the coefficient ρ0 is
replaced by ρ(x), that is 

bvIV − av′′ = λρv, x ∈ (0, L), (3.28)
v(0) = 0, v′′(0) = 0, (3.29)
v(L) = 0, v′′(L) = 0. (3.30)

Under our assumptions i)-iii), for any ε, 0 < ε ≤ ε̂, the eigenvalue problem (3.28)–(3.30) still main-
tains the properties of the unperturbed eigenvalue problem, and we shall denote by {λn(ρ), vn(x; ρ)}∞n=1,
the perturbed eigenpairs, with 0 < λ1(ρ) < ... < λn(ρ) < ..., limn→∞ λn(ρ) =∞.
The main goal of this study is:

Given the unperturbed nanorod, to recover the added mass rε(x) from the knowledge of the finite
eigenvalue data {λn(ρ)}Nn=1.

Recalling that the knowledge of a single full spectrum is not enough to determine uniquely a
general coefficient rε(x) (see [70] and, for Sturm-Liouville operators, [44]), here we formulate a
mixed inverse problem of Hochstadt-Lieberman’s type with finite data in which the mass coefficient
is known in half of the nanorod, namely the mass variation rε(x) has support contained in (0, L/2):

supp(rε(x)) = {x ∈ [0, L]| rε(x) 6= 0} ⊂
(

0,
L

2

)
. (3.31)

3.4 An iterative first-order reconstruction procedure

In this section we shall present a reconstruction procedure which is inspired to the Generalized
Fourier Coefficient Method introduced in [63] to deal with damage identification in (classical)
beams and rods. In its essence, the method is based on the linearization of the inverse problem
in a neighborhood of the referential configuration, and on using the eigenvalue sensitivity to the
unknown perturbation (see next two subsections). An iterative version of the procedure will be
presented in the third subsection. A formal study of the convergence is proposed in Section 3.5.
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Chapter 3. Mass identification in axially vibrating nanobeams

3.4.1 Eigenfrequency sensitivity to added mass

Let us introduce some notation. For any integerm ≥ 0 and for any real numbers `1, `2, with−∞ <
`1 < `2 < +∞, Hm (`1, `2) denotes the real-valued Hilbert space of the Lebesgue measurable

functions f : (`1, `2) → R, such that
∫ `2
`1

(
f 2 +

∑m
i=1

(
dif
dxi

)2 )
< +∞, where dif

dxi
is the ith

weak derivative of f (see, for example, [15]). We notice that, when m = 0, H0(`1, `2) coincides
with the space L2(`1, `2) of the square integrable functions in (`1, `2), with norm ‖f‖L2(`1,`2) =(∫ `2

`1
f 2(x)dx

) 1
2
. In order to simplify the notation, the L2 norm will be often denoted as ‖f‖2.

Finally, let us set ‖f‖∞ = maxx∈[0,L] |f(x)| for any bounded function f , f : [0, L] → R. The
characteristic function χI : R → R of the closed interval I , I ⊂ R, is defined as χI(x) = 1 if
x ∈ I , χI(x) = 0 if x ∈ R ⊂ I .

Let us rewrite the unperturbed eigenvalue problem (3.15)–(3.17) in the following form

F (v(x)) = λM(v(x)), (3.32)

where the operators F : H2(0, L)→ H2(0, L), M : H2(0, L)→ H2(0, L) are defined as

F (v(x)) = bvIV (x)− av′′(x), (3.33)

M(v(x)) = ρ0v(x). (3.34)

The perturbed eigenvalue problem (3.28)–(3.30) can be described similarly, that is

F (v(x; ρ)) = λ(ρ)Mε(v(x; ρ)), (3.35)

where the operator Mε : H2(0, L)→ H2(0, L) is defined as

Mε(v(x; ρ)) = ρv(x; ρ), ρ = ρ0 + rε. (3.36)

The setH of admissible configurations of the clamped nanorod is given by

H = {f : (0, L)→ R | f ∈ H2(0, L), f(x) = 0 at x = 0 and at x = L}. (3.37)

We introduce the following operations fromH×H to R:

〈M(f), g〉 =

∫ L

0

ρ0fg, (3.38)

〈F (f), g〉 =

∫ L

0

(bf IV − af ′′)g. (3.39)

Integration by parts shows that both the operatorsM andF are self-adjoint inH, that is, 〈M(f), g〉 =

〈f,M(g)〉 and 〈F (f), g〉 =
∫ L

0
(bf ′′g′′ + af ′g′) = 〈f, F (g)〉 for every f , g ∈ H.

In the sequel, we shall use an explicit expression of the first-order perturbation (with respect to
the parameter ε) of the eigenvalues. Note that, the nth unperturbed and perturbed eigenpair will be
denoted by {λn, vn(x)} and {λn(ρ), vn(x; ρ)}, respectively. In order to find the first-order change
of the nth eigenvalue, we find convenient to define

∆λn = λn(ρ)− λn, (3.40)

∆vn = vn(x; ρ)− vn, (3.41)

∆M = Mε −M, (3.42)
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3.4. An iterative first-order reconstruction procedure

and rewrite the normalization condition (3.20) as

〈M(vn), vn〉 = 1. (3.43)

Let us multiply equation (3.32) (written for the nth unperturbed eigenfunction vn(x)) and equation
(3.35) (written for the nth perturbed eigenfunction vn(x; ρ)) by vn(x; ρ) and vn(x), respectively.
Integrating, subtracting side by side, using the self-adjointness property and condition (3.43), we
deduce the fundamental identity between the states corresponding to mass coefficients ρ0 and ρ:

∆λn =− λn〈∆M(vn), vn〉 − λn〈∆M(∆vn), vn〉 −∆λn〈M(∆vn), vn〉−
−∆λn〈∆M(vn), vn〉 −∆λn〈∆M(∆vn), vn〉. (3.44)

Next, we introduce the following theorem about the continuity of eigenvalues and eigenfunctions
of the problem (3.28)–(3.30) with respect to L2-perturbations of the mass coefficient. This result
will be also useful in studying the convergence of the iterative identification method presented in
Section 3.5.

Let us denote as a priori data the set A of quantities defining the unperturbed model (e.g., the
coefficients a, b, ρ0, L), and the uniform lower and upper bound of the mass density of the perturbed
model ρ(x):

A = {a, b, ρ0, L, ρ
−, ρ+}. (3.45)

Note that the separation constant σ of the unperturbed nanorod depends on the a priori quantities
belonging to A, and therefore it will not be explicitly included in A.

Theorem 3.4.1. Under the above notation, let ρi(x) = ρ0 + rε,i(x), where rε,i(x) satisfies (3.24)–
(3.26), i = 1, 2. Let {λn(ρi), vn(x; ρi)}, n ≥ 1, be the nth eigenpair of (3.28)–(3.30) for i = 1, 2.

For every n ≥ 1, there exists a constant Cλ
n , Cλ

n > 0, only depending on the a priori dataA and
n, such that

|λn(ρ1)− λn(ρ2)| ≤ Cλ
n‖ρ1 − ρ2‖2. (3.46)

Let the eigenfunctions vn(x; ρ1), vn(x; ρ2) be normalized such that∫ L

0

ρ1v
2
n(x; ρ1) =

∫ L

0

ρ1v
2
n(x; ρ2) = 1 (3.47)

and v′n(0; ρ1)v′n(0; ρ2) > 0, n ≥ 1. For every n ≥ 1, there exist a number ε̂, 0 < ε̂ < 1, and a
constant Cv

n, Cv
n > 0, both only depending on the a priori data A and n, such that

||vn(x; ρ1)− vn(x; ρ2)||2 ≤ Cv
n‖ρ1 − ρ2‖2, (3.48)

for every ρ1, ρ2 satisfying ‖ρ1 − ρ2‖2 ≤ L
1
2 ε̂.

A proof of Theorem 3.4.1 is presented in Section 3.4.2.
By using inequalities (3.46), (3.48) into identity (3.44), for 0 < ε ≤ ε̂, the first order change

with respect to ε of the nth eigenvalue is given by

λn(ρ) = λn − λn
∫ L

2

0

rε(x)v2
n(x)dx, (3.49)

for every n ≥ 1 and for rε satisfying (3.31).
To prove (3.49), we first start by showing that |vn(x)| is uniformly bounded in [0, L] in terms of

the a priori dataA and n. By the definition of the eigenvalue problem for the unperturbed nanorod,
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Chapter 3. Mass identification in axially vibrating nanobeams

by Hölder inequality and by using the normalization condition (3.20), for every x ∈ [0, L] and
every n ≥ 1, we have

|vn(x)| =
∣∣∣∣∫ x

0

v′n(s)ds

∣∣∣∣ ≤ L
1
2

(∫ L

0

(v′n(x))2dx

) 1
2

≤

≤
(
L

a

) 1
2
(∫ L

0

(b(v′′n(x))2 + a(v′n(x))2)dx

) 1
2

≤
(
L

a

) 1
2

λ
1
2
n . (3.50)

Next, we show that all the terms on the right hand side of (3.44), but the first, are of higher order
with respect to ε. Let us consider the second term. By using (3.50), Hölder inequality and estimate
(3.48) in Theorem 3.4.1, for 0 < ε ≤ ε̂, we have

|λn〈∆M(∆vn), vn〉| ≤ λn

∣∣∣∣∣
∫ L

2

0

rε(x)(vn(x; ρ0 + rε)− vn(x))vn(x)dx

∣∣∣∣∣ ≤
≤ λn‖vn‖∞‖rε‖2‖vn(x; ρ0 + rε)− vn(x)‖2 ≤ λn‖vn‖∞Cv

n‖rε‖2
2 ≤ Cε2,

(3.51)

where C > 0 is a constant only depending on the a priori data A and n.
The estimates of the third, fourth and fifth terms can be performed similarly, resulting, for

0 < ε ≤ ε̂,

|∆λn〈M(∆vn), vn〉|, |∆λn〈∆M(vn), vn〉| ≤ Cε2, |∆λn〈∆M(∆vn), vn〉| ≤ Cε3, (3.52)

where C > 0 is a constant only depending on the a priori data A and n. By using (3.51) and (3.52)
in (3.44), and neglecting higher order terms with respect to ε, we obtain (3.49).

Let us comment the expression (3.49). As expected by the general theory (see, for instance,
[20]), expression (3.49) states that addition of mass causes decrease in all the eigenvalues. More
precisely, the eigenvalue shift (λn(ρ) − λn) turns out to be proportional to λn. This fact seems
to have a certain importance in our inverse problem, since the relative variation of the eigenvalues
appears to be significant also for large order n. Finally, it should be noticed that the expression
(3.49) is independent of the boundary conditions of the eigenvalue problem and, therefore, the
analysis could be extended also to other sets of boundary conditions of the nanorod.

3.4.2 Proof of Theorem 3.4.1

In this section we prove Theorem 3.4.1.
Let n be a fixed integer, n ≥ 1.

Proof of estimate (3.46).

We adapt the arguments shown in [8]. The Rayleigh quotient for the eigenvalue problem (3.28)–
(3.30) is

R[u, ρ] =

∫ L
0
b(u′′)2 + a(u′)2∫ L

0
ρu2

, (3.53)

for every function u ∈ H \ {0}, that is, u ∈ H2(0, L) satisfying the end conditions u(0) = u(L) =
0.

Let us recall the following variational characterization of the eigenvalues of (3.28)–(3.30). Let
vn(x; ρ) denote the eigenfunction corresponding to λn(ρ) and let Un(ρ) be the subspace of H
spanned by the first n eigenfunctions {v1(x; ρ), . . . , vn(x; ρ)}. Let Vn be any other n-dimensional
subspace ofH. We have

λn(ρ) ≤ max
u∈Vn\{0}

R[u, ρ], λn(ρ) = max
u∈Un(ρ)\{0}

R[u, ρ]. (3.54)
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For every function u ∈ H \ {0} we have

R[u, ρ2] = R[u, ρ1]

(
1 +

∫ L
0

(∆ρ)u2∫ L
0
ρ2u2

)
, (3.55)

with ∆ρ = ρ1 − ρ2.
Our main goal is to show that the numerator of the fraction appearing on the right hand side of

(3.55) can be bounded from above by const.‖∆ρ‖2

∫ L
0
u2 for every u ∈ Un(ρ1)\{0}, where const.

is a positive constant depending only on the a priori data and n. In fact, on assuming this bound
available, and using the uniform lower bound (3.26), from (3.55) we have

R[u, ρ2] ≤ R[u, ρ1] (1 + C‖∆ρ‖2) , (3.56)

where the constant C > 0 only depends on the a priori data and n. Next, taking the maximum in
(3.56) over the functions u ∈ Un(ρ1) \ {0} and using the variational characterization (3.54), we
obtain

λn(ρ2) ≤ λn(ρ1) (1 + C‖∆ρ‖2) . (3.57)

Reversing the indexes 1 and 2, we also have

λn(ρ1) ≤ λn(ρ2) (1 + C‖∆ρ‖2) . (3.58)

From (3.57) and (3.58) we can derive the inequality

|λn(ρ2)− λn(ρ1)| ≤ C max{λn(ρ1), λn(ρ2)}‖∆ρ‖2. (3.59)

Recalling that, by definition of ρ− in (3.26) and by monotonicity results (see, for example, [20]), we
have λn(ρ1) ≤ λn(ρ−) and λn(ρ2) ≤ λn(ρ−) for every n ≥ 1, the wished estimate (3.46) follows
from (3.59).

To complete the proof, it remains to control the numerator in the fraction on the right hand side
of (3.55).

Let u ∈ Un(ρ1) \ {0}, that is u(x) =
∑n

i=1 civi(x; ρ1) with
∑n

i=1 c
2
i > 0, where vi(x; ρ1) is

normalized so that
∫ L

0
ρ1v

2
1(x; ρ1) = 1, i = 1, . . . , n. By integrating by parts, we have:∫ L

0

∆ρ(x)u2(x)dx = u2(x)

∫ x

0

∆ρ(x1)dx1|x=L
x=0−

−
∫ L

0

(∫ x

0

∆ρ(x1)dx1

)(
u2(x)

)′
dx = −2

∫ L

0

(∫ x

0

∆ρ(x1)dx1

)
u(x)u′(x)dx. (3.60)

Using Hölder inequality, we obtain |
∫ x

0
∆ρ(x1)dx1| ≤ L

1
2‖∆ρ‖2, and then, inserting this estimate

in (3.60), we get

|
∫ L

0

∆ρ(x)u2(x)dx| ≤ 2L
1
2‖∆ρ‖2

∫ L

0

|u(x)u′(x)|dx ≤ 2L
1
2‖∆ρ‖2 ‖u‖2 ‖u′‖2. (3.61)

In order to estimate ‖v′i‖2, by the weak formulation of the eigenvalue problem for {λi(ρ1), vi(x; ρ1)},
and recalling that

∫ L
0
ρ1v

2
i (x; ρ1) = 1, we have∫ L

0

(v′i(x; ρ1))2 ≤ λi(ρ1)

a
, (3.62)

for every i ≥ 1. Then, by Schwarz inequality and (3.62), we have∫ L

0

(u′(x))2 ≤
n∑
i=1

c2
i ·

n∑
i=1

∫ L

0

(v′i(x; ρ1))2 ≤ 1

a
·

n∑
i=1

λi(ρ1) ·
n∑
i=1

c2
i . (3.63)
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By the orthogonality of the eigenfunctions vi(x; ρ1) we also have∫ L

0

ρ1u
2(x) =

∫ L

0

ρ1

(
n∑
i=1

civi(x; ρ1)

)2

=
n∑
i=1

c2
i , (3.64)

and (3.63) becomes ∫ L

0

(u′(x))2 ≤ ρ+

a
·

n∑
i=1

λi(ρ1)

∫ L

0

u2(x). (3.65)

Finally, using (3.65) in (3.61), we obtain

|
∫ L

0

∆ρ(x)u2(x)dx| ≤ 2L
1
2‖∆ρ‖2

(
ρ+

a
·

n∑
i=1

λi(ρ1)

) 1
2

‖u‖2
2. (3.66)

By monotonicity results, we have λi(ρ1) ≤ λi(ρ
−) ≤ λn(ρ−), for every i = 1, . . . , n. It follows

that estimate (3.56) can be obtained from inequality (3.55), and the proof is complete.

Proof of estimate (3.48).

We now consider the continuity of the nth eigenfunction with respect to the mass coefficient.
Let us represent the nth eigenfunction vn(x; ρ2) on the Hilbertian basis of H formed by the

eigenfunctions {vk(x; ρ1)}∞k=1:

vn(x; ρ2) =
∞∑
k=1

cknvk(x; ρ1), (3.67)

where the series is uniformly convergent inH up to the second order derivatives.
Coefficients {ckn}∞k=1 depend on ρ1, ρ2, e.g., ckn = ckn(ρ1, ρ2). In view of the condition v′n(0; ρ1)v′n(0; ρ2) >

0 assumed in Theorem 3.4.1, we require that, for i = 1, 2, cnn(ρi, ρi) = 1 and ckn(ρi, ρi) = 0 if k 6= n.
Let us notice that, by (3.67), we have

vn(x; ρ2)− vn(x; ρ1) =
∞∑

k=1,k 6=n

cknvk(x; ρ1) + (cnn − 1)vn(x; ρ1). (3.68)

Therefore, in order to estimate ‖vn(x; ρ2)−vn(x; ρ1)‖2, we need to control the sequence {ckn}∞k=1,k 6=n
and the term |cnn − 1|.

Let us recall the weak formulation of the eigenvalue problem (3.28)–(3.30) for {λn(ρ2), vn(x; ρ2)}:∫ L

0

(bv′′n(x; ρ2)ϕ′′ + av′n(x; ρ2)ϕ′) = λn(ρ2)

∫ L

0

ρ2vn(x; ρ2)ϕ, (3.69)

for every ϕ ∈ H. By inserting (3.67) in (3.69), choosing ϕ = vj(x; ρ1), j ≥ 1, and using the
orthogonality conditions ∫ L

0

ρ1vk(x; ρ1)vj(x; ρ1) = δkj, k, j ≥ 1, (3.70)

we have

cjn(λn(ρ2)− λj(ρ1)) = −λn(ρ2)

∫ L

0

(ρ2 − ρ1)vn(x; ρ2)vj(x; ρ1), (3.71)

for every j ≥ 1.
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In order to simplify the notation, in the sequel we shall denote by C a positive constant that
depends on the a priori data only and n, and that may change from line to line.

It should be noted that if j = n in (3.71), then the left and the right hand side can be made
very small for ρ1 ≈ ρ2, and in the limit ρ2 = ρ1 equation (3.71) degenerates into a trivial identity.
Therefore, we first assume j 6= n and we estimate from below the quantity (λn(ρ2)− λj(ρ1)). The
case j = n shall be discussed later on.

We notice that, by asymptotic eigenvalue estimates, there exists J∗0 ∈ N and there exists a
positive constant C such that

C

2
j4 ≤ λj(ρ1) ≤ Cj4, for j > J∗0 . (3.72)

Let us distinguish two cases.
First, let j > J∗0 . By (3.72), one can show that there exists a number J0 ∈ N, J0 possibly bigger

than J∗0 and J0 > n, such that

|λn(ρ2)− λj(ρ1)| ≥ Cj4, for j > J0, (3.73)

and, therefore, ∣∣∣∣ λn(ρ2)

λn(ρ2)− λj(ρ1)

∣∣∣∣ ≤ C

j4
, for j > J0. (3.74)

In the other case, e.g., j ≤ J0 and j 6= n, we notice that there exists ε̂, ε̂, 0 < ε̂ < 1 only depend-
ing on the a priori data and n, such that the sequences {λn(ρ1)}∞n=1, {λn(ρ2)}∞n=1 are uniformly
discrete with separation constant σ/2, provided that ‖ρi − ρ0‖2 ≤ ε for 0 < ε ≤ ε̂, i = 1, 2. This
property follows from the fact that the sequence {λn}∞n=1 is uniformly discrete (with separation
constant σ) and by using the continuity of the eigenvalues with respect to small L2-perturbations of
the referential linear mass density ρ0 (e.g., for ε̂ small enough).

Therefore, we can estimate from below as follows:

|λn(ρ2)− λj(ρ1)| ≥ min{|λn(ρ2)− λn−1(ρ1)|, |λn(ρ2)− λn+1(ρ1)|}, (3.75)

where we have assumed λ0(ρ1) = 0. Let us consider the first term on the right hand side, the
analysis of the second being similar. Since the sequence {λn(ρ2)}∞n=1 is uniformly discrete with
separation constant σ/2, using estimate (3.46), and reducing the value of ε̂ (where ε̂ only depends
on the a priori data and n), we have

|λn(ρ2)− λn−1(ρ1)| ≥ |λn(ρ2)− λn−1(ρ2)| − |λn−1(ρ2)− λn−1(ρ1)| ≥

≥ σ

2
− Cλ

n−1‖ρ2 − ρ1‖2 ≥
σ

4
. (3.76)

Therefore, for every j ≤ J0 and j 6= n, we have∣∣∣∣ λn(ρ2)

λn(ρ2)− λj(ρ1)

∣∣∣∣ ≤ C. (3.77)

By (3.74) and (3.77), we can compute cjn for j 6= n:

cjn = − λn(ρ2)

λn(ρ2)− λj(ρ1)

∫ L

0

(ρ2 − ρ1)vn(x; ρ2)vj(x; ρ1). (3.78)

By adapting the arguments used to prove (3.50), vn(x; ρ2) is uniformly bounded in [0, L], i.e.,

max
x∈[0,L]

|vn(x; ρ2)| ≤ C. (3.79)
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Then, by applying Hölder inequality to (3.78) and using (3.79), we have

|cjn| ≤ C

∣∣∣∣ λn(ρ2)

λn(ρ2)− λj(ρ1)

∣∣∣∣ ‖ρ2 − ρ1‖2, (3.80)

that is, by (3.74) and (3.77),

|cjn| ≤ C‖ρ2 − ρ1‖2, j ≤ J0, j 6= n, (3.81)

|cjn| ≤
C

j4
‖ρ2 − ρ1‖2, j > J0. (3.82)

We are now in position to estimate the L2 norm (squared) of the first term appearing on the right
hand side of (3.68):∫ L

0

( ∞∑
k=1,k 6=n

cknvk(x; ρ1)
)2

≤

≤ 2

∫ L

0

( J0∑
k=1,k 6=n

cknvk(x; ρ1)
)2

+ 2

∫ L

0

( ∞∑
k=J0+1

cknvk(x; ρ1)
)2

≡ 2(IJ0 + I∞). (3.83)

Let us first consider IJ0 . By Schwarz’s inequality and (3.81), we have

IJ0 ≤
∫ L

0

(
J0∑

k=1,k 6=n

(ckn)2

)
·

(
J0∑

k=1,k 6=n

(vk(x; ρ1))2

)
≤ C‖ρ2 − ρ1‖2

2. (3.84)

Concerning the term I∞, we use the asymptotic estimate (3.82) and Schwarz inequality, obtaining

I∞ ≤
∫ L

0

(
∞∑

k=J0+1

cknvk(x; ρ1)

)2

≤
∫ L

0

(
∞∑

k=J0+1

k2(ckn)2

)
·

(
∞∑

k=J0+1

1

k2
(vk(x; ρ1))2

)
≤

≤
∞∑

k=J0+1

k2C
2‖ρ2 − ρ1‖2

2

k8
·

∞∑
k=J0+1

1

k2

∫ L

0

(vk(x; ρ1))2 ≤

≤ C‖ρ2 − ρ1‖2
2

∞∑
k=1

1

k6
·
∞∑
k=1

1

k2
≤ C‖ρ2 − ρ1‖2

2. (3.85)

Inserting (3.84) and (3.85) in (3.83), we obtain

‖
∞∑

k=1,k 6=n

cknvk(x; ρ1)‖2 ≤ C‖ρ2 − ρ1‖2. (3.86)

Finally, let us evaluate cnn. Recalling the normalization conditions (3.47), and using the representa-
tion (3.67), we have

(cnn)2

∫ L

0

ρ1v
2
n(x; ρ1) +

∞∑
j=1,j 6=n

cnnc
j
n

∫ L

0

ρ1vn(x; ρ1)vj(x; ρ1)+

+
∞∑

k=1,k 6=n

cnnc
k
n

∫ L

0

ρ1vn(x; ρ1)vk(x; ρ1)+

+
∞∑

k,j=1, (k,j)6=(n,n)

cknc
j
n

∫ L

0

ρ1vk(x; ρ1)vj(x; ρ1) =

∫ L

0

ρ1v
2
n(x; ρ1). (3.87)
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By the orthogonality conditions (3.70), the above equation reduces to

(cnn)2 − 1 = −
∞∑

j=1,j 6=n

(cjn)2, (3.88)

where the right hand side can be estimated, as before, by using (3.81) and (3.82), that is

(cnn)2 ≤ 1 + C‖ρ2 − ρ1‖2
2. (3.89)

By choosing ε̂ > 0 small enough, and recalling that cnn is expected to belong to a neighborhood of
1 (e.g., cnn(ρi, ρi) = 1, i = 1, 2), the above equality implies

|cnn − 1| ≤ C‖ρ2 − ρ1‖2
2, (3.90)

that is the second term in (3.68) is an higher order term with respect to ‖ρ2 − ρ1‖2, and the thesis
(3.48) follows.

Remark 3.4.2. We conclude this Appendix by proving that, under the assumptions of Theorem
3.4.1, the eigenfunctions are continuous in the H2 norm with respect to mass perturbation. To
show this, let us start with the following identity, which involves the energy norm ||| · ||| of the
difference (vn(x; ρ1)− vn(x; ρ2)):

|||vn(x; ρ2)− vn(x; ρ1)|||2 ≡
∫ L

0

b(v′′n(x; ρ2)− v′′n(x; ρ1))2 + a(v′n(x; ρ2)− v′n(x; ρ1))2 =

=

∫ L

0

b(v′′n(x; ρ1))2 + a(v′n(x; ρ1))2 −
∫ L

0

(bv′′n(x; ρ1)v′′n(x; ρ2) + av′n(x; ρ1)v′n(x; ρ2)) +

+

∫ L

0

(bv′′n(x; ρ2)(v′′n(x; ρ2)− v′′n(x; ρ1)) + av′n(x; ρ2)(v′n(x; ρ2)− v′n(x; ρ1))) ≡ I1 + I2 + I3,

(3.91)

for every n ≥ 1. By the weak formulation of the eigenvalue problem (see, for example, (3.69)), we
have

I1 = λn(ρ1)

∫ L

0

ρ1v
2
n(x; ρ1), (3.92)

I2 = −λn(ρ1)

∫ L

0

ρ1vn(x; ρ1)vn(x; ρ2), (3.93)

I3 = λn(ρ2)

∫ L

0

ρ2vn(x; ρ2)(vn(x; ρ2)− vn(x; ρ1)), (3.94)

where the functions vn(x; ρ2) and (vn(x; ρ2) − vn(x; ρ1)) have been chosen as test functions to
obtain (3.93) and (3.94), respectively. Therefore, by inserting (3.92)–(3.94) in (3.91), we have

|||vn(x; ρ2)− vn(x; ρ1)|||2 = λn(ρ1)

∫ L

0

ρ1vn(x; ρ1)(vn(x; ρ1)− vn(x; ρ2))+

+ λn(ρ2)

∫ L

0

ρ2vn(x; ρ2)(vn(x; ρ2)− vn(x; ρ1)). (3.95)

By using Hölder inequality, the normalization conditions (3.47) and estimate (3.48), we have

|||vn(x; ρ2)− vn(x; ρ1)|||2 ≤ C‖vn(x; ρ2)− vn(x; ρ1)‖2 ≤ C‖ρ1 − ρ2‖2, (3.96)
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where C > 0 is a constant only depending on the a priori data and n. It should be noted that, if
ρ1 = ρ0 (unperturbed nanorod) and ρ2 = ρ0 + rε(x) (see (3.24)), for ε > 0 small enough, then the
energy norm |||vn(x; ρ0) − vn(x; ρ0 + rε(x))||| is of order ε1/2 instead of order ε, as for the norm
‖vn(x; ρ0) − vn(x; ρ0 + rε(x))‖2. Finally, using (3.48) and (3.96), one can obtain the wished H2

estimate:
||vn(x; ρ2)− vn(x; ρ1)||2H2(0,L) ≤ C‖ρ1 − ρ2‖2, (3.97)

where the constant C > 0 only depends on the a priori data and n.

3.4.3 The linearized inverse problem

In this section we shall use the eigenvalue sensitivity determined in (3.49) to formulate a linearized
version of the inverse problem and to find an approximate solution.

Using the explicit expression of the unperturbed eigenfunctions (3.19) in (3.49), we have

δλn ≡ 1− λn(ρ)

λn
=

∫ L
2

0

rε(x)Φn(x)dx, (3.98)

where
Φn(x) ≡ (vn(x))2 =

2

ρ0L
sin2

(nπx
L

)
, n ≥ 1. (3.99)

Equation (3.98) shows that the first-order relative shift of the nth eigenvalue coincides with the
scalar product between the unknown mass variation rε(x) and the nth element of the family {Φm(x)}∞m=1.

In order to determine rε(x), a natural choice is to represent rε(x) on the family {Φm(x)}∞m=1 as

rε(x) =
∞∑
k=1

βkΦk(x)χ[0,L2 ], (3.100)

where the convergence of the series should be understood in the mean, that is

lim
K→∞

∫ L
2

0

(
rε(x)−

K∑
k=1

βkΦk(x)

)2

= 0. (3.101)

Here, χI , χI : R → R, is the characteristic function of the closed interval I , I ⊂ R, defined as
χI(x) = 1 if x ∈ I , χI(x) = 0 if x ∈ R \ I .
The coefficients (βk)

∞
k=1 play the role of Generalized Fourier Coefficients of the unknown mass

variation rε(x) evaluated on the family {Φm(x)}∞m=1. It should be noted that one cannot a priori
exclude that the function rε(x) defined in (3.100) may change sign in the interval (0, L/2); see also
the remark after condition (3.27).

It is at this point that the a priori condition (3.31) can be mathematically justified. In fact,
the family {Φm(x)}∞m=1 is a basis of the square integrable functions defined on half span of the
nanorod, that is, the closed linear subspace spanned by {Φm(x)}∞m=1 is L2

(
0, L

2

)
. To prove this

property, we notice that the functions {Φm(x)}∞m=1 are linearly independent and form a complete
family in L2

(
0, L

2

)
. This last property is satisfied if, for any rε(x) ∈ L2

(
0, L

2

)
, the conditions∫ L

2

0
rε(x)Φm(x)dx = 0 for every n ≥ 1 imply rε(x) = 0 in

(
0, L

2

)
. The above conditions can be

rewritten as

0 =

∫ L
2

0

rε(x)dx−
∫ L

2

0

rε(x) cos

(
2mπx

L

)
dx, (3.102)

for every m ≥ 1. Taking the limit in (3.102) as m→∞ and using the Riemann-Lebesgue Lemma
(see, for instance, [78]), we have

∫ L
2

0
rε(x)dx = 0 and, then,

∫ L
2

0
rε(x) cos

(
2mπx
L

)
dx = 0 for every
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m ≥ 1. Since the family {cos
(

2mπx
L

)
}∞m=1 is a basis for the set of functions belonging to L2

(
0, L

2

)
and having zero-mean, we have rε(x) = 0 in

(
0, L

2

)
, and the thesis is proved.

Replacing (3.100) in (3.98), we obtain the infinite linear system

δλn =
∞∑
k=1

Ankβk, n = 1, 2, ..., (3.103)

where

Ank =

∫ L
2

0

Φn(x)Φk(x)dx =
4

(ρ0L)2

∫ L
2

0

sin2
(nπx
L

)
sin2

(
kπx

L

)
dx, (3.104)

n, k = 1, 2.... The coefficients Ank can be evaluated in closed form, and we have

Ank =
2

4ρ2
0L

for k 6= n, Ann =
3

4ρ2
0L
. (3.105)

In real applications only a finite number of eigenvalues is available, typically the first 10 − 20.
This leads us to consider the N th finite dimensional approximation of the added mass, (βNk )Nk=1 of
(3.103), that is the N ×N linear system

δλn =
N∑
k=1

Ankβ
N
k , n = 1, ..., N. (3.106)

A direct calculation shows that

det(Ank) = (2N + 1)

(
1

4ρ2
0L

)N
, (3.107)

(Ank)
−1 = (4ρ2

0L)
2N − 1

2N + 1
if n = k, (Ank)

−1 = −(4ρ2
0L)

2

2N + 1
if n 6= k, (3.108)

n, k = 1, ...,M . Therefore, the system (3.106) has the closed-form solution

βNk = 4ρ2
0L

(
2N − 1

2N + 1
δλk −

2

2N + 1

N∑
j=1, j 6=k

δλj

)
, k = 1, ..., N, (3.109)

and, finally,

rε(x) = 8ρ0

N∑
k=1

(
2N − 1

2N + 1
δλk −

2

2N + 1

N∑
j=1, j 6=k

δλj

)
sin2

(
kπx

L

)
· χ[0,L2 ]. (3.110)

3.4.4 The reconstruction procedure

The estimation of rε given in (3.110) can be improved by iterating the identification procedure
illustrated in the previous section. In order to simplify the notation, here the index ε has been
omitted and λexpn denotes the measured value of the nth eigenvalue λn(ρ) of the perturbed nanorod.
Moreover, we shall write β instead of βN . The main steps of the reconstruction procedure and the
corresponding numerical algorithm are illustrated in the sequel.

Let ρ(0)(x) = ρ0 be the mass per unit length of the referential nanorod. The unknown mass per
unit length is determined on the interval

[
0, L

2

]
by the iteration

ρ(j+1)(x) = ρ(j)(x) + r(j)(x), j ≥ 0, (3.111)
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where the increment

r(j)(x) =
N∑
k=1

β
(j)
k Φ

(j)
k (x)χ[0,L2 ] = β(j) · Φ(j)(x)χ[0,L2 ] (3.112)

is determined by solving the N ×N linear system

δλ(j)
n ≡ 1− λexpn

λn(ρ(j))
=

N∑
k=1

A
(j)
nkβ

(j)
k , (3.113)

n = 1, ..., N , or, equivalently, in compact form

A(j)β(j) = δλ(j), (3.114)

with β(j) = (β
(j)
1 , . . . , β

(j)
N ). Here, {λn(ρ(j)), vn(x; ρ(j))} is the nth (mass normalized) eigenpair of

the problem 
bvIV − av′′ = λρ(j)v, x ∈ (0, L), (3.115)
v(0) = 0, v′′(0) = 0, (3.116)
v(L) = 0, v′′(L) = 0. (3.117)

Moreover, Φ
(j)
k (x) = v2

k(x; ρ(j)) and the matrix (A
(j)
nk ) is given by

A
(j)
nk =

∫ L
2

0

Φ(j)
n (x)Φ

(j)
k (x)dx, n, k = 1, ..., N. (3.118)

Assuming the existence of (A(j))−1 (see Section 3.5, Step i)), we have

r(j)(x) = (A(j))−1δλ(j) · Φ(j)(x)χ[0,L2 ] (3.119)

and, from (3.111), we have

ρ(j)(x) = ρ0 +

j−1∑
i=0

r(i)(x), j ≥ 1. (3.120)

In our application, the iterations go on until the updated mass coefficient satisfies the criterion

e ≡ 1

N

(
N∑
n=1

(
λexpn − λn(ρ(j+1)

λexpn

)2
) 1

2

< γ, (3.121)

for a small given number γ.

3.5 Convergence of the identification method

In this section we study the convergence of the iterative method shown in Section 3.4.4. We prove
that, under suitable assumptions, there exists ρ(x) ∈ C0

(
0, L

2

)
such that

ρ(x) = lim
j→∞

ρ(j)(x) = ρ0 +
∞∑
i=0

r(i)(x), (3.122)

where the series is uniformly convergent in
(
0, L

2

)
.
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The proof is based on two main steps:
Step i) Existence of the inverse (A(j))−1 and bound of ‖(A(j))−1‖ for every j ≥ 1;
Step ii) Bound of |δλ(j)| to control ‖r(i)‖2 for every j ≥ 1.

In the sequel, we shall denote byC positive constants which may change from line to line. More-

over, for every N × N matrix B ∈ RN×N , we denote by ‖B‖ =
(∑N

i,j=1(Bij)
2
) 1

2
the Frobenius

norm.

Step i). Let us consider the set of coefficients ρ(x) given in (3.23), e.g., ρ(x) = ρ0 + rε(x) in
[0, L], where rε satisfies conditions (3.23)–(3.26) and where ε > 0 is a number small enough. We
denote by A(ρ) the matrix defined in (3.118) corresponding to the coefficient ρ(x).

We prove that there exists ε̂ρ, 0 < ε̂ρ < 1, only depending on the a priori data A and N , such
that, for every ε < ε̂ρ, there exists (A(ρ))−1 and we have

‖(A(ρ))−1‖ ≤ C, (3.123)

where C > 0 is a constant only depending on the a priori data A and N .
To prove (3.123), we shall write

A(ρ) = A(ρ0)− P, (3.124)

where the inverse of A(ρ0) is given explicitly in (3.108), and P = P(ρ) is a perturbation due to
the change of mass rε(x). Denoting ∆vk(x) = vk(x; ρ) − vk(x; ρ0) ≡ vk(x; ρ) − vk(x), for every
n, k = 1, . . . N , by (3.118) we have

−Pnk =2

∫ L
2

0

(
vkv

2
n∆vk + vnv

2
k∆vn

)
+

∫ L
2

0

(
v2
n(∆vk)

2 + v2
k(∆vn)2 + 4vnvk∆vn∆vk

)
+

+ 2

∫ L
2

0

(
vn∆vn(∆vk)

2 + vk∆vk(∆vn)2
)

+

∫ L
2

0

(∆vn)2(∆vk)
2. (3.125)

In order to simplify the analysis, we shall control the L∞ norm of all the quantities inside the
integrals in (3.125). The norm ‖vk‖∞ (even in the whole interval (0, L)) can be bound via inequality
(3.50), which holds for unperturbed eigenfunctions with a constant C > 0 only depending on the
a priori data A. In order to bound ‖∆vk‖∞, we use the Rellich-Kondrachov’s Theorem (see [15],
Theorem IX.26) and estimate (3.97): for every k ≥ 1 we have

‖∆vk‖L∞(0,L) ≤ C‖∆vk‖H2(0,L) ≤ C‖ρ− ρ0‖
1
2

L2(0,L) ≤ Cε
1
2 , (3.126)

for every ε ≤ ε̂(< 1), where ε̂ has been introduced in Theorem 3.4.1, and C > 0 is a constant only
depending on the a priori data A and k. Therefore, for every n, k = 1, . . . , N and for every ε such
that ε ≤ ε̂, we have

|Pnk| ≤ C(ε
1
2 + ε+ ε

3
2 + ε2) ≤ Cε

1
2 (3.127)

and
‖P‖ ≤ CP ε

1
2 , (3.128)

where CP > 0 is a constant only depending on the a priori data A and N .
Let us introduce the number

ε̂ρ = min

{
ε̂,

(
1

2CP‖(A(ρ0))−1‖

)2
}
. (3.129)
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Note that, possibly increasing CP , the number
(

1
2CP ‖(A(ρ0))−1‖

)2

is less than 1. We now prove that
if P satisfies (3.128) for every ε ≤ ε̂ρ, then A(ρ) is nonsingular, and

‖(A(ρ))−1‖ ≤ ‖(A(ρ0))−1‖ · ‖I‖
1− ‖(A(ρ0))−1‖ · ‖P‖

, (3.130)

where I is the identity matrix in RN×N . Let x ∈ RN \ {0}. Then, since A(ρ0) is nonsingular, it is
enough to prove that (I− (A(ρ0))−1P)x 6= 0 for every x ∈ RN \ {0}. We have

‖(I− (A(ρ0))−1P)x‖ ≥ (1− ‖(A(ρ0))−1‖ · ‖P‖)‖x‖ > 0, (3.131)

since, by (3.128) and (3.129), for every ε, 0 < ε ≤ ε̂ρ,

1− ‖(A(ρ0))−1‖ · ‖P‖ ≥ 1− ‖(A(ρ0))−1‖CP ε
1
2 ≥ 1

2
> 0. (3.132)

Hence, if x 6= 0, (I− (A(ρ0))−1P)x 6= 0 or, equivalently, (A(ρ0)−P)x 6= 0 and A(ρ) = A(ρ0)−P
is nonsingular.

Now, from the identity (A(ρ0)− P)(A(ρ0)− P)−1 = I, it follows that

(I− (A(ρ0))−1P)−1 = I + (A(ρ0))−1P(I− (A(ρ0))−1P)−1 (3.133)

and, then,

‖(I− (A(ρ0))−1P)−1‖ ≤ ‖I‖
1− ‖(A(ρ0))−1‖ · ‖P‖

. (3.134)

Inequalities (3.134) and (3.130) are equivalent, and imply (3.123).

Step ii). In order to control |δλ(i)|, we follow the steps of the iterative procedure shown in
Section 3.4.4.

At step ]1, we use the fundamental identity (3.44) between the unperturbed 0th state (corre-
sponding to ρ(0)(x) = ρ0) and the state to be identified (corresponding to the unknown mass coef-
ficient, say ρ(x), and target eigenvalues {λexpn }, n = 1, . . . , N ):

λexpn = λn(ρ(0))− λn(ρ(0))〈∆M (0)vn(ρ(0)), vn(ρ(0))〉+ Õn(EXP-(0)), (3.135)

n = 1, . . . , N , where ∆M (0) = ρ(x)− ρ(0)(x) and the higher order term Õn(EXP-(0)) depends on
the initial state ρ(0) and on the variations ∆M (0), ∆λ

(0)
n = λexpn − λn(ρ(0)), ∆vn(x) = vn(x; ρ) −

vn(x; ρ(0)). The mass coefficient ρ(0) is updated at step ]1 as

ρ(1)(x) = ρ(0)(x) + r(0)(x), (3.136)

where r(0)(x) (given in (3.112) for j = 0) is determined by neglecting the term Õn(EXP-(0)) in
(3.135), e.g., for every n = 1, . . . , N ,

λexpn − λn(ρ(0)) = −λn(ρ(0))〈r(0)vn(ρ(0)), vn(ρ(0))〉. (3.137)

By using the updated value of the mass coefficient ρ(1)(x), we now estimate λn(ρ(1)), n = 1, . . . , N .
By applying the fundamental identity (3.44) between the states ρ(0)(x) and ρ(1)(x), we have

λn(ρ(1))− λn(ρ(0)) = −λn(ρ(0))〈r(0)vn(ρ(0)), vn(ρ(0))〉+ Õn((1)-(0)). (3.138)

The first term on the right hand side of (3.138) can be determined by (3.137), namely

λn(ρ(1))− λn(ρ(0)) = λexpn − λn(ρ(0)) + Õn((1)-(0)), (3.139)
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that is
λn(ρ(1))− λexpn = Õn((1)-(0)), n = 1, . . . , N. (3.140)

Similarly, at step ]2, the mass coefficient is updated as

ρ(2)(x) = ρ(1)(x) + r(1)(x), (3.141)

where r(1)(x) satisfies

λexpn − λn(ρ(1)) = −λn(ρ(1))〈r(1)vn(ρ(1)), vn(ρ(1))〉, (3.142)

n = 1, . . . , N . The identity (3.44) between the states ρ(1)(x) and ρ(2)(x) reads as

λn(ρ(2))− λn(ρ(1)) = −λn(ρ(1))〈r(1)vn(ρ(1)), vn(ρ(1))〉+ Õn((2)-(1)), (3.143)

and, by (3.142) and (3.143), we obtain

λn(ρ(2))− λexpn = Õn((2)-(1)), n = 1, . . . , N. (3.144)

By iteration, at step ](i+ 1) we have

λn(ρ(i+1))− λexpn = Õn((i+ 1)− (i)), n = 1, . . . , N. (3.145)

At this point we need to bound the high order term Õn((i+ 1)− (i)) appearing in (3.145).
Let us first estimate Õn((1)-(0)). By (3.44) (written between the unperturbed state ρ(0) and the

first updated state ρ(1)) we have

|Õn((1)− (0))| ≤ λn|〈∆M(∆vn), vn〉|+ |∆λn| · |〈M(∆vn), vn〉|+
+ |∆λn| · |〈∆M(vn), vn〉|+ |∆λn| · |〈∆M(∆vn), vn〉| ≡ An +Bn + Cn +Dn. (3.146)

Let us consider the term An. By using Hölder inequality, we have

An ≤λn||vn||∞
∫ L

0

|∆M(x)| · |vn(x; ρ(1))− vn(x; ρ(0))|dx ≤

≤λn||vn||∞||∆M ||2 · ||vn(x; ρ(1))− vn(x)||2. (3.147)

Recalling that ∆M = r(0)(x) =
∑N

k=1 β
(0)
k Φk(x; ρ(0))χ[0,L2 ], with Φk(x; ρ(0)) = v2

k(x; ρ(0)), and
noticing that ‖vn‖∞ can be estimated via (3.50), we have

||∆M ||2 ≤
L

3
2

a
Λ|β(0)|, (3.148)

where the quantity

Λ(0) =

(
N∑
k=1

λ2
k

) 1
2

(3.149)

can be calculated in terms of the unperturbed nanorod and, therefore, it depends on the a priori data
set A only. By using (3.50), (3.148) and (3.48) in (3.147), we have

An ≤ (λn)
3
2L

(
L

a

) 5
2

(Λ(0))2Cv
n|β(0)|2. (3.150)
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The other terms in (3.146) can be evaluated similarly, namely

Bn ≤ ρ
1
2
0L

(
L

a

)2

(Λ(0))2Cλ
nC

v
n|β(0)|2, (3.151)

Cn ≤ λnL
3
2

(
L

a

)3

(Λ(0))2Cλ
n |β(0)|2, (3.152)

Dn ≤ (λn)
1
2L

3
2

(
L

a

) 7
2

(Λ(0))3Cλ
nC

v
n|β(0)|3. (3.153)

Therefore, collecting the estimates (3.150)–(3.153), we have

|Õn((1)-(0))| ≤ C|β(0)|2(1 + C|β(0)|), (3.154)

where C > 0 is a constant only depending on the a priori data A and n, n = 1, . . . , N . By using
(3.123) in (3.114) (for j = 0), we have

|β(0)| ≤ C|δλ(0)|, (3.155)

and (3.154) becomes

|Õn((1)-(0))| ≤ C|δλ(0)|2(1 + C|δλ(0)|) ≤ C|δλ(0)|2, (3.156)

provided that |δλ(0)| ≤ 1, where C > 0 is a constant only depending on the a priori data A and n.
Therefore, using (3.156) in (3.140), for every n = 1, . . . , N , we have

|λn(ρ(1))− λexpn | ≤ C|δλ(0)|2, (3.157)

for |δλ(0)| ≤ 1, where C > 0 is a constant only depending on the a priori data A and n.
We proceed similarly in estimating Õn((2)-(1)). By adapting the previous analysis to the states

ρ(2) and ρ(1), we obtain
|Õn((2)-(1))| ≤ C|β(1)|2(1 + C|β(1)|), (3.158)

and, recalling (3.123) and (3.114),

|Õn((2)-(1))| ≤ C|δλ(1)|2, (3.159)

that is, by (3.144),
|λn(ρ(2))− λexpn | ≤ C|δλ(1)|2, (3.160)

for |δλ(1)| ≤ 1, where C > 0 is a constant only depending on the a priori data A and n. Using
(3.157) in (3.160) (and noticing that λn(ρ(1)) can be estimated from below by a positive quantity
only depending on the a priori data A and n), we have

|λn(ρ(2))− λexpn | ≤ C|δλ(0)|2·2. (3.161)

By iteration, for every i ≥ 1 and n = 1, . . . , N , we obtain

|λn(ρ(i))− λexpn | ≤ C|δλ(0)|2i , (3.162)

where C > 0 is a constant only depending on the a priori data A and n, and |δλ(0)| ≤ 1.

Conclusion of the proof. By using the estimates (3.123) and (3.162), the series
∑∞

i=0 r
(i)(x) in

(3.122) is L2-uniformly convergent to a continuous function in
[
0, L

2

]
, since the ith term can be

bounded as
‖r(i)(x)‖L2[0,L2 ] ≤ C|δλ(0)|2i , i ≥ 0, (3.163)
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where C > 0 is a constant only depending on the a priori data A, and the numerical series∑∞
i=0 |δλ(0)|2i is convergent provided that |δλ(0)| ≤ ε̂λ < 1 (Weierstrass’s criterion).

Summarizing, in this section we have proved the following result:
If ε ≤ ε̂ρ, where ε̂ρ is given in (3.129), and |δλ(0)| ≤ ε̂λ < 1, then the iterative procedure of

identification converges uniformly to a continuous function in
[
0, L

2

]
.

Our convergence result has local character, since the proof is built on the assumption that the
mass variation is a small perturbation of the total mass of the unperturbed nanorod. It would
be interesting, and also useful for practical applications, to determine or, at least, to find good
approximation of the maximum value allowed for ε̂ρ. Moreover, the local character is also reflected
on the condition ε̂λ < 1, which means that the first N eigenvalues of the unperturbed nanorod must
be close enough to the corresponding target eigenvalues.

3.6 Applications

3.6.1 Specimen

In order to illustrate the application of the identification method, reference is made to the geomet-
rical and material properties of the nanorod used in [49]. In particular, the radius r of the circular
equivalent cross-section is equal to 50 µm (= 50 · 10−6 m) and the length L is taken equal to 40r;
the material length scale parameters are assumed to be equal, and `0 = `1 = `2 = ` = 17.6 µm;
the Young’s modulus E is equal to 1.44 GPa; the Poisson’s coefficient is ν = 0.38; and the volume
mass density is equal to ρvol = 1000 kg/m3. The coefficients a, b, ρ0 corresponding to the above
parameters take the value a = 11.310 N, b = 3.554 · 10−9 Nm2, ρ0 = ρvol · πr2 = 7.854 · 10−6

kg/m, respectively.

3.6.2 Discrete eigenvalue problem

The practical application of the mass identification method requires the development of a specific
numerical code. The weak formulation of the eigenvalue problem (3.28)–(3.30) consists in de-
termining a non-trivial function v ∈ H (see definition (3.37)), and a positive real number λ such
that ∫ L

0

(bv′′ϕ′′ + av′ϕ′) = λ

∫ L

0

ρvϕ, (3.164)

for every ϕ ∈ H. To find a finite element model of the weak formulation (3.164), we work on the
finite-dimensional subspace of H formed by three-degree polynomial spline approximation of the
axial displacement of the nanorod in each element. More precisely, let {x0 = 0 < x1 < x2 <
... < xNe = L} be the nodes of a mesh of the interval [0, L], with xi+1 − xi = ∆x = L

Ne
, for every

i = 0, 1, ..., Ne. Therefore, the discrete version of (3.164) consists in finding the approximating
eigenpair (λ̃, ṽ), ṽ ∈ R2Ne \ {0}, solution to

F̃ṽ = λ̃M̃ṽ, (3.165)

where F̃, M̃ is the 2Ne×2Ne real symmetric matrix of the stiffness and of the inertia of the nanorod,
respectively.

The mass coefficient ρ = ρ(x) is approximated by a continuous piecewise-linear function, that
is, ρ̃(x) = ρ(xi) + {(ρ(xi+1)− ρ(xi))/(∆x)}x for x ∈ [xi, xi+1]. Therefore, the (n, k) entry of the
local mass, (M̃nk

i ), and stiffness, (F̃ nk
i ), matrix are given by

M̃nk
i =

∫ xi+1

xi

ρ̃(x)ϕn(x)ϕk(x)dx, F̃ nk
i =

∫ xi+1

xi

(bϕ′′n(x)ϕ′′k(x) + aϕ′n(x)ϕ′k(x))dx, (3.166)
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n, k = 1, . . . , 4, and are evaluated in exact form. Numerical integration of the quantities (3.118)
was developed by means of a standard trapezoidal method. The discrete eigenvalue problem (3.165)
was solved by using the Implicit Restarted Lanczos’s method [16]. The identification procedure was
built in Scilab environment (version 5.5.2) by developing a specific numerical code. Regarding the
computational burden, the time needed to complete a single iteration of the identification algorithm
(for Ne = 200) was about 1 second.

3.6.3 Results

In this section we present a selection of the results obtained in an extended series of applications
of the Generalized Fourier Coefficient Method. Among other parameters, the procedure has been
tested with respect to the number N of the first eigenfrequencies used and to the geometry of the
mass variation (e.g., position, intensity, regularity). In particular, the efficiency of the method has
been evaluated on two main classes of mass variations corresponding to smooth (Section 3.6.3.1)
or discontinuous (Section 3.6.3.2) function rε. In both cases, the support of the mass variation
coincides with an interval contained in

(
0, L

2

)
. We have first considered free-error data, i.e., the

measurement errors are null with the exception of the errors induced by the numerical approxima-
tion via the finite element method. The analysis of overlapping mass variations, possibly having
disconnected support, is also considered in Section 3.6.3.3. The application of suitable physical
filtering to improve the accuracy of identification. The stability of the reconstruction in presence of
noise are investigated in Section 3.6.3.5.

3.6.3.1 Identification of smooth mass densities

In this series of simulations, the mass density of the perturbed nanorod is defined as

ρ(x) = ρ0 + ρ0t cos2

(
π(x− s)

c

)
χ[s− c

2
,s+ c

2
], (3.167)

where s is the central point of the support of the mass variation, c is the length of the support, ρ0t
is the maximum amplitude of variation, see Figure 3.1(a). Note that ρ ∈ C1[0, L].

The definition (3.167) allows to consider a wide family of coefficients, including either lo-
calized or diffuse mass variations. In the sequel, reference is made mainly to positions s

L
=

0.15, 0.25, 0.35, extensions c
L

= 0.10, 0.20, 0.30, and intensities t = 0.10, 0.20, 0.50, 1.00,
for all the possible combinations of the parameters. Therefore, the global mass change ranges from
0.5 percent to 15 percent of the initial mass ρ0L, for ( c

L
= 0.10, t = 0.10) and ( c

L
= 0.30, t = 1.0),

respectively.
In order to select a suitable mesh for the numerical solution of the eigenvalue problem, pre-

liminary tests have been carried out on the uniform nanorod, for which analytical closed form
expressions of the eigenpairs are available. The analysis suggests to assume a mesh with Ne = 200
equally spaced finite elements, which turns out to be a good compromise between accuracy (max-
imum error on the first 15 eigenvalues less than 10−4 percent) and computational cost for all the
cases studied, including the reconstruction procedure, see Table 3.1. Moreover, this set of prelimi-
nary tests suggests to choose γ = 10−5 in the stopping criterion (3.121).

Regarding the influence of the number N of eigenvalue data, here we will focus on the most
two challenging cases. The first one ( s

L
= 0.35, c

L
= 0.1, t = 0.1), see Figure 3.2, corresponds to

small mass increase located in a small interval, which allows to assess the sensitivity of the method
to the identification of the mass perturbation just as it occurs in the nanorod. The second case
( s
L

= 0.35, c
L

= 0.1, t = 1, see Figure 3.3) deals with mass variation having the same support as
before, but with an abrupt increase of mass with large L∞ amplitude. The first case is challenging
since it involves a small mass perturbation and, therefore, it is an important test for evaluating the
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sensitivity of the identification method. The second case involves a sharp change in the coefficient,
which reasonably requires a higher number of Fourier coefficients (and, therefore, eigenfrequency
data) to be accurately reconstructed.

The analysis of Figure 3.2 shows that the identified coefficient agrees well with the exact one,
and accuracy of reconstruction rapidly improves as N increases. Similar properties can be deduced
from the analysis of Figure 3.3, apart from the oscillatory character of the reconstructed coefficient,
which is now more evident for N = 6, 9, whereas it becomes almost negligible when N = 15.

For the sake of completeness, it should be noted that part of our results involve not necessarily
small mass variations, see, for example, Figure 3.4. This would suggest that the proposed recon-
struction method has some unexpected potential, in spite of the fact that the proof of convergence
presented in Section 3.5 requires to work in a sufficiently small neighborhood of the referential
nanorod.

Finally, some synthetic numerical information concerning the sequence of iterations is reported
in Table 3.2. Few iterations are sufficient to satisfy the convergence criterion, e.g., less than five in
these cases. The quantity e defined in (3.121), which can be considered at each iteration step as the
average discrepancy between identified and target eigenvalues, is reduced by at least 3 − 4 orders
of magnitude with respect to the initial value. The errors on the mass coefficient, either evaluated
on L2 or L∞ norm, are reduced significantly through the iterations, albeit to a lesser extent than e.
In particular, the relative error in L∞ norm is even more than one order of magnitude less than the
initial value, so confirming the accuracy of the reconstruction of regular mass variations. It should
also be noted that the matrix A(j) remains well conditioned during the iterations, with condition
number κ(A(j)) = ‖A(j)‖ ‖(A(j))−1‖ ranging between 30 and 120 in all the cases studied. Here,
‖A(j)‖ = max|y|=1 |A(j)y|, where |y| = √y · y is the Euclidean norm of the vector y ∈ RN .

3.6.3.2 Identification of discontinuous mass densities

The mass density to be determined is assumed equal to

ρ(x) = ρ0 + ρ0t · χ[s− c
2
,s+ c

2
], (3.168)

where s, c, t have the same meaning as in the previous section, see Figure 3.1(b).
Since the mass density ρ has jump discontinuities at x = s ± c

2
, whereas the approximating

functions Φn(x) are smooth functions of the axial coordinate x, it is expected that the reconstruc-
tion may fail near these points. Numerical simulations confirm this undesired behavior. Some
representative cases are collected in Figures 3.5 and 3.6.

These cases correspond to perturbations both located near the left end of the nanorod ( s
L

= 0.15)
and with small support ( c

L
= 0.1), but having either small (t = 0.1, case i)) or large (t = 1.0, case

ii)) intensity, respectively. In case i) (see Figure 3.5), the results are accurate enough for N = 15,
whereas the oscillations of the identified mass coefficient have appreciable amplitude in case ii)
(see Figure 3.6), and propagate in the remaining part of the interval

[
0, L

2

]
. The support of the

perturbation is slightly overestimated and, as it was expected, L∞ estimates fail near the jumps.
Figure 3.7 collects the results for large mass variations, both inL2 and inL∞ norm, for s

L
= 0.35,

c
L

= 0.3, t = 1.0. The support of the mass variation still is well estimated, even if oscillations with
significant amplitude occur both within the support and in the remaining part of the interval

[
0, L

2

]
.

The number of iterations needed to satisfy the stopping criterion (3.121) is slightly bigger than the
smooth case, being however always less than 10.

Finally, it can be shown that results generally improve by considering larger N , say N = 20, 25.
In order to reduce the numerical approximation error on higher order eigenvalues, all these cases
have been developed on a numerical model of the nanorod having Ne = 400 equally spaced finite
elements. As it can be seen by comparing Figures 3.7 and 3.8, the increase of Ne shows beneficial
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Chapter 3. Mass identification in axially vibrating nanobeams

effects, such as more accurate estimate of the actual support of the mass variation and reduction
of the amplitude of the spurious oscillations of the identified coefficient around the exact value.
However, the identification of large mass variations with left (respectively, right) jump position
close to the left end (respectively, to the mid point) of the nanorod still remains problematic to
some extent.

3.6.3.3 Identification of overlapping added masses

The identification method has also been tested on mass distributions having less schematic profile
than those considered in the previous sections. As an example, here we report some representative
results related to two overlapping added mass profiles, one being regular (and belonging to the class
of Section 3.6.3.1) and the other one having triangular shape, with a jump type discontinuity. More
precisely, the mass density to be determined has the expression

ρ(x) = ρ0 + ρ0 max{t cos2

(
π(x− s)

c

)
χ[s− c

2
,s+ c

2
],
t1
c1

(x− (s1 − c1))χ[s1−c1,s1]}, (3.169)

where [s1 − c1, s1] ⊂
[
0, L

2

]
and t1ρ0, t1 > 0, is the support and the maximum value of the

triangular added mass profile, respectively; see Figure 3.1(c). Some of the results are summarized
in the sequel. They have been obtained using Ne = 200, 400 equally spaced finite elements, for
N = 6, 9, 12, 15 and N = 20, 25, respectively. In order to simplify the presentation of the results,
the parameters c and c1 have been assumed equal to 0.2L. It should be noted that, depending on the
values of s1 and t1, the coefficient ρ(x) in (3.169) can be either continuous or discontinuous. The
latter case occurs, for example, when s1 ∈

(
s− c

2
, s+ c

2

)
and t1 is small enough with respect to t.

The determination of continuous mass coefficient turns out to be very accurate even when only
the first 9 − 12 eigenfrequencies are used in identification, as it was found for the class of smooth
variations considered in Section 3.6.3.1. We refer to Figure 3.9 for a typical result.

In case of discontinuous coefficient, as it was already noticed in Section 3.6.3.2, spurious os-
cillations occur near the jump, with amplitude which turns out to be proportional to the intensity
of the jump. As a consequence, identification of the smooth portion of the mass coefficient may
become inaccurate for small values of t. At least 15− 20 first eigenfrequencies seem to be needed
to obtain acceptable accuracy in these cases, see, for example, Figure 3.10. The method also shows
good ability in identifying mass variations with disjoint supports, particularly when the values of
t1 and t are close, see, for example, Figure 3.11.

3.6.3.4 Physical post-filtering

In this section we show that, when the method is combined with additional information about the
unknown mass coefficient, such as monotonicity or a priori information on the support of the mass
variation, the reconstruction may further improve, leading to good uniform approximation of the
solution. More precisely, we have considered in the sequel the following a priori information:

F1) The mass variation is positive, e.g., the condition (3.27) holds.
As remarked in Section 3.3 (see Remark 3.3.1), this information is simply available from the
physics of the problem. Actually, our identification algorithm produces a function ρ(x) which
may oscillate near the unperturbed linear mass density ρ0. Basing on assumption F1, we filter
the results of identification by setting the mass density to be ρ0 whenever the reconstructed
value of ρ(x) is greater than ρ0.

F2) There are situations in which it is a priori known that a single localized mass variation occurs
in the nanosensor, that is, the support of the mass variation rε(x) is a closed (and possible
small) interval compactly contained in

[
0, L

2

]
.
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In this case, under the assumption that the reconstructed coefficient ρ(x) is a good uniform
approximation of the actual mass, one can determine the interval of maximum mass increase
and neglect all the other possible regions on which the mass density increases.

In order to check how the identification results improve by adding the above hypotheses F1

and F2, we tested the method in an extended series of simulations with error free data. As an
example, Figure 3.12 reports the results obtained by applying filter F1 and by combining in cascade
F1 + F2. The cases considered correspond to discontinuous mass changes as in (3.168), with
large mass variation (t = 1.0) localized either on a small or a large subinterval of

[
0, L

2

]
. The

comparison with the corresponding unfiltered results clearly shows an improvement of accuracy of
the reconstruction.

3.6.3.5 Application to noisy data

An important aspect for applications is stability against noise in the given spectral data. In order
to test the robustness of the method, the identification was carried out by perturbing the target
noise-free eigenvalue λexpn , n = 1, . . . , N as follows√

λexp−errn =
√
λexpn + τn. (3.170)

Here, τn is a random Gaussian variable with vanishing mean and standard deviation σ such that
3σ = 2πΠ, where Π is the maximum admitted error. The effect of errors was evaluated both for
smooth and discontinuous mass distributions, by considering different profile of the coefficient and
by varying the number N of the first eigenfrequencies used in identification, for increasing values
of Π ranging from 100 Hz to 5000 Hz. A selected, though representative, set of results are pre-
sented in Figures 3.13 and 3.14, for smooth and discontinuous mass coefficients, respectively. For
each position along the nanorod axis, and besides the exact mass profile, every subfigure contains
three curves: the curve of the mean value and the two curves obtained by adding ±3σ to the mean
value. One thousand of simulations was performed for each case. It turns out that the three curves
are almost indistinguishable for Π = 100 Hz. Appreciable discrepancy occurs for Π = 1000 Hz,
and for Π greater than 3000 Hz the accuracy of the reconstruction is seriously compromised. In
particular, for Π less than 2000 Hz, the effect of errors makes it possible to discriminate the pres-
ence of even minor variations of mass, either regular or discontinuous, and for which the influence
of errors on data is expected to be more significant. It should be noted that Π = 2000 Hz corre-
sponds to percentage errors ranging from 0.05 (high frequency) to 0.65 (low frequency) per cent
of the unperturbed first fifteen resonant frequencies. Finally, the convergence speed of the iterative
method is not significantly affected by the random noise, and the number of iterations needed to get
convergence is slightly bigger than in the error-free case. The condition number κ(A) takes values
of the same order of those found in the analysis of the corresponding cases in absence of errors on
the data.

49



Chapter 3. Mass identification in axially vibrating nanobeams

Table 3.1: First 25 eigenvalues of the clamped-clamped uniform unperturbed nanorod in (3.1)–(3.3), with physical
parameters as in Section 3.6.1. Comparison between analytical (λn, column 2) and numerical (λFEMn ) values
obtained withNe = 100, 200, 400 equally spaced finite elements. Percentage errors: en = 100×(λFEMn −λn)/λn
for Ne = 100 (column 3), Ne = 200 (column 4), Ne = 400 (column 5).

n λn (rad/s)2 Ne = 100 Ne = 200 Ne = 400
1 3.556 · 10+12 1.4 · 10−6 1.4 · 10−6 1.4 · 10−6
2 1.426 · 10+13 1.4 · 10−6 1.4 · 10−6 1.4 · 10−6
3 3.220 · 10+13 1.5 · 10−6 1.5 · 10−6 1.5 · 10−6
4 5.755 · 10+13 5.0 · 10−7 5.0 · 10−7 5.0 · 10−7
5 9.055 · 10+13 1.6 · 10−6 5.2 · 10−7 5.2 · 10−7
6 1.315 · 10+14 8.1 · 10−6 5.2 · 10−7 5.2 · 10−7
7 1.807 · 10+14 1.3 · 10−5 2.4 · 10−6 2.4 · 10−6
8 2.387 · 10+14 2.6 · 10−5 1.2 · 10−6 1.2 · 10−6
9 3.059 · 10+14 5.3 · 10−5 3.9 · 10−6 6.6 · 10−7
10 3.829 · 10+14 9.9 · 10−5 4.9 · 10−6 −2.8 · 10−7
11 4.703 · 10+14 1.7 · 10−4 1.1 · 10−5 2.6 · 10−7
12 5.688 · 10+14 2.9 · 10−4 1.7 · 10−5 1.3 · 10−6
13 6.792 · 10+14 4.6 · 10−4 2.7 · 10−5 2.5 · 10−6
14 8.022 · 10+14 7.0 · 10−4 4.4 · 10−5 2.4 · 10−6
15 9.389 · 10+14 1.0 · 10−3 6.4 · 10−5 3.9 · 10−6
16 1.090 · 10+15 1.5 · 10−3 9.1 · 10−5 8.2 · 10−6
17 1.257 · 10+15 2.1 · 10−3 1.3 · 10−4 9.6 · 10−6
18 1.440 · 10+15 2.9 · 10−3 1.8 · 10−4 1.4 · 10−5
19 1.642 · 10+15 3.9 · 10−3 2.4 · 10−4 1.5 · 10−5
20 1.862 · 10+15 5.2 · 10−3 3.2 · 10−4 2.0 · 10−5
21 2.103 · 10+15 6.8 · 10−3 4.2 · 10−4 2.4 · 10−5
22 2.365 · 10+15 8.8 · 10−3 5.4 · 10−4 3.2 · 10−5
23 2.651 · 10+15 1.1 · 10−2 6.9 · 10−4 4.2 · 10−5
24 2.961 · 10+15 1.4 · 10−2 8.7 · 10−4 5.6 · 10−5
25 3.297 · 10+15 1.7 · 10−2 1.1 · 10−3 6.7 · 10−5
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Table 3.2: Some results of the reconstruction of smooth mass changes as in (3.167) versus iteration number j (up to
convergence), with (a): s

L = 0.35, c
L = 0.10, t = 0.10 (Figure 3.2); (b): s

L = 0.35, c
L = 0.10, t = 1.00 (Figure

3.3); (c): s
L = 0.35, cL = 0.30, t = 1.00 (Figure 3.4), using the firstN = 6 (columns 2−5),N = 15 (columns 6−9)

eigenfrequencies. The quantity e is defined in (3.121); eL2 =
‖ρident−ρexact‖L2

‖ρexact‖L2
, eL∞ = ‖ρident−ρexact‖L∞

‖ρexact‖L∞ , where

ρident = ρident(x), ρexact = ρexact(x) are the identified and the exact mass density per unit length, respectively.
κ(A(j)) is the condition number of the matrix A(j). The unperturbed nanorod corresponds to j = 0.

(a)
j e κ(A(j)) eL2 eL∞ e κ(A(j)) eL2 eL∞

0 2.40 · 10−3 1.30 · 10+1 1.92 · 10−2 9.09 · 10−2 1.44 · 10−3 3.10 · 10+1 1.92 · 10−2 9.09 · 10−2
1 3.11 · 10−5 1.31 · 10+1 1.04 · 10−2 3.95 · 10−2 3.84 · 10−5 3.12 · 10+1 1.58 · 10−3 5.34 · 10−3
2 5.12 · 10−8 1.41 · 10+1 1.04 · 10−2 3.88 · 10−2 3.35 · 10−7 3.64 · 10+1 1.31 · 10−3 4.43 · 10−3

(b)
j e κ(A(j)) eL2 eL∞ e κ(A(j)) eL2 eL∞

0 2.33 · 10−2 1.30 · 10+1 1.81 · 10−1 5.00 · 10−1 1.29 · 10−2 3.10 · 10+1 1.81 · 10−1 5.00 · 10−1
1 2.52 · 10−3 1.31 · 10+1 1.00 · 10−1 2.43 · 10−1 2.23 · 10−3 3.12 · 10+1 5.70 · 10−2 1.47 · 10−1
2 9.00 · 10−5 2.36 · 10+1 9.68 · 10−2 2.02 · 10−1 2.63 · 10−4 8.16 · 10+1 1.14 · 10−2 2.55 · 10−2
3 3.37 · 10−7 2.60 · 10+1 9.68 · 10−2 2.02 · 10−1 7.77 · 10−6 1.14 · 10+2 7.17 · 10−3 1.50 · 10−2

(c)
j e κ(A(j)) eL2 eL∞ e κ(A(j)) eL2 eL∞

0 6.42 · 10−2 1.30 · 10+1 2.82 · 10−1 5.00 · 10−1 3.64 · 10−2 3.10 · 10+1 2.82 · 10−1 5.00 · 10−1
1 1.24 · 10−2 1.31 · 10+1 9.46 · 10−2 1.74 · 10−1 7.03 · 10−3 3.12 · 10+1 9.57 · 10−2 1.84 · 10−1
2 9.08 · 10−4 2.44 · 10+1 1.53 · 10−2 3.54 · 10−2 6.14 · 10−4 5.89 · 10+1 1.44 · 10−2 3.08 · 10−2
3 2.20 · 10−5 3.25 · 10+1 9.97 · 10−3 2.79 · 10−2 1.54 · 10−5 7.92 · 10+1 4.64 · 10−3 1.78 · 10−2
4 4.89 · 10−8 3.30 · 10+1 9.96 · 10−3 2.80 · 10−2 9.11 · 10−8 8.11 · 10+1 4.62 · 10−3 1.75 · 10−2
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Figure 3.1: Mass density per unit length ρ = ρ(x) to be identified in
[
0, L2

]
. (a) Smooth mass changes as in (3.167);

(b) discontinuous mass changes as in (3.168); (c) overlapping mass changes as in (3.169).
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Figure 3.2: Reconstruction of smooth mass changes as in (3.167), with s
L = 0.35, c

L = 0.10, t = 0.10, using the first
N = 6, 9, 12, 15 eigenfrequencies.
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Figure 3.3: Reconstruction of smooth mass changes as in (3.167), with s
L = 0.35, c

L = 0.10, t = 1.00, using the first
N = 6, 9, 12, 15 eigenfrequencies.
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Figure 3.4: Reconstruction of smooth mass changes as in (3.167), with s
L = 0.35, c

L = 0.30, t = 1.00, using the first
N = 6, 9, 12, 15 eigenfrequencies.
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Figure 3.5: Reconstruction of discontinuous mass changes as in (3.168), with s
L = 0.15, c

L = 0.10, t = 0.10, using
the first N = 6, 9, 12, 15 eigenfrequencies.
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Figure 3.6: Reconstruction of discontinuous mass changes as in (3.168), with s
L = 0.15, c

L = 0.10, t = 1.00, using
the first N = 6, 9, 12, 15 eigenfrequencies.
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Figure 3.7: Reconstruction of discontinuous mass changes as in (3.168), with s
L = 0.35, c

L = 0.30, t = 1.00, using
the first N = 6, 9, 12, 15 eigenfrequencies.

55



Chapter 3. Mass identification in axially vibrating nanobeams

0.0

0.5

1.0

1.5

2.0

2.5

0.00 0.25 0.50 0.75 1.00

 ρ
(x

) 
/ 

ρ
0

x / L

(a) N = 20

identified
exact

0.0

0.5

1.0

1.5

2.0

2.5

0.00 0.25 0.50 0.75 1.00

 ρ
(x

) 
/ 

ρ
0

x / L

(b) N = 25

identified
exact

Figure 3.8: Reconstruction of discontinuous mass changes as in (3.168), with s
L = 0.35, c

L = 0.30, t = 1.00, using
the first N = 20, 25 eigenfrequencies.
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Figure 3.9: Reconstruction of overlapping mass changes as in (3.169), with s
L = 0.25, t = 0.50, s1L = 0.25, t1 = 0.10,

using the first N = 6 to 15 eigenfrequencies.
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Figure 3.10: Reconstruction of overlapping mass changes as in (3.169), with s
L = 0.15, t = 0.50, s1

L = 0.25,
t1 = 0.50, using the first N = 6 to 25 eigenfrequencies.
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Figure 3.11: Reconstruction of overlapping mass changes as in (3.169), with s
L = 0.15, t = 0.50, s1

L = 0.45,
t1 = 0.50, using the first N = 6 to 25 eigenfrequencies.
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Figure 3.12: Filtering effects on identification. Reconstruction of discontinuous mass changes as in (3.168), with
s
L = 0.15, cL = 0.10, t = 1.00, using the first N = 15 eigenfrequencies.
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Figure 3.13: Noise effects on identification of smooth mass changes. Upper row: mass changes as in (3.167), with
s
L = 0.35, cL = 0.10, t = 0.10. Lower row: mass changes as in (3.167), with s

L = 0.35, cL = 0.30, t = 1.00.
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Figure 3.14: Noise effects on identification of discontinuous mass changes. Upper row: mass changes as in (3.168),
with s

L = 0.15, cL = 0.10, t = 0.10. Lower row: mass changes as in (3.168), with s
L = 0.35, cL = 0.30, t = 1.00.
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3.7 Formulation of the mass identification from two-spectra finite data

We have seen in Section 3.3 that the spatial variation of the infinitesimal free axial vibration at
radian frequency

√
λ of the unperturbed uniform nanorod, of length L and under clamped end con-

ditions, is governed within the modified strain gradient theory by the following eigenvalue prob-
lem [3, 64] 

bvIV − av′′ = λρ0v, x ∈ (0, L), (3.171)
v(0) = 0, v′′(0) = 0, (3.172)
v(L) = 0, v′′(L) = 0, (3.173)

where λ is the eigenvalue and v = v(x) is the corresponding eigenfunction. The coefficient ρ0 =
const., ρ0 > 0, is the unperturbed mass density per unit length.

The eigenpairs {λCn , vCn (x)}∞n=1 of (3.171)–(3.173) are denoted here by

λCn =
(nπ
L

)2
[

1

ρ0

(
a+ b

(nπ
L

)2
)]

, (3.174)

vCn (x) =

√
2

ρ0L
sin
(nπx
L

)
, (3.175)

and the eigenfunctions are mass-normalized such that∫ L

0

ρ0(vCn (x))2 = 1, n ≥ 1. (3.176)

If in (3.171)–(3.173) the boundary conditions (3.173) are replaced by

v′(L) = 0, v′′′(L) = 0, (3.177)

then the nanorod is said to be under clamped-free end conditions, and the eigenvalues of (3.171),
(3.172), (3.177) are

λFn =

(
(2n− 1)π

2L

)2
[

1

ρ0

(
a+ b

(
(2n− 1)π

2L

)2
)]

, (3.178)

vFn (x) =

√
2

ρ0L
sin

(
(2n− 1)πx

2L

)
, (3.179)

with
∫ L

0
ρ0(vFn (x))2 = 1 for every n ≥ 1.

Let us assume that the mass density changes, and denote by

ρ(x) = ρ0 + rε(x), x ∈ [0, L], (3.180)

the mass density per unit length of the perturbed nanorod. The mass change rε is such that(
1

L

∫ L

0

(rε(x))2dx

) 1
2

= ερ0, (3.181)

rε(x) ∈ L∞([0, L]), (3.182)

0 < ρ− ≤ ρ(x) ≤ ρ+, x ∈ [0, L], (3.183)

where ε, 0 < ε ≤ ε̂ρ, for a given small number ε̂ρ, and ρ−, ρ+ are given constants (with ρ+ ≥
ρ0 + ‖rε‖∞) independent of ε.
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Let us denote by {λCn (ρ), vCn (x; ρ)}∞n=1, {λFn (ρ), vFn (x; ρ)}∞n=1 the eigenpairs of the problems
(3.171)–(3.173) and (3.171), (3.172), (3.177), respectively, when ρ0 is replaced by ρ(x).

In this section we wish to construct an approximation to ρ(x) (or, equivalently, to rε(x)) using a
finite amount of spectral data belonging to the clamped-clamped and clamped-free spectra, namely,
the set

{λCn (ρ)}Nn=1

⋃
{λFm(ρ)}Mm=1, (3.184)

where N , M are given integers.

3.7.1 The reconstruction method

The reconstruction method is obtained as a generalization of the method shown in previous sections.
The key mathematical tool in our analysis is the explicit expression of the first order change with

respect to the smallness parameter ε of an eigenvalue of the nanorod. With reference to the initial
uniform nanorod, we have

δλCn ≡ 1− λCn (ρ)

λCn
=

∫ L

0

rε(x)ΦC
n (x)dx, (3.185)

δλFm ≡ 1− λFm(ρ)

λFm
=

∫ L

0

rε(x)ΦF
m(x)dx, (3.186)

where ΦC
n (x) ≡ (vCn (x))2, ΦF

m(x) ≡ (vFm(x))2, n = 1, . . . , N , m = 1, . . . ,M . This result has
been proved in Section 3.4 for clamped end conditions and can be generalized to clamped-free end
conditions.

We first present the linearization of the inverse problem in a neighborhood of the unperturbed
nanorod. A simple calculation shows that (up to an inessential multiplicative constant)

{ΦC
n (x),ΦF

m(x)}∞n,m=1 = {1− cos(kπx/L)}∞k=1, (3.187)

which is a basis of L2(0, L). This property enables us to introduce the representation

rε(x) =
∞∑
k=1

βCk ΦC
k (x) + βFk ΦF

k (x), (3.188)

where the coefficients {βCk , βFk }∞k=1 play the role of Generalized Fourier Coefficients of the mass
variation rε(x). Replacing the above series expansion of rε(x) in (3.185) and (3.186), and taking
the finite approximation of order (N +M) of rε(x) in (3.188), we obtain the (N +M)× (N +M)
linear system

Aβ = δλ, (3.189)

or, more explicitly,

AC−C11 · · · AC−C1N AC−F11 · · · AC−F1M

· · · · · · · · · · · ·
AC−CN1 · · · AC−CNN AC−FN1 · · · AC−FNM

AF−C11 · · · AF−C1N AF−F11 · · · AF−F1M

· · · · · · · · · · · ·
AF−CM1 · · · AF−CMN AF−FM1 · · · AF−FMM





βC1
· · ·
βCN
βF1
· · ·
βFM


=



δλC1
· · ·
δλCN
δλF1
· · ·
δλFM


, (3.190)

with

AC−Cnk =

∫ L

0

ΦC
n (x)ΦC

k (x)dx, n, k = 1, · · ·N, (3.191)
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AC−Fnk =

∫ L

0

ΦC
n (x)ΦF

k (x)dx, n = 1, · · ·N, k = 1, · · ·M, (3.192)

AF−Cmk =

∫ L

0

ΦC
k (x)ΦF

m(x)dx, k = 1, · · ·N, m = 1, · · · ,M, (3.193)

AF−Fmk =

∫ L

0

ΦF
m(x)ΦF

k (x)dx, m, k = 1, · · · ,M. (3.194)

A direct calculation based on the explicit expressions of the eigenfunctions (3.175) and (3.179),
shows that the entries of the matrix A are given by

Amn =
1

ρ2
0L

for m 6= n, Ann =
3

2ρ2
0L
, (3.195)

m,n = 1, · · · ,M +N , and

det(A) = (2M + 2N + 1)

(
1

2ρ2
0L

)M+N

, (3.196)

(A)−1
mn = −(2ρ2

0L)
2

2M + 2N + 1
for m 6= n, (A)−1

nn = (2ρ2
0L)

2M + 2N − 1

2M + 2N + 1
, (3.197)

m,n = 1, · · · ,M +N . Therefore, the unknown vector β in (3.190) has the following expression

βCn =
2ρ2

0L

2M + 2N + 1

(
(2M + 2N − 1)δλCn − 2

(
N∑

k=1,k 6=n

δλCk +
M∑
j=1

δλFj

))
, (3.198)

βFm =
2ρ2

0L

2M + 2N + 1

(
(2M + 2N − 1)δλFm − 2

(
M∑

k=1,k 6=m

δλFk +
N∑
j=1

δλCj

))
(3.199)

n = 1, ..., N ,m = 1, ...,M , and the first-order mass variation can be obtained by means of equation
(3.188) (truncated series).

Next, we shall introduce the iteration of the previous analysis. Let us denote by {λC(exp)
n }Nn=1,

{λF (exp)
m }Mm=1 the measured (or target) values of the eigenvalues {λCn (ρ)}Nn=1, {λFm(ρ)}Mm=1 of the

perturbed nanorod with mass density ρ(x) = ρ0 + rε(x). The function ρ(x) is determined in [0, L]
by the iterative process

ρ(j+1)(x) = ρ(j)(x) + r(j)(x), j ≥ 0, (3.200)

with ρ(0)(x) ≡ ρ0. The subscript ε has been omitted to simplify the notation. The increment

r(j)(x) =
N∑
k=1

β
C(j)
k Φ

C(j)
k (x) +

M∑
k=1

β
F (j)
k Φ

F (j)
k (x) (3.201)

is evaluated by solving the (N +M)× (N +M) linear system

A(j)β(j) = δλ(j), (3.202)

in which δλ(j) = (δλ
C(j)
1 , · · · , δλC(j)

N , δλ
F (j)
1 , · · · , δλC(j)

M ), with

δλC(j)
n ≡ 1− λ

C(exp)
n

λCn (ρ(j))
, n = 1, · · · , N, (3.203)
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δλF (j)
m ≡ 1− λ

F (exp)
m

λFm(ρ(j))
, m = 1, · · · ,M. (3.204)

The entries of the matrix A(j) are as in (3.191)–(3.194), with the functions ΦC
n (x), ΦF

m(x) replaced
by Φ

C(j)
n (x) = (vCn (x; ρ(j)))2, Φ

F (j)
m (x) = (vFm(x; ρ(j)))2, n = 1, · · · , N , m = 1, · · · ,M . Here,

{λCn (ρ(j)), vCn (x; ρ(j))}, {λFm(ρ(j)), vFm(x; ρ(j))} are the nth and mth (mass normalized) eigenpairs
of the clamped and clamped-free nanobeam with mass density ρ(j)(x), respectively. By solving
(3.202) and using (3.200), (3.201), one has

ρ(j+1)(x) = ρ0 +

j∑
i=0

r(i)(x), j ≥ 0, (3.205)

and the iterations are stopped when the condition

e ≡ 1

N

 N∑
n=1

(
λ
C(exp)
n − λCn (ρ(j))

λ
C(exp)
n

)2
 1

2

+
1

M

 M∑
m=1

(
λ
F (exp)
m − λFm(ρ(j))

λ
F (exp)
m

)2
 1

2

< γ (3.206)

is satisfied for a small given number γ.
The convergence of the iterative procedure described above can be studied by extending the

methods discussed in Section 3.5, see also [26], where finite eigenvalue data coming from a single
spectrum only were used. Here, we recall the main result for the present reconstruction method
in case of smooth mass variations. There exists a positive number ε̂ρ, ε̂ρ only depending on the a
priori data of the inverse problem, such that if ε ≤ ε̂ρ, then the iterative procedure of identification
converges uniformly to a continuous function in [0, L], provided that |δλ(0)| ≤ ε̂λ < 1, where
|δλ(0)| is the Euclidean norm of the vector δλ(0). The convergence result clearly has local character,
since its proof holds on the assumption that the mass variation is a small perturbation of the total
mass of the unperturbed nanorod. It should be noticed, in addition, that the local character is also
reflected on the condition |δλ(0)| ≤ ε̂λ < 1, which requires that the first N , M eigenvalues of the
unperturbed nanorod under clamped and clamped-free end conditions, respectively, must be close
enough to the corresponding target eigenvalues.

3.7.2 Applications

3.7.2.1 Numerical setting and test specimen

In order to evaluate the performance of the reconstruction method, we have used an extended ver-
sion of the numerical code originally developed in [26]. The code is based on a finite element model
of the nanobeam, with third-degree polynomial spline approximation of the axial displacement in
each finite element. The spatial mesh consists of Ne equally spaced finite elements, and the mass
coefficient is approximated by a continuous, piecewise linear function on each finite element. Most
of the simulations have been performed takingNe = 200 and using the same number of frequencies
from both spectra, e.g., M = N , withN up to 15. Local mass and stiffness matrices were evaluated
in exact form, and the entries of the matrix A were determined by a trapezoidal rule of integration.
The entire procedure, both for the direct and the inverse problem, was built in Scilab environment
(version 5.5.2). The computation time needed for a single iteration of the identification algorithm
(for Ne = 200 and with N = M = 15) was about 1 second. We refer to [26] (Section 5.2) for more
details on the numerical procedure.

Concerning the test specimen, reference is made to the geometrical and material properties of
the nanorod used in [49] and [26]. The radius R of the circular equivalent cross-section is equal to
50 µm and the length L is taken equal to 40R; the material length scale parameters are assumed
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to be equal, and `0 = `1 = 17.6 µm; the Young’s modulus E is equal to 1.44 GPa; the Poisson’s
coefficient is ν = 0.38; and the volume mass density is equal to ρvol = 1000 kg/m3. The coefficients
a, b, ρ0 corresponding to the above parameters take the value a = 11.310 N, b = 3.554 · 10−9 Nm2,
ρ0 = ρvol · πR2 = 7.854 · 10−6 kg/m.

The method has been tested on an extended series of simulations, by varying, among other
parameters, the number M , N of the first eigenfrequencies and the geometry of the mass variation
(e.g., position, intensity, regularity). In particular, two main classes of mass variations will be
considered hereinafter, namely, smooth or discontinuous mass functions rε(x), see Figure 3.15. The
results of identification for free-error data are presented first, that is, only errors due to numerical
approximation are included in the following analysis.

Before presenting the results, we recall that a preliminary series of tests were carried out in
order to select a suitable mesh size for the numerical solution of the direct and inverse eigenvalue
problem. The analysis suggests to assume a mesh with Ne = 200 equally spaced finite elements,
which turns out to be a good compromise between accuracy (maximum error on the first N =
M = 15 eigenvalues less than 6.4 · 10−5 percent) and computational cost for all the cases studied,
including the reconstruction procedure. Moreover, preliminary tests suggest to choose γ = 10−5 in
the stopping criterion (3.206).

3.7.3 Identification of smooth mass coefficients

The identification of smooth coefficients (e.g., continuous mass distribution) leads to good results.
Figures 3.16-3.18 show typical reconstructions of the mass density

ρ(x) = ρ0 + ρ0t cos2

(
π(x− s)

c

)
χ[s− c

2
,s+ c

2
], (3.207)

where χ[L1,L2] is the characteristic function of the interval [L1, L2], s is the central point of the
support of the mass variation, c is the length of the support, ρ0t is the maximum amplitude of
variation, see Figure 3.15(a). For the sake of completeness, let us recall that the characteristic
function χI : R → R of the closed interval I , I ⊂ R, is defined as χI(x) = 1 if x ∈ I , χI(x) = 0
if x ∈ R \ I . The results for the two challenging cases corresponding to small mass increase and
large mass increase, both supported in a small interval, (e.g., s/L = 0.35, c/L = 0.1, t = 0.1 and
s/L = 0.35, c/L = 0.1, t = 1, respectively) are presented forN = M in Figure 3.16 and 3.17. The
global mass change ranges from 0.5% to 5.0% of the initial mass ρ0L, for ( c

L
= 0.10, t = 0.10)

and ( c
L

= 0.10, t = 1.0), respectively.
We see that, in the first case, the identified coefficient agrees well with the exact one, and ac-

curacy of reconstruction rapidly improves as N increases. Similar properties hold for the second
case, apart from the oscillatory character of the reconstructed coefficient around the actual mass
value, which is more evident for N = 9, whereas it becomes almost negligible when N = 15. Few
iterations are sufficient to satisfy the convergence criterion (3.206) with γ = 10−5, e.g., less than
five in the present cases. For the sake of completeness, it should be noted that part of our results in-
volve not necessarily small mass variations, see, for example, Figure 3.18, with mass change equal
to 15 per cent of the initial mass ρ0L.

In Table 3.3 some synthetic information concerning the sequence of iterations is reported. At
most four iterations are required to fulfill the convergence criterion in all the cases considered.
The quantity e defined as the average difference between identified and target eigenvalues, see
equation (3.206), is reduced at each step of 1−2 orders of magnitude. The L2 and L∞ errors on the
mass coefficient estimate are both reduced through the iterations. In particular, for M = N = 15
the relative errors in L2 and L∞ norm are less than 7% and 5% of the initial values, respectively,
confirming the accuracy in reconstructing smooth mass distributions. It should be also pointed
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out that the matrix A(j) is always well conditioned during the iterations, with condition number
κ(A(j)) = ‖A(j)‖ ‖(A(j))−1‖ ranging between 30 and 200 in all the cases studied. Here, ‖A(j)‖ =

max|y|=1 |A(j)y|, where |y| = √y · y is the Euclidean norm of the vector y ∈ RN+M .
We briefly discuss the results of the reconstruction when a different number of resonant fre-

quencies belonging to the two spectra is chosen. The closed-form solution of the inverse linearized
problem in the neighborhood of the uniform nanorod presented above shows that, in the extreme
case in which the frequency data belong to the single spectrum under clamped end conditions, only
the even generalized Fourier coefficients of the first-order mass variation can be determined. As a
consequence, the reconstructed mass variation is symmetric with respect to the mid-point x = L/2
and shows an appreciable increase of the mass density exactly inside the actual region of the inter-
val [0, L/2] affected by the mass change, see, for instance, Figure 3.19. The estimate of the mass
density amplitude, however, is rather inaccurate, showing an underestimate of about 50%. This
indeterminacy is typical of the identification in symmetrical systems by eigenvalue data only, and
it has been found also in other contexts, see, for example, the identification of damage in full-scale
beams performed in [10] (see Figure 9 of this reference). When, on the other hand, only the res-
onant frequencies of the clamped-free spectrum are used, our numerical simulations show that the
graph of the mass variation is approximately odd with respect to x = L/2. Therefore, in case of
positive mass variations (i.e., rε(x) ≥ 0), this implies a significant difference between identified
and exact coefficient, as it is shown in Figure 3.20. Finally, significant discrepancy was also found
in the intermediate cases in which N 6= M , primarily since some generalized Fourier coefficients
are missing in the expression of rε(x), see Figure 3.21. Basing on the above considerations and
results, our experience suggests that it is preferable to use the same number of first frequencies in
both spectra. It can be shown that similar conclusions can be drawn in determining discontinuous
mass variations.

3.7.4 Identification of discontinuous mass coefficients

The determination of discontinuous mass coefficients is more problematic, since it is expected that
the reconstruction may fail near the jump discontinuities. Some representative results are shown
for the coefficient

ρ(x) = ρ0 + ρ0t · χ[s− c
2
,s+ c

2
], (3.208)

where s, c, t have the same meaning as in the previous section, see Figure 3.15(b). These cases
correspond to perturbation located near the left end of the nanorod (s/L = 0.15) and with small
support (c/L = 0.1), but having either small (t = 0.1, case i)) or large (t = 1.0, case ii)) intensity,
respectively. In case i) (see Figure 3.22), the results are accurate enough for N = 12− 15, whereas
oscillations of the identified mass coefficient have appreciable amplitude in case ii) (see Figure
3.23), and propagate in the remaining part of the interval. As it was expected, pointwise estimates of
the mass change fail near the jumps. The support of the mass perturbation is slightly overestimated,
whereas it turns out that the mean value of the mass change is estimated with good accuracy.

Numerical results also show that the reconstruction of large mass variations is accurate enough,
see Figure 3.24, although a large number of frequencies (e.g., M = N = 20− 25 with Ne = 400)
and more iterations (less than 10) are needed to reduce the oscillatory character of the identified
mass profile, see Figure 3.25. Regarding this point, we recall that when the present method is com-
bined with the physical a priori information that the mass variation is positive, the reconstruction
of discontinuous distributions may further be improved, leading to better uniform approximation
of the actual solution. We refer to [26] (Section 5.3.4) for more details and applications.
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3.7.5 Application to noisy data

In order to test the robustness of the method, the identification was carried out by perturbing the
target noise-free resonant frequencies belonging to the two spectra

√
λexpn as follows√

λexp−errn =
√
λexpn + τn. (3.209)

Here, τn is a random Gaussian variable with vanishing mean and standard deviation σ such that
3σ = 2πΠ, where Π is the maximum admitted error in the frequency measurements. The effect of
errors was evaluated both for smooth and discontinuous mass distributions, by considering different
profile of the coefficient and by varying the number N = M of the first eigenfrequencies used in
identification, for increasing values of Π ranging from 100 Hz to 5000 Hz. A selected, though
representative, set of results is shown in Figures 3.26 and 3.27, for smooth and discontinuous
mass coefficients, respectively. For each position along the nanorod axis, and besides the exact
mass coefficient, every subfigure contains three curves: the curve of the mean value and the two
curves obtained by adding ±3σ to the mean value. One thousand of simulations was performed
for each case. It turns out that the three curves are almost indistinguishable for Π = 100 Hz.
Appreciable discrepancy occurs for Π = 1000 Hz, and for Π greater than 3000 Hz the quality of the
reconstruction is poor. In particular, for Π less than 2000 Hz, the effect of errors makes it possible to
discriminate the presence of even minor variations of mass, either regular or discontinuous, and for
which the influence of errors on the data is expected to be more significant. It should be noted that
Π = 2000 Hz corresponds to percentage errors ranging approximately from 0.05 (high frequency)
to 0.65 (low frequency) per cent of the unperturbed first fifteen resonant frequencies. Finally, the
convergence speed of the iterative method is not significantly affected by the random noise, and the
number of iterations needed to get convergence is slightly bigger than in the error-free case.
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Table 3.3: Some results of the reconstruction of smooth mass changes as in (3.207) versus iteration number j (up
to convergence), with (a): s

L = 0.35, c
L = 0.10, t = 0.10 (Figure 3.16); (b): s

L = 0.35, c
L = 0.10, t = 1.00

(Figure 3.17); (c): s
L = 0.35, c

L = 0.30, t = 1.00 (Figure 3.18), using the first N = 6 (columns 2 − 5),

N = 15 (columns 6 − 9) eigenfrequencies. The quantity e is defined in (3.206); eL2 =
‖ρident−ρexact‖L2

‖ρexact‖L2
, eL∞ =

‖ρident−ρexact‖L∞

‖ρexact‖L∞ , where ρident = ρident(x), ρexact = ρexact(x) are the identified and the exact mass density per

unit length, respectively. κ(A(j)) is the condition number of the matrix A(j). The unperturbed nanorod corresponds
to j = 0.

(a)
j e κ(A(j)) eL2 eL∞ e κ(A(j)) eL2 eL∞

0 1.69 · 10−3 2.50 · 10+1 1.92 · 10−2 9.09 · 10−2 1.01 · 10−3 6.10 · 10+1 1.92 · 10−2 9.09 · 10−2

1 2.50 · 10−5 2.50 · 10+1 1.01 · 10−2 3.84 · 10−2 2.69 · 10−5 6.10 · 10+1 1.66 · 10−3 5.57 · 10−3

2 4.27 · 10−8 2.75 · 10+1 1.01 · 10−2 3.74 · 10−2 2.32 · 10−7 7.42 · 10+1 1.39 · 10−3 4.24 · 10−3

(b)
j e κ(A(j)) eL2 eL∞ e κ(A(j)) eL2 eL∞

0 1.63 · 10−2 2.50 · 10+1 1.81 · 10−1 5.00 · 10−1 9.03 · 10−3 6.10 · 10+1 1.81 · 10−1 5.00 · 10−1

1 1.89 · 10−3 2.50 · 10+1 9.86 · 10−2 2.45 · 10−1 1.53 · 10−3 6.10 · 10+1 5.89 · 10−2 1.55 · 10−1

2 9.03 · 10−5 5.34 · 10+1 9.40 · 10−2 1.95 · 10−1 1.95 · 10−4 1.93 · 10+2 1.30 · 10−2 2.52 · 10−2

3 4.19 · 10−7 6.27 · 10+1 9.40 · 10−2 1.95 · 10−1 6.09 · 10−6 3.17 · 10+2 8.40 · 10−3 1.53 · 10−2

(c)
j e κ(A(j)) eL2 eL∞ e κ(A(j)) eL2 eL∞

0 4.46 · 10−2 2.50 · 10+1 2.82 · 10−1 5.00 · 10−1 2.56 · 10−2 6.10 · 10+1 2.82 · 10−1 5.00 · 10−1

1 8.44 · 10−3 2.50 · 10+1 1.01 · 10−1 1.92 · 10−1 4.73 · 10−3 6.10 · 10+1 1.02 · 10−1 1.97 · 10−1

2 8.70 · 10−4 5.25 · 10+1 1.99 · 10−2 3.38 · 10−2 5.20 · 10−4 1.29 · 10+2 1.91 · 10−2 3.80 · 10−2

3 2.90 · 10−5 7.91 · 10+1 1.05 · 10−2 1.68 · 10−2 1.85 · 10−5 1.95 · 10+2 2.16 · 10−3 3.15 · 10−3

4 7.49 · 10−8 8.17 · 10+1 1.05 · 10−2 1.65 · 10−2 8.27 · 10−8 2.03 · 10+2 2.05 · 10−3 2.92 · 10−3
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Figure 3.15: Mass density per unit length ρ = ρ(x) to be identified in [0, L]. (a) Smooth mass changes as in (3.207);
(b) discontinuous mass changes as in (3.208).
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Figure 3.16: Reconstruction of smooth mass changes as in (3.207), with s
L = 0.35, cL = 0.10, t = 0.10, using the first

N =M = 6, 9, 12, 15 eigenfrequencies of both spectra.
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Figure 3.17: Reconstruction of smooth mass changes as in (3.207), with s
L = 0.35, cL = 0.10, t = 1.00, using the first

N =M = 6, 9, 12, 15 eigenfrequencies of both spectra.
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Figure 3.18: Reconstruction of smooth mass changes as in (3.207), with s
L = 0.35, cL = 0.30, t = 1.00, using the first

N =M = 6, 9, 12, 15 eigenfrequencies of both spectra.
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Figure 3.19: Reconstruction of smooth mass changes as in (3.207), with s
L = 0.35, c

L = 0.30, t = 1.00, using only
the first N = 6, 9, 12, 15 eigenfrequencies of the clamped nanorod.
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Figure 3.20: Reconstruction of smooth mass changes as in (3.207), with s
L = 0.35, c

L = 0.30, t = 1.00, using only
the first M = 6, 9, 12, 15 eigenfrequencies of the clamped-free nanorod.
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Figure 3.21: Reconstruction of smooth mass changes as in (3.207), with s
L = 0.35, cL = 0.30, t = 1.00, using the first

(M,N) = (3, 15), (M,N) = (9, 15), (M,N) = (15, 3), (M,N) = (15, 9) eigenfrequencies of the two spectra.
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Figure 3.22: Reconstruction of discontinuous mass changes as in (3.208), with s
L = 0.15, c

L = 0.10, t = 0.10, using
only the first N =M = 6, 9, 12, 15 eigenfrequencies of both spectra.
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Figure 3.23: Reconstruction of discontinuous mass changes as in (3.208), with s
L = 0.15, c

L = 0.10, t = 1.00, using
the first N =M = 6, 9, 12, 15 eigenfrequencies of both spectra.
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Figure 3.24: Reconstruction of discontinuous mass changes as in (3.208), with s
L = 0.35, c

L = 0.30, t = 1.00, using
the first N =M = 6, 9, 12, 15 eigenfrequencies of both spectra.

73



Chapter 3. Mass identification in axially vibrating nanobeams

0.0

0.5

1.0

1.5

2.0

2.5

0.00 0.25 0.50 0.75 1.00

 ρ
(x

) 
/ 

ρ
0

x / L

(a) M = 20, N = 20

identified
exact

0.0

0.5

1.0

1.5

2.0

2.5

0.00 0.25 0.50 0.75 1.00

 ρ
(x

) 
/ 

ρ
0

x / L

(b) M = 25, N = 25

identified
exact

Figure 3.25: Reconstruction of discontinuous mass changes as in (3.208), with s
L = 0.35, c

L = 0.30, t = 1.00, using
the first N =M = 20, 25 eigenfrequencies.
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Figure 3.26: Noise effects on identification of smooth mass changes. Upper row: mass changes as in (3.207), with
s
L = 0.35, cL = 0.10, t = 0.10. Lower row: mass changes as in (3.207), with s

L = 0.35, cL = 0.30, t = 1.00.
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Figure 3.27: Noise effects on identification of discontinuous mass changes. Upper row: mass changes as in (3.208),
with s

L = 0.15, cL = 0.10, t = 0.10. Lower row: mass changes as in (3.208), with s
L = 0.35, cL = 0.30, t = 1.00.
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CHAPTER4
Mass identification using bending vibrations

4.1 Introduction

In this chapter, we extend the analysis of the inverse problem to the determination of distributed
added mass in nanobeams under bending vibration. The nanobeam is modeled as in [49], and the
eigenvalue problem consists of a 6th order ordinary differential equation with six end conditions.
In Section 4.2, we study an inverse problem analogous to that considered in in the first part of
Section 3, that is, we try to identify a distributed mass added on half of the nanobeam by using
the first lower eigenfrequencies of the spectrum under supported end conditions. Next, in Section
4.3, we extend the analysis to cover the more general case in which the mass vibration may affect
the entire length of the nanobeam. We will see that two partial spectra (at least), corresponding to
different end conditions, should be used in that case.
The results obtained via the Fourier Generalized Coefficient Method (GFCM) show that, for a
discontinuous mass distribution, the solution of the inverse problem obtained using the first lower
eigenfrequencies is very accurate at points which are far from the (possible) jump discontinuities
of the mass coefficient. In fact, the large oscillations occurring near a discontinuity may obstruct
the possibility to extract accurate point wise information about the unknown added mass. In order
to filter out these undesired oscillations, we have implemented an optimization filtering based on a
least-squares minimization of the Euclidean norm between experimental and analytical eigenvalues.
Minimization is performed by assuming the corresponding solution of the GFCM as starting point,
and the method allows to take into account the positivity constraint on the added mass. Numerical
results, both for a single spectrum and for two spectra, show that this constrained least squares filter
eliminates most of the oscillations produced by the GFCM, giving significantly better results for
discontinuous mass coefficients.

The results presented in this chapter have been obtained in collaboration with José Fernández-
Sáez and Ramón Zaera (University Carlos III de Madrid, Spain) and Michele Dilena and Antonino
Morassi (University of Udine, Italy), and have been published in [27].
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4.2 Reconstruction of mass variation supported on half interval from one partial
spectrum

4.2.1 Formulation of the inverse problem and reconstruction method

We consider the inverse problem of determining a small distributed mass added to a referential
nanobeam under supported end conditions by using the firstN eigenfrequency shifts of the bending
vibration. We will see later on that additional a priori assumptions must be included in the analysis,
particularly, the hypothesis that the support of the mass variation must be compactly contained in
half interval of the nanobeam axis.

The spatial variation of the infinitesimal free bending vibration of the uniform, unperturbed
or referential nanobeam of length L is governed by the following eigenvalue problem (see, for
instance, [49] and Section 2.3.2)

SvIV −KvV I = λρ0v, x ∈ (0, L), (4.1)
v(0) = 0, −Sv′′(0) +KvIV (0) = 0, v′′(0) = 0, (4.2)
v(L) = 0, −Sv′′(L) +KvIV (L) = 0, v′′(L) = 0, (4.3)

where λ is the eigenvalue and v = v(x) the associated eigenfunction. The coefficient ρ0=const.,
ρ0 > 0, is the unperturbed mass density per unit length. The coefficients K and S are defined in
(2.141), K = const > 0, S = const > 0. The set of non-classical boundary conditions selected
above are only one of the two possible ones for nanobeam models based on strain gradient theo-
ries. However, the explicit expression of the sensitivity of the eigenvalues to the added mass (see,
for example, (4.11)), our analysis could be extended also to other sets of non-classical boundary
condition. In Section 4.3.1 the problem corresponding to the (non-classical) supported-sliding case
is addressed.

The eigenpairs {λSn, uSn(x)}∞n=1 of (4.1)–(4.3) are

λSn =
(nπ
L

)6
[

1

ρ0

(
K +

S

(nπ
L

)2

)]
, (4.4)

uSn(x) =

√
2

ρ0L
sin
(nπx
L

)
, n ≥ 1, (4.5)

where the mass-normalization condition
∫ L

0
ρ0(uSn(x))2dx = 1 has been taken into account.

We now assume that the mass density changes, and we denote by

ρ(x) = ρ0 + rε(x), x ∈ [0, L], (4.6)

the mass density per unit length of the perturbed nanobeam. On the mass variation rε = rε(x), we
assume: (

1

L

∫ L

0

(rε(x))2dx

) 1
2

= ερ0, (4.7)

rε(x) ∈ L∞([0, L]), (4.8)
0 < ρ− ≤ ρ(x) ≤ ρ+, x ∈ [0, L], (4.9)

supp (rε(x)) = {x ∈ [0, L] | rε(x) 6= 0} ⊂⊂
[
0,
L

2

]
, (4.10)

where ε, 0 < ε ≤ ε̂ρ, for a given small number ε̂ρ, and ρ−, ρ+ are given constants indepen-
dent of ε. The eigenpairs of the problem (4.1)–(4.3), with ρ0 replaced by ρ(x), are denoted by{
λSn(ρ), uSn(x; ρ)

}∞
n=1

.
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The inverse problem is linearized in a neighborhood of the unperturbed nanobeam. The normal-
ized first order change of an eigenvalue of the nanobeam, evaluated with respect to the smallness
parameter ε, takes the explicit expression

δλSn ≡ 1− λSn(ρ)

λSn
=

∫ L
2

0

rε(x)ΦS
n(x)dx, (4.11)

where
ΦS
n ≡ (uSn(x))2 =

2

ρ0L
sin2

(nπx
L

)
, n ≥ 1. (4.12)

Since
{

ΦS
n(x)

}∞
n=1

is a basis of the square integrable functions defined on the interval
[
0, L

2

]
, we

look for a N th order dimensional approximation of the added mass in the form

rε(x) =
N∑
k=1

βSk ΦS
k (x) · χ[0,L

2
], (4.13)

Replacing (4.13) in (4.11), we obtain the N ×N linear system

δλn =
N∑
k=1

Ankβ
S
k , n = 1, ...., N, (4.14)

with Ank =
∫ L

2

0
ΦS
n(x)ΦS

k (x)dx, n, k = 1, ..N . A direct calculation shows that

Ank =
2

4ρ2
0L

for k 6= n, Ann =
3

4ρ2
0L
, (4.15)

for n, k = 1, 2, ..., N ,

det(A) = (2N + 1)

(
1

4ρ2
0L

)N
, (4.16)

(A−1)nk = (4ρ2
0L)

2N − 1

2N + 1
for n = k, (A−1)nk = −(4ρ2

0L)
2

2N + 1
for n 6= k, (4.17)

n, k = 1, ..., N . By using (4.17), the linear system (4.14) has the closed-form solution

βSk = 4ρ2
0L

(
2N − 1

2N + 1
δλSk −

2

2N + 1

N∑
j=1, j 6=k

δλSj

)
, k = 1, ..., N, (4.18)

and, by (4.13), we obtain

r(0)(x) = 8ρ0

N∑
k=1

(
2N − 1

2N + 1
δλSk −

2

2N + 1

N∑
j=1,j 6=k

δλSj

)
sin2

(
kπx

L

)
χ[0,L2 ], (4.19)

where the index ε has been omitted to simplify the notation.
The accuracy in the determination of r(x) can be improved by using the following iterative

procedure, already illustrated in Section 3.4 and for which r(0)(x) in (4.19) is the 0th-step approx-
imation of r(x). The analysis of the convergence of the iterative procedure can be carried out by
adapting the arguments used in Section 3.5 to study the analogous inverse problem for longitudinal
vibration. Here, we do not discuss the mathematical details of the proof of convergence, rather, we
recall the main result in case of small, smooth mass variation. There exists a positive number ε̂ρ,
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ε̂ρ only depending on the a priori data of the inverse problem, such that, if ε ≤ ε̂ρ, then the iterative
procedure of identification converges uniformly to a continuous function in [0, L

2
] with the wished

spectral properties, provided that |δλS(0)| ≥ ε̂λ < 1, where δλS(0) = (δλ
S(0)
1 , . . . , δλ

S(0)
N ) and

|δλS(0)|2 =
∑N

n=1(δλ
S(0)
n )2. The convergence result is of local character, since convergence is en-

sured only if the mass variation is a (smooth) small perturbation of the total mass of the unperturbed
nanorod.

4.2.2 Applications

4.2.2.1 Numerical setting

The practical application of the reconstruction method needs the implementation of a numerical
algorithm. The corresponding numerical code is based on the weak formulation of the eigenvalue
problem (4.1)–(4.3). Let the set of admissible configurations defined as

H =
{
f : (0, L)→ R| f ∈ H3(0, L), f = f ′′ = 0 at x = 0 and at x = L

}
(4.20)

Here, H3(0, L) denotes the real-valued Hilbert space of the Lebesgue measurable functions f with∫ L
0

(
f 2 +

∑3
i=1

(
dif
dxi

)2
)
<∞, where dif

dxi
is the ith weak derivative of f (see, for example, [15]).

The weak formulation of (4.1)–(4.3) consists in finding {u ∈ H \ {0}, λ ∈ R} such that∫ L

0

(Su′′ϕ′′ +Ku′′′ϕ′′′) dx = λ

∫ L

0

ρ u ϕ dx, for every ϕ ∈ H. (4.21)

In order to find a finite element model of the weak formulation (4.21), we select the finite-dimensional
subspace ofH formed by five-degree Hermite polynomial approximation of the transverse displace-
ment of the nanobeam in each finite element. The interval [0, L] is divided in Ne equally spaced
elements, with nodes at the points xi = i ·∆x, ∆x = L

Ne
, i = 0, 1, ...Ne. Therefore, the discrete

version of (4.21) consists in determining the approximating eigenpair {ũ ∈ R2Ne \ {0}, λ̃ ∈ R}
solution to

F̃ ũ = λ̃M̃ũ, (4.22)

where the (n, k)-entry of the local mass, M̃nk
i , and stiffness, F̃ nk

i , matrix in the ith finite element
[xi, xi+1] take the expressions

M̃nk
i =

∫ xi+1

xi

ρ̃(x)ϕn(x)ϕk(x)dx,

F̃ nk
i =

∫ xi+1

xi

(Sϕ′′n(x)ϕ′′k(x) +Kϕ′′′n (x)ϕ′′′k (x)) dx,

(4.23)

n, k = 1, ..., 6. The mass density per unit length ρ = ρ(x) is approximated by a continuous
piecewise linear function, e.g., ρ̃(x) = ρ(xi) + ρ(xi+1)−ρ(xi)

∆x
· x for x ∈ [xi, xi+1], and the integrals

(4.23) were evaluated in exact form.
It should be noted that the use of the five-degree Hermite polynomials as shape functions, instead

of the more complex functions corresponding to exact solution of the transverse displacement for a
static bending problem [45], permits, despite of the simplicity of this approximation, a proper de-
scription of the vibrational behavior of the nanobeam, as it can be seen through the results presented
in next sections.

Concerning the identification procedure, a standard trapezoidal method was used to evaluate the
entries of the matrix A, and the discrete eigenvalue problem (4.22) was solved by means of the Im-
plicit Restarted Lanczos’s method [16]. The numerical procedure was built in Scilab environment
(version 5.5.2).
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4.2.2.2 Test specimen

The material properties of the specimen correspond to epoxy and they have been used in [53,57,67],
i.e., Young’s modulus E = 1.44 GPa, Poisson’s coefficient ν = 0.38, volume mass density ρvol =
1220 kg/m3, and material length scale parameters `0 = `1 = `2 = ` = 17.6 µm.

The equivalent cross-section is assumed to be rectangular, as in [25], with thickness h = 50
µm, width b = 2h, area A = bh, moment of inertia I = bh3/12, and length L = 20h. The above
parameters lead to the following coefficients: S = 4.36 · 10−9 Nm2, K = 4.71 · 10−19 Nm4,
ρ0 = ρvol · A = 6.1 · 10−6 kg/m.

4.2.2.3 Reconstruction results

The performance of the reconstruction procedure has been tested on the class of overlapping mass
variations shown in Figure 4.1. More precisely, the mass density to be determined has the expres-
sion

ρ(x) = ρ0 + ρ0 max

{
t cos2

(
π(x− s)

c

)
χ[s− c

2
,s+ c

2
], t1

x− (s1 − c1)

c1

χ[s1−c1,s1]

}
, (4.24)

where the intervals [s − c
2
, s + c

2
] and [s1 − c1, s1] belong to (0, L

2
); s is the central point of the

smooth mass variation term (e.g., the first term in brackets in (4.24)) and c is its length support; ρ0t
and ρ0t1, with t and t1 positive numbers, are the maximum amplitude of variation for the regular
and the discontinuous term (e.g., the second term in brackets in (4.24)). It should be noted that,
depending on the values of the parameters c, c1, t, t1, s, s1, the definition (4.24) allows to obtain
a wide family of coefficients, including regular (e.g., continuous) or discontinuous mass density
ρ(x) with jump discontinuity at x = s1.

A preliminary series of numerical tests suggested to assume a mesh with Ne = 200 equally
spaced finite elements to manage cases with N up to 15. The maximum error in estimating the first
fifteen eigenvalues of the unperturbed nanobeam was, in fact, less than 1.2 · 10−4 percent. The only
exception is represented by the cases with larger number of resonant frequencies, e.g., N = 20, 25,
for which the choiceNe = 400 was implemented. Finally, this set of simulations suggests to choose
γ = 10−5 in the stopping criterion (3.121).

Some results of the identification are summarized in the sequel. They are representative of a
large set of simulations. In order to simplify the presentation, we have assumed c = c1 = 0.2L in
this analysis.

The determination of continuous coefficients shows high degree of accuracy in L∞-norm, even
when only the first 9–12 frequencies are used as input data. This holds true even when the mass
variation is not necessarily small. We refer to Figure 4.2 for a typical result of the reconstruction.
For the sake of completeness, in Figure 4.3 we exploited the information contained in the very
few first eigenfrequencies. It can be seen that for small mass variation, even the first 4 − −5
eigenfrequencies are sufficient for acceptable reconstruction of the coefficient. Accuracy decreases
in case of large amplitude mass variation.

In case of discontinuous coefficients, spurious oscillations around the target coefficient occur
near the discontinuity point, see Figures 4.4 and 4.5. Our simulations show that the maximum
amplitude of these oscillations is proportional to the intensity of the jump, and the effect decays
moving away from the discontinuity. In case of large jump, the oscillatory character of the identified
coefficient may compromise the accuracy of the reconstruction either in the whole or in a significant
part of the interval [0, L

2
]. At least 20–25 first resonant frequencies are needed to get acceptable

accuracy in these cases, for which Ne = 400 equally spaced finite elements were used.
Finally, the results show that at most eight to fifteen iterations are required to fulfill the con-

vergence criterion for continuous or discontinuous coefficients, respectively. The corresponding
calculation time for each iteration step of the reconstruction procedure is approximately 2 and 4 s.
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4.2.2.4 An experimental validation

Experimental data on eigenfrequency induced changes due to added mass in nanobeams are not
numerous. In this section, we test our method on the experimental results reported in [42]. We
refer to this paper for a complete description of the experiment. In brief, liquid droplets were
deposited on a single-crystal Si cantilever, with length L = 397 µm and rectangular cross-section
having b = 29 µm in width and h = 2 µm in thickness. Array droplets were deposited in pairs,
beginning from the free end of the cantilever, and the six configurations shown in Figure 4.6 were
considered. The eigenfrequencies of the first four bending modes were measured for the referential
(U) and perturbed (Pi) configurations, i = 1, . . . , 6; see Table 4.1, which was deduced from Table
1 in [42] (Supplementary Information).

The small transverse vibrations of the reference cantilever are described by the eigenvalue prob-
lem 

SvIV −KvV I = λρ0v, x ∈ (0, L) (4.25)
v(0) = 0, v′(0) = 0, v′′(0) = 0, (4.26)
−Sv′′(L) +KvIV (L) = 0, (4.27)
−Sv′′′(L) +KvV (L) = 0, (4.28)
Kv′′′(L) = 0, (4.29)

where S and K are defined in (2.141). We assumed Poisson’s ratio ν = 0.2; volume mass density
ρvol = 2330 kgm−3; and l0 = l1 = l2. The Young’s modulus E of the material and the scale
parameter l0 have been determined by a constrained least-squares fitting of the first four measured
resonant frequencies {fU,expn }4

n=1, i.e., by solving the optimization problem

min
Q

4∑
n=1

(
1− fU,expn

fU,thn (E, l0)

)2

, (4.30)

where Q = {(E, l0) | 170 GPa ≤ E ≤ 185 GPa, 0.02h ≤ l0 ≤ 0.04h}. The upper and lower
bounds onE were chosen as small perturbations (around±4%) of the guess valueEg = 177.4 GPa.
The latter was obtained by imposing the first natural frequency determined via the classical Euler-
Bernoulli cantilever model coincident with the corresponding experimental value. The upper and
lower bounds of the scale parameter l0 were selected by considering the first two natural frequencies
of the problem (4.25)–(4.29) with E = Eg. A numerical analysis of the optimization problem
(4.30) provided the following (unique) solution: Eopt = 175 GPa, lopt0 = 0.032h. Table 4.1 shows
that the mass-induced frequency shifts are, in average, larger than the modelling errors evaluated
on the reference configuration. Experience developed by the authors on other inverse eigenvalue
problems based on experimental finite data (e.g., damage identification in classical full-scale beams,
see, for example, [63]) suggests that this is an essential necessary condition for the success of the
identification.

The reconstruction method presented in Section 4.2.1 was applied to the present experimental
case. A selected set of results is shown in Figure 4.7. The reconstructed mass coefficients shown
in Figures 4.7(a,b) were determined by assuming a priori that the support of the unknown mass
variation belongs to the right half of the cantilever, e.g., the subinterval (0.5L,L). It should be
noted that this ambiguity can be resolved only having additional frequency data belonging (at least)
to a second spectrum under different boundary conditions at disposal. The reconstructed density
function correctly exhibits large positive increments within the end quarter of the cantilever. The
maximum of the mass change increases for cases P1 to P5, as it was expected, and the support of
the positive mass variation also extends from the free end inwards. It is interesting to note that the
mass profile reconstructed in case P6 is close to that of case P2 in [0.85L,L], and shows additional
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4.3. Reconstruction of general mass variation from two partial spectra

positive increment proceeding towards the center of the cantilever. For the sake of completeness,
the reconstruction has been carried out by gradually reducing the size of the interval. Figures
4.7(c,d) show the case [0.7L,L], which essentially confirms the results obtained working on half
interval. Further reduction of the interval in which the mass variation is expected to occur does
not improve the results of identification. In all the cases studied, a maximum of six iterations were
needed to satisfy the error criterion (3.206), with γ = 10−7.

Table 4.2 collects the global added mass, evaluated by integrating the reconstructed function
r(x) (columns 2 and 3, for the interval [0.5L,L] and [0.7L,L], respectively) and by considering the
positive mass change defined as r+(x) = max{r(x), 0} (columns 4 and 5). The estimates provided
working on [0.5L,L] or on [0.7L,L] are comparable, and maximum difference of about 5% was
found in cases P2 and P3.

In conclusion, the proposed technique was effective despite the small number of available exper-
imental eigenfrequencies. The results of the numerical simulations developed in previous sections
suggest that the accuracy of the reconstruction would significantly improve, even in L∞ norm, if
a slightly larger number of first eigenfrequencies (six-eight) had been available. Furthermore, the
encouraging results obtained in this experimental test seem to suggest that the previous theory -
developed for identification in supported nanobeams from a single partial spectrum - could also
be extended to different end conditions (such as those of the cantilever, for example). This aspect
requires further theoretical investigation.

4.3 Reconstruction of general mass variation from two partial spectra

In this section, we extend the reconstruction method presented in Section 4.2 to the determination
of a general mass variation, e.g., rε(x) not necessarily supported in half of the nanobeam axis. As in
the axial case, the main idea is to include as input data also the lower eigenfrequencies of a second
spectrum obtained by changing one end condition.

4.3.1 Formulation of the reconstruction method

Let us consider the free transverse vibration of the nanobeam introduced at the beginning of Section
4.2.1. If in (4.1)–(4.3) the boundary conditions (4.3) are changed into

v′(L) = 0, −Sv′′′(L) +KvV (L) = 0, Kv′′′(L) = 0, (4.31)

then the nanobeam is said to be under (non classical) supported-sliding end conditions. Note that
conditions (4.31) imply (from the left to the right, respectively) the vanishing of the rotation of the
end cross-section, the vanishing of the shear and the vanishing of the higher-order resultant caused
by higher-order stresses at the same cross-section. The eigenpairs

{
λS`n , v

S`
n (x)

}∞
n=1

of (4.1), (4.2),
(4.31) are

λS`n =

(
(2n− 1)π

2L

)6

 1

ρ0

K +
S(

(2n−1)π
2L

)2


 , (4.32)

vS`n (x) =

√
2

ρ0L
sin

(
(2n− 1)πx

2L

)
, (4.33)

with
∫ L

0
ρ0(vS`n (x))2dx = 1 for every n ≥ 1.

Assume that the mass change rε(x) introduced in (4.6) satisfies (4.7), (4.8), (4.9), but not neces-
sarily (4.10), e.g., the support of rε(x) now is a subset of the whole interval [0, L]. Let us denote by
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{
λS`n (ρ), vS`n (x; ρ)

}∞
n=1

the eigenpairs of (4.1), (4.2), (4.31) with ρ0 replaced by ρ(x) = ρ0 + rε(x).
In the sequel, we use the set of spectral data{

λSn(ρ)
}N
n=1
∪
{
λS`m (ρ)

}M
m=1

, (4.34)

where N, M are given integers, and we adapt the reconstructive procedure shown in Section 3.4.4
to reconstruct an approximation of the mass change rε(x).

The stopping criterion of the iterative procedure was set as

eS−S` =
1

N

 N∑
n=1

(
λ
S(exp)
n − λSn(ρ(j))

λ
S(exp)
n

)2
 1

2

+
1

M

 M∑
m=1

(
λ
S`(exp)
m − λS`m (ρ(j))

λ
S`(exp)
m

)2
 1

2

< γ,

(4.35)
for a small given number γ (γ = 10−5).

4.3.2 Application and results

The reconstruction method has been tested on an extended series of simulations with the overlap-
ping mass variation defined in (4.24). In the sequel, we briefly discuss the salient results. Note
that, based on our previous experience on the longitudinal vibration case (see also [25]), the same
number of first natural frequencies in both spectra was used, e.g., N = M .

The identification of continuous mass variation gives good results, and accuracy rapidly im-
proves as N increases. The determination of discontinuous, coefficients, as it was expected, leads
to discrepancies analogous to these encountered in Section 4.2.2.3. For the sake of brevity, here
we will focus only on cases in which the discontinuous mass variation in (4.24) is supported on
two disjoint intervals of (0, L). In case of L∞-small mass variation (and, then, also small jump
magnitude), the results are accurate enough for N = 12− 15, with the exception of a small interval
close to the discontinuity, see Figure 4.8. When the mass variation is not necessarily small and the
jump magnitude is comparable with the maximum value of the smooth term of the mass variation
(or even larger), for N up to 15 undesired oscillations appear and propagate throughout the whole
interval, with amplitude that typically decays away from the jump, see Figures 4.9 and 4.10. Better
accuracy is reached in these cases by increasing N , e.g., N up to 20 − 25. Finally, in spite of the
fact that convergence of the identification procedure has local character and requires to work in a
sufficiently small neighborhood of the referential nanobeam, it should be noted that the method
shows unexpected potential in dealing with not necessarily small mass variation, see Figure 4.11.

4.3.3 Stability to noisy data

The robustness of the reconstruction to errors on the data was tested by perturbing the noise-free
resonant frequencies corresponding to the target eigenvalues. The following two kinds of errors
were considered: √

λerrk =
√
λk + τAk , (4.36)√

λerrk =
√
λk(1 + τRk ), (4.37)

where λk belongs to the set
{
λ
S(exp)
n

}N
n=1

∪
{
λ
S`(exp)
m

}M
m=1

. In (4.36), the frequency noise is

assumed to be constant (in absolute terms) for all the modes, and τAk is a random Gaussian variable
with vanishing mean and standard deviation σA such that 3σA = 2πΠA, where ΠA is the maximum
admitted error. In (4.37), a constant relative error is assumed for all the resonant frequencies,
and τRk is a random Gaussian variable with vanishing mean and standard deviation σR such that
3σR = ΠR, where ΠR is the maximum eigenfrequency percentage uncertainty.
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A selected, although representative, set of results is presented below for discontinuous mass
coefficients belonging to the family (4.24).

Figure 4.12 shows the results for errors as in (4.36). In each subfigure, besides the exact mass
profile, three curves are shown, namely, the curve of the mean value and the two curves obtained
by adding ±3σA to the mean value. For each case, a thousand of simulations was performed. The
effect of errors on the data is not important for ΠA = 100 Hz, whereas appreciable discrepancy
occurs for ΠA = 200 Hz. When ΠA is greater than 300 − 400 Hz, the accuracy of the reconstruc-
tion is seriously compromised. It should be noted that ΠA = 200 Hz corresponds to percentage
errors ranging approximately from 0.0019 (high frequency) to 0.4763 (low frequency) percent of
the unperturbed first fifteen resonant frequencies.

The results of the error analysis based on (4.37) are collected in Figure 4.13. The notation is the
same of the previous case. It turns out that the effects of errors are almost negligible for ΠR up to
0.05 percent, and differences become significant starting from ΠR = 0.20 percent.

Finally, we notice that similar results have been obtained for continuous mass coefficients. The
number of iterations needed to get convergence is slightly larger than the corresponding error-free
cases.

4.4 A constrained least squares-based filtering

4.4.1 The method and its application using one partial spectrum

The mass identification problem in nanobeams involves positive variations of the mass density ρ0,
that is

rε(x) ≥ 0. (4.38)

However, it would be very difficult to take advantage of this positivity constraint using a global
basis such as the family of functions

{
ΦS
n

}N
n=1

or
{

ΦS
n(x),ΦS`

m (x)
}N
n,m=1

adopted in our GFCM
in Section 4.2 or 4.3, respectively. On the other hand, it is expected that the a priori information
contained in (4.38) is of great importance, since this constraint can be used to eliminate the large
oscillations in the identified mass coefficient, like those occuring near a discontinuity point of rε(x).

Taking into account these considerations, we implemented a filtering method based on a con-
strained least-squares optimization procedure which permits to enforce the reconstructed added
mass r(j)

ε (x) to fulfill condition (4.38), j being the iteration index at which the iterative process
converged according to the stopping criterion adopted for the GFCM. For the sake of simplicity,
here we refer to the inverse problem with one partial spectrum considered in Section 4.2. The case
with two partial spectra will be analyzed in next section.

In order to allow for discontinuities in the mass coefficient and, simultaneously, to take into
account the constraint (4.38) in [0, L/2], as in [8] we adopt the representation

r(j+1)(x) =

Q∑
k=1

ϑkΨk(x), (4.39)

where the piecewise constant functions {Ψk(x)}Qk=1, Ψk(x) : [0, L/2]→ R, are defined as

Ψk(x) = 1 if xk−1 ≤ x ≤ xk, Ψk(x) = 0 otherwise, k = 1, ..., Q, (4.40)

where
xk = k

L

2N
, k = 1, ..., Q, (4.41)

is a given subdivision of the interval [0, L/2]. Note that, to simplify the notation, we have omitted
the index ε. The coefficients ϑk, k = 1, ..., Q, are the unknowns of the optimization problem, and
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the index j+1 in expression (4.39) refers to the additional filtering step performed after the iterative
reconstruction method described in Section 4.2.

Using (4.39), the first order approximation of the nth eigenvalue of the perturbed nanobeam can
be calculated as

λSn(ρ(j+1)) = λSn(ρ(j)) +

Q∑
k=1

ΓSnkϑk, (4.42)

with

ΓSnk = −λSn(ρ(j))

∫ xk

xk−1

ΦS(j)
n (x)dx. (4.43)

Typically the number Q of unknowns ϑ = (ϑ1, · · · , ϑQ) is chosen large enough to enhance the
mass reconstruction. In addition, it should be noticed that the number of eigenvalues measured
in experiments {λS(exp)

n }Nn=1 is usually less than the number of unknowns, i.e., N < Q or even
N << Q. This leads us to formulate the inverse problem as the following constrained optimization
problem.

To minimize F (ϑ) = ‖λS(exp) − (λS + ΓSϑ)‖2 (4.44)

subject to ϑk ≥ 0, k = 1, ..., Q, (4.45)

where the N -vectors λS(exp) = (λ
S(exp)
1 , ..., λ

S(exp)
N ), λS = (λS1 (ρ(j)), ..., λSN(ρ(j))) are the target

and analytical eigenvalues, respectively, ΓS is the N ×Q matrix with
(
ΓS
)
nk

= ΓSnk, and

‖ϕ‖2 =
N∑
n=1

(
ϕn

λ
S(exp)
n

)2

for every ϕ ∈ RN . (4.46)

Notice that each ϕn has been normalized with the corresponding λS(exp)
n in expression (4.46) in

order to avoid an excessive weight of the higher eigenvalues in the objective function.
The optimization problem (4.44)-(4.45) has been solved iteratively based on an optimized steep-

est descent method. More precisely, the vector ϑ at the (i+ 1)th step is updated as

ϑ(i+1) = ϑ(i) − t(i)opt∇F
(
ϑ(i)
)
, (4.47)

where ∇F
(
ϑ(i)
)

is the gradient of the objective function F at ϑ(i), and the real number t(i)opt is
chosen so as to minimize F in the direction∇F

(
ϑ(i)
)
. In order to ease computation, however, the

value of t(i) that minimizes the quadratic approximation of F has been used, see, for example, [23]
for an application to damage identification in classical beams. In a small neighborhood of ϑ(i),
using (4.47) and neglecting higher order terms, we can write

F
(
ϑ(i+1)

)
' F

(
ϑ(i)
)
− t(i)opt∇F

(
ϑ(i)
)
· ∇F

(
ϑ(i)
)

+

+

(
t
(i)
opt

)2

2
∇F

(
ϑ(i)
)
·H
(
ϑ(i)
)
∇F

(
ϑ(i)
)
, (4.48)

H
(
ϑ(i)
)

being the Hessian of the objective function F at ϑ(i). Here, the symbol ′·′ denotes the
usual scalar product between vectors. Minimization of F

(
ϑ(i+1)

)
with respect to t(i)opt leads to

t
(i)
opt =

∇F
(
ϑ(i)
)
· ∇F

(
ϑ(i)
)

∇F (ϑ(i)) ·H (ϑ(i))∇F (ϑ(i))
. (4.49)
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According to the definition of F in (4.44), the components of gradient and Hessian of the objective
function are given by the expressions

(
∇F

(
ϑ(i)
))
r

=
∂F

∂ϑr

(
ϑ(i)
)

= −
N∑
n=1

2
[
λ
S(exp)
n − λSn(ρ(j+1))

]
ΓSnr(

λ
S(exp)
n

)2 , (4.50)

(
H
(
ϑ(i)
))
rs

=
∂2F

∂ϑr∂ϑs

(
ϑ(i)
)

=
N∑
n=1

2 ΓSnrΓ
S
ns(

λ
S(exp)
n

)2 . (4.51)

The algorithm checks that, with this choice of t(i)opt, ϑ(i+1) does not violate the constraints (4.45).
Otherwise, the algorithm takes the point on the boundary of the feasible domain along the the max-
imal descent direction. The iteration continues until the relative variations of both F and ϑ satisfy a
chosen criterion of smallness. For the objective function, the criterion

(
F (i+1) − F (i)

)
/F (i) < 10−3

holds, whereas for the unknown coefficients the criterion ‖ϑ(i+1)−ϑ(i)‖∞/‖ϑ(i)‖∞ < 5 ·10−4 was
considered.

Some results of the filtering method described above are summarized next, which are representa-
tive of a large set of performed simulations. In particular, the cases with discontinuous coefficients,
for which spurious oscillations occur (see Figures 4.4 and 4.5), have been considered the most
relevant to be presented. As it can be seen in Figures 4.14 and 4.15, obtained with a number of
piecewise constant functions Q = 200, the filtering process permits to ensure the monotonicity
property (4.38), and reduces or even eliminates the oscillations outside of the support of rε(x).
Additionally, it improves the reconstruction near the discontinuity point x = s1. For the presented
cases, the average number of iterations and CPU time were 1250 and 14 seconds, respectively.

4.4.2 Application using two partial spectra

Having extended, in the case of the use of two partial spectra, the reconstruction method to the
determination of a general mass variation rε(x) not necessarily supported in half of the nanobeam
axis, the monotonicity constraint now reads

rε(x) ≥ 0, x ∈ [0, L] . (4.52)

Then, rε(x) is represented as

r(j+1)(x) =

Q∑
k=1

ϑkΥk(x), (4.53)

where the piecewise constant functions {Υk(x)}Qk=1, Υk(x) : [0, L]→ R, are given by

Υk(x) = 1 if x̃k−1 ≤ x ≤ x̃k, Υk(x) = 0 otherwise, k = 1, ..., Q, (4.54)

and
x̃k = k

L

N
, k = 1, ..., Q. (4.55)

The coefficients ϑk, k = 1, ..., Q, are again the unknowns of the optimization problem.
The first order approximation of the nth eigenvalue of the perturbed nanobeam, for supported

(S) and supported-sliding (S`) end conditions, respectively, are now calculated as

λSn(ρ(j+1)) = λSn(ρ(j)) +

Q∑
k=1

ΓSnkϑk, (4.56)
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with

ΓSnk = −λSn(ρ(j))

∫ x̃k

x̃k−1

ΦS(j)
n (x)dx, (4.57)

and

λS`n (ρ(j+1)) = λS`n (ρ(j)) +

Q∑
k=1

ΓS`nkϑk, (4.58)

with

ΓS`nk = −λS`n (ρ(j))

∫ x̃k

x̃k−1

ΦS`(j)
n (x)dx. (4.59)

Hence, the constrained optimization problem is formulated as follows:

to minimize F̊ (ϑ) = ‖λ̊(exp) − (λ̊+ Γ̊ϑ)‖2
S∪S` (4.60)

subject to ϑk ≥ 0, k = 1, ..., Q, (4.61)

Here, the (N+M)-vectors λ̊(exp) = (λ
S(exp)
1 , ..., λ

S(exp)
N , λ

S`(exp)
1 , ..., λ

S`(exp)
M ), λ̊ = (λS1 (ρ(j)), ..., λSN ,

λS`1 (ρ(j)), ..., λS`M (ρ(j))) are the target and analytical eigenvalues corresponding to both spectra, Γ̊ is
a (N +M)×Q matrix with

(
Γ̊
)
ik

= ΓSik if i ≤ N , and
(
Γ̊
)
ik

= ΓS`i−N,k if i > N , and

‖ϕ‖2
S∪S` =

N∑
n=1

(
ϕn

λ
S(exp)
n

)2

+
M∑
m=1

(
ϕN+m

λ
S`(exp)
m

)2

for every ϕ ∈ RN+M . (4.62)

Following the iteration method described in Section 4.4.1, the vector ϑ at the (i + 1)th step is
updated according to equation (4.47), where the direction defined by the gradient of F̊ (instead
of F ) has to be used. Likewise, the optimal step tiopt is obtained with expression (4.49), now
considering the objective function F̊ . The components of gradient and Hessian of F̊ are given by

(
∇F̊

(
ϑ(i)
))

r
= −

N∑
n=1

2
[
λ
S(exp)
n − λSn(ρ(j+1))

]
ΓSnr(

λ
S(exp)
n

)2 −
M∑
m=1

2
[
λ
S`(exp)
m − λS`m (ρ(j+1))

]
ΓS`mr(

λ
S`(exp)
m

)2 ,

(4.63)(
H
(
ϑ(i)
))
rs

=
N∑
n=1

2 ΓSnrΓ
S
ns(

λ
S(exp)
n

)2 +
M∑
m=1

2 ΓS`mrΓ
S`
ms(

λ
S`(exp)
m

)2 . (4.64)

Figures 4.16 and 4.17 present some selected results of the filtering method with Q = 200 for the
case of two partial spectra, which correspond to the results shown in Figures 4.10 and 4.11 for (un-
filtered) reconstructions obtained by standard application of the Generalized Fourier Coefficients
Method. Once again, the process permits to ensure the monotonicity property (4.52) and reduces
the oscillations outside the support of rε(x), and improves the reconstruction near the discontinuity
point x = s1. For the presented cases, the average number of iterations and CPU time were 1740
and 23 seconds, respectively.

4.5 A convergence result for small and smooth mass perturbations

4.5.1 Theory

By adapting the arguments shown in Section 3.5 and under the assumptions (4.7)–(4.10) on rε(x),
for ε small enough, it can be shown that the iterative reconstructive procedure converges to a con-
tinuous function ρ̄(x) with the wished spectral behavior of the first N resonant frequencies. The
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numerical results presented in Section 4.2.2.3 show that, under our assumptions, the function ρ̄(x)
actually is a very good approximation of the target (unknown) mass coefficient ρ(x), as the number
N of first natural frequencies included in identification increases. This is confirmed, for example,
by the analysis of Figure 4.2, and also by other simulations performed by varying the mass profile,
whose results are not reported here for the sake of brevity. However, up to now, the mathematical
theory behind the present inverse problem does not explain why ρ̄(x) turns out to be close to the
actual mass coefficient ρ(x).

In this section, we tackle this issue and we present a partial answer to this question. More
precisely, for small mass change and under suitable additional assumptions on rε(x), we shown
that

lim
N→+∞

r(0)
ε (x) = r(x), for x ∈

(
0,
L

2

)
, (4.65)

where r(0)
ε (x) denotes the mass variation determined at the first step of the iterative procedure by

expression (4.19).
Before embarking in calculations, we wish to illustrate the main idea behind the proof of (4.65).

We know that, for ε small enough, the first-order variation of the nth eigenvalue λSn is given by
(4.11). Therefore, if we insert the expression (4.11) of δλSn into the expression of the first-order
mass variation and we neglect higher order terms in ε, then we obtain

rN(x) =

∫ L
2

0

KN(x, s)r(s)ds, (4.66)

where, hereinafter, we shall write r(0)
ε (x) ≡ rN(x) and rε(x) ≡ r(x) to simplify the notation and

to emphasize the dependence on N . The kernel KN(x, s) is given by

KN(x, s) = 4ρ2
0L

{ N∑
k=1

ΦS
k (s)ΦS

k (x)− 2

2N + 1

N∑
k,j=1

ΦS
k (s)ΦS

j (x)

}
≡ 4ρ2

0L

{
K̃N(x, s)− ˜̃KN

(x, s)

}
,

(4.67)

where ΦS
k (x) are defined as in (4.12). The key point is to prove that, in a suitable sense, for every

x ∈
(
0, L

2

)
and every s ∈

(
0, L

2

)
, we have

lim
N→+∞

KN(x, s) = δ(x− s), (4.68)

where, for fixed x ∈
(
0, L

2

)
, δ(x−s) is the Dirac’s delta distribution supported at x, e.g.,

∫ +∞
−∞ δ(x−

s)ϕ(s)ds = ϕ(x) for every ϕ ∈ C∞c (R) = {f : R → R | f ∈ C∞(R), supp(f) = compact set ⊂
R}. In fact, using (4.68) in (4.66), at least formally, we have

lim
N→+∞

rN(x) =

∫ L/2

0

δ(x− s)r(s)ds = r(x), (4.69)

assuming that r(x) is a smooth function, with compact support contained in [0, L
2
], and extended to

0 in R outside [0, L
2
].

By using the explicit expression (4.12) for ΦS
k (x), by writing sin2(kπx

L
) = 1

2
(1− cos(2kπs

L
)), and
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recalling the identity 1
2

+ cos ξ + · · ·+ cos(Nξ) = 1
2

sin 2N+1
2

ξ

sin ξ
2

for ξ ∈ R \ {0}, we have

(ρ0L)2

4
K̃N(x, s) =

N + 1

4
− 1

8

sin((2N + 1)π s
L

)

sin(π s
L

)

− 1

8

sin((2N + 1)π x
L

)

sin(π x
L

)
+

1

16

sin((2N + 1)π( s+x
L

))

sin(π( s+x
L

))

+
1

16

sin((2N + 1)π( s−x
L

))

sin(π( s−x
L

))
− 1

8
(4.70)

and

(ρ0L)2

4
˜̃
K
N

(x, s) =
1

2N + 1
· 1

2

{
N(N + 1)− N

2
·

sin((2N + 1)π s
L

)

sin(π s
L

)

−N
2
·

sin((2N + 1)π x
L

)

sin(π x
L

)
+

N∑
k=1

N∑
j=1

cos
(

2kπ
s

L

)
cos
(

2jπ
x

L

)}
. (4.71)

By (4.70) and (4.71), after simple algebra, we obtain

KN(x, s) =
16

L

{
1

8(2N + 1)
− 1

8(2N + 1)
·

sin((2N + 1)π s
L

)

sin(π s
L

)

− 1

8(2N + 1)
·

sin((2N + 1)π x
L

)

sin(π x
L

)
+

1

16
·

sin((2N + 1)π( s−x
L

))

sin(π( s−x
L

))

+
1

16
·

sin((2N + 1)π( s+x
L

))

sin(π( s+x
L

))
− 1

2(2N + 1)
·

N∑
k,j=1

cos(2kπ
s

L
) cos(2jπ

x

L
)

}
≡

6∑
i=1

KN
i (x, s).

(4.72)

In what follows, we first prove that

lim
N→+∞

∫ L/2

0

rN(x)ϕ(x)dx =

∫ L/2

0

r(x)ϕ(x)dx, for every ϕ ∈ C∞c
((

0,
L

2

))
, (4.73)

that is rN(x) (given in (4.66), with KN(x, s) as in (4.67)) converges to r(x) in the sense of distri-
butions as N → +∞. Condition (4.73) is satisfied under specific conditions on r(x) that will be
introduced throughout the analysis.

By linearity, we can consider separately the six terms in (4.72). Concerning KN
1 (x, s), it is easy

to see that, for every ϕ ∈ C∞c
((

0, L
2

))
, we have∣∣∣∣∣

∫ L/2

0

(∫ L/2

0

KN
1 (x, s)r(s)ds

)
ϕ(x)dx

∣∣∣∣∣ ≤ 2

L
· 1

2N + 1
‖r‖L1‖ϕ‖L1 , (4.74)

where ‖ r ‖L1=
∫ L/2

0
| r(x) | dx.

To control the term involving KN
2 (x, s), we assume that

there exists δ > 0, δ <
L

2
, such that supp (r(x)) ⊂

[
δ,
L

2

]
. (4.75)
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Then, we have∣∣∣∣∣
∫ L/2

0

(∫ L/2

0

KN
2 (x, s)r(s)ds

)
ϕ(x)dx

∣∣∣∣∣ =

=
2

L(2N + 1)

∣∣∣∣∣
∫

0

ϕ(x)dx

∫ L/2

δ

sin((2N + 1)π s
L

)

sin(π s
L

)
r(s)ds

∣∣∣∣∣ ≤
≤ 2

L(2N + 1)
· 1

sin πδ
L

· ‖ϕ‖L1 · ‖r‖L1 , (4.76)

for every ϕ ∈ C∞c
((

0, L
2

))
.

By definition, there exists δ̃ > 0, δ̃ < L
2

, such that ϕ(x) = 0 in [0, δ̃]. Then, for every ϕ ∈
C∞c

((
0, L

2

))
, we have∣∣∣∣∣

∫ L/2

0

(∫ L/2

0

KN
3 (x, s)r(s)ds

)
ϕ(x)dx

∣∣∣∣∣ ≤ 2

L(2N + 1)
· 1

sin πδ̃
L

· ‖r‖L1 · ‖ϕ‖L1· (4.77)

We now consider the key term involving KN
4 (x, s). By introducing the change of variables

ξ =
x+ s

L
, η =

x− s
L

, (4.78)

we have, for every ϕ ∈ C∞c
((

0, L
2

))
,∫ L/2

0

(∫ L/2

0

KN
4 (x, s)r(s)ds

)
ϕ(x)dx =

=
1

L

∫ L/2

0

∫ L/2

0

sin((2N + 1)π( s−x
L

))

sin(π( s−x
L

))
· r(s)ϕ(x)dsdx

=
L

2

∫ ∫
Ω

sin((2N + 1)πη)

sin(πη)
r

(
L

2
(ξ − η)

)
ϕ

(
L

2
(ξ + η)

)
dξdη, (4.79)

where Ω = {(ξ, η) ∈ R2 | ξ = x+s
L
, η = x−s

L
, with x ∈ [0, L

2
], s ∈ [0, L

2
]}. Here, we further

assume that the support of r(s) is compactly contained in [0, L
2
], e.g.,

supp(r(s)) ⊂⊂
[
0,
L

2

]
. (4.80)

Then

supp
(
r

(
L

2
(ξ − η)

)
· ϕ
(
L

2
(ξ + η)

))
⊂⊂ Ω (4.81)

and we extend the function r
(
L
2
(ξ − η)

)
ϕ
(
L
2
(ξ + η)

)
to 0 in R2 \ Ω̄. The extended function is

continuous on R2, and the extension of r, ϕ will be denoted by r̄, ϕ̄, respectively. Next, we rewrite
the first factor inside the integral in (4.79) as

sin((2N + 1)πη)

sin(πη)
=

sin((2N + 1)πη)

πη
· πη

sin(πη)
, (4.82)

where the function f(η) = πη
sin(πη)

, originally defined in the interval [−1
2
, 1

2
], can be extended to a

continuous function f̄ : R → R by taking f̄(η) = f(1
2
) in R \ [−1

2
, 1

2
]. At this stage we recall the

well known result
lim

T→+∞

sinTx

πx
= δ(x), (4.83)
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which holds in the sense of distributions, see, for example, [9]. By using the above properties of r,
ϕ, f , and those of their extensions to R r̄, ϕ̄, f̄ , and by (4.83), for r(x) ∈ C0

([
0, L

2

])
, we have

lim
N→+∞

∫ L/2

0

(∫ L/2

0

KN
4 (x, s)r(s)ds

)
ϕ(x)dx =

= lim
N→+∞

L

2

∫ +∞

−∞

∫ +∞

−∞

sin((2N + 1)πη)

πη
· f̄(η) · r̄

(
L

2
(ξ − η)

)
ϕ̄

(
L

2
(ξ + η)

)
dξdη =

=
L

2

∫ +∞

−∞
δ(η)f̄(η)r̄

(
L

2
(ξ − η)

)
ϕ̄

(
L

2
(ξ − η)

)
dξdη =

=
L

2

∫ +∞

−∞
f(0)r̄

(
L

2
ξ

)
ϕ̄

(
L

2
ξ

)
=
L

2

∫ 1

0

r

(
L

2
ξ

)
ϕ

(
L

2
ξ

)
dξ =

=

∫ L/2

0

r(x)ϕ(x)dx, (4.84)

where, in the last step, we have reversed the change of variables (4.78).
The term involving KN

5 (x, s) can be treated as the previous one, obtaining

lim
N→+∞

∫ L/2

0

(∫ L/2

0

KN
5 (x, s)r(s)ds

)
ϕ(x)dx =

∫ L/2

0

r̄(−x)ϕ(x)dx = 0, (4.85)

since the extension r̄, r̄ : R→ R, of the function r, r :
[
0, L

2

]
→ R, vanishes in R \ [0, L

2
].

In order to control the last term, we shall assume the following additional hypotheses on r(x):

r ∈ C1

([
0,
L

2

])
, ‖r′′‖L1 finite. (4.86)

For every ϕ ∈ C∞c
((

0, L
2

))
, we have∫ L/2

0

(∫ L/2

0

KN
6 (x, s)r(s)ds

)
ϕ(x)dx =

= −1

2
· 1

2N + 1
·

N∑
k,j=1

∫ L/2

0

cos
2kπs

L
r(s)ds ·

∫ L/2

0

cos
2jπx

L
ϕ(x)dx. (4.87)

Let us consider the first integral of the sum in (4.87). Since r ∈ C1
([

0, L
2

])
and has compact

support contained in [0, L
2
], integrating by parts twice gives∣∣∣∣∣

∫ L/2

0

cos
2kπs

L
r(s)ds

∣∣∣∣∣ =

∣∣∣∣∣− L2

4k2π2

∫ L/2

0

cos
2kπs

L
r′′(s)ds

∣∣∣∣∣ ≤ L2

4k2π2
‖r′′‖L1 , (4.88)

for every k ≥ 1. Similarly, for every ϕ ∈ C∞c
((

0, L
2

))
and for every j ≥ 1, we have∣∣∣∣∣

∫ L/2

0

cos
2jπx

L
ϕ(x)dx

∣∣∣∣∣ ≤ L2

4j2π2
‖ϕ′′‖L1 . (4.89)

Then
N∑

k,j=1

∫ L/2

0

cos
2kπs

L
r(s)ds

∫ L/2

0

cos
2jπx

L
ϕ(x)dx ≤ L4

16π4
‖r′′‖L1‖ϕ′′‖L1

N∑
k,j=1

1

k2j2
. (4.90)
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By simple calculation, we have

N∑
k,j=1

1

k2j2
≤

∞∑
k=1

1

k2
+
∞∑
j=1

1

j2
+

+∞∑
k,j=2

1

k2j2

≤ π2

3
+

∫ +∞

2

∫ +∞

2

1

(x− 1)2(y − 1)2
dxdy =

π3

3
+ 1. (4.91)

Therefore, by (4.86), (4.87), (4.89), (4.90), (4.91), we have

lim
N→+∞

∫ L/2

0

(∫ L/2

0

KN
6 (x, s)r(s)ds

)
ϕ(x)dx = 0, (4.92)

for every ϕ ∈ C∞c
((

0, L
2

))
.

Finally, by using (4.74), (4.76), (4.77), (4.84), (4.85), (4.92) in (4.73), we obtain the weak
convergence result (4.73). To derive the point-wise convergence (4.65), we can proceed by contra-
diction. Let us assume that there exists x0 ∈

(
0, L

2

)
such that limN→+∞(rN(x0)− r(x0)) 6= 0, say,

limN→+∞(rN(x0)−r(x0)) > 0. Therefore, there exists τ > 0 such that, for everyN0 > 0,N0 ∈ N,
(up to subsequences) (rN(x0)−r(x0)) > τ for everyN ≥ N0. Since (rN(x)−r(x)) ∈ C0

([
0, L

2

])
,

there exists δ > 0, δ small enough, such that (rN(x)− r(x)) > τ
2

in (x0− δ, x0 + δ) ⊂⊂ [0, L
2
]. Let

us choose ϕ(x) = exp
(

1
(x−x0)2−( δ

2
)2

)
in
(
x0 − δ

2
, x0 + δ

2

)
and ϕ(x) = 0 otherwise in

[
0, L

2

]
. Then,

we have

0 = lim
N→+∞

∫ L/2

0

(rN(x)− r(x))ϕ(x)dx =

= lim
N→+∞

∫ x0+ δ
2

x0− δ2

(rN(x)− r(x))ϕ(x)dx >
τ

2

∫ x0+ δ
2

x0− δ2

exp

(
1

(x− x0)2 − ( δ
2
)2

)
dx > 0, (4.93)

a contradiction.
In conclusion, we have proved that if r(x) is small, r(x) ∈ C1([0, L

2
]), ‖r′′‖L1 is finite, supp(r(x))

is compactly contained in [0, L
2
], then limN→+∞ rN(x) = r(x) for every x ∈ [0, L

2
].

The above convergence result gives some insights on our reconstruction method and, in particu-
lar, it shows that, in case of small smooth mass perturbations, a good approximation of the solution
can be obtained even at the first step of the procedure (in which rN(x) is given by closed form
expression), provided that the number of eigenfrequencies is large enough.

In the next section, we shall provide some examples in support of the above theoretical result.

4.5.2 Numerical applications

In the first example, the first order formula (4.19) is used to construct an approximation of the mass
variation r(x) = h1(x), where the function h1(x) ≡ h1(x; a1, b1, k1, t1) : [0, L/2] → R is defined
as

h1(x) = t1ρ0 exp

(
− k1

d1(x)
+

k1

d1(b1)

)
if d1(x) > 0, h1(x) = 0 otherwise, (4.94)

with d1(x) = a2
1 −

(
x
L
− b1

)2, a1 > 0, b1 > 0, a1 + b1 < 1/2, b1 − a1 > 0, k1 > 0, t1 > 0, and t1
small. It is easy to verify that r ∈ C∞c ([0, L/2]), r(x) ≥ 0 in [0, L/2], r = r(x) is an even function
with respect to x/L = b1, and maxx∈[0,L/2] r(x) = r(b1) = ρ0t1. A plot of the reconstruction for
t1 = 0.01, 0.02, 0.05, 0.10 is shown in Figure 4.18 for a1 = 0.20, b1 = 0.25 and k1 = 0.10. It can
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be seen that, even for N small, N = 6, say, the approximation is good and the accuracy improves
as t1 decreases. It can be shown that the reconstruction is almost perfect when N is bigger than 15
and t1 is up to 0.05.

In the second example, we construct an approximation to a mass variation r(x) which is a
linear combination of two C∞c ([0, L/2]) functions with form similar to h1(x) of the last example.
Precisely, we define

r(x) = h1(x)− h2(x), (4.95)

where h2(x) ≡ h2(x; a2, b2, k2, t2) : [0, L/2] → R is defined as h1(x) in (4.94) with d1(x), a1, b1,
k1, t1 replaced by d2(x), a1, b1, k1, t1, respectively, and a2 > 0, b2 > 0, a2 + b2 < 1/2, b2− a2 > 0,
k2 > 0, t2 > 0, t2 small. A plot of the reconstruction for a1 = 0.20, a2 = 0.10, b1 = b2 = 0.25,
k1 = k2 = 0.10, t2 = 0.8t1, and t1 = 0.01, 0.02, 0.05, 0.10 is shown in Figure 4.19. The results
confirm that the reconstructed coefficient forN = 15 is almost coincident with the target coefficient
for small t1, say for t1 up to 0.05. A small difference is still present, as expected, for t1 = 0.10.

Finally, Table 4.3 contains the L∞-norm of the normalized error for the cases considered in
Figures 4.18 and 4.19, for increasing value of N . It can be seen that when the perturbation is very
small, e.g., t1 = 0.01 − 0.02, the error is practically negligible for N = 18 − 21. These results
lead to the conjecture that the convergence can be stronger than the point-wise convergence proved
here. This aspect will be explored in future studies.
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4.6 Tables and Figures

Table 4.1: Experimental eigenfrequency values of the cantilever shown in Figure 4.6. U=unperturbed configu-
ration; absolute values in Hz and percentage modeling errors U% = 100 · (fU,th

n − fU,exp
n )/fU,exp

n . Pi= ith
perturbed configuration, i = 1, . . . , 6; percentage mass-induced eigenfrequency shifts Pi% = 100 · (fU,exp

n −
fPi,exp
n )/fU,exp

n . fU,th
n =nth theoretical unperturbed eigenfrequency; fU,exp

n =nth experimental unperturbed eigen-
frequency; fPi,exp

n =nth experimental eigenfrequency of the perturbed Pi cantilever. Experimental data taken
from [42].

Unperturbed Perturbed
Mode U U% P1% P2% P3% P4% P5% P6%

1 17883 0.31 0.59 1.14 1.53 2.18 2.67 1.36
2 112465 -0.04 0.49 0.77 0.87 0.94 0.94 0.74
3 315158 -0.12 0.41 0.53 0.54 0.58 0.75 0.60
4 617728 -0.15 0.33 0.36 0.38 0.67 1.07 0.60

Table 4.2: Mass identification for the cantilever shown in Figure 4.6. Total added mass (in percentage) for two choices
of the interval of identification. r+(x) = max{r(x), 0}.

Case 100 ·
(∫ L

0
r(x)dx

)
/ (ρ0L) 100 ·

(∫ L
0
r+(x)dx

)
/ (ρ0L)

[0.5L,L] [0.7L,L] [0.5L,L] [0.7L,L]
P1 0.64 0.62 0.68 0.64
P2 1.00 0.96 1.13 1.06
P3 1.24 1.25 1.43 1.36
P4 1.73 1.80 1.85 1.83
P5 2.18 2.31 2.35 2.34
P6 1.23 1.19 1.24 1.19

Table 4.3: First-order reconstruction of the mass variation as in Figures 4.18 and 4.19. Values of the normalized error
ρ−10 ‖ ρreconstr − ρtarget ‖∞= ρ−10 maxx∈(0,L/2) | ρreconstr(x)− ρtarget(x) | for increasing values of N .

Mass variation as in Figure 4.18
t1 t2 N = 3 N = 6 N = 9 N = 12 N = 15 N = 18 N = 21 N = 24

0.01 0.00 0.0022 0.0003 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001
0.02 0.00 0.0044 0.0007 0.0005 0.0003 0.0003 0.0003 0.0003 0.0003
0.05 0.00 0.0106 0.0018 0.0021 0.0018 0.0018 0.0017 0.0017 0.0018
0.10 0.00 0.0203 0.0063 0.0074 0.0067 0.0069 0.0067 0.0067 0.0067
Mass variation as in Figure 4.19
t1 t2 N = 3 N = 6 N = 9 N = 12 N = 15 N = 18 N = 21 N = 24

0.01 0.008 0.0043 0.0029 0.0017 0.0006 0.0003 0.0001 0.0001 0.0001
0.02 0.016 0.0085 0.0057 0.0034 0.0013 0.0007 0.0003 0.0003 0.0003
0.05 0.04 0.0208 0.0139 0.0083 0.0039 0.0023 0.0013 0.0014 0.0013
0.10 0.08 0.0406 0.0266 0.0184 0.0098 0.0067 0.0048 0.0049 0.0049
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Figure 4.1: Mass density per unit length ρ = ρ(x) to be identified. Overlapping mass change as in (4.24).
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Figure 4.2: Reconstruction of continuous overlapping mass changes as in (4.24) in
[
0, L2

]
. Parameters: s

L = 0.25,
t = 0.10, s1L = 0.25, t1 = 0.10, with N = 6 (a), N = 12 (b). Parameters: s

L = 0.25, t = 0.80, s1L = 0.25,
t1 = 0.20, with N = 6 (c), N = 12 (d).
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Figure 4.3: Reconstruction of continuous overlapping mass changes as in (4.24) in
[
0, L2

]
using the first N = 3 − 5

resonant frequencies. Parameters: s
L = 0.25, t = 0.10, s1L = 0.25, t1 = 0.10, with N = 3 (a), N = 4 (c), N = 5

(e). Parameters: s
L = 0.25, t = 0.80, s1L = 0.25, t1 = 0.20, with N = 3 (b), N = 4 (d), N = 5 (f).
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Figure 4.4: Reconstruction of discontinuous overlapping mass changes as in (4.24) in
[
0, L2

]
. Parameters: s

L = 0.15,
t = 0.80, s1L = 0.25, t1 = 0.80, with N = 12 (a), N = 15 (b), N = 20 (c), N = 25 (d).
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Figure 4.5: Reconstruction of discontinuous overlapping mass changes as in (4.24) in
[
0, L2

]
. Parameters: s

L = 0.25,
t = 0.20, s1L = 0.45, t1 = 0.80, with N = 12 (a), N = 15 (b), N = 20 (c), N = 25 (d).
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Figure 4.6: Experimental specimen: unperturbed (U) and mass-perturbed configurations (Pi, i = 1, . . . , 6) obtained
by liquid droplet arrays deposition. Reproduction from [42].
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Figure 4.7: Mass reconstruction for the cantilever shown in Figure 4.18 using the first four experimental eigenfre-
quencies and for different choices of the interval of identification. Upper row: [0.5L,L]; lower row: [0.7L,L].
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Figure 4.8: Reconstruction of discontinuous overlapping mass changes as in (4.24) in [0, L]. Parameters: s
L = 0.35,

c
L = 0.30, t = 0.10, s1L = 0.85, c1L = 0.30, t1 = 0.10, with N = M = 6 (a), N = M = 9 (b), N = M = 12 (c),
N =M = 15 (d).
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Figure 4.9: Reconstruction of discontinuous overlapping mass changes as in (4.24) in [0, L]. Parameters: s
L = 0.35,

c
L = 0.30, t = 0.80, s1L = 0.85, c1L = 0.30, t1 = 0.20, with N =M = 6, 9, 12, 15, 20, 25 eigenfrequencies.
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Figure 4.10: Reconstruction of discontinuous overlapping mass changes as in (4.24) in [0, L]. Parameters: s
L = 0.35,

c
L = 0.30, t = 0.20, s1L = 0.85, c1L = 0.30, t1 = 0.80, with N =M = 6, 9, 12, 15, 20, 25 eigenfrequencies.
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Figure 4.11: Reconstruction of discontinuous overlapping mass changes as in (4.24) in [0, L]. Parameters: s
L = 0.35,

c
L = 0.30, t = 0.80, s1L = 0.85, c1L = 0.30, t1 = 0.80, with N =M = 6, 9, 12, 15, 20, 25 eigenfrequencies.
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Figure 4.12: Effect of noise (4.36) on identification of discontinuous mass changes as in (4.24). Upper row: s
L = 0.35,

c
L = 0.30, t = 0.10, s1L = 0.85, c1L = 0.30, t1 = 0.10. Central row: s

L = 0.35, c
L = 0.30, t = 0.80, s1L = 0.85,

c1
L = 0.30, t1 = 0.20. Lower row: s

L = 0.35, cL = 0.30, t = 0.80, s1L = 0.85, c1L = 0.30, t1 = 0.80.
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Figure 4.13: Effect of noise (4.37) on identification of discontinuous mass changes as in (4.24). Upper row: s
L = 0.35,

c
L = 0.30, t = 0.10, s1L = 0.85, c1L = 0.30, t1 = 0.10. Central row: s

L = 0.35, c
L = 0.30, t = 0.80, s1L = 0.85,

c1
L = 0.30, t1 = 0.20. Lower row: s

L = 0.35, cL = 0.30, t = 0.80, s1L = 0.85, c1L = 0.30, t1 = 0.80.
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Figure 4.14: Filter of the reconstruction of discontinuous overlapping mass changes as in (4.24) in
[
0, L2

]
. Parameters:

s
L = 0.15, t = 0.80, s1L = 0.25, t1 = 0.80, with N = 12 (a), N = 15 (b), N = 20 (c), N = 25 (d).
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Figure 4.15: Filter of the reconstruction of discontinuous overlapping mass changes as in (4.24) in
[
0, L2

]
. Parameters:

s
L = 0.25, t = 0.20, s1L = 0.45, t1 = 0.80, with N = 12 (a), N = 15 (b), N = 20 (c), N = 25 (d).
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Figure 4.16: Filter of the reconstruction of discontinuous overlapping mass changes as in (4.24) in [0, L]. Parameters:
s
L = 0.35, c

L = 0.30, t = 0.20, s1
L = 0.85, c1

L = 0.30, t1 = 0.80, with N = M = 6, 9, 12, 15, 20, 25
eigenfrequencies.
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Figure 4.17: Filter of the reconstruction of discontinuous overlapping mass changes as in (4.24) in [0, L]. Parameters:
s
L = 0.35, c

L = 0.30, t = 0.80, s1
L = 0.85, c1

L = 0.30, t1 = 0.80, with N = M = 6, 9, 12, 15, 20, 25
eigenfrequencies.
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Figure 4.18: First-order reconstruction of the mass variation r(x) = h1(x), with h1(x) as in (4.94), with a1 = 0.20,
b1 = 0.25, k1 = 0.10, and t1 = 0.01 (a), t1 = 0.02 (b), t1 = 0.05 (c), t1 = 0.10 (d). Results for N = 3, N = 6.
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Figure 4.19: First-order reconstruction of the mass variation r(x) = h1(x) − h2(x), with h1(x), h2(x) as in (4.94),
with a1 = 0.20, a2 = 0.10, b1 = b2 = 0.25, k1 = k2 = 0.10, t2 = 0.8t1, and t1 = 0.01 (a), t1 = 0.02 (b),
t1 = 0.05 (c), t1 = 0.10 (d). Results for N = 3, N = 9, N = 15.
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CHAPTER5
Conclusions

Nanosensors are gathering attention in the last decade due to necessity of measuring physical and
chemical properties in industrial or biological systems at the sub-micron scale. One of the most rep-
resentative examples of downscaling in sensoring systems is the nanomechanical resonator, which
typically consists in one-dimensional vibrating structure with remarkable performance in detecting
small adherent masses. The mass sensing principle for these systems is based on using the resonant
frequency shifts caused by unknown additional masses attached on the surface of the sensor as data
for the reconstruction of the mass variation.

In spite of its importance in applications, to our knowledge, a general formulation of the inverse
problem of identifying distributed added mass attached on nanostructures, within the framework of
generalized continuum mechanics theories, it has not been developed until now. The present thesis
is a contribution on this topic.

Experimental results obtained by several research groups pointed out the need of considering
size effects to model accurately the dynamic response of nanoscale components. Among the gen-
eralized continuum theories proposed in literature, the modified strain gradient theory by Lam et
al. [53] seems to be an attractive formulation accounting for the scale effects present in nanostruc-
tures. Chapter 2 of this thesis was dedicated to a synthetic, self-contained illustration of this theory
and to the deduction, starting from the three-dimensional version, of simplified one-dimensional
models of nanobeams either in small axial or bending vibration, according to the approaches shown
in [3] and [49].

In Chapter 3 we have investigated the inverse problem of determining additional distributed
mass on an initially uniform nanobeam from finite number of lower resonant frequencies of the
free axial vibration. Two main inverse problems are addressed.

In the first part of Chapter 3, we have considered the inverse problem of determining the mass
distribution of a nanobeam from the knowledge of a finite number N of lower resonant frequencies
of the axial vibration under clamped ends, assuming that the mass is a small perturbation of the total
mass of the nanoresonator. From a mathematical point of view, this problem belongs to the class
of finite inverse eigenvalue problems for fourth-order differential operators of the Euler-Bernoulli
type, and few general results are available, see the interesting theory proposed by Barnes [8].
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Chapter 5. Conclusions

In this thesis we propose a new method for solving this inverse problem, called the Generalized
Fourier Coefficient method (GFCM) [26]. The method is based on an iterative procedure that
produces an approximation of the unknown mass density as a generalized Fourier partial sum of
order N , whose coefficients are calculated from the first N resonant frequencies.

The generalized Fourier coefficients are evaluated on a suitable class of functions, each of which
is - at every iteration- the gradient of the nth eigenvalue with respect to the mass variation. There-
fore, the quantity of data required by the identification method to obtain good approximation of the
mass coefficient depends on the smoothness of the coefficient. The results of an extensive series
of simulations, even in presence of errors of the data, indicate that for smooth (e.g., continuous)
coefficients the higher order Fourier contributions are less important and few first eigenvalues, N
less the 10 in the majority of simulations, provide sufficient data for good uniform approximations.
When the mass variation is rough (e.g., discontinuous), some of the higher order Fourier coeffi-
cients are significant and eigenvalues corresponding to the higher modes will needed to capture the
actual behavior, i.e., N = 15 − 20. In general, the smoother the coefficient, then more rapidly the
method converges with small error in L∞-norm. Often, the first few iterates exhibit a good deal of
oscillation. The rough the coefficient, the more pronounced was this behavior and the amplitude of
the oscillation around the exact coefficient.

We have also provided a convergence theorem for the iteration scheme for a particular family of
finite dimensional coefficients. The result holds under the assumption that the eigenvalues of the
unperturbed and perturbed nanorod are close enough, and the mass variation is sufficiently small,
see Section 3.5 for details.

In the second part of Chapter 3, we considered the more general inverse problem of determin-
ing a mass variation (on an axially vibrating nanobeam) not necessarily supported in half of the
nanobeam axis. We proposed an extension of the above mentioned identification method based on
the knowledge of a finite number of lower resonant frequencies belonging to two spectra corre-
sponding to clamped-clamped and clamped-free end conditions. Roughly speaking, the informa-
tion coming from one spectrum is equivalent to the a priori information on the support of the added
mass. The mathematical aspects related to the convergence of the iterative method above can be
extended to cover even this case. In brief, when the mass coefficient is regular, the first N = 10
resonant frequencies of both spectra allow for an accurate uniform approximation of the mass co-
efficient. In case of rough coefficients, a larger number of information is necessary to capture the
target coefficient, say N = 15− 20. We refer to Section 3.7.4 for more detailed description of the
results; see also [24].

It is well known that real application of nanobeams often use bending vibration information
to identify attached masses. Therefore, in Chapter 4 of this thesis we have extended the analy-
sis of the inverse problem to the determination of distributed added mass in an initially uniform
nanobeams under bending vibration. The GFCM was extended to bending vibration and the recon-
struction method was based, as before, on a single partial spectrum for mass variation supported
on half interval under supported-supported end conditions (Section 4.2), and on two partial spectra
for genneral mass variation for nanobeams under supported-supported and supported-sliding end
conditions (Section 4.3). The convergence of the iterative procedure can be proved as in the case
of axial vibrations, and under the same assumptions of small and smooth mass variation.

For the bending case we have presented a new theoretical result that, hopefully, may help to
advance in knowledge of this class of inverse eigenvalue problems with finite data. Referring to
Section 4.5 for more details. In case of identification from one single spectrum, we proved that
the reconstructed mass coefficient estimated at the first step of the iterative procedure converges
pointwise to the target coefficient as the number of resonant frequencies tends to infinity. This
result can be useful in applications, especially because the first-order approximation of the unknown
added mass can be written in closed form in terms of the eigenfrequency shifts for initially uniform
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nanobeams.
We conclude this last section with some remarks on possible directions of future research which

have been suggests by the analysis carried over in the present thesis.

i. In spite of the severe mathematical difficulties typical for this class of inverse eigenvalue
problems with finite data, theoretical and numerical results show that it is possible to extract
accurate approximation about the unknown coefficient in L2 or even in L∞ norms. From the
theoretical point of view, available results for second-order Sturm-Liuville operators show
that this accurate approximation is possible only when an infinite amount of spectral data
is available. We believe that this happens in our application of the GFCM since we have
taken advantage of some a priori information about the unknown mass variation, such as the
assumption of smallness and regularity of the mass coefficient, and we have chosen a suitable
set of functions to represent the unknown coefficient. However, this does not explain the
unexpected ability of the GFCM to reconstruct not necessarily small (smooth) mass variations,
and it would be interesting to investigate further on this theoretical issue.

ii. Numerical reconstructions for rough coefficients showed pronounced Gibbs’-like phenomenon
near the jump discontinuities. The combination of GFCM with least-squares based optimiza-
tion filtering using additional information about the coefficient, such as the monotonicity
which is available simply from the physics of the problem, shows to be very effective to
reduce the undesirable oscillations around the target discontinuous coefficient. Development
of the theoretical aspects of this combined technique would be of practical and theoretical
interest.

iii. In this work, mass identification was performed only for special sets of boundary conditions.
In case of axial vibration and mass variation with support in half of the axis and eigenvalues
belonging to a single spectrum, for example, the boundary conditions used in Section 3.3
were of clamped ends. It can be shown that this choice (i) ensures that the family of functions
with respect to which the generalized Fourier coefficients of the added mass are evaluated is a
basis for mass distributions supported on half of the nanorod axis; and (ii) it allows finding a
unique solution to the finite inverse problem linearized in a neighborhood of the unperturbed
configuration of the referential nanobeam. These two properties play a crucial role in proving
the convergence of the iterative method of identification. These properties follow from the
particularly simple expression of the eigenfunctions of the uniform reference nanobeam (sine
and cosine functions). For different choices of (symmetric) boundary conditions, it can be
shown that the eigenfunctions are a combination of harmonic and hyperbolic functions, and
properties (i) end (ii) have not yet been proved, to the best of our knowledge. Analogous
considerations can be made for the reconstruction based on two distinct spectra. A preliminary
set of encouraging numerical results obtained in [28] open up the prospective to a deeper
theoretical investigation on this issue.

iv. In connection with the previous point (iii), it would be interesting, although not easy, to extend
the present study to the reconstruction of the mass coefficient from not uniform unperturbed
nanobeams. It is likely that, as for point (ii), new ideas and more abstract methods will be
need to deal with this issue.

v. Experimental data on eigenfrequency changes induced by added mass in nanobeams are not
numerous. Therefore, a further line of investigation consists in performing experimental test
in conjunction with the interpretation based on suitable mechanical models able to take into
account the size effects in nanostructures. Experiments would also be very useful to clarify
the role of the boundary conditions and the actual possibility to assigning them in concrete
applications.
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Chapter 5. Conclusions

The analysis of the above aspects (i)–(v), and a possible extension of our inverse methodolo-
gies to two-dimensional nanoresonators, seems to be a very demanding challenge that will require
the development of refined skills in mathematics, mechanics, numerical analysis and experimental
testing.
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