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Abstract Measurements of the Standard Model Higgs
boson decaying into a bb pair and produced in association
with a W or Z boson decaying into leptons, using proton—
proton collision data collected between 2015 and 2018 by the
ATLAS detector, are presented. The measurements use colli-
sions produced by the Large Hadron Collider at a centre-of-
mass energy of /s = 13 TeV, corresponding to an integrated
luminosity of 139 fb~!. The production of a Higgs boson in
association with a W or Z boson is established with observed
(expected) significances of 4.0 (4.1) and 5.3 (5.1) standard
deviations, respectively. Cross-sections of associated produc-
tion of a Higgs boson decaying into bottom quark pairs with
an electroweak gauge boson, W or Z, decaying into leptons
are measured as a function of the gauge boson transverse
momentum in kinematic fiducial volumes. The cross-section
measurements are all consistent with the Standard Model
expectations, and the total uncertainties vary from 30% in
the high gauge boson transverse momentum regions to 85%
in the low regions. Limits are subsequently set on the param-
eters of an effective Lagrangian sensitive to modifications of
the W H and Z H processes as well as the Higgs boson decay
into bb.

Contents
I Introduction . ... ................. 1
2 The ATLAS detector . . . ... .......... 2
3 Data and simulated event samples . . . . ... .. 3
4 Objectand event selection . . . ... ....... 3
4.1 Objectreconstruction . . . . . . ... .. .. 3
4.2 Event selection and categorisation . . . . . . 5
4.3 Simplified template cross-section categories . 8
5 Multivariate discriminants . . . . . ... ... .. 8
6 Background modelling . . ... ... ... .... 10

6.1 Data-driven ¢f background estimation . . . . 10
6.2 Multi-jet background estimation
7 Systematic uncertainties

*e-mail: atlas.publications@cern.ch

PHYSICAL JOURNAL C ‘it

7.1 Experimental uncertainties . . . . ... ... 11

7.2 Background uncertainties . . . . . ... ... 11

7.3 Signal uncertainties . . . . . ... ... ... 15

8 Statistical analysis. . . . . ... ... ... ... 15
9 Results .. ..... ... ... .. ... 16
9.1 Signal strength measurements . . . . . . . .. 16
9.1.1 Dijet-mass cross-check . . ... ... 18

9.1.2 Diboson validation. . . . . . ... .. 18

9.2 Cross-section measurements . . . . . . . .. 18

10 Constraints on effective interactions . . . . . . . . 19
11 Conclusion . . ... ................ 22
References . . . . . .. .. .. ... ... . 23

1 Introduction

The Higgs boson [ 1-6] was discovered in2012 by the ATLAS
and CMS Collaborations [7,8] with a mass of approximately
125GeV from the analysis of proton—proton (pp) collisions
produced by the Large Hadron Collider (LHC) [9]. Since
then, the analysis of data collected at centre-of-mass ener-
gies of 7TeV, 8 TeV and 13 TeV in Runs 1 and 2 of the LHC
has led to the observation and measurement of many of the
production modes and decay channels predicted by the Stan-
dard Model (SM) [10-25].

The most likely decay mode of the SM Higgs boson is
into pairs of b-quarks, with an expected branching fraction
of 58.2% for a mass of myg = 125 GeV [26,27]. How-
ever, large backgrounds from multi-jet production make a
search in the dominant gluon—gluon fusion production mode
very challenging at hadron colliders [28]. The most sensi-
tive production modes for detecting H — bb decays are
the associated production of a Higgs boson and a W or Z
boson [29], referred to as the VH channel (V = W or
Z), where the leptonic decay of the vector boson enables
efficient triggering and a significant reduction of the multi-
jet background. As well as probing the dominant decay of
the Higgs boson, this measurement allows the overall Higgs
boson decay width [30,31] to be constrained, provides the
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best sensitivity to the WH and Z H production modes and
allows Higgs boson production at high transverse momentum
to be probed, which provides enhanced sensitivity to some
beyond the SM (BSM) physics models in effective field the-
ories [32]. The bb decay of the Higgs boson was observed
by the ATLAS [33] and CMS Collaborations [34] using
data collected at centre-of-mass energies of 7TeV, 8§ TeV
and 13TeV during Runs 1 and 2 of the LHC. ATLAS also
used the same dataset to perform differential measurements
of the VH, H — bb cross-section in kinematic fiducial vol-
umes defined in the simplified template cross-section (STXS)
framework [35]. These measurements were used to set lim-
its on the parameters of an effective Lagrangian sensitive
to anomalous Higgs boson couplings with the electroweak
gauge bosons.

This paper updates the measurements of the SM Higgs
boson decaying into a bb pair in the V H production mode
with the ATLAS detector in Run 2 of the LHC presented
in Refs. [33,35] and uses the full dataset. Events are cate-
gorised in 0-, 1- and 2-lepton channels, based on the number
of charged leptons, ¢ (electrons or muons'), to explore the
ZH — vvbb, WH — (vbb and ZH — (£bb signatures,
respectively. The dominant background processes after the
event selection are V + jets, ¢7, single-top-quark and diboson
production. Multivariate discriminants, built from variables
that describe the kinematics, jet flavour and missing trans-
verse momentum content of the selected events, are used
to maximise the sensitivity to the Higgs boson signal. Their
output distributions are used as inputs to a binned maximum-
likelihood fit, referred to as the global likelihood fit, which
allows the yields and kinematics of both the signal and the
background processes to be estimated. This method is vali-
dated using a diboson analysis, where the nominal multivari-
ate analysis is modified to extract the VZ, Z — bb diboson
process. The Higgs boson signal measurement is also cross-
checked with a dijet-mass analysis, where the signal yield
is measured using the mass of the dijet system as the main
observable instead of the multivariate discriminant. Finally,
limits are set on the coefficients of effective Lagrangian oper-
ators which affect the V H production and the H — bb
decay. Limits are reported for both the variation of a single
operator and also the simultaneous variation of an orthogonal
set of linear combinations of operators to which the analysis
is sensitive.

This update uses 139fb~! of pp collision data col-
lected at a centre-of-mass energy of 13 TeV, to be compared
with 79.8fb~! for the previous result. In addition, several
improvements have been implemented: enhanced object cal-
ibrations, more coherent categorisation between the event
selection and the STXS binning, re-optimised multivariate

! This includes electrons and muons produced from the leptonic decay
of a t-lepton.
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discriminants including the addition of more information,
redefined signal and control regions, a significant increase
in the effective number of simulated events and re-derived
background modelling uncertainties, including using a mul-
tivariate approach to estimate the modelling uncertainty in
the dominant backgrounds. A complementary analysis using
the same final states, but focussing on regions of higher Higgs
boson transverse momentum not accessible using the tech-
niques outlined in this paper, has also been undertaken [36].
The same dataset was used, resulting in some overlap in the
events analysed.

2 The ATLAS detector

ATLAS [37] is a general-purpose particle detector cover-
ing nearly the entire solid angle” around the collision point.
An inner tracking detector, located within a 2 T axial mag-
netic field generated by a thin superconducting solenoid, is
used to measure the trajectories and momenta of charged
particles. The inner layers consist of high-granularity silicon
pixel detectors covering a pseudorapidity range |n| < 2.5,
with an innermost layer [38,39] that was added to the detec-
tor between Run 1 and Run 2. Silicon microstrip detectors
covering |n| < 2.5 are located beyond the pixel detectors.
Outside the microstrip detectors and covering |n| < 2.0,
there are straw-tube tracking detectors, which also provide
measurements of transition radiation that are used in electron
identification.

A calorimeter system surrounds the inner tracking detec-
tor, covering the pseudorapidity range || < 4.9. Within the
region |n| < 3.2, electromagnetic calorimetry is provided by
barrel (|n| < 1.475) and endcap (1.375 < |n| < 3.2) high-
granularity lead/liquid-argon (LAr) sampling calorimeters,
with an additional thin LAr presampler covering |n| < 1.8 to
correct for energy loss in material upstream of the calorime-
ters. Hadronic calorimetry is provided by a steel/scintillator-
tile calorimeter within || < 1.7, and copper/LAr end-
cap calorimeters extend the coverage to |n| = 3.2. The
solid angle coverage for || between 3.2 and 4.9 is com-
pleted with copper/LAr and tungsten/LAr calorimeter mod-

2 ATLAS uses a right-handed coordinate system with its origin at the
nominal interaction point (IP) in the centre of the detector and the z-axis
coinciding with the axis of the beam pipe. The x-axis points from the
IP towards the centre of the LHC ring, and the y-axis points upward.
Cylindrical coordinates (r,¢) are used in the transverse plane, ¢ being
the azimuthal angle around the z-axis. The pseudorapidity is defined in
terms of the polar angle 6 as n = — Intan(6/2). The distance in (1,¢$)
coordinates, AR = /(A¢)? + (An)Z, is also used to define cone sizes.
Rapidity is defined as y = (1/2) In[(E + p;)/(E — p;)], where E is
the energy and p; is the z-component of the momentum. Transverse
momentum and energy are defined as pt = psinf and Et = E sinf,
respectively.
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ules optimised for electromagnetic and hadronic measure-
ments, respectively.

The outermost part of the detector is the muon spec-
trometer, which measures the curved trajectories of muons
in the magnetic field of three large air-core superconduct-
ing toroidal magnets. High-precision tracking is performed
within the range || < 2.7 and there are chambers for fast
triggering within the range |n| < 2.4.

A two-level trigger system [40] is used to reduce the
recorded data rate. The first level is a hardware implemen-
tation aiming to reduce the rate to around 100 kHz, while
the software-based high-level trigger provides the remaining
rate reduction to approximately 1 kHz.

3 Data and simulated event samples

The dataused in this analysis were collected using unprescaled
single-lepton or missing transverse momentum triggers at a
centre-of-mass energy of 13 TeV during the 2015-2018 run-
ning periods. Events are selected for analysis only if they
are of good quality and if all the relevant detector com-
ponents are known to have been in good operating condi-
tion, which corresponds to a total integrated luminosity of
139.0 + 2.4 fb~! [41,42]. The recorded events contain an
average of 34 inelastic pp collisions per bunch-crossing.

Monte Carlo (MC) simulated events are used to model
most of the backgrounds from SM processes and the V H,
H — bb signal processes. A summary of all the generators
used for the simulation of the signal and background pro-
cesses is shown in Table 1. Samples produced with alterna-
tive generators are used to estimate systematic uncertainties
in the event modelling, as described in Sect. 7. The same event
generators as in Ref. [33] are used; however, the number of
simulated events in all samples has been increased by at least
the factor by which the integrated luminosity grew compared
to the previous publication (~ 1.75). In addition, processes
which significantly contributed to the statistical uncertainty
of the background in the previous publication benefited from
a further factor of two increase in the number of simulated
events produced.

All simulated processes are normalised using the most
accurate theoretical cross-section predictions currently avail-
able and were generated to next-to-leading-order (NLO)
accuracy at least, except for the gg — ZH and gg — VV
processes, which were generated at LO. All samples of sim-
ulated events were passed through the ATLAS detector sim-
ulation [43] based on GEANT [44]. The effects of multi-
ple interactions in the same and nearby bunch crossings
(pile-up) were modelled by overlaying minimum-bias events,
simulated using the soft QCD processes of PYTHIA 8.186
[45] with the A3 [46] set of tuned parameters (tune) and
NNPDF2.3LO [47] parton distribution functions (PDF). For

all samples of simulated events, except for those generated
using SHERPA [48], the EVTGEN V1.6.0 program [49] was
used to describe the decays of bottom and charm hadrons.

4 Object and event selection

The event topologies characteristic of VH, H — bb pro-
cesses contain zero, one or two charged leptons, and two ‘b-
jets’ containing particles from b-hadron decays. The object
and event selections broadly follow those of Ref. [33] but with
updates to the definition of the signal and control regions.

4.1 Object reconstruction

Tracks measured in the inner detector are used to reconstruct
interaction vertices [85], of which the one with the highest
sum of squared transverse momenta of associated tracks is
selected as the primary vertex of the hard interaction.

Electrons are reconstructed from topological clusters
of energy deposits in the electromagnetic calorimeter and
matched to a track in the inner detector [86]. Following
Refs. [86,87], loose electrons are required to have pr >
7GeV and |n| < 2.47, to have small impact parameters,3
to fulfil a loose track isolation requirement, and to meet a
‘LooseLH’ quality criterion computed from shower shape,
track quality and track—cluster matching variables. In the 1-
lepton channel, tight electrons are selected using a “TightLH’
likelihood requirement and a calorimeter-based isolation in
addition to the track-based isolation.

Muons are required to be within the acceptance of the
muon spectrometer || < 2.7, to have pt > 7GeV, and
to have small impact parameters. Loose muons are selected
using a ‘loose’ quality criterion [88] and a loose track isola-
tion requirement. In the 1-lepton channel, tight muons fulfil
the ‘medium’ quality criterion and a stricter track isolation
requirement.

Hadronically decaying t-leptons [89,90] are required to
have pr > 20GeV and || < 2.5, to be outside the transi-
tion region between the barrel and endcap electromagnetic
calorimeters 1.37 < |n| < 1.52, and to meet a ‘medium’
quality criterion [90]. Reconstructed hadronic -leptons are
not directly used in the event selection, but are utilised in
the missing transverse momentum calculation and are also
used to avoid double-counting hadronic t-leptons as other
objects.

Jets are reconstructed from the energy in topological clus-
ters of calorimeter cells [91] using the anti-k; algorithm [92]
with radius parameter R = 0.4. Jet cleaning criteria are used

3 Transverse and longitudinal impact parameters are defined relative to
the primary vertex position, where the beam line is used to approximate
the primary vertex position in the transverse plane.
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Table 1 The generators used for the simulation of the signal and background processes. Samples are generated considering decays into all three lepton (£) flavours. If not specified, the order of
the cross-section calculation refers to the expansion in the strong coupling constant («s). The acronyms ME, PS and UE stand for matrix element, parton shower and underlying event, respectively.
(x) The events were generated using the first PDF in the NNPDF3.0NLO set and subsequently reweighted to the PDFALHC15NLO set [50] using the internal algorithm in POWHEG- BOX V2. ()
The NNLO(QCD)+NLO(EW) cross-section calculation for the pp — Z H process includes the gg — ZH contribution. The gg — Z H process is normalised using the cross-section for the
pp — ZH process, after subtracting the gg — Z H contribution. An additional scale factor is applied to the g¢ — V H processes as a function of the transverse momentum of the vector boson,
to account for electroweak (EW) corrections at NLO. This makes use of the V H differential cross-section computed with HAWK [51,52]. Contributions from photon-induced processes are also
included for pp — W H [53]. (i) For the diboson samples the cross-sections are calculated by the Monte Carlo generator at NLO accuracy in QCD

Process ME generator ME PDF PS and Hadronisation UE model tune Cross-section order

Signal, mass set to 125 GeV and bb branching fraction to 58%

qq - WH POWHEG- BOX V2 [54] + NNPDF3.0NLO™ [55] PYTHIA 8.212 [45] AZNLO [56] NNLO(QCD) ™+
— (vbb GOSAM [57] + MINLO [58,59] NLO(EW) [60-66]
qq — ZH POWHEG- BOX V2 + NNPDF3.0NLO®™ PYTHIA 8.212 AZNLO NNLO(QCD) +
— vvbb/0ebb GOSAM + MINLO NLO(EW)
gg — ZH POWHEG- BOX V2 NNPDF3.0NLO®™ PYTHIA 8.212 AZNLO NLO+
— vvbb/0Lbb NLL [67-71]
Top quark, mass set to 172.5 GeV
1t POWHEG- BOX V2 [72] NNPDF3.0NLO PYTHIA 8.230 Al14[73] NNLO+NNLL [74]
s-channel single top POWHEG- Box V2 [75] NNPDF3.0NLO PYTHIA 8.230 Al4 NLO [76]
t-channel single top POWHEG- Box V2 [75] NNPDF3.0NLO PYTHIA 8.230 Al4 NLO [77]
Wt POWHEG- BOX V2 [78] NNPDF3.0NLO PYTHIA 8.230 Al4 Approximate NNLO [79]
Vector boson + jets
W — fv SHERPA 2.2.1 [48,80,81] NNPDF3.0NNLO SHERPA 2.2.1 [82,83] Default NNLO [84]
Z]y* — SHERPA 2.2.1 NNPDF3.0NNLO SHERPA 2.2.1 Default NNLO
Z — vy SHERPA 2.2.1 NNPDF3.0NNLO SHERPA 2.2.1 Default NNLO
Diboson
qq > WW SHERPA 2.2.1 NNPDF3.0NNLO SHERPA 2.2.1 Default NLO®
qq —> WZ SHERPA 2.2.1 NNPDF3.0NNLO SHERPA 2.2.1 Default NLO®
qq — 27 SHERPA 2.2.1 NNPDF3.0NNLO SHERPA 2.2.1 Default NLO®
gg —> VvV SHERPA 2.2.2 NNPDF3.0NNLO SHERPA 2.2.2 Default NLO®

[¥Joposed §LI
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to identify jets arising from non-collision backgrounds or
noise in the calorimeters [93], and events containing such
jets are removed. Jets are required to have pr > 20GeV
in the central region (|n| < 2.5), and pt > 30GeV out-
side the tracker acceptance (2.5 < |n| < 4.5). A jet vertex
tagger [94] is used to remove jets with ptr < 120 GeV and
[n] < 2.5 that are identified as not being associated with
the primary vertex of the hard interaction. Simulated jets
are labelled as b-, c- or light-flavour jets according to which
hadrons with ptr > 5GeV are found within a cone of size
AR = 0.3 around their axis [95]. In the central region, jets
are identified as b-jets (b-tagged) using a multivariate dis-
criminant [95] (MV2), with the selection tuned to produce
an average efficiency of 70% for b-jets in simulated 77 events,
which corresponds to light-flavour (u-, d-, s-quark and gluon)
jet and c-jet misidentification efficiencies of 0.3% and 12.5%
respectively.

Simulated V +jets events are categorised according to the
two b-tagged jets that are required in the event: V + I/ when
they are both light-flavour jets, V + ¢/ when there is one
c-jet and one light-flavour jet, and V + HF (heavy flavour)
in all other cases (which after the b-tagging selection mainly
consist of events with two b-jets).

In practice, b-tagging is not applied directly to simu-
lated events containing light-flavour jets or c-jets, because
the substantial MV2 rejection results in a significant sta-
tistical uncertainty for these background processes. Instead,
all events with c-jets or light-flavour jets are weighted by
the probability that these jets pass the b-tagging require-
ment [87]. This is an expansion of the weighting technique
compared to the previous analysis, where only jets in the
V +11,V + cl and WW processes were treated in this man-
ner. Applying the same treatment to all light-flavour jets and
c-jets significantly increases the number of simulated events
present after the full event selection, reducing the statisti-
cal uncertainty of the V + HF (¢f) background by ~ 65—
75% (~ 25%). When comparing the direct application of
the b-tagging to the weighting technique, differences were
observed in a particular subset of events with a small angular
separation between the jets, but it was verified that this has a
negligible impact on the result.

In addition to the standard jet energy scale calibration [96],
b-tagged jets receive additional flavour-specific corrections
to improve their energy measurement (scale and resolution):
if any muons are found within a pr-dependent cone around
the jet axis, the four-momentum of the closest muon is added
to that of the jet. In addition, a residual correction is applied
to equalise the response to jets with leptonic or hadronic
decays of heavy-flavour hadrons and to correct for resolu-
tion effects. This improves the resolution of the dijet mass
by up to ~ 20% [87]. Alternatively, in the 2-lepton chan-
nel for events with two or three jets, a per-event kinematic
likelihood uses the complete reconstruction of all final-state

objects to improve the estimate of the energy of the b-jets.
This improves the resolution of the dijet mass by up to
~ 40%.

The missing transverse momentum, E?iss, is recon-
structed as the negative vector sum of the transverse momenta
of leptons, photons, hadronically decaying 7-leptons and
jets, and a ‘soft-term’, p?lSS’St. The soft-term is calculated
as the vectorial sum of the pt of tracks matched to the pri-
mary vertex but not associated with a reconstructed lepton
or jet [97]. The magnitude of ES is referred to as EMISS,
The track-based missing transverse momentum, p?iss, is cal-
culated using only tracks reconstructed in the inner tracking
detector and matched to the primary vertex.

An overlap removal procedure is applied to avoid any
double-counting between leptons, including hadronically

decaying t-leptons, and jets.
4.2 Event selection and categorisation

Events are categorised into O-, 1- and 2-lepton channels
(referred to as the n-lepton channels) depending on the num-
ber of selected electrons and muons, to target the ZH —
vvbb, WH — ¢vbb and ZH — €Lbb signatures, respec-
tively. In all channels, events are required to have exactly two
b-tagged jets, which form the Higgs boson candidate. At least
one b-tagged jet is required to have pr greater than 45 GeV.
Events are further split into 2-jet or 3-jet categories, where
the 3-jet category includes events with one or more untagged
jets. In the O- and 1-lepton channels, only one untagged jet
is allowed, as the 77 background is much larger in events
with four jets or more. In the 2-lepton channel any number
of untagged jets are accepted in the 3-jet category (referred
to as the > 3-jet category when discussing only the 2-lepton
channel), which increases the signal acceptance in this cate-
gory by 100%.

The reconstructed transverse momentum of the vector
boson, p¥ , corresponds to E‘T’fliss in the O-lepton channel,
the vectorial sum of E%ﬁss and the charged-lepton trans-
verse momentum in the 1-lepton channel, and the transverse
momentum of the 2-lepton system in the 2-lepton channel.
Since the signal-to-background ratio increases for large p¥
values [98,99], the analysis focuses on two high- p¥ regions
defined as 150 GeV < pf < 250GeV and py > 250 GeV.
In the 2-lepton channel, an additional fiducial measurement
region is studied via the inclusion of a medium- p¥ region
with 75GeV < p{ < 150 GeV.

The event selection for the three lepton channels is out-
lined in Table 2 with details provided below.

0-lepton channel The online selection uses E‘Tniss triggers
with thresholds that varied from 70 GeV to 110 GeV between
the 2015 and 2018 data-taking periods. Their efficiency is
measured in W+jets, Z+jets and 7 events using single-muon

@ Springer
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Table 2 Summary of the event selection and categorisation in the 0-, 1- and 2-lepton channels

Selection 0-lepton 1-lepton 2-lepton

e sub-channel 1 sub-channel
Trigger E-‘l?iss Single lepton E-‘rniss Single lepton
Leptons 0 loose leptons Exactly 1 tight electron Exactly 1 tight muon Exactly 2 loose leptons

0 additional loose leptons 0 additional loose leptons pt > 27 GeV

pt > 27 GeV pt > 25 GeV Same-flavour

Opposite-sign charges ()
Emiss > 150 GeV > 30 GeV - -
mey - - - 81 GeV < myy < 101 GeV
Jet pr > 20 GeV for |n| < 2.5
> 30 GeV for 2.5 < |n| < 4.5

b-jets Exactly 2 b-tagged jets
Leading b-tagged jet pr > 45 GeV
Jet categories Exactly 2/Exactly 3 jets Exactly 2/Exactly 3 jets Exactly 2/> 3 jets

Hry

min[Ag (EFSS, jets)]
A¢(EXSS, bb)

A¢ (b1, b2)
AG(ET™, p™)

> 120 GeV (2 jets), >150 GeV (3 jets)

> 20° (2 jets), > 30° (3 jets)
> 120°

< 140°

< 90°

p¥ regions

150 GeV < pY < 250 GeV
pY > 250 GeV

150 GeV < pf < 250 GeV

p¥ > 250 GeV

75 GeV < py < 150 GeV
150 GeV < py <250 GeV
p¥ > 250 GeV

Signal regions

AR(b1, by) signal selection

Control regions

High and low AR (b1, by) side-bands

1730 9aded §LI
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triggered data, which effectively selects events with large
trigger-level E‘Tmss values as muons are not included in the
trigger ETmiss calculation. The resulting trigger correction fac-
tors that are applied to the simulated events range from 0.95 at
the offline E%‘iss threshold of 150 GeV to a negligible devia-
tion from unity at E%“iss values above 200 GeV. A requirement
on the scalar sum of the transverse momenta of the jets, Hr,
removes a small part of the phase space (less than 1%) where
the trigger efficiency depends mildly on the number of jets
in the event. Events with any loose lepton are rejected. High
E{Piss in multi-jet events typically arises from mismeasured
jets in the calorimeters. Such events are efficiently removed
by requirements on the angular separation of the E ?iss, jets,
and p?iss.

1-lepton channel In the electron sub-channel, events are
required to satisfy a logical OR of single-electron trig-
gers with pr thresholds that started at 24 GeV in 2015 and
increased to 26 GeV in 2016-2018.* The muon sub-channel
uses the same E?iss triggers and correction factors as the
O-lepton channel. As these triggers effectively select on p¥ ,
given that muons are not included in the trigger E%‘iss cal-
culation, they perform more efficiently than the single-muon
triggers in the analysis phase space, which have a lower effi-
ciency due to the more limited coverage of the muon trig-
ger system in the central region. Events are required to have
exactly one tight muon with pt>25 GeV or one tight electron
with pt >27 GeV and no additional loose leptons. In the elec-
tron sub-channel an additional selection of E%‘iss > 30 GeV
is applied to reduce the background from multi-jet produc-
tion.

2-lepton channel The trigger selection in the electron sub-
channel is the same as in the 1-lepton channel. In the muon
sub-channel, an OR of single-muon triggers is used, with
lowest pt thresholds increasing from 2016-2018 and ranging
from 20 GeV to 26 GeV. Events must have exactly two same-
flavour loose leptons, one of which must have pt > 27 GeV,
and the invariant mass of the lepton pair must be close to the
Z boson mass. In dimuon events, the two muons are required
to have opposite-sign charge. This is not used in the electron
sub-channel, where the charge misidentification rate is not
negligible.

Signal and control regions The three n-lepton channels, two
jet categories and two (O-lepton, 1-lepton) or three (2-lepton)
p¥ regions result in a total of 14 analysis regions. Each anal-
ysis region is further split into a signal region (SR) and two
control regions (CRs), resulting in a total of 42 regions. The

4 Additional identification and isolation requirements are applied to the
trigger object to allow a low pr threshold to be maintained throughout
Run 2.

ATLAS Simulation

Vs =13 TeV, 139 fb’’

1 lepton, 2 jet, 2 b-tags
qq — WH — Ivbb

High AR CR

450 500
py [GeV]
ATLAS Simulation 3
Vs =13 TeV, 139 fb’ >
1 lepton, 3 jet, 2 b;tags
qq — WH — Ivbb 0.4
High AR CR
0.2

SR

Low AR CR

0

450 500
Py [GeV]

Fig. 1 The signal yield distribution of the AR between the two b-
tagged jets, AR(b1, b>), as a function of p¥ in the 1-lepton channel for
2-b-tag events, in the 2-jet (top) and exactly 3-jet (bottom) categories
in the high- p¥ region. The lines demonstrate the continuous lower and
upper selection on AR(b1, b>) used to categorise the events into the
signal and control regions

Table 3 The cross-section (o) times branching fraction (B) and accep-
tance obtained from the simulated signal samples for the three channels
at/s = 13 TeV. The gq- and gg-initiated Z H processes are shown sep-
arately. The branching fractions are calculated considering only decays
into muons and electrons for Z — ¢¢ and decays into all three lepton
flavours for W — ¢v. The acceptance is calculated as the fraction of
events remaining in the combined signal and control regions after the
full event selection

Process o x B [fb]  Acceptance [%]

O-lepton  1-lepton  2-lepton
qq — ZH — (ebb 299 <0.1 0.2 6.4
g8 — ZH — ttbb 48 <0.1 0.3 14.5
gq — WH — Cvbb 269.0 0.2 1.1 -
qq — ZH — vvbb 89.1 1.9 - -
g8 — ZH — vvbb 143 3.5 - -

CRs are enriched in either V + HF or ¢ events and defined
using a continuous selection on the AR between the two
b-tagged jets, AR(b1, b>), as a function of p¥ , with the b-
tagged jets labelled in decreasing pt as by and by. A lower
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Table 4 The simplified template cross-section regions used for mea-
surements and the corresponding reconstructed analysis regions that are
most sensitive. The current analysis is not sensitive to the regions W H,
1)]{-‘/’t < 150 GeV and ZH, p%’t < 75 GeV, and their cross-sections
are fixed to the SM prediction within their theoretical uncertainties. All
leptonic decays of the weak gauge bosons (including Z — vt and
W — tv, which are extrapolated from the electron and muon channel
measurements) are considered for the STXS definition

STXS region

Corresponding reconstructed analysis regions

Process p¥ "' interval Number of p¥ interval Number
(GeV) leptons (GeV) of jets
WH 150-250 1 150-250 2,3
WH > 250 1 > 250 2,3
ZH 75-150 2 75-150 2,>3
ZH 150-250 0 150-250 2,3
2 150-250 2,>3
ZH > 250 0 > 250 2,3
2 > 250 2,>3

and upper requirement on AR(by, by) is applied, creating
two CRs, referred to as the low and high AR CRs, shown in
Fig. 1. In the 1-lepton channel, the high AR selection was
tuned such that the SR and low AR CR contain 95% (85%)
of the signal in the 2-jet (3-jet) categories, whilst the low
AR selection was tuned such that the SR contains 90% of
the diboson yield, to ensure that a sufficient number of these
events remain when conducting the diboson validation anal-
ysis. The same AR selection is applied in all three n-lepton
channels and keeps over 93% of the signal in the 2-jet cate-
gories and over 81% (68%) of the signal in the 3-jet (> 3-jet)
categories.”

The acceptances in the three n-lepton channels after the
event selection, as well as the predicted cross-sections times
branching fractions for (W/Z)H with W — fv, Z — £,
Z — vv, and H — bb are given in Table 3. The non-
negligible acceptance for the gg — W H process in the 0-
lepton channel is mostly due to events with a hadronically
decaying t-lepton produced in the W decay, which are not
explicitly vetoed and which could also be misidentified as a
jet or subsequently decay to a low- pt electron or muon that
fails to satisfy the selection criteria. The larger acceptance
for the gg — Z H process compared with g¢g — Z H is due
to the harder p¥ spectrum of the gluon-induced process.

4.3 Simplified template cross-section categories

Cross-section measurements are conducted in the reduced
VH,V — leptons stage-1.2 STXS region scheme [100, 101]

5 Although the higher jet multiplicity categories have a lower signal
efficiency than the 2-jet categories, any reduction in the sensitivity in
these categories is less than 5%.
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described in Ref. [35] and summarised in Table 4. In this
scheme, gqg — ZH and gg — ZH are treated as a single
Z H process, since there is currently not enough sensitivity
to distinguish between them. The expected signal distribu-
tions and acceptance times efficiencies for each STXS region
are estimated from the simulated signal samples by selecting
events using information from the generator’s ‘truth’ record,
in particular the truth p¥ , denoted by p¥ *'. The signal yield
in each reconstructed-event category for each STXS region
is shown in Fig. 2a, with the corresponding fraction of signal
events shown in Fig. 2b. The key improvement compared to
the previous publication is the addition of a reconstructed-
event category with p¥ > 250 GeV. This region is more
aligned with the STXS regions and significantly reduces the
correlation between the STXS measurements in the two high-
est p¥ "' bins. The acceptance times efficiency for W H events
with py>" < 150 GeV or ZH events with p7"" < 75 GeV
is at the level of 0.1% or smaller. Given the lack of sensitiv-
ity to these regions, the signal cross-section in these regions
is constrained to the SM prediction, within the theoretical
uncertainties. These regions contribute only marginally to
the selected event sample and the impact on the final results
is negligible.

5 Multivariate discriminants

A multivariate discriminant is used to improve the sensi-
tivity of the analysis. Two sets of boosted decision trees
(BDTs) are trained using the same input variables. A nom-
inal set, referred to as BDTyy, is designed to discrimi-
nate the V H signal from the background processes. A sec-
ond set, referred to as BDTy z, which aims to separate the
VZ,Z — bb diboson process from the V H signal and other
background processes, is used to validate the V H analysis.
In each set, BDTs are trained in eight regions, obtained by
merging some of the 14 analysis regions. In particular, the
150GeV < pl‘f < 250GeV and p¥ > 250 GeV analysis
regions in each lepton channel and jet category are merged
for the training, as no increase in sensitivity was found when
undertaking separate trainings in the two regions. The out-
puts of the BDTs, evaluated in each signal region, are used
as final discriminating variables.

The BDT input variables used in the three lepton channels
are detailed in Table 5. The separation of two b-tagged jets in
pseudorapidity is denoted by | An (b1, bz)|. In 3-jet events, the
third jet is labelled as jetz and the mass of the 3-jet system is
denoted myp;. The azimuthal angle between the vector boson
and the system of the Higgs boson candidate formed from
the two b-tagged jets is denoted A¢(V, bb), and their pseu-
dorapidity separation is denoted An(V, bb). In the O-lepton
channel, mf is defined as the scalar sum of the transverse
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Fig. 2 For each of the STXS (a)
regions, a the predicted signal ATLAS Simulation fs =13 TeV, 139 fi’
eventyield for VH, 2lep, > 3jets, p’ > 250 GeV 08 | 248 120 2
V — leptons, H — bb events 2 len. 2 iets 5) 250 Gev [ - GC.)
of each reconstructed-analysis . P, 21888, pg L 03 102 | Lﬁ
region (y-axis) for each STXS 2lep, 2 3 jets, 150 < p|' < 250 GeV | 16 | 748 12 100
signal region (x-axis); b the 2lep, 2 jets, 150 < P\T’ <250 GeV | 0.8 34.1 05 |
predicted fraction of signal 2lep, > 3jets, 75 < p/ < 150 GeV 1.3 - 29
events passing all selection 2 lep, 2 jets, 75 < ;)T/ <150 GeV | 0.9 79.2 1.4 10180
criteria (in pzrcent) in every 0lep, 3 jets, p¥ > 250 GeV : 0.4 6.4 36 205 :
reconstructed-event category 0lep, 2 jets, p/ > 250 GeV 03 - oY . —60
(y-axis) from each STXS signal 0lep. 3 iets. 150 < g <250 Gev | -
region (x-axis). Entries with P, 3Je1s, P V| 28 228 7.5 12.7 - 10.0 |
event yield below 0.1 or signal Olep, 2jets, 150 < pf <250 GeV | 21 228 841 1.1 (860 11.1 | —40
fractions below 0.1% are not 1lep, 3 jets, p > 250 GeV | 49 467 0.1 0.9 |
shown 1 lep, 2 jets, p¥ >250 GeV | 3.8 495 06 | —lop
Tlep, 3jets, 150 <p' <250 GeV | 16.3 [HNAN 13.6 07 35 1.1 ]
Tlep, 2jets, 150 <p’ <250 GeV | 12.8 [HOIBN 15.4 04 24 06 B
W, W, 77 2 2 2 2
HDW'<7H 75 vplzv, rw>:pr2r<7ﬁ 75< H750v Z r 320
50 G‘el/ S <-25 50 Gel/ Ge|/ r < 750 G rl/ T250 G I/Gev
(b)
ATLAS Simulation Vs =13 TeV _
2 lep,> 3 jets, p¥ > 250 GeV 3.3 X
ots. o r 90 =
2 lep, 2 jets, p¥ > 250 GeV 3.2 c
2lep,> 3jets, 150 < p! <250 GeV/ | 20 GG 15 | 80 %
2lep, 2 ets, 150 < p/ <250 GeV | 24 NG 14 | 70 8
21ep,> 3 jets, 75 < p/ < 150 GeV/ | 10 o 22 | “_(;
2 lep, 2 jets, 75<pT’<150GeV_ 1.1 - 1.7 — 60 g)
0 lep, 3 jets, p¥ > 250 GeV 11 16.1 9.0 —50 n
0 lep, 2 jets, p\T’ >250 GeV | 0.8 175 6.5
Olep, 3jets, 150 <P/ <250GeV[ 19 152 50 85 627" 67 | —140
Olep, 2jets, 150 <P/ <250 GeV | 1.4 15.1 5.3 74 | 634 74 | —30
llep, 3jets, p! >250GeV | 0.1 9.2 |NEEIEM 01 17 || 20
1lep, 2 jets, p > 250 GeV | 7.1 R 0.1 1.1 ]
1lep, 3 jets, 150 < p¥ <250GeV| 111 - 9.3 0.5 2.4 0.8 —10
. Vv [ N
Tlep, 2jets, 150 <p/ <250 GeV | 8.4 - 10.2 0.3 16 0.4 ]
Wi,y W 150 W, B p e s e 2K pa

momenta of all jets and the E%liss (meff = Hr+ Efllliss). In the
1-lepton channel, the angle between the lepton and the closest
b-tagged jet in the transverse plane is denoted min(A¢ (€, b))

and two variables are used to improve the rejection of the 17

background: the rapidity difference between the W and Higgs
boson candidates, |Ay(V, bb)| and, assuming that the event
is t1, the reconstructed top quark mass, np. The latter is cal-
culated as the invariant mass of the lepton, the reconstructed
neutrino and the b-tagged jet that yields the lower mass value.
For both variables, the transverse component of the neu-
trino momentum is identified with E %‘iss ,and the longitudinal
component is obtained by applying a W-mass constraint to
the lepton—neutrino system. The variable E‘Tniss /~/ST, where
St is the scalar sum of transverse momenta of the charged
leptons and jets in the event, is defined for use in the 2-lepton
channel.

T Slsg . ST 22507 S75G 0 P31 0 pa 25
G, < G, ey T 159 < Ge
el T 250 I/el/ 0Gg ol 250G ol 14

In addition to the above, which were all used in the previ-
ous iteration of the analysis [33], the following variables are
also input to the BDTs:

e Binned MV2 b-tagging discriminant: The MV2 discrim-
inant for the two b-tagged jets is input to the BDT. The
MV2 discriminant is grouped into two bins correspond-
ing to efficiencies of 0-60% and 60-70%, which are
calibrated to data [95,102,103]. This variable provides
additional rejection against backgrounds where a c-jet or
light-flavour jet has been misidentified as a b-jet, espe-
cially W — cq in the 1 and Wt backgrounds. This
improves the sensitivity in the 1-lepton (O-lepton) chan-
nel by ~ 10% (~ 7%). The binned MV2 discriminant
does not provide any additional sensitivity in the 2-lepton
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Table 5 Variables used for the multivariate discriminant in each of the
channels, where the x symbol indicates the inclusion of a variable

Variable 0-lepton 1-lepton 2-lepton

mpp
AR(by, ba)

X

X
X

by
Pr X
Py x
pTV = E_rrniss
A¢(V, bb)
MV2(by)
MV2(by)
[An (b1, b2)|

Meff

miss, st
T

E%‘i“
min[A¢ (£, b)]

w
mry

[Ay(V, bb)|

X X X X X X X
X X X X X

X X X X X

Myop

[An(V, bb)|
EP /5T
Mg
cosO(~, Z)

X X X X

Only in 3-jet events

Jets

Pr
Mppj X X

X

channel, where the backgrounds are dominated by pro-
cesses containing two b-jets. ‘

e Magnitude of the track-based EM' soft-term, p' iss.st,
In the O-lepton channel this provides additional rejection
against the ¢7 background, which may contain unrecon-
structed objects, such as leptons or b-jets, due to kine-
matic and detector acceptance. The presence of such
objects in an event will result in a larger p%l SSSUfor tf
events than for signal events. This improves the sensitiv-
ity in the O-lepton channel by ~ 2%-3%.

e Z boson polarisation, cos 0 (£, Z): The cos0 (€™, Z) is
calculated as the cosine of the polar angle between the
lepton (£7) direction in the Z rest frame and the flight
direction of the Z boson in the laboratory frame. The
Z bosons from the ZH signal process are expected to
have a different polarisation compared to those from the
dominant Z+jets background [104], which provides addi-
tional background rejection in the 2-lepton channel. This
improves the sensitivity in the 2-lepton channel by ~ 7%.

The distributions of all input variables of the BDTs are
compared between data and simulation, and good agree-
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ment is found within the uncertainties. The same training
procedures and BDT output binning transformation as those
detailed in Ref. [33] are used, with the exception that the
training algorithm was updated to use gradient boosting in
the TMVA [105] framework.

6 Background modelling

The simulated event samples summarised in Sect. 3 are used
to model all background processes, except for the 77 back-
ground in the 2-lepton channel® and the multi-jet background
in the 1-lepton channel, which are both estimated using data-
driven techniques, as discussed below.

6.1 Data-driven ¢7 background estimation

In the 2-lepton channel a high-purity control region, over
99% pure in tf and single-top-quark Wt events (jointly
referred to as the top background), is defined using the nom-
inal event selection, but replacing the same-flavour lepton
selection with a requirement of exactly one electron and one
muon. This region is referred to as the ep-control region,
e-CR. As these top background events typically contain
two W bosons which decay into leptons, they are symmetric
in lepton flavour. The events in the ep-CR are directly used
to model the shape and normalisation of the same-flavour
lepton top background in the nominal selection. Any bias
caused from the lepton trigger, reconstruction, identification
or acceptance, is determined by comparing the yield of sim-
ulated top background events in the nominal selection with
that in the et control region. No significant bias in the shape
or normalisation is observed for any of the important kine-
matic variables, including the BDT discriminant. A ratio of
the top yield in the analysis region to that in the ex-CR of
1.00+0.01 (1.01£0.01) is determined using simulation, for
the 2-jet (> 3-jet) region, where the uncertainty in the ratio is
the statistical uncertainty resulting from the simulated sam-
ples. As no evaluated theoretical or experimental uncertain-
ties create any bias beyond the statistical uncertainty of the
ratio, the latter is assigned as an extrapolation uncertainty.
This method has the advantage that all the experimental and
theoretical uncertainties are eliminated, resulting in the data
statistics in the ex-CR becoming the dominant uncertainty
source for the data-driven top background estimate.

6.2 Multi-jet background estimation

Multi-jet (MJ) event production has a large cross-section and
thus, despite not being a source of genuine missing transverse

© The 7 background in the 2-lepton channel was modelled using sim-
ulated event samples in the previous publication [33].



Eur. Phys. J. C (2021) 81:178

Page 11 of 41 178

momentum or prompt leptons, has the potential to contribute
anon-negligible amount of background. Using the same tech-
niques detailed in Ref. [33], the MJ background was demon-
strated to be negligible in both the 0- and 2-lepton channels.
In the 1-lepton channel, the MJ background is reduced to
the percent level and is predicted using the same method
as described in Ref. [33] with minor changes to account
for the use of the MV2(b;) variables in the BDT. The MJ
background is modelled from data in an MJ-enriched con-
trol region (MJ-CR), from which all simulated backgrounds
are subtracted. The MJ-CR is defined by applying the nom-
inal event selection, except for the stricter lepton isolation
requirement, which is inverted. The requirement on the num-
ber of b-tagged jets is relaxed from two (2-b-tag MJ-CR) to
one (1-b-tag MJ-CR) to increase the statistical precision. To
correctly estimate the 2-b-tag MJ BDT shape, the values of
both the MV2(b1) and MV2(by) BDT input variables in the
1-b-tag events, are replaced with values emulated from a joint
MV2(b) and MV2(b;) probability distribution derived from
the 2-b-tag MJ-CR. The normalisation of the MJ background
is then determined from a template fit to the m‘T’V distribution
after applying the nominal selection with a 2-b-tag require-
ment, using the MJ shape predicted from the 1-b-tag MJ-CR
and the shapes of the other backgrounds from simulation.

7 Systematic uncertainties

The sources of systematic uncertainty can be broadly divided
into three groups: those of an experimental nature, those
related to the modelling of the backgrounds and those associ-
ated with the Higgs boson signal simulation. The estimation
of the uncertainties closely follows the methodology outlined
in Refs. [35,87] and is briefly summarised below.

7.1 Experimental uncertainties

The dominant experimental uncertainties originate from the
b-tagging correction factors, jet energy scale calibration and
the modelling of the jet energy resolution. The b-tagging
correction factors, determined from the difference between
the efficiencies measured in data and simulation, are eval-
uated in five MV2 discriminant bins and are derived sepa-
rately for b-jets, c-jets and light-flavour jets [95,102,103].
All of the correction factors for the three jet flavours have
uncertainties estimated from multiple measurements, which
are decomposed into uncorrelated components that are then
treated independently. The uncertainties in the jet energy
scale and resolution are based on their respective measure-
ments [96,106].

Uncertainties in the reconstruction, identification, isola-
tion and trigger efficiencies of muons [88] and electrons [107]
are considered, along with the uncertainty in their energy

scale and resolution. These are found to have only a small
impact on the result. The uncertainties in the energy scale
and resolution of the jets and leptons are propagated to the
calculation of E%liss, which also has additional uncertainties
from the modelling of the underlying event and momentum
scale, momentum resolution and reconstruction efficiency
of the tracks used to compute the soft-term [97,108]. An
uncertainty is assigned to the E‘T‘fliSS trigger correction fac-
tors, determined from the ratio of the trigger efficiency in data
and simulation, to account for the statistical uncertainty in the
measured correction factors and for differences between the
correction factors determined from W + jets, Z + jets and
¢ events. The uncertainty in the combined 2015-2018 inte-
grated luminosity is 1.7%. It is derived following a methodol-
ogy similar to that detailed in Ref. [4 1], and using the LUCID-
2 detector for the baseline luminosity measurements [42].
The average number of interactions per bunch crossing in the
simulation is rescaled by 1.03 to improve agreement between
simulation and data, based on the measurement of the visible
cross-section in minimum-bias events [109], and an uncer-
tainty, as large as the correction, is included.

7.2 Background uncertainties

Modelling uncertainties are derived for the simulated sam-
ples and broadly cover three areas: normalisations (referred
to as normalisation uncertainties), acceptance differences
that affect the relative normalisations between regions with
a common underlying normalisation (referred to as relative
acceptance uncertainties), and the shapes of the differential
distributions of the kinematic variables (referred to as shape
uncertainties).

The overall cross-sections and associated normalisation
uncertainties for the background processes are taken from the
currently most accurate calculations as detailed in Table 1,
apart from the main backgrounds (Z + HF, W + HF, t7)
whose normalisations are left unconstrained (floated) in the
global likelihood fit.

The relative acceptance and shape uncertainties are
derived from either particle-level or reconstruction-level
comparisons between nominal and alternative simulated
samples, or from comparisons with data in control regions.
The alternative samples are produced either by different gen-
erators or by altering the nominal generator’s parameter val-
ues. When relative acceptance uncertainties are estimated,
the nominal and alternative samples are normalised using the
same production cross-section. Shape uncertainties are esti-
mated within a signal region, an analysis region or a set of
analysis regions, depending on the distribution being varied,
with the nominal and alternative samples scaled to have the
same normalisation in the studied area. Shape uncertainties
over regions with different acceptance, can affect not only
the shape, but also cause event migration between regions
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(referred to as a shape plus migration uncertainty) as opposed
to an uncertainty that only alters the shape within a single SR
(referred to as just a shape uncertainty). Unless stated oth-
erwise, the uncertainty is taken from the alternative sample
that differs most in shape from the nominal sample.

Shape uncertainties for Z + HF, single-top and diboson
backgrounds are derived for the mj;, and p¥ variables, as
it was found sufficient to consider the changes induced in
these variables to cover the overall shape variation of the
BDT discriminant. For W + HF and ¢7 backgrounds, a more
sophisticated multidimensional parameterisation method is
introduced to estimate the shape uncertainties of the final dis-
criminant [110]. In this method, a BDT (referred to as BDTy)
is trained to discriminate the nominal sample from an alterna-
tive sample, using the kinematic variables from the BDTy gy
(Table 5) as input variables, except for the p¥ . Before train-
ing, the p¥ distribution of the nominal sample is reweighted
to match that of the alternative sample. The p¥ difference is
considered as a separate, uncorrelated uncertainty, in a man-
ner similar to that for the other backgrounds. The ratio of the
BDTj distributions evaluated for the alternative and nomi-
nal samples provide a reweighting function (referred to as
Rppr), which can be used to correct the nominal sample to
match the alternative sample. This method simultaneously
maps the n-dimensional space formed by the kinematic vari-
ables of the two generators onto each other. It is verified that,
after being reweighted by Rppr, the input variable distri-
butions for the nominal sample are in good agreement with
those of the alternative sample.

The systematic uncertainties affecting the modelling of the
background samples are summarised in Tables 6 and 7, and
key details of the treatment of the backgrounds are reported
below.

V+jets production The V 4 jets backgrounds are sub-
divided into three different components based upon the jet
flavour labels of the two b-tagged jets in the event. The main
background contributions (V +bb, V+bc, V+bl and V 4-cc)
are jointly considered as the V 4+HF background. Their over-
all normalisations are free to float in the global likelihood fit,
separately in the 2- and 3-jet categories. For the Z +HF back-
ground, the normalisations are also floated separately in the
75 GeV < p¥ < 150 GeV and p¥ > 150 GeV regions. The
remaining flavour components, V + ¢/ and V + 11, constitute
less than ~ 1% of the background in each analysis region
and only normalisation uncertainties are included.

Uncertainties are estimated for the relative normalisa-
tion of the four heavy-flavour components that constitute the
V + HF background. These are taken as uncertainties in the
bc, cc and bl yields compared with the dominant bb yield and
are estimated separately in each lepton channel in a manner
similar to the acceptance systematic uncertainties. Relative
acceptance uncertainties for the W +HF background are esti-
mated for the ratio of the event yield in the O-lepton channel
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to that in the 1-lepton channel. For the Z + HF background,
there is a relative acceptance uncertainty in the ratio of the
event yield in the O-lepton channel to that in the 2-lepton
channel in the pl‘f > 150 GeV region. For both W + HF and
Z + HF, relative acceptance uncertainties are estimated for
the ratio of the event yield in the SR to that in the CRs.

For Z + HF, shape uncertainties are derived for m; and
p¥ , which are evaluated from comparisons with data in the
mpp side-bands (mpp < 80 GeV or mpp> 140 GeV), after
subtracting backgrounds other than Z + jets. For W + HF,
uncertainties are derived for p¥ and the Rgpt method from
comparisons of the nominal sample (SHERPA) with an alter-
native sample (MADGRAPHS5_aMC@NLO+PYTHIA 8 [111,
112]).

tt production In the 0- and 1-lepton channels (jointly
referred to as 0+1-lepton channel) separate floating normal-
isations are used for the 2-jet region and 3-jet region. Uncer-
tainties are derived from comparisons between the nominal
sample (POWHEG+PYTHIA 8) and alternative samples cor-
responding to matrix-element (MADGRAPH5_aMC@NLO+
PYTHIA 8) and parton-shower (POWHEG+HERWIG 7 [113])
generator variations.

Relative acceptance uncertainties are estimated for the 0-
lepton and 1-lepton channel normalisation ratios. The dom-
inant flavour component of the two b-tagged jets in ¢7 is
bb. However, there is a sizeable bhc component which has a
more signal-like topology. Uncertainties in the relative com-
position of three components, bb, bc, and any other flavour
configuration (referred to as ‘other’) are estimated from the
difference in the ratio of the bc or other components to the bb
yield between the nominal sample and the alternative matrix
element and parton shower generator samples. Shape uncer-
tainties are derived for p¥ and using the RgpT method in the
0+1-lepton channels from comparisons with the alternative
parton shower and matrix element generator samples.

In the 2-lepton channel the 7 background is estimated by a
data-driven method as discussed in Sect. 6.1. The uncertainty
in this background is dominated by the statistical uncertainty
of the e control region data events.

Single-top-quark production In the W¢- and ¢-channels,
uncertainties are derived for the normalisation, relative
acceptance and shapes of the my;, and p¥ distributions. For
the Wt-channel, the estimated modelling uncertainties are
applied independently according to the flavour of the two b-
tagged jets, due to the different regions of phase space being
probed when there are two b-jets (bb) present compared with
events where there are fewer b-jets present (referred to as
‘other’). Those uncertainties are evaluated from comparisons
between the nominal sample (POWHEG+PYTHIA 8 using the
diagram removal scheme [114]) and alternative samples with
parton-shower variations (POWHEG+HERWIG++) and a dif-
ferent scheme to account for the interference between Wt
and 7 production (POWHEG+PYTHIA 8 using the diagram
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Table 6 Summary of the
systematic uncertainties in the
background modelling for

Z +jets, W + jets, 11,
single-top-quark and multi-jet
production. ‘ME’ indicates a
matrix element generator
variation and ‘PS’ indicates a
parton shower generator
variation. An ‘M+S’ symbol is
used when a shape uncertainty
includes a migration effect that
allows relative acceptance
changes between regions, whilst
‘S’ indicates that the uncertainty
only acts upon the shape in the
signal region. Instances where
an uncertainty is considered
independently in different
regions are detailed in
parentheses. Where the size of
an acceptance systematic
uncertainty varies between
regions, a range is displayed

Z + jets

Z + Il normalisation
Z + cl normalisation

Z + HF normalisation

Z + bc-to-Z + bb ratio
Z + cc-to-Z + bb ratio
Z + bl-to-Z + bb ratio
SR-to-low AR CR ratio
SR-to-high AR CR
0-to-2 lepton ratio

18%
23%

Floating (2-jet, 3-jet) x
(75GeV < pY < 150GeV, pY > 150 GeV)

30-40%

13-16%

20-28%

3.8-9.9% (75GeV < py < 150GeV, py > 150GeV)
2.7-4.1% (75GeV < p¥ < 150GeV, pt > 150 GeV)
7%

j24 M+S (75GeV < p¥ < 150GeV, py > 150 GeV)
m S (75GeV < py < 150GeV, pf > 150GeV)
W + jets

W + 1] normalisation

W + ¢l normalisation

W + HF normalisation
W + bc-to-W + bb ratio
W + cc-to-W + bb ratio
W + bl-to-W + bb ratio
SR-to-CR ratio

0-to-1 lepton ratio

24

Rgpr

32%

37%

Floating (2-jet, 3-jet)

15% (0-lepton) and 30% (1-lepton)
10% (0-lepton) and 30% (1-lepton)
26% (0-lepton) and 23% (1-lepton)
3.6-15%

5%

M+S (2-jet, 3-jet)

S

tf (0+1-lepton channels only)

tf normalisation

0-to-1 lepton ratio

t (flavour composition) bc-to-bb ratio (ME)
t1 (flavour composition) bc-to-bb ratio (PS)

t1 (flavour composition) other-to-bb ratio (ME)
t1 (flavour composition) other-to-bb ratio (PS)
24

Rppr ME variation

Rgpr PS variation

Floating (2-jet, 3-jet)

8%

7.6-8.2% (0-lepton), 1.3-3.8% (1-lepton)
2.1-3.2% (0-lepton), 1.5-7.1% (1-lepton)
2.8-6.4% (0-lepton), 3.3-5.7% (1-lepton)
5.6—13% (0-lepton), 0.3-2.1% (1-lepton)
M+S (2-jet, 3-jet)

M+S (2-jet, 3-jet)

M+S (0-lepton, 1-lepton)

Single top quark

Cross-section
Acceptance 2-jet
Acceptance 3-jet
Mpp

Pr

4.6% (s-channel), 4.4% (t-channel), 6.2% (Wt)
17% (t-channel), 55% (Wt (bb)), 24% (Wt (other))
20% (t-channel), 51% (Wt (bb)), 21% (Wt (other))
M+S (t-channel, Wt (bb), Wt (other))

M+S (t-channel, Wt (bb), Wt (other))

Multi-jet (1-lepton)

Normalisation
BDT template

30-200% (2-jet), 100% (3-jet)
M+S
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Table 7 Summary of the systematic uncertainties in the back-
ground modelling for diboson production. ‘PS/UE’ indicates parton
shower/underlying event. An ‘M+S’ symbol is used when a shape uncer-
tainty includes a migration effect that allows relative acceptance changes
between regions. Instances where an uncertainty is considered indepen-
dently in different regions are detailed in parentheses. When extracting
the (W/Z)Z diboson production signal yield, as the normalisations are
unconstrained, the normalisation uncertainties are removed. Where the
size of an acceptance systematic uncertainty varies between regions, a
range is displayed

zZ
Normalisation 20%
0-to-2 lepton ratio 6%

10-18%

Acceptance from PS/UE variations 6%
for 2 or more jets

Acceptance from PS/UE variations 7% (0-lepton), 3% (2-lepton)

Acceptance from scale variations

Table 8 Summary of the systematic uncertainties in the signal mod-
elling. ‘PS/UE’ indicates parton shower/underlying event. An ‘M+S’
symbol is used when a shape uncertainty includes a migration effect that
allows relative acceptance changes between regions. Instances where an
uncertainty is considered independently in different regions are detailed
in parenthesis. Where the size of an acceptance systematic uncertainty
varies between regions, a range is displayed

Signal

Cross-section (scale) 0.7% (qq), 25% (g8)

H — bb branching fraction 1.7%
Scale variations in STXS 3.0-3.9% (qq — WH),
bins 6.7-12% (qq — ZH),

37-100% (gg — ZH)

PS/UE variations in STXS
bins

PDF+ag variations in STXS
bins

1-5% for qq — VH,
5-20% for gg — ZH

1.8-2.2% (qq — WH),
1.4-1.7% (qq — ZH),

for 3 jets

mpp from scale variations
p¥ from scale variations
mpp from PS/UE variations
p¥ from PS/UE variations

mpyp from matrix-element

M+S (correlated with WZ
uncertainties)

M+S (correlated with WZ
uncertainties)

M+S (correlated with WZ
uncertainties)

M+S (correlated with WZ
uncertainties)

M+S (correlated with WZ

variations uncertainties)
wz
Normalisation 26%
0-to-1 lepton ratio 11%
Acceptance from scale variations ~ 13-21%
Acceptance from PS/UE variations 4%

for 2 or more jets
Acceptance from PS/UE variations 11%

for 3 jets

mpp from scale variations
p¥ from scale variations
mpp from PS/UE variations
p}/ from PS/UE variations

mpyp, from matrix-element

M+S (correlated with ZZ
uncertainties)

M+S (correlated with ZZ
uncertainties)

M+S (correlated with ZZ
uncertainties)

M+S (correlated with ZZ
uncertainties)

M+S (correlated with ZZ

variations uncertainties)
ww
Normalisation 25%

subtraction scheme) [115]. Only a normalisation uncertainty
is derived for the s-channel, since its contribution is at a very

low level.
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2.9-33% (gg — ZH)

mpp from scale variations M+S (9qqg — VH,

gg — ZH)
mpp from PS/UE variations M+S
mpp from PDF+(XS M+S
variations
pY from NLO EW M+S
correction

Table9 Factors applied to the nominal normalisations of the 7, W +HF
and Z+HF backgrounds, as obtained from the global likelihood fit to the
13 TeV data for the nominal multivariate analysis. The errors represent
the combined statistical and systematic uncertainties

Process and category Normalisation factor

17 2-jet 0.98 + 0.09
17 3-jet 0.93 +0.06
W + HF 2-jet 1.06 £0.11
W + HF 3-jet 1.15+0.09
Z + HF 2-jet, 75 < p{ < 150 GeV 1.28 +£0.08
Z + HF 3-jet, 75 < py < 150 GeV 1.17 £0.05
Z + HF 2-jet, 150 GeV < pJ. 1.16 +0.07
Z + HF 3-jet, 150 GeV < pY 1.09 £0.04

Diboson production The diboson backgrounds are com-
posed of three distinct processes: WZ, WW and ZZ pro-
duction. Given the small contribution from W W production
(< 0.1% of the total background) only a normalisation uncer-
tainty is assigned. For the more important contributions from
the WZ and ZZ backgrounds, uncertainties are considered
in the overall normalisation, the relative acceptance between
regions and the my;, and p¥ shapes. These are derived fol-
lowing the procedure described in Ref. [87] and are outlined
in Table 7, which includes comparisons of the nominal sam-
ple (SHERPA) with alternative samples (POWHEG+PYTHIA 8
and POWHEG+HERWIG++).
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Multi-jet background uncertainties The systematic
uncertainties in the multi-jet background estimate in the 1-
lepton channel are derived by following the procedure out-
lined in Ref. [33]. Two different uncertainty components are
considered, those which alter the normalisation and those
which alter the multi-jet BDT template shape.

7.3 Signal uncertainties

The systematic uncertainties that affect the modelling of the
signal are summarised in Table 8 and are estimated with pro-
cedures that closely follow those outlined in Refs. [27,35,
116,117]. The systematic uncertainties in the calculations of
the V H production cross-sections and the H — bb branch-
ing fraction’ are assigned following the recommendations
of the LHC Higgs Cross Section Working Group [31,70,71,
118,119].

Uncertainties in the mp, and p¥ signal shape are esti-
mated, as described in Ref. [33], from scale variations,
PDF and s (PDF+ag) uncertainties, from varying the par-
ton shower and underlying event (PS/UE) models using
AZNLO tuning variations and from comparisons with alter-
native parton-shower generator samples (POWHEG+HERWIG
7). In addition, a systematic uncertainty from higher-order
EW corrections effects is taken into account as a variation
in the shape of the p¥ distributions for g¢ — V H produc-
tion. Acceptance uncertainties, evaluated according to STXS
regions, correctly accounting for the migration and correla-
tions between regions, are evaluated for the scale variations,
PS/UE models and PDF+asg.

For the STXS measurement, the signal uncertainties are
separated into two groups, uncertainties in the acceptance
and shape of kinematic distributions which alter the sig-
nal modelling (theoretical modelling uncertainties) and the
uncertainties in the prediction of the production cross-section
for each of these regions (theoretical cross-section uncer-
tainties). Whilst theoretical modelling uncertainties enter
the STXS measurements, theoretical cross-section uncertain-
ties only affect the predictions with which they are com-
pared, and are therefore not included in the likelihood func-
tion.

8 Statistical analysis

The statistical procedure is based on a likelihood function
L(u, 0), constructed as the product of Poisson probability
terms over the bins of the input distributions, with parameters

7 These systematic uncertainties are fully degenerate with the signal
yield and do not affect the calculation of the significance relative to the
background-only prediction and STXS cross-section measurement.

of interest (POI) extracted by maximising the likelihood. The
effects of systematic uncertainties enter the likelihood as nui-
sance parameters (NP), 8. Most of the uncertainties discussed
in Sect. 7 are constrained with Gaussian or log-normal prob-
ability density functions. The normalisations of the largest
backgrounds, 7, W + HF and Z + HF, can be reliably deter-
mined by the fit, so they are left unconstrained in the likeli-
hood. The uncertainties due to the limited number of events
in the simulated samples used for the background predictions
are included using the Beeston—Barlow technique [120]. As
detailed in Ref. [121], systematic variations that are subject
to large statistical fluctuations are smoothed, and systematic
uncertainties that have a negligible impact on the final results
are pruned away region-by-region (treating signal and con-
trol regions separately).

The global likelihood fit comprises 14 signal regions,
defined as the 2- and 3-jet categories in the two high—p¥
(150 < p¥ < 250 GeV and p¥> 250 GeV) regions for the
three channels, and in the medium- p¥ region (75 < p¥ <
150 GeV) for the 2-lepton channel. The 28 control regions
are also input as event yields in all fit configurations.

Three different versions of the analysis are studied, which
differ in the distributions input to the fit.

e The nominal analysis, referred to as the multivariate
analysis, uses the BDTy i multivariate discriminant out-
put distributions as the inputs to the fit. Three different
POI configurations are studied. Firstly, a single-POI fit
measures /,Ll‘)/bH, the signal strength that multiplies the
SM Higgs boson V H production cross-section times the
branching fraction into bb. Secondly, a two-POI fit is
undertaken, which jointly measures the signal strengths
of the WH and ZH components. Finally, a five-POI fit
version measures the signal cross-section multiplied by
the H — bband V — leptons branching fractions in the
five STXS regions (see Table 4).

e The dijet-mass cross-check analysis uses the mp,, distri-
butions, instead of the BDTy g distributions, as inputs to
a single-POl fit to measure u?/bH.

e The diboson validation analysis, a measurement of the
signal strength of the WZ and ZZ processes, uses the
BDTy z output distributions. The SM Higgs boson is
included as a background process normalised to the pre-
dicted SM cross-section with an uncertainty of 50%,
which conservatively encompasses the previous mea-
surement and uncertainty [33]. Two POI configurations
are evaluated, firstly a single-POI fit to measure Ml"/bz,
the signal strength of the combined W Z and ZZ diboson
processes, and secondly a two-POI fit to simultaneously
measure the WZ and ZZ signal strengths.

The background predictions in all post-fit distributions and
tables are obtained by normalising the backgrounds and set-
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Table 10 The Higgs boson signal, background and data yields for each
signal region in the 0- and 1-lepton channels after the full selection. The
signal and background yields are normalised to the results of the global
likelihood fit. All systematic uncertainties are included in the indicated

uncertainties. An entry of “~" indicates that a specific background com-
ponent is negligible in a certain region, or that no simulated events are
left after the analysis selection

Signal regions 0-lepton 0-lepton

1-lepton 1-lepton

150GeV < py < 250GeV Py > 250GeV

150GeV < py < 250GeV

p¥ > 250 GeV

Sample 2-jet 3-jet 2-jet 3-jet 2-jet 3-jet 2-jet 3-jet

Z +jets 2846 £80 3830 & 160 338+ 13 533£23 102£5 207 £ 11 10+ 1 25+2

W + jets 634 + 63 1500 + 110 83+9 220+ 19 1850 £ 160 4080 £ 270 353 £33 935£69
Single top 237 £ 35 770 £ 130 9+2 36 £ 8 990 + 160 3570 £ 600 70 £ 15 313 £ 66
tt 1157 £76 5470 220 395 151 £ 16 4600 +£210 21030 £ 620 188 £19 970 + 58
Diboson 360 £ 55 333+£79 86 £ 13 70 £ 17 229 £ 57 264 £ 83 57T£15 68 £ 22
Multi-jet - - - - 130 £ 47 24 £ 14 16 £ 10 7+8
Total bkg. 5234 £63 11910 %+ 100 55415 101121 7899 4 82 29170 £ 170 694 +23 2318 +42
Signal (u = 1.02) 147 +£24 130 £22 40£6 33+£6 148 + 24 125 £21 52+£9 44 +£7
Data 5397 11875 578 1046 8044 29316 727 2378

Table 11 The Higgs boson signal, background and data yields for each
signal region in the 2-lepton channel after the full selection. The sig-
nal and background yields are normalised to the results of the global
likelihood fit. The top background is derived from eu-CR data. All

systematic uncertainties are included in the indicated uncertainties. An
entry of “—~” indicates that a specific background component is negli-
gible in a certain region, or that no simulated events are left after the
analysis selection

Signal regions 2-lepton

75GeV < py < 150GeV

2-lepton

2-lepton

150GeV < py < 250GeV

pY > 250GeV

Sample 2-jet >3-jet 2-jet >3-jet 2-jet >3-jet

Z +jets 5900 = 100 11630 £ 160 716 £ 19 2499 £ 52 84 +3 537 £ 16
W +jets 1£0 6+0 <1 2+0 <1 <1
Top 3193 + 57 8796 + 87 5247 389+ 19 141 15+4
Diboson 283 £ 47 443 £ 78 83+ 14 169 £+ 30 20+ 4 52+ 10
Total bkg. 9378 £ 86 20880 =+ 130 851 £ 19 3058 + 44 106 + 4 605 + 14
Signal (© = 1.02) 78 + 14 106 + 21 34+6 59+ 12 10+£2 18+3
Data 9463 20927 881 3148 123 614

ting the nuisance parameters according to the values deter-
mined by the fit used to measure /ﬂ",bH.

9 Results
9.1 Signal strength measurements

The post-fit normalisation factors of the unconstrained back-
grounds in the global likelihood fit are shown for the single-
POI multivariate analysis in Table 9, the post-fit signal and
background yields are shown in Tables 10 and 11, and Fig. 3
shows the BDTy i output distributions in the high- p¥ 2-jet
SRs, which are most sensitive to the signal.

@ Springer

For a Higgs boson mass of 125 GeV, when all channels
are combined, the fitted value of the V H signal strength is:

hhy = 1.027018 = 1,020 12 (stat.) 7013 (syst.).

For the V H production mode the background-only hypothe-
sis is rejected with a significance of 6.7 standard deviations,
to be compared with an expectation of 6.7 standard devia-
tions [122].

The results of the combined fit when measuring signal
strengths separately for the WH and ZH production pro-
cesses are shown in Fig. 4. The WH and ZH production
modes reject the background-only hypothesis with observed
(expected) significances of 4.0 (4.1) and 5.3 (5.1) standard
deviations, respectively. The fitted values of the two signal
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Fig. 3 The BDTy y output
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strengths are:
1o = 0957031 = 0.95 £ 0.18(stat.) T |2 (syst.),
bh = 1.087033 = 1.08 £ 0.17(stat.) T |8 (syst.),

Hzpg = —023 =

with a linear correlation between them of 2.7%.

The effects of systematic uncertainties on the measure-
ment of the VH, W H and Z H signal strengths are displayed
in Table 12. The impact of a set of systematic uncertainties

is defined as the difference in quadrature between the uncer-
tainty in u computed when all NPs are fitted and that when the
NPs in the set are fixed to their best-fit values. The total sta-
tistical uncertainty is defined as the uncertainty in u when all
the NPs are fixed to their best-fit values. The total systematic
uncertainty is then defined as the difference in quadrature
between the total uncertainty in p and the total statistical
uncertainty. For the WH and Z H signal strength measure-
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Fig. 4 The fitted values of the Higgs boson signal strength ;/."’/”H for
mpy = 125 GeV for the W H and Z H processes and their combination.
The individual Ml"/b,., values for the (W/Z)H processes are obtained
from a simultaneous fit with the signal strength for each of the W H and
Z H processes floating independently. The probability of compatibility
of the individual signal strengths is 71%

ments the total statistical and systematic uncertainties are
similar in size, with the b-tagging, jet, E{?iSS, background
modelling and signal systematic uncertainties all making
important contributions to the total systematic uncertainty.
The impact of the statistical uncertainty from the simulated
event samples has been significantly reduced compared to
the previous result [35], due to the measures taken to consid-
erably enhance the number of simulated events.

9.1.1 Dijet-mass cross-check

From the fit to myy, for all channels combined, the value of
the signal strength is

1ihy = 1177933 = 1.17 £ 0.16(stat.) T | (syst.).

Using the ‘bootstrap’ method [121], the dijet-mass and nom-
inal multivariate analysis results are found to be statisti-
cally compatible at the level of 1.1 standard deviations. The
observed excess rejects the background-only hypothesis with
a significance of 5.5 standard deviations, compared to an
expectation of 4.9 standard deviations. Good agreement is
also found when comparing the values of signal strengths
in the individual channels from the dijet-mass analysis with
those from the multivariate analysis.

The myy, distribution is shown in Fig. 5 summed over all
channels and regions, weighted by their respective values of
the ratio of fitted Higgs boson signal to background yields
and after subtraction of all backgrounds except for the WZ
and ZZ diboson processes.

@ Springer

Table 12 Breakdown of the contributions to the uncertainty in /L"’,bH

for the VH, WH and ZH signal strength measurements. The sum in
quadrature of the systematic uncertainties attached to the categories
differs from the total systematic uncertainty due to correlations

Source of uncertaint T
Y VH | WH ZH

Total 0.177 | 0.260 0.240
Statistical 0.115 | 0.182 0.171
Systematic 0.134 | 0.186 0.168
Statistical uncertainties
Data statistical 0.108 | 0.171 0.157
1t ey control region 0.014 | 0.003 0.026
Floating normalisations 0.034 | 0.061 0.045
Experimental uncertainties
Jets 0.043 | 0.050 0.057
E%“iss 0.015 | 0.045 0.013
Leptons 0.004 | 0.015 0.005

b-jets 0.045 | 0.025 0.064
b-tagging c-jets 0.035 | 0.068 0.010

light-flavour jets  0.009 | 0.004 0.014
Pile-up 0.003 | 0.002 0.007
Luminosity 0.016 | 0.016 0.016
Theoretical and modelling uncertainties
Signal 0.072 | 0.060 0.107
Z + jets 0.032 | 0.013 0.059
W + jets 0.040 | 0.079 0.009
tt 0.021 | 0.046 0.029
Single top quark 0.019 | 0.048 0.015
Diboson 0.033 | 0.033 0.039
Multi-jet 0.005 | 0.017 0.005
MC statistical 0.031 | 0.055 0.038

9.1.2 Diboson validation

The measurement of V Z production using a multivariate
approach, as a validation of the Higgs boson analysis, returns
a signal strength of

152, = 0.93701 = 0.9310 0/ (stat.) T |5 (syst.),

in good agreement with the Standard Model prediction. Anal-
ogously to the nominal analysis, fits are also performed with
separate signal strengths for the WZ and ZZ production
modes, and the results are shown in Fig. 6.

9.2 Cross-section measurements

The measured V H cross-sections times the H — bb and
V — leptons branching fractions, o x B, together with the
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Fig. 5 The distribution of my; in data after subtraction of all back-
grounds except for the WZ and ZZ diboson processes, as obtained
with the dijet-mass analysis. The contributions from all lepton channels,
p}/ regions and number-of-jets categories are summed and weighted
by their respective S/ B ratios, with S being the total fitted signal and
B the total fitted background in each region. The expected contribu-
tion of the associated W H and Z H production of a SM Higgs boson
with mpy = 125 GeV is shown scaled by the measured signal strength
(n = 1.17). The size of the combined statistical and systematic uncer-
tainty for the fitted background is indicated by the hatched band

SM predictions in the reduced STXS regions, are summarised
in Table 13 and Fig. 7. The cross-sections are all consistent
with the Standard Model expectations and are measured with
relative uncertainties varying from 30% in the highest p¥
region to 85% in the lowest p¥ region. The data statistical
uncertainty is the largest single uncertainty in all regions,
although in the lower p¥ regions systematic uncertainties
make a sizeable contribution to the total uncertainty. In all
regions there are large contributions from the background
modelling, b-tagging and jet systematic uncertainties. In the
lowest pl‘f region in both the WH and Z H measurements,
the E%‘isg uncertainty is one of the largest uncertainties. For
the ZH measurements, the signal uncertainties also make
a sizeable contribution due to the limited precision of the
theoretical calculations of the gg — Z H process.

10 Constraints on effective interactions

The strength and tensor structure of the process VH, H —
bb are investigated using an effective Lagrangian approach.
Extra terms are added to the SM Lagrangian (Lgp) to obtain
an effective Lagrangian (LsmgrT) following the approach in
Refs. [124,125]:

L R B B L B LI I L I
ATLAS VZ,Z—bb {s=13TeV, 139 fb

— Total — Stat.
Tot. ( Stat., Syst.)
Wz | e 088 T3 (5%.%%
2z k9 1.00 18 (36705
Comb. 0.16 0.07 +0.14
HT 0.93 to_13 L)Aoevimz
coa b b b b b b b b ey

0 05 1 15 2 25 3 35 4 45 5

bb
MVZ

Fig. 6 The fitted values of the V Z signal strength p."’/hz for the WZ
and ZZ processes and their combination. The individual ;,L?,bz values
for the WZ and ZZ processes are obtained from a simultaneous fit
with the signal strengths for each of the W Z and ZZ processes floating
independently. The probability of compatibility of the individual signal
strengths is 27%

(D)
Ci D
Lsmerr = Lsm + Y —A’D_4 o”,
i

where A is the energy scale of the new interactions, O ED) are

dimension- D operators, and cED) are numerical Wilson coef-
ficients. Only D = 6 operators are considered in this study,
since D = 5 and D = 7 operators violate lepton or baryon
number, whilst D > 7 operators are further suppressed by
powers of A.

The STXS measurements are used to constrain the coeffi-
cients of the operators in the “Warsaw’ formulation [126],
which provides a complete set of independent operators
when considering those allowed by the SM gauge sym-
metries. Thirteen operators directly affect the VH cross-
section [127]. This analysis has significant sensitivity to the
six operators detailed in Table 14, in addition to the operator
which directly affects the H — bb decay width.

Following methodologies similar to those outlined in
Ref. [125], a parameterisation of the STXS production cross-
section and Higgs boson decay rates in terms of the SMEFT
parameters is derived, in this case based upon leading-order
predictions made using the SMEFTsim package [125]. The
interference terms between the SM and BSM amplitudes are
linear in the coefficients and of order 1/A?, while BSM con-
tributions are quadratic in the coefficients and of order 1/A*.
Linear terms from D = 8 operators are suppressed by the
same 1/ A* factor as the quadratic D = 6 terms. However,
it is currently not possible to include such terms, so results
for both the linear and linear plus quadratic D = 6 terms
are studied to provide some indication of the effect D = 8§
linear terms could have on the result. Modifications of the
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g8 — Z H production cross-section are only introduced by
either higher-dimension (D > 8) operators or corrections
that are formally at NNLO in QCD, and are not included
in this study. The expected gg — Z H contribution is fixed
to the SM prediction within uncertainties. The dependence
of the experimental acceptance in each analysis region on
the Wilson coefficients is not accounted for in this study,
although it was verified that the impact on the acceptance
from the EFT operators was at most 10%.

Maximum-likelihood fits across the STXS regions are per-
formed to determine the Wilson coefficients. All coefficients
but one are assumed to vanish, and one-dimensional con-
fidence level (CL) intervals are inferred for the coefficient
under study both with and without the quadratic terms. An
example negative-log-likelihood one-dimensional projection
is shown in Fig. 8 for cg)q, and the 68% and 95% CL intervals
are summarised in Fig. 9 for the four coefficients to which
the analysis has greatest sensitivity, in addition to the cypy
coefficient which directly affects the H — bb decay width.
As detailed in Table 14, the Qpy,, Qna and Qg; operators
have a similar impact and as such are found to be highly
degenerate, so onlgy arepresentative result for Q g, is shown.
The coefficient cg_})q is constrained at 68% CL to be no more
than a few percent, whilst the constraints on the other three
coefficients range from 10-30% to order unity and c;g has
much weaker constraints. In most cases the observed con-
straints are found to significantly depend on the presence of
the quadratic terms, indicating that D = 8 linear terms could
also have a non-negligible effect.

These limits were also produced using the full likeli-
hood and using only the STXS measurement central values
and covariance matrix. It was found that the two methods

Table 13 Best-fit values and uncertainties for the VH, V — leptons
cross-section times the H — bb branching fraction, in the reduced
STXS scheme. The SM predictions for each region, computed using the
inclusive cross-section calculations and the simulated event samples are
also shown. The contributions to the total uncertainty in the measure-
ments from statistical (Stat. unc.) or systematic uncertainties (Syst. unc.)
in the signal prediction (Th. sig.), background prediction (Th. bkg.), and
in experimental performance (Exp.) are given separately. The total sys-

[fb]

E ATLAS VH, H — bb, V — leptons cross-sections E
S E F s=13 TeV, 139 fb! ® Observed ==Tot. unc. Stat. unc. |
[ 103 = == Expected DTheo. unc. —
X g , 3
38 C V=W ' V=2 ]
D ek ' =
X E | T E
- F fr— =
© I ' — .
1 == ]
10 1 + -
g < —+—
C ' 3
= . . ,
» 15 _ T - -
° | T yy ! 4 PR
o s * L | = = i
5 0 &L ; 7
50 N 5 50
Sph T 259 < 'DZIC <2 > 0
rSo, Ge T 15 T S 25, Ge|,
%0 el v Gel/ 0

Fig. 7 Measured V H, V — leptons cross-sections times the H — bb
branching fraction in the reduced STXS scheme

produced results that are consistent with each other within
~ 10%-20% for the majority of operators and to within
~ 30% for the two operators with the weakest constraints,
Quy and Qgwp.

As there are only five STXS regions, attempting to simul-
taneously extract constraints on multiple coefficients, some
of which have similar effects, leads to unmanageable corre-
lations. An alternative approach is to fit an orthogonal set of
linear combinations of the Wilson coefficients of the Warsaw-
basis operators. This removes the assumption, inherent in the
one-dimensional limits, that only one operator acts at a time.
Based upon the procedure outlined in Ref. [127], eigenvec-
tors are determined from the Hessian matrix of the STXS
likelihood fit to data, after it has been re-expressed in terms
of the Wilson coefficients. This approach only considers the

tematic uncertainty, equal to the difference in quadrature between the
total uncertainty and the statistical uncertainty, differs from the sum
in quadrature of the Th. sig., Th. bkg., and Exp. systematic uncertain-
ties due to correlations. All leptonic decays of the V bosons (including
those to t-leptons, { = e, u, v) are considered. These results along
with the corresponding correlation matrix are available in the HEPData
repository [123]

STXS region SM prediction Result Stat. unc. Syst. unc. [fb]
Process p‘T/ *"interval [fb] [fb] [fb] Th. sig. Th. bkg. Exp.
W(v)H  150-250GevV 240 + 1.1 19.0 =+ 12.1 | + 77 £ 09 £ 55 + 60
W(v)H > 250 GeV 71 £ 03 72 £+ 22|+ 19 + 04 + 08 = 07

Z({t/vvyH T75-150GeV  50.6 + 4.1 425 =+ 359 |+ 253 + 56 =+ 172 =+ 197
Z(t/vv)H 150-250GeV 188 + 24 205 + 62| = 50 £ 23 + 24 + 23
Z(tt|vv)H >250 GeV 49 + 05 54 + 1.7+ 1.5 £ 05 £ 05 = 03
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4.5
45 ATLAS
L Vs=13TeV, 139 fb™

max)

L B L e

----Linear (exp.)
— Linear (obs.)

Table 14 Wilson coefficients ¢; and corresponding dimension-6
SMEFT operators Q;, to which this analysis is sensitive, in the Warsaw
formulation [126]

Linear + quadratic (exp.)
Linear + quadratic (obs.)

-log(L /L

3.5 VH,H—bb, A=1TeV

Lo b b g

25
95% CL

1.5

0,
05 68% CL

sl b b b e b NG

-0.3 -0.25 0.2 -0.15 -0.1 -0.05 0

Fig. 8 The observed (solid) and expected (dotted) profiled negative-
log-likelihood functions for the one-dimensional fits to constrain the
coefficient cg) of an effective Lagrangian when the other coefficients
are assumed to vanish, shown for the case where only linear (blue) or
linear and quadratic (orange) terms are considered

ATLAS Vs=13TeV, 139 fb”'
—68% CL ---95% CL VH,H — bb, A =1 TeV
W Linear (obs.) Linear + quadratic (obs.)
e Best-fit (obs.)
Linear Linear + quadratic
68% CL 68% CL
C:-?q) [x 10.0] e [-0.017,0.029] [-0.018, 0.026]
Cpy [X5.0] —— [-0.081, 0.22] [-0.19, 0.10]
Ch 1% 2.0] e [0.17,0.21]  [-0.24,0.18]
Chws [X 0.5] e [-0.46, 1.3] [-0.44, 1.1]
Cgy [X0.05] [ - [-13,3.3]  [-10,3.8] U [29, 43]
A S O I S I BT B
-2 0 2 4 6

Parameter value

Fig. 9 Summary of the observed best-fit values and one-dimensional
confidence intervals for the Wilson coefficients of the Warsaw-basis
operators to which this analysis has the greatest sensitivity along with
the ¢y coefficient which directly affects the H — bb decay width.
Limits are shown for the case where only linear (blue) or linear and
quadratic (orange) terms are considered and confidence intervals are
shown at both 68% CL (solid lines) and 95% CL (dashed lines)

linear terms and the H — bb partial width, with a dedicated
independent parameter added to account for the modifica-
tions to the total width.

The resulting five eigenvectors are shown in Table 15.
They are labelled as EO-E4 and ordered in terms of exper-
imental sensitivity, with EQ having the greatest and E4 the
least. The eigenvectors contain information about the sensi-
tivity of the analysis to degenerate deformations of the SM.

Wilson Operator Impacted vertex
coefficient
Production Decay
CHWB Quwp =H't'H HZZ
wh,BH
CHW Quw = H'HW/, HZZ,HWW
W;l\}
. >
cg; QS; = (HTiDLH) qqZH,qq'WH
(‘?pTIVMQr)
o O — (HtiD,H ZH
CHg QH_q = (H'iDyH) 49
@py"ar)
>
CHu Qmy = (H'iD, H) 99ZH
(upyﬂur)
<>
CHd Qpq = (H'iD,H) q9ZH
(delLdr)
CdH Qun = (H'H) Hbb
(qdH)

Table 15 The composition and eigenvalues of the eigenvectors, which
are composed of a linear combination of the Wilson coefficients of the
Warsaw-basis operators [ 126]. All modifications that alter the branching
ratio are absorbed into an additional independent term (ABR/BRgwm),
which linearly alters the branching ratio and all contributions with a
coefficient below 0.2 are omitted. The full composition of the eigenvec-
tors is available in the HEPData repository [123]

Wilson Eigenvalue Eigenvector
coefficient
©)

CEO 2000 0.98 - ¢y

CEl 38 0.85 - cyyu — 0.39 - c;}; -
0.27 - cha

CE2 8.3 0.70 - ABR/BRgy + 0.62 -
CHW

cE3 0.2 0.74 - cypwg +0.53 - c;}; -
0.32-cyw

CE4 6.4 %1073 0.65 - cyw — 0.60 -

ABR/BRsy +0.35 - ¢y}

The leading eigenvector, E0, consists almost exclusively of
cg)q, which is also the coefficient most constrained in the
one-dimensional limits, with similar limits obtained in both
cases. The second eigenvector, El, is dominated by cgy,
but has sizeable contributions from cg, and cg)q, suggest-
ing only a linear combination of these coefficients can be
constrained given the degeneracy between them. The eigen-
vector E2 demonstrates sensitivity to a combination of the
branching ratio and c gy, whilst E3 has limited sensitivity to
a combination of cyw p and 0221 The analysis has negligible
sensitivity to the fifth eigenvector. Figure 10 shows the impact
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Fig. 10 The impact of the s 3¢ . : . , , -
leading four eiggnvectors on the % . _ ATLAS Data best-fit +10 1o _;
STXS cross-section — 4.9 . _ 003 0.02 B
measurements. The change to © oF fs=13 TeY, 139 fb Ceo = 0.00 - e E
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on the STXS cross-section measurements when varying the
coefficients for the four leading eigenvectors within their 1o
bounds. The analysis has greatest sensitivity to coefficients
which predominantly increase the cross-section in the higher
p¥ STXS regions (E0 and E1), with lower sensitivity to those
which predominantly impact the lower p¥ STXS regions (E2
and E3).

11 Conclusion

Measurements are presented of the Standard Model Higgs
boson decaying into a bb pair and produced in associa-
tion with a W or Z boson, using data collected by the
ATLAS experiment in proton—proton collisions from Run 2
of the LHC. The data correspond to an integrated lumi-
nosity of 139fb~! collected at a centre-of-mass energy of
/s =13 TeV.

For a Higgs boson with mg = 125 GeV produced
in association with either a Z or W boson, an observed
(expected) significance of 6.7 (6.7) standard deviations is
found and a signal strength relative to the SM prediction
of ul",bH = 1.0ngﬁ(stat.)fgzié(syst.) is measured. For
a Higgs boson produced in association with a W boson,
an observed (expected) significance of 4.0 (4.1) standard
deviations is found and a signal strength relative to the
SM prediction for mpg 125 GeV of /,L%)H 0.95 £+
0.18(stat.)f8:i§(syst.) is measured. For a Higgs boson pro-
duced in association with a Z boson an observed (expected)
significance of rejecting the background-only hypothesis of
5.3 (5.1) standard deviations is found and a signal strength
of M%bH 1.08 £+ O.l7(stat.)f8:}§(syst.) is measured.

@ Springer

Cross-sections of associated production of a Higgs boson
decaying into bottom quark pairs and an electroweak gauge
boson, W or Z, decaying into leptons are measured as a func-
tion of the gauge boson transverse momentum in kinematic
fiducial volumes in the simplified template cross-section
framework. The uncertainties in the measurements vary from
30% in the highest p¥ regions to 85% in the lowest, and are
in agreement with the Standard Model predictions.

Limits are also set on the coefficients of effective
Lagrangian operators which affect the V H production and
H — bb decay. Limits are studied for both the variation of
a single coefficient and also the simultaneous variation of a
set of linear combinations of coefficients. The allowed range
of the individual or linear combinations of the coefficients,
to which the analysis has the greatest sensitivity, is limited
to a few percent.
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