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In the last years, various extensions of ω-regular languages have been proposed in the literature,
including ωB-regular (ω-regular languages extended with boundedness), ωS-regular (ω-regular
languages extended with strict unboundedness), and ωBS-regular languages (the combination of ωB-
and ωS-regular ones). While the first two classes satisfy a generalized closure property, namely, the
complement of an ωB-regular (resp., ωS-regular) language is an ωS-regular (resp., ωB-regular) one,
the last class is not closed under complementation. The existence of non-ωBS-regular languages
that are the complements of some ωBS-regular ones and express fairly natural properties of reactive
systems motivates the search for other well-behaved classes of extended ω-regular languages. In this
paper, we introduce the class of ωT -regular languages, that includes meaningful languages which
are not ωBS-regular. We first define it in terms of ωT -regular expressions. Then, we introduce a
new class of automata (counter-check automata) and we prove that (i) their emptiness problem is
decidable in PTIME and (ii) they are expressive enough to capture ωT -regular languages (whether or
not ωT -regular languages are expressively complete with respect to counter-check automata is still an
open problem). Finally, we provide an encoding of ωT -regular expressions into S1S+U.

1 Introduction

A fundamental role in computer science is played by ω-regular languages, as they provide a natural
setting for the specification and verification of nonterminating finite-state systems. Since the seminal
work by Büchi [7], McNaughton [13], and Elgot and Rabin [9] in the sixties, a great research effort has
been devoted to the theory and the applications of ω-regular languages. Equivalent characterisations of ω-
regular languages have been given in terms of formal languages (ω-regular expressions), automata (Büchi,
Rabin, and Muller automata), classical logic (weak/strong monadic second-order logic of one successor,
wS1S/S1S for short), and temporal logic (Quantified Linear Temporal Logic, Extended Temporal Logic).

Recently, it has been shown that ω-regular languages can be extended in various ways, preserving their
decidability and some of their closure properties [4, 5]. As an example, extended ω-regular languages
make it possible to constrain the distance between consecutive occurrences of a given symbol to be
(un)bounded (in the limit). Boundedness comes into play in the study of finitary fairness as opposed to
the classic notion of fairness, widely used in automated verification of concurrent systems. According
to the latter, no individual process in a multi-process system may be ignored for ever; finitary fairness
imposes the stronger constraint that every enabled transition is executed within at most b time-units,
where b is an unknown, constant bound. In [1], it is shown that finitary fairness enjoys some desirable
mathematical properties that are violated by the weaker notion of fairness, and yet it captures all reasonable
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schedulers’ implementations. The same property has been investigated from a logical perspective in [11],
where the logic PROMPT-LTL is introduced. Roughly speaking, PROMPT-LTL extends LTL with the
prompt-eventually operator, which states that an event will happen within the next b time-units, b being
an unknown, constant bound. An analogous extension has been recently proposed for the propositional
interval logic of temporal neighborhood PNL [8].

From the point of view of formal languages, the proposed extensions pair the Kleene star (.)∗ with
bounding/unbounding variants of it. Intuitively, the bounding exponent (.)B (aka B-constructor) constrains
parts of the input word to be of bounded size, while the unbounding exponent (.)S (aka S-constructor)
forces parts of the input word to be arbitrarily large. The two extensions have been studied both in
isolation (ωB- and ωS-regular expressions) and in conjunction (ωBS-regular expressions). Equivalent
characterisations of extended ω-regular languages are given in [4, 5] in terms of automata (ωB-, ωS-,
and ωBS-automata) and classical logic (fragments of wS1S+U, i.e., the extension of wS1S with the
unbounding quantifier U [3], that allows one to express properties which are satisfied by finite sets of
arbitrarily large size).1 In [5], the authors also show that the complement of an ωB-regular language is an
ωS-regular one and vice versa; moreover, they show that ωBS-regular languages, featuring both B- and
S-constructors, strictly extend ωB- and ωS-regular languages and are not closed under complementation.

In this paper, we focus on those ω-languages which are complements of ωBS-regular ones, but are
not ωBS-regular. We start with an in-depth analysis of a paradigmatic example of one such language [5].
It allows us to identify a meaningful extension of ω-regular languages (ωT -regular languages) including
it and obtained by adding a new, fairly natural constructor (.)T , named T -constructor, to the standard
constructors of ω-regular expressions. An interesting feature of such a class is that pairing (.)B and (.)S

with (.)T one can capture all possible ways of instantiating ∗-expressions (this is not the case with B and
S only). In view of that, it can be said that (.)T “complements” (.)B and (.)S with respect to (.)∗. Then,
we introduce a new class of automata (counter-check automata), that are expressive enough to capture
ωT -regular languages, and we show that their emptiness problem is decidable. Finally, we provide an
encoding of ωT -regular expressions (languages) into S1S+U.

The paper is organized as follows. In Section 2, we illustrate existing extensions of ω-regular
languages, with a special attention to ωBS-regular ones, and we introduce the class of ωT -regular
languages. In Section 3, we define counter-check automata (CCA) and prove that their emptiness problem
is decidable in PTIME. In Section 4, we provide an encoding of ωT -regular languages into CCA, while,
in Section 5, we show that they can be defined in S1S+U. Conclusions provide an assessment of the work
done and outline future research directions.

2 Extensions of ω-regular languages

In this section, we give a short account of the extensions of ω-regular languages proposed in the literature
(details can be found in [4, 5]) and we outline a new one. To begin with, we observe that an ω-word can
be seen as the concatenation of a finite prefix, belonging to a regular language, and an infinite sequence
of finite words (we call each of these finite words an ω-iteration), also belonging to a regular language.
A standard way to define ω-regular languages is by means of ω-regular expressions. An interesting
case is that of ω-iterations consisting of a finite sequence of words, generated by an occurrence of the
Kleene star operator (.)∗, aka ∗-constructor, in the scope of the ω-constructor (.)ω . As an example,
the ω-regular expression (a∗b)ω generates the language of ω-words featuring an infinite sequence of
ω-iterations, each one consisting of a finite (possibly empty) sequence of a’s followed by exactly one b.

1Undecidability of full S1S+U has been shown in [6].
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Given an ω-regular expression E featuring an occurrence of (.)∗ (sub-expression R∗) in the scope of (.)ω

and an ω-word w belonging to the language of E, we refer to the sequence of the sizes of the (maximal)
blocks of consecutive iterations of R in the different ω-iterations as the (sequence of) exponents of R
in (the ω-iterations of) w. Let w = abaabaaab . . . be an ω-word generated by the ω-regular expression
(a∗b)ω . The sequence of exponents of a in w is 1,2,3, . . .. Sometimes, we will denote words in a compact
way, by explicitly indicating the exponents of a sub-expression, e.g., we will write w as a1ba2ba3b . . ..

Given an expression E, we denote by L (E) the language defined by E. With a little abuse of notation,
we will sometimes identify a language with the expression defining it, and vice versa, e.g., we will write
“language (a∗b)ω” instead of “language L ((a∗b)ω)”. Notice that (.)∗ allows one to impose the existence
of a finite sequence of words (described by its argument expression) within each ω-iteration, but it cannot
be used to express properties of the sequence of exponents of its argument expression in the ω-iterations
of an ω-word. To overcome such a limitation, some meaningful extensions of ω-regular expressions have
been investigated in the last years, that make it possible to constrain the behavior of (.)∗ in the limit.

Beyond ω-regularity. A first class of extended ω-regular languages is that of ωB-regular languages, that
allow one to impose boundedness conditions. ωB-regular expressions are obtained from ω-regular ones
by adding a variant of (.)∗, called B-constructor and denoted by (.)B, to be used in the scope of (.)ω . The
bounded exponent B allows one to constrain the argument R of the expression RB to be repeated in each
ω-iteration a number of times less than a certain bound fixed for the whole ω-word. As an example,
the expression (aBb)ω denotes the language of ω-words in (a∗b)ω for which there is an upper bound on
the number of consecutive occurrences of a (the sequence of exponents of a is bounded). As the bound
may vary from word to word, the language is not ω-regular. The class of ωS-regular languages extends
that of ω-regular ones with strong unboundedness. By analogy with ωB-regular expressions, ωS-regular
expressions are obtained from ω-regular ones by adding a variant of (.)∗, called S-constructor and denoted
by (.)S, to be used in the scope of (.)ω . For every ωS-regular expression containing the sub-expression RS

and every natural number k > 0, the strictly unbounded exponent S constrains the number of ω-iterations
in which the argument R is repeated at most k times to be finite. Let us consider ω-words that feature an
infinite number of instantiations of the expression RS, that is, ω-words for which there exists an infinite
number of ω-iterations including a sequence of consecutive R’s generated by RS. It can be easily checked
that in these words the sequence of exponents of R tends towards infinity. As an example, the expression
(aSb)ω denotes the language of ω-words w in (a∗b)ω such that, for any k > 0, there exists a suffix of w
that only features maximal sequences of consecutive a’s that are longer than k.

ωBS-regular expressions are built by using the operators of ω-regular expressions and both (.)B and
(.)S. In [5], the authors show that the class of ωBS-regular languages strictly includes the classes of ωB-
and ωS-regular languages as witnessed by the ωBS-regular language L = (aBb+aSb)ω consisting of those
ω-words w featuring infinitely many occurrences of b and such that there are only finitely many numbers
occurring infinitely often in the sequence of exponents of a in w, that is, there is a bound k such that no
h > k occurs infinitely often in the sequence of exponents of a in w. L is neither ωB- nor ωS-regular.2

Moreover, they prove that the class of ωBS-regular languages is not closed under complementation. A
counterexample is given precisely by L, whose complement is not ωBS-regular (notice that ωBS-regular
languages whose complement is not an ωBS-regular language are neither ωB- nor ωS-regular languages,
as the complement of an ωB-regular language is an ωS-regular one and vice versa).

In this paper, we investigate those ω-languages that do not belong to the class of ωBS-regular
languages, but whose complement belongs to this class. Let us consider, for instance, the complement L of

2The constructor + occurring in L must not be thought of as performing the union of two languages, but rather as a “shuffling
operator” that mixes ω-iterations belonging to the two different (sub-)languages.
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the language L above. Any word w in L that features infinitely many occurrences of b (i.e., w ∈ (a∗b)ω ) is
such that there are infinitely many natural numbers that occur infinitely often in the sequence of exponents
of a in w. By way of contradiction, suppose that there are only finitely many. Let k be the largest one. Now,
w can be viewed as an infinite sequence of ω-iterations, each of them characterised by the corresponding
exponent of a. If the exponent associated with an ω-iteration is greater than k, then it does not occur
infinitely often, and thus the ω-iteration is captured by the sub-expression aSb. Otherwise, if the exponent
is not greater than k, then the corresponding ω-iteration is captured by the sub-expression aBb. As an
example, the ω-word a1ba2ba1ba3ba1ba4b . . . does not belong to L as 1 is the only exponent occurring
infinitely often, while the ω-word a1ba2ba1ba2ba3ba1ba2ba3ba4b . . . does belong to it as infinitely many
(actually all) natural numbers occur infinitely often in the sequence of exponents.

Here, we focus on ω-words featuring infinitely many exponents occurring infinitely often. More
precisely, we introduce a new variant of (.)∗, called T -constructor and denoted by (.)T , to be used in
the scope of (.)ω , and we define the corresponding class of extended ω-regular languages (ωT -regular
languages). Let E be an ω-expression and let w ∈ E. An expression RT occurring in E forces the sequence
of exponents in w to feature infinitely many different elements occurring infinitely often. As an example,
it can be easily checked that the language L can be defined as (aT b)ω +(a∗b∗)∗aω , and thus it belongs to
the class of ωT -regular languages. In the following, we first provide a formal account of ωBS-regular
languages [5] and then we define ωT -regular ones.

ωBS-regular languages. The class of ωBS-regular languages is the class of languages defined by ωBS-
regular expressions. These latter are built on top of BS-regular expressions, just as ω-regular expressions
are built on top of regular ones. Let Σ be a finite, non-empty alphabet. A BS-regular expression over Σ is
defined by the grammar [5]:

e ::= /0 | a | e · e | e+ e | e∗ | eB | eS

with a ∈ Σ. Sometimes we omit the concatenation operator, thus writing ee for e · e.
BS-regular expressions differ from standard regular ones for the presence of the constructors (.)B and

(.)S. Since these operators constrain the behavior of the sequence of ω-iterations to the limit, it is not
possible to simply define the semantics of BS-regular expressions in terms of languages of (finite) words,
and then to obtain ωBS-regular languages through infinitely many, unrelated iterations of such words.
Instead, we specify their semantics in terms of languages of infinite sequences of finite words; suitable
constraints are imposed to such sequences in order to capture the intended meaning of (.)B and (.)S

Let N be the set of natural numbers, including 0, and N>0 = N\{0}. For an infinite sequence ~u of
finite words over Σ, we denote by ui (i ∈ N>0) its i-th element. The semantics of BS-regular expressions
over Σ is defined as follows (hereafter we assume f (0) = 1):
• L ( /0) = /0;
• for a ∈ Σ, L (a) only contains the infinite sequence of the one-letter word a {(a,a,a, . . .)};
• L (e1 · e2) = {~w | ∀i.wi = ui · vi, ~u ∈L (e1), ~v ∈L (e2)};
• L (e1 + e2) = {~w | ∀i.wi ∈ {ui,vi}, ~u,~v ∈L (e1)∪L (e2)};3
• L (e∗) = {(u f (0)u2 . . .u f (1)−1,u f (1) . . .u f (2)−1, . . .) |~u ∈L (e) and f : N→ N>0 is an unbounded

and nondecreasing function};
• L (eB) = {(u f (0)u2 . . .u f (1)−1,u f (1) . . .u f (2)−1, . . .) |~u ∈L (e) and f : N→ N>0 is an unbounded

and nondecreasing function such that ∃n ∈ N ∀i ∈ N.( f (i+1)− f (i)< n)};
• L (eS) = {(u f (0)u2 . . .u f (1)−1,u f (1) . . .u f (2)−1, . . .) |~u ∈L (e) and f : N→ N>0 is an unbounded

3Unlike the case of word languages, when applied to languages of word sequences, the operator + does not return the union of
the two argument languages. As an example, L (a)∪L (b)( L (a+b), as witnessed by the word sequence (a,b,a,b,a,b, . . .).
In general, for all BS-regular expressions e1,e2, it holds that L (e1)∪L (e2)⊆L (e1 + e2).
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and nondecreasing function such that ∀n ∈ N ∃k ∈ N ∀i > k.( f (i+1)− f (i)> n)}.
Given a sequence~v= (u f (0)u2 . . .u f (1)−1,u f (1) . . .u f (2)−1, . . .)∈ eop, where op∈ {∗,B,S}, we formally

define the sequence of exponents of e in~v, denoted by N(~v), as the sequence
(

f (i+1)− f (i)
)

i∈N
. While

the ∗-constructor does not impose any constraint on the sequence of exponents of its operand, the B-
constructor forces the sequence of exponents to be bounded and the S-constructor forces it to be strictly
unbounded, that is, its limit inferior tends towards infinity (equivalently, the S-constructor imposes that no
exponent occurs infinitely many times in the sequence).

The ω-constructor defines languages of infinite words from languages of infinite word sequences. Let
e be a BS-regular expression. The semantics of the ω-constructor is defined as follows:
• L (eω) = {w | w = u1u2u3 . . . for some~u ∈L (e)}.
ωBS-expressions are defined by the grammar (we denote languages of word sequences by lowercase

letters, such as e, e1, . . . , and languages of words by uppercase ones, such as E, E1, . . . , R, R1, . . . ):
E ::= E +E | R ·E | eω

where R is a regular expression, e is a BS-regular expression, and + and · respectively denote union and
concatenation of word languages (formally, L (E1 +E2) = L (E1)∪L (E2) and L (E1 ·E2) = {u ·v | u ∈
L (E1),v ∈L (E2)}).4 As we did in the case of languages of word sequences, we will sometimes omit
the concatenation operator between word languages.

ωT -regular languages. We are now ready to introduce ωT -regular languages. From [5], we know that
the class of ωBS-regular languages is not closed under complementation, that is, there are ω-languages
that are the complements of ωBS-regular ones while being not ωBS-regular. This is the case, for instance,
with the complement L of the ωBS-regular language L = (aBb+ aSb)ω . We have already pointed out
the distinctive features of L, showing that ω-words belonging to it are, to a certain extent, characterised
by sequences of exponents where infinitely many exponents occur infinitely often. In order to capture
extended ω-regular languages that satisfy such a property, we define a new class of ω-regular languages,
called ωT -regular languages. It includes those languages that can be expressed by ωT -regular expressions,
which are defined by the grammar (where R is a regular expression and a ∈ Σ):

E ::= E +E | R ·E | eω

e ::= /0 | a | e · e | e+ e | e∗ | eT

The sub-grammar rooted in the non-terminal e generates the T -regular expressions. The only new
ingredient in the above definition is the T -constructor (.)T , that, given a language of word sequences e,
defines the following language:
• L (eT ) = {(u f (0)u2 . . .u f (1)−1,u f (1) . . .u f (2)−1, . . .) |~u ∈L (e) and f : N→ N>0 is an unbounded

and nondecreasing function such that ∃ωn ∈ N ∀k ∈ N ∃i > k.( f (i+1)− f (i) = n)},
where ∃ω is a shorthand for “there are infinitely many”.

For~u ∈ eT , we define the sequence of exponents of e in~u, denoted by N(~u), exactly as we did in the
case of BS-regular expressions. Moreover, for op ∈ {∗,B,S,T} and ~u ∈ eop, we denote by Ni(~u) (resp.,
N f (~u)) the set of exponents occurring infinitely (resp., finitely) many times in N(~u). It is not difficult
to see that the cardinality of Ni(~u) is infinite, for every ~u ∈ eT , and thus the formal semantics of the
T -constructor conforms with the intuitive one given at the end of Subsection 2.

It is not difficult to devise an ωT -regular language that is not ωBS-regular and, vice versa, of an
ωBS-regular language that is not ωT -regular.

As we already pointed out in the introduction, one of the motivations for the proposal of the T -
constructor stems from the fact that it somehow complements the other two with respect to the Kleene star.

4Notice the abuse of notation with the previous definition of the operators + and · over languages of word sequences.
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We can make such a claim more precise as follows. Let~u ∈L (eop), with op ∈ {B,S,T}. If~u ∈L (eB),
then N(~u) is bounded, while if either~u ∈L (eS) or~u ∈L (eT ) it is unbounded; moreover, if~u ∈L (eS),
then Ni(~u) = /0, while if~u ∈L (eT ), then Ni(~u) is infinite. The next proposition shows that when paired
with (.)B and (.)S, (.)T makes it possible to define the Kleene star Let BST -regular expressions be obtained
from BS-regular ones by enriching them with (.)T .

Proposition 1. For every BST -regular expression e, it holds that e∗ = eB + eS + eT .

Proof. As L (eB) ⊆L (e∗), L (eS) ⊆L (e∗), and L (eT ) ⊆L (e∗), it trivially holds that L (eB + eS +
eT )⊆L (e∗).

To prove the converse inclusion, we assume that~v ∈L (e∗) and we show that~v ∈L (eB + eS + eT ).
By the semantics of e∗,~v = (u f (0)u2 . . .u f (1)−1,u f (1) . . .u f (2)−1, . . .), for a word sequence ~u ∈L (e) and
an unbounded and nondecreasing function f : N→ N>0, with f (0) = 1.

Let N(~v) be the sequence of exponents (n1,n2, . . .). If N(~v) is bounded, then~v ∈L (eB)⊆L (eB +
eS + eT ). Otherwise, let I = 〈i1, i2, . . .〉 be the increasing sequence of indexes i j such that ni j ∈ Ni(~v)
and F = 〈 f1, f2, . . .〉 be the increasing sequence of indexes f j such that n f j ∈ N f (~v). It clearly holds
that I∪F = N>0. Now, let~t = (t1, t2, . . .) be the word sequence such that t f j = v f j for every f j ∈ F and
ti j = u1 . . .u j for every i j ∈ I. Clearly,~t ∈L (eS). Moreover, let ~w = (w1,w2, . . .) be the word sequence
such that wi j = vi j for every i j ∈ I and w f j = vi1 for every f j ∈ F . If Ni(~v) is finite, then N(~w) is bounded by
max(Ni(~v)), and thus ~w ∈L (eB); otherwise, Ni(~w) (= Ni(~v)) is infinite, that is, there are infinitely many
exponents in ~w occurring infinitely often, and thus ~w∈L (eT ). Hence, ~w∈L (eB)∪L (eT )⊆L (eB+eT ).
Since~v is such that vk = tk, if k ∈ F , and vk = wk, if k ∈ I,~v ∈L (eB + eS + eT ).

3 Counter-check automata

s0

s3s1

s2

s4

ε

ε

ε

ε, (2, inc)
ε, (2, check)

a
b

b, (1, check)

a, (1, inc)

ε

Figure 1: A CCA for the language
((a∗b)∗aT b)ω (N = 2).

In this section, we introduce a new class of automata, called
counter-check automata, and we show that their emptiness prob-
lem is decidable in PTIME. In the next section, we will show that
they are expressive enough to encode ωT -regular expressions.

A counter-check automaton (an example is given in Fig-
ure 1) is an automaton equipped with a fixed number of counters.
A transition can possibly increment or reset one of them (or do
nothing). We refer to reset operations as check operations to
put the emphasis on the fact that computations keep trace of the
evolution of the counter values. In particular, the acceptance
condition depends on the sequences of check values (i.e, the
values when a check operation is performed) for all counters.

Definition 1 (CCA). A counter-check automaton (CCA for short) is a quintuple A = (S,Σ,s0,N,∆),
where S is a finite set of states, Σ is a finite alphabet, s0 ∈ S is the initial state, N ∈ N>0 is the number of
counters, and ∆⊆ S× (Σ∪{ε})×S× ({1, . . . ,N}×{no op, inc,check}) is a transition relation, subject
to the constraint: if (s,σ ,s′,(k,op)) ∈ ∆ and op = no op, then k = 1.

A configuration of a CCA A = (S,Σ,s0,N,∆) is a pair (s,v), where s∈ S and v∈NN is called counter
vector. For v ∈NN and i ∈ {1, . . . ,N}, let v[i] be the i-th component of v, i.e., the value of the i-th counter.

Let A = (S,Σ,s0,N,∆) be a CCA. We define a ternary relation→A over pairs of configurations and
symbols in Σ∪{ε} such that for all configuration pairs (s,v),(s′,v′) and σ ∈ Σ∪{ε}, (s,v)→σ

A (s′,v′)
iff there is δ = (s,σ ,s′, (k,op)) ∈ ∆ such that v′[h] = v[h] for all h 6= k, and
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s0 s1 s1 s3 s2 s2 s2 s2 s4 s0 s2 s2 s2 s4

0 1 2 3 0 1 2 0

0

vr1s
vr2s

ε a b ε

i1

a

i1

a

i1

a

c1

b

c2

ε ε a

i1

a

i1 c1

b
s0 s2 s2 s2 s4 s0 s2 s2 s2 s2 s4 s0

0 1 2 0 1 2 3 0

1 0

i2

ε ε a

i1

a

i1

b

c1

ε

c2

ε a

i1

a

i1

a

i1

b

c1

ε

c2

Figure 2: A prefix of a computation of the automaton in Figure 1. A configuration is characterised
by a circle (state) and the rounded-corner rectangles above it (counter vector). v[i] is a counter vector
component. Checked values for counters are highlighted in gray, with the corresponding transitions being
written in boldface.

• if op = no op, then v′[k] = v[k];
• if op = inc, then v′[k] = v[k]+1;
• if op = check, then v′[k] = 0.

In such a case, we say that (s,v)→σ

A (s′,v′) via δ . Let→∗A be the reflexive and transitive closure of→σ

A
(where we abstract away symbols in Σ∪{ε}). The initial configuration of A is the pair (s0,v0), where
for each k ∈ {1, . . . ,N} we have v0[k] = 0. A computation of A is an infinite sequence of configurations
C = (s0,v0)(s1,v1) . . ., where, for all i ∈ N, (si,vi)→σi

A (si+1,vi+1) for some σi ∈ Σ∪{ε} (see Figure 2).
For a computation C = (s0,v0)(s1,v1) . . . we let check∞

C ,k (k ∈ {1, . . . ,N}) denote the set {n∈N | ∀h∃i> h
such that vi[k] = n and vi+1[k] = 0}, that is, check∞

C ,k is the set of values of the k-th counter that are
checked infinitely often along C . Given two configurations (si,vi) and (s j,v j) in C , with i≤ j, we say
that (s j,v j) is ε-reachable from (si,vi), written (si,vi)→∗εA (s j,v j), if (s j′−1,v j′−1)→ε

A (s j′ ,v j′) for all
j′ ∈ {i+1, . . . , j}.

A run π of w on A is a computation π = (s0,v0)(s1,v1) . . . for which there exists an increasing
function f : N>0→ N, called trace of w in π wrt. A , such that:
• (s0,v0)→∗εA (s f (1),v f (1)), and

• for all i≥ 1, (s f (i),v f (i))→w[i]
A (s f (i)+1,v f (i)+1) and (s f (i)+1,v f (i)+1)→∗εA (s f (i+1),v f (i+1)).

A run π = (s0,v0)(s1,v1) . . . of w on A is accepting iff |check∞
π,k| = +∞ for every k ∈ {1, . . . ,N}. An

ω-word w ∈ Σω is accepted by A iff there exists an accepting run of w on A ; we denote by L (A ) the
set of all ω-words w ∈ Σω that are accepted by A , and we say that A accepts the language L (A ). As
an example, Figure 1 depicts a CCA with two counters (N = 2) accepting the language ((a∗b)∗aT b)ω .
(Note that an automaton for the same language with one counter only can be devised as well.)

3.1 Decidability of the emptiness problem

We now prove that the emptiness problem for CCA is decidable in PTIME. The proof consists of 3 steps:
(i) we replace general CCA by simple ones; (ii) we prove that their emptiness can be decided by checking
the existence of finite witnesses of accepting runs; (iii) we show that the latter can be verified by checking
for emptiness a suitable NFA.
Simple CCA. A CCA A = (S,Σ,s0,N,∆) is simple iff for each s ∈ S either |{(s,σ ,s′,(k,op)) ∈ ∆}|= 1
or op = no op, k = 1, and σ = ε for all (s,σ ,s′,(k,op)) ∈ ∆. Basically, a simple CCA has states of two
kinds: those in which it can fire exactly one action and those in which it makes a nondeterministic choice.
Moreover, for all pairs of configurations (s,v),(s′,v′) with (s,v)→σ

A (s′,v′), the transition δ ∈ ∆ that has
been fired in (s,v) is uniquely determined by s and s′. By exploiting ε-transitions, that is, transitions of
the form (s,ε,s′,(k,op)), and by adding a suitable number of states, it can be easily shown that every
CCA A may be turned into a simple one A ′ such that L (A ) = L (A ′). Without loss of generality, in
the rest of the section we restrict our attention to simple CCA.
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The set of states of a CCA can be partitioned in four subsets: (i) the set of states s from which only
one transition of the form (s,σ ,s′,(k,check)) can be fired (checkk states); (ii) the set of states s from
which only one transition of the form (s,σ ,s′,(k, inc)) can be fired (inck states); (iii) the set of states s
from which only one transition of the form (s,σ ,s′,(1,no op)), with σ 6= ε , can be fired (sym states);
(iv) the set of states s from which possibly many transitions of the form (s,ε,s′,(1,no op)) can be fired
(choice states).

Let A = (S,Σ,s0,N,∆) be a CCA. A prefix computation of A is a finite prefix of a computation of A ;
formally, it is a finite sequence P = (s0,v0) . . .(sn,vn) such that, for all i ∈ {0, . . . ,n−1}, (si,vi)→σi

A
(si+1,vi+1), for some σi ∈ Σ∪{ε}. We denote by PrefixesA the sets of all prefix computations of A . For
every prefix computation P = (s0,v0) . . .(sn,vn) ∈ PrefixesA and s ∈ S, it holds that if (sn,vn)→σ

A (s,v),
for some counter vector v and some σ ∈ Σ∪{ε}, then v is uniquely determined by sn, vn, and s, that is,
there is no v′ 6= v such that (sn,vn)→σ ′

A (s,v′), for any σ ′.
Finite witnesses of accepting runs. We show now how to decide CCA emptiness by making use of the
notion of accepting witness for a CCA.

Definition 2 (Accepting witness). Let A =(S,Σ,s0,N,∆) be a CCA. A prefix computation P =(s0,v0) . . .
(sn,vn) ∈ PrefixesA is an accepting witness (for A ) iff there are 2N +2 indexes begin < b1 < e1 < .. . <
bN < eN < end such that 0≤ begin, end ≤ n, and the following conditions hold:

1. a non-ε-transition can be fired from sbegin;
2. sbegin = send and, for each k ∈ {1, . . . ,N}, sbk = sek , sbk is an inck state, and s j is not a checkk state

for any j with bk ≤ j ≤ ek;
3. for each k ∈ {1, . . . ,N}, there is j, with eN < j < end, such that s j is a checkk state.

An accepting witness for A can be seen as a finite representation of an accepting run of some ω-word on
A . Thus, deciding whether a CCA A accepts the empty language amounts to searching PrefixesA for
accepting witnesses. (The proof of the next lemma is omitted for lack of space.)

Lemma 1. Let A be a CCA. Then, L (A ) 6= /0 iff PrefixesA contains an accepting witness.

From CCA to NFA. Thanks to Lemma 1, deciding the emptiness problem for a CCA A amounts to
searching PrefixesA for an accepting witness. Since we restricted ourselves to simple CCA, we can safely
identify elements of PrefixesA with their sequence of states and thus, by slightly abusing the notation, we
can write, e.g., s0s1 . . .sn ∈ PrefixesA for (s0,v0) . . .(sn,vn) ∈ PrefixesA . Given a CCA A , let Lw(A )
be the language of finite words over the alphabet S (the set of states of A ) that are accepting witnesses for
A . It is easy to see that L (A ) 6= /0 if and only if Lw(A ) 6= /0. In what follows, for a CCA A we build a
nondeterministic finite automata (NFA) whose language is exactly Lw(A ). Since the emptiness problem
for NFA is decidable, so is the one for CCA.

In what follows, without loss of generality, we restrict our attention to accepting witnesses for which
the set of indexes required by item 3 of Definition 2 is ordered. More precisely (we borrow the notation
from Definition 2), we assume that there are N indexes c1 < .. . < cN , with eN < c1 and cN < end, such
that sck is a checkk state, for each k ∈ {1, . . . ,N} (this requirement strengthens the one imposed by item 3
of Definition 2). Given a CCA A , it is easy to check that PrefixesA contains an accepting witness, as
specified by Definition 2, if and only if it contains one satisfying the additional ordering property above.
Thus, Lemma 1 holds with respect to the new definition of accepting witness as well.

Given a CCA A , we apply the following steps to build an NFA N such that L (N ) = Lw(A ):
(i) we build an NFA N1 accepting finite words over the set of states of A that are potential accepting
witnesses, i.e., they satisfy conditions 1- 3 of Definition 2 but they might not be prefix computations;
in other words, such an automaton might as well accept words not belonging to PrefixesA ; (ii) since
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Figure 3: A graphical account of the automaton N1: Snon-ε = {s′1,s′2, . . . ,s′m}, Sinck = {sk
1,s

k
2, . . . ,s

k
pk
}

(k ∈ {1, . . . ,N}).

PrefixesA is a regular language, thanks to closure properties of NFA, there exists an NFA N whose
language is L (N1)∩PrefixesA = Lw(A ).

Let A = (S,Σ,s0,N,∆) be a CCA. We define N1 = 〈Q,ΣN1 ,δ ,q0,F〉 as follows. We set ΣN1 = S,
F = {qend}; moreover, let Snon-ε be the set of states of S from which a non-ε-transition can be fired,
and Sinck be the sets of inck states in S (k ∈ {1, . . . ,N}), we set Q = {q0,qend}∪ {qend

s′ | s′ ∈ Snon-ε}∪⋃N
k=1{qk

s′ , q̂
k
s′ | s′ ∈ Snon-ε}∪

⋃N
k=1{qk

s′s′′ | s′ ∈ Snon-ε ,s′′ ∈ Sinck}. The transition relation δ is described in
Figure 3. In particular, the automaton behaves as follows:

1. it nondeterministically guesses index begin when a symbol s′ ∈ Snon-ε is read; the next state q1
s′

reached by N1 stores the information about the state s′ of A being read to check, at a later stage
(when index end is guessed), that sbegin = s′ = send;

2. similarly, for each k ∈ {1, . . . ,N}, it nondeterministically guesses indexes bk and ek, when a symbol
sk corresponding to an inck state (of A ) is read; once again, the information about the state sk of A
being read is stored in the next state qk

s′sk reached by N1, in order to check that the same state sk

is read when ek is guessed (sbk = sk = sek ); moreover, the automaton forces the absence of checkk
state in between indexes bk and ek;

3. it checks for the existence, after eN , of checkk states (k ∈ {1, . . . ,N}) in the desired order;
4. wait for the input symbol s′, that is, the same symbol read when begin was guessed; when such a

symbol is read, N1 enters the final state qend.

Let Snon-ε and Sinck (k ∈ {1, . . . ,N}) be defined as above and, in addition, let Scheckk be the set of checkk
states in S. We formally define δ as follows:
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g : g1 g2 g3 . . . gh−1 gh gh+1 . . .

f : f (1) . . . f (i1) f (i1 +1). . . f (i2) f (i2 +1). . . f (i3) f (i3 +1). . . f (ih−1) f (ih−1 +1). . . f (ih) f (ih +1). . . f (ih+1) . . .

w : σ f (1). . .σ f (i1) σ f (i1+1) . . .σ f (i2) σ f (i2+1) . . .σ f (i3) σ f (i3+1) . . .σ f (ih−1) σ f (ih−1+1) . . .σ f (ih) σ f (ih+1) . . .σ f (ih+1) . . .

split:
︸ ︷︷ ︸

w1
︸ ︷︷ ︸

w2
︸ ︷︷ ︸

w3
. . . ︸ ︷︷ ︸

wh
︸ ︷︷ ︸

wh+1
. . .

Figure 4: An infinite word w = w[1]w[2] . . .w[i] . . .= σ f (1)σ f (2) . . .σ f (i) . . . is split using sequence g1 <

g2 < .. . < gh < .. . into infinitely many finite words w1, w2, . . . , wh, . . . .

δ = {(q0,s,q0) | s ∈ S}∪{(q0,s′,q1
s′) | s′ ∈ Snon-ε}∪

⋃N
k=1{(qk

s′ ,s,q
k
s′) | s′ ∈ Snon-ε ,s ∈ S}

∪⋃N
k=1{(qk

s′ ,s
k,qk

s′sk) |s′ ∈ Snon-ε ,sk ∈ Sinck}∪
⋃N

k=1{(qk
s′sk ,s,qk

s′sk) |s′ ∈ Snon-ε ,sk ∈ Sinck ,s ∈ S\Scheckk}
∪⋃N−1

k=1 {(qk
s′sk ,sk,qk+1

s′ ) | s′ ∈ Snon-ε ,sk ∈ Sinck}∪{(qN
s′sN ,sN , q̂1

s′) | s′ ∈ Snon-ε ,sN ∈ SincN}
∪⋃N

k=1{(q̂k
s′ ,s, q̂

k
s′) | s′ ∈ Snon-ε ,s ∈ S}∪⋃N−1

k=1 {(q̂k
s′ ,s

k, q̂k+1
s′ ) | s′ ∈ Snon-ε ,sk ∈ Scheckk}

∪ {(q̂N
s′ ,s

N ,qend
s′ ) | s′ ∈ Snon-ε ,sN ∈ ScheckN}∪{(qend

s′ ,s,qend
s′ ) | s′ ∈ Snon-ε ,s ∈ S\{s′}}

∪ {(qend
s′ ,s′,qend) | s′ ∈ Snon-ε}

Since the size of N1 is polynomial in the size of A (|Q| ≤ 2+2 ·N · |S|+N · |S|2 + |S|), we have a
polynomial reduction from the emptiness problem for CCA to the one for NFA.

Theorem 1. The emptiness problem for CCA is decidable in PTIME.

4 From ωT -regular languages to CCA

In this section, we show how to map an ωT -regular expression E into a corresponding CCA A such that
L (E) = L (A ). We build the automaton A in a compositional way: for each sub-expression E ′ of E,
starting from the atomic ones, we introduce a set SE ′ of CCAs and then we show how to produce the set
of automata for complex sub-expressions by suitably combining automata in the sets associated with their
sub-expressions. Eventually, we obtain a set of automata for the ωT -regular expression E. The automaton
A results from the merge of the automata in such a set, as described below. Without loss of generality,
we assume the sets of states of all automata generated in the construction to be pairwise disjoint, i.e., if
A ′ ∈SE ′ and A ′′ ∈SE ′′ , where E ′ and E ′′ are two (not necessarily distinct) sub-expressions of E, then
the set of states of A ′ and the one of A ′′ are disjoint.

We proceed by structural induction on ωT -regular expressions, that is, when building the set SE ′

of CCAs for a sub-expression E ′ of E, we assume the sets of CCAs for the sub-expressions of E ′

to be available. In addition, by construction, we force each generated CCA A = (S,Σ,s0,N,∆) to
feature a distinguished final state s f such that (s f ,σ ,s′,(k,op)) ∈ ∆ implies σ = ε , s′ = s f , k = 1, and
op = inc; in order to distinguish the final state of a CCA we sometimes abuse the notation and write
A = (S,Σ,s0,s f ,N,∆), where s f is the final state of A .
Encoding of T -regular expressions. We first deal with T -regular expressions (sub-grammar rooted in e
in paragraph “ωT -regular languages” at page 227). Since a T -regular expression produces a language
of word sequences and our automata accept ω-words, we must find a way to extract sequences from
ω-words. Intuitively, we do that by splitting an infinite word into infinitely many finite sub-words, each
of them corresponding to the sequence of symbols in between two consecutive check of the 1st counter
along the corresponding accepting run. Formally, let π = (s0,v0)(s1,v1) . . . be an accepting run of some
ω-word w on some CCA A such that (si,vi)→σi

A (si+1,vi+1) via δi, for each i ≥ 0, and let f be the
trace of w in π wrt. A (see definition of run at page 229). Recall that f is such that σ f (i) = w[i] for all
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i≥ 1 (roughly speaking, f enumerates symbols different from ε within sequence σ0σ1 . . .). Moreover, let
g1 < g2 < .. . < gh < .. . (gh ∈N for every h) be the sequence of indexes corresponding to transitions in π

where the 1st counter is checked, that is, for every i∈N we have that δi has the form (si,σi,si+1,(1,check))
if and only if i = gh for some h. As shown in Figure 4, the sequence 〈gh〉h∈N>0 defines a unique partition
of the infinite word w = σ f (1)σ f (2)σ f (3) . . . into infinitely many finite sub-words (some of them are
possibly empty words): w1 = σ f (1)σ f (2) . . .σ f (i1), w2 = σ f (i1+1)σ f (i1+2) . . .σ f (i2), w3 = σ f (i2+1) . . .σ f (i3),
. . . , wh = σ f (ih−1+1) . . .σ f (ih), and so on, with f (ih)< gh ≤ f (ih +1) for every h. We define the language
of word sequences accepted by A , denoted by Ls(A ), as Ls(A ) = {(w1,w2, . . . ,wh, . . .) : w ∈L (A )}.

Let Â = (S,Σ,s0,s f ,N,∆∪{(s f ,ε,s0,(1,check))}), for every A = (S,Σ,s0,s f ,N,∆). For each ex-
pression e, we build a set Se for which it holds:

L (e) =
⋃

A ∈Se
Ls(Â ).

Base cases. If e = /0, then Se = {A /0} where A /0 = ({s0,s f },Σ,s0,s f ,1, /0).
If e = a, then Se = {Aa} where Aa = ({s0,s f },Σ,s0,s f ,1,{(s0,a,s f ,(1,no op)),(s f ,ε,s f ,(1, inc))}).
See Figure 5 (a) and (b) for a graphical account of both cases.

Inductive step. For our purposes, we define, for every CCA A = (S,Σ,s0,N,∆) and natural number
N′ ≥ 1, the N′-shifted version of A as the automaton A ′ = (S,Σ,s0,N +N′,{(s,σ ,s,(k +N′,op)) :
(s,σ ,s,(k,op)) ∈ ∆}). Four cases must be considered.
• Let e = e1 · e2, A = (S,Σ,s0,s f ,N,∆) ∈ Se1 , and A ′ = (S′,Σ,s′0,s

′
f ,N

′,∆′) ∈ Se2 . Moreover, let
A ′′ = (S,Σ,s0,s f ,N + 1,∆′′) and A ′′′ = (S′,Σ,s′0,s

′
f ,N

′+N + 1,∆′′′) be the 1-shifted version of A
and the N +1-shifted version of A ′, respectively. We define A ·A ′ = (S∪S′∪{s′′f },Σ,s0,s′′f ,N +N′+
1,∆′′∪∆′′′∪{(s f ,ε,s′0,(2,check)),(s′f ,ε,s

′′
f ,(N +2,check)),(s′′f ,ε,s

′′
f ,(1, inc))}).

We set Se1·e2 = {A ·A ′ : A ∈Se1 ,A
′ ∈Se2}. See Figure 5 (c) for a graphical account.

• Let e = e1 + e2, A = (S,Σ,s0,s f ,N,∆) ∈ Se1 , and A ′ = (S′,Σ,s′0,s
′
f N
′,∆′) ∈ Se2 . Moreover, let

A ′′ and A ′′′ be defined as in the previous case. We define A +A ′ as the set {A+1 ,A+2 ,A+3} (see
Figure 5 (d)), where
– A+1 = (S ∪ S′ ∪ {s01,s f 1},Σ,s01,s f 1,N′ + N + 1,∆′′ ∪ ∆′′′ ∪ {(s01,ε,s0,(1,no op)),(s01,ε,s′0,(1,

no op)),(s f ,ε,s f 1,(2,check)),(s′f ,ε,s f 1,(N + 2,check)),(s f 1,ε,s f 1,(1, inc))}∪{(s f ,ε,s f ,(k,∗)) :
∗ ∈ {inc,check},N +2≤ k ≤ N +N′+1}),

– A+2 = (S ∪ S′ ∪ {s02,s f 2},Σ,s02,s f 2,N′ + N + 1,∆′′ ∪ ∆′′′ ∪ {(s02,ε,s0,(1,no op)),(s02,ε,s′0,(1,
no op)),(s f ,ε,s f 2,(2,check)),(s′f ,ε,s f 2,(N + 2,check)),(s f 2,ε,s f 2,(1, inc))}∪{(s′f ,ε,s′f ,(k,∗)) :
∗ ∈ {inc,check},2≤ k ≤ N +1}), and

– A+3 = (S ∪ S′ ∪ {s03,s f 3},Σ,s03,s f 3,N′ + N + 1,∆′′ ∪ ∆′′′ ∪ {(s03,ε,s0,(1,no op)),(s03,ε,s′0,(1,
no op)),(s f ,ε,s f 3,(2,check)),(s′f ,ε,s f 3,(N + 2,check)),(s f 3,ε,s f 3,(1, inc))}∪{(s f ,ε,s f ,(k,∗)) :
∗ ∈ {inc,check},2≤ k ≤ N +1}∪{(s′f ,ε,s′f ,(k,∗)) : ∗ ∈ {inc,check},N +2≤ k ≤ N +N′+1}).

We set Se1+e2 =
⋃

A ∈Se1 ,A
′∈Se2

A +A ′.
• Let e = e∗1, A = (S,Σ,s0,s f ,N,∆) ∈Se1 , and A ′′ be defined as in the previous cases. We let A∗ =

s0 sfA∅s0 sf(a)

s0 sf

ε, (1, inc)

Aas0 sf

a, (1, no op) ε, (1, inc)

(b)

s0 sf s′′fA′′ s′0 s′f

ε, (N + 2, check)

A′′′

ε, (1, inc)
ε, (2, check)

(c)

e1 · e2

s01

A+1

s0 sf

sf1

•1 = ε, (2, check)
•2 = ε, (N +2, check)

ε •
1

ε, (N + 2, inc) . . . ε, (N + N ′ + 1, inc)
ε, (N + 2, check) . . . ε, (N +N ′ + 1, check)

A′′

s′0 s′fε •2A′′′

ε, (1, inc)

s02

A+2

s0 sf

sf2
ε •1A′′

s′0 s′fε •2

ε, (2, inc) . . . ε, (N + 1, inc)
ε, (2, check) . . . ε, (N+1, check)

ε, (1, inc)

A′′′
s03

A+3

s0 sf

sf3

ε, (2, inc) . . . ε, (N + 1, inc)
ε, (2, check) . . . ε, (N+1, check)

ε •
1A′′

s′0 s′fε •2

ε,
(1
,
in
c
)A′′′

ε, (N + 2, inc) . . . ε, (N + N ′ + 1, inc)
ε, (N + 2, check) . . . ε, (N +N ′ + 1, check)

(d)

e1 + e2

s0 sf s′′fA′′

ε, (1, inc)
ε, (2, check)

ε, (1, no op)

(e)

e∗1
s0 sf s′′fA′′

ε, (1, inc)ε, (2, check)

ε, (2, inc)
ε, (3, check)

(f)

eT
1

Figure 5: The automata for the translation of a T -regular expression e.
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(S∪{s′′f },Σ,s0,s′′f ,N +1,∆′′∪{(s f ,ε,s0,(1,no op)),(s f ,ε,s′′f ,(2,check)),(s′′f ,ε,s
′′
f ,(1, inc))}).

We set Se∗1 = {A∗ : A ∈Se1}. See Figure 5 (e) for a graphical account.
• Let e = eT

1 and A = (S,Σ,s0,s f ,N,∆) ∈ Se1 . Moreover, let A ′′ = (S,Σ,s0,s f ,N + 2,∆′′) be the
2-shifted version of A . We let AT = (S∪ {s′′f },s0,s′′f ,N + 2,∆′′ ∪ {(s f ,ε,s0,(2, inc)),(s f ,ε,s′′f ,(2,
check)),(s f ,ε,s f ,(3,check)),(s′′f ,ε,s

′′
f ,(1, inc))}).

We set SeT
1
= {AT : A ∈Se1}. See Figure 5 (f) for a graphical account.

The next lemma states the correctness of the proposed encoding (proof omitted for lack of space).

Lemma 2. Let e be a T -regular expression and Se be the corresponding set of automata. It holds:
L (e) =

⋃
A ∈Se

Ls(Â ).

Encoding of ωT -regular expressions. We are now ready to deal with ωT -regular expressions (sub-
grammar rooted in E in paragraph “ωT -regular languages” at page 227). We must distinguish three
cases.
• If E = E1 +E2, then SE1+E2 is equal to SE1 ∪SE2 .
• If E = R ·E ′, then let AR = (SR,FR,Σ,sR

0 ,∆R) be the NFA that recognises the regular language L (R),
and A = (S,Σ,s0,s f ,N,∆) ∈SE ′ . We let AR·A = (S∪ SR,Σ,sR

0 ,s f ,N,∆∪{(s,σ ,s′,(1,no op)) :
(s,σ ,s′) ∈ ∆R}∪{(s,ε,s0,(1,no op)) : s ∈ FR}). We set SR·E ′ = {AR·A : A ∈SE ′}.
• Finally, if E = eω , then Seω is the set {Â : A ∈Se}.
As in the case of T -regular expressions, it is easy to check that, for all ωT -regular expressions E:

L (E) =
⋃

A ∈SE
L (A ).

To complete the reduction, we only need to show how to merge the automata in SE into a single
one AE accepting the language L (E). Let SE = {A1, . . . ,An}, with Ai = (Si,Σ,si

0,Ni,∆i), for 1 ≤
i ≤ n, and let Nmax = max{Ni : 1 ≤ i ≤ n}. For each 1 ≤ i ≤ n, let ∆i = ∆i ∪ {(si

0,ε,s
i
0,(k,∗)) : ∗ ∈

{inc,check},Ni < k ≤ Nmax}. Finally, let s0 be a fresh state. We define AE as the automaton (
⋃

1≤i≤n Si∪
{s0},Σ,s0,Nmax,

⋃
1≤i≤n(∆i∪{(s0,ε,si

0,(1,no op))})).
Theorem 2. For every ωT -regular expression E, there exists a CCA A such that L (E) = L (A ).

5 From ωT -regular languages to S1S+U

In this section, we provide an encoding of ωT -regular expressions into S1S+U.
Definition of S1S+U. The logic S1S is MSO interpreted over infinite words. Its formulas are built over a
finite, non-empty alphabet Σ and sets V1 and V2 of first- and second-order variables, respectively:

ϕ ::= τ ∈ Pσ | τ ∈ X | ¬ϕ | ϕ ∨ϕ | ∃x.ϕ | ∃X .ϕ
τ ::= x | s(τ)

where σ ∈ Σ, x ∈ V1, and X ∈ V2. We denote by VΣ the set {Pσ | σ ∈ Σ}.5 Technically, elements of VΣ

are second-order variables (i.e., they range over sets of positive natural numbers), but with a standard
intended semantics: they partition N>0 and an interpretation for them I : VΣ→ 2N>0 identifies an infinite
word wI over Σ as follows: wI [i] = σ iff i ∈I (Pσ ), for every i ∈N>0, σ ∈ Σ. Notice also that variables
in VΣ always occur free (i.e., not bound by any quantifier). A formula is closed if the only free variables
are the ones in VΣ; otherwise, it is open. The semantics of a closed formula ϕ , denoted by JϕK, is the set
of all infinite words that satisfy ϕ , i.e, JϕK = {wI |I |= ϕ}.

The logic S1S+U extends S1S with the unbounding quantifier U, which is defined as in [4]:
UX .ϕ(X) :=

∧
n∈N∃finX(ϕ(X)∧|X | ≥ n).

5We also use the formulation P(τ) in stead of τ ∈ P (P ∈V2∪VΣ).
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where ∃fin allows for existential quantification over finite sets, i.e., ∃finX .ϕ ≡ ∃X .(ϕ ∧∃y.X ⊆ {1, . . . ,y})
for every second-order variable X and S1S+U-formula ϕ ; the universal quantifier ∀fin is defined as the dual
of ∃fin. Intuitively, U makes it possible to say that a formula ϕ(X) (containing at least one second-order
free variable X) is satisfied by infinitely many finite sets and there is no bound on their sizes. The bounding
quantifier B is defined as the negation of U: BX .ϕ(X) := ¬UX .ϕ(X) ≡ ∨n∈N∀finX(ϕ(X)→ |X | < n).
Its intended meaning is: there is a bound on the sizes of finite sets that satisfy ϕ(X).
Encoding. In what follows, given an ωT -regular expression E we show how to build a formula ϕE for
which L (E) = JϕEK. For the lack of space, we only give an intuitive idea of the encoding.

For every ωT -regular (sub-)expression E, let E[T 7→∗] be the ω-regular (sub-)expression obtained from
E by replacing the T -constructor with the ∗-constructor (e.g., if E = (aT b)ω , then E[T 7→∗] = (a∗b)ω ) and
ϕE[T 7→∗] be the S1S-formula for which JϕE[T 7→∗]K = L (E[T 7→∗]) holds (its existence is guaranteed by the
equivalence between S1S and ω-regular languages).

Let E be an ωT -regular expression. In order to correctly define ϕE we need to enrich such a formula
ϕE[T 7→∗] to enforce the condition imposed by occurrences of the T -constructor in E. The intuitive idea is to
control, for every sub-expression eT , the sizes of e-blocks (i.e., maximal blocks of consecutive occurrences
of finite words in L (e[T 7→∗])) along infinite words. (Notice that e[T 7→∗] is a regular expression.) According
to the semantics of the T -constructor, we have to force the existence of e-blocks of infinitely many
different sizes, and infinitely many of such sizes must occur infinitely often. To this end, given a regular
expression e, we build a formula ΦT cond

e that is satisfied by an infinite word w iff there are infinitely
many k ∈ N such that w features infinitely many e-blocks of size k. In our construction, we use formulas
is reg expe(x,y) (for every regular expression e), featuring two free first-order variables, with the following
semantics: w satisfies is reg expe[x 7→ x̄,y 7→ ȳ] iff w[x̄, ȳ] ∈L (e). In addition, we use the unary predicate
Beginning ofe(x), with the following semantics: w satisfies Beginning ofe[x 7→ x̄] iff w[x̄, ȳ] ∈L (e) for
some ȳ ∈ N>0.

Let e be a regular expression. To begin with, we define formula Φe-block(X), stating that X is a maximal
set of positions from which consecutive sub-words belonging to L (e) begin; roughly speaking, X is an
e-block.
Φe-block(X):=∃y∃z.[is reg expe∗(y,z)∧X ⊆ {y, . . . ,z}∧∀x.(x ∈ {y, . . . ,z}∧Beginning ofe(x)→ x ∈ X)].

Next formula Φe-block-set(Y ) says that (i) Y only contains e-blocks, (ii) it contains infinitely many of them,
and (iii) there is an upper bound on their sizes. In this case, we say that Y is an e-block-set.

Φe-block-set(Y ) := [∀y.(y ∈ Y →∃finX .(Φe-block(X)∧X ⊆ Y ∧ y ∈ X))]∧
∧[∀y∃finX .(Φe-block(X)∧X ⊆ Y ∧minX > y)]∧ [Bx.(X ⊆ Y ∧Φe-block(X))]

Finally, we define ΦT cond
e as ∀Y.[Φe-block-set(Y )→∃Z.(Φe-block-set(Z)∧Y ( Z∧∃ωx.x ∈ Z \Y )], where ∃ω

allows for infinite existential first-order quantification, i.e., ∃ωx.ϕ ≡ ∀y∃x.(x > y∧ϕ).

Lemma 3. Let e be a regular expression. An infinite word w satisfies ΦT cond
e iff there are infinitely many

natural numbers k such that w features infinitely many e-blocks of size k.

Proof. Let w be an infinite word that satisfies ΦT cond
e and let us assume that there are only finitely many

natural numbers k such that infinitely many e-blocks of size k occur in w. Let kmax be the largest among
such numbers and let Ȳ be the e-block-set containing all e-blocks of size not larger than kmax. Clearly, w
satisfies Φe-block-set[Y 7→ Ȳ ] and thus, by the definition of ΦT cond

e , there exists an e-block-set Z̄ that contains
infinitely many e-blocks (of bounded size) that do not belong to Ȳ . Since Z̄ ) Ȳ (that means Z contains all
e-blocks in Ȳ as well), there exists a number k′ > kmax such that infinitely many e-blocks of size k′ occur
in w. This is in contradiction with our initial hypothesis that kmax is the largest number such that infinitely
many e-blocks of size kmax occur in w, hence the thesis follows.
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In order to prove the converse direction, let us assume that there are infinitely many natural numbers
k such that infinitely many e-blocks of size k occur in w and let Ȳ be an e-block-set (i.e., w satifies
Φe-block-set[Y 7→ Ȳ ]). By the definition of Φe-block-set(Y ) (in particular, the third conjunct), there is a
bound on the size of all e-blocks in Ȳ . Let kmax be such a bound. By our assumption, there is a
number k′ > kmax such that infinitely many e-blocks of size k′ occur in w. Let Z̄ be the set containing
all e-blocks in Ȳ and, in addition all e-blocks of size k′ occurring in w. Clearly, Z̄ is an e-block-set
that contains Ȳ and feaures infinitely many elements not belonging to Ȳ (i.e., w satisfies the formula
(Φe-block-set(Z)∧Y ( Z∧∃ωx.x ∈ Z \Y )[Y 7→ Ȳ ,Z 7→ Z̄]), and thus w satisfies ΦT cond

e .

Making use of formulas ΦT cond
e , for every regular expression e, it is possible to strengthen ϕE[T 7→∗] to

enforce the condition, imposed by occurrences of the T -constructor in E, on sizes of e-blocks occurring in
infinite words, for every sub-expression eT of E. Thus, we can conclude the main result of this section.

Theorem 3. For every ωT -regular expression E, we have that JϕEK = L (E).

As a conclusive remark, notice that ΦT cond
e uses quantification over infinite sets, implying that ϕt does

not belong to the language of wS1S+U, where second-order quantification is only allowed over finite sets.

6 Conclusions

In this paper, we introduced a new class of extended ω-regular languages (ωT -regular languages),
that captures meaningful languages not belonging to the class of ωBS-regular ones. We first gave a
characterization of them in terms of ωT -regular expressions. Then, we defined the new class of counter-
check automata (CCA), with a decidable emptiness problem, and we proved that they are expressive
enough to capture them. Finally, we provided an embedding of ωT -regular languages in S1S+U.

In the exploration of the space of possible extensions of ω-regular languages, we studied also a
stronger variant of (.)T , that forces ω-words to feature infinitely many exponents, all of them occurring
infinitely often (a detailed account can be found in [2]). To a large extent, the results obtained for (.)T can
be replicated for this stronger variant. In particular, it is possible to introduce a new class of automata,
called counter-queue automata (CQA), that generalize CCA, whose emptiness problem can be proved
to be decidable in 2ETIME and which are expressive enough to capture ω-regular languages extended
with the stronger variant of (.)T . As in the case of ωT -regular languages, the problem of establishing
whether or not the new languages are expressively complete with respect to CQA is open. There are,
however, at least two significant differences between(.)T and its stronger variant. First, (.)T satisfies the
following property of prefix independence. Let e be a T -regular expression and let ~u = (u1,u2, . . .) and
~v = (uh,uh+1, . . .) be two word sequences such that~v is the infinite suffix of~u starting at position h and
ui ∈L (e) for all i. Then, ~u ∈L (eT ) iff ~v ∈L (eT ). Both (.)B and (.)S satisfy an analogous property,
while this is not the case with the stronger variant of (.)T : if~u belongs to the language, then~v belongs to
it as well, but not vice versa. The second difference is that there seems to be no way to generalize the
embedding of ωT -regular languages into S1S+U given in Section 5 to the stronger variant of (.)T .

As for future work, we would like to investigate different combinations of (.)B, (.)S, and (weak and
strong) (.)T We already know that ωBST -regular languages are not closed under complementation. Indeed,
if they were, they would be expressively complete for S1S+U. However, it is known from [10] that S1S+U
makes it possible to define languages that are complete for arbitrary levels of the projective hierarchy,
while ωBST -regular languages live at the first level (analytic sets), and thus they cannot define full S1S+U.
A particularly interesting issue is the one about the intersections of ωB-, ωS-, and weak/strong ωB-regular
languages. In [12], it has been shown that a language which is both ωB- and ωS-regular is also ω-regular.
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We aim at providing a characterization of languages which are both ωB- (resp., ωS-) and ωT -regular. We
are also interested in (modal) temporal logic counterparts of extended ω-regular languages. To the best of
our knowledge, none was provided in the literature. We started to fill such a gap in [14, 15].
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comments on the relationship between *-, B-, S-, and T-constructors.
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[3] M. Bojańczyk (2004): A bounding quantifier. In: CSL, LNCS 3210, Springer, pp. 41–55, doi:10.1007/978-3-
540-30124-0 7.
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